

Springer Texts in Statistics

Advisors:
George Casella Stephen Fienberg Ingram Olkin

Springer Texts in Statistics

Athreya/Lahiri: Measure Theory and Probability Theory
Bilodeau/Brenner: Theory of Multivariate Statistics
Brockwell/Davis: An Introduction to Time Series and Forecasting
Carmona: Statistical Analysis of Financial Data in S-PLUS
Chow/Teicher: Probability Theory: Independence, Interchangeability,

Martingales, Third Edition
Christensen: Advanced Linear Modeling: Multivariate, Time Series, and

Spatial Data; Nonparametric Regression and Response Surface
Maximization, Second Edition

Christensen: Log-Linear Models and Logistic Regression, Second Edition
Christensen: Plane Answers to Complex Questions: The Theory of

Linear Models, Second Edition
Davis: Statistical Methods for the Analysis of Repeated Measurements
Dean/Voss: Design and Analysis of Experiments
Dekking/Kraaikamp/Lopuhaä/Meester: A Modern Introduction to

Probability and Statistics
Durrett: Essentials of Stochastic Processes
Edwards: Introduction to Graphical Modeling, Second Edition
Everitt: An R and S-PLUS Companion to Multivariate Analysis

Ghosh/Delampady/Samanta: An Introduction to Bayesian Analysis
Gut: Probability: A Graduate Course
Heiberger/Holland: Statistical Analysis and Data Display; An Intermediate

Course with Examples in S-PLUS, R, and SAS
Jobson: Applied Multivariate Data Analysis, Volume I: Regression and

Experimental Design
Jobson: Applied Multivariate Data Analysis, Volume II: Categorical and

Multivariate Methods
Karr: Probability
Kulkarni: Modeling, Analysis, Design, and Control of Stochastic Systems
Lange: Applied Probability
Lange: Optimization
Lehmann: Elements of Large Sample Theory
Lehmann/Romano: Testing Statistical Hypotheses, Third Edition
Lehmann/Casella: Theory of Point Estimation, Second Edition
Marin/Robert: Bayesian Core: A Practical Approach to Computational

Bayesian Statistics
Nolan/Speed: Stat Labs: Mathematical Statistics Through Applications
Pitman: Probability
Rawlings/Pantula/Dickey: Applied Regression Analysis

(continued after index)

Gentle:Matrix Algebra: Theory, Computations, and Applications in Statistics

James E. Gentle

Matrix Algebra
Theory, Computations, and Applications
in Statistics

Editorial Board
George Casella Stephen Fienberg Ingram Olkin
Department of Statistics Department of Statistics
University of Florida Carnegie Mellon University Stanford University
Gainesville, FL 32611-8545 Pittsburgh, PA 15213-3890 Stanford, CA 94305
USA USA USA

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY, 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

James E. Gentle
Department of Computational

and Data Sciences
George Mason University
4400 University Drive
Fairfax, VA 22030-4444
jgentle@gmu.edu

ISBN :978-0-387-70872-0 e-ISBN :978-0-387-70873-7

Department of Statistics

Library of Congress Control Number: 2007930269

To Maŕıa

Preface

I began this book as an update of Numerical Linear Algebra for Applications
in Statistics, published by Springer in 1998. There was a modest amount of
new material to add, but I also wanted to supply more of the reasoning behind
the facts about vectors and matrices. I had used material from that text in
some courses, and I had spent a considerable amount of class time proving
assertions made but not proved in that book. As I embarked on this project,
the character of the book began to change markedly. In the previous book,
I apologized for spending 30 pages on the theory and basic facts of linear
algebra before getting on to the main interest: numerical linear algebra. In
the present book, discussion of those basic facts takes up over half of the book.

The orientation and perspective of this book remains numerical linear al-
gebra for applications in statistics. Computational considerations inform the
narrative. There is an emphasis on the areas of matrix analysis that are im-
portant for statisticians, and the kinds of matrices encountered in statistical
applications receive special attention.

This book is divided into three parts plus a set of appendices. The three
parts correspond generally to the three areas of the book’s subtitle — theory,
computations, and applications — although the parts are in a different order,
and there is no firm separation of the topics.

Part I, consisting of Chapters 1 through 7, covers most of the material
in linear algebra needed by statisticians. (The word “matrix” in the title of
the present book may suggest a somewhat more limited domain than “linear
algebra”; but I use the former term only because it seems to be more commonly
used by statisticians and is used more or less synonymously with the latter
term.)

The first four chapters cover the basics of vectors and matrices, concen-
trating on topics that are particularly relevant for statistical applications. In
Chapter 4, it is assumed that the reader is generally familiar with the basics of
partial differentiation of scalar functions. Chapters 5 through 7 begin to take
on more of an applications flavor, as well as beginning to give more consid-
eration to computational methods. Although the details of the computations

viii Preface

are not covered in those chapters, the topics addressed are oriented more to-
ward computational algorithms. Chapter 5 covers methods for decomposing
matrices into useful factors.

Chapter 6 addresses applications of matrices in setting up and solving
linear systems, including overdetermined systems. We should not confuse sta-
tistical inference with fitting equations to data, although the latter task is
a component of the former activity. In Chapter 6, we address the more me-
chanical aspects of the problem of fitting equations to data. Applications in
statistical data analysis are discussed in Chapter 9. In those applications, we
need to make statements (that is, assumptions) about relevant probability
distributions.

Chapter 7 discusses methods for extracting eigenvalues and eigenvectors.
There are many important details of algorithms for eigenanalysis, but they
are beyond the scope of this book. As with other chapters in Part I, Chap-
ter 7 makes some reference to statistical applications, but it focuses on the
mathematical and mechanical aspects of the problem.

Although the first part is on “theory”, the presentation is informal; neither
definitions nor facts are highlighted by such words as “Definition”, “Theorem”,
“Lemma”, and so forth. It is assumed that the reader follows the natural
development. Most of the facts have simple proofs, and most proofs are given
naturally in the text. No “Proof” and “Q.E.D.” or “ ” appear to indicate
beginning and end; again, it is assumed that the reader is engaged in the
development. For example, on page 270:

If A is nonsingular and symmetric, then A−1 is also symmetric because
(A−1)T = (AT)−1 = A−1.

The first part of that sentence could have been stated as a theorem and
given a number, and the last part of the sentence could have been introduced
as the proof, with reference to some previous theorem that the inverse and
transposition operations can be interchanged. (This had already been shown
before page 270 — in an unnumbered theorem of course!)

None of the proofs are original (at least, I don’t think they are), but in most
cases I do not know the original source, or even the source where I first saw
them. I would guess that many go back to C. F. Gauss. Most, whether they
are as old as Gauss or not, have appeared somewhere in the work of C. R. Rao.
Some lengthier proofs are only given in outline, but references are given for
the details. Very useful sources of details of the proofs are Harville (1997),
especially for facts relating to applications in linear models, and Horn and
Johnson (1991) for more general topics, especially those relating to stochastic
matrices. The older books by Gantmacher (1959) provide extensive coverage
and often rather novel proofs. These two volumes have been brought back into
print by the American Mathematical Society.

I also sometimes make simple assumptions without stating them explicitly.
For example, I may write “for all i” when i is used as an index to a vector.
I hope it is clear that “for all i” means only “for i that correspond to indices

Preface ix

of the vector”. Also, my use of an expression generally implies existence. For
example, if “AB” is used to represent a matrix product, it implies that “A
and B are conformable for the multiplication AB”. Occasionally I remind the
reader that I am taking such shortcuts.

The material in Part I, as in the entire book, was built up recursively. In the
first pass, I began with some definitions and followed those with some facts
that are useful in applications. In the second pass, I went back and added
definitions and additional facts that lead to the results stated in the first
pass. The supporting material was added as close to the point where it was
needed as practical and as necessary to form a logical flow. Facts motivated by
additional applications were also included in the second pass. In subsequent
passes, I continued to add supporting material as necessary and to address
the linear algebra for additional areas of application. I sought a bare-bones
presentation that gets across what I considered to be the theory necessary for
most applications in the data sciences. The material chosen for inclusion is
motivated by applications.

Throughout the book, some attention is given to numerical methods for
computing the various quantities discussed. This is in keeping with my be-
lief that statistical computing should be dispersed throughout the statistics
curriculum and statistical literature generally. Thus, unlike in other books
on matrix “theory”, I describe the “modified” Gram-Schmidt method, rather
than just the “classical” GS. (I put “modified” and “classical” in quotes be-
cause, to me, GS is MGS. History is interesting, but in computational matters,
I do not care to dwell on the methods of the past.) Also, condition numbers
of matrices are introduced in the “theory” part of the book, rather than just
in the “computational” part. Condition numbers also relate to fundamental
properties of the model and the data.

The difference between an expression and a computing method is em-
phasized. For example, often we may write the solution to the linear system
Ax = b as A−1b. Although this is the solution (so long as A is square and of
full rank), solving the linear system does not involve computing A−1. We may
write A−1b, but we know we can compute the solution without inverting the
matrix.

“This is an instance of a principle that we will encounter repeatedly:
the form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.”

(The statement in quotes appears word for word in several places in the book.)
Standard textbooks on “matrices for statistical applications” emphasize

their uses in the analysis of traditional linear models. This is a large and im-
portant field in which real matrices are of interest, and the important kinds of
real matrices include symmetric, positive definite, projection, and generalized
inverse matrices. This area of application also motivates much of the discussion
in this book. In other areas of statistics, however, there are different matrices of
interest, including similarity and dissimilarity matrices, stochastic matrices,

x Preface

rotation matrices, and matrices arising from graph-theoretic approaches to
data analysis. These matrices have applications in clustering, data mining,
stochastic processes, and graphics; therefore, I describe these matrices and
their special properties. I also discuss the geometry of matrix algebra. This
provides a better intuition of the operations. Homogeneous coordinates and
special operations in IR3 are covered because of their geometrical applications
in statistical graphics.

Part II addresses selected applications in data analysis. Applications are
referred to frequently in Part I, and of course, the choice of topics for coverage
was motivated by applications. The difference in Part II is in its orientation.

Only “selected” applications in data analysis are addressed; there are ap-
plications of matrix algebra in almost all areas of statistics, including the
theory of estimation, which is touched upon in Chapter 4 of Part I. Certain
types of matrices are more common in statistics, and Chapter 8 discusses in
more detail some of the important types of matrices that arise in data analy-
sis and statistical modeling. Chapter 9 addresses selected applications in data
analysis. The material of Chapter 9 has no obvious definition that could be
covered in a single chapter (or a single part, or even a single book), so I have
chosen to discuss briefly a wide range of areas. Most of the sections and even
subsections of Chapter 9 are on topics to which entire books are devoted;
however, I do not believe that any single book addresses all of them.

Part III covers some of the important details of numerical computations,
with an emphasis on those for linear algebra. I believe these topics constitute
the most important material for an introductory course in numerical analysis
for statisticians and should be covered in every such course.

Except for specific computational techniques for optimization, random
number generation, and perhaps symbolic computation, Part III provides the
basic material for a course in statistical computing. All statisticians should
have a passing familiarity with the principles.

Chapter 10 provides some basic information on how data are stored and
manipulated in a computer. Some of this material is rather tedious, but it
is important to have a general understanding of computer arithmetic before
considering computations for linear algebra. Some readers may skip or just
skim Chapter 10, but the reader should be aware that the way the computer
stores numbers and performs computations has far-reaching consequences.
Computer arithmetic differs from ordinary arithmetic in many ways; for ex-
ample, computer arithmetic lacks associativity of addition and multiplication,
and series often converge even when they are not supposed to. (On the com-
puter, a straightforward evaluation of

∑∞
x=1 x converges!)

I emphasize the differences between the abstract number system IR, called
the reals, and the computer number system IF, the floating-point numbers
unfortunately also often called “real”. Table 10.3 on page 400 summarizes
some of these differences. All statisticians should be aware of the effects of
these differences. I also discuss the differences between ZZ, the abstract number
system called the integers, and the computer number system II, the fixed-point

Preface xi

numbers. (Appendix A provides definitions for this and other notation that I
use.)

Chapter 10 also covers some of the fundamentals of algorithms, such as
iterations, recursion, and convergence. It also discusses software development.
Software issues are revisited in Chapter 12.

While Chapter 10 deals with general issues in numerical analysis, Chap-
ter 11 addresses specific issues in numerical methods for computations in linear
algebra.

Chapter 12 provides a brief introduction to software available for com-
putations with linear systems. Some specific systems mentioned include the
IMSLTM libraries for Fortran and C, Octave or MATLAB R© (or Matlab R©),
and R or S-PLUS R© (or S-Plus R©). All of these systems are easy to use, and
the best way to learn them is to begin using them for simple problems. I do
not use any particular software system in the book, but in some exercises, and
particularly in Part III, I do assume the ability to program in either Fortran
or C and the availability of either R or S-Plus, Octave or Matlab, and Maple R©

or Mathematica R©. My own preferences for software systems are Fortran and
R, and occasionally these preferences manifest themselves in the text.

Appendix A collects the notation used in this book. It is generally “stan-
dard” notation, but one thing the reader must become accustomed to is the
lack of notational distinction between a vector and a scalar. All vectors are
“column” vectors, although I usually write them as horizontal lists of their
elements. (Whether vectors are “row” vectors or “column” vectors is generally
only relevant for how we write expressions involving vector/matrix multipli-
cation or partitions of matrices.)

I write algorithms in various ways, sometimes in a form that looks similar
to Fortran or C and sometimes as a list of numbered steps. I believe all of the
descriptions used are straightforward and unambiguous.

This book could serve as a basic reference either for courses in statistical
computing or for courses in linear models or multivariate analysis. When the
book is used as a reference, rather than looking for “Definition” or “Theorem”,
the user should look for items set off with bullets or look for numbered equa-
tions, or else should use the Index, beginning on page 519, or Appendix A,
beginning on page 479.

The prerequisites for this text are minimal. Obviously some background in
mathematics is necessary. Some background in statistics or data analysis and
some level of scientific computer literacy are also required. References to rather
advanced mathematical topics are made in a number of places in the text. To
some extent this is because many sections evolved from class notes that I
developed for various courses that I have taught. All of these courses were at
the graduate level in the computational and statistical sciences, but they have
had wide ranges in mathematical level. I have carefully reread the sections
that refer to groups, fields, measure theory, and so on, and am convinced that
if the reader does not know much about these topics, the material is still
understandable, but if the reader is familiar with these topics, the references

xii Preface

add to that reader’s appreciation of the material. In many places, I refer to
computer programming, and some of the exercises require some programming.
A careful coverage of Part III requires background in numerical programming.

In regard to the use of the book as a text, most of the book evolved in one
way or another for my own use in the classroom. I must quickly admit, how-
ever, that I have never used this whole book as a text for any single course. I
have used Part III in the form of printed notes as the primary text for a course
in the “foundations of computational science” taken by graduate students in
the natural sciences (including a few statistics students, but dominated by
physics students). I have provided several sections from Parts I and II in online
PDF files as supplementary material for a two-semester course in mathemati-
cal statistics at the “baby measure theory” level (using Shao, 2003). Likewise,
for my courses in computational statistics and statistical visualization, I have
provided many sections, either as supplementary material or as the primary
text, in online PDF files or printed notes. I have not taught a regular “applied
statistics” course in almost 30 years, but if I did, I am sure that I would draw
heavily from Parts I and II for courses in regression or multivariate analysis.
If I ever taught a course in “matrices for statistics” (I don’t even know if
such courses exist), this book would be my primary text because I think it
covers most of the things statisticians need to know about matrix theory and
computations.

Some exercises are Monte Carlo studies. I do not discuss Monte Carlo
methods in this text, so the reader lacking background in that area may need
to consult another reference in order to work those exercises. The exercises
should be considered an integral part of the book. For some exercises, the
required software can be obtained from either statlib or netlib (see the
bibliography). Exercises in any of the chapters, not just in Part III, may
require computations or computer programming.

Penultimately, I must make some statement about the relationship of
this book to some other books on similar topics. Much important statisti-
cal theory and many methods make use of matrix theory, and many sta-
tisticians have contributed to the advancement of matrix theory from its
very early days. Widely used books with derivatives of the words “statis-
tics” and “matrices/linear-algebra” in their titles include Basilevsky (1983),
Graybill (1983), Harville (1997), Schott (2004), and Searle (1982). All of these
are useful books. The computational orientation of this book is probably the
main difference between it and these other books. Also, some of these other
books only address topics of use in linear models, whereas this book also dis-
cusses matrices useful in graph theory, stochastic processes, and other areas
of application. (If the applications are only in linear models, most matrices
of interest are symmetric, and all eigenvalues can be considered to be real.)
Other differences among all of these books, of course, involve the authors’
choices of secondary topics and the ordering of the presentation.

Preface xiii

Acknowledgments

I thank John Kimmel of Springer for his encouragement and advice on this
book and other books on which he has worked with me. I especially thank
Ken Berk for his extensive and insightful comments on a draft of this book.
I thank my student Li Li for reading through various drafts of some of the
chapters and pointing out typos or making helpful suggestions. I thank the
anonymous reviewers of this edition for their comments and suggestions. I also
thank the many readers of my previous book on numerical linear algebra who
informed me of errors and who otherwise provided comments or suggestions
for improving the exposition. Whatever strengths this book may have can be
attributed in large part to these people, named or otherwise. The weaknesses
can only be attributed to my own ignorance or hardheadedness.

I thank my wife, Maŕıa, to whom this book is dedicated, for everything.

I used TEX via LATEX2ε to write the book. I did all of the typing, program-
ming, etc., myself, so all misteaks are mine. I would appreciate receiving
suggestions for improvement and notification of errors. Notes on this book,
including errata, are available at

http://mason.gmu.edu/~jgentle/books/matbk/

Fairfax County, Virginia James E. Gentle
June 12, 2007

Contents

Preface . vii

Part I Linear Algebra

1 Basic Vector/Matrix Structure and Notation 3
1.1 Vectors . 4
1.2 Arrays . 5
1.3 Matrices . 5
1.4 Representation of Data . 7

2 Vectors and Vector Spaces . 9
2.1 Operations on Vectors . 9

2.1.1 Linear Combinations and Linear Independence 10
2.1.2 Vector Spaces and Spaces of Vectors 11
2.1.3 Basis Sets . 14
2.1.4 Inner Products . 15
2.1.5 Norms . 16
2.1.6 Normalized Vectors . 21
2.1.7 Metrics and Distances . 22
2.1.8 Orthogonal Vectors and Orthogonal Vector Spaces 22
2.1.9 The “One Vector” . 23

2.2 Cartesian Coordinates and Geometrical Properties of Vectors . 24
2.2.1 Cartesian Geometry . 25
2.2.2 Projections . 25
2.2.3 Angles between Vectors . 26
2.2.4 Orthogonalization Transformations 27
2.2.5 Orthonormal Basis Sets . 29
2.2.6 Approximation of Vectors . 30
2.2.7 Flats, Affine Spaces, and Hyperplanes 31
2.2.8 Cones . 32

xvi Contents

2.2.9 Cross Products in IR3 . 33
2.3 Centered Vectors and Variances and Covariances of Vectors . . . 33

2.3.1 The Mean and Centered Vectors . 34
2.3.2 The Standard Deviation, the Variance,

and Scaled Vectors . 35
2.3.3 Covariances and Correlations between Vectors 36

Exercises . 37

3 Basic Properties of Matrices . 41
3.1 Basic Definitions and Notation . 41

3.1.1 Matrix Shaping Operators . 44
3.1.2 Partitioned Matrices . 46
3.1.3 Matrix Addition. 47
3.1.4 Scalar-Valued Operators on Square Matrices:

The Trace . 49
3.1.5 Scalar-Valued Operators on Square Matrices:

The Determinant . 50
3.2 Multiplication of Matrices and Multiplication

of Vectors and Matrices . 59
3.2.1 Matrix Multiplication (Cayley) . 59
3.2.2 Multiplication of Partitioned Matrices 61
3.2.3 Elementary Operations on Matrices 61
3.2.4 Traces and Determinants of Square Cayley Products . . . 67
3.2.5 Multiplication of Matrices and Vectors 68
3.2.6 Outer Products . 69
3.2.7 Bilinear and Quadratic Forms; Definiteness 69
3.2.8 Anisometric Spaces . 71
3.2.9 Other Kinds of Matrix Multiplication 72

3.3 Matrix Rank and the Inverse of a Full Rank Matrix 76
3.3.1 The Rank of Partitioned Matrices, Products

of Matrices, and Sums of Matrices 78
3.3.2 Full Rank Partitioning . 80
3.3.3 Full Rank Matrices and Matrix Inverses 81
3.3.4 Full Rank Factorization . 85
3.3.5 Equivalent Matrices . 86
3.3.6 Multiplication by Full Rank Matrices 88
3.3.7 Products of the Form ATA . 90
3.3.8 A Lower Bound on the Rank of a Matrix Product 92
3.3.9 Determinants of Inverses . 92
3.3.10 Inverses of Products and Sums of Matrices 93
3.3.11 Inverses of Matrices with Special Forms 94
3.3.12 Determining the Rank of a Matrix 94

3.4 More on Partitioned Square Matrices: The Schur Complement 95
3.4.1 Inverses of Partitioned Matrices . 95
3.4.2 Determinants of Partitioned Matrices 96

Contents xvii

3.5 Linear Systems of Equations . 96
3.5.1 Solutions of Linear Systems . 97
3.5.2 Null Space: The Orthogonal Complement 99

3.6 Generalized Inverses . 100
3.6.1 Generalized Inverses of Sums of Matrices 101
3.6.2 Generalized Inverses of Partitioned Matrices 101
3.6.3 Pseudoinverse or Moore-Penrose Inverse 101

3.7 Orthogonality . 103
3.8 Eigenanalysis; Canonical Factorizations . 105

3.8.1 Basic Properties of Eigenvalues and Eigenvectors 107
3.8.2 The Characteristic Polynomial . 108
3.8.3 The Spectrum . 110
3.8.4 Similarity Transformations . 114
3.8.5 Similar Canonical Factorization;

Diagonalizable Matrices . 116
3.8.6 Properties of Diagonalizable Matrices 118
3.8.7 Eigenanalysis of Symmetric Matrices 119
3.8.8 Positive Definite and Nonnegative Definite Matrices . . . 124
3.8.9 The Generalized Eigenvalue Problem 126
3.8.10 Singular Values and the Singular Value Decomposition . 127

3.9 Matrix Norms . 128
3.9.1 Matrix Norms Induced from Vector Norms 129
3.9.2 The Frobenius Norm — The “Usual” Norm 131
3.9.3 Matrix Norm Inequalities . 133
3.9.4 The Spectral Radius . 134
3.9.5 Convergence of a Matrix Power Series 134

3.10 Approximation of Matrices . 137
Exercises . 140

4 Vector/Matrix Derivatives and Integrals 145
4.1 Basics of Differentiation . 145
4.2 Types of Differentiation . 149

4.2.1 Differentiation with Respect to a Scalar 149
4.2.2 Differentiation with Respect to a Vector 150
4.2.3 Differentiation with Respect to a Matrix 154

4.3 Optimization of Functions . 156
4.3.1 Stationary Points of Functions . 156
4.3.2 Newton’s Method . 156
4.3.3 Optimization of Functions with Restrictions 159

4.4 Multiparameter Likelihood Functions . 163
4.5 Integration and Expectation . 164

4.5.1 Multidimensional Integrals and Integrals Involving
Vectors and Matrices . 165

4.5.2 Integration Combined with Other Operations 166
4.5.3 Random Variables . 167

xviii Contents

Exercises . 169

5 Matrix Transformations and Factorizations 173
5.1 Transformations by Orthogonal Matrices 174
5.2 Geometric Transformations . 175

5.2.1 Rotations . 176
5.2.2 Reflections . 178
5.2.3 Translations; Homogeneous Coordinates 178

5.3 Householder Transformations (Reflections) 180
5.4 Givens Transformations (Rotations) . 182
5.5 Factorization of Matrices . 185
5.6 LU and LDU Factorizations . 186
5.7 QR Factorization . 188

5.7.1 Householder Reflections to Form the QR Factorization . 190
5.7.2 Givens Rotations to Form the QR Factorization 192
5.7.3 Gram-Schmidt Transformations to Form the

QR Factorization . 192
5.8 Singular Value Factorization . 192
5.9 Factorizations of Nonnegative Definite Matrices 193

5.9.1 Square Roots . 193
5.9.2 Cholesky Factorization . 194
5.9.3 Factorizations of a Gramian Matrix 196

5.10 Incomplete Factorizations . 197
Exercises . 198

6 Solution of Linear Systems . 201
6.1 Condition of Matrices . 201
6.2 Direct Methods for Consistent Systems . 206

6.2.1 Gaussian Elimination and Matrix Factorizations 207
6.2.2 Choice of Direct Method . 211

6.3 Iterative Methods for Consistent Systems 211
6.3.1 The Gauss-Seidel Method with

Successive Overrelaxation . 212
6.3.2 Conjugate Gradient Methods for Symmetric

Positive Definite Systems . 213
6.3.3 Multigrid Methods . 217

6.4 Numerical Accuracy . 218
6.5 Iterative Refinement . 219
6.6 Updating a Solution to a Consistent System 220
6.7 Overdetermined Systems; Least Squares . 222

6.7.1 Least Squares Solution of an Overdetermined System . . 224
6.7.2 Least Squares with a Full Rank Coefficient Matrix 226
6.7.3 Least Squares with a Coefficient Matrix

Not of Full Rank . 227

Contents xix

6.7.4 Updating a Least Squares Solution
of an Overdetermined System . 228

6.8 Other Solutions of Overdetermined Systems. 229
6.8.1 Solutions that Minimize Other Norms of the Residuals . 230
6.8.2 Regularized Solutions . 233
6.8.3 Minimizing Orthogonal Distances . 234

Exercises . 238

7 Evaluation of Eigenvalues and Eigenvectors 241
7.1 General Computational Methods . 242

7.1.1 Eigenvalues from Eigenvectors and Vice Versa 242
7.1.2 Deflation . 243
7.1.3 Preconditioning . 244

7.2 Power Method . 245
7.3 Jacobi Method . 247
7.4 QR Method . 250
7.5 Krylov Methods . 252
7.6 Generalized Eigenvalues . 252
7.7 Singular Value Decomposition . 253
Exercises . 256

Part II Applications in Data Analysis

8 Special Matrices and Operations Useful in Modeling
and Data Analysis . 261
8.1 Data Matrices and Association Matrices . 261

8.1.1 Flat Files . 262
8.1.2 Graphs and Other Data Structures 262
8.1.3 Probability Distribution Models . 269
8.1.4 Association Matrices . 269

8.2 Symmetric Matrices . 270
8.3 Nonnegative Definite Matrices; Cholesky Factorization 275
8.4 Positive Definite Matrices . 277
8.5 Idempotent and Projection Matrices . 280

8.5.1 Idempotent Matrices . 281
8.5.2 Projection Matrices: Symmetric Idempotent Matrices . . 286

8.6 Special Matrices Occurring in Data Analysis 287
8.6.1 Gramian Matrices . 288
8.6.2 Projection and Smoothing Matrices 290
8.6.3 Centered Matrices and Variance-Covariance Matrices . . 293
8.6.4 The Generalized Variance . 296
8.6.5 Similarity Matrices . 298
8.6.6 Dissimilarity Matrices . 299

8.7 Nonnegative and Positive Matrices . 299

xx Contents

8.7.1 Properties of Square Positive Matrices 301
8.7.2 Irreducible Square Nonnegative Matrices 302
8.7.3 Stochastic Matrices . 306
8.7.4 Leslie Matrices . 307

8.8 Other Matrices with Special Structures . 307
8.8.1 Helmert Matrices . 308
8.8.2 Vandermonde Matrices . 309
8.8.3 Hadamard Matrices and Orthogonal Arrays 310
8.8.4 Toeplitz Matrices . 311
8.8.5 Hankel Matrices . 312
8.8.6 Cauchy Matrices . 313
8.8.7 Matrices Useful in Graph Theory . 313
8.8.8 M -Matrices . 317

Exercises . 317

9 Selected Applications in Statistics . 321
9.1 Multivariate Probability Distributions . 322

9.1.1 Basic Definitions and Properties . 322
9.1.2 The Multivariate Normal Distribution 323
9.1.3 Derived Distributions and Cochran’s Theorem 323

9.2 Linear Models . 325
9.2.1 Fitting the Model . 327
9.2.2 Linear Models and Least Squares . 330
9.2.3 Statistical Inference . 332
9.2.4 The Normal Equations and the Sweep Operator 335
9.2.5 Linear Least Squares Subject to Linear

Equality Constraints . 337
9.2.6 Weighted Least Squares . 337
9.2.7 Updating Linear Regression Statistics 338
9.2.8 Linear Smoothing . 341

9.3 Principal Components . 341
9.3.1 Principal Components of a Random Vector 342
9.3.2 Principal Components of Data . 343

9.4 Condition of Models and Data . 346
9.4.1 Ill-Conditioning in Statistical Applications 346
9.4.2 Variable Selection . 347
9.4.3 Principal Components Regression 348
9.4.4 Shrinkage Estimation . 348
9.4.5 Testing the Rank of a Matrix . 350
9.4.6 Incomplete Data . 352

9.5 Optimal Design . 355
9.6 Multivariate Random Number Generation 358
9.7 Stochastic Processes . 360

9.7.1 Markov Chains . 360
9.7.2 Markovian Population Models . 362

Contents xxi

9.7.3 Autoregressive Processes . 364
Exercises . 365

Part III Numerical Methods and Software

10 Numerical Methods . 375
10.1 Digital Representation of Numeric Data . 377

10.1.1 The Fixed-Point Number System . 378
10.1.2 The Floating-Point Model for Real Numbers 379
10.1.3 Language Constructs for Representing Numeric Data . . 386
10.1.4 Other Variations in the Representation of Data;

Portability of Data . 391
10.2 Computer Operations on Numeric Data . 393

10.2.1 Fixed-Point Operations . 394
10.2.2 Floating-Point Operations . 395
10.2.3 Exact Computations; Rational Fractions 399
10.2.4 Language Constructs for Operations

on Numeric Data . 401
10.3 Numerical Algorithms and Analysis . 403

10.3.1 Error in Numerical Computations 404
10.3.2 Efficiency . 412
10.3.3 Iterations and Convergence . 417
10.3.4 Other Computational Techniques . 419

Exercises . 422

11 Numerical Linear Algebra . 429
11.1 Computer Representation of Vectors and Matrices 429
11.2 General Computational Considerations

for Vectors and Matrices . 431
11.2.1 Relative Magnitudes of Operands . 431
11.2.2 Iterative Methods . 433
11.2.3 Assessing Computational Errors . 434

11.3 Multiplication of Vectors and Matrices . 435
11.4 Other Matrix Computations . 439
Exercises . 441

12 Software for Numerical Linear Algebra . 445
12.1 Fortran and C . 447

12.1.1 Programming Considerations . 448
12.1.2 Fortran 95 . 452
12.1.3 Matrix and Vector Classes in C++ 453
12.1.4 Libraries . 454
12.1.5 The IMSLTM Libraries . 457
12.1.6 Libraries for Parallel Processing . 460

xxii Contents

12.2 Interactive Systems for Array Manipulation 461
12.2.1 MATLAB R© and Octave . 463
12.2.2 R and S-PLUS R© . 466

12.3 High-Performance Software . 470
12.4 Software for Statistical Applications . 472
12.5 Test Data . 472
Exercises . 475

A Notation and Definitions . 479
A.1 General Notation . 479
A.2 Computer Number Systems . 481
A.3 General Mathematical Functions and Operators 482
A.4 Linear Spaces and Matrices . 484
A.5 Models and Data . 490

B Solutions and Hints for Selected Exercises 493

Bibliography . 505

Index . 519

Part I

Linear Algebra

1

Basic Vector/Matrix Structure and Notation

Vectors and matrices are useful in representing multivariate data, and they
occur naturally in working with linear equations or when expressing linear
relationships among objects. Numerical algorithms for a variety of tasks in-
volve matrix and vector arithmetic. An optimization algorithm to find the
minimum of a function, for example, may use a vector of first derivatives and
a matrix of second derivatives; and a method to solve a differential equation
may use a matrix with a few diagonals for computing differences.

There are various precise ways of defining vectors and matrices, but we
will generally think of them merely as linear or rectangular arrays of numbers,
or scalars, on which an algebra is defined. Unless otherwise stated, we will as-
sume the scalars are real numbers. We denote both the set of real numbers
and the field of real numbers as IR. (The field is the set together with the op-
erators.) Occasionally we will take a geometrical perspective for vectors and
will consider matrices to define geometrical transformations. In all contexts,
however, the elements of vectors or matrices are real numbers (or, more gen-
erally, members of a field). When this is not the case, we will use more general
phrases, such as “ordered lists” or “arrays”.

Many of the operations covered in the first few chapters, especially the
transformations and factorizations in Chapter 5, are important because of
their use in solving systems of linear equations, which will be discussed in
Chapter 6; in computing eigenvectors, eigenvalues, and singular values, which
will be discussed in Chapter 7; and in the applications in Chapter 9.

Throughout the first few chapters, we emphasize the facts that are impor-
tant in statistical applications. We also occasionally refer to relevant compu-
tational issues, although computational details are addressed specifically in
Part III.

It is very important to understand that the form of a mathematical expres-
sion and the way the expression should be evaluated in actual practice may
be quite different. We remind the reader of this fact from time to time. That
there is a difference in mathematical expressions and computational methods
is one of the main messages of Chapters 10 and 11. (An example of this, in

4 1 Basic Vector/Matrix Notation

notation that we will introduce later, is the expression A−1b. If our goal is to
solve a linear system Ax = b, we probably should never compute the matrix
inverse A−1 and then multiply it times b. Nevertheless, it may be entirely
appropriate to write the expression A−1b.)

1.1 Vectors

For a positive integer n, a vector (or n-vector) is an n-tuple, ordered (multi)set,
or array of n numbers, called elements or scalars. The number of elements
is called the order, or sometimes the “length”, of the vector. An n-vector
can be thought of as representing a point in n-dimensional space. In this
setting, the “length” of the vector may also mean the Euclidean distance from
the origin to the point represented by the vector; that is, the square root of
the sum of the squares of the elements of the vector. This Euclidean distance
will generally be what we mean when we refer to the length of a vector (see
page 17).

We usually use a lowercase letter to represent a vector, and we use the
same letter with a single subscript to represent an element of the vector.

The first element of an n-vector is the first (1st) element and the last is the
nth element. (This statement is not a tautology; in some computer systems,
the first element of an object used to represent a vector is the 0th element
of the object. This sometimes makes it difficult to preserve the relationship
between the computer entity and the object that is of interest.) We will use
paradigms and notation that maintain the priority of the object of interest
rather than the computer entity representing it.

We may write the n-vector x as

x =

⎛

⎜
⎝

x1

...
xn

⎞

⎟
⎠ (1.1)

or
x = (x1, . . . , xn). (1.2)

We make no distinction between these two notations, although in some con-
texts we think of a vector as a “column”, so the first notation may be more
natural. The simplicity of the second notation recommends it for common use.
(And this notation does not require the additional symbol for transposition
that some people use when they write the elements of a vector horizontally.)

We use the notation
IRn

to denote the set of n-vectors with real elements.

1.3 Matrices 5

1.2 Arrays

Arrays are structured collections of elements corresponding in shape to lines,
rectangles, or rectangular solids. The number of dimensions of an array is often
called the rank of the array. Thus, a vector is an array of rank 1, and a matrix
is an array of rank 2. A scalar, which can be thought of as a degenerate array,
has rank 0. When referring to computer software objects, “rank” is generally
used in this sense. (This term comes from its use in describing a tensor. A
rank 0 tensor is a scalar, a rank 1 tensor is a vector, a rank 2 tensor is a
square matrix, and so on. In our usage referring to arrays, we do not require
that the dimensions be equal, however.) When we refer to “rank of an array”,
we mean the number of dimensions. When we refer to “rank of a matrix”, we
mean something different, as we discuss in Section 3.3. In linear algebra, this
latter usage is far more common than the former.

1.3 Matrices

A matrix is a rectangular or two-dimensional array. We speak of the rows and
columns of a matrix. The rows or columns can be considered to be vectors,
and we often use this equivalence. An n × m matrix is one with n rows and
m columns. The number of rows and the number of columns determine the
shape of the matrix. Note that the shape is the doubleton (n,m), not just
a single number such as the ratio. If the number of rows is the same as the
number of columns, the matrix is said to be square.

All matrices are two-dimensional in the sense of “dimension” used above.
The word “dimension”, however, when applied to matrices, often means some-
thing different, namely the number of columns. (This usage of “dimension” is
common both in geometry and in traditional statistical applications.)

We usually use an uppercase letter to represent a matrix. To represent an
element of the matrix, we usually use the corresponding lowercase letter with
a subscript to denote the row and a second subscript to represent the column.
If a nontrivial expression is used to denote the row or the column, we separate
the row and column subscripts with a comma.

Although vectors and matrices are fundamentally quite different types of
objects, we can bring some unity to our discussion and notation by occasion-
ally considering a vector to be a “column vector” and in some ways to be the
same as an n× 1 matrix. (This has nothing to do with the way we may write
the elements of a vector. The notation in equation (1.2) is more convenient
than that in equation (1.1) and so will generally be used in this book, but its
use should not change the nature of the vector. Likewise, this has nothing to
do with the way the elements of a vector or a matrix are stored in the com-
puter.) When we use vectors and matrices in the same expression, however,
we use the symbol “T” (for “transpose”) as a superscript to represent a vector
that is being treated as a 1 × n matrix.

6 1 Basic Vector/Matrix Notation

We use the notation a∗j to correspond to the jth column of the matrix A
and use ai∗ to represent the (column) vector that corresponds to the ith row.

The first row is the 1st (first) row, and the first column is the 1st (first)
column. (Again, we remark that computer entities used in some systems to
represent matrices and to store elements of matrices as computer data some-
times index the elements beginning with 0. Furthermore, some systems use the
first index to represent the column and the second index to indicate the row.
We are not speaking here of the storage order—“row major” versus “column
major” —we address that later, in Chapter 11. Rather, we are speaking of the
mechanism of referring to the abstract entities. In image processing, for exam-
ple, it is common practice to use the first index to represent the column and
the second index to represent the row. In the software package PV-Wave, for
example, there are two different kinds of two-dimensional objects: “arrays”, in
which the indexing is done as in image processing, and “matrices”, in which
the indexing is done as we have described.)

The n × m matrix A can be written

A =

⎡

⎢
⎣

a11 . . . a1m

...
...

...
an1 . . . anm

⎤

⎥
⎦ . (1.3)

We also write the matrix A above as

A = (aij), (1.4)

with the indices i and j ranging over {1, . . . , n} and {1, . . . , m}, respectively.
We use the notation An×m to refer to the matrix A and simultaneously to
indicate that it is n × m, and we use the notation

IRn×m

to refer to the set of all n × m matrices with real elements.
We use the notation (A)ij to refer to the element in the ith row and the

jth column of the matrix A; that is, in equation (1.3), (A)ij = aij .
Although vectors are column vectors and the notation in equations (1.1)

and (1.2) represents the same entity, that would not be the same for matrices.
If x1, . . . , xn are scalars

X =

⎡

⎢
⎣

x1

...
xn

⎤

⎥
⎦ (1.5)

and
Y = [x1, . . . , xn], (1.6)

then X is an n × 1 matrix and Y is a 1 × n matrix (and Y is the transpose
of X). Although an n × 1 matrix is a different type of object from a vector,

1.4 Representation of Data 7

we may treat X in equation (1.5) or Y T in equation (1.6) as a vector when
it is convenient to do so. Furthermore, although a 1 × 1 matrix, a 1-vector,
and a scalar are all fundamentally different types of objects, we will treat a
one by one matrix or a vector with only one element as a scalar whenever it
is convenient.

One of the most important uses of matrices is as a transformation of a vec-
tor by vector/matrix multiplication. Such transformations are linear (a term
that we define later). Although one can occasionally profitably distinguish ma-
trices from linear transformations on vectors, for our present purposes there
is no advantage in doing so. We will often treat matrices and linear transfor-
mations as equivalent.

Many of the properties of vectors and matrices we discuss hold for an
infinite number of elements, but we will assume throughout this book that
the number is finite.

Subvectors and Submatrices

We sometimes find it useful to work with only some of the elements of a
vector or matrix. We refer to the respective arrays as “subvectors” or “sub-
matrices”. We also allow the rearrangement of the elements by row or column
permutations and still consider the resulting object as a subvector or subma-
trix. In Chapter 3, we will consider special forms of submatrices formed by
“partitions” of given matrices.

1.4 Representation of Data

Before we can do any serious analysis of data, the data must be represented
in some structure that is amenable to the operations of the analysis. In sim-
ple cases, the data are represented by a list of scalar values. The ordering in
the list may be unimportant, and the analysis may just consist of computa-
tion of simple summary statistics. In other cases, the list represents a time
series of observations, and the relationships of observations to each other as
a function of their distance apart in the list are of interest. Often, the data
can be represented meaningfully in two lists that are related to each other by
the positions in the lists. The generalization of this representation is a two-
dimensional array in which each column corresponds to a particular type of
data.

A major consideration, of course, is the nature of the individual items of
data. The observational data may be in various forms: quantitative measures,
colors, text strings, and so on. Prior to most analyses of data, they must be
represented as real numbers. In some cases, they can be represented easily
as real numbers, although there may be restrictions on the mapping into the
reals. (For example, do the data naturally assume only integral values, or
could any real number be mapped back to a possible observation?)

8 1 Basic Vector/Matrix Notation

The most common way of representing data is by using a two-dimensional
array in which the rows correspond to observational units (“instances”) and
the columns correspond to particular types of observations (“variables” or
“features”). If the data correspond to real numbers, this representation is the
familiar X data matrix. Much of this book is devoted to the matrix theory
and computational methods for the analysis of data in this form. This type of
matrix, perhaps with an adjoined vector, is the basic structure used in many
familiar statistical methods, such as regression analysis, principal components
analysis, analysis of variance, multidimensional scaling, and so on.

There are other types of structures that are useful in representing data
based on graphs. A graph is a structure consisting of two components: a set of
points, called vertices or nodes and a set of pairs of the points, called edges.
(Note that this usage of the word “graph” is distinctly different from the
more common one that refers to lines, curves, bars, and so on to represent
data pictorially. The phrase “graph theory” is often used, or overused, to em-
phasize the present meaning of the word.) A graph G = (V,E) with vertices
V = {v1, . . . , vn} is distinguished primarily by the nature of the edge elements
(vi, vj) in E. Graphs are identified as complete graphs, directed graphs, trees,
and so on, depending on E and its relationship with V . A tree may be used
for data that are naturally aggregated in a hierarchy, such as political unit,
subunit, household, and individual. Trees are also useful for representing clus-
tering of data at different levels of association. In this type of representation,
the individual data elements are the leaves of the tree.

In another type of graphical representation that is often useful in “data
mining”, where we seek to uncover relationships among objects, the vertices
are the objects, either observational units or features, and the edges indicate
some commonality between vertices. For example, the vertices may be text
documents, and an edge between two documents may indicate that a certain
number of specific words or phrases occur in both documents. Despite the
differences in the basic ways of representing data, in graphical modeling of
data, many of the standard matrix operations used in more traditional data
analysis are applied to matrices that arise naturally from the graph.

However the data are represented, whether in an array or a network, the
analysis of the data is often facilitated by using “association” matrices. The
most familiar type of association matrix is perhaps a correlation matrix. We
will encounter and use other types of association matrices in Chapter 8.

2

Vectors and Vector Spaces

In this chapter we discuss a wide range of basic topics related to vectors of real
numbers. Some of the properties carry over to vectors over other fields, such
as complex numbers, but the reader should not assume this. Occasionally, for
emphasis, we will refer to “real” vectors or “real” vector spaces, but unless it
is stated otherwise, we are assuming the vectors and vector spaces are real.
The topics and the properties of vectors and vector spaces that we emphasize
are motivated by applications in the data sciences.

2.1 Operations on Vectors

The elements of the vectors we will use in the following are real numbers, that
is, elements of IR. We call elements of IR scalars. Vector operations are defined
in terms of operations on real numbers.

Two vectors can be added if they have the same number of elements.
The sum of two vectors is the vector whose elements are the sums of the
corresponding elements of the vectors being added. Vectors with the same
number of elements are said to be conformable for addition. A vector all of
whose elements are 0 is the additive identity for all conformable vectors.

We overload the usual symbols for the operations on the reals to signify
the corresponding operations on vectors or matrices when the operations are
defined. Hence, “+” can mean addition of scalars, addition of conformable
vectors, or addition of a scalar to a vector. This last meaning of “+” may
not be used in many mathematical treatments of vectors, but it is consistent
with the semantics of modern computer languages such as Fortran 95, R, and
Matlab. By the addition of a scalar to a vector, we mean the addition of the
scalar to each element of the vector, resulting in a vector of the same number
of elements.

A scalar multiple of a vector (that is, the product of a real number and
a vector) is the vector whose elements are the multiples of the corresponding
elements of the original vector. Juxtaposition of a symbol for a scalar and a

10 2 Vectors and Vector Spaces

symbol for a vector indicates the multiplication of the scalar with each element
of the vector, resulting in a vector of the same number of elements.

A very common operation in working with vectors is the addition of a
scalar multiple of one vector to another vector,

z = ax + y, (2.1)

where a is a scalar and x and y are vectors conformable for addition. Viewed
as a single operation with three operands, this is called an “axpy” for obvious
reasons. (Because the Fortran versions of BLAS to perform this operation
were called saxpy and daxpy, the operation is also sometimes called “saxpy”
or “daxpy”. See Section 12.1.4 on page 454, for a description of the BLAS.)
The axpy operation is called a linear combination. Such linear combinations
of vectors are the basic operations in most areas of linear algebra. The com-
position of axpy operations is also an axpy; that is, one linear combination
followed by another linear combination is a linear combination. Furthermore,
any linear combination can be decomposed into a sequence of axpy operations.

2.1.1 Linear Combinations and Linear Independence

If a given vector can be formed by a linear combination of one or more vectors,
the set of vectors (including the given one) is said to be linearly dependent;
conversely, if in a set of vectors no one vector can be represented as a linear
combination of any of the others, the set of vectors is said to be linearly
independent. In equation (2.1), for example, the vectors x, y, and z are not
linearly independent. It is possible, however, that any two of these vectors
are linearly independent. Linear independence is one of the most important
concepts in linear algebra.

We can see that the definition of a linearly independent set of vectors
{v1, . . . , vk} is equivalent to stating that if

a1v1 + · · · akvk = 0, (2.2)

then a1 = · · · = ak = 0. If the set of vectors {v1, . . . , vk} is not linearly inde-
pendent, then it is possible to select a maximal linearly independent subset;
that is, a subset of {v1, . . . , vk} that is linearly independent and has maxi-
mum cardinality. We do this by selecting an arbitrary vector, vi1 , and then
seeking a vector that is independent of vi1 . If there are none in the set that
is linearly independent of vi1 , then a maximum linearly independent subset
is just the singleton, because all of the vectors must be a linear combination
of just one vector (that is, a scalar multiple of that one vector). If there is a
vector that is linearly independent of vi1 , say vi2 , we next seek a vector in the
remaining set that is independent of vi1 and vi2 . If one does not exist, then
{vi1 , vi2} is a maximal subset because any other vector can be represented in
terms of these two and hence, within any subset of three vectors, one can be
represented in terms of the two others. Thus, we see how to form a maximal

2.1 Operations on Vectors 11

linearly independent subset, and we see that the maximum cardinality of any
subset of linearly independent vectors is unique.

It is easy to see that the maximum number of n-vectors that can form a
set that is linearly independent is n. (We can see this by assuming n linearly
independent vectors and then, for any (n + 1)th vector, showing that it is
a linear combination of the others by building it up one by one from linear
combinations of two of the given linearly independent vectors. In Exercise 2.1,
you are asked to write out these steps.)

Properties of a set of vectors are usually invariant to a permutation of the
elements of the vectors if the same permutation is applied to all vectors in the
set. In particular, if a set of vectors is linearly independent, the set remains
linearly independent if the elements of each vector are permuted in the same
way.

If the elements of each vector in a set of vectors are separated into sub-
vectors, linear independence of any set of corresponding subvectors implies
linear independence of the full vectors. To state this more precisely for a set
of three n-vectors, let x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn).
Now let {i1, . . . , ik} ⊂ {1, . . . , n}, and form the k-vectors x̃ = (xi1 , . . . , xik

),
ỹ = (yi1 , . . . , yik

), and z̃ = (zi1 , . . . , zik
). Then linear independence of x̃, ỹ,

and z̃ implies linear independence of x, y, and z.

2.1.2 Vector Spaces and Spaces of Vectors

Let V be a set of n-vectors such that any linear combination of the vectors in
V is also in V . Then the set together with the usual vector algebra is called a
vector space. (Technically, the “usual algebra” is a linear algebra consisting of
two operations: vector addition and scalar times vector multiplication, which
are the two operations comprising an axpy. It has closure of the space under
the combination of those operations, commutativity and associativity of addi-
tion, an additive identity and inverses, a multiplicative identity, distribution of
multiplication over both vector addition and scalar addition, and associativity
of scalar multiplication and scalar times vector multiplication. Vector spaces
are linear spaces.) A vector space necessarily includes the additive identity.
(In the axpy operation, let a = −1 and y = x.)

A vector space can also be made up of other objects, such as matrices.
The key characteristic of a vector space is a linear algebra.

We generally use a calligraphic font to denote a vector space; V, for exam-
ple. Often, however, we think of the vector space merely in terms of the set
of vectors on which it is built and denote it by an ordinary capital letter; V ,
for example.

The Order and the Dimension of a Vector Space

The maximum number of linearly independent vectors in a vector space is
called the dimension of the vector space. We denote the dimension by

12 2 Vectors and Vector Spaces

dim(·),

which is a mapping IRn �→ ZZ+ (where ZZ+ denotes the positive integers). The
length or order of the vectors in the space is the order of the vector space. The
order is greater than or equal to the dimension, as we showed above.

The vector space consisting of all n-vectors with real elements is denoted
IRn. (As mentioned earlier, the notation IRn also refers to just the set of
n-vectors with real elements; that is, to the set over which the vector space is
defined.) Both the order and the dimension of IRn are n.

We also use the phrase dimension of a vector to mean the dimension of
the vector space of which the vector is an element. This term is ambiguous,
but its meaning is clear in certain applications, such as dimension reduction,
that we will discuss later.

Many of the properties of vectors that we discuss hold for an infinite
number of elements, but throughout this book we will assume the vector
spaces have a finite number of dimensions.

Essentially Disjoint Vector Spaces

If the only element in common between two vector spaces V1 and V2 is the
additive identity, the spaces are said to be essentially disjoint. If the vector
spaces V1 and V2 are essentially disjoint, it is clear that any element in V1

(except the additive identity) is linearly independent of any set of elements
in V2.

Some Special Vectors

We denote the additive identity in a vector space of order n by 0n or sometimes
by 0. This is the vector consisting of all zeros. We call this the zero vector.
This vector by itself is sometimes called the null vector space. It is not a vector
space in the usual sense; it would have dimension 0. (All linear combinations
are the same.)

Likewise, we denote the vector consisting of all ones by 1n or sometimes by
1. We call this the one vector and also the “summing vector” (see page 23).
This vector and all scalar multiples of it are vector spaces with dimension
1. (This is true of any single nonzero vector; all linear combinations are just
scalar multiples.) Whether 0 and 1 without a subscript represent vectors or
scalars is usually clear from the context.

The ith unit vector, denoted by ei, has a 1 in the ith position and 0s in all
other positions:

ei = (0, . . . , 0, 1, 0, . . . , 0). (2.3)

Another useful vector is the sign vector, which is formed from signs of the
elements of a given vector. It is denoted by “sign(·)” and defined by

2.1 Operations on Vectors 13

sign(x)i = 1 if xi > 0,
= 0 if xi = 0,
= −1 if xi < 0.

(2.4)

Ordinal Relations among Vectors

There are several possible ways to form a rank ordering of vectors of the same
order, but no complete ordering is entirely satisfactory. (Note the unfortunate
overloading of the word “order” or “ordering” here.) If x and y are vectors of
the same order and for corresponding elements xi > yi, we say x is greater
than y and write

x > y. (2.5)

In particular, if all of the elements of x are positive, we write x > 0.
If x and y are vectors of the same order and for corresponding elements

xi ≥ yi, we say x is greater than or equal to y and write

x ≥ y. (2.6)

This relationship is a partial ordering (see Exercise 8.1a). The expression x ≥ 0
means that all of the elements of x are nonnegative.

Set Operations on Vector Spaces

Although a vector space is a set together with operations, we often speak of a
vector space as if it were just the set, and we use some of the same notation to
refer to vector spaces as we use to refer to sets. For example, if V is a vector
space, the notation W ⊆ V indicates that W is a vector space (that is, it has
the properties listed above), that the set of vectors in the vector space W is
a subset of the vectors in V, and that the operations in the two objects are
the same. A subset of a vector space V that is itself a vector space is called a
subspace of V.

The intersection of two vector spaces of the same order is a vector space.
The union of two such vector spaces, however, is not necessarily a vector space
(because for v1 ∈ V1 and v2 ∈ V2, v1 +v2 may not be in V1∪V2). We refer to a
set of vectors of the same order together with the addition operator (whether
or not the set is closed with respect to the operator) as a “space of vectors”.

If V1 and V2 are spaces of vectors, the space of vectors

V = {v, s.t. v = v1 + v2, v1 ∈ V1, v2 ∈ V2}

is called the sum of the spaces V1 and V2 and is denoted by V = V1 + V2. If
the spaces V1 and V2 are vector spaces, then V1 + V2 is a vector space, as is
easily verified.

If V1 and V2 are essentially disjoint vector spaces (not just spaces of vec-
tors), the sum is called the direct sum. This relation is denoted by

V = V1 ⊕ V2. (2.7)

14 2 Vectors and Vector Spaces

Cones

A set of vectors that contains all positive scalar multiples of any vector in
the set is called a cone. A cone always contains the zero vector. A set of
vectors V is a convex cone if, for all v1, v2 ∈ V and all a, b ≥ 0, av1 + bv2 ∈ V .
(Such a cone is called a homogeneous convex cone by some authors. Also,
some authors require that a + b = 1 in the definition.) A convex cone is not
necessarily a vector space because v1 − v2 may not be in V . An important
convex cone in an n-dimensional vector space is the positive orthant together
with the zero vector. This convex cone is not closed, in the sense that it
does not contain some limits. The closure of the positive orthant (that is, the
nonnegative orthant) is also a convex cone.

2.1.3 Basis Sets

If each vector in the vector space V can be expressed as a linear combination
of the vectors in some set G, then G is said to be a generating set or spanning
set of V. If, in addition, all linear combinations of the elements of G are in
V, the vector space is the space generated by G and is denoted by V(G) or by
span(G):

V(G) ≡ span(G).

A set of linearly independent vectors that generate or span a space is said
to be a basis for the space.

• The representation of a given vector in terms of a basis set is unique.

To see this, let {v1, . . . , vk} be a basis for a vector space that includes the
vector x, and let

x = c1v1 + · · · ckvk.

Now suppose
x = b1v1 + · · · bkvk,

so that we have
0 = (c1 − b1)v1 + · · · + (ck − bk)vk.

Since {v1, . . . , vk} are independent, the only way this is possible is if ci = bi

for each i.
A related fact is that if {v1, . . . , vk} is a basis for a vector space of order

n that includes the vector x and x = c1v1 + · · · ckvk, then x = 0n if and only
if ci = 0 for each i.

If B1 is a basis set for V1, B2 is a basis set for V2, and V1 ⊕ V2 = V, then
B1 ∪B2 is a generating set for V because from the definition of ⊕ we see that
any vector in V can be represented as a linear combination of vectors in B1

plus a linear combination of vectors in B2.
The number of vectors in a generating set is at least as great as the dimen-

sion of the vector space. Because the vectors in a basis set are independent,

2.1 Operations on Vectors 15

the number of vectors in a basis set is exactly the same as the dimension of
the vector space; that is, if B is a basis set of the vector space V, then

dim(V) = #(B). (2.8)

A generating set or spanning set of a cone C is a set of vectors S = {vi}
such that for any vector v in C there exists scalars ai ≥ 0 so that v =

∑
aivi,

and if for scalars bi ≥ 0 and
∑

bivi = 0, then bi = 0 for all i. If a generating
set of a cone has a finite number of elements, the cone is a polyhedron. A
generating set consisting of the minimum number of vectors of any generating
set for that cone is a basis set for the cone.

2.1.4 Inner Products

A useful operation on two vectors x and y of the same order is the dot product,
which we denote by 〈x, y〉 and define as

〈x, y〉 =
∑

i

xiyi. (2.9)

The dot product is also called the inner product or the scalar product. The
dot product is actually a special type of inner product, but it is the most
commonly used inner product, and so we will use the terms synonymously. A
vector space together with an inner product is called an inner product space.

The dot product is also sometimes written as x · y, hence the name. Yet
another notation for the dot product is xTy, and we will see later that this
notation is natural in the context of matrix multiplication. We have the equiv-
alent notations

〈x, y〉 ≡ x · y ≡ xTy.

The dot product is a mapping from a vector space V to IR that has the
following properties:

1. Nonnegativity and mapping of the identity:
if x �= 0, then 〈x, x〉 > 0 and 〈0, x〉 = 〈x, 0〉 = 〈0, 0〉 = 0.

2. Commutativity:
〈x, y〉 = 〈y, x〉.

3. Factoring of scalar multiplication in dot products:
〈ax, y〉 = a〈x, y〉 for real a.

4. Relation of vector addition to addition of dot products:
〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.

These properties in fact define a more general inner product for other kinds of
mathematical objects for which an addition, an additive identity, and a multi-
plication by a scalar are defined. (We should restate here that we assume the
vectors have real elements. The dot product of vectors over the complex field
is not an inner product because, if x is complex, we can have xTx = 0 when

16 2 Vectors and Vector Spaces

x �= 0. An alternative definition of a dot product using complex conjugates is
an inner product, however.) Inner products are also defined for matrices, as we
will discuss on page 74. We should note in passing that there are two different
kinds of multiplication used in property 3. The first multiplication is scalar
multiplication, which we have defined above, and the second multiplication is
ordinary multiplication in IR. There are also two different kinds of addition
used in property 4. The first addition is vector addition, defined above, and
the second addition is ordinary addition in IR. The dot product can reveal
fundamental relationships between the two vectors, as we will see later.

A useful property of inner products is the Cauchy-Schwarz inequality:

〈x, y〉 ≤ 〈x, x〉 1
2 〈y, y〉 1

2 . (2.10)

This relationship is also sometimes called the Cauchy-Bunyakovskii-Schwarz
inequality. (Augustin-Louis Cauchy gave the inequality for the kind of dis-
crete inner products we are considering here, and Viktor Bunyakovskii and
Hermann Schwarz independently extended it to more general inner products,
defined on functions, for example.) The inequality is easy to see, by first ob-
serving that for every real number t,

0 ≤ 〈(tx + y), (tx + y)〉2

= 〈x, x〉t2 + 2〈x, y〉t + 〈y, y〉
= at2 + bt + c,

where the constants a, b, and c correspond to the dot products in the preceding
equation. This quadratic in t cannot have two distinct real roots. Hence the
discriminant, b2 − 4ac, must be less than or equal to zero; that is,

(
1
2
b

)2

≤ ac.

By substituting and taking square roots, we get the Cauchy-Schwarz inequal-
ity. It is also clear from this proof that equality holds only if x = 0 or if y = rx,
for some scalar r.

2.1.5 Norms

We consider a set of objects S that has an addition-type operator, +, a cor-
responding additive identity, 0, and a scalar multiplication; that is, a multi-
plication of the objects by a real (or complex) number. On such a set, a norm
is a function, ‖ · ‖, from S to IR that satisfies the following three conditions:

1. Nonnegativity and mapping of the identity:
if x �= 0, then ‖x‖ > 0, and ‖0‖ = 0 .

2. Relation of scalar multiplication to real multiplication:
‖ax‖ = |a| ‖x‖ for real a.

2.1 Operations on Vectors 17

3. Triangle inequality:
‖x + y‖ ≤ ‖x‖ + ‖y‖.

(If property 1 is relaxed to require only ‖x‖ ≥ 0 for x �= 0, the function is
called a seminorm.) Because a norm is a function whose argument is a vector,
we also often use a functional notation such as ρ(x) to represent a norm.

Sets of various types of objects (functions, for example) can have norms,
but our interest in the present context is in norms for vectors and (later)
for matrices. (The three properties above in fact define a more general norm
for other kinds of mathematical objects for which an addition, an additive
identity, and multiplication by a scalar are defined. Norms are defined for
matrices, as we will discuss later. Note that there are two different kinds of
multiplication used in property 2 and two different kinds of addition used in
property 3.)

A vector space together with a norm is called a normed space.
For some types of objects, a norm of an object may be called its “length”

or its “size”. (Recall the ambiguity of “length” of a vector that we mentioned
at the beginning of this chapter.)

Lp Norms

There are many norms that could be defined for vectors. One type of norm is
called an Lp norm, often denoted as ‖ · ‖p. For p ≥ 1, it is defined as

‖x‖p =

(
∑

i

|xi|p
) 1

p

. (2.11)

This is also sometimes called the Minkowski norm and also the Hölder norm.
It is easy to see that the Lp norm satisfies the first two conditions above. For

general p ≥ 1 it is somewhat more difficult to prove the triangular inequality
(which for the Lp norms is also called the Minkowski inequality), but for some
special cases it is straightforward, as we will see below.

The most common Lp norms, and in fact the most commonly used vector
norms, are:

• ‖x‖1 =
∑

i |xi|, also called the Manhattan norm because it corresponds
to sums of distances along coordinate axes, as one would travel along the
rectangular street plan of Manhattan.

• ‖x‖2 =
√∑

i x2
i , also called the Euclidean norm, the Euclidean length, or

just the length of the vector. The Lp norm is the square root of the inner
product of the vector with itself: ‖x‖2 =

√
〈x, x〉.

• ‖x‖∞ = maxi |xi|, also called the max norm or the Chebyshev norm. The
L∞ norm is defined by taking the limit in an Lp norm, and we see that it
is indeed maxi |xi| by expressing it as

18 2 Vectors and Vector Spaces

‖x‖∞ = lim
p→∞

‖x‖p = lim
p→∞

(
∑

i

|xi|p
) 1

p

= m lim
p→∞

(
∑

i

∣
∣
∣
xi

m

∣
∣
∣
p
) 1

p

with m = maxi |xi|. Because the quantity of which we are taking the pth

root is bounded above by the number of elements in x and below by 1,
that factor goes to 1 as p goes to ∞.

An Lp norm is also called a p-norm, or 1-norm, 2-norm, or ∞-norm in those
special cases.

It is easy to see that, for any n-vector x, the Lp norms have the relation-
ships

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1. (2.12)

More generally, for given x and for p ≥ 1, we see that ‖x‖p is a nonincreasing
function of p.

We also have bounds that involve the number of elements in the vector:

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞, (2.13)

and
‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2. (2.14)

The triangle inequality obviously holds for the L1 and L∞ norms. For the
L2 norm it can be seen by expanding

∑
(xi +yi)2 and then using the Cauchy-

Schwarz inequality (2.10) on page 16. Rather than approaching it that way,
however, we will show below that the L2 norm can be defined in terms of an
inner product, and then we will establish the triangle inequality for any norm
defined similarly by an inner product; see inequality (2.19). Showing that the
triangle inequality holds for other Lp norms is more difficult; see Exercise 2.6.

A generalization of the Lp vector norm is the weighted Lp vector norm
defined by

‖x‖wp =

(
∑

i

wi|xi|p
) 1

p

, (2.15)

where wi ≥ 0.

Basis Norms

If {v1, . . . , vk} is a basis for a vector space that includes a vector x with
x = c1v1 + · · · + ckvk, then

ρ(x) =

(
∑

i

c2
i

) 1
2

(2.16)

is a norm. It is straightforward to see that ρ(x) is a norm by checking the
following three conditions:

2.1 Operations on Vectors 19

• ρ(x) ≥ 0 and ρ(x) = 0 if and only if x = 0 because x = 0 if and only if
ci = 0 for all i.

• ρ(ax) =
(∑

i a2c2
i

) 1
2 = |a|

(∑
i a2c2

i

) 1
2 = |a|ρ(x).

• If y = b1v1 + · · · + bkvk, then

ρ(x + y) =

(
∑

i

(ci + bi)2
) 1

2

≤
(
∑

i

c2
i

) 1
2
(
∑

i

b2
i

) 1
2

= ρ(x)ρ(y).

The last inequality is just the triangle inequality for the L2 norm for the
vectors (c1, · · · , ck) and (b1, · · · , bk).

In Section 2.2.5, we will consider special forms of basis sets in which the
norm in equation (2.16) is identically the L2 norm. (This is called Parseval’s
identity, equation (2.38).)

Equivalence of Norms

There is an equivalence among any two norms over a normed linear space in
the sense that if ‖ · ‖a and ‖ · ‖b are norms, then there are positive numbers r
and s such that for any x in the space,

r‖x‖b ≤ ‖x‖a ≤ s‖x‖b. (2.17)

Expressions (2.13) and (2.14) are examples of this general equivalence for
three Lp norms.

We can prove inequality (2.17) by using the norm defined in equa-
tion (2.16). We need only consider the case x �= 0, because the inequality
is obviously true if x = 0. Let ‖ · ‖a be any norm over a given normed linear
space and let {v1, . . . , vk} be a basis for the space. Any x in the space has a
representation in terms of the basis, x = c1v1 + · · · + ckvk. Then

‖x‖a =

∥
∥
∥
∥
∥

k∑

1=i

civi

∥
∥
∥
∥
∥

a

≤
k∑

1=i

|ci| ‖vi‖a.

Applying the Cauchy-Schwarz inequality to the two vectors (c1, · · · , ck) and
(‖v1‖a, · · · , ‖vk‖a), we have

k∑

1=i

|ci| ‖vi‖a ≤
(

k∑

1=i

c2
i

) 1
2
(

k∑

1=i

‖vi‖2
a

) 1
2

.

Hence, with s̃ = (
∑

i ‖vi‖2
a)

1
2 , which must be positive, we have

‖x‖a ≤ s̃ρ(x).

Now, to establish a lower bound for ‖x‖a, let us define a subset C of the
linear space consisting of all vectors (u1, . . . , uk) such that

∑
|ui|2 = 1. This

20 2 Vectors and Vector Spaces

set is obviously closed. Next, we define a function f(·) over this closed subset
by

f(u) =

∥
∥
∥
∥
∥

k∑

1=i

uivi

∥
∥
∥
∥
∥

a

.

Because f is continuous, it attains a minimum in this closed subset, say for
the vector u∗; that is, f(u∗) ≤ f(u) for any u such that

∑
|ui|2 = 1. Let

r̃ = f(u∗),

which must be positive, and again consider any x in the normed linear space
and express it in terms of the basis, x = c1v1 + · · · ckvk. If x �= 0, we have

‖x‖a = ‖
k∑

1=i

civi‖a

=

(
k∑

1=i

c2
i

) 1
2

∥
∥
∥
∥
∥
∥
∥

k∑

1=i

⎛

⎜
⎝

ci
(∑k

1=i c2
i

) 1
2

⎞

⎟
⎠ vi

∥
∥
∥
∥
∥
∥
∥

a

= ρ(x)f(c̃),

where c̃ = (c1, · · · , ck)/(
∑k

1=i c2
i)

1/2. Because c̃ is in the set C, f(c̃) ≥ r;
hence, combining this with the inequality above, we have

r̃ρ(x) ≤ ‖x‖a ≤ s̃ρ(x).

This expression holds for any norm ‖·‖a and so, after obtaining similar bounds
for any other norm ‖·‖b and then combining the inequalities for ‖·‖a and ‖·‖b,
we have the bounds in the equivalence relation (2.17). (This is an equivalence
relation because it is reflexive, symmetric, and transitive. Its transitivity is
seen by the same argument that allowed us to go from the inequalities involv-
ing ρ(·) to ones involving ‖ · ‖b.)

Convergence of Sequences of Vectors

A sequence of real numbers a1, a2, . . . is said to converge to a finite number a
if for any given ε > 0 there is an integer M such that, for k > M , |ak −a| < ε,
and we write limk→∞ ak = a, or we write ak → a as k → ∞. If M does not
depend on ε, the convergence is said to be uniform.

We define convergence of a sequence of vectors in terms of the convergence
of a sequence of their norms, which is a sequence of real numbers. We say that
a sequence of vectors x1, x2, . . . (of the same order) converges to the vector x
with respect to the norm ‖ · ‖ if the sequence of real numbers ‖x1 − x‖, ‖x2 −
x‖, . . . converges to 0. Because of the bounds (2.17), the choice of the norm is
irrelevant, and so convergence of a sequence of vectors is well-defined without
reference to a specific norm. (This is the reason equivalence of norms is an
important property.)

2.1 Operations on Vectors 21

Norms Induced by Inner Products

There is a close relationship between a norm and an inner product. For any
inner product space with inner product 〈·, ·〉, a norm of an element of the
space can be defined in terms of the square root of the inner product of the
element with itself:

‖x‖ =
√

〈x, x〉. (2.18)

Any function ‖ · ‖ defined in this way satisfies the properties of a norm. It is
easy to see that ‖x‖ satisfies the first two properties of a norm, nonnegativity
and scalar equivariance. Now, consider the square of the right-hand side of
the triangle inequality, ‖x‖ + ‖y‖:

(‖x‖ + ‖y‖)2 = 〈x, x〉 + 2
√

〈x, x〉〈y, y〉 + 〈y, y〉
≥ 〈x, x〉 + 2〈x, y〉 + 〈y, y〉
= 〈x + y, x + y〉
= ‖x + y‖2; (2.19)

hence, the triangle inequality holds. Therefore, given an inner product, 〈x, y〉,
then

√
〈x, x〉 is a norm.

Equation (2.18) defines a norm given any inner product. It is called the
norm induced by the inner product. In the case of vectors and the inner product
we defined for vectors in equation (2.9), the induced norm is the L2 norm, ‖·‖2,
defined above.

In the following, when we use the unqualified symbol ‖ · ‖ for a vector
norm, we will mean the L2 norm; that is, the Euclidean norm, the induced
norm.

In the sequence of equations above for an induced norm of the sum of two
vectors, one equation (expressed differently) stands out as particularly useful
in later applications:

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉. (2.20)

2.1.6 Normalized Vectors

The Euclidean norm of a vector corresponds to the length of the vector x in a
natural way; that is, it agrees with our intuition regarding “length”. Although,
as we have seen, this is just one of many vector norms, in most applications
it is the most useful one. (I must warn you, however, that occasionally I will
carelessly but naturally use “length” to refer to the order of a vector; that is,
the number of elements. This usage is common in computer software packages
such as R and SAS IML, and software necessarily shapes our vocabulary.)

Dividing a given vector by its length normalizes the vector, and the re-
sulting vector with length 1 is said to be normalized; thus

x̃ =
1

‖x‖x (2.21)

22 2 Vectors and Vector Spaces

is a normalized vector. Normalized vectors are sometimes referred to as “unit
vectors”, although we will generally reserve this term for a special kind of nor-
malized vector (see page 12). A normalized vector is also sometimes referred
to as a “normal vector”. I use “normalized vector” for a vector such as x̃ in
equation (2.21) and use the latter phrase to denote a vector that is orthogonal
to a subspace.

2.1.7 Metrics and Distances

It is often useful to consider how far apart two vectors are; that is, the “dis-
tance” between them. A reasonable distance measure would have to satisfy
certain requirements, such as being a nonnegative real number. A function ∆
that maps any two objects in a set S to IR is called a metric on S if, for all
x, y, and z in S, it satisfies the following three conditions:

1. ∆(x, y) > 0 if x �= y and ∆(x, y) = 0 if x = y;
2. ∆(x, y) = ∆(y, x);
3. ∆(x, y) ≤ ∆(x, z) + ∆(z, y).

These conditions correspond in an intuitive manner to the properties we ex-
pect of a distance between objects.

Metrics Induced by Norms

If subtraction and a norm are defined for the elements of S, the most common
way of forming a metric is by using the norm. If ‖ · ‖ is a norm, we can verify
that

∆(x, y) = ‖x − y‖ (2.22)

is a metric by using the properties of a norm to establish the three properties
of a metric above (Exercise 2.7).

The general inner products, norms, and metrics defined above are relevant
in a wide range of applications. The sets on which they are defined can consist
of various types of objects. In the context of real vectors, the most common
inner product is the dot product; the most common norm is the Euclidean
norm that arises from the dot product; and the most common metric is the
one defined by the Euclidean norm, called the Euclidean distance.

2.1.8 Orthogonal Vectors and Orthogonal Vector Spaces

Two vectors v1 and v2 such that

〈v1, v2〉 = 0 (2.23)

are said to be orthogonal, and this condition is denoted by v1 ⊥ v2. (Some-
times we exclude the zero vector from this definition, but it is not important

2.1 Operations on Vectors 23

to do so.) Normalized vectors that are all orthogonal to each other are called
orthonormal vectors. (If the elements of the vectors are from the field of com-
plex numbers, orthogonality and normality are defined in terms of the dot
products of a vector with a complex conjugate of a vector.)

A set of nonzero vectors that are mutually orthogonal are necessarily lin-
early independent. To see this, we show it for any two orthogonal vectors
and then indicate the pattern that extends to three or more vectors. Sup-
pose v1 and v2 are nonzero and are orthogonal; that is, 〈v1, v2〉 = 0. We see
immediately that if there is a scalar a such that v1 = av2, then a must be
nonzero and we have a contradiction because 〈v1, v2〉 = a〈v1, v1〉 �= 0. For three
mutually orthogonal vectors, v1, v2, and v3, we consider v1 = av2 + bv3 for a
or b nonzero, and arrive at the same contradiction.

Two vector spaces V1 and V2 are said to be orthogonal, written V1 ⊥ V2,
if each vector in one is orthogonal to every vector in the other. If V1 ⊥ V2 and
V1 ⊕V2 = IRn, then V2 is called the orthogonal complement of V1, and this is
written as V2 = V⊥

1 . More generally, if V1 ⊥ V2 and V1 ⊕ V2 = V, then V2 is
called the orthogonal complement of V1 with respect to V. This is obviously
a symmetric relationship; if V2 is the orthogonal complement of V1, then V1

is the orthogonal complement of V2.
If B1 is a basis set for V1, B2 is a basis set for V2, and V2 is the orthogonal

complement of V1 with respect to V, then B1 ∪ B2 is a basis set for V. It is
a basis set because since V1 and V2 are orthogonal, it must be the case that
B1 ∩ B2 = ∅.

If V1 ⊂ V, V2 ⊂ V, V1 ⊥ V2, and dim(V1) + dim(V2) = dim(V), then

V1 ⊕ V2 = V; (2.24)

that is, V2 is the orthogonal complement of V1. We see this by first letting B1

and B2 be bases for V1 and V2. Now V1 ⊥ V2 implies that B1 ∩ B2 = ∅ and
dim(V1) + dim(V2) = dim(V) implies #(B1) + #(B2) = #(B), for any basis
set B for V; hence, B1 ∪ B2 is a basis set for V.

The intersection of two orthogonal vector spaces consists only of the zero
vector (Exercise 2.9).

A set of linearly independent vectors can be mapped to a set of mutu-
ally orthogonal (and orthonormal) vectors by means of the Gram-Schmidt
transformations (see equation (2.34) below).

2.1.9 The “One Vector”

Another often useful vector is the vector with all elements equal to 1. We call
this the “one vector” and denote it by 1 or by 1n. The one vector can be used
in the representation of the sum of the elements in a vector:

1Tx =
∑

xi. (2.25)

The one vector is also called the “summing vector”.

24 2 Vectors and Vector Spaces

The Mean and the Mean Vector

Because the elements of x are real, they can be summed; however, in applica-
tions it may or may not make sense to add the elements in a vector, depending
on what is represented by those elements. If the elements have some kind of
essential commonality, it may make sense to compute their sum as well as
their arithmetic mean, which for the n-vector x is denoted by x̄ and defined
by

x̄ = 1T
nx/n. (2.26)

We also refer to the arithmetic mean as just the “mean” because it is the most
commonly used mean.

It is often useful to think of the mean as an n-vector all of whose elements
are x̄. The symbol x̄ is also used to denote this vector; hence, we have

x̄ = x̄1n, (2.27)

in which x̄ on the left-hand side is a vector and x̄ on the right-hand side is a
scalar. We also have, for the two different objects,

‖x̄‖2 = nx̄2. (2.28)

The meaning, whether a scalar or a vector, is usually clear from the con-
text. In any event, an expression such as x − x̄ is unambiguous; the addition
(subtraction) has the same meaning whether x̄ is interpreted as a vector or a
scalar. (In some mathematical treatments of vectors, addition of a scalar to
a vector is not defined, but here we are following the conventions of modern
computer languages.)

2.2 Cartesian Coordinates and Geometrical
Properties of Vectors

Points in a Cartesian geometry can be identified with vectors. Several defi-
nitions and properties of vectors can be motivated by this geometric inter-
pretation. In this interpretation, vectors are directed line segments with a
common origin. The geometrical properties can be seen most easily in terms
of a Cartesian coordinate system, but the properties of vectors defined in
terms of a Cartesian geometry have analogues in Euclidean geometry without
a coordinate system. In such a system, only length and direction are defined,
and two vectors are considered to be the same vector if they have the same
length and direction. Generally, we will not assume that there is a “position”
associated with a vector.

2.2 Cartesian Geometry 25

2.2.1 Cartesian Geometry

A Cartesian coordinate system in d dimensions is defined by d unit vectors,
ei in equation (2.3), each with d elements. A unit vector is also called a
principal axis of the coordinate system. The set of unit vectors is orthonormal.
(There is an implied number of elements of a unit vector that is inferred from
the context. Also parenthetically, we remark that the phrase “unit vector” is
sometimes used to refer to a vector the sum of whose squared elements is 1,
that is, whose length, in the Euclidean distance sense, is 1. As we mentioned
above, we refer to this latter type of vector as a “normalized vector”.)

The sum of all of the unit vectors is the one vector:

d∑

1=1

ei = 1d.

A point x with Cartesian coordinates (x1, . . . , xd) is associated with a
vector from the origin to the point, that is, the vector (x1, . . . , xd). The vector
can be written as the linear combination

x = x1e1 + . . . + xded

or, equivalently, as
x = 〈x, e1〉e1 + . . . + 〈x, ed〉en.

(This is a Fourier expansion, equation (2.36) below.)

2.2.2 Projections

The projection of the vector y onto the vector x is the vector

ŷ =
〈x, y〉
‖x‖2

x. (2.29)

This definition is consistent with a geometrical interpretation of vectors as
directed line segments with a common origin. The projection of y onto x is
the inner product of the normalized x and y times the normalized x; that is,
〈x̃, y〉x̃, where x̃ = x/‖x‖. Notice that the order of y and x is the same.

An important property of a projection is that when it is subtracted from
the vector that was projected, the resulting vector, called the “residual”, is
orthogonal to the projection; that is, if

r = y − 〈x, y〉
‖x‖2

x

= y − ŷ (2.30)

then r and ŷ are orthogonal, as we can easily see by taking their inner product
(see Figure 2.1). Notice also that the Pythagorean relationship holds:

26 2 Vectors and Vector Spaces

y

x

θ

r

ŷ

y x

θr

ŷ
Fig. 2.1. Projections and Angles

‖y‖2 = ‖ŷ‖2 + ‖r‖2. (2.31)

As we mentioned on page 24, the mean ȳ can be interpreted either as a
scalar or as a vector all of whose elements are ȳ. As a vector, it is the projection
of y onto the one vector 1n,

〈1n, y〉
‖1n‖2

1n =
1T

ny

n
1n

= ȳ 1n,

from equations (2.26) and (2.29).
We will consider more general projections (that is, projections onto planes

or other subspaces) on page 280, and on page 331 we will view linear regression
fitting as a projection onto the space spanned by the independent variables.

2.2.3 Angles between Vectors

The angle between the vectors x and y is determined by its cosine, which we
can compute from the length of the projection of one vector onto the other.
Hence, denoting the angle between x and y as angle(x, y), we define

angle(x, y) = cos−1

(
〈x, y〉
‖x‖‖y‖

)

, (2.32)

with cos−1(·) being taken in the interval [0, π]. The cosine is ±‖ŷ‖/‖y‖, with
the sign chosen appropriately; see Figure 2.1. Because of this choice of cos−1(·),
we have that angle(y, x) = angle(x, y) —but see Exercise 2.13e on page 39.

The word “orthogonal” is appropriately defined by equation (2.23) on
page 22 because orthogonality in that sense is equivalent to the corresponding
geometric property. (The cosine is 0.)

2.2 Cartesian Geometry 27

Notice that the angle between two vectors is invariant to scaling of the
vectors; that is, for any nonzero scalar a, angle(ax, y) = angle(x, y).

A given vector can be defined in terms of its length and the angles θi that
it makes with the unit vectors. The cosines of these angles are just the scaled
coordinates of the vector:

cos(θi) =
〈x, ei〉
‖x‖‖ei‖

=
1

‖x‖ xi. (2.33)

These quantities are called the direction cosines of the vector.
Although geometrical intuition often helps us in understanding properties

of vectors, sometimes it may lead us astray in high dimensions. Consider the
direction cosines of an arbitrary vector in a vector space with large dimensions.
If the elements of the arbitrary vector are nearly equal (that is, if the vector is
a diagonal through an orthant of the coordinate system), the direction cosine
goes to 0 as the dimension increases. In high dimensions, any two vectors are
“almost orthogonal” to each other; see Exercise 2.11.

The geometric property of the angle between vectors has important im-
plications for certain operations both because it may indicate that rounding
in computations will have deleterious effects and because it may indicate a
deficiency in the understanding of the application.

We will consider more general projections and angles between vectors and
other subspaces on page 287. In Section 5.2.1, we will consider rotations of
vectors onto other vectors or subspaces. Rotations are similar to projections,
except that the length of the vector being rotated is preserved.

2.2.4 Orthogonalization Transformations

Given m nonnull, linearly independent vectors, x1, . . . , xm, it is easy to form
m orthonormal vectors, x̃1, . . . , x̃m, that span the same space. A simple way
to do this is sequentially. First normalize x1 and call this x̃1. Next, project x2

onto x̃1 and subtract this projection from x2. The result is orthogonal to x̃1;
hence, normalize this and call it x̃2. These first two steps, which are illustrated
in Figure 2.2, are

x̃1 =
1

‖x1‖
x1,

x̃2 =
1

‖x2 − 〈x̃1, x2〉x̃1‖
(x2 − 〈x̃1, x2〉x̃1).

(2.34)

These are called Gram-Schmidt transformations.
The Gram-Schmidt transformations can be continued with all of the vec-

tors in the linearly independent set. There are two straightforward ways equa-
tions (2.34) can be extended. One method generalizes the second equation in

28 2 Vectors and Vector Spaces

x2

x1x~1

p

projection onto

x~1

x2 − p

x~2

Fig. 2.2. Orthogonalization of x1 and x2

an obvious way:

for k = 2, 3 . . . ,

x̃k =

(

xk −
k−1∑

i=1

〈x̃i, xk〉x̃i

) / ∥
∥
∥
∥
∥
xk −

k−1∑

i=1

〈x̃i, xk〉x̃i

∥
∥
∥
∥
∥

.

(2.35)

In this method, at the kth step, we orthogonalize the kth vector by comput-
ing its residual with respect to the plane formed by all the previous k − 1
orthonormal vectors.

Another way of extending the transformation of equations (2.34) is, at
the kth step, to compute the residuals of all remaining vectors with respect
just to the kth normalized vector. We describe this method explicitly in
Algorithm 2.1.

Algorithm 2.1 Gram-Schmidt Orthonormalization of a Set of
Linearly Independent Vectors, x1, . . . , xm

0. For k = 1, . . . , m,
{
set x̃i = xi.
}

1. Ensure that x̃1 �= 0;
set x̃1 = x̃1/‖x̃1‖.

2. If m > 1, for k = 2, . . . ,m,
{

for j = k, . . . ,m,
{

set x̃j = x̃j − 〈x̃k−1, x̃j〉x̃k−1.
}

2.2 Cartesian Geometry 29

ensure that x̃k �= 0;
set x̃k = x̃k/‖x̃k‖.

}
Although the method indicated in equation (2.35) is mathematically equiv-

alent to this method, the use of Algorithm 2.1 is to be preferred for com-
putations because it is less subject to rounding errors. (This may not be
immediately obvious, although a simple numerical example can illustrate the
fact — see Exercise 11.1c on page 441. We will not digress here to consider this
further, but the difference in the two methods has to do with the relative mag-
nitudes of the quantities in the subtraction. The method of Algorithm 2.1 is
sometimes called the “modified Gram-Schmidt method”. We will discuss this
method again in Section 11.2.1.) This is an instance of a principle that we will
encounter repeatedly: the form of a mathematical expression and the way the
expression should be evaluated in actual practice may be quite different.

These orthogonalizing transformations result in a set of orthogonal vectors
that span the same space as the original set. They are not unique; if the order
in which the vectors are processed is changed, a different set of orthogonal
vectors will result.

Orthogonal vectors are useful for many reasons: perhaps to improve the
stability of computations; or in data analysis to capture the variability most
efficiently; or for dimension reduction as in principal components analysis; or
in order to form more meaningful quantities as in a vegetative index in remote
sensing. We will discuss various specific orthogonalizing transformations later.

2.2.5 Orthonormal Basis Sets

A basis for a vector space is often chosen to be an orthonormal set because it
is easy to work with the vectors in such a set.

If u1, . . . , un is an orthonormal basis set for a space, then a vector x in
that space can be expressed as

x = c1u1 + · · · + cnun, (2.36)

and because of orthonormality, we have

ci = 〈x, ui〉. (2.37)

(We see this by taking the inner product of both sides with ui.) A represen-
tation of a vector as a linear combination of orthonormal basis vectors, as in
equation (2.36), is called a Fourier expansion, and the ci are called Fourier
coefficients.

By taking the inner product of each side of equation (2.36) with itself, we
have Parseval’s identity:

‖x‖2 =
∑

c2
i . (2.38)

30 2 Vectors and Vector Spaces

This shows that the L2 norm is the same as the norm in equation (2.16) (on
page 18) for the case of an orthogonal basis.

Although the Fourier expansion is not unique because a different orthog-
onal basis set could be chosen, Parseval’s identity removes some of the arbi-
trariness in the choice; no matter what basis is used, the sum of the squares of
the Fourier coefficients is equal to the square of the norm that arises from the
inner product. (“The” inner product means the inner product used in defining
the orthogonality.)

Another useful expression of Parseval’s identity in the Fourier expansion is

∥
∥
∥
∥
∥
x −

k∑

i=1

ciui

∥
∥
∥
∥
∥

2

= 〈x, x〉 −
k∑

i=1

c2
i (2.39)

(because the term on the left-hand side is 0).
The expansion (2.36) is a special case of a very useful expansion in an

orthogonal basis set. In the finite-dimensional vector spaces we consider here,
the series is finite. In function spaces, the series is generally infinite, and so
issues of convergence are important. For different types of functions, different
orthogonal basis sets may be appropriate. Polynomials are often used, and
there are some standard sets of orthogonal polynomials, such as Jacobi, Her-
mite, and so on. For periodic functions especially, orthogonal trigonometric
functions are useful.

2.2.6 Approximation of Vectors

In high-dimensional vector spaces, it is often useful to approximate a given
vector in terms of vectors from a lower dimensional space. Suppose, for exam-
ple, that V ⊂ IRn is a vector space of dimension k (necessarily, k ≤ n) and x is
a given n-vector. We wish to determine a vector x̃ in V that approximates x.

Optimality of the Fourier Coefficients

The first question, of course, is what constitutes a “good” approximation. One
obvious criterion would be based on a norm of the difference of the given vector
and the approximating vector. So now, choosing the norm as the Euclidean
norm, we may pose the problem as one of finding x̃ ∈ V such that

‖x − x̃‖ ≤ ‖x − v‖ ∀ v ∈ V. (2.40)

This difference is a truncation error. Let u1, . . . , uk be an orthonormal basis
set for V, and let

x̃ = c1u1 + · · · + ckuk, (2.41)

where the ci are the Fourier coefficients of x, 〈x, ui〉. Now let v = a1u1 + · · ·+
akuk be any other vector in V, and consider

2.2 Cartesian Geometry 31

‖x − v‖2 =

∥
∥
∥
∥
∥
x −

k∑

i=1

aiui

∥
∥
∥
∥
∥

2

=

〈

x −
k∑

i=1

aiui, x −
k∑

i=1

aiui

〉

= 〈x, x〉 − 2
k∑

i=1

ai〈x, ui〉 +
k∑

i=1

a2
i

= 〈x, x〉 − 2
k∑

i=1

aici +
k∑

i=1

a2
i +

k∑

i=1

c2
i −

k∑

i=1

c2
i

= 〈x, x〉 +
k∑

i=1

(ai − ci)2 −
k∑

i=1

c2
i

=

∥
∥
∥
∥
∥
x −

k∑

i=1

ciui

∥
∥
∥
∥
∥

2

+
k∑

i=1

(ai − ci)2

≥
∥
∥
∥
∥
∥
x −

k∑

i=1

ciui

∥
∥
∥
∥
∥

2

. (2.42)

Therefore we have ‖x − x̃‖ ≤ ‖x − v‖, and so x̃ is the best approximation of
x with respect to the Euclidean norm in the k-dimensional vector space V.

Choice of the Best Basis Subset

Now, posing the problem another way, we may seek the best k-dimensional
subspace of IRn from which to choose an approximating vector. This question
is not well-posed (because the one-dimensional vector space determined by x
is the solution), but we can pose a related interesting question: suppose we
have a Fourier expansion of x in terms of a set of n orthogonal basis vectors,
u1, . . . , un, and we want to choose the “best” k basis vectors from this set and
use them to form an approximation of x. (This restriction of the problem is
equivalent to choosing a coordinate system.) We see the solution immediately
from inequality (2.42): we choose the k uis corresponding to the k largest cis
in absolute value, and we take

x̃ = ci1ui1 + · · · + cik
uik

, (2.43)

where min({|cij
| : j = 1, . . . , k}) ≥ max({|cij

| : j = k + 1, . . . , n}).

2.2.7 Flats, Affine Spaces, and Hyperplanes

Given an n-dimensional vector space of order n, IRn for example, consider a
system of m linear equations in the n-vector variable x,

32 2 Vectors and Vector Spaces

cT
1 x = b1

...
...

cT
mx = bm,

where c1, . . . , cm are linearly independent n-vectors (and hence m ≤ n). The
set of points defined by these linear equations is called a flat. Although it is not
necessarily a vector space, a flat is also called an affine space. An intersection
of two flats is a flat.

If the equations are homogeneous (that is, if b1 = · · · = bm = 0), then the
point (0, . . . , 0) is included, and the flat is an (n − m)-dimensional subspace
(also a vector space, of course). Stating this another way, a flat through the
origin is a vector space, but other flats are not vector spaces.

If m = 1, the flat is called a hyperplane. A hyperplane through the origin
is an (n − 1)-dimensional vector space.

If m = n−1, the flat is a line. A line through the origin is a one-dimensional
vector space.

2.2.8 Cones

A cone is an important type of vector set (see page 14 for definitions). The
most important type of cone is a convex cone, which corresponds to a solid
geometric object with a single finite vertex.

Given a set of vectors V (usually but not necessarily a cone), the dual cone
of V , denoted V ∗, is defined as

V ∗ = {y∗ s.t. y∗Ty ≥ 0 for all y ∈ V },

and the polar cone of V , denoted V 0, is defined as

V 0 = {y0 s.t. y0Ty ≤ 0 for all y ∈ V }.

Obviously, V 0 can be formed by multiplying all of the vectors in V ∗ by −1,
and so we write V 0 = −V ∗, and we also have (−V)∗ = −V ∗.

Although the definitions can apply to any set of vectors, dual cones and
polar cones are of the most interest in the case in which the underlying set
of vectors is a cone in the nonnegative orthant (the set of all vectors all of
whose elements are nonnegative). In that case, the dual cone is just the full
nonnegative orthant, and the polar cone is just the nonpositive orthant (the
set of all vectors all of whose elements are nonpositive).

Although a convex cone is not necessarily a vector space, the union of the
dual cone and the polar cone of a convex cone is a vector space. (You are
asked to prove this in Exercise 2.12.) The nonnegative orthant, which is an
important convex cone, is its own dual.

Geometrically, the dual cone V ∗ of V consists of all vectors that form
nonobtuse angles with the vectors in V . Convex cones, dual cones, and polar
cones play important roles in optimization.

2.3 Variances and Covariances 33

2.2.9 Cross Products in IR3

For the special case of the vector space IR3, another useful vector product is
the cross product, which is a mapping from IR3×IR3 to IR3. Before proceeding,
we note an overloading of the term “cross product” and of the symbol “×”
used to denote it. If A and B are sets, the set cross product or the set Cartesian
product of A and B is the set consisting of all doubletons (a, b) where a ranges
over all elements of A, and b ranges independently over all elements of B.
Thus, IR3 × IR3 is the set of all pairs of all real 3-vectors.

The vector cross product of the vectors

x = (x1, x2, x3),
y = (y1, y2, y3),

written x × y, is defined as

x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1). (2.44)

(We also use the term “cross products” in a different way to refer to another
type of product formed by several inner products; see page 287.) The cross
product has the following properties, which are immediately obvious from the
definition:

1. Self-nilpotency:
x × x = 0, for all x.

2. Anti-commutativity:
x × y = −y × x.

3. Factoring of scalar multiplication;
ax × y = a(x × y) for real a.

4. Relation of vector addition to addition of cross products:
(x + y) × z = (x × z) + (y × z).

The cross product is useful in modeling phenomena in nature, which are of-
ten represented as vectors in IR3. The cross product is also useful in “three-
dimensional” computer graphics for determining whether a given surface is
visible from a given perspective and for simulating the effect of lighting on a
surface.

2.3 Centered Vectors and Variances
and Covariances of Vectors

In this section, we define some scalar-valued functions of vectors that are
analogous to functions of random variables averaged over their probabilities or
probability density. The functions of vectors discussed here are the same as the
ones that define sample statistics. This short section illustrates the properties

34 2 Vectors and Vector Spaces

of norms, inner products, and angles in terms that should be familiar to the
reader.

These functions, and transformations using them, are useful for appli-
cations in the data sciences. It is important to know the effects of various
transformations of data on data analysis.

2.3.1 The Mean and Centered Vectors

When the elements of a vector have some kind of common interpretation, the
sum of the elements or the mean (equation (2.26)) of the vector may have
meaning. In this case, it may make sense to center the vector; that is, to
subtract the mean from each element. For a given vector x, we denote its
centered counterpart as xc:

xc = x − x̄. (2.45)

We refer to any vector whose sum of elements is 0 as a centered vector.
From the definitions, it is easy to see that

(x + y)c = xc + yc (2.46)

(see Exercise 2.14). Interpreting x̄ as a vector, and recalling that it is the
projection of x onto the one vector, we see that xc is the residual in the
sense of equation (2.30). Hence, we see that xc and x are orthogonal, and the
Pythagorean relationship holds:

‖x‖2 = ‖x̄‖2 + ‖xc‖2. (2.47)

From this we see that the length of a centered vector is less than or equal to the
length of the original vector. (Notice that equation (2.47) is just the formula
familiar to data analysts, which with some rearrangement is

∑
(xi − x̄)2 =∑

x2
i − nx̄2.)
For any scalar a and n-vector x, expanding the terms, we see that

‖x − a‖2 = ‖xc‖2 + n(a − x̄)2, (2.48)

where we interpret x̄ as a scalar here.
Notice that a nonzero vector when centered may be the zero vector. This

leads us to suspect that some properties that depend on a dot product are
not invariant to centering. This is indeed the case. The angle between two
vectors, for example, is not invariant to centering; that is, in general,

angle(xc, yc) �= angle(x, y) (2.49)

(see Exercise 2.15).

2.3 Variances and Covariances 35

2.3.2 The Standard Deviation, the Variance, and Scaled Vectors

We also sometimes find it useful to scale a vector by both its length (normalize
the vector) and by a function of its number of elements. We denote this scaled
vector as xs and define it as

xs =
√

n − 1
x

‖xc‖
. (2.50)

For comparing vectors, it is usually better to center the vectors prior to any
scaling. We denote this centered and scaled vector as xcs and define it as

xcs =
√

n − 1
xc

‖xc‖
. (2.51)

Centering and scaling is also called standardizing. Note that the vector is
centered before being scaled. The angle between two vectors is not changed
by scaling (but, of course, it may be changed by centering).

The multiplicative inverse of the scaling factor,

sx = ‖xc‖/
√

n − 1, (2.52)

is called the standard deviation of the vector x. The standard deviation of xc

is the same as that of x; in fact, the standard deviation is invariant to the
addition of any constant. The standard deviation is a measure of how much
the elements of the vector vary. If all of the elements of the vector are the
same, the standard deviation is 0 because in that case xc = 0.

The square of the standard deviation is called the variance, denoted by V:

V(x) = s2
x

=
‖xc‖2

n − 1
. (2.53)

(In perhaps more familiar notation, equation (2.53) is just V(x) =
∑

(xi −
x̄)2/(n − 1).) From equation (2.45), we see that

V(x) =
1

n − 1
(
‖x‖2 − ‖x̄‖2

)
.

(The terms “mean”, “standard deviation”, “variance”, and other terms we will
mention below are also used in an analogous, but slightly different, manner to
refer to properties of random variables. In that context, the terms to refer to
the quantities we are discussing here would be preceded by the word “sample”,
and often for clarity I will use the phrases “sample standard deviation” and
“sample variance” to refer to what is defined above, especially if the elements
of x are interpreted as independent realizations of a random variable. Also,
recall the two possible meanings of “mean”, or x̄; one is a vector, and one is
a scalar, as in equation (2.27).)

36 2 Vectors and Vector Spaces

If a and b are scalars (or b is a vector with all elements the same), the
definition, together with equation (2.48), immediately gives

V(ax + b) = a2V(x).

This implies that for the scaled vector xs,

V(xs) = 1.

If a is a scalar and x and y are vectors with the same number of elements,
from the equation above, and using equation (2.20) on page 21, we see that
the variance following an axpy operation is given by

V(ax + y) = a2V(x) + V(y) + 2a
〈xc, yc〉
n − 1

. (2.54)

While equation (2.53) appears to be relatively simple, evaluating the ex-
pression for a given x may not be straightforward. We discuss computational
issues for this expression on page 410. This is an instance of a principle that we
will encounter repeatedly: the form of a mathematical expression and the way
the expression should be evaluated in actual practice may be quite different.

2.3.3 Covariances and Correlations between Vectors

If x and y are n-vectors, the covariance between x and y is

Cov(x, y) =
〈x − x̄, y − ȳ〉

n − 1
. (2.55)

By representing x − x̄ as x − x̄1 and y − ȳ similarly, and expanding, we see
that Cov(x, y) = (〈x, y〉 − nx̄ȳ)/(n − 1). Also, we see from the definition of
covariance that Cov(x, x) is the variance of the vector x, as defined above.

From the definition and the properties of an inner product given on
page 15, if x, y, and z are conformable vectors, we see immediately that

• Cov(a1, y) = 0
for any scalar a (where 1 is the one vector);

• Cov(ax, y) = aCov(x, y)
for any scalar a;

• Cov(y, x) = Cov(x, y);
• Cov(y, y) = V(y); and
• Cov(x + z, y) = Cov(x, y) + Cov(z, y),

in particular,
– Cov(x + y, y) = Cov(x, y) + V(y), and
– Cov(x + a, y) = Cov(x, y)

for any scalar a.

Exercises 37

Using the definition of the covariance, we can rewrite equation (2.54) as

V(ax + y) = a2V(x) + V(y) + 2aCov(x, y). (2.56)

The covariance is a measure of the extent to which the vectors point in
the same direction. A more meaningful measure of this is obtained by the
covariance of the centered and scaled vectors. This is the correlation between
the vectors,

Corr(x, y) = Cov(xcs, ycs)

=
〈

xc

‖xc‖
,

yc

‖yc‖

〉

=
〈xc, yc〉
‖xc‖‖yc‖

, (2.57)

which we see immediately from equation (2.32) is the cosine of the angle
between xc and yc:

Corr(x, y) = cos(angle(xc, yc)). (2.58)

(Recall that this is not the same as the angle between x and y.)
An equivalent expression for the correlation is

Corr(x, y) =
Cov(x, y)

√
V(x)V(y)

. (2.59)

It is clear that the correlation is in the interval [−1, 1] (from the Cauchy-
Schwarz inequality). A correlation of −1 indicates that the vectors point in
opposite directions, a correlation of 1 indicates that the vectors point in the
same direction, and a correlation of 0 indicates that the vectors are orthogonal.

While the covariance is equivariant to scalar multiplication, the absolute
value of the correlation is invariant to it; that is, the correlation changes only
as the sign of the scalar multiplier,

Corr(ax, y) = sign(a)Corr(x, y), (2.60)

for any scalar a.

Exercises

2.1. Write out the step-by-step proof that the maximum number of n-vectors
that can form a set that is linearly independent is n, as stated on page 11.

2.2. Give an example of two vector spaces whose union is not a vector space.

38 2 Vectors and Vector Spaces

2.3. Let {vi}n
i=1 be an orthonormal basis for the n-dimensional vector space

V. Let x ∈ V have the representation

x =
∑

bivi.

Show that the Fourier coefficients bi can be computed as

bi = 〈x, vi〉.

2.4. Let p = 1
2 in equation (2.11); that is, let ρ(x) be defined for the n-vector

x as

ρ(x) =

(
n∑

i=1

|xi|1/2

)2

.

Show that ρ(·) is not a norm.
2.5. Prove equation (2.12) and show that the bounds are sharp by exhibiting

instances of equality. (Use the fact that ‖x‖∞ = maxi |xi|.)
2.6. Prove the following inequalities.

a) Prove Hölder’s inequality: for any p and q such that p ≥ 1 and
p + q = pq, and for vectors x and y of the same order,

〈x, y〉 ≤ ‖x‖p‖y‖q.

b) Prove the triangle inequality for any Lp norm. (This is sometimes
called Minkowski’s inequality.)

Hint: Use Hölder’s inequality.
2.7. Show that the expression defined in equation (2.22) on page 22 is a

metric.
2.8. Show that equation (2.31) on page 26 is correct.
2.9. Show that the intersection of two orthogonal vector spaces consists only

of the zero vector.
2.10. From the definition of direction cosines in equation (2.33), it is easy to

see that the sum of the squares of the direction cosines is 1. For the
special case of IR3, draw a sketch and use properties of right triangles
to show this geometrically.

2.11. In IR2 with a Cartesian coordinate system, the diagonal directed line
segment through the positive quadrant (orthant) makes a 45◦ angle
with each of the positive axes. In 3 dimensions, what is the angle be-
tween the diagonal and each of the positive axes? In 10 dimensions? In
100 dimensions? In 1000 dimensions? We see that in higher dimensions
any two lines are almost orthogonal. (That is, the angle between them
approaches 90◦.) What are some of the implications of this for data
analysis?

2.12. Show that if C is a convex cone, then C∗ ∪ C0 together with the usual
operations is a vector space, where C∗ is the dual of C and C0 is the

Exercises 39

polar cone of C.

Hint: Just apply the definitions of the individual terms.
2.13. IR3 and the cross product.

a) Is the cross product associative? Prove or disprove.
b) For x, y ∈ IR3, show that the area of the triangle with vertices

(0, 0, 0), x, and y is ‖x × y‖/2.
c) For x, y, z ∈ IR3, show that

〈x, y × z〉 = 〈x × y, z〉.

This is called the “triple scalar product”.
d) For x, y, z ∈ IR3, show that

x × (y × z) = 〈x, z〉y − 〈x, y〉z.

This is called the “triple vector product”. It is in the plane deter-
mined by y and z.

e) The magnitude of the angle between two vectors is determined by
the cosine, formed from the inner product. Show that in the special
case of IR3, the angle is also determined by the sine and the cross
product, and show that this method can determine both the mag-
nitude and the direction of the angle; that is, the way a particular
vector is rotated into the other.

2.14. Using equations (2.26) and (2.45), establish equation (2.46).
2.15. Show that the angle between the centered vectors xc and yc is not the

same in general as the angle between the uncentered vectors x and y of
the same order.

2.16. Formally prove equation (2.54) (and hence equation (2.56)).
2.17. Prove that for any vectors x and y of the same order,

(Cov(x, y))2 ≤ V(x)V(y).

3

Basic Properties of Matrices

In this chapter, we build on the notation introduced on page 5, and discuss
a wide range of basic topics related to matrices with real elements. Some of
the properties carry over to matrices with complex elements, but the reader
should not assume this. Occasionally, for emphasis, we will refer to “real”
matrices, but unless it is stated otherwise, we are assuming the matrices are
real.

The topics and the properties of matrices that we choose to discuss are
motivated by applications in the data sciences. In Chapter 8, we will consider
in more detail some special types of matrices that arise in regression analysis
and multivariate data analysis, and then in Chapter 9 we will discuss some
specific applications in statistics.

3.1 Basic Definitions and Notation

It is often useful to treat the rows or columns of a matrix as vectors. Terms
such as linear independence that we have defined for vectors also apply to
rows and/or columns of a matrix. The vector space generated by the columns
of the n × m matrix A is of order n and of dimension m or less, and is called
the column space of A, the range of A, or the manifold of A. This vector space
is denoted by

V(A)

or
span(A).

(The argument of V(·) or span(·) can be either a matrix or a set of vectors.
Recall from Section 2.1.3 that if G is a set of vectors, the symbol span(G)
denotes the vector space generated by the vectors in G.) We also define the
row space of A to be the vector space of order m (and of dimension n or
less) generated by the rows of A; notice, however, the preference given to the
column space.

42 3 Basic Properties of Matrices

Many of the properties of matrices that we discuss hold for matrices with
an infinite number of elements, but throughout this book we will assume that
the matrices have a finite number of elements, and hence the vector spaces
are of finite order and have a finite number of dimensions.

Similar to our definition of multiplication of a vector by a scalar, we define
the multiplication of a matrix A by a scalar c as

cA = (caij).

The aii elements of a matrix are called diagonal elements; an element
aij with i < j is said to be “above the diagonal”, and one with i > j is
said to be “below the diagonal”. The vector consisting of all of the aii’s is
called the principal diagonal or just the diagonal. The elements ai,i+ck

are
called “codiagonals” or “minor diagonals”. If the matrix has m columns, the
ai,m+1−i elements of the matrix are called skew diagonal elements. We use
terms similar to those for diagonal elements for elements above and below
the skew diagonal elements. These phrases are used with both square and
nonsquare matrices.

If, in the matrix A with elements aij for all i and j, aij = aji, A is said
to be symmetric. A symmetric matrix is necessarily square. A matrix A such
that aij = −aji is said to be skew symmetric. The diagonal entries of a skew
symmetric matrix must be 0. If aij = āji (where ā represents the conjugate
of the complex number a), A is said to be Hermitian. A Hermitian matrix is
also necessarily square, and, of course, a real symmetric matrix is Hermitian.
A Hermitian matrix is also called a self-adjoint matrix.

Many matrices of interest are sparse; that is, they have a large proportion
of elements that are 0. (“A large proportion” is subjective, but generally means
more than 75%, and in many interesting cases is well over 95%.) Efficient
and accurate computations often require that the sparsity of a matrix be
accommodated explicitly.

If all except the principal diagonal elements of a matrix are 0, the matrix
is called a diagonal matrix. A diagonal matrix is the most common and most
important type of sparse matrix. If all of the principal diagonal elements of a
matrix are 0, the matrix is called a hollow matrix. A skew symmetric matrix
is hollow, for example. If all except the principal skew diagonal elements of a
matrix are 0, the matrix is called a skew diagonal matrix.

An n × m matrix A for which

|aii| >

m∑

j �=i

|aij | for each i = 1, . . . , n (3.1)

is said to be row diagonally dominant; one for which |ajj | >
∑n

i�=j |aij | for each
j = 1, . . . , m is said to be column diagonally dominant. (Some authors refer
to this as strict diagonal dominance and use “diagonal dominance” without
qualification to allow the possibility that the inequalities in the definitions

3.1 Basic Definitions and Notation 43

are not strict.) Most interesting properties of such matrices hold whether the
dominance is by row or by column. If A is symmetric, row and column di-
agonal dominances are equivalent, so we refer to row or column diagonally
dominant symmetric matrices without the qualification; that is, as just diag-
onally dominant.

If all elements below the diagonal are 0, the matrix is called an upper
triangular matrix; and a lower triangular matrix is defined similarly. If all
elements of a column or row of a triangular matrix are zero, we still refer to the
matrix as triangular, although sometimes we speak of its form as trapezoidal.
Another form called trapezoidal is one in which there are more columns than
rows, and the additional columns are possibly nonzero. The four general forms
of triangular or trapezoidal matrices are shown below.

⎡

⎣
X X X
0 X X
0 0 X

⎤

⎦

⎡

⎣
X X X
0 X X
0 0 0

⎤

⎦

⎡

⎢
⎢
⎣

X X X
0 X X
0 0 X
0 0 0

⎤

⎥
⎥
⎦

⎡

⎣
X X X X
0 X X X
0 0 X X

⎤

⎦

In this notation, X indicates that the element is possibly not zero. It does
not mean each element is the same. In other cases, X and 0 may indicate
“submatrices”, which we discuss in the section on partitioned matrices.

If all elements are 0 except ai,i+ck
for some small number of integers ck,

the matrix is called a band matrix (or banded matrix). In many applications,
ck ∈ {−wl,−wl + 1, . . . ,−1, 0, 1, . . . , wu − 1, wu}. In such a case, wl is called
the lower band width and wu is called the upper band width. These patterned
matrices arise in time series and other stochastic process models as well as in
solutions of differential equations, and so they are very important in certain
applications. Although it is often the case that interesting band matrices are
symmetric, or at least have the same number of codiagonals that are nonzero,
neither of these conditions always occurs in applications of band matrices. If
all elements below the principal skew diagonal elements of a matrix are 0, the
matrix is called a skew upper triangular matrix. A common form of Hankel
matrix, for example, is the skew upper triangular matrix (see page 312). Notice
that the various terms defined here, such as triangular and band, also apply
to nonsquare matrices.

Band matrices occur often in numerical solutions of partial differential
equations. A band matrix with lower and upper band widths of 1 is a tridi-
agonal matrix. If all diagonal elements and all elements ai,i±1 are nonzero, a
tridiagonal matrix is called a “matrix of type 2”. The inverse of a covariance
matrix that occurs in common stationary time series models is a matrix of
type 2 (see page 312).

Because the matrices with special patterns are usually characterized by
the locations of zeros and nonzeros, we often use an intuitive notation with X
and 0 to indicate the pattern. Thus, a band matrix may be written as

44 3 Basic Properties of Matrices

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X X 0 · · · 0 0
X X X · · · 0 0
0 X X · · · 0 0

.
0 0 0 · · · X X

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Computational methods for matrices may be more efficient if the patterns are
taken into account.

A matrix is in upper Hessenberg form, and is called a Hessenberg matrix, if
it is upper triangular except for the first subdiagonal, which may be nonzero.
That is, aij = 0 for i > j + 1:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X X · · · X X
X X X · · · X X
0 X X · · · X X
0 0 X · · · X X
...

...
. . .

...
...

0 0 0 · · · X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A symmetric matrix that is in Hessenberg form is necessarily tridiagonal.
Hessenberg matrices arise in some methods for computing eigenvalues (see

Chapter 7).

3.1.1 Matrix Shaping Operators

In order to perform certain operations on matrices and vectors, it is often
useful first to reshape a matrix. The most common reshaping operation is
the transpose, which we define in this section. Sometimes we may need to
rearrange the elements of a matrix or form a vector into a special matrix. In
this section, we define three operators for doing this.

Transpose

The transpose of a matrix is the matrix whose ith row is the ith column of the
original matrix and whose jth column is the jth row of the original matrix. We
use a superscript “T” to denote the transpose of a matrix; thus, if A = (aij),
then

AT = (aji). (3.2)

(In other literature, the transpose is often denoted by a prime, as in A′ =
(aji) = AT.)

If the elements of the matrix are from the field of complex numbers, the
conjugate transpose, also called the adjoint, is more useful than the transpose.
(“Adjoint” is also used to denote another type of matrix, so we will generally
avoid using that term. This meaning of the word is the origin of the other

3.1 Basic Definitions and Notation 45

term for a Hermitian matrix, a “self-adjoint matrix”.) We use a superscript
“H” to denote the conjugate transpose of a matrix; thus, if A = (aij), then
AH = (āji). We also use a similar notation for vectors. If the elements of A
are all real, then AH = AT. (The conjugate transpose is often denoted by an
asterisk, as in A∗ = (āji) = AH. This notation is more common if a prime is
used to denote the transpose. We sometimes use the notation A∗ to denote a
g2 inverse of the matrix A; see page 102.)

If (and only if) A is symmetric, A = AT; if (and only if) A is skew sym-
metric, AT = −A; and if (and only if) A is Hermitian, A = AH.

Diagonal Matrices and Diagonal Vectors: diag(·) and vecdiag(·)

A square diagonal matrix can be specified by the diag(·) constructor function
that operates on a vector and forms a diagonal matrix with the elements of
the vector along the diagonal:

diag
(
(d1, d2, . . . , dn)

)
=

⎡

⎢
⎢
⎢
⎣

d1 0 · · · 0
0 d2 · · · 0

. . .
0 0 · · · dn

⎤

⎥
⎥
⎥
⎦

. (3.3)

(Notice that the argument of diag is a vector; that is why there are two sets
of parentheses in the expression above, although sometimes we omit one set
without loss of clarity.) The diag function defined here is a mapping IRn �→
IRn×n. Later we will extend this definition slightly.

The vecdiag(·) function forms a vector from the principal diagonal elements
of a matrix. If A is an n × m matrix, and k = min(n,m),

vecdiag(A) = (a11, . . . , akk). (3.4)

The vecdiag function defined here is a mapping IRn×m �→ IRmin(n,m).
Sometimes we overload diag(·) to allow its argument to be a matrix, and

in that case, it is the same as vecdiag(·). The R system, for example, uses this
overloading.

Forming a Vector from the Elements of a Matrix: vec(·) and
vech(·)

It is sometimes useful to consider the elements of a matrix to be elements of
a single vector. The most common way this is done is to string the columns
of the matrix end-to-end into a vector. The vec(·) function does this:

vec(A) = (aT
1 , aT

2 , . . . , aT
m), (3.5)

where a1, a2, . . . , am are the column vectors of the matrix A. The vec function
is also sometimes called the “pack” function. (A note on the notation: the

46 3 Basic Properties of Matrices

right side of equation (3.5) is the notation for a column vector with elements
aT

i ; see Chapter 1.) The vec function is a mapping IRn×m �→ IRnm.
For a symmetric matrix A with elements aij , the “vech” function stacks

the unique elements into a vector:

vech(A) = (a11, a21, . . . , am1, a22, . . . , am2, . . . , amm). (3.6)

There are other ways that the unique elements could be stacked that would
be simpler and perhaps more useful (see the discussion of symmetric storage
mode on page 451), but equation (3.6) is the standard definition of vech(·).
The vech function is a mapping IRn×n �→ IRn(n+1)/2.

3.1.2 Partitioned Matrices

We often find it useful to partition a matrix into submatrices; for example,
in many applications in data analysis, it is often convenient to work with
submatrices of various types representing different subsets of the data.

We usually denote the submatrices with capital letters with subscripts
indicating the relative positions of the submatrices. Hence, we may write

A =
[

A11 A12

A21 A22

]

, (3.7)

where the matrices A11 and A12 have the same number of rows, A21 and
A22 have the same number of rows, A11 and A21 have the same number of
columns, and A12 and A22 have the same number of columns. Of course, the
submatrices in a partitioned matrix may be denoted by different letters. Also,
for clarity, sometimes we use a vertical bar to indicate a partition:

A = [B |C].

The vertical bar is used just for clarity and has no special meaning in this
representation.

The term “submatrix” is also used to refer to a matrix formed from a
given matrix by deleting various rows and columns of the given matrix. In
this terminology, B is a submatrix of A if for each element bij there is an akl

with k ≥ i and l ≥ j such that bij = akl; that is, the rows and/or columns of
the submatrix are not necessarily contiguous in the original matrix. This kind
of subsetting is often done in data analysis, for example, in variable selection
in linear regression analysis.

A square submatrix whose principal diagonal elements are elements of the
principal diagonal of the given matrix is called a principal submatrix. If A11 in
the example above is square, it is a principal submatrix, and if A22 is square,
it is also a principal submatrix. Sometimes the term “principal submatrix” is
restricted to square submatrices. If a matrix is diagonally dominant, then it
is clear that any principal submatrix of it is also diagonally dominant.

3.1 Basic Definitions and Notation 47

A principal submatrix that contains the (1, 1) elements and whose rows
and columns are contiguous in the original matrix is called a leading principal
submatrix. If A11 is square, it is a leading principal submatrix in the example
above.

Partitioned matrices may have useful patterns. A “block diagonal” matrix
is one of the form ⎡

⎢
⎢
⎢
⎣

X 0 · · · 0
0 X · · · 0

. . .
0 0 · · · X

⎤

⎥
⎥
⎥
⎦

,

where 0 represents a submatrix with all zeros and X represents a general
submatrix with at least some nonzeros.

The diag(·) function previously introduced for a vector is also defined for
a list of matrices:

diag(A1, A2, . . . , Ak)

denotes the block diagonal matrix with submatrices A1, A2, . . . , Ak along the
diagonal and zeros elsewhere. A matrix formed in this way is sometimes called
a direct sum of A1, A2, . . . , Ak, and the operation is denoted by ⊕:

A1 ⊕ · · · ⊕ Ak = diag(A1, . . . , Ak).

Although the direct sum is a binary operation, we are justified in defining
it for a list of matrices because the operation is clearly associative.

The Ai may be of different sizes and they may not be square, although in
most applications the matrices are square (and some authors define the direct
sum only for square matrices).

We will define vector spaces of matrices below and then recall the definition
of a direct sum of vector spaces (page 13), which is different from the direct
sum defined above in terms of diag(·).

Transposes of Partitioned Matrices

The transpose of a partitioned matrix is formed in the obvious way; for ex-
ample,

[
A11 A12 A13

A21 A22 A23

]T

=

⎡

⎣
AT

11 AT
21

AT
12 AT

22

AT
13 AT

23

⎤

⎦ . (3.8)

3.1.3 Matrix Addition

The sum of two matrices of the same shape is the matrix whose elements
are the sums of the corresponding elements of the addends. As in the case of
vector addition, we overload the usual symbols for the operations on the reals

48 3 Basic Properties of Matrices

to signify the corresponding operations on matrices when the operations are
defined; hence, addition of matrices is also indicated by “+”, as with scalar
addition and vector addition. We assume throughout that writing a sum of
matrices A+B implies that they are of the same shape; that is, that they are
conformable for addition.

The “+” operator can also mean addition of a scalar to a matrix, as in
A + a, where A is a matrix and a is a scalar. Although this meaning of “+”
is generally not used in mathematical treatments of matrices, in this book
we use it to mean the addition of the scalar to each element of the matrix,
resulting in a matrix of the same shape. This meaning is consistent with the
semantics of modern computer languages such as Fortran 90/95 and R.

The addition of two n×m matrices or the addition of a scalar to an n×m
matrix requires nm scalar additions.

The matrix additive identity is a matrix with all elements zero. We some-
times denote such a matrix with n rows and m columns as 0n×m, or just as 0.
We may denote a square additive identity as 0n.

There are several possible ways to form a rank ordering of matrices of
the same shape, but no complete ordering is entirely satisfactory. If all of the
elements of the matrix A are positive, we write

A > 0; (3.9)

if all of the elements are nonnegative, we write

A ≥ 0. (3.10)

The terms “positive” and “nonnegative” and these symbols are not to be
confused with the terms “positive definite” and “nonnegative definite” and
similar symbols for important classes of matrices having different properties
(which we will introduce in equation (3.62) and discuss further in Section 8.3.)

The transpose of the sum of two matrices is the sum of the transposes:

(A + B)T = AT + BT.

The sum of two symmetric matrices is therefore symmetric.

Vector Spaces of Matrices

Having defined scalar multiplication, matrix addition (for conformable matri-
ces), and a matrix additive identity, we can define a vector space of n × m
matrices as any set that is closed with respect to those operations (which
necessarily would contain the additive identity; see page 11). As with any
vector space, we have the concepts of linear independence, generating set or
spanning set, basis set, essentially disjoint spaces, and direct sums of matrix
vector spaces (as in equation (2.7), which is different from the direct sum of
matrices defined in terms of diag(·)).

3.1 Basic Definitions and Notation 49

With scalar multiplication, matrix addition, and a matrix additive identity,
we see that IRn×m is a vector space. If n ≥ m, a set of nm n × m matrices
whose columns consist of all combinations of a set of n n-vectors that span IRn

is a basis set for IRn×m. If n < m, we can likewise form a basis set for IRn×m

or for subspaces of IRn×m in a similar way. If {B1, . . . , Bk} is a basis set for
IRn×m, then any n×m matrix can be represented as

∑k
i=1 ciBi. Subsets of a

basis set generate subspaces of IRn×m.
Because the sum of two symmetric matrices is symmetric, and a scalar

multiple of a symmetric matrix is likewise symmetric, we have a vector space
of the n × n symmetric matrices. This is clearly a subspace of the vector
space IRn×n. All vectors in any basis for this vector space must be symmetric.
Using a process similar to our development of a basis for a general vector
space of matrices, we see that there are n(n + 1)/2 matrices in the basis (see
Exercise 3.1).

3.1.4 Scalar-Valued Operators on Square Matrices:
The Trace

There are several useful mappings from matrices to real numbers; that is, from
IRn×m to IR. Some important ones are norms, which are similar to vector
norms and which we will consider later. In this section and the next, we
define two scalar-valued operators, the trace and the determinant, that apply
to square matrices.

The Trace: tr(·)

The sum of the diagonal elements of a square matrix is called the trace of the
matrix. We use the notation “tr(A)” to denote the trace of the matrix A:

tr(A) =
∑

i

aii. (3.11)

The Trace of the Transpose of Square Matrices

From the definition, we see

tr(A) = tr(AT). (3.12)

The Trace of Scalar Products of Square Matrices

For a scalar c and an n × n matrix A,

tr(cA) = c tr(A).

This follows immediately from the definition because for tr(cA) each diagonal
element is multiplied by c.

50 3 Basic Properties of Matrices

The Trace of Partitioned Square Matrices

If the square matrix A is partitioned such that the diagonal blocks are square
submatrices, that is,

A =
[

A11 A12

A21 A22

]

, (3.13)

where A11 and A22 are square, then from the definition, we see that

tr(A) = tr(A11) + tr(A22). (3.14)

The Trace of the Sum of Square Matrices

If A and B are square matrices of the same order, a useful (and obvious)
property of the trace is

tr(A + B) = tr(A) + tr(B). (3.15)

3.1.5 Scalar-Valued Operators on Square Matrices:
The Determinant

The determinant, like the trace, is a mapping from IRn×n to IR. Although
it may not be obvious from the definition below, the determinant has far-
reaching applications in matrix theory.

The Determinant: | · | or det(·)

For an n× n (square) matrix A, consider the product a1j1a2j2 · · · anjn
, where

πj = (j1, j2, . . . , jn) is one of the n! permutations of the integers from 1 to n.
Define a permutation to be even or odd according to the number of times that
a smaller element follows a larger one in the permutation. (For example, 1, 3,
2 is an odd permutation, and 3, 1, 2 is an even permutation.) Let σ(πj) = 1 if
πj = (j1, . . . , jn) is an even permutation, and let σ(πj) = −1 otherwise. Then
the determinant of A, denoted by |A|, is defined by

|A| =
∑

all permutations

σ(πj)a1j1 · · · anjn
. (3.16)

The determinant is also sometimes written as det(A), especially, for exam-
ple, when we wish to refer to the absolute value of the determinant. (The
determinant of a matrix may be negative.)

The definition is not as daunting as it may appear at first glance. Many
properties become obvious when we realize that σ(·) is always ±1, and it
can be built up by elementary exchanges of adjacent elements. For example,
consider σ(3, 2, 1). There are three elementary exchanges beginning with the
natural ordering:

3.1 Basic Definitions and Notation 51

(1, 2, 3) → (2, 1, 3) → (2, 3, 1) → (3, 2, 1);

hence, σ(3, 2, 1) = (−1)3 = −1.
If πj consists of the interchange of exactly two elements in (1, . . . , n), say

elements p and q with p < q, then there are q − p elements before p that
are larger than p, and there are q − p + 1 elements between q and p in the
permutation each with exactly one larger element preceding it. The total
number is 2q − 2p + 1, which is an odd number. Therefore, if πj consists of
the interchange of exactly two elements, then σ(πj) = −1.

If the integers 1, . . . ,m and m + 1, . . . , n are together in a given permuta-
tion, they can be considered separately:

σ(j1, . . . , jn) = σ(j1, . . . , jm)σ(jm+1, . . . , jn). (3.17)

Furthermore, we see that the product a1j1 · · · anjn
has exactly one factor from

each unique row-column pair. These observations facilitate the derivation of
various properties of the determinant (although the details are sometimes
quite tedious).

We see immediately from the definition that the determinant of an upper
or lower triangular matrix (or a diagonal matrix) is merely the product of the
diagonal elements (because in each term of equation (3.16) there is a 0, except
in the term in which the subscripts on each factor are the same).

Minors, Cofactors, and Adjugate Matrices

Consider the 2 × 2 matrix

A =
[

a11 a12

a21 a22

]

.

From the definition, we see |A| = a11a22 + (−1)a21a12.
Now let A be a 3 × 3 matrix:

A =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ .

In the definition of the determinant, consider all of the terms in which the
elements of the first row of A appear. With some manipulation of those terms,
we can express the determinant in terms of determinants of submatrices as

|A| = a11(−1)1+1

∣
∣
∣
∣

[
a22 a32

a32 a33

]∣
∣
∣
∣

+ a12(−1)1+2

∣
∣
∣
∣

[
a21 a32

a31 a33

]∣
∣
∣
∣

+ a13(−1)1+3

∣
∣
∣
∣

[
a21 a22

a31 a32

]∣
∣
∣
∣ .

(3.18)

52 3 Basic Properties of Matrices

This exercise in manipulation of the terms in the determinant could be carried
out with other rows of A.

The determinants of the 2 × 2 submatrices in equation (3.18) are called
minors or complementary minors of the associated element. The definition
can be extended to (n − 1) × (n − 1) submatrices of an n × n matrix. We
denote the minor associated with the aij element as

|A−(i)(j)|, (3.19)

in which A−(i)(j) denotes the submatrix that is formed from A by removing
the ith row and the jth column. The sign associated with the minor corre-
sponding to aij is (−1)i+j . The minor together with its appropriate sign is
called the cofactor of the associated element; that is, the cofactor of aij is
(−1)i+j |A−(i)(j)|. We denote the cofactor of aij as a(ij):

a(ij) = (−1)i+j |A−(i)(j)|. (3.20)

Notice that both minors and cofactors are scalars.
The manipulations leading to equation (3.18), though somewhat tedious,

can be carried out for a square matrix of any size, and minors and cofactors
are defined as above. An expression such as in equation (3.18) is called an
expansion in minors or an expansion in cofactors.

The extension of the expansion (3.18) to an expression involving a sum
of signed products of complementary minors arising from (n − 1) × (n − 1)
submatrices of an n × n matrix A is

|A| =
n∑

j=1

aij(−1)i+j |A−(i)(j)|

=
n∑

j=1

aija(ij), (3.21)

or, over the rows,

|A| =
n∑

i=1

aija(ij). (3.22)

These expressions are called Laplace expansions. Each determinant |A−(i)(j)|
can likewise be expressed recursively in a similar expansion.

Expressions (3.21) and (3.22) are special cases of a more general Laplace
expansion based on an extension of the concept of a complementary minor
of an element to that of a complementary minor of a minor. The derivation
of the general Laplace expansion is straightforward but rather tedious (see
Harville, 1997, for example, for the details).

Laplace expansions could be used to compute the determinant, but the
main value of these expansions is in proving properties of determinants. For
example, from the special Laplace expansion (3.21) or (3.22), we can quickly

3.1 Basic Definitions and Notation 53

see that the determinant of a matrix with two rows that are the same is zero.
We see this by recursively expanding all of the minors until we have only 2×2
matrices consisting of a duplicated row. The determinant of such a matrix is
0, so the expansion is 0.

The expansion in equation (3.21) has an interesting property: if instead of
the elements aij from the ith row we use elements from a different row, say
the kth row, the sum is zero. That is, for k �= i,

n∑

j=1

akj(−1)i+j |A−(i)(j)| =
n∑

j=1

akja(ij)

= 0. (3.23)

This is true because such an expansion is exactly the same as an expansion for
the determinant of a matrix whose kth row has been replaced by its ith row;
that is, a matrix with two identical rows. The determinant of such a matrix
is 0, as we saw above.

A certain matrix formed from the cofactors has some interesting properties.
We define the matrix here but defer further discussion. The adjugate of the
n × n matrix A is defined as

adj(A) = (a(ji)), (3.24)

which is an n × n matrix of the cofactors of the elements of the transposed
matrix. (The adjugate is also called the adjoint, but as we noted above, the
term adjoint may also mean the conjugate transpose. To distinguish it from
the conjugate transpose, the adjugate is also sometimes called the “classical
adjoint”. We will generally avoid using the term “adjoint”.) Note the reversal
of the subscripts; that is,

adj(A) = (a(ij))T.

The adjugate has an interesting property:

A adj(A) = adj(A)A = |A|I. (3.25)

To see this, consider the (ij)T element of A adj(A),
∑

k aik(adj(A))kj . Now,
noting the reversal of the subscripts in adj(A) in equation (3.24), and using
equations (3.21) and (3.23), we have

∑

k

aik(adj(A))kj =
{
|A| if i = j
0 if i �= j;

that is, A adj(A) = |A|I.
The adjugate has a number of useful properties, some of which we will

encounter later, as in equation (3.131).

54 3 Basic Properties of Matrices

The Determinant of the Transpose of Square Matrices

One important property we see immediately from a manipulation of the defi-
nition of the determinant is

|A| = |AT|. (3.26)

The Determinant of Scalar Products of Square Matrices

For a scalar c and an n × n matrix A,

|cA| = cn|A|. (3.27)

This follows immediately from the definition because, for |cA|, each factor in
each term of equation (3.16) is multiplied by c.

The Determinant of an Upper (or Lower) Triangular Matrix

If A is an n × n upper (or lower) triangular matrix, then

|A| =
n∏

i=1

aii. (3.28)

This follows immediately from the definition. It can be generalized, as in the
next section.

The Determinant of Certain Partitioned Square Matrices

Determinants of square partitioned matrices that are block diagonal or upper
or lower block triangular depend only on the diagonal partitions:

|A| =
∣
∣
∣
∣

[
A11 0
0 A22

]∣
∣
∣
∣ =

∣
∣
∣
∣

[
A11 0
A21 A22

]∣
∣
∣
∣ =

∣
∣
∣
∣

[
A11 A12

0 A22

]∣
∣
∣
∣

= |A11| |A22|. (3.29)

We can see this by considering the individual terms in the determinant, equa-
tion (3.16). Suppose the full matrix is n × n, and A11 is m × m. Then A22

is (n − m) × (n − m), A21 is (n − m) × m, and A12 is m × (n − m). In
equation (3.16), any addend for which (j1, . . . , jm) is not a permutation of the
integers 1, . . . ,m contains a factor aij that is in a 0 diagonal block, and hence
the addend is 0. The determinant consists only of those addends for which
(j1, . . . , jm) is a permutation of the integers 1, . . . ,m, and hence (jm+1, . . . , jn)
is a permutation of the integers m + 1, . . . , n,

|A| =
∑∑

σ(j1, . . . , jm, jm+1, . . . , jn)a1j1 · · · amjm
am+1,jn

· · · anjn
,

3.1 Basic Definitions and Notation 55

where the first sum is taken over all permutations that keep the first m integers
together while maintaining a fixed ordering for the integers m + 1 through n,
and the second sum is taken over all permutations of the integers from m + 1
through n while maintaining a fixed ordering of the integers from 1 to m.
Now, using equation (3.17), we therefore have for A of this special form

|A| =
∑∑

σ(j1, . . . , jm, jm+1, . . . , jn)a1j1 · · · amjm
am+1,jm+1 · · · anjn

=
∑

σ(j1, . . . , jm)a1j1 · · · amjm

∑
σ(jm+1, . . . , jn)am+1,jm+1 · · · anjn

= |A11||A22|,

which is equation (3.29). We use this result to give an expression for the
determinant of more general partitioned matrices in Section 3.4.2.

Another useful partitioned matrix of the form of equation (3.13) has A11 =
0 and A21 = −I:

A =
[

0 A12

−I A22

]

.

In this case, using equation (3.21), we get

|A| = ((−1)n+1+1(−1))n|A12|
= (−1)n(n+3)|A12|
= |A12|. (3.30)

The Determinant of the Sum of Square Matrices

Occasionally it is of interest to consider the determinant of the sum of square
matrices. We note in general that

|A + B| �= |A| + |B|,

which we can see easily by an example. (Consider matrices in IR2×2, for ex-

ample, and let A = I and B =
[
−1 0
0 0

]

.)

In some cases, however, simplified expressions for the determinant of a
sum can be developed. We consider one in the next section.

A Diagonal Expansion of the Determinant

A particular sum of matrices whose determinant is of interest is one in which
a diagonal matrix D is added to a square matrix A, that is, |A + D|. (Such a
determinant arises in eigenanalysis, for example, as we see in Section 3.8.2.)

For evaluating the determinant |A + D|, we can develop another expan-
sion of the determinant by restricting our choice of minors to determinants of
matrices formed by deleting the same rows and columns and then continuing

56 3 Basic Properties of Matrices

to delete rows and columns recursively from the resulting matrices. The ex-
pansion is a polynomial in the elements of D; and for our purposes later, that
is the most useful form.

Before considering the details, let us develop some additional notation.
The matrix formed by deleting the same row and column of A is denoted
A−(i)(i) as above (following equation (3.19)). In the current context, however,
it is more convenient to adopt the notation A(i1,...,ik) to represent the matrix
formed from rows i1, . . . , ik and columns i1, . . . , ik from a given matrix A.
That is, the notation A(i1,...,ik) indicates the rows and columns kept rather
than those deleted; and furthermore, in this notation, the indexes of the rows
and columns are the same. We denote the determinant of this k×k matrix in
the obvious way, |A(i1,...,ik)|. Because the principal diagonal elements of this
matrix are principal diagonal elements of A, we call |A(i1,...,ik)| a principal
minor of A.

Now consider |A + D| for the 2 × 2 case:
∣
∣
∣
∣

[
a11 + d1 a12

a21 a22 + d2

]∣
∣
∣
∣ .

Expanding this, we have

|A + D| = (a11 + d1)(a22 + d2) − a12a21

=
∣
∣
∣
∣

[
a11 a12

a21 a22

]∣
∣
∣
∣ + d1d2 + a22d1 + a11d2

= |A(1,2)| + d1d2 + a22d1 + a11d2.

Of course, |A(1,2)| = |A|, but we are writing it this way to develop the pattern.
Now, for the 3 × 3 case, we have

|A + D| = |A(1,2,3)|
+ |A(2,3)|d1 + |A(1,3)|d2 + |A(1,2)|d3

+ a33d1d2 + a22d1d3 + a11d2d3

+ d1d2d3. (3.31)

In the applications of interest, the elements of the diagonal matrix D may be
a single variable: d, say. In this case, the expression simplifies to

|A + D| = |A(1,2,3)| +
∑

i�=j

|A(i,j)|d +
∑

i

ai,id
2 + d3. (3.32)

Carefully continuing in this way for an n×n matrix, either as in equation (3.31)
for n variables or as in equation (3.32) for a single variable, we can make use
of a Laplace expansion to evaluate the determinant.

3.1 Basic Definitions and Notation 57

Consider the expansion in a single variable because that will prove most
useful. The pattern persists; the constant term is |A|, the coefficient of the
first-degree term is the sum of the (n − 1)-order principal minors, and, at
the other end, the coefficient of the (n − 1)th-degree term is the sum of the
first-order principal minors (that is, just the diagonal elements), and finally
the coefficient of the nth-degree term is 1.

This kind of representation is called a diagonal expansion of the determi-
nant because the coefficients are principal minors. It has occasional use for
matrices with large patterns of zeros, but its main application is in analysis
of eigenvalues, which we consider in Section 3.8.2.

Computing the Determinant

For an arbitrary matrix, the determinant is rather difficult to compute. The
method for computing a determinant is not the one that would arise directly
from the definition or even from a Laplace expansion. The more efficient meth-
ods involve first factoring the matrix, as we discuss in later sections.

The determinant is not very often directly useful, but although it may
not be obvious from its definition, the determinant, along with minors, co-
factors, and adjoint matrices, is very useful in discovering and proving prop-
erties of matrices. The determinant is used extensively in eigenanalysis (see
Section 3.8).

A Geometrical Perspective of the Determinant

In Section 2.2, we discussed a useful geometric interpretation of vectors in
a linear space with a Cartesian coordinate system. The elements of a vec-
tor correspond to measurements along the respective axes of the coordinate
system. When working with several vectors, or with a matrix in which the
columns (or rows) are associated with vectors, we may designate a vector
xi as xi = (xi1, . . . , xid). A set of d linearly independent d-vectors define a
parallelotope in d dimensions. For example, in a two-dimensional space, the
linearly independent 2-vectors x1 and x2 define a parallelogram, as shown in
Figure 3.1.

The area of this parallelogram is the base times the height, bh, where, in
this case, b is the length of the vector x1, and h is the length of x2 times the
sine of the angle θ. Thus, making use of equation (2.32) on page 26 for the
cosine of the angle, we have

58 3 Basic Properties of Matrices

x2

x1

θ

a
h

b

e1

e2

Fig. 3.1. Volume (Area) of Region Determined by x1 and x2

area = bh

= ‖x1‖‖x2‖ sin(θ)

= ‖x1‖‖x2‖

√

1 −
(

〈x1, x2〉
‖x1‖‖x2‖

)2

=
√

‖x1‖2‖x2‖2 − (〈x1, x2〉)2

=
√

(x2
11 + x2

12)(x
2
21 + x2

22) − (x11x21 − x12x22)2

= |x11x22 − x12x21|
= |det(X)|, (3.33)

where x1 = (x11, x12), x2 = (x21, x22), and

X = [x1 | x2]

=
[

x11 x21

x12 x22

]

.

Although we will not go through the details here, this equivalence of a
volume of a parallelotope that has a vertex at the origin and the absolute
value of the determinant of a square matrix whose columns correspond to the
vectors that form the sides of the parallelotope extends to higher dimensions.

In making a change of variables in integrals, as in equation (4.37) on
page 165, we use the absolute value of the determinant of the Jacobian as a
volume element. Another instance of the interpretation of the determinant as
a volume is in the generalized variance, discussed on page 296.

3.2 Multiplication of Matrices 59

3.2 Multiplication of Matrices and
Multiplication of Vectors and Matrices

The elements of a vector or matrix are elements of a field, and most matrix
and vector operations are defined in terms of the two operations of the field.
Of course, in this book, the field of most interest is the field of real numbers.

3.2.1 Matrix Multiplication (Cayley)

There are various kinds of multiplication of matrices that may be useful. The
most common kind of multiplication is Cayley multiplication. If the number
of columns of the matrix A, with elements aij , and the number of rows of the
matrix B, with elements bij , are equal, then the (Cayley) product of A and B
is defined as the matrix C with elements

cij =
∑

k

aikbkj . (3.34)

This is the most common type of matrix product, and we refer to it by the
unqualified phrase “matrix multiplication”.

Cayley matrix multiplication is indicated by juxtaposition, with no inter-
vening symbol for the operation: C = AB.

If the matrix A is n×m and the matrix B is m× p, the product C = AB
is n × p:

C = A B

[]

n×p

=
[]

n×m

[]m×p

.

Cayley matrix multiplication is a mapping,

IRn×m × IRm×p �→ IRn×p.

The multiplication of an n × m matrix and an m × p matrix requires
nmp scalar multiplications and np(m − 1) scalar additions. Here, as always
in numerical analysis, we must remember that the definition of an operation,
such as matrix multiplication, does not necessarily define a good algorithm
for evaluating the operation.

It is obvious that while the product AB may be well-defined, the product
BA is defined only if n = p; that is, if the matrices AB and BA are square.
We assume throughout that writing a product of matrices AB implies that
the number of columns of the first matrix is the same as the number of rows of
the second; that is, they are conformable for multiplication in the order given.

It is easy to see from the definition of matrix multiplication (3.34) that
in general, even for square matrices, AB �= BA. It is also obvious that if AB
exists, then BTAT exists and, in fact,

60 3 Basic Properties of Matrices

BTAT = (AB)T. (3.35)

The product of symmetric matrices is not, in general, symmetric. If (but not
only if) A and B are symmetric, then AB = (BA)T.

Various matrix shapes are preserved under matrix multiplication. Assume
A and B are square matrices of the same number of rows. If A and B are
diagonal, AB is diagonal; if A and B are upper triangular, AB is upper
triangular; and if A and B are lower triangular, AB is lower triangular.

Because matrix multiplication is not commutative, we often use the terms
“premultiply” and “postmultiply” and the corresponding nominal forms of
these terms. Thus, in the product AB, we may say B is premultiplied by A,
or, equivalently, A is postmultiplied by B.

Although matrix multiplication is not commutative, it is associative; that
is, if the matrices are conformable,

A(BC) = (AB)C. (3.36)

It is also distributive over addition; that is,

A(B + C) = AB + AC (3.37)

and
(B + C)A = BA + CA. (3.38)

These properties are obvious from the definition of matrix multiplication.
(Note that left-sided distribution is not the same as right-sided distribution
because the multiplication is not commutative.)

An n×n matrix consisting of 1s along the diagonal and 0s everywhere else is
a multiplicative identity for the set of n×n matrices and Cayley multiplication.
Such a matrix is called the identity matrix of order n, and is denoted by In,
or just by I. The columns of the identity matrix are unit vectors.

The identity matrix is a multiplicative identity for any matrix so long as
the matrices are conformable for the multiplication. If A is n × m, then

InA = AIm = A.

Powers of Square Matrices

For a square matrix A, its product with itself is defined, and so we will use the
notation A2 to mean the Cayley product AA, with similar meanings for Ak

for a positive integer k. As with the analogous scalar case, Ak for a negative
integer may or may not exist, and when it exists, it has a meaning for Cayley
multiplication similar to the meaning in ordinary scalar multiplication. We
will consider these issues later (in Section 3.3.3).

For an n × n matrix A, if Ak exists for negative integers, we define A0 by

A0 = In. (3.39)

For a diagonal matrix D = diag ((d1, . . . , dn)), we have

Dk = diag
(
(dk

1 , . . . , dk
n)
)
. (3.40)

3.2 Multiplication of Matrices 61

Matrix Polynomials

Polynomials in square matrices are similar to the more familiar polynomials
in scalars. We may consider

p(A) = b0I + b1A + · · · bkAk.

The value of this polynomial is a matrix.
The theory of polynomials in general holds, and in particular, we have the

useful factorizations of monomials: for any positive integer k,

I − Ak = (I − A)(I + A + · · ·Ak−1), (3.41)

and for an odd positive integer k,

I + Ak = (I + A)(I − A + · · ·Ak−1). (3.42)

3.2.2 Multiplication of Partitioned Matrices

Multiplication and other operations with partitioned matrices are carried out
with their submatrices in the obvious way. Thus, assuming the submatrices
are conformable for multiplication,

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

=
[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

.

Sometimes a matrix may be partitioned such that one partition is just a
single column or row, that is, a vector or the transpose of a vector. In that
case, we may use a notation such as

[X y]

or
[X | y],

where X is a matrix and y is a vector. We develop the notation in the obvious
fashion; for example,

[X y]T [X y] =
[

XTX XTy
yTX yTy

]

. (3.43)

3.2.3 Elementary Operations on Matrices

Many common computations involving matrices can be performed as a se-
quence of three simple types of operations on either the rows or the columns
of the matrix:

• the interchange of two rows (columns),

62 3 Basic Properties of Matrices

• a scalar multiplication of a given row (column), and
• the replacement of a given row (column) by the sum of that row

(columns) and a scalar multiple of another row (column); that is, an
axpy operation.

Such an operation on the rows of a matrix can be performed by premultipli-
cation by a matrix in a standard form, and an operation on the columns of
a matrix can be performed by postmultiplication by a matrix in a standard
form. To repeat:

• premultiplication: operation on rows;
• postmultiplication: operation on columns.

The matrix used to perform the operation is called an elementary trans-
formation matrix or elementary operator matrix. Such a matrix is the identity
matrix transformed by the corresponding operation performed on its unit
rows, eT

p , or columns, ep.
In actual computations, we do not form the elementary transformation

matrices explicitly, but their formulation allows us to discuss the operations
in a systematic way and better understand the properties of the operations.
Products of any of these elementary operator matrices can be used to effect
more complicated transformations.

Operations on the rows are more common, and that is what we will dis-
cuss here, although operations on columns are completely analogous. These
transformations of rows are called elementary row operations.

Interchange of Rows or Columns; Permutation Matrices

By first interchanging the rows or columns of a matrix, it may be possible
to partition the matrix in such a way that the partitions have interesting
or desirable properties. Also, in the course of performing computations on a
matrix, it is often desirable to interchange the rows or columns of the matrix.
(This is an instance of “pivoting”, which will be discussed later, especially
in Chapter 6.) In matrix computations, we almost never actually move data
from one row or column to another; rather, the interchanges are effected by
changing the indexes to the data.

Interchanging two rows of a matrix can be accomplished by premultiply-
ing the matrix by a matrix that is the identity with those same two rows
interchanged; for example,

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

a11 a12 a13

a31 a32 a33

a21 a22 a23

a41 a42 a43

⎤

⎥
⎥
⎦ .

The first matrix in the expression above is called an elementary permutation
matrix. It is the identity matrix with its second and third rows (or columns)

3.2 Multiplication of Matrices 63

interchanged. An elementary permutation matrix, which is the identity with
the pth and qth rows interchanged, is denoted by Epq. That is, Epq is the
identity, except the pth row is eT

q and the qth row is eT
p . Note that Epq = Eqp.

Thus, for example, if the given matrix is 4×m, to interchange the second and
third rows, we use

E23 = E32 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ .

It is easy to see from the definition that an elementary permutation matrix
is symmetric. Note that the notation Epq does not indicate the order of the
elementary permutation matrix; that must be specified in the context.

Premultiplying a matrix A by a (conformable) Epq results in an inter-
change of the pth and qth rows of A as we see above. Any permutation of rows
of A can be accomplished by successive premultiplications by elementary per-
mutation matrices. Note that the order of multiplication matters. Although
a given permutation can be accomplished by different elementary permuta-
tions, the number of elementary permutations that effect a given permutation
is always either even or odd; that is, if an odd number of elementary per-
mutations results in a given permutation, any other sequence of elementary
permutations to yield the given permutation is also odd in number. Any given
permutation can be effected by successive interchanges of adjacent rows.

Postmultiplying a matrix A by a (conformable) Epq results in an inter-
change of the pth and qth columns of A:

⎡

⎢
⎢
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

⎤

⎥
⎥
⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ =

⎡

⎢
⎢
⎣

a11 a13 a12

a21 a23 a22

a31 a33 a32

a41 a43 a42

⎤

⎥
⎥
⎦ .

Note that
A = EpqEpqA = AEpqEpq; (3.44)

that is, as an operator, an elementary permutation matrix is its own inverse
operator: EpqEpq = I.

Because all of the elements of a permutation matrix are 0 or 1, the trace
of an n × n elementary permutation matrix is n − 2.

The product of elementary permutation matrices is also a permutation
matrix in the sense that it permutes several rows or columns. For example,
premultiplying A by the matrix Q = EpqEqr will yield a matrix whose pth row
is the rth row of the original A, whose qth row is the pth row of A, and whose
rth row is the qth row of A. We often use the notation Eπ to denote a more
general permutation matrix. This expression will usually be used generically,
but sometimes we will specify the permutation, π.

64 3 Basic Properties of Matrices

A general permutation matrix (that is, a product of elementary permuta-
tion matrices) is not necessarily symmetric, but its transpose is also a per-
mutation matrix. It is not necessarily its own inverse, but its permutations
can be reversed by a permutation matrix formed by products of elementary
permutation matrices in the opposite order; that is,

ET
π Eπ = I.

As a prelude to other matrix operations, we often permute both rows and
columns, so we often have a representation such as

B = Eπ1AEπ2 , (3.45)

where Eπ1 is a permutation matrix to permute the rows and Eπ2 is a permu-
tation matrix to permute the columns. We use these kinds of operations to
arrive at the important equation (3.99) on page 80, and combine these oper-
ations with others to yield equation (3.113) on page 86. These equations are
used to determine the number of linearly independent rows and columns and
to represent the matrix in a form with a maximal set of linearly independent
rows and columns clearly identified.

The Vec-Permutation Matrix

A special permutation matrix is the matrix that transforms the vector vec(A)
into vec(AT). If A is n × m, the matrix Knm that does this is nm × nm. We
have

vec(AT) = Knmvec(A). (3.46)

The matrix Knm is called the nm vec-permutation matrix.

Scalar Row or Column Multiplication

Often, numerical computations with matrices are more accurate if the rows
have roughly equal norms. For this and other reasons, we often transform a
matrix by multiplying one of its rows by a scalar. This transformation can also
be performed by premultiplication by an elementary transformation matrix.
For multiplication of the pth row by the scalar, the elementary transformation
matrix, which is denoted by Ep(a), is the identity matrix in which the pth

diagonal element has been replaced by a. Thus, for example, if the given
matrix is 4 × m, to multiply the second row by a, we use

E2(a) =

⎡

⎢
⎢
⎣

1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

3.2 Multiplication of Matrices 65

Postmultiplication of a given matrix by the multiplier matrix Ep(a) results
in the multiplication of the pth column by the scalar. For this, Ep(a) is a square
matrix of order equal to the number of columns of the given matrix.

Note that the notation Ep(a) does not indicate the number of rows and
columns. This must be specified in the context.

Note that, if a �= 0,
A = Ep(1/a)Ep(a)A, (3.47)

that is, as an operator, the inverse operator is a row multiplication matrix on
the same row and with the reciprocal as the multiplier.

Axpy Row or Column Transformations

The other elementary operation is an axpy on two rows and a replacement of
one of those rows with the result

ap ← aaq + ap.

This operation also can be effected by premultiplication by a matrix formed
from the identity matrix by inserting the scalar in the (p, q) position. Such a
matrix is denoted by Epq(a). Thus, for example, if the given matrix is 4×m,
to add a times the third row to the second row, we use

E23(a) =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 a 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Premultiplication of a matrix A by such a matrix,

Epq(a)A, (3.48)

yields a matrix whose pth row is a times the qth row plus the original row.
Given the 4 × 3 matrix A = (aij), we have

E23(a)A =

⎡

⎢
⎢
⎣

a11 a12 a13

a21 + aa31 a22 + aa32 a23 + aa33

a31 a32 a33

a41 a42 a43

⎤

⎥
⎥
⎦ .

Postmultiplication of a matrix A by an axpy operator matrix,

AEpq(a),

yields a matrix whose qth column is a times the pth column plus the original
column. For this, Epq(a) is a square matrix of order equal to the number of
columns of the given matrix. Note that the column that is changed corresponds
to the second subscript in Epq(a).

66 3 Basic Properties of Matrices

Note that
A = Epq(−a)Epq(a)A; (3.49)

that is, as an operator, the inverse operator is the same axpy elementary
operator matrix with the negative of the multiplier.

A common use of axpy operator matrices is to form a matrix with zeros
in all positions of a given column below a given position in the column. These
operations usually follow an operation by a scalar row multiplier matrix that
puts a 1 in the position of interest. For example, given an n × m matrix A
with aij �= 0, to put a 1 in the (i, j) position and 0s in all positions of the jth

column below the ith row, we form the product

Emi(−amj) · · ·Ei+1,i(−ai+1,j)Ei(1/aij)A. (3.50)

This process is called Gaussian elimination.
Gaussian elimination is often performed sequentially down the diagonal

elements of a matrix. If at some point aii = 0, the operations of equation (3.50)
cannot be performed. In that case, we may first interchange the ith row with
the kth row, where k > i and aki �= 0. Such an interchange is called pivoting.
We will discuss pivoting in more detail on page 209 in Chapter 6.

To form a matrix with zeros in all positions of a given column except one,
we use additional matrices for the rows above the given element:

Emi(−amj) · · ·Ei+1,i(−ai+1,j) · · ·Ei−1,i(−ai−1,j) · · ·E1i(−a1j)Ei(1/aij)A.

We can likewise zero out all elements in the ith row except the one in the
(ij)th position by similar postmultiplications.

These elementary transformations are the basic operations in Gaussian
elimination, which is discussed in Sections 5.6 and 6.2.1.

Determinants of Elementary Operator Matrices

The determinant of an elementary permutation matrix Epq has only one term
in the sum that defines the determinant (equation (3.16), page 50), and that
term is 1 times σ evaluated at the permutation that exchanges p and q. As
we have seen (page 51), this is an odd permutation; hence, for an elementary
permutation matrix Epq,

|Epq| = −1. (3.51)

Because all terms in |EpqA| are exactly the same terms as in |A| but with
one different permutation in each term, we have

|EpqA| = −|A|.

More generally, if A and Eπ are n × n matrices, and Eπ is any permutation
matrix (that is, any product of Epq matrices), then |EπA| is either |A| or
−|A| because all terms in |EπA| are exactly the same as the terms in |A| but

3.2 Multiplication of Matrices 67

possibly with different signs because the permutations are different. In fact,
the differences in the permutations are exactly the same as the permutation
of 1, . . . , n in Eπ; hence,

|EπA| = |Eπ| |A|.
(In equation (3.57) below, we will see that this equation holds more generally.)

The determinant of an elementary row multiplication matrix Ep(a) is

|Ep(a)| = a. (3.52)

If A and Ep(a) are n × n matrices, then

|Ep(a)A| = a|A|,

as we see from the definition of the determinant, equation (3.16).
The determinant of an elementary axpy matrix Epq(a) is 1,

|Epq(a)| = 1, (3.53)

because the term consisting of the product of the diagonals is the only term
in the determinant.

Now consider |Epq(a)A| for an n × n matrix A. Expansion in the minors
(equation (3.21)) along the pth row yields

|Epq(a)A| =
n∑

j=1

(apj + aaqj)(−1)p+j |A(ij)|

=
n∑

j=1

apj(−1)p+j |A(ij)| + a

n∑

j=1

aqj(−1)p+j |A(ij)|.

From equation (3.23) on page 53, we see that the second term is 0, and since
the first term is just the determinant of A, we have

|Epq(a)A| = |A|. (3.54)

3.2.4 Traces and Determinants of Square
Cayley Products

The Trace

A useful property of the trace for the matrices A and B that are conformable
for the multiplications AB and BA is

tr(AB) = tr(BA). (3.55)

This is obvious from the definitions of matrix multiplication and the trace.
Because of the associativity of matrix multiplication, this relation can be

extended as
tr(ABC) = tr(BCA) = tr(CAB) (3.56)

for matrices A, B, and C that are conformable for the multiplications indi-
cated. Notice that the individual matrices need not be square.

68 3 Basic Properties of Matrices

The Determinant

An important property of the determinant is

|AB| = |A| |B| (3.57)

if A and B are square matrices conformable for multiplication. We see this by
first forming ∣

∣
∣
∣

[
I A
0 I

] [
A 0
−I B

]∣
∣
∣
∣ =

∣
∣
∣
∣

[
0 AB
−I B

]∣
∣
∣
∣ (3.58)

and then observing from equation (3.30) that the right-hand side is |AB|. Now
consider the left-hand side. The matrix that is the first factor is a product
of elementary axpy transformation matrices; that is, it is a matrix that when
postmultiplied by another matrix merely adds multiples of rows in the lower
part of the matrix to rows in the upper part of the matrix. If A and B are
n×n (and so the identities are likewise n×n), the full matrix is the product:
[

I A
0 I

]

= E1,n+1(a11) · · ·E1,2n(a1n)E2,n+1(a21) · · ·E2,2n(a2,n) · · ·En,2n(ann).

Hence, applying equation (3.54) recursively, we have
∣
∣
∣
∣

[
I A
0 I

] [
A 0
−I B

]∣
∣
∣
∣ =

∣
∣
∣
∣

[
A 0
−I B

]∣
∣
∣
∣ ,

and from equation (3.29) we have
∣
∣
∣
∣

[
A 0
−I B

]∣
∣
∣
∣ = |A||B|,

and so finally we have equation (3.57).

3.2.5 Multiplication of Matrices and Vectors

It is often convenient to think of a vector as a matrix with only one element
in one of its dimensions. This provides for an immediate extension of the de-
finitions of transpose and matrix multiplication to include vectors as either
or both factors. In this scheme, we follow the convention that a vector corre-
sponds to a column; that is, if x is a vector and A is a matrix, Ax or xTA may
be well-defined, but neither xA nor AxT would represent anything, except in
the case when all dimensions are 1. (In some computer systems for matrix
algebra, these conventions are not enforced; see, for example the R code in
Figure 12.4 on page 468.) The alternative notation xTy we introduced earlier
for the dot product or inner product, 〈x, y〉, of the vectors x and y is consis-
tent with this paradigm. We will continue to write vectors as x = (x1, . . . , xn),
however. This does not imply that the vector is a row vector. We would repre-
sent a matrix with one row as Y = [y11 . . . y1n] and a matrix with one column
as Z = [z11 . . . zm1]T.

3.2 Multiplication of Matrices 69

The Matrix/Vector Product as a Linear Combination

If we represent the vectors formed by the columns of an n × m matrix A
as a1, . . . , am, the matrix/vector product Ax is a linear combination of these
columns of A:

Ax =
m∑

i=1

xiai. (3.59)

(Here, each xi is a scalar, and each ai is a vector.)
Given the equation Ax = b, we have b ∈ span(A); that is, the n-vector b

is in the k-dimensional column space of A, where k ≤ m.

3.2.6 Outer Products

The outer product of the vectors x and y is the matrix

xyT. (3.60)

Note that the definition of the outer product does not require the vectors to
be of equal length. Note also that while the inner product is commutative,
the outer product is not commutative (although it does have the property
xyT = (yxT)T).

A very common outer product is of a vector with itself:

xxT.

The outer product of a vector with itself is obviously a symmetric matrix.
We should again note some subtleties of differences in the types of objects

that result from operations. If A and B are matrices conformable for the
operation, the product ATB is a matrix even if both A and B are n × 1 and
so the result is 1×1. For the vectors x and y and matrix C, however, xTy and
xTCy are scalars; hence, the dot product and a quadratic form are not the
same as the result of a matrix multiplication. The dot product is a scalar, and
the result of a matrix multiplication is a matrix. The outer product of vectors
is a matrix, even if both vectors have only one element. Nevertheless, as we
have mentioned before, in the following, we will treat a one by one matrix or
a vector with only one element as a scalar whenever it is convenient to do so.

3.2.7 Bilinear and Quadratic Forms; Definiteness

A variation of the vector dot product, xTAy, is called a bilinear form, and
the special bilinear form xTAx is called a quadratic form. Although in the
definition of quadratic form we do not require A to be symmetric —because
for a given value of x and a given value of the quadratic form xTAx there is a
unique symmetric matrix As such that xTAsx = xTAx —we generally work
only with symmetric matrices in dealing with quadratic forms. (The matrix
As is 1

2 (A + AT); see Exercise 3.3.) Quadratic forms correspond to sums of
squares and hence play an important role in statistical applications.

70 3 Basic Properties of Matrices

Nonnegative Definite and Positive Definite Matrices

A symmetric matrix A such that for any (conformable and real) vector x the
quadratic form xTAx is nonnegative, that is,

xTAx ≥ 0, (3.61)

is called a nonnegative definite matrix. We denote the fact that A is nonneg-
ative definite by

A � 0.

(Note that we consider 0n×n to be nonnegative definite.)
A symmetric matrix A such that for any (conformable) vector x �= 0 the

quadratic form
xTAx > 0 (3.62)

is called a positive definite matrix. We denote the fact that A is positive
definite by

A � 0.

(Recall that A ≥ 0 and A > 0 mean, respectively, that all elements of A are
nonnegative and positive.) When A and B are symmetric matrices of the same
order, we write A � B to mean A − B � 0 and A � B to mean A − B � 0.
Nonnegative and positive definite matrices are very important in applications.
We will encounter them from time to time in this chapter, and then we will
discuss more of their properties in Section 8.3.

In this book we use the terms “nonnegative definite” and “positive defi-
nite” only for symmetric matrices. In other literature, these terms may be used
more generally; that is, for any (square) matrix that satisfies (3.61) or (3.62).

The Trace of Inner and Outer Products

The invariance of the trace to permutations of the factors in a product (equa-
tion (3.55)) is particularly useful in working with quadratic forms. Because
the quadratic form itself is a scalar (or a 1 × 1 matrix), and because of the
invariance, we have the very useful fact

xTAx = tr(xTAx)
= tr(AxxT). (3.63)

Furthermore, for any scalar a, n-vector x, and n × n matrix A, we have

(x − a)TA(x − a) = tr(Axcx
T
c) + n(a − x̄)2tr(A). (3.64)

(Compare this with equation (2.48) on page 34.)

3.2 Multiplication of Matrices 71

3.2.8 Anisometric Spaces

In Section 2.1, we considered various properties of vectors that depend on
the inner product, such as orthogonality of two vectors, norms of a vector,
angles between two vectors, and distances between two vectors. All of these
properties and measures are invariant to the orientation of the vectors; the
space is isometric with respect to a Cartesian coordinate system. Noting that
the inner product is the bilinear form xTIy, we have a heuristic generalization
to an anisometric space. Suppose, for example, that the scales of the coordi-
nates differ; say, a given distance along one axis in the natural units of the
axis is equivalent (in some sense depending on the application) to twice that
distance along another axis, again measured in the natural units of the axis.
The properties derived from the inner product, such as a norm and a metric,
may correspond to the application better if we use a bilinear form in which
the matrix reflects the different effective distances along the coordinate axes.
A diagonal matrix whose entries have relative values corresponding to the
inverses of the relative scales of the axes may be more useful. Instead of xTy,
we may use xTDy, where D is this diagonal matrix.

Rather than differences in scales being just in the directions of the co-
ordinate axes, more generally we may think of anisometries being measured
by general (but perhaps symmetric) matrices. (The covariance and correlation
matrices defined on page 294 come to mind. Any such matrix to be used in this
context should be positive definite because we will generalize the dot prod-
uct, which is necessarily nonnegative, in terms of a quadratic form.) A bilinear
form xTAy may correspond more closely to the properties of the application
than the standard inner product.

We define orthogonality of two vectors x and y with respect to A by

xTAy = 0. (3.65)

In this case, we say x and y are A-conjugate.
The L2 norm of a vector is the square root of the quadratic form of the

vector with respect to the identity matrix. A generalization of the L2 vector
norm, called an elliptic norm or a conjugate norm, is defined for the vector
x as the square root of the quadratic form xTAx for any symmetric positive
definite matrix A. It is sometimes denoted by ‖x‖A:

‖x‖A =
√

xTAx. (3.66)

It is easy to see that
‖x‖A

satisfies the definition of a norm given on page 16. If A is a diagonal matrix
with elements wi ≥ 0, the elliptic norm is the weighted L2 norm of equa-
tion (2.15).

The elliptic norm yields an elliptic metric in the usual way of defining a
metric in terms of a norm. The distance between the vectors x and y with

72 3 Basic Properties of Matrices

respect to A is
√

(x − y)TA(x − y). It is easy to see that this satisfies the
definition of a metric given on page 22.

A metric that is widely useful in statistical applications is the Mahalanobis
distance, which uses a covariance matrix as the scale for a given space. (The
sample covariance matrix is defined in equation (8.70) on page 294.) If S is
the covariance matrix, the Mahalanobis distance, with respect to that matrix,
between the vectors x and y is

√
(x − y)TS−1(x − y). (3.67)

3.2.9 Other Kinds of Matrix Multiplication

The most common kind of product of two matrices is the Cayley product,
and when we speak of matrix multiplication without qualification, we mean
the Cayley product. Three other types of matrix multiplication that are use-
ful are Hadamard multiplication, Kronecker multiplication, and dot product
multiplication.

The Hadamard Product

Hadamard multiplication is defined for matrices of the same shape as the mul-
tiplication of each element of one matrix by the corresponding element of the
other matrix. Hadamard multiplication immediately inherits the commutativ-
ity, associativity, and distribution over addition of the ordinary multiplication
of the underlying field of scalars. Hadamard multiplication is also called array
multiplication and element-wise multiplication. Hadamard matrix multiplica-
tion is a mapping

IRn×m × IRn×m �→ IRn×m.

The identity for Hadamard multiplication is the matrix of appropriate
shape whose elements are all 1s.

The Kronecker Product

Kronecker multiplication, denoted by ⊗, is defined for any two matrices An×m

and Bp×q as

A ⊗ B =

⎡

⎢
⎣

a11B . . . a1mB
... . . .

...
an1B . . . anmB

⎤

⎥
⎦ .

The Kronecker product of A and B is np × mq; that is, Kronecker matrix
multiplication is a mapping

IRn×m × IRp×q �→ IRnp×mq.

3.2 Multiplication of Matrices 73

The Kronecker product is also called the “right direct product” or just
direct product. (A left direct product is a Kronecker product with the factors
reversed.)

Kronecker multiplication is not commutative, but it is associative and it
is distributive over addition, as we will see below.

The identity for Kronecker multiplication is the 1 × 1 matrix with the
element 1; that is, it is the same as the scalar 1.

The determinant of the Kronecker product of two square matrices An×n

and Bm×m has a simple relationship to the determinants of the individual
matrices:

|A ⊗ B| = |A|m|B|n. (3.68)

The proof of this, like many facts about determinants, is straightforward but
involves tedious manipulation of cofactors. The manipulations in this case can
be facilitated by using the vec-permutation matrix. See Harville (1997) for a
detailed formal proof.

We can understand the properties of the Kronecker product by expressing
the (i, j) element of A ⊗ B in terms of the elements of A and B,

(A ⊗ B)i,j = A[i/p]+1, [j/q]+1Bi−p[i/p], j−q[i/q], (3.69)

where [·] is the greatest integer function.
Some additional properties of Kronecker products that are immediate re-

sults of the definition are, assuming the matrices are conformable for the
indicated operations,

(aA) ⊗ (bB) = ab(A ⊗ B)
= (abA) ⊗ B

= A ⊗ (abB), for scalars a, b, (3.70)

(A + B) ⊗ (C) = A ⊗ C + B ⊗ C, (3.71)

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), (3.72)

(A ⊗ B)T = AT ⊗ BT, (3.73)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (3.74)

These properties are all easy to see by using equation (3.69) to express the
(i, j) element of the matrix on either side of the equation, taking into account
the size of the matrices involved. For example, in the first equation, if A is
n × m and B is p × q, the (i, j) element on the left-hand side is

aA[i/p]+1, [j/q]+1bBi−p[i/p], j−q[i/q]

74 3 Basic Properties of Matrices

and that on the right-hand side is

abA[i/p]+1, [j/q]+1Bi−p[i/p], j−q[i/q].

They are all this easy! Hence, they are Exercise 3.6.
Another property of the Kronecker product of square matrices is

tr(A ⊗ B) = tr(A)tr(B). (3.75)

This is true because the trace of the product is merely the sum of all possible
products of the diagonal elements of the individual matrices.

The Kronecker product and the vec function often find uses in the same
application. For example, an n × m normal random matrix X with parameters
M , Σ, and Ψ can be expressed in terms of an ordinary np-variate normal
random variable Y = vec(X) with parameters vec(M) and Σ⊗Ψ . (We discuss
matrix random variables briefly on page 168. For a fuller discussion, the reader
is referred to a text on matrix random variables such as Carmeli, 1983.)

A relationship between the vec function and Kronecker multiplication is

vec(ABC) = (CT ⊗ A)vec(B) (3.76)

for matrices A, B, and C that are conformable for the multiplication indicated.

The Dot Product or the Inner Product of Matrices

Another product of two matrices of the same shape is defined as the sum of
the dot products of the vectors formed from the columns of one matrix with
vectors formed from the corresponding columns of the other matrix; that is,
if a1, . . . , am are the columns of A and b1, . . . , bm are the columns of B, then
the dot product of A and B, denoted 〈A,B〉, is

〈A,B〉 =
m∑

j=1

aT
j bj . (3.77)

For conformable matrices A, B, and C, we can easily confirm that this
product satisfies the general properties of an inner product listed on page 15:

• If A �= 0, 〈A,A〉 > 0, and 〈0, A〉 = 〈A, 0〉 = 〈0, 0〉 = 0.
• 〈A,B〉 = 〈B,A〉.
• 〈sA,B〉 = s〈A,B〉, for a scalar s.
• 〈(A + B), C〉 = 〈A,C〉 + 〈B,C〉.
We also call this inner product of matrices the dot product of the matrices. (As
in the case of the dot product of vectors, the dot product of matrices defined
over the complex field is not an inner product because the first property listed
above does not hold.)

3.2 Multiplication of Matrices 75

As with any inner product (restricted to objects in the field of the reals),
its value is a real number. Thus the matrix dot product is a mapping

IRn×m × IRn×m �→ IR.

The dot product of the matrices A and B with the same shape is denoted by
A · B, or 〈A,B〉, just like the dot product of vectors.

We see from the definition above that the dot product of matrices satisfies

〈A,B〉 = tr(ATB), (3.78)

which could alternatively be taken as the definition.
Rewriting the definition of 〈A,B〉 as

∑m
j=1

∑n
i=1 aijbij , we see that

〈A,B〉 = 〈AT, BT〉. (3.79)

Like any inner product, dot products of matrices obey the Cauchy-Schwarz
inequality (see inequality (2.10), page 16),

〈A,B〉 ≤ 〈A,A〉 1
2 〈B,B〉 1

2 , (3.80)

with equality holding only if A = 0 or B = sA for some scalar s.
In Section 2.1.8, we defined orthogonality and orthonormality of two or

more vectors in terms of dot products. We can likewise define an orthogonal
binary relationship between two matrices in terms of dot products of matrices.
We say the matrices A and B of the same shape are orthogonal to each other
if

〈A,B〉 = 0. (3.81)

From equations (3.78) and (3.79) we see that the matrices A and B are or-
thogonal to each other if and only if ATB and BTA are hollow (that is, they
have 0s in all diagonal positions). We also use the term “orthonormal” to refer
to matrices that are orthogonal to each other and for which each has a dot
product with itself of 1. In Section 3.7, we will define orthogonality as a unary
property of matrices. The term “orthogonal”, when applied to matrices, gen-
erally refers to that property rather than the binary property we have defined
here.

On page 48 we identified a vector space of matrices and defined a basis
for the space IRn×m. If {U1, . . . , Uk} is a basis set for M ⊂ IRn×m, with the
property that 〈Ui, Uj〉 = 0 for i �= j and 〈Ui, Ui〉 = 1, and A is an n × m
matrix, with the Fourier expansion

A =
k∑

i=1

ciUi, (3.82)

we have, analogous to equation (2.37) on page 29,

76 3 Basic Properties of Matrices

ci = 〈A, Ui〉. (3.83)

The ci have the same properties (such as the Parseval identity, equation (2.38),
for example) as the Fourier coefficients in any orthonormal expansion. Best
approximations within M can also be expressed as truncations of the sum
in equation (3.82) as in equation (2.41). The objective of course is to reduce
the truncation error. (The norms in Parseval’s identity and in measuring the
goodness of an approximation are matrix norms in this case. We discuss matrix
norms in Section 3.9 beginning on page 128.)

3.3 Matrix Rank and the Inverse of a
Full Rank Matrix

The linear dependence or independence of the vectors forming the rows or
columns of a matrix is an important characteristic of the matrix.

The maximum number of linearly independent vectors (those forming ei-
ther the rows or the columns) is called the rank of the matrix. We use the
notation

rank(A)

to denote the rank of the matrix A. (We have used the term “rank” before to
denote dimensionality of an array. “Rank” as we have just defined it applies
only to a matrix or to a set of vectors, and this is by far the more common
meaning of the word. The meaning is clear from the context, however.)

Because multiplication by a nonzero scalar does not change the linear
independence of vectors, for the scalar a with a �= 0, we have

rank(aA) = rank(A). (3.84)

From results developed in Section 2.1, we see that for the n × m matrix
A,

rank(A) ≤ min(n,m). (3.85)

Row Rank and Column Rank

We have defined matrix rank in terms of numbers of linearly independent rows
or columns. This is because the number of linearly independent rows is the
same as the number of linearly independent columns. Although we may use
the terms “row rank” or “column rank”, the single word “rank” is sufficient
because they are the same. To see this, assume we have an n × m matrix A
and that there are exactly p linearly independent rows and exactly q linearly
independent columns. We can permute the rows and columns of the matrix
so that the first p rows are linearly independent rows and the first q columns
are linearly independent and the remaining rows or columns are linearly de-
pendent on the first ones. (Recall that applying the same permutation to all

3.3 Matrix Rank and the Inverse of a Matrix 77

of the elements of each vector in a set of vectors does not change the linear
dependencies over the set.) After these permutations, we have a matrix B
with submatrices W , X, Y , and Z,

B =
[

Wp×q Xp×m−q

Yn−p×q Zn−p×m−q

]

, (3.86)

where the rows of R = [W |X] correspond to p linearly independent m-vectors

and the columns of C =
[

W
Y

]

correspond to q linearly independent n-vectors.

Without loss of generality, we can assume p ≤ q. Now, if p < q, it must be
the case that the columns of W are linearly dependent because there are q of
them, but they have only p elements. Therefore, there is some q-vector a such
that Wa = 0. Now, since the rows of R are the full set of linearly independent
rows, any row in [Y |Z] can be expressed as a linear combination of the rows
of R, and any row in Y can be expressed as a linear combination of the rows
of W . This means, for some n−p × p matrix T , that Y = TW . In this case,
however, Ca = 0. But this contradicts the assumption that the columns of
C are linearly independent; therefore it cannot be the case that p < q. We
conclude therefore that p = q; that is, that the maximum number of linearly
independent rows is the same as the maximum number of linearly independent
columns.

Because the row rank, the column rank, and the rank of A are all the
same, we have

rank(A) = dim(V(A)), (3.87)

rank(AT) = rank(A), (3.88)

dim(V(AT)) = dim(V(A)). (3.89)

(Note, of course, that in general V(AT) �= V(A); the orders of the vector spaces
are possibly different.)

Full Rank Matrices

If the rank of a matrix is the same as its smaller dimension, we say the matrix
is of full rank. In the case of a nonsquare matrix, we may say the matrix is
of full row rank or full column rank just to emphasize which is the smaller
number.

If a matrix is not of full rank, we say it is rank deficient and define the
rank deficiency as the difference between its smaller dimension and its rank.

A full rank matrix that is square is called nonsingular, and one that is not
nonsingular is called singular.

78 3 Basic Properties of Matrices

A square matrix that is either row or column diagonally dominant is non-
singular. The proof of this is Exercise 3.8. (It’s easy!)

A positive definite matrix is nonsingular. The proof of this is Exercise 3.9.

Later in this section, we will identify additional properties of square full
rank matrices. (For example, they have inverses and their determinants are
nonzero.)

Rank of Elementary Operator Matrices and Matrix Products
Involving Them

Because within any set of rows of an elementary operator matrix (see Sec-
tion 3.2.3), for some given column, only one of those rows contains a nonzero
element, the elementary operator matrices are all obviously of full rank (with
the proviso that a �= 0 in Ep(a)).

Furthermore, the rank of the product of any given matrix with an elemen-
tary operator matrix is the same as the rank of the given matrix. To see this,
consider each type of elementary operator matrix in turn. For a given matrix
A, the set of rows of EpqA is the same as the set of rows of A; hence, the rank
of EpqA is the same as the rank of A. Likewise, the set of columns of AEpq

is the same as the set of columns of A; hence, again, the rank of AEpq is the
same as the rank of A.

The set of rows of Ep(a)A for a �= 0 is the same as the set of rows of A,
except for one, which is a nonzero scalar multiple of the corresponding row
of A; therefore, the rank of Ep(a)A is the same as the rank of A. Likewise,
the set of columns of AEp(a) is the same as the set of columns of A, except
for one, which is a nonzero scalar multiple of the corresponding row of A;
therefore, again, the rank of AEp(a) is the same as the rank of A.

Finally, the set of rows of Epq(a)A for a �= 0 is the same as the set of
rows of A, except for one, which is a nonzero scalar multiple of some row of
A added to the corresponding row of A; therefore, the rank of Epq(a)A is the
same as the rank of A. Likewise, we conclude that the rank of AEpq(a) is the
same as the rank of A.

We therefore have that if P and Q are the products of elementary operator
matrices,

rank(PAQ) = rank(A). (3.90)

On page 88, we will extend this result to products by any full rank matrices.

3.3.1 The Rank of Partitioned Matrices, Products
of Matrices, and Sums of Matrices

The partitioning in equation (3.86) leads us to consider partitioned matrices
in more detail.

3.3 Matrix Rank and the Inverse of a Matrix 79

Rank of Partitioned Matrices and Submatrices

Let the matrix A be partitioned as

A =
[

A11 A12

A21 A22

]

,

where any pair of submatrices in a column or row may be null (that is, where
for example, it may be the case that A = [A11|A12]). Then the number of
linearly independent rows of A must be at least as great as the number of
linearly independent rows of [A11|A12] and the number of linearly independent
rows of [A21|A22]. By the properties of subvectors in Section 2.1.1, the number
of linearly independent rows of [A11|A12] must be at least as great as the
number of linearly independent rows of A11 or A21. We could go through a
similar argument relating to the number of linearly independent columns and
arrive at the inequality

rank(Aij) ≤ rank(A). (3.91)

Furthermore, we see that

rank(A) ≤ rank([A11|A12]) + rank([A21|A22]) (3.92)

because rank(A) is the number of linearly independent columns of A, which
is less than or equal to the number of linearly independent rows of [A11|A12]
plus the number of linearly independent rows of [A12|A22]. Likewise, we have

rank(A) ≤ rank
([

A11

A21

])

+ rank
([

A12

A22

])

. (3.93)

In a similar manner, by merely counting the number of independent rows,
we see that, if

V
(
[A11|A12]T

)
⊥ V

(
[A21|A22]T

)
,

then
rank(A) = rank([A11|A12]) + rank([A21|A22]); (3.94)

and, if

V
([

A11

A21

])

⊥ V
([

A12

A22

])

,

then

rank(A) = rank
([

A11

A21

])

+ rank
([

A12

A22

])

. (3.95)

80 3 Basic Properties of Matrices

An Upper Bound on the Rank of Products of Matrices

The rank of the product of two matrices is less than or equal to the lesser of
the ranks of the two:

rank(AB) ≤ min(rank(A), rank(B)). (3.96)

We can show this by separately considering two cases for the n× k matrix A
and the k × m matrix B. In one case, we assume k is at least as large as n
and n ≤ m, and in the other case we assume k < n ≤ m. In both cases, we
represent the rows of AB as k linear combinations of the rows of B.

From equation (3.96), we see that the rank of an outer product matrix
(that is, a matrix formed as the outer product of two vectors) is 1.

Equation (3.96) provides a useful upper bound on rank(AB). In Sec-
tion 3.3.8, we will develop a lower bound on rank(AB).

An Upper and a Lower Bound on the Rank of Sums of Matrices

The rank of the sum of two matrices is less than or equal to the sum of their
ranks; that is,

rank(A + B) ≤ rank(A) + rank(B). (3.97)

We can see this by observing that

A + B = [A|B]
[

I
I

]

,

and so rank(A + B) ≤ rank([A|B]) by equation (3.96), which in turn is ≤
rank(A) + rank(B) by equation (3.92).

Using inequality (3.97) and the fact that rank(−B) = rank(B), we write
rank(A−B) ≤ rank(A)+rank(B), and so, replacing A in (3.97) by A+B, we
have rank(A) ≤ rank(A+B)+rank(B), or rank(A+B) ≥ rank(A)−rank(B).
By a similar procedure, we get rank(A + B) ≥ rank(B) − rank(A), or

rank(A + B) ≥ |rank(A) − rank(B)|. (3.98)

3.3.2 Full Rank Partitioning

As we saw above, the matrix W in the partitioned B in equation (3.86) is
square; in fact, it is r × r, where r is the rank of B:

B =
[

Wr×r Xr×m−r

Yn−r×r Zn−r×m−r

]

. (3.99)

This is called a full rank partitioning of B.
The matrix B in equation (3.99) has a very special property: the full set

of linearly independent rows are the first r rows, and the full set of linearly
independent columns are the first r columns.

3.3 Matrix Rank and the Inverse of a Matrix 81

Any rank r matrix can be put in the form of equation (3.99) by using
permutation matrices as in equation (3.45), assuming that r ≥ 1. That is, if
A is a nonzero matrix, there is a matrix of the form of B above that has the
same rank. For some permutation matrices Eπ1 and Eπ2 ,

B = Eπ1AEπ2 . (3.100)

The inverses of these permutations coupled with the full rank partitioning of
B form a full rank partitioning of the original matrix A.

For a square matrix of rank r, this kind of partitioning implies that there
is a full rank r × r principal submatrix, and the principal submatrix formed
by including any of the remaining diagonal elements is singular. The princi-
pal minor formed from the full rank principal submatrix is nonzero, but if
the order of the matrix is greater than r, a principal minor formed from a
submatrix larger than r × r is zero.

The partitioning in equation (3.99) is of general interest, and we will use
this type of partitioning often. We express an equivalent partitioning of a
transformed matrix in equation (3.113) below.

The same methods as above can be used to form a full rank square subma-
trix of any order less than or equal to the rank. That is, if the n × m matrix
A is of rank r and q ≤ r, we can form

Eπr
AEπc

=
[

Sq×q Tq×m−q

Un−q×r Vn−q×m−q

]

, (3.101)

where S is of rank q.
It is obvious that the rank of a matrix can never exceed its smaller dimen-

sion (see the discussion of linear independence on page 10). Whether or not
a matrix has more rows than columns, the rank of the matrix is the same as
the dimension of the column space of the matrix. (As we have just seen, the
dimension of the column space is necessarily the same as the dimension of the
row space, but the order of the column space is different from the order of the
row space unless the matrix is square.)

3.3.3 Full Rank Matrices and Matrix Inverses

We have already seen that full rank matrices have some important properties.
In this section, we consider full rank matrices and matrices that are their
Cayley multiplicative inverses.

Solutions of Linear Equations

Important applications of vectors and matrices involve systems of linear equa-
tions:

82 3 Basic Properties of Matrices

a11x1 + · · ·+ a1mxm
?= b1

...
...

...
an1x1 + · · ·+ anmxm

?= bn

(3.102)

or
Ax

?= b. (3.103)

In this system, A is called the coefficient matrix. An x that satisfies this
system of equations is called a solution to the system. For given A and b, a
solution may or may not exist. From equation (3.59), a solution exists if and
only if the n-vector b is in the k-dimensional column space of A, where k ≤ m.
A system for which a solution exists is said to be consistent; otherwise, it is
inconsistent.

We note that if Ax = b, for any conformable y,

yTAx = 0 ⇐⇒ yTb = 0. (3.104)

Consistent Systems

A linear system An×mx = b is consistent if and only if

rank([A | b]) = rank(A). (3.105)

We can see this by recognizing that the space spanned by the columns of A
is the same as that spanned by the columns of A and the vector b; therefore
b must be a linear combination of the columns of A. Furthermore, the linear
combination is the solution to the system Ax = b. (Note, of course, that it is
not necessary that it be a unique linear combination.)

Equation (3.105) is equivalent to the condition

[A | b]y = 0 ⇔ Ay = 0. (3.106)

A special case that yields equation (3.105) for any b is

rank(An×m) = n, (3.107)

and so if A is of full row rank, the system is consistent regardless of the value
of b. In this case, of course, the number of rows of A must be no greater than
the number of columns (by inequality (3.85)). A square system in which A is
nonsingular is clearly consistent.

A generalization of the linear system Ax = b is AX = B, where B is an
n × k matrix. This is the same as k systems Ax1 = b1, . . . , Axk = bk, where
the x1 and the bi are the columns of the respective matrices. Such a system
is consistent if each of the Axi = bi systems is consistent. Consistency of
AX = B, as above, is the condition for a solution in X to exist.

We discuss methods for solving linear systems in Section 3.5 and in Chap-
ter 6. In the next section, we consider a special case of n × n (square) A when
equation (3.107) is satisfied (that is, when A is nonsingular).

3.3 Matrix Rank and the Inverse of a Matrix 83

Matrix Inverses

Let A be an n × n nonsingular matrix, and consider the linear systems

Axi = ei,

where ei is the ith unit vector. For each ei, this is a consistent system by
equation (3.105).

We can represent all n such systems as

A
[
x1| · · · |xn

]
=

[
e1| · · · |en

]

or
AX = In,

and this full system must have a solution; that is, there must be an X such
that AX = In. Because AX = I, we call X a “right inverse” of A. The matrix
X must be n × n and nonsingular (because I is); hence, it also has a right
inverse, say Y , and XY = I. From AX = I, we have AXY = Y , so A = Y ,
and so finally XA = I; that is, the right inverse of A is also the “left inverse”.
We will therefore just call it the inverse of A and denote it as A−1. This is
the Cayley multiplicative inverse. Hence, for an n × n nonsingular matrix A,
we have a matrix A−1 such that

A−1A = AA−1 = In. (3.108)

We have already encountered the idea of a matrix inverse in our discussions
of elementary transformation matrices. The matrix that performs the inverse
of the elementary operation is the inverse matrix.

From the definitions of the inverse and the transpose, we see that

(A−1)T = (AT)−1, (3.109)

and because in applications we often encounter the inverse of a transpose of
a matrix, we adopt the notation

A−T

to denote the inverse of the transpose.
In the linear system (3.103), if n = m and A is nonsingular, the solution

is
x = A−1b. (3.110)

For scalars, the combined operations of inversion and multiplication are
equivalent to the single operation of division. From the analogy with scalar op-
erations, we sometimes denote AB−1 by A/B. Because matrix multiplication
is not commutative, we often use the notation “\” to indicate the combined
operations of inversion and multiplication on the left; that is, B\A is the same

84 3 Basic Properties of Matrices

as B−1A. The solution given in equation (3.110) is also sometimes represented
as A\b.

We discuss the solution of systems of equations in Chapter 6, but here we
will point out that when we write an expression that involves computations to
evaluate it, such as A−1b or A\b, the form of the expression does not specify
how to do the computations. This is an instance of a principle that we will
encounter repeatedly: the form of a mathematical expression and the way the
expression should be evaluated in actual practice may be quite different.

Nonsquare Full Rank Matrices; Right and Left Inverses

Suppose A is n × m and rank(A) = n; that is, n ≤ m and A is of full row
rank. Then rank([A | ei]) = rank(A), where ei is the ith unit vector of length
n; hence the system

Axi = ei

is consistent for each ei, and ,as before, we can represent all n such systems as

A
[
x1| · · · |xn

]
=

[
e1| · · · |en

]

or
AX = In.

As above, there must be an X such that AX = In, and we call X a right
inverse of A. The matrix X must be m × n and it must be of rank n (because
I is). This matrix is not necessarily the inverse of A, however, because A and
X may not be square. We denote the right inverse of A as

A−R.

Furthermore, we could only have solved the system AX if A was of full row
rank because n ≤ m and n = rank(I) = rank(AX) ≤ rank(A). To summarize,
A has a right inverse if and only if A is of full row rank.

Now, suppose A is n×m and rank(A) = m; that is, m ≤ n and A is of full
column row rank. Writing Y A = Im and reversing the roles of the coefficient
matrix and the solution matrix in the argument above, we have that Y exists
and is a left inverse of A. We denote the left inverse of A as

A−L.

Also, using a similar argument as above, we see that the matrix A has a left
inverse if and only if A is of full column rank.

We also note that if AAT is of full rank, the right inverse of A is
AT(AAT)−1. Likewise, if ATA is of full rank, the left inverse of A is (ATA)−1AT.

3.3 Matrix Rank and the Inverse of a Matrix 85

3.3.4 Full Rank Factorization

The partitioning of an n×m matrix as in equation (3.99) on page 80 leads to
an interesting factorization of a matrix. Recall that we had an n × m matrix
B partitioned as

B =
[

Wr×r Xr×m−r

Yn−r×r Zn−r×m−r

]

,

where r is the rank of B, W is of full rank, the rows of R = [W |X] span the

full row space of B, and the columns of C =
[

W
Y

]

span the full column space

of B.
Therefore, for some T , we have [Y |Z] = TR, and for some S, we have[

X
Z

]

= CS. From this, we have Y = TW , Z = TX, X = WS, and Z = Y S,

so Z = TWS. Since W is nonsingular, we have T = Y W−1 and S = W−1X,
so Z = Y W−1X.

We can therefore write the partitions as

B =
[

W X
Y Y W−1X

]

=
[

I
Y W−1

]

W
[
I | W−1X

]
. (3.111)

From this, we can form two equivalent factorizations of B:

B =
[

W
Y

]
[
I | W−1X

]
=

[
I

Y W−1

]
[
W | X

]
.

The matrix B has a very special property: the full set of linearly indepen-
dent rows are the first r rows, and the full set of linearly independent columns
are the first r columns. We have seen, however, that any matrix A of rank r
can be put in this form, and A = Eπ2BEπ1 for an n × n permutation matrix
Eπ2 and an m × m permutation matrix Eπ1 .

We therefore have, for the n × m matrix A with rank r, two equivalent
factorizations,

A =
[

QW
QY

]
[
P | W−1XP

]

=
[

Q
QY W−1

]
[
WP | XP

]
,

both of which are in the general form

An×m = Ln×r Rr×m, (3.112)

where L is of full column rank and R is of row column rank. This is called a
full rank factorization of the matrix A. We will use a full rank factorization in
proving various properties of matrices. We will consider other factorizations
in Chapter 5 that have more practical uses in computations.

86 3 Basic Properties of Matrices

3.3.5 Equivalent Matrices

Matrices of the same order that have the same rank are said to be equivalent
matrices.

Equivalent Canonical Forms

For any n×m matrix A with rank(A) = r > 0, by combining the permutations
that yield equation (3.99) with other operations, we have, for some matrices
P and Q that are products of various elementary operator matrices,

PAQ =
[

Ir 0
0 0

]

. (3.113)

This is called an equivalent canonical form of A, and it exists for any matrix
A that has at least one nonzero element (which is the same as requiring
rank(A) > 0).

We can see by construction that an equivalent canonical form exists for
any n × m matrix A that has a nonzero element. First, assume aij �= 0. By
two successive permutations, we move aij to the (1, 1) position; specifically,
(Ei1AE1j)11 = aij . We then divide the first row by aij ; that is, we form
E1(1/aij)Ei1AE1j . We then proceed with a sequence of n − 1 premultipli-
cations by axpy matrices to zero out the first column of the matrix, as in
expression (3.50), followed by a sequence of (m − 1) postmultiplications by
axpy matrices to zero out the first row. We then have a matrix of the form

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... [X]
0

⎤

⎥
⎥
⎥
⎦

. (3.114)

If X = 0, we are finished; otherwise, we perform the same kinds of operations
on the (n − 1) × (m − 1) matrix X and continue until we have the form of
equation (3.113).

The matrices P and Q in equation (3.113) are not unique. The order in
which they are built from elementary operator matrices can be very important
in preserving the accuracy of the computations.

Although the matrices P and Q in equation (3.113) are not unique, the
equivalent canonical form itself (the right-hand side) is obviously unique be-
cause the only thing that determines it, aside from the shape, is the r in Ir,
and that is just the rank of the matrix. There are two other, more general,
equivalent forms that are often of interest. These equivalent forms, row eche-
lon form and Hermite form, are not unique. A matrix R is said to be in row
echelon form, or just echelon form, if

• rij = 0 for i > j, and

3.3 Matrix Rank and the Inverse of a Matrix 87

• if k is such that rik �= 0 and ril = 0 for l < k, then ri+1,j = 0 for j ≤ k.

A matrix in echelon form is upper triangular. An upper triangular matrix H
is said to be in Hermite form if

• hii = 0 or 1,
• if hii = 0, then hij = 0 for all j, and
• if hii = 1, then hki = 0 for all k �= i.

If H is in Hermite form, then H2 = H, as is easily verified. (A matrix H
such that H2 = H is said to be idempotent. We discuss idempotent matrices
beginning on page 280.) Another, more specific, equivalent form, called the
Jordan form, is a special row echelon form based on eigenvalues.

Any of these equivalent forms is useful in determining the rank of a ma-
trix. Each form may have special uses in proving properties of matrices. We
will often make use of the equivalent canonical form in other sections of this
chapter.

Products with a Nonsingular Matrix

It is easy to see that if A is a square full rank matrix (that is, A is nonsingular),
and if B and C are conformable matrices for the multiplications AB and CA,
respectively, then

rank(AB) = rank(B) (3.115)

and
rank(CA) = rank(C). (3.116)

This is true because, for a given conformable matrix B, by the inequal-
ity (3.96), we have rank(AB) ≤ rank(B). Forming B = A−1AB, and again
applying the inequality, we have rank(B) ≤ rank(AB); hence, rank(AB) =
rank(B). Likewise, for a square full rank matrix A, we have rank(CA) =
rank(C). (Here, we should recall that all matrices are real.)

On page 88, we give a more general result for products with general full
rank matrices.

A Factorization Based on an Equivalent Canonical Form

Elementary operator matrices and products of them are of full rank and thus
have inverses. When we introduced the matrix operations that led to the
definitions of the elementary operator matrices in Section 3.2.3, we mentioned
the inverse operations, which would then define the inverses of the matrices.

The matrices P and Q in the equivalent canonical form of the matrix
A, PAQ in equation (3.113), have inverses. From an equivalent canonical
form of a matrix A with rank r, we therefore have the equivalent canonical
factorization of A:

A = P−1

[
Ir 0
0 0

]

Q−1. (3.117)

88 3 Basic Properties of Matrices

A factorization based on an equivalent canonical form is also a full rank fac-
torization and could be written in the same form as equation (3.112).

Equivalent Forms of Symmetric Matrices

If A is symmetric, the equivalent form in equation (3.113) can be written
as PAPT = diag(Ir, 0) and the equivalent canonical factorization of A in
equation (3.117) can be written as

A = P−1

[
Ir 0
0 0

]

P−T. (3.118)

These facts follow from the same process that yielded equation (3.113) for a
general matrix.

Also a full rank factorization for a symmetric matrix, as in equation (3.112),
can be given as

A = LLT. (3.119)

3.3.6 Multiplication by Full Rank Matrices

We have seen that a matrix has an inverse if it is square and of full rank.
Conversely, it has an inverse only if it is square and of full rank. We see that a
matrix that has an inverse must be square because A−1A = AA−1, and we see
that it must be full rank by the inequality (3.96). In this section, we consider
other properties of full rank matrices. In some cases, we require the matrices
to be square, but in other cases, these properties hold whether or not they
are square.

Using matrix inverses allows us to establish important properties of prod-
ucts of matrices in which at least one factor is a full rank matrix.

Products with a General Full Rank Matrix

If A is a full column rank matrix and if B is a matrix conformable for the
multiplication AB, then

rank(AB) = rank(B). (3.120)

If A is a full row rank matrix and if C is a matrix conformable for the multi-
plication CA, then

rank(CA) = rank(C). (3.121)

Consider a full rank n×m matrix A with rank(A) = m (that is, m ≤ n) and
let B be conformable for the multiplication AB. Because A is of full column
rank, it has a left inverse (see page 84); call it A−L, and so A−LA = Im. From
inequality (3.96), we have rank(AB) ≤ rank(B), and applying the inequality

3.3 Matrix Rank and the Inverse of a Matrix 89

again, we have rank(B) = rank(A−LAB) ≤ rank(AB); hence rank(AB) =
rank(B).

Now consider a full rank n × m matrix A with rank(A) = n (that is,
n ≤ m) and let C be conformable for the multiplication CA. Because A is of
full row rank, it has a right inverse; call it A−R, and so AA−R = In. From
inequality (3.96), we have rank(CA) ≤ rank(C), and applying the inequality
again, we have rank(C) = rank(CAA−L) ≤ rank(CA); hence rank(CA) =
rank(C).

To state this more simply:

• Premultiplication of a given matrix by a full column rank matrix does
not change the rank of the given matrix, and postmultiplication of a
given matrix by a full row rank matrix does not change the rank of the
given matrix.

From this we see that ATA is of full rank if (and only if) A is of full column
rank, and AAT is of full rank if (and only if) A is of full row rank. We will
develop a stronger form of these statements in Section 3.3.7.

Preservation of Positive Definiteness

A certain type of product of a full rank matrix and a positive definite matrix
preserves not only the rank, but also the positive definiteness: if C is n × n
and positive definite, and A is n × m and of rank m (hence, m ≤ n), then
ATCA is positive definite. (Recall from inequality (3.62) that a matrix C is
positive definite if it is symmetric and for any x �= 0, xTCx > 0.)

To see this, assume matrices C and A as described. Let x be any m-vector
such that x �= 0, and let y = Ax. Because A is of full column rank, y �= 0. We
have

xT(ATCA)x = (xA)TC(Ax)
= yTCy

> 0. (3.122)

Therefore, since ATCA is symmetric,

• if C is positive definite and A is of full column rank, then ATCA is
positive definite.

Furthermore, we have the converse:

• if ATCA is positive definite, then A is of full column rank,

for otherwise there exists an x �= 0 such that Ax = 0, and so xT(ATCA)x = 0.

90 3 Basic Properties of Matrices

The General Linear Group

Consider the set of all square n×n full rank matrices together with the usual
(Cayley) multiplication. As we have seen, this set is closed under multiplica-
tion. (The product of two square matrices of full rank is of full rank, and of
course the product is also square.) Furthermore, the (multiplicative) identity
is a member of this set, and each matrix in the set has a (multiplicative)
inverse in the set; therefore, the set together with the usual multiplication is
a mathematical structure called a group. (See any text on modern algebra.)
This group is called the general linear group and is denoted by GL(n). General
group-theoretic properties can be used in the derivation of properties of these
full-rank matrices. Note that this group is not commutative.

As we mentioned earlier (before we had considered inverses in general), if
A is an n × n matrix and if A−1 exists, we define A0 to be In.

The n×n elementary operator matrices are members of the general linear
group GL(n).

The elements in the general linear group are matrices and, hence, can be
viewed as transformations or operators on n-vectors. Another set of linear
operators on n-vectors are the doubletons (A, v), where A is an n × n full-
rank matrix and v is an n-vector. As an operator on x ∈ IRn, (A, v) is the
transformation Ax + v, which preserves affine spaces. Two such operators,
(A, v) and (B,w), are combined by composition: (A, v)((B,w)(x)) = ABx +
Aw + v. The set of such doubletons together with composition forms a group,
called the affine group. It is denoted by AL(n).

3.3.7 Products of the Form ATA

Given a real matrix A, an important matrix product is ATA. (This is called a
Gramian matrix. We will discuss this kind of matrix in more detail beginning
on page 287.)

Matrices of this form have several interesting properties. First, for any
n×m matrix A, we have the fact that ATA = 0 if and only if A = 0. We see
this by noting that if A = 0, then tr(ATA) = 0. Conversely, if tr(ATA) = 0,
then a2

ij = 0 for all i, j, and so aij = 0, that is, A = 0. Summarizing, we have

tr(ATA) = 0 ⇔ A = 0 (3.123)

and
ATA = 0 ⇔ A = 0. (3.124)

Another useful fact about ATA is that it is nonnegative definite. This is
because for any y, yT(ATA)y = (yA)T(Ay) ≥ 0. In addition, we see that ATA
is positive definite if and only if A is of full column rank. This follows from
(3.124), and if A is of full column rank, Ay = 0 ⇒ y = 0.

3.3 Matrix Rank and the Inverse of a Matrix 91

Now consider a generalization of the equation ATA = 0:

ATA(B − C) = 0.

Multiplying by BT − CT and factoring (BT − CT)ATA(B − C), we have

(AB − AC)T(AB − AC) = 0;

hence, from (3.124), we have AB − AC = 0. Furthermore, if AB − AC = 0,
then clearly ATA(B − C) = 0. We therefore conclude that

ATAB = ATAC ⇔ AB = AC. (3.125)

By the same argument, we have

BATA = CATA ⇔ BAT = CAT.

Now, let us consider rank(ATA). We have seen that (ATA) is of full rank if
and only if A is of full column rank. Next, preparatory to our main objective,
we note from above that

rank(ATA) = rank(AAT). (3.126)

Let A be an n×m matrix, and let r = rank(A). If r = 0, then A = 0 (hence,
ATA = 0) and rank(ATA) = 0. If r > 0, interchange columns of A if necessary
to obtain a partitioning similar to equation (3.99),

A = [A1A2],

where A1 is an n×r matrix of rank r. (Here, we are ignoring the fact that the
columns might have been permuted. All properties of the rank are unaffected
by these interchanges.) Now, because A1 is of full column rank, there is an
r × m − r matrix B such that A2 = A1B; hence we have A = A1[IrB] and

ATA =
[

Ir

BT

]

AT
1 A1[IrB].

Because A1 is of full rank, rank(AT
1 A1) = r. Now let

T =
[

Ir 0
−BT Im−r

]

.

It is clear that T is of full rank, and so

rank(ATA) = rank(TATATT)

= rank
([

AT
1 A1 0
0 0

])

= rank(AT
1 A1)

= r;

92 3 Basic Properties of Matrices

that is,
rank(ATA) = rank(A). (3.127)

From this equation, we have a useful fact for Gramian matrices. The system

ATAx = ATb (3.128)

is consistent for any A and b.

3.3.8 A Lower Bound on the Rank of a Matrix Product

Equation (3.96) gives an upper bound on the rank of the product of two
matrices; the rank cannot be greater than the rank of either of the factors.
Now, using equation (3.117), we develop a lower bound on the rank of the
product of two matrices if one of them is square.

If A is n × n (that is, square) and B is a matrix with n rows, then

rank(AB) ≥ rank(A) + rank(B) − n. (3.129)

We see this by first letting r = rank(A), letting P and Q be matrices that form
an equivalent canonical form of A (see equation (3.117)), and then forming

C = P−1

[
0 0
0 In−r

]

Q−1,

so that A + C = P−1Q−1. Because P−1 and Q−1 are of full rank, rank(C) =
rank(In−r) = n − rank(A). We now develop an upper bound on rank(B),

rank(B) = rank(P−1Q−1B)
= rank(AB + CB)
≤ rank(AB) + rank(CB), by equation (3.97)
≤ rank(AB) + rank(C), by equation (3.96)
= rank(AB) + n − rank(A),

yielding (3.129), a lower bound on rank(AB).
The inequality (3.129) is called Sylvester’s law of nullity. It provides a

lower bound on rank(AB) to go with the upper bound of inequality (3.96),
min(rank(A), rank(B)).

3.3.9 Determinants of Inverses

From the relationship |AB| = |A| |B| for square matrices mentioned earlier,
it is easy to see that for nonsingular square A,

|A| = 1/|A−1|, (3.130)

and so

3.3 Matrix Rank and the Inverse of a Matrix 93

• |A| = 0 if and only if A is singular.

(From the definition of the determinant in equation (3.16), we see that the
determinant of any finite-dimensional matrix with finite elements is finite, and
we implicitly assume that the elements are finite.)

For a matrix whose determinant is nonzero, from equation (3.25) we have

A−1 =
1
|A|adj(A). (3.131)

3.3.10 Inverses of Products and Sums of Matrices

The inverse of the Cayley product of two nonsingular matrices of the same
size is particularly easy to form. If A and B are square full rank matrices of
the same size,

(AB)−1 = B−1A−1. (3.132)

We can see this by multiplying B−1A−1 and (AB).
Often in linear regression analysis we need inverses of various sums of

matrices. This may be because we wish to update regression estimates based
on additional data or because we wish to delete some observations. If A and
B are full rank matrices of the same size, the following relationships are easy
to show (and are easily proven if taken in the order given; see Exercise 3.12):

A(I + A)−1 = (I + A−1)−1, (3.133)

(A + BBT)−1B = A−1B(I + BTA−1B)−1, (3.134)

(A−1 + B−1)−1 = A(A + B)−1B, (3.135)

A − A(A + B)−1A = B − B(A + B)−1B, (3.136)

A−1 + B−1 = A−1(A + B)B−1, (3.137)

(I + AB)−1 = I − A(I + BA)−1B, (3.138)

(I + AB)−1A = A(I + BA)−1. (3.139)

When A and/or B are not of full rank, the inverses may not exist, but in that
case these equations hold for a generalized inverse, which we will discuss in
Section 3.6.

There is also an analogue to the expansion of the inverse of (1 − a) for a
scalar a:

(1 − a)−1 = 1 + a + a2 + a3 + · · · , if |a| < 1.

94 3 Basic Properties of Matrices

This comes from a factorization of the binomial 1 − ak, similar to equa-
tion (3.41), and the fact that ak → 0 if |a| < 1. In Section 3.9 on page 128, we
will discuss conditions that ensure the convergence of Ak for a square matrix
A. We will define a norm ‖A‖ on A and show that if ‖A‖ < 1, then Ak → 0.
Then, analogous to the scalar series, using equation (3.41) for a square matrix
A, we have

(I − A)−1 = I + A + A2 + A3 + · · · , if ‖A‖ < 1. (3.140)

We include this equation here because of its relation to equations (3.133)
through (3.139). We will discuss it further on page 134, after we have intro-
duced and discussed ‖A‖ and other conditions that ensure convergence. This
expression and the condition that determines it are very important in the
analysis of time series and other stochastic processes.

Also, looking ahead, we have another expression similar to equations (3.133)
through (3.139) and (3.140) for a special type of matrix. If A2 = A, for any
a �= −1,

(I + aA)−1 = I − a

a + 1
A

(see page 282).

3.3.11 Inverses of Matrices with Special Forms

Matrices with various special patterns may have relatively simple inverses.
For example, the inverse of a diagonal matrix with nonzero entries is a diag-
onal matrix consisting of the reciprocals of those elements. Likewise, a block
diagonal matrix consisting of full-rank submatrices along the diagonal has an
inverse that is merely the block diagonal matrix consisting of the inverses of
the submatrices. We discuss inverses of various special matrices in Chapter 8.

Inverses of Kronecker Products of Matrices

If A and B are square full rank matrices, then

(A ⊗ B)−1 = A−1 ⊗ B−1. (3.141)

We can see this by multiplying A−1 ⊗ B−1 and A ⊗ B.

3.3.12 Determining the Rank of a Matrix

Although the equivalent canonical form (3.113) immediately gives the rank
of a matrix, in practice the numerical determination of the rank of a matrix
is not an easy task. The problem is that rank is a mapping IRn×m �→ ZZ+,
where ZZ+ represents the positive integers. Such a function is often difficult
to compute because the domain is relatively dense and the range is sparse.

3.4 The Schur Complement 95

Small changes in the domain may result in large discontinuous changes in the
function value.

It is not even always clear whether a matrix is nonsingular. Because of
rounding on the computer, a matrix that is mathematically nonsingular may
appear to be singular. We sometimes use the phrase “nearly singular” or
“algorithmically singular” to describe such a matrix. In Sections 6.1 and 11.4,
we consider this kind of problem in more detail.

3.4 More on Partitioned Square Matrices:
The Schur Complement

A square matrix A that can be partitioned as

A =
[

A11 A12

A21 A22

]

, (3.142)

where A11 is nonsingular, has interesting properties that depend on the matrix

Z = A22 − A21A
−1
11 A12, (3.143)

which is called the Schur complement of A11 in A.
We first observe from equation (3.111) that if equation (3.142) represents

a full rank partitioning (that is, if the rank of A11 is the same as the rank of
A), then

A =
[

A11 A12

A21 A21A
−1
11 A12

]

, (3.144)

and Z = 0.
There are other useful properties, which we mention below. There are also

some interesting properties of certain important random matrices partitioned
in this way. For example, suppose A22 is k × k and A is an m × m Wishart
matrix with parameters n and Σ partitioned like A in equation (3.142). (This
of course means A is symmetrical, and so A12 = AT

21.) Then Z has a Wishart
distribution with parameters n − m + k and Σ22 − Σ21Σ

−1
11 Σ12, and is inde-

pendent of A21 and A11. (See Exercise 4.8 on page 171 for the probability
density function for a Wishart distribution.)

3.4.1 Inverses of Partitioned Matrices

Suppose A is nonsingular and can be partitioned as above with both A11 and
A22 nonsingular. It is easy to see (Exercise 3.13, page 141) that the inverse of
A is given by

A−1 =

⎡

⎣
A−1

11 + A−1
11 A12Z

−1A21A
−1
11 −A−1

11 A12Z
−1

−Z−1A21A
−1
11 Z−1

⎤

⎦ , (3.145)

96 3 Basic Properties of Matrices

where Z is the Schur complement of A11.
If

A = [X y]T [X y]

and is partitioned as in equation (3.43) on page 61 and X is of full column
rank, then the Schur complement of XTX in [X y]T [X y] is

yTy − yTX(XTX)−1XTy. (3.146)

This particular partitioning is useful in linear regression analysis, where this
Schur complement is the residual sum of squares and the more general Wishart
distribution mentioned above reduces to a chi-squared one. (Although the
expression is useful, this is an instance of a principle that we will encounter
repeatedly: the form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.)

3.4.2 Determinants of Partitioned Matrices

If the square matrix A is partitioned as

A =
[

A11 A12

A21 A22

]

,

and A11 is square and nonsingular, then

|A| = |A11|
∣
∣A22 − A21A

−1
11 A12

∣
∣ ; (3.147)

that is, the determinant is the product of the determinant of the principal
submatrix and the determinant of its Schur complement.

This result is obtained by using equation (3.29) on page 54 and the fac-
torization

[
A11 A12

A21 A22

]

=
[

A11 0
A21 A22 − A21A

−1
11 A12

] [
I A−1

11 A12

0 I

]

. (3.148)

The factorization in equation (3.148) is often useful in other contexts as well.

3.5 Linear Systems of Equations

Some of the most important applications of matrices are in representing and
solving systems of n linear equations in m unknowns,

Ax = b,

where A is an n × m matrix, x is an m-vector, and b is an n-vector. As
we observed in equation (3.59), the product Ax in the linear system is a
linear combination of the columns of A; that is, if aj is the jth column of A,
Ax =

∑m
j=1 xjaj .

If b = 0, the system is said to be homogeneous. In this case, unless x = 0,
the columns of A must be linearly dependent.

3.5 Linear Systems of Equations 97

3.5.1 Solutions of Linear Systems

When in the linear system Ax = b, A is square and nonsingular, the solution is
obviously x = A−1b. We will not discuss this simple but common case further
here. Rather, we will discuss it in detail in Chapter 6 after we have discussed
matrix factorizations later in this chapter and in Chapter 5.

When A is not square or is singular, the system may not have a solution or
may have more than one solution. A consistent system (see equation (3.105))
has a solution. For consistent systems that are singular or not square, the
generalized inverse is an important concept. We introduce it in this section
but defer its discussion to Section 3.6.

Underdetermined Systems

A consistent system in which rank(A) < m is said to be underdetermined.
An underdetermined system may have fewer equations than variables, or the
coefficient matrix may just not be of full rank. For such a system there is
more than one solution. In fact, there are infinitely many solutions because if
the vectors x1 and x2 are solutions, the vector wx1 + (1 − w)x2 is likewise a
solution for any scalar w.

Underdetermined systems arise in analysis of variance in statistics, and it
is useful to have a compact method of representing the solution to the system.
It is also desirable to identify a unique solution that has some kind of optimal
properties. Below, we will discuss types of solutions and the number of linearly
independent solutions and then describe a unique solution of a particular type.

Overdetermined Systems

Often in mathematical modeling applications, the number of equations in the
system Ax = b is not equal to the number of variables; that is the coefficient
matrix A is n×m and n �= m. If n > m and rank([A | b]) > rank(A), the system
is said to be overdetermined. There is no x that satisfies such a system, but
approximate solutions are useful. We discuss approximate solutions of such
systems in Section 6.7 on page 222 and in Section 9.2.2 on page 330.

Generalized Inverses

A matrix G such that AGA = A is called a generalized inverse and is denoted
by A−:

AA−A = A. (3.149)

Note that if A is n×m, then A− is m× n. If A is nonsingular (square and of
full rank), then obviously A− = A−1.

Without additional restrictions on A, the generalized inverse is not unique.
Various types of generalized inverses can be defined by adding restrictions to

98 3 Basic Properties of Matrices

the definition of the inverse. In Section 3.6, we will discuss various types of
generalized inverses and show that A− exists for any n × m matrix A. Here
we will consider some properties of any generalized inverse.

From equation (3.149), we see that

AT(A−)TAT = AT;

thus, if A− is a generalized inverse of A, then (A−)T is a generalized inverse
of AT.

The m×m square matrices A−A and (I −A−A) are often of interest. By
using the definition (3.149), we see that

(A−A)(A−A) = A−A. (3.150)

(Such a matrix is said to be idempotent. We discuss idempotent matrices
beginning on page 280.) From equation (3.96) together with the fact that
AA−A = A, we see that

rank(A−A) = rank(A). (3.151)

By multiplication as above, we see that

A(I − A−A) = 0, (3.152)

that
(I − A−A)(A−A) = 0, (3.153)

and that (I − A−A) is also idempotent:

(I − A−A)(I − A−A) = (I − A−A). (3.154)

The fact that (A−A)(A−A) = A−A yields the useful fact that

rank(I − A−A) = m − rank(A). (3.155)

This follows from equations (3.153), (3.129), and (3.151), which yield 0 ≥
rank(I − A−A) + rank(A) − m, and from equation (3.97), which gives m =
rank(I) ≤ rank(I−A−A)+rank(A). The two inequalities result in the equality
of equation (3.155).

Multiple Solutions in Consistent Systems

Suppose the system Ax = b is consistent and A− is a generalized inverse of
A; that is, it is any matrix such that AA−A = A. Then

x = A−b (3.156)

is a solution to the system because if AA−A = A, then AA−Ax = Ax and
since Ax = b,

3.5 Linear Systems of Equations 99

AA−b = b; (3.157)

that is, A−b is a solution. Furthermore, if x = Gb is any solution, then AGA =
A; that is, G is a generalized inverse of A. This can be seen by the following
argument. Let aj be the jth column of A. The m systems of n equations,
Ax = aj , j = 1, . . . , m, all have solutions. (Each solution is a vector with 0s
in all positions except the jth position, which is a 1.) Now, if Gb is a solution
to the original system, then Gaj is a solution to the system Ax = aj . So
AGaj = aj for all j; hence AGA = A.

If Ax = b is consistent, not only is A−b a solution but also, for any z,

A−b + (I − A−A)z (3.158)

is a solution because A(A−b + (I − A−A)z) = AA−b + (A − AA−A)z = b.
Furthermore, any solution to Ax = b can be represented as A−b+(I−A−A)z
for some z. This is because if y is any solution (that is, if Ay = b), we have

y = A−b − A−Ay + y = A−b − (A−A − I)y = A−b + (I − A−A)z.

The number of linearly independent solutions arising from (I − A−A)z is
just the rank of (I −A−A), which from equation (3.155) is rank(I −A−A) =
m − rank(A).

3.5.2 Null Space: The Orthogonal Complement

The solutions of a consistent system Ax = b, which we characterized in equa-
tion (3.158) as A−b+(I −A−A)z for any z, are formed as a given solution to
Ax = b plus all solutions to Az = 0.

For an n×m matrix A, the set of vectors generated by all solutions, z, of
the homogeneous system

Az = 0 (3.159)

is called the null space of A. We denote the null space of A by

N (A).

The null space is either the single 0 vector (in which case we say the null
space is empty or null) or it is a vector space.

We see that the null space of A is a vector space if it is not empty because
the zero vector is in N (A), and if x and y are in N (A) and a is any scalar,
ax+ y is also a solution of Az = 0. We call the dimension of N (A) the nullity
of A. The nullity of A is

dim(N (A)) = rank(I − A−A)
= m − rank(A) (3.160)

from equation (3.155).

100 3 Basic Properties of Matrices

The order of N (A) is m. (Recall that the order of V(A) is n. The order of
V(AT) is m.)

If A is square, we have

N (A) ⊂ N (A2) ⊂ N (A3) ⊂ · · · (3.161)

and
V(A) ⊃ V(A2) ⊃ V(A3) ⊃ · · · . (3.162)

(We see this easily from the inequality (3.96).)
If Ax = b is consistent, any solution can be represented as A−b + z, for

some z in the null space of A, because if y is some solution, Ay = b = AA−b
from equation (3.157), and so A(y − A−b) = 0; that is, z = y − A−b is in the
null space of A. If A is nonsingular, then there is no such z, and the solution is
unique. The number of linearly independent solutions to Az = 0, is the same
as the nullity of A.

If a is in V(AT) and b is in N (A), we have bTa = bTATx = 0. In other
words, the null space of A is orthogonal to the row space of A; that is, N (A) ⊥
V(AT). This is because ATx = a for some x, and Ab = 0 or bTAT = 0. For
any matrix B whose columns are in N (A), ATB = 0, and BTA = 0.

Because dim(N (A)) + dim(V(AT)) = m and N (A) ⊥ V(AT), by equa-
tion (2.24) we have

N (A) ⊕ V(AT) = IRm; (3.163)
that is, the null space of A is the orthogonal complement of V(AT). All vectors
in the null space of the matrix A are orthogonal to all vectors in the column
space of A.

3.6 Generalized Inverses

On page 97, we defined a generalized inverse of a matrix A as a matrix A− such
that AA−A = A, and we observed several interesting properties of generalized
inverses.

Immediate Properties of Generalized Inverses

The properties of a generalized inverse A− derived in equations (3.150)
through (3.158) include:

• (A−)T is a generalized inverse of AT.
• rank(A−A) = rank(A).
• A−A is idempotent.
• I − A−A is idempotent.
• rank(I − A−A) = m − rank(A).

In this section, we will first consider some more properties of “general”
generalized inverses, which are analogous to properties of inverses, and then
we will discuss some additional requirements on the generalized inverse that
make it unique.

3.6 Generalized Inverses 101

3.6.1 Generalized Inverses of Sums of Matrices

Often we need generalized inverses of various sums of matrices. On page 93,
we gave a number of relationships that hold for inverses of sums of matrices.
All of the equations (3.133) through (3.139) hold for generalized inverses. For
example,

A(I + A)− = (I + A−)−.

(Again, these relationships are easily proven if taken in the order given on
page 93.)

3.6.2 Generalized Inverses of Partitioned Matrices

If A is partitioned as

A =
[

A11 A12

A21 A22

]

, (3.164)

then, similar to equation (3.145), a generalized inverse of A is given by

A− =

⎡

⎣
A−

11 + A−
11A12Z

−A21A
−
11 −A−

11A12Z
−

−Z−A21A
−
11 Z−

⎤

⎦ , (3.165)

where Z = A22 − A21A
−
11A12 (see Exercise 3.14, page 141).

If the partitioning in (3.164) happens to be such that A11 is of full rank
and of the same rank as A, a generalized inverse of A is given by

A− =

⎡

⎣
A−1

11 0

0 0

⎤

⎦ , (3.166)

where 0 represents matrices of the appropriate shapes. This is not necessarily
the same generalized inverse as in equation (3.165). The fact that it is a
generalized inverse is easy to establish by using the definition of generalized
inverse and equation (3.144).

3.6.3 Pseudoinverse or Moore-Penrose Inverse

A generalized inverse is not unique in general. As we have seen, a generalized
inverse determines a set of linearly independent solutions to a linear system
Ax = b. We may impose other conditions on the generalized inverse to arrive
at a unique matrix that yields a solution that has some desirable properties.
If we impose three more conditions, we have a unique matrix, denoted by A+,
that yields a solution A+b that has the minimum length of any solution to
Ax = b. We define this matrix and discuss some of its properties below, and
in Section 6.7 we discuss properties of the solution A+b.

102 3 Basic Properties of Matrices

Definition and Terminology

To the general requirement AA−A = A, we successively add three require-
ments that define special generalized inverses, sometimes called respectively
g2 or g12, g3 or g123, and g4 or g1234 inverses. The “general” generalized inverse
is sometimes called a g1 inverse. The g4 inverse is called the Moore-Penrose
inverse. As we will see below, it is unique. The terminology distinguishing the
various types of generalized inverses is not used consistently in the literature.
I will indicate some alternative terms in the definition below.

For a matrix A, a Moore-Penrose inverse, denoted by A+, is a matrix that
has the following four properties.

1. AA+A = A. Any matrix that satisfies this condition is called a gener-
alized inverse, and as we have seen above is denoted by A−. For many
applications, this is the only condition necessary. Such a matrix is also
called a g1 inverse, an inner pseudoinverse, or a conditional inverse.

2. A+AA+ = A+. A matrix A+ that satisfies this condition is called an
outer pseudoinverse. A g1 inverse that also satisfies this condition is
called a g2 inverse or reflexive generalized inverse, and is denoted by
A∗.

3. A+A is symmetric.
4. AA+ is symmetric.

The Moore-Penrose inverse is also called the pseudoinverse, the p-inverse,
and the normalized generalized inverse. (My current preferred term is “Moore-
Penrose inverse”, but out of habit, I often use the term “pseudoinverse” for this
special generalized inverse. I generally avoid using any of the other alternative
terms introduced above. I use the term “generalized inverse” to mean the
“general generalized inverse”, the g1.) The name Moore-Penrose derives from
the preliminary work of Moore (1920) and the more thorough later work of
Penrose (1955), who laid out the conditions above and proved existence and
uniqueness.

Existence

We can see by construction that the Moore-Penrose inverse exists for any
matrix A. First, if A = 0, note that A+ = 0. If A �= 0, it has a full rank
factorization, A = LR, as in equation (3.112), so LTART = LTLRRT. Be-
cause the n × r matrix L is of full column rank and the r × m matrix R is of
row column rank, LTL and RRT are both of full rank, and hence LTLRRT

is of full rank. Furthermore, LTART = LTLRRT, so it is of full rank, and
(LTART)−1 exists. Now, form RT(LTART)−1LT. By checking properties 1
through 4 above, we see that

A+ = RT(LTART)−1LT (3.167)

3.7 Orthogonality 103

is a Moore-Penrose inverse of A. This expression for the Moore-Penrose inverse
based on a full rank decomposition of A is not as useful as another expres-
sion we will consider later, based on QR decomposition (equation (5.38) on
page 190).

Uniqueness

We can see that the Moore-Penrose inverse is unique by considering any matrix
G that satisfies the properties 1 through 4 for A �= 0. (The Moore-Penrose
inverse of A = 0 (that is, A+ = 0) is clearly unique, as there could be no other
matrix satisfying property 2.) By applying the properties and using A+ given
above, we have the following sequence of equations:

G =
GAG = (GA)TG = ATGTG = (AA+A)TGTG = (A+A)TATGTG =

A+AATGTG = A+A(GA)TG = A+AGAG = A+AG = A+AA+AG =
A+(AA+)T(AG)T = A+(A+)TATGTAT = A+(A+)T(AGA)T =

A+(A+)TAT = A+(AA+)T = A+AA+

= A+.

Other Properties

If A is nonsingular, then obviously A+ = A−1, just as for any generalized
inverse.

Because A+ is a generalized inverse, all of the properties for a generalized
inverse A− discussed above hold; in particular, A+b is a solution to the linear
system Ax = b (see equation (3.156)). In Section 6.7, we will show that this
unique solution has a kind of optimality.

If the inverses on the right-hand side of equation (3.165) are pseudoin-
verses, then the result is the pseudoinverse of A.

The generalized inverse given in equation (3.166) is the same as the
pseudoinverse given in equation (3.167).

Pseudoinverses also have a few additional interesting properties not shared
by generalized inverses; for example

(I − A+A)A+ = 0. (3.168)

3.7 Orthogonality

In Section 2.1.8, we defined orthogonality and orthonormality of two or more
vectors in terms of dot products. On page 75, in equation (3.81), we also
defined the orthogonal binary relationship between two matrices. Now we

104 3 Basic Properties of Matrices

define the orthogonal unary property of a matrix. This is the more important
property and is what is commonly meant when we speak of orthogonality of
matrices. We use the orthonormality property of vectors, which is a binary
relationship, to define orthogonality of a single matrix.

Orthogonal Matrices; Definition and Simple Properties

A matrix whose rows or columns constitute a set of orthonormal vectors is
said to be an orthogonal matrix. If Q is an n × m orthogonal matrix, then
QQT = In if n ≤ m, and QTQ = Im if n ≥ m. If Q is a square orthogonal
matrix, then QQT = QTQ = I. An orthogonal matrix is also called a unitary
matrix. (For matrices whose elements are complex numbers, a matrix is said
to be unitary if the matrix times its conjugate transpose is the identity; that
is, if QQH = I.)

The determinant of a square orthogonal matrix is ±1 (because the deter-
minant of the product is the product of the determinants and the determinant
of I is 1).

The matrix dot product of an n×m orthogonal matrix Q with itself is its
number of columns:

〈Q,Q〉 = m. (3.169)

This is because QTQ = Im. Recalling the definition of the orthogonal binary
relationship from page 75, we note that if Q is an orthogonal matrix, then Q
is not orthogonal to itself.

A permutation matrix (see page 62) is orthogonal. We can see this by
building the permutation matrix as a product of elementary permutation ma-
trices, and it is easy to see that they are all orthogonal.

One further property we see by simple multiplication is that if A and B
are orthogonal, then A ⊗ B is orthogonal.

The definition of orthogonality is sometimes made more restrictive to re-
quire that the matrix be square.

Orthogonal and Orthonormal Columns

The definition given above for orthogonal matrices is sometimes relaxed to
require only that the columns or rows be orthogonal (rather than orthonor-
mal). If orthonormality is not required, the determinant is not necessarily 1.
If Q is a matrix that is “orthogonal” in this weaker sense of the definition,
and Q has more rows than columns, then

QTQ =

⎡

⎢
⎢
⎢
⎣

X 0 · · · 0
0 X · · · 0

. . .
0 0 · · · X

⎤

⎥
⎥
⎥
⎦

.

Unless stated otherwise, I use the term “orthogonal matrix” to refer to a
matrix whose columns are orthonormal; that is, for which QTQ = I.

3.8 Eigenanalysis; Canonical Factorizations 105

The Orthogonal Group

The set of n×m orthogonal matrices for which n ≥ m is called an (n,m) Stiefel
manifold, and an (n, n) Stiefel manifold together with Cayley multiplication
is a group, sometimes called the orthogonal group and denoted as O(n). The
orthogonal group O(n) is a subgroup of the general linear group GL(n), defined
on page 90. The orthogonal group is useful in multivariate analysis because of
the invariance of the so-called Haar measure over this group (see Section 4.5.1).

Because the Euclidean norm of any column of an orthogonal matrix is 1,
no element in the matrix can be greater than 1 in absolute value. We therefore
have an analogue of the Bolzano-Weierstrass theorem for sequences of orthog-
onal matrices. The standard Bolzano-Weierstrass theorem for real numbers
states that if a sequence ai is bounded, then there exists a subsequence aij

that converges. (See any text on real analysis.) From this, we conclude that
if Q1, Q2, . . . is a sequence of n × n orthogonal matrices, then there exists a
subsequence Qi1 , Qi2 , . . ., such that

lim
j→∞

Qij
= Q, (3.170)

where Q is some fixed matrix. The limiting matrix Q must also be orthogonal
because QT

ij
Qij

= I, and so, taking limits, we have QTQ = I. The set of n×n
orthogonal matrices is therefore compact.

Conjugate Vectors

Instead of defining orthogonality of vectors in terms of dot products as in
Section 2.1.8, we could define it more generally in terms of a bilinear form as
in Section 3.2.8. If the bilinear form xTAy = 0, we say x and y are orthogonal
with respect to the matrix A. We also often use a different term and say
that the vectors are conjugate with respect to A, as in equation (3.65). The
usual definition of orthogonality in terms of a dot product is equivalent to the
definition in terms of a bilinear form in the identity matrix.

Likewise, but less often, orthogonality of matrices is generalized to conju-
gacy of two matrices with respect to a third matrix: QTAQ = I.

3.8 Eigenanalysis; Canonical Factorizations

Multiplication of a given vector by a square matrix may result in a scalar
multiple of the vector. Stating this more formally, and giving names to such
a special vector and scalar, if A is an n× n (square) matrix, v is a vector not
equal to 0, and c is a scalar such that

Av = cv, (3.171)

106 3 Basic Properties of Matrices

we say v is an eigenvector of the matrix A, and c is an eigenvalue of the
matrix A. We refer to the pair c and v as an associated eigenvector and
eigenvalue or as an eigenpair. While we restrict an eigenvector to be nonzero
(or else we would have 0 as an eigenvector associated with any number being
an eigenvalue), an eigenvalue can be 0; in that case, of course, the matrix
must be singular. (Some authors restrict the definition of an eigenvalue to
real values that satisfy (3.171), and there is an important class of matrices
for which it is known that all eigenvalues are real. In this book, we do not
want to restrict ourselves to that class; hence, we do not require c or v in
equation (3.171) to be real.)

We use the term “eigenanalysis” or “eigenproblem” to refer to the gen-
eral theory, applications, or computations related to either eigenvectors or
eigenvalues.

There are various other terms used for eigenvalues and eigenvectors. An
eigenvalue is also called a characteristic value (that is why I use a “c” to
represent an eigenvalue), a latent root, or a proper value, and similar synonyms
exist for an eigenvector. An eigenvalue is also sometimes called a singular
value, but the latter term has a different meaning that we will use in this
book (see page 127; the absolute value of an eigenvalue is a singular value,
and singular values are also defined for nonsquare matrices).

Although generally throughout this chapter we have assumed that vectors
and matrices are real, in eigenanalysis, even if A is real, it may be the case
that c and v are complex. Therefore, in this section, we must be careful about
the nature of the eigenpairs, even though we will continue to assume the basic
matrices are real.

Before proceeding to consider properties of eigenvalues and eigenvectors,
we should note how remarkable the relationship Av = cv is: the effect of a
matrix multiplication of an eigenvector is the same as a scalar multiplication
of the eigenvector. The eigenvector is an invariant of the transformation in
the sense that its direction does not change. This would seem to indicate that
the eigenvalue and eigenvector depend on some kind of deep properties of the
matrix, and indeed this is the case, as we will see. Of course, the first question
is whether such special vectors and scalars exist. The answer is yes, but before
considering that and other more complicated issues, we will state some simple
properties of any scalar and vector that satisfy Av = cv and introduce some
additional terminology.

Left Eigenvectors

In the following, when we speak of an eigenvector or eigenpair without qualifi-
cation, we will mean the objects defined by equation (3.171). There is another
type of eigenvector for A, however, a left eigenvector, defined as a nonzero w
in

wTA = cwT. (3.172)

3.8 Eigenanalysis; Canonical Factorizations 107

For emphasis, we sometimes refer to the eigenvector of equation (3.171), Av =
cv, as a right eigenvector.

We see from the definition of a left eigenvector, that if a matrix is sym-
metric, each left eigenvector is an eigenvector (a right eigenvector).

If v is an eigenvector of A and w is a left eigenvector of A with a different
associated eigenvalue, then v and w are orthogonal; that is, if Av = c1v,
wTA = c2w

T, and c1 �= c2, then wTv = 0. We see this by multiplying both
sides of wTA = c2w

T by v to get wTAv = c2w
Tv and multiplying both sides

of Av = c1v by wT to get wTAv = c1w
Tv. Hence, we have c1w

Tv = c2w
Tv,

and because c1 �= c2, we have wTv = 0.

3.8.1 Basic Properties of Eigenvalues and Eigenvectors

If c is an eigenvalue and v is a corresponding eigenvector for a real matrix
A, we see immediately from the definition of eigenvector and eigenvalue in
equation (3.171) the following properties. (In Exercise 3.16, you are asked to
supply the simple proofs for these properties, or you can see a text such as
Harville, 1997, for example.)

Assume that Av = cv and that all elements of A are real.

1. bv is an eigenvector of A, where b is any nonzero scalar.
It is often desirable to scale an eigenvector v so that vTv = 1. Such a
normalized eigenvector is also called a unit eigenvector.
For a given eigenvector, there is always a particular eigenvalue associ-
ated with it, but for a given eigenvalue there is a space of associated
eigenvectors. (The space is a vector space if we consider the zero vec-
tor to be a member.) It is therefore not appropriate to speak of “the”
eigenvector associated with a given eigenvalue —although we do use this
term occasionally. (We could interpret it as referring to the normalized
eigenvector.) There is, however, another sense in which an eigenvalue
does not determine a unique eigenvector, as we discuss below.

2. bc is an eigenvalue of bA, where b is any nonzero scalar.
3. 1/c and v are an eigenpair of A−1 (if A is nonsingular).
4. 1/c and v are an eigenpair of A+ if A (and hence A+) is square and c

is nonzero.
5. If A is diagonal or triangular with elements aii, the eigenvalues are the

aii with corresponding eigenvectors ei (the unit vectors).
6. c2 and v are an eigenpair of A2. More generally, ck and v are an eigenpair

of Ak for k = 1, 2,
7. If A and B are conformable for the multiplications AB and BA, the

nonzero eigenvalues of AB are the same as the nonzero eigenvalues of
BA. (Note that A and B are not necessarily square.) The set of eigen-
values is the same if A and B are square. (Note, however, that if A
and B are square and d is an eigenvalue of B, cd is not necessarily an
eigenvalue of AB.)

108 3 Basic Properties of Matrices

8. If A and B are square and of the same order and if B−1 exists, then
the eigenvalues of BAB−1 are the same as the eigenvalues of A. (This
is called a similarity transformation; see page 114.)

3.8.2 The Characteristic Polynomial

From the equation (A − cI)v = 0 that defines eigenvalues and eigenvectors,
we see that in order for v to be nonnull, (A− cI) must be singular, and hence

|A − cI| = |cI − A| = 0. (3.173)

Equation (3.173) is sometimes taken as the definition of an eigenvalue c. It is
definitely a fundamental relation, and, as we will see, allows us to identify a
number of useful properties.

The determinant is a polynomial of degree n in c, pA(c), called the charac-
teristic polynomial, and when it is equated to 0, it is called the characteristic
equation:

pA(c) = s0 + s1c + · · · + sncn = 0. (3.174)

From the expansion of the determinant |cI − A|, as in equation (3.32)
on page 56, we see that s0 = (−1)n|A| and sn = 1, and, in general, sk =
(−1)n−k times the sums of all principal minors of A of order n − k. (Often,
we equivalently define the characteristic polynomial as the determinant of
(A − cI). The difference would just be changes of signs of the coefficients in
the polynomial.)

An eigenvalue of A is a root of the characteristic polynomial. The exis-
tence of n roots of the polynomial (by the Fundamental Theorem of Algebra)
establishes the existence of n eigenvalues, some of which may be complex and
some may be zero. We can write the characteristic polynomial in factored
form as

pA(c) = (−1)n(c − c1) · · · (c − cn). (3.175)

The “number of eigenvalues” must be distinguished from the cardinality of
the spectrum, which is the number of unique values.

A real matrix may have complex eigenvalues (and, hence, eigenvectors),
just as a polynomial with real coefficients can have complex roots. Clearly,
the eigenvalues of a real matrix must occur in conjugate pairs just as in the
case of roots of polynomials. (As mentioned above, some authors restrict the
definition of an eigenvalue to real values that satisfy (3.171). As we have seen,
the eigenvalues of a symmetric matrix are always real, and this is a case that
we will emphasize, but in this book we do not restrict the definition.)

The characteristic polynomial has many interesting properties that we will
not discuss here. One, stated by the Cayley-Hamilton theorem, is that the
matrix itself is a root of the matrix polynomial formed by the characteristic
polynomial; that is,

pA(A) = s0I + s1A + · · · + snAn = 0n.

3.8 Eigenanalysis; Canonical Factorizations 109

We see this by using equation (3.25) to write the matrix in equation (3.173)
as

(A − cI)adj(A − cI) = pA(c)I. (3.176)

Hence adj(A − cI) is a polynomial in c of degree less than or equal to n − 1,
so we can write it as

adj(A − cI) = B0 + B1c + · · · + Bn−1c
n−1,

where the Bi are n × n matrices. Now, equating the coefficients of c on the
two sides of equation (3.176), we have

AB0 = s0I

AB1 − B0 = s1I

...
ABn−1 − Bn−2 = sn−1I

Bn−1 = snI.

Now, multiply the second equation by A, the third equation by A2, and the ith

equation by Ai−1, and add all equations. We get the desired result: pA(A) = 0.
See also Exercise 3.17.

Another interesting fact is that any given nth-degree polynomial, p, is the
characteristic polynomial of an n × n matrix, A, of particularly simple form.
Consider the polynomial

p(c) = s0 + s1c + · · · + sn−1c
n−1 + cn

and the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1

−s0 −s1 −s2 · · · −sn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.177)

The matrix A is called the companion matrix of the polynomial p, and it is
easy to see (by a tedious expansion) that the characteristic polynomial of A
is p. This, of course, shows that a characteristic polynomial does not uniquely
determine a matrix, although the converse is true (within signs).

Eigenvalues and the Trace and Determinant

If the eigenvalues of the matrix A are c1, . . . , cn, because they are the roots
of the characteristic polynomial, we can readily form that polynomial as

pA(c) = (c − c1) · · · (c − cn)

= (−1)n
∏

ci + · · · + (−1)n−1
∑

cic
n−1 + cn. (3.178)

110 3 Basic Properties of Matrices

Because this is the same polynomial as obtained by the expansion of the
determinant in equation (3.174), the coefficients must be equal. In particular,
by simply equating the corresponding coefficients of the constant terms and
(n − 1)th-degree terms, we have the two very important facts:

|A| =
∏

ci (3.179)

and
tr(A) =

∑
ci. (3.180)

Additional Properties of Eigenvalues and Eigenvectors

Using the characteristic polynomial yields the following properties. This is a
continuation of the list that began on page 107. We assume A is a real matrix
with eigenpair (c, v).

10. c is an eigenvalue of AT (because |AT − cI| = |A − cI| for any c). The
eigenvectors of AT, which are left eigenvectors of A, are not necessarily
the same as the eigenvectors of A, however.

11. There is a left eigenvector such that c is the associated eigenvalue.
12. (c̄, v̄) is an eigenpair of A, where c̄ and v̄ are the complex conjugates

and A, as usual, consists of real elements. (If c and v are real, this is a
tautology.)

13. cc̄ is an eigenvalue of ATA.
14. c is real if A is symmetric.

In Exercise 3.18, you are asked to supply the simple proofs for these properties,
or you can see a text such as Harville (1997), for example.

3.8.3 The Spectrum

Although, for an n × n matrix, from the characteristic polynomial we have
n roots, and hence n eigenvalues, some of these roots may be the same. It
may also be the case that more than one eigenvector corresponds to a given
eigenvalue. The set of all the distinct eigenvalues of a matrix is often of interest.
This set is called the spectrum of the matrix.

Notation

Sometimes it is convenient to refer to the distinct eigenvalues and sometimes
we wish to refer to all eigenvalues, as in referring to the number of roots of the
characteristic polynomial. To refer to the distinct eigenvalues in a way that
allows us to be consistent in the subscripts, we will call the distinct eigenvalues
λ1, . . . , λk. The set of these constitutes the spectrum.

We denote the spectrum of the matrix A by σ(A):

3.8 Eigenanalysis; Canonical Factorizations 111

σ(A) = {λ1, . . . , λk}. (3.181)

In terms of the spectrum, equation (3.175) becomes

pA(c) = (−1)n(c − λ1)m1 · · · (c − λk)mk , (3.182)

for mi ≥ 1.
We label the ci and vi so that

|c1| ≥ · · · ≥ |cn|. (3.183)

We likewise label the λi so that

|λ1| > · · · > |λk|. (3.184)

With this notation, we have
|λ1| = |c1|

and
|λk| = |cn|,

but we cannot say anything about the other λs and cs.

The Spectral Radius

For the matrix A with these eigenvalues, |c1| is called the spectral radius and
is denoted by ρ(A):

ρ(A) = max |ci|. (3.185)

The set of complex numbers

{x : |x| = ρ(A)} (3.186)

is called the spectral circle of A.
An eigenvalue corresponding to max |ci| (that is, c1) is called a dominant

eigenvalue. We are more often interested in the absolute value (or modulus)
of a dominant eigenvalue rather than the eigenvalue itself; that is, ρ(A) (that
is, |c1|) is more often of interest than just c1.)

Interestingly, we have for all i

|ci| ≤ max
j

∑

k

|akj | (3.187)

and
|ci| ≤ max

k

∑

j

|akj |. (3.188)

The inequalities of course also hold for ρ(A) on the left-hand side. Rather
than proving this here, we show this fact in a more general setting relating to

112 3 Basic Properties of Matrices

matrix norms in inequality (3.243) on page 134. (These bounds relate to the
L1 and L∞ matrix norms, respectively.)

A matrix may have all eigenvalues equal to 0 but yet the matrix itself
may not be 0. Any upper triangular matrix with all 0s on the diagonal is an
example.

Because, as we saw on page 107, if c is an eigenvalue of A, then bc is an
eigenvalue of bA where b is any nonzero scalar, we can scale a matrix with a
nonzero eigenvalue so that its spectral radius is 1. The scaled matrix is simply
A/|c1|.

Linear Independence of Eigenvectors Associated
with Distinct Eigenvalues

Suppose that {λ1, . . . , λk} is a set of distinct eigenvalues of the matrix A
and {x1, . . . , xk} is a set of eigenvectors such that (λi, xi) is an eigenpair.
Then x1, . . . , xk are linearly independent; that is, eigenvectors associated with
distinct eigenvalues are linearly independent.

We can see that this must be the case by assuming that the eigenvectors
are not linearly independent. In that case, let {y1, . . . , yj} ⊂ {x1, . . . , xk}, for
some j < k, be a maximal linearly independent subset. Let the corresponding
eigenvalues be {µ1, . . . , µj} ⊂ {λ1, . . . , λk}. Then, for some eigenvector yj+1,
we have

yj+1 =
j∑

i=1

tiyi

for some ti. Now, multiplying both sides of the equation by A−µj+1I, where
µj+1 is the eigenvalue corresponding to yj+1, we have

0 =
j∑

i=1

ti(µi − µj+1)yi.

If the eigenvalues are unique (that is, for each i ≤ j), we have µi �= µj+1, then
the assumption that the eigenvalues are not linearly independent is contra-
dicted because otherwise we would have a linear combination with nonzero
coefficients equal to zero.

The Eigenspace and Geometric Multiplicity

Rewriting the definition (3.171) for the ith eigenvalue and associated eigen-
vector of the n × n matrix A as

(A − ciI)vi = 0, (3.189)

we see that the eigenvector vi is in N (A − ciI), the null space of (A − ciI).
For such a nonnull vector to exist, of course, (A− ciI) must be singular; that

3.8 Eigenanalysis; Canonical Factorizations 113

is, rank(A− ciI) must be less than n. This null space is called the eigenspace
of the eigenvalue ci.

It is possible that a given eigenvalue may have more than one associated
eigenvector that are linearly independent of each other. For example, we eas-
ily see that the identity matrix has only one unique eigenvalue, namely 1,
but any vector is an eigenvector, and so the number of linearly independent
eigenvectors is equal to the number of rows or columns of the identity. If u
and v are eigenvectors corresponding to the same eigenvalue c, then any lin-
ear combination of u and v is an eigenvector corresponding to c; that is, if
Au = cu and Av = cv, for any scalars a and b,

A(au + bv) = c(au + bv).

The dimension of the eigenspace corresponding to the eigenvalue ci is
called the geometric multiplicity of ci; that is, the geometric multiplicity
of ci is the nullity of A − ciI. If gi is the geometric multiplicity of ci, an
eigenvalue of the n× n matrix A, then we can see from equation (3.160) that
rank(A − ciI) + gi = n.

The multiplicity of 0 as an eigenvalue is just the nullity of A. If A is of full
rank, the multiplicity of 0 will be 0, but, in this case, we do not consider 0 to
be an eigenvalue. If A is singular, however, we consider 0 to be an eigenvalue,
and the multiplicity of the 0 eigenvalue is the rank deficiency of A.

Multiple linearly independent eigenvectors corresponding to the same
eigenvalue can be chosen to be orthogonal to each other using, for example,
the Gram-Schmidt transformations, as in equation (2.34) on page 27. These
orthogonal eigenvectors span the same eigenspace. They are not unique, of
course, as any sequence of Gram-Schmidt transformations could be applied.

Algebraic Multiplicity

A single value that occurs as a root of the characteristic equation m times
is said to have algebraic multiplicity m. Although we sometimes refer to this
as just the multiplicity, algebraic multiplicity should be distinguished from
geometric multiplicity, defined above. These are not the same, as we will see
in an example later. An eigenvalue whose algebraic multiplicity and geometric
multiplicity are the same is called a semisimple eigenvalue. An eigenvalue with
algebraic multiplicity 1 is called a simple eigenvalue.

Because the determinant that defines the eigenvalues of an n×n matrix is
an nth-degree polynomial, we see that the sum of the multiplicities of distinct
eigenvalues is n.

Because most of the matrices in statistical applications are real, in the
following we will generally restrict our attention to real matrices. It is impor-
tant to note that the eigenvalues and eigenvectors of a real matrix are not
necessarily real, but as we have observed, the eigenvalues of a symmetric real

114 3 Basic Properties of Matrices

matrix are real. (The proof, which was stated as an exercise, follows by not-
ing that if A is symmetric, the eigenvalues of ATA are the eigenvalues of A2,
which from the definition are obviously nonnegative.)

3.8.4 Similarity Transformations

Two n×n matrices, A and B, are said to be similar if there exists a nonsingular
matrix P such that

B = P−1AP. (3.190)

The transformation in equation (3.190) is called a similarity transformation.
(Compare this with equivalent matrices on page 86. The matrices A and B in
equation (3.190) are equivalent, as we see using equations (3.115) and (3.116).)

It is clear from the definition that the similarity relationship is both com-
mutative and transitive.

If A and B are similar, as in equation (3.190), then for any scalar c

|A − cI| = |P−1||A − cI||P |
= |P−1AP − cP−1IP |
= |B − cI|,

and, hence, A and B have the same eigenvalues. (This simple fact was stated
as property 8 on page 108.)

Orthogonally Similar Transformations

An important type of similarity transformation is based on an orthogonal
matrix in equation (3.190). If Q is orthogonal and

B = QTAQ, (3.191)

A and B are said to be orthogonally similar.
If B in the equation B = QTAQ is a diagonal matrix, A is said to be

orthogonally diagonalizable, and QBQT is called the orthogonally diagonal
factorization or orthogonally similar factorization of A. We will discuss char-
acteristics of orthogonally diagonalizable matrices in Sections 3.8.5 and 3.8.6
below.

Schur Factorization

If B in equation (3.191) is an upper triangular matrix, QBQT is called the
Schur factorization of A.

For any square matrix, the Schur factorization exists; hence, it is one of the
most useful similarity transformations. The Schur factorization clearly exists
in the degenerate case of a 1 × 1 matrix.

3.8 Eigenanalysis; Canonical Factorizations 115

To see that it exists for any n × n matrix A, let (c, v) be an arbitrary
eigenpair of A with v normalized, and form an orthogonal matrix U with v
as its first column. Let U2 be the matrix consisting of the remaining columns;
that is, U is partitioned as [v |U2].

UTAU =
[

vTAv vTAU2

UT
2 Av UT

2 AU2

]

=
[

c vTAU2

0 UT
2 AU2

]

= B,

where UT
2 AU2 is an (n − 1) × (n − 1) matrix. Now the eigenvalues of UTAU

are the same as those of A; hence, if n = 2, then UT
2 AU2 is a scalar and must

equal the other eigenvalue, and so the statement is proven.
We now use induction on n to establish the general case. Assume that the

factorization exists for any (n − 1) × (n − 1) matrix, and let A be any n × n
matrix. We let (c, v) be an arbitrary eigenpair of A (with v normalized), follow
the same procedure as in the preceding paragraph, and get

UTAU =
[

c vTAU2

0 UT
2 AU2

]

.

Now, since UT
2 AU2 is an (n−1)× (n−1) matrix, by the induction hypothesis

there exists an (n−1)×(n−1) orthogonal matrix V such that V T(UT
2 AU2)V =

T , where T is upper triangular. Now let

Q = U

[
1 0
0 V

]

.

By multiplication, we see that QTQ = I (that is, Q is orthogonal). Now form

QTAQ =
[

c vTAU2V
0 V TUT

2 AU2V

]

=
[

c vTAU2V
0 T

]

= B.

We see that B is upper triangular because T is, and so by induction the Schur
factorization exists for any n × n matrix.

Note that the Schur factorization is also based on orthogonally similar
transformations, but the term “orthogonally similar factorization” is generally
used only to refer to the diagonal factorization.

Uses of Similarity Transformations

Similarity transformations are very useful in establishing properties of
matrices, such as convergence properties of sequences (see, for example, Sec-
tion 3.9.5). Similarity transformations are also used in algorithms for comput-
ing eigenvalues (see, for example, Section 7.3). In an orthogonally similar fac-
torization, the elements of the diagonal matrix are the eigenvalues. Although

116 3 Basic Properties of Matrices

the diagonals in the upper triangular matrix of the Schur factorization are the
eigenvalues, that particular factorization is rarely used in computations.

Although similar matrices have the same eigenvalues, they do not neces-
sarily have the same eigenvectors. If A and B are similar, for some nonzero
vector v and some scalar c, Av = cv implies that there exists a nonzero vector
u such that Bu = cu, but it does not imply that u = v (see Exercise 3.19b).

3.8.5 Similar Canonical Factorization; Diagonalizable Matrices

If V is a matrix whose columns correspond to the eigenvectors of A, and C
is a diagonal matrix whose entries are the eigenvalues corresponding to the
columns of V , using the definition (equation (3.171)) we can write

AV = V C. (3.192)

Now, if V is nonsingular, we have

A = VCV −1. (3.193)

Expression (3.193) represents a diagonal factorization of the matrix A. We see
that a matrix A with eigenvalues c1, . . . , cn that can be factorized this way
is similar to the matrix diag(c1, . . . , cn), and this representation is sometimes
called the similar canonical form of A or the similar canonical factorization
of A.

Not all matrices can be factored as in equation (3.193). It obviously de-
pends on V being nonsingular; that is, that the eigenvectors are linearly inde-
pendent. If a matrix can be factored as in (3.193), it is called a diagonalizable
matrix, a simple matrix, or a regular matrix (the terms are synonymous, and
we will generally use the term “diagonalizable”); a matrix that cannot be fac-
tored in that way is called a deficient matrix or a defective matrix (the terms
are synonymous).

Any matrix all of whose eigenvalues are unique is diagonalizable (because,
as we saw on page 112, in that case the eigenvectors are linearly independent),
but uniqueness of the eigenvalues is not a necessary condition. A necessary
and sufficient condition for a matrix to be diagonalizable can be stated in
terms of the unique eigenvalues and their multiplicities: suppose for the n×n
matrix A that the distinct eigenvalues λ1, . . . , λk have algebraic multiplicities
m1, . . . ,mk. If, for l = 1, . . . , k,

rank(A − λlI) = n − ml (3.194)

(that is, if all eigenvalues are semisimple), then A is diagonalizable, and this
condition is also necessary for A to be diagonalizable. This fact is called the
“diagonalizability theorem”. Recall that A being diagonalizable is equivalent
to V in AV = V C (equation (3.192)) being nonsingular.

To see that the condition is sufficient, assume, for each i, rank(A− ciI) =
n−mi, and so the equation (A− ciI)x = 0 has exactly n− (n−mi) linearly

3.8 Eigenanalysis; Canonical Factorizations 117

independent solutions, which are by definition eigenvectors of A associated
with ci. (Note the somewhat complicated notation. Each ci is the same as
some λl, and for each λl, we have λl = cl1 = clml

for 1 ≤ l1 < · · · < lml
≤ n.)

Let w1, . . . , wmi
be a set of linearly independent eigenvectors associated with

ci, and let u be an eigenvector associated with cj and cj �= ci. (The vectors
w1, . . . , wmi

and u are columns of V .) Now if u is not linearly independent of
w1, . . . , wmi

, we write u =
∑

bkwk, and so Au = A
∑

bkwk = ci

∑
bkwk =

ciu, contradicting the assumption that u is not an eigenvector associated with
ci. Therefore, the eigenvectors associated with different eigenvalues are linearly
independent, and so V is nonsingular.

Now, to see that the condition is necessary, assume V is nonsingular; that
is, V −1 exists. Because C is a diagonal matrix of all n eigenvalues, the matrix
(C − ciI) has exactly mi zeros on the diagonal, and hence, rank(C − ciI) =
n−mi. Because V (C− ciI)V −1 = (A− ciI), and multiplication by a full rank
matrix does not change the rank (see page 88), we have rank(A−ciI) = n−mi.

Symmetric Matrices

A symmetric matrix is a diagonalizable matrix. We see this by first letting A
be any n × n symmetric matrix with eigenvalue c of multiplicity m. We need
to show that rank(A − cI) = n − m. Let B = A − cI, which is symmetric
because A and I are. First, we note that c is real, and therefore B is real. Let
r = rank(B). From equation (3.127), we have

rank
(
B2

)
= rank

(
BTB

)
= rank(B) = r.

In the full rank partitioning of B, there is at least one r×r principal submatrix
of full rank. The r-order principal minor in B2 corresponding to any full rank
r× r principal submatrix of B is therefore positive. Furthermore, any j-order
principal minor in B2 for j > r is zero. Now, rewriting the characteristic
polynomial in equation (3.174) slightly by attaching the sign to the variable
w, we have

pB2(w) = tn−r(−w)n−r + · · · + tn−1(−w)n−1 + (−w)n = 0,

where tn−j is the sum of all j-order principal minors. Because tn−r �= 0, w = 0
is a root of multiplicity n−r. It is likewise an eigenvalue of B with multiplicity
n− r. Because A = B + cI, 0+ c is an eigenvalue of A with multiplicity n− r;
hence, m = n − r. Therefore n − m = r = rank(A − cI).

A Defective Matrix

Although most matrices encountered in statistics applications are diagonal-
izable, it may be of interest to consider an example of a matrix that is not
diagonalizable. Searle (1982) gives an example of a small matrix:

118 3 Basic Properties of Matrices

A =

⎡

⎣
0 1 2
2 3 0
0 4 5

⎤

⎦ .

The three strategically placed 0s make this matrix easy to work with, and the
determinant of (cI − A) yields the characteristic polynomial equation

c3 − 8c2 + 13c − 6 = 0.

This can be factored as (c−6)(c−1)2, hence, we have eigenvalues c1 = 6 with
algebraic multiplicity m1 = 1, and c2 = 1 with algebraic multiplicity m2 = 2.
Now, consider A − c2I:

A − I =

⎡

⎣
−1 1 2

2 2 0
0 4 4

⎤

⎦ .

This is clearly of rank 2; hence the rank of the null space of A−c2I (that is, the
geometric multiplicity of c2) is 3− 2 = 1. The matrix A is not diagonalizable.

3.8.6 Properties of Diagonalizable Matrices

If the matrix A has the similar canonical factorization VCV −1 of equa-
tion (3.193), some important properties are immediately apparent. First of
all, this factorization implies that the eigenvectors of a diagonalizable matrix
are linearly independent.

Other properties are easy to derive or to show because of this factorization.
For example, the general equations (3.179) and (3.180) concerning the product
and the sum of eigenvalues follow easily from

|A| = |VCV −1| = |V | |C| |V −1| = |C|

and
tr(A) = tr(VCV −1) = tr(V −1VC) = tr(C).

One important fact is that the number of nonzero eigenvalues of a diago-
nalizable matrix A is equal to the rank of A. This must be the case because
the rank of the diagonal matrix C is its number of nonzero elements and the
rank of A must be the same as the rank of C. Another way of saying this is
that the sum of the multiplicities of the unique nonzero eigenvalues is equal
to the rank of the matrix; that is,

∑k
i=1 mi = rank(A), for the matrix A with

k distinct eigenvalues with multiplicities mi.

Matrix Functions

We use the diagonal factorization (3.193) of the matrix A = VCV −1 to define
a function of the matrix that corresponds to a function of a scalar, f(x),

3.8 Eigenanalysis; Canonical Factorizations 119

f(A) = V diag(f(c1), . . . , f(cn))V −1, (3.195)

if f(·) is defined for each eigenvalue ci. (Notice the relationship of this defini-
tion to the Cayley-Hamilton theorem and to Exercise 3.17.)

Another useful feature of the diagonal factorization of the matrix A in
equation (3.193) is that it allows us to study functions of powers of A because
Ak = VCkV −1. In particular, we may assess the convergence of a function of
a power of A,

lim
k→∞

g(k,A).

Functions of scalars that have power series expansions may be defined
for matrices in terms of power series expansions in A, which are effectively
power series in the diagonal elements of C. For example, using the power
series expansion of ex =

∑∞
k=0

xk

k! , we can define the matrix exponential for
the square matrix A as the matrix

eA =
∞∑

k=0

Ak

k!
, (3.196)

where A0/0! is defined as I. (Recall that we did not define A0 if A is singular.)
If A is represented as VCV −1, this expansion becomes

eA = V
∞∑

k=0

Ck

k!
V −1

= V diag ((ec1 , . . . , ecn)) V −1.

3.8.7 Eigenanalysis of Symmetric Matrices

The eigenvalues and eigenvectors of symmetric matrices have some interesting
properties. First of all, as we have already observed, for a real symmetric
matrix, the eigenvalues are all real. We have also seen that symmetric matrices
are diagonalizable; therefore all of the properties of diagonalizable matrices
carry over to symmetric matrices.

Orthogonality of Eigenvectors

In the case of a symmetric matrix A, any eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal. This is easily seen by assuming that c1 and
c2 are unequal eigenvalues with corresponding eigenvectors v1 and v2. Now
consider vT

1 v2. Multiplying this by c2, we get

c2v
T
1 v2 = vT

1 Av2 = vT
2 Av1 = c1v

T
2 v1 = c1v

T
1 v2.

120 3 Basic Properties of Matrices

Because c1 �= c2, we have vT
1 v2 = 0.

Now, consider two eigenvalues ci = cj , that is, an eigenvalue of multiplicity
greater than 1 and distinct associated eigenvectors vi and vj . By what we
just saw, an eigenvector associated with ck �= ci is orthogonal to the space
spanned by vi and vj . Assume vi is normalized and apply a Gram-Schmidt
transformation to form

ṽj =
1

‖vj − 〈vi, vj〉vi‖
(vj − 〈vi, vj〉vi),

as in equation (2.34) on page 27, yielding a vector orthogonal to vi. Now, we
have

Aṽj =
1

‖vj − 〈vi, vj〉vi‖
(Avj − 〈vi, vj〉Avi)

=
1

‖vj − 〈vi, vj〉vi‖
(cjvj − 〈vi, vj〉civi)

= cj
1

‖vj − 〈vi, vj〉vi‖
(vj − 〈vi, vj〉vi)

= cj ṽj ;

hence, ṽj is an eigenvector of A associated with cj . We conclude therefore that
the eigenvectors of a symmetric matrix can be chosen to be orthogonal.

A symmetric matrix is orthogonally diagonalizable, because the V in equa-
tion (3.193) can be chosen to be orthogonal, and can be written as

A = VCV T, (3.197)

where V V T = V TV = I, and so we also have

V TAV = C. (3.198)

Such a matrix is orthogonally similar to a diagonal matrix formed from its
eigenvalues.

Spectral Decomposition

When A is symmetric and the eigenvectors vi are chosen to be orthonormal,

I =
∑

i

viv
T
i , (3.199)

so

A = A
∑

i

viv
T
i

=
∑

i

Aviv
T
i

=
∑

i

civiv
T
i . (3.200)

3.8 Eigenanalysis; Canonical Factorizations 121

This representation is called the spectral decomposition of the symmetric ma-
trix A. It is essentially the same as equation (3.197), so A = VCV T is also
called the spectral decomposition.

The representation is unique except for the ordering and the choice of
eigenvectors for eigenvalues with multiplicities greater than 1. If the rank of
the matrix is r, we have |c1| ≥ · · · ≥ |cr| > 0, and if r < n, then cr+1 = · · · =
cn = 0.

Note that the matrices in the spectral decomposition are projection matri-
ces that are orthogonal to each other (but they are not orthogonal matrices)
and they sum to the identity. Let

Pi = viv
T
i . (3.201)

Then we have

PiPi = Pi, (3.202)
PiPj = 0 for i �= j, (3.203)

∑

i

Pi = I, (3.204)

and the spectral decomposition,

A =
∑

i

ciPi. (3.205)

The Pi are called spectral projectors.
The spectral decomposition also applies to powers of A,

Ak =
∑

i

ck
i viv

T
i , (3.206)

where k is an integer. If A is nonsingular, k can be negative in the expression
above.

The spectral decomposition is one of the most important tools in working
with symmetric matrices.

Although we will not prove it here, all diagonalizable matrices have a spec-
tral decomposition in the form of equation (3.205) with projection matrices
that satisfy properties (3.202) through (3.204). These projection matrices can-
not necessarily be expressed as outer products of eigenvectors, however. The
eigenvalues and eigenvectors of a nonsymmetric matrix might not be real, the
left and right eigenvectors might not be the same, and two eigenvectors might
not be mutually orthogonal. In the spectral representation A =

∑
i ciPi, how-

ever, if cj is a simple eigenvalue with associated left and right eigenvectors yj

and xj , respectively, then the projection matrix Pj is xjy
H
j /yH

j xj . (Note that
because the eigenvectors may not be real, we take the conjugate transpose.)
This is Exercise 3.20.

122 3 Basic Properties of Matrices

Quadratic Forms and the Rayleigh Quotient

Equation (3.200) yields important facts about quadratic forms in A. Because
V is of full rank, an arbitrary vector x can be written as V b for some vector
b. Therefore, for the quadratic form xTAx we have

xTAx = xT
∑

i

civiv
T
i x

=
∑

i

bTV Tviv
T
i V bci

=
∑

i

b2
i ci.

This immediately gives the inequality

xTAx ≤ max{ci}bTb.

(Notice that max{ci} here is not necessarily c1; in the important case when
all of the eigenvalues are nonnegative, it is, however.) Furthermore, if x �= 0,
bTb = xTx, and we have the important inequality

xTAx

xTx
≤ max{ci}. (3.207)

Equality is achieved if x is the eigenvector corresponding to max{ci}, so we
have

max
x�=0

xTAx

xTx
= max{ci}. (3.208)

If c1 > 0, this is the spectral radius, ρ(A).
The expression on the left-hand side in (3.207) as a function of x is called

the Rayleigh quotient of the symmetric matrix A and is denoted by RA(x):

RA(x) =
xTAx

xTx

=
〈x, Ax〉
〈x, x〉 . (3.209)

Because if x �= 0, xTx > 0, it is clear that the Rayleigh quotient is nonnegative
for all x if and only if A is nonnegative definite and is positive for all x if and
only if A is positive definite.

The Fourier Expansion

The viv
T
i matrices in equation (3.200) have the property that 〈viv

T
i , vjv

T
j 〉 = 0

for i �= j and 〈viv
T
i , viv

T
i 〉 = 1, and so the spectral decomposition is a Fourier

expansion as in equation (3.82) and the eigenvalues are Fourier coefficients.

3.8 Eigenanalysis; Canonical Factorizations 123

From equation (3.83), we see that the eigenvalues can be represented as the
dot product

ci = 〈A, viv
T
i 〉. (3.210)

The eigenvalues ci have the same properties as the Fourier coefficients
in any orthonormal expansion. In particular, the best approximating matrices
within the subspace of n×n symmetric matrices spanned by {v1v

T
1 , . . . , vnvT

n }
are partial sums of the form of equation (3.200). In Section 3.10, however, we
will develop a stronger result for approximation of matrices that does not rely
on the restriction to this subspace and which applies to general, nonsquare
matrices.

Powers of a Symmetric Matrix

If (c, v) is an eigenpair of the symmetric matrix A with vTv = 1, then for any
k = 1, 2, . . .,

(
A − cvvT

)k
= Ak − ckvvT. (3.211)

This follows from induction on k, for it clearly is true for k = 1, and if for a
given k it is true that for k − 1

(
A − cvvT

)k−1
= Ak−1 − ck−1vvT,

then by multiplying both sides by (A − cvvT), we see it is true for k:
(
A − cvvT

)k
=

(
Ak−1 − ck−1vvT

)
(A − cvvT)

= Ak − ck−1vvTA − cAk−1vvT + ckvvT

= Ak − ckvvT − ckvvT + ckvvT

= Ak − ckvvT.

There is a similar result for nonsymmetric square matrices, where w and
v are left and right eigenvectors, respectively, associated with the same eigen-
value c that can be scaled so that wTv = 1. (Recall that an eigenvalue of A
is also an eigenvalue of AT, and if w is a left eigenvector associated with the
eigenvalue c, then ATw = cw.) The only property of symmetry used above
was that we could scale vTv to be 1; hence, we just need wTv �= 0. This is
clearly true for a diagonalizable matrix (from the definition). It is also true
if c is simple (which is somewhat harder to prove). It is thus true for the
dominant eigenvalue, which is simple, in two important classes of matrices
we will consider in Sections 8.7.1 and 8.7.2, positive matrices and irreducible
nonnegative matrices.

If w and v are left and right eigenvectors of A associated with the same
eigenvalue c and wTv = 1, then for k = 1, 2, . . .,

(
A − cvwT

)k
= Ak − ckvwT. (3.212)

We can prove this by induction as above.

124 3 Basic Properties of Matrices

The Trace and Sums of Eigenvalues

For a general n × n matrix A with eigenvalues c1, . . . , cn, we have tr(A) =∑n
i=1 ci. (This is equation (3.180).) This is particularly easy to see for sym-

metric matrices because of equation (3.197), rewritten as V TAV = C, the
diagonal matrix of the eigenvalues. For a symmetric matrix, however, we have
a stronger result.

If A is an n × n symmetric matrix with eigenvalues c1 ≥ · · · ≥ cn, and U
is an n × k orthogonal matrix, with k ≤ n, then

tr(UTAU) ≤
k∑

i=1

ci. (3.213)

To see this, we represent U in terms of the columns of V , which span IRn, as
U = V X. Hence,

tr(UTAU) = tr(XTV TAV X)
= tr(XTCX)

=
n∑

i=1

xT
i xi ci, (3.214)

where xT
i is the ith row of X.

Now XTX = XTV TV X = UTU = Ik, so either xT
i xi = 0 or xT

i xi = 1,
and

∑n
i=1 xT

i xi = k. Because c1 ≥ · · · ≥ cn, therefore
∑n

i=1 xT
i xi ci ≤

∑k
i=1 ci,

and so from equation (3.214) we have tr(UTAU) ≤
∑k

i=1 ci.

3.8.8 Positive Definite and Nonnegative Definite
Matrices

The factorization of symmetric matrices in equation (3.197) yields some useful
properties of positive definite and nonnegative definite matrices (introduced
on page 70). We will briefly discuss these properties here and then return to
the subject in Section 8.3 and discuss more properties of positive definite and
nonnegative definite matrices.

Eigenvalues of Positive and Nonnegative Definite Matrices

In this book, we use the terms “nonnegative definite” and “positive definite”
only for real symmetric matrices, so the eigenvalues of nonnegative definite or
positive definite matrices are real.

Any real symmetric matrix is positive (nonnegative) definite if and only
if all of its eigenvalues are positive (nonnegative). We can see this using the
factorization (3.197) of a symmetric matrix. One factor is the diagonal matrix

3.8 Eigenanalysis; Canonical Factorizations 125

C of the eigenvalues, and the other factors are orthogonal. Hence, for any x,
we have xTAx = xTVCV Tx = yTCy, where y = V Tx, and so

xTAx > (≥) 0

if and only if
yTCy > (≥) 0.

This, together with the resulting inequality (3.122) on page 89, implies that
if P is a nonsingular matrix and D is a diagonal matrix, PTDP is positive
(nonnegative) if and only if the elements of D are positive (nonnegative).

A matrix (whether symmetric or not and whether real or not) all of whose
eigenvalues have positive real parts is said to be positive stable. Positive stabil-
ity is an important property in some applications, such as numerical solution
of systems of nonlinear differential equations. Clearly, a positive definite ma-
trix is positive stable.

Inverse of Positive Definite Matrices

If A is positive definite and A = VCV T as in equation (3.197), then A−1 =
VC−1V T and A−1 is positive definite because the elements of C−1 are positive.

Diagonalization of Positive Definite Matrices

If A is positive definite, the elements of the diagonal matrix C in equa-
tion (3.197) are positive, and so their square roots can be absorbed into V
to form a nonsingular matrix P . The diagonalization in equation (3.198),
V TAV = C, can therefore be reexpressed as

PTAP = I. (3.215)

Square Roots of Positive and Nonnegative Definite Matrices

The factorization (3.197) together with the nonnegativity of the eigenvalues
of positive and nonnegative definite matrices allows us to define a square root
of such a matrix.

Let A be a nonnegative definite matrix and let V and C be as in equa-
tion (3.197): A = VCV T. Now, let S be a diagonal matrix whose elements
are the square roots of the corresponding elements of C. Then (VSV T)2 = A;
hence, we write

A
1
2 = VSV T (3.216)

and call this matrix the square root of A. This definition of the square root
of a matrix is an instance of equation (3.195) with f(x) =

√
x. We also can

similarly define A
1
r for r > 0.

We see immediately that A
1
2 is symmetric because A is symmetric.

126 3 Basic Properties of Matrices

If A is positive definite, A−1 exists and is positive definite. It therefore has
a square root, which we denote as A− 1

2 .
The square roots are nonnegative, and so A

1
2 is nonnegative definite. Fur-

thermore, A
1
2 and A− 1

2 are positive definite if A is positive definite.
In Section 5.9.1, we will show that this A

1
2 is unique, so our reference to it

as the square root is appropriate. (There is occasionally some ambiguity in the
terms “square root” and “second root” and the symbols used to denote them.
If x is a nonnegative scalar, the usual meaning of its square root, denoted by√

x, is a nonnegative number, while its second roots, which may be denoted by
x

1
2 , are usually considered to be either of the numbers ±√

x. In our notation
A

1
2 , we mean the square root; that is, the nonnegative matrix, if it exists.

Otherwise, we say the square root of the matrix does not exist. For example,

I
1
2
2 = I2, and while if J =

[
0 1
1 0

]

, J2 = I2, we do not consider J to be a square

root of I2.)

3.8.9 The Generalized Eigenvalue Problem

The characterization of an eigenvalue as a root of the determinant equa-
tion (3.173) can be extended to define a generalized eigenvalue of the square
matrices A and B to be a root in c of the equation

|A − cB| = 0 (3.217)

if a root exists.
Equation (3.217) is equivalent to A − cB being singular; that is, for some

c and some nonzero, finite v,

Av = cBv.

Such a v (if it exists) is called the generalized eigenvector. In contrast to
the existence of eigenvalues of any square matrix with finite elements, the
generalized eigenvalues may not exist; that is, they may be infinite.

If B is nonsingular and A and B are n×n, all n eigenvalues of A and B exist
(and are finite). These generalized eigenvalues are the eigenvalues of AB−1

or B−1A. We see this because |B| �= 0, and so if c0 is any of the n (finite)
eigenvalues of AB−1 or B−1A, then 0 = |AB−1 − c0I| = |B−1A − c0I| =
|A − c0B| = 0. Likewise, we see that any eigenvector of AB−1 or B−1A is a
generalized eigenvector of A and B.

In the case of ordinary eigenvalues, we have seen that symmetry of the
matrix induces some simplifications. In the case of generalized eigenvalues,
symmetry together with positive definiteness yields some useful properties,
which we will discuss in Section 7.6.

Generalized eigenvalue problems often arise in multivariate statistical ap-
plications. Roy’s maximum root statistic, for example, is the largest general-
ized eigenvalue of two matrices that result from operations on a partitioned
matrix of sums of squares.

3.8 Eigenanalysis; Canonical Factorizations 127

Matrix Pencils

As c ranges over the reals (or, more generally, the complex numbers), the set
of matrices of the form A − cB is called the matrix pencil, or just the pencil,
generated by A and B, denoted as

(A,B).

(In this definition, A and B do not need to be square.) A generalized eigenvalue
of the square matrices A and B is called an eigenvalue of the pencil.

A pencil is said to be regular if |A−cB| is not identically 0 (and, of course,
if |A − cB| is defined, meaning A and B are square). An interesting special
case of a regular pencil is when B is nonsingular. As we have seen, in that
case, eigenvalues of the pencil (A,B) exist (and are finite) and are the same
as the ordinary eigenvalues of AB−1 or B−1A, and the ordinary eigenvectors
of AB−1 or B−1A are eigenvectors of the pencil (A,B).

3.8.10 Singular Values and the Singular Value
Decomposition

An n × m matrix A can be factored as

A = UDV T, (3.218)

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix, and
D is an n×m diagonal matrix with nonnegative entries. (An n×m diagonal
matrix has min(n,m) elements on the diagonal, and all other entries are zero.)

The number of positive entries in D is the same as the rank of A. (We
see this by first recognizing that the number of nonzero entries of D is obvi-
ously the rank of D, and multiplication by the full rank matrices U and V T

yields a product with the same rank from equations (3.120) and (3.121).) The
factorization (3.218) is called the singular value decomposition (SVD) or the
canonical singular value factorization of A. The elements on the diagonal of
D, di, are called the singular values of A.

If the rank of the matrix is r, we have d1 ≥ · · · ≥ dr > 0, and if r <
min(n,m), then dr+1 = · · · = dmin(n,m) = 0. In this case

D =
[

Dr 0
0 0

]

,

where Dr = diag(d1, . . . , dr).
From the factorization (3.218) defining the singular values, we see that the

singular values of AT are the same as those of A.
For a matrix with more rows than columns, in an alternate definition of the

singular value decomposition, the matrix U is n×m with orthogonal columns,
and D is an m×m diagonal matrix with nonnegative entries. Likewise, for a

128 3 Basic Properties of Matrices

matrix with more columns than rows, the singular value decomposition can be
defined as above but with the matrix V being m×n with orthogonal columns
and D being m × m and diagonal with nonnegative entries.

If A is symmetric, we see from equations (3.197) and (3.218) that the
singular values are the absolute values of the eigenvalues.

The Fourier Expansion in Terms of the Singular Value
Decomposition

From equation (3.218), we see that the general matrix A with rank r also
has a Fourier expansion, similar to equation (3.200), in terms of the singular
values and outer products of the columns of the U and V matrices:

A =
r∑

i=1

diuiv
T
i . (3.219)

This is also called a spectral decomposition. The uiv
T
i matrices in equa-

tion (3.219) have the property that 〈uiv
T
i , ujv

T
j 〉 = 0 for i �= j and 〈uiv

T
i , uiv

T
i 〉

= 1, and so the spectral decomposition is a Fourier expansion as in equa-
tion (3.82), and the singular values are Fourier coefficients.

The singular values di have the same properties as the Fourier coefficients
in any orthonormal expansion. For example, from equation (3.83), we see that
the singular values can be represented as the dot product

di = 〈A, uiv
T
i 〉.

After we have discussed matrix norms in the next section, we will formulate
Parseval’s identity for this Fourier expansion.

3.9 Matrix Norms

Norms on matrices are scalar functions of matrices with the three properties
on page 16 that define a norm in general. Matrix norms are often required
to have another property, called the consistency property, in addition to the
properties listed on page 16, which we repeat here for convenience. Assume A
and B are matrices conformable for the operations shown.

1. Nonnegativity and mapping of the identity:
if A �= 0, then ‖A‖ > 0, and ‖0‖ = 0.

2. Relation of scalar multiplication to real multiplication:
‖aA‖ = |a| ‖A‖ for real a.

3. Triangle inequality:
‖A + B‖ ≤ ‖A‖ + ‖B‖.

4. Consistency property:
‖AB‖ ≤ ‖A‖ ‖B‖.

3.9 Matrix Norms 129

Some people do not require the consistency property for a matrix norm. Most
useful matrix norms have the property, however, and we will consider it to be
a requirement in the definition. The consistency property for multiplication is
similar to the triangular inequality for addition.

Any function from IRn×m to IR that satisfies these four properties is a
matrix norm.

We note that the four properties of a matrix norm do not imply that it
is invariant to transposition of a matrix, and in general, ‖AT‖ �= ‖A‖. Some
matrix norms are the same for the transpose of a matrix as for the original
matrix. For instance, because of the property of the matrix dot product given
in equation (3.79), we see that a norm defined by that inner product would
be invariant to transposition.

For a square matrix A, the consistency property for a matrix norm yields

‖Ak‖ ≤ ‖A‖k (3.220)

for any positive integer k.
A matrix norm ‖·‖ is orthogonally invariant if A and B being orthogonally

similar implies ‖A‖ = ‖B‖.

3.9.1 Matrix Norms Induced from Vector Norms

Some matrix norms are defined in terms of vector norms. For clarity, we will
denote a vector norm as ‖ · ‖v and a matrix norm as ‖ · ‖M. (This notation is
meant to be generic; that is, ‖ · ‖v represents any vector norm.) The matrix
norm ‖ · ‖M induced by ‖ · ‖v is defined by

‖A‖M = max
x�=0

‖Ax‖v

‖x‖v
. (3.221)

It is easy to see that an induced norm is indeed a matrix norm. The first
three properties of a norm are immediate, and the consistency property can
be verified by applying the definition (3.221) to AB and replacing Bx with y;
that is, using Ay.

We usually drop the v or M subscript, and the notation ‖ · ‖ is overloaded
to mean either a vector or matrix norm. (Overloading of symbols occurs in
many contexts, and we usually do not even recognize that the meaning is
context-dependent. In computer language design, overloading must be recog-
nized explicitly because the language specifications must be explicit.)

The induced norm of A given in equation (3.221) is sometimes called the
maximum magnification by A. The expression looks very similar to the max-
imum eigenvalue, and indeed it is in some cases.

For any vector norm and its induced matrix norm, we see from equa-
tion (3.221) that

‖Ax‖ ≤ ‖A‖ ‖x‖ (3.222)

because ‖x‖ ≥ 0.

130 3 Basic Properties of Matrices

Lp Matrix Norms

The matrix norms that correspond to the Lp vector norms are defined for the
n × m matrix A as

‖A‖p = max
‖x‖p=1

‖Ax‖p. (3.223)

(Notice that the restriction on ‖x‖p makes this an induced norm as defined
in equation (3.221). Notice also the overloading of the symbols; the norm on
the left that is being defined is a matrix norm, whereas those on the right
of the equation are vector norms.) It is clear that the Lp matrix norms satisfy
the consistency property, because they are induced norms.

The L1 and L∞ norms have interesting simplifications of equation (3.221):

‖A‖1 = max
j

∑

i

|aij |, (3.224)

so the L1 is also called the column-sum norm; and

‖A‖∞ = max
i

∑

j

|aij |, (3.225)

so the L∞ is also called the row-sum norm. We see these relationships by
considering the Lp norm of the vector

v = (aT
1∗x, . . . , aT

n∗x),

where ai∗ is the ith row of A, with the restriction that ‖x‖p = 1. The Lp

norm of this vector is based on the absolute values of the elements; that is,
|
∑

j aijxj | for i = 1, . . . , n. Because we are free to choose x (subject to the
restriction that ‖x‖p = 1), for a given i, we can choose the sign of each xj to
maximize the overall expression. For example, for a fixed i, we can choose each
xj to have the same sign as aij , and so |

∑
j aijxj | is the same as

∑
j |aij | |xj |.

For the column-sum norm, the L1 norm of v is
∑

i |aT
i∗x|. The elements

of x are chosen to maximize this under the restriction that
∑

|xj | = 1. The
maximum of the expression is attained by setting xk = sign(

∑
i aik), where k

is such that |
∑

i aik| ≥ |
∑

i aij |, for j = 1, . . . ,m, and xq = 0 for q = 1, . . . m
and q �= k. (If there is no unique k, any choice will yield the same result.)
This yields equation (3.224).

For the row-sum norm, the L∞ norm of v is

max
i

|aT
i∗x| = max

i

∑

j

|aij | |xj |

when the sign of xj is chosen appropriately (for a given i). The elements of
x must be chosen so that max |xj | = 1; hence, each xj is chosen as ±1. The
maximum |aT

i∗x| is attained by setting xj = sign(akj), for j = 1, . . . m, where k
is such that

∑
j |akj | ≥

∑
j |aij |, for i = 1, . . . , n. This yields equation (3.225).

3.9 Matrix Norms 131

From equations (3.224) and (3.225), we see that

‖AT‖∞ = ‖A‖1. (3.226)

Alternative formulations of the L2 norm of a matrix are not so obvious
from equation (3.223). It is related to the eigenvalues (or the singular values)
of the matrix. The L2 matrix norm is related to the spectral radius (page 111):

‖A‖2 =
√

ρ(ATA), (3.227)

(see Exercise 3.24, page 142). Because of this relationship, the L2 matrix norm
is also called the spectral norm.

From the invariance of the singular values to matrix transposition, we
see that positive eigenvalues of ATA are the same as those of AAT; hence,
‖AT‖2 = ‖A‖2.

For Q orthogonal, the L2 vector norm has the important property

‖Qx‖2 = ‖x‖2 (3.228)

(see Exercise 3.25a, page 142). For this reason, an orthogonal matrix is some-
times called an isometric matrix. By the proper choice of x, it is easy to see
from equation (3.228) that

‖Q‖2 = 1. (3.229)

Also from this we see that if A and B are orthogonally similar, then ‖A‖2 =
‖B‖2; hence, the spectral matrix norm is orthogonally invariant.

The L2 matrix norm is a Euclidean-type norm since it is induced by the
Euclidean vector norm (but it is not called the Euclidean matrix norm; see
below).

L1, L2, and L∞ Norms of Symmetric Matrices

For a symmetric matrix A, we have the obvious relationships

‖A‖1 = ‖A‖∞ (3.230)

and, from equation (3.227),

‖A‖2 = ρ(A). (3.231)

3.9.2 The Frobenius Norm — The “Usual” Norm

The Frobenius norm is defined as

‖A‖F =
√∑

i,j

a2
ij . (3.232)

132 3 Basic Properties of Matrices

It is easy to see that this measure has the consistency property (Exercise 3.27),
as a norm must. The Frobenius norm is sometimes called the Euclidean matrix
norm and denoted by ‖ · ‖E, although the L2 matrix norm is more directly
based on the Euclidean vector norm, as we mentioned above. We will usually
use the notation ‖ · ‖F to denote the Frobenius norm. Occasionally we use
‖ · ‖ without the subscript to denote the Frobenius norm, but usually the
symbol without the subscript indicates that any norm could be used in the
expression. The Frobenius norm is also often called the “usual norm”, which
emphasizes the fact that it is one of the most useful matrix norms. Other
names sometimes used to refer to the Frobenius norm are Hilbert-Schmidt
norm and Schur norm.

A useful property of the Frobenius norm that is obvious from the defini-
tion is

‖A‖F =
√

tr(ATA)

=
√

〈A,A〉;

that is,

• the Frobenius norm is the norm that arises from the matrix inner prod-
uct (see page 74).

From the commutativity of an inner product, we have ‖AT‖F = ‖A‖F. We
have seen that the L2 matrix norm also has this property.

Similar to defining the angle between two vectors in terms of the inner
product and the norm arising from the inner product, we define the angle
between two matrices A and B of the same size and shape as

angle(A,B) = cos−1

(
〈A,B〉

‖A‖F‖B‖F

)

. (3.233)

If Q is an n × m orthogonal matrix, then

‖Q‖F =
√

m (3.234)

(see equation (3.169)).
If A and B are orthogonally similar (see equation (3.191)), then

‖A‖F = ‖B‖F;

that is, the Frobenius norm is an orthogonally invariant norm. To see this, let
A = QTBQ, where Q is an orthogonal matrix. Then

‖A‖2
F = tr(ATA)

= tr(QTBTQQTBQ)
= tr(BTBQQT)
= tr(BTB)
= ‖B‖2

F.

3.9 Matrix Norms 133

(The norms are nonnegative, of course, and so equality of the squares is suf-
ficient.)

Parseval’s Identity

Several important properties result because the Frobenius norm arises from
an inner product. For example, following the Fourier expansion in terms of
the singular value decomposition, equation (3.219), we mentioned that the
singular values have the general properties of Fourier coefficients; for example,
they satisfy Parseval’s identity, equation (2.38), on page 29. This identity
states that the sum of the squares of the Fourier coefficients is equal to the
square of the norm that arises from the inner product used in the Fourier
expansion. Hence, we have the important property of the Frobenius norm
that the square of the norm is the sum of squares of the singular values of the
matrix:

‖A‖2
F =

∑
d2

i . (3.235)

3.9.3 Matrix Norm Inequalities

There is an equivalence among any two matrix norms similar to that of expres-
sion (2.17) for vector norms (over finite-dimensional vector spaces). If ‖ · ‖a

and ‖ · ‖b are matrix norms, then there are positive numbers r and s such
that, for any matrix A,

r‖A‖b ≤ ‖A‖a ≤ s‖A‖b. (3.236)

We will not prove this result in general but, in Exercise 3.28, ask the reader
to do so for matrix norms induced by vector norms. These induced norms
include the matrix Lp norms of course.

If A is an n × m real matrix, we have some specific instances of (3.236):

‖A‖∞ ≤
√

m ‖A‖F, (3.237)

‖A‖F ≤
√

min(n,m) ‖A‖2, (3.238)

‖A‖2 ≤
√

m ‖A‖1, (3.239)

‖A‖1 ≤
√

n ‖A‖2, (3.240)

‖A‖2 ≤ ‖A‖F, (3.241)

‖A‖F ≤
√

n ‖A‖∞. (3.242)

134 3 Basic Properties of Matrices

See Exercises 3.29 and 3.30 on page 143. Compare these inequalities with
those for Lp vector norms on page 18. Recall specifically that for vector Lp

norms we had the useful fact that for a given x and for p ≥ 1, ‖x‖p is a
nonincreasing function of p; and specifically we had inequality (2.12):

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.

3.9.4 The Spectral Radius

The spectral radius is the appropriate measure of the condition of a square
matrix for certain iterative algorithms. Except in the case of symmetric ma-
trices, as shown in equation (3.231), the spectral radius is not a norm (see
Exercise 3.31a).

We have for any norm ‖ · ‖ and any square matrix A that

ρ(A) ≤ ‖A‖. (3.243)

To see this, we consider the associated eigenvalue and eigenvector ci and vi

and form the matrix V = [vi|0| · · · |0], so ciV = AV , and by the consistency
property of any matrix norm,

|ci|‖V ‖ = ‖ciV ‖
= ‖AV ‖
≤ ‖A‖ ‖V ‖,

or
|ci| ≤ ‖A‖,

(see also Exercise 3.31b).
The inequality (3.243) and the L1 and L∞ norms yield useful bounds on

the eigenvalues and the maximum absolute row and column sums of matrices:
the modulus of any eigenvalue is no greater than the largest sum of absolute
values of the elements in any row or column.

The inequality (3.243) and equation (3.231) also yield a minimum property
of the L2 norm of a symmetric matrix A:

‖A‖2 ≤ ‖A‖.

3.9.5 Convergence of a Matrix Power Series

We define the convergence of a sequence of matrices in terms of the conver-
gence of a sequence of their norms, just as we did for a sequence of vectors (on
page 20). We say that a sequence of matrices A1, A2, . . . (of the same shape)
converges to the matrix A with respect to the norm ‖ · ‖ if the sequence of

3.9 Matrix Norms 135

real numbers ‖A1 − A‖, ‖A2 − A‖, . . . converges to 0. Because of the equiv-
alence property of norms, the choice of the norm is irrelevant. Also, because
of inequality (3.243), we see that the convergence of the sequence of spectral
radii ρ(A1 −A), ρ(A2 −A), . . . to 0 must imply the convergence of A1, A2, . . .
to A.

Conditions for Convergence of a Sequence of Powers

For a square matrix A, we have the important fact that

Ak → 0, if ‖A‖ < 1, (3.244)

where 0 is the square zero matrix of the same order as A and ‖·‖ is any matrix
norm. (The consistency property is required.) This convergence follows from
inequality (3.220) because that yields limk→∞ ‖Ak‖ ≤ limk→∞ ‖A‖k, and so
if ‖A‖ < 1, then limk→∞ ‖Ak‖ = 0.

Now consider the spectral radius. Because of the spectral decomposition,
we would expect the spectral radius to be related to the convergence of a
sequence of powers of a matrix. If Ak → 0, then for any conformable vector
x, Akx → 0; in particular, for the eigenvector v1 �= 0 corresponding to the
dominant eigenvalue c1, we have Akv1 = ck

1v1 → 0. For ck
1v1 to converge to

zero, we must have |c1| < 1; that is, ρ(A) < 1. We can also show the converse:

Ak → 0 if ρ(A) < 1. (3.245)

We will do this by defining a norm ‖ · ‖d in terms of the L1 matrix norm in
such a way that ρ(A) < 1 implies ‖A‖d < 1. Then we can use equation (3.244)
to establish the convergence.

Let A = QTQT be the Schur factorization of the n × n matrix A, where
Q is orthogonal and T is upper triangular with the same eigenvalues as A,
c1, . . . , cn. Now for any d > 0, form the diagonal matrix D = diag(d1, . . . , dn).
Notice that DTD−1 is an upper triangular matrix and its diagonal elements
(which are its eigenvalues) are the same as the eigenvalues of T and A. Con-
sider the column sums of the absolute values of the elements of DTD−1:

|cj | +
j−1∑

i=1

d−(j−i)|tij |.

Now, because |cj | ≤ ρ(A) for given ε > 0, by choosing d large enough, we have

|cj | +
j−1∑

i=1

d−(j−i)|tij | < ρ(A) + ε,

or

‖DTD−1‖1 = max
j

(

|cj | +
j−1∑

i=1

d−(j−i)|tij |
)

< ρ(A) + ε.

136 3 Basic Properties of Matrices

Now define ‖ · ‖d for any n × n matrix X, where Q is the orthogonal matrix
in the Schur factorization and D is as defined above, as

‖X‖d = ‖(QD−1)−1X(QD−1)‖1. (3.246)

Now ‖ · ‖d is a norm (Exercise 3.32). Furthermore,

‖A‖d = ‖(QD−1)−1A(QD−1)‖1

= ‖DTD−1‖1

< ρ(A) + ε,

and so if ρ(A) < 1, ε and d can be chosen so that ‖A‖d < 1, and by equa-
tion (3.244) above, we have Ak → 0; hence, we conclude that

Ak → 0 if and only if ρ(A) < 1. (3.247)

From inequality (3.243) and the fact that ρ(Ak) = ρ(A)k, we have ρ(A) ≤
‖Ak‖1/k. Now, for any ε > 0, ρ

(
A/(ρ(A) + ε)

)
< 1 and so

lim
k→∞

(
A/(ρ(A) + ε)

)k = 0

from expression (3.247); hence,

lim
k→∞

‖Ak‖
(ρ(A) + ε)k

= 0.

There is therefore a positive integer Mε such that ‖Ak‖/(ρ(A) + ε)k < 1 for
all k > Mε, and hence ‖Ak‖1/k < (ρ(A) + ε) for k > Mε. We have therefore,
for any ε > 0,

ρ(A) ≤ ‖Ak‖1/k < ρ(A) + ε for k > Mε,

and thus
lim

k→∞
‖Ak‖1/k = ρ(A). (3.248)

Convergence of a Power Series; Inverse of I − A

Consider the power series in an n × n matrix such as in equation (3.140) on
page 94,

I + A + A2 + A3 + · · · .

In the standard fashion for dealing with series, we form the partial sum

Sk = I + A + A2 + A3 + · · ·Ak

and consider limk→∞ Sk. We first note that

(I − A)Sk = I − Ak+1

and observe that if Ak+1 → 0, then Sk → (I−A)−1, which is equation (3.140).
Therefore,

(I − A)−1 = I + A + A2 + A3 + · · · if ‖A‖ < 1. (3.249)

3.10 Approximation of Matrices 137

Nilpotent Matrices

The condition in equation (3.236) is not necessary; that is, if Ak → 0, it may
be the case that, for some norm, ‖A‖ > 1. A simple example is

A =
[

0 2
0 0

]

.

For this matrix, A2 = 0, yet ‖A‖1 = ‖A‖2 = ‖A‖∞ = ‖A‖F = 2.
A matrix like A above such that its product with itself is 0 is called nilpo-

tent. More generally, for a square matrix A, if Ak = 0 for some positive integer
k, but Ak−1 �= 0, A is said to be nilpotent of index k. Strictly speaking, a nilpo-
tent matrix is nilpotent of index 2, but often the term “nilpotent” without
qualification is used to refer to a matrix that is nilpotent of any index. A
simple example of a matrix that is nilpotent of index 3 is

A =

⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ .

It is easy to see that if An×n is nilpotent, then

tr(A) = 0, (3.250)

ρ(A) = 0, (3.251)

(that is, all eigenvalues of A are 0), and

rank(A) = n − 1. (3.252)

You are asked to supply the proofs of these statements in Exercise 3.33.
In applications, for example in time series or other stochastic processes,

because of expression (3.247), the spectral radius is often the most useful.
Stochastic processes may be characterized by whether the absolute value of
the dominant eigenvalue (spectral radius) of a certain matrix is less than 1.
Interesting special cases occur when the dominant eigenvalue is equal to 1.

3.10 Approximation of Matrices

In Section 2.2.6, we discussed the problem of approximating a given vector
in terms of vectors from a lower dimensional space. Likewise, it is often of
interest to approximate one matrix by another. In statistical applications, we
may wish to find a matrix of smaller rank that contains a large portion of the
information content of a matrix of larger rank (“dimension reduction”as on
page 345; or variable selection as in Section 9.4.2, for example), or we may
want to impose conditions on an estimate that it have properties known to
be possessed by the estimand (positive definiteness of the correlation matrix,
for example, as in Section 9.4.6). In numerical linear algebra, we may wish
to find a matrix that is easier to compute or that has properties that ensure
more stable computations.

138 3 Basic Properties of Matrices

Metric for the Difference of Two Matrices

A natural way to assess the goodness of the approximation is by a norm of the
difference (that is, by a metric induced by a norm), as discussed on page 22.
If Ã is an approximation to A, we measure the quality of the approximation
by ‖A − Ã‖ for some norm. In the following, we will measure the goodness
of the approximation using the norm that arises from the inner product (the
Frobenius norm).

Best Approximation with a Matrix of Given Rank

Suppose we want the best approximation to an n × m matrix A of rank r by
a matrix Ã in IRn×m but with smaller rank, say k; that is, we want to find Ã
of rank k such that

‖A − Ã‖F (3.253)

is a minimum for all Ã ∈ IRn×m of rank k.
We have an orthogonal basis in terms of the singular value decomposition,

equation (3.219), for some subspace of IRn×m, and we know that the Fourier
coefficients provide the best approximation for any subset of k basis matrices,
as in equation (2.43). This Fourier fit would have rank k as required, but it
would be the best only within that set of expansions. (This is the limitation
imposed in equation (2.43).) Another approach to determine the best fit could
be developed by representing the columns of the approximating matrix as
linear combinations of the given matrix A and then expanding ‖A − Ã‖2

F.
Neither the Fourier expansion nor the restriction V(Ã) ⊂ V(A) permit us to
address the question of what is the overall best approximation of rank k within
IRn×m. As we see below, however, there is a minimum of expression (3.253)
that occurs within V(A), and a minimum is at the truncated Fourier expansion
in the singular values (equation (3.219)).

To state this more precisely, let A be an n × m matrix of rank r with
singular value decomposition

A = U

[
Dr 0
0 0

]

V T,

where Dr = diag(d1, . . . , dr), and the singular values are indexed so that
d1 ≥ · · · ≥ dr > 0. Then, for all n × m matrices X with rank k < r,

‖A − X‖2
F ≥

r∑

i=k+1

d2
i , (3.254)

and this minimum occurs for X = Ã, where

Ã = U

[
Dk 0
0 0

]

V T. (3.255)

3.10 Approximation of Matrices 139

To see this, for any X, let Q be an n × k matrix whose columns are an
orthonormal basis for V(X), and let X = QY , where Y is a k×n matrix, also
of rank k. The minimization problem now is

min
Y

‖A − QY ‖F

with the restriction rank(Y) = k.
Now, expanding, completing the Gramian and using its nonnegative defi-

niteness, and permuting the factors within a trace, we have

‖A − QY ‖2
F = tr

(
(A − QY)T(A − QY)

)

= tr
(
ATA

)
+ tr

(
Y TY − ATQY − Y TQTA

)

= tr
(
ATA

)
+ tr

(
(Y − QTA)T(Y − QTA)

)
− tr

(
ATQQTA

)

≥ tr
(
ATA

)
− tr

(
QTAATQ

)
.

The squares of the singular values of A are the eigenvalues of ATA, and so
tr(ATA) =

∑r
i=1 d2

i . The eigenvalues of ATA are also the eigenvalues of AAT,
and so, from inequality (3.213), tr(QTAATQ) ≤

∑k
i=1 d2

i , and so

‖A − X‖2
F ≥

r∑

i=1

d2
i −

k∑

i=1

d2
i ;

hence, we have inequality (3.254). (This technique of “completing the Gramian”
when an orthogonal matrix is present in a sum is somewhat similar to the tech-
nique of completing the square; it results in the difference of two Gramian
matrices, which are defined in Section 3.3.7.)

Direct expansion of ‖A − Ã‖2
F yields

tr
(
ATA

)
− 2tr

(
ATÃ

)
+ tr

(
ÃTÃ

)
=

r∑

i=1

d2
i −

k∑

i=1

d2
i ,

and hence Ã is the best rank k approximation to A under the Frobenius norm.
Equation (3.255) can be stated another way: the best approximation of A

of rank k is

Ã =
k∑

i=1

diuiv
T
i . (3.256)

This result for the best approximation of a given matrix by one of lower
rank was first shown by Eckart and Young (1936). On page 271, we will
discuss a bound on the difference between two symmetric matrices whether
of the same or different ranks.

In applications, the rank k may be stated a priori or we examine a se-
quence k = r − 1, r − 2, . . ., and determine the norm of the best fit at
each rank. If sk is the norm of the best approximating matrix, the sequence

140 3 Basic Properties of Matrices

sr−1, sr−2, . . . may suggest a value of k for which the reduction in rank is
sufficient for our purposes and the loss in closeness of the approximation is
not too great. Principal components analysis is a special case of this process
(see Section 9.3).

Exercises

3.1. Vector spaces of matrices.
a) Exhibit a basis set for IRn×m for n ≥ m.
b) Does the set of n × m diagonal matrices form a vector space? (The

answer is yes.) Exhibit a basis set for this vector space (assuming
n ≥ m).

c) Exhibit a basis set for the vector space of n × n symmetric matrices.
d) Show that the cardinality of any basis set for the vector space of

n × n symmetric matrices is n(n + 1)/2.
3.2. By expanding the expression on the left-hand side, derive equation (3.64)

on page 70.
3.3. Show that for any quadratic form xTAx there is a symmetric matrix

As such that xTAsx = xTAx. (The proof is by construction, with As =
1
2 (A+AT), first showing As is symmetric and then that xTAsx = xTAx.)

3.4. Give conditions on a, b, and c for the matrix below to be positive definite.
[

a b
b c

]

.

3.5. Show that the Mahalanobis distance defined in equation (3.67) is a
metric (that is, show that it satisfies the properties listed on page 22).

3.6. Verify the relationships for Kronecker products shown in equations (3.70)
through (3.74) on page 73.
Make liberal use of equation (3.69) and previously verified equations.

3.7. Cauchy-Schwarz inequalities for matrices.
a) Prove the Cauchy-Schwarz inequality for the dot product of matrices

((3.80), page 75), which can also be written as

(tr(ATB))2 ≤ tr(ATA)tr(BTB).

b) Prove the Cauchy-Schwarz inequality for determinants of matrices
A and B of the same shape:

|(ATB)|2 ≤ |ATA||BTB|.

Under what conditions is equality achieved?
c) Let A and B be matrices of the same shape, and define

p(A,B) = |ATB|.

Is p(·, ·) an inner product? Why or why not?

Exercises 141

3.8. Prove that a square matrix that is either row or column diagonally
dominant is nonsingular.

3.9. Prove that a positive definite matrix is nonsingular.
3.10. Let A be an n × m matrix.

a) Under what conditions does A have a Hadamard multiplicative in-
verse?

b) If A has a Hadamard multiplicative inverse, what is it?
3.11. The affine group AL(n).

a) What is the identity in AL(n)?
b) Let (A, v) be an element of AL(n). What is the inverse of (A, v)?

3.12. Verify the relationships shown in equations (3.133) through (3.139) on
page 93. Do this by multiplying the appropriate matrices. For example,
the first equation is verified by the equations

(I + A−1)A(I + A)−1 = (A + I)(I + A)−1 = (I + A)(I + A)−1 = I.

Make liberal use of equation (3.132) and previously verified equations.
Of course it is much more interesting to derive relationships such as these
rather than merely to verify them. The verification, however, often gives
an indication of how the relationship would arise naturally.

3.13. By writing AA−1 = I, derive the expression for the inverse of a parti-
tioned matrix given in equation (3.145).

3.14. Show that the expression given for the generalized inverse in equa-
tion (3.165) on page 101 is correct.

3.15. Show that the expression given in equation (3.167) on page 102 is a
Moore-Penrose inverse of A. (Show that properties 1 through 4 hold.)

3.16. Write formal proofs of the properties of eigenvalues/vectors listed on
page 107.

3.17. Let A be a square matrix with an eigenvalue c and corresponding eigen-
vector v. Consider the matrix polynomial in A

p(A) = b0I + b1A + · · · + bkAk.

Show that if (c, v) is an eigenpair of A, then p(c), that is,

b0 + b1c + · · · + bkck,

is an eigenvalue of p(A) with corresponding eigenvector v. (Technically,
the symbol p(·) is overloaded in these two instances.)

3.18. Write formal proofs of the properties of eigenvalues/vectors listed on
page 110.

3.19. a) Show that the unit vectors are eigenvectors of a diagonal matrix.
b) Give an example of two similar matrices whose eigenvectors are not

the same.

Hint: In equation (3.190), let A be a 2 × 2 diagonal matrix (so you
know its eigenvalues and eigenvectors) with unequal values along

142 3 Basic Properties of Matrices

the diagonal, and let P be a 2 × 2 upper triangular matrix, so that
you can invert it. Form B and check the eigenvectors.

3.20. Let A be a diagonalizable matrix (not necessarily symmetric) with a
spectral decomposition of the form of equation (3.205), A =

∑
i ciPi.

Let cj be a simple eigenvalue with associated left and right eigenvectors
yj and xj , respectively. (Note that because A is not symmetric, it may
have nonreal eigenvalues and eigenvectors.)
a) Show that yH

j xj �= 0.
b) Show that the projection matrix Pj is xjy

H
j /yH

j xj .
3.21. If A is nonsingular, show that for any (conformable) vector x

(xTAx)(xTA−1x) ≥ (xTx)2.

Hint: Use the square roots and the Cauchy-Schwarz inequality.
3.22. Prove that the induced norm (page 129) is a matrix norm; that is, prove

that it satisfies the consistency property.
3.23. Prove the inequality (3.222) for an induced matrix norm on page 129:

‖Ax‖ ≤ ‖A‖ ‖x‖.

3.24. Prove that, for the square matrix A,

‖A‖2
2 = ρ(ATA).

Hint: Show that ‖A‖2
2 = max xTATAx for any normalized vector x.

3.25. Let Q be an n × n orthogonal matrix, and let x be an n-vector.
a) Prove equation (3.228):

‖Qx‖2 = ‖x‖2.

Hint: Write ‖Qx‖2 as
√

(Qx)TQx.
b) Give examples to show that this does not hold for other norms.

3.26. The triangle inequality for matrix norms: ‖A + B‖ ≤ ‖A‖ + ‖B‖.
a) Prove the triangle inequality for the matrix L1 norm.
b) Prove the triangle inequality for the matrix L∞ norm.
c) Prove the triangle inequality for the matrix Frobenius norm.

3.27. Prove that the Frobenius norm satisfies the consistency property.
3.28. If ‖ · ‖a and ‖ · ‖b are matrix norms induced respectively by the vector

norms ‖ · ‖va
and ‖ · ‖vb

, prove inequality (3.236); that is, show that
there are positive numbers r and s such that, for any A,

r‖A‖b ≤ ‖A‖a ≤ s‖A‖b.

3.29. Use the Cauchy-Schwarz inequality to prove that for any square matrix
A with real elements,

‖A‖2 ≤ ‖A‖F.

Exercises 143

3.30. Prove inequalities (3.237) through (3.242), and show that the bounds
are sharp by exhibiting instances of equality.

3.31. The spectral radius, ρ(A).
a) We have seen by an example that ρ(A) = 0 does not imply A = 0.

What about other properties of a matrix norm? For each, either
show that the property holds for the spectral radius or, by means
of an example, that it does not hold.

b) Use the outer product of an eigenvector and the one vector to show
that for any norm ‖ · ‖ and any matrix A, ρ(A) ≤ ‖A‖.

3.32. Show that the function ‖ · ‖d defined in equation (3.246) is a norm.

Hint: Just verify the properties on page 128 that define a norm.
3.33. Prove equations (3.250) through (3.252).
3.34. Prove equations (3.254) and (3.255) under the restriction that V(X) ⊂

V(A); that is, where X = BL for a matrix B whose columns span V(A).

4

Vector/Matrix Derivatives and Integrals

The operations of differentiation and integration of vectors and matrices are
logical extensions of the corresponding operations on scalars. There are three
objects involved in this operation:

• the variable of the operation;
• the operand (the function being differentiated or integrated); and
• the result of the operation.

In the simplest case, all three of these objects are of the same type, and
they are scalars. If either the variable or the operand is a vector or a matrix,
however, the structure of the result may be more complicated. This statement
will become clearer as we proceed to consider specific cases.

In this chapter, we state or show the form that the derivative takes in
terms of simpler derivatives. We state high-level rules for the nature of the
differentiation in terms of simple partial differentiation of a scalar with respect
to a scalar. We do not consider whether or not the derivatives exist. In gen-
eral, if the simpler derivatives we write that comprise the more complicated
object exist, then the derivative of that more complicated object exists. Once
a shape of the derivative is determined, definitions or derivations in ε-δ terms
could be given, but we will refrain from that kind of formal exercise. The
purpose of this chapter is not to develop a calculus for vectors and matrices
but rather to consider some cases that find wide applications in statistics.
For a more careful treatment of differentiation of vectors and matrices, the
reader is referred to Rogers (1980) or to Magnus and Neudecker (1999). An-
derson (2003), Muirhead (1982), and Nachbin (1965) cover various aspects of
integration with respect to vector or matrix differentials.

4.1 Basics of Differentiation

It is useful to recall the heuristic interpretation of a derivative. A derivative
of a function is the infinitesimal rate of change of the function with respect

146 4 Vector/Matrix Derivatives and Integrals

to the variable with which the differentiation is taken. If both the function
and the variable are scalars, this interpretation is unambiguous. If, however,
the operand of the differentiation, Φ, is a more complicated function, say a
vector or a matrix, and/or the variable of the differentiation, Ξ, is a more
complicated object, the changes are more difficult to measure. Change in the
value both of the function,

δΦ = Φnew − Φold,

and of the variable,
δΞ = Ξnew − Ξold,

could be measured in various ways; for example, by using various norms, as
discussed in Sections 2.1.5 and 3.9. (Note that the subtraction is not neces-
sarily ordinary scalar subtraction.)

Furthermore, we cannot just divide the function values by δΞ. We do not
have a definition for division by that kind of object. We need a mapping,
possibly a norm, that assigns a positive real number to δΞ. We can define
the change in the function value as just the simple difference of the function
evaluated at the two points. This yields

lim
‖δΞ‖→0

Φ(Ξ + δΞ) − Φ(Ξ)
‖δΞ‖ . (4.1)

So long as we remember the complexity of δΞ, however, we can adopt a
simpler approach. Since for both vectors and matrices, we have definitions of
multiplication by a scalar and of addition, we can simplify the limit in the
usual definition of a derivative, δΞ → 0. Instead of using δΞ as the element
of change, we will use tΥ , where t is a scalar and Υ is an element to be added
to Ξ. The limit then will be taken in terms of t → 0. This leads to

lim
t→0

Φ(Ξ + tΥ) − Φ(Ξ)
t

(4.2)

as a formula for the derivative of Φ with respect to Ξ.
The expression (4.2) may be a useful formula for evaluating a derivative,

but we must remember that it is not the derivative. The type of object of
this formula is the same as the type of object of the function, Φ; it does not
accommodate the type of object of the argument, Ξ, unless Ξ is a scalar. As
we will see below, for example, if Ξ is a vector and Φ is a scalar, the derivative
must be a vector, yet in that case the expression (4.2) is a scalar.

The expression (4.1) is rarely directly useful in evaluating a derivative, but
it serves to remind us of both the generality and the complexity of the concept.
Both Φ and its arguments could be functions, for example. (In functional
analysis, various kinds of functional derivatives are defined, such as a Gâteaux
derivative. These derivatives find applications in developing robust statistical
methods; see Shao, 2003, for example.) In this chapter, we are interested in the
combinations of three possibilities for Φ, namely scalar, vector, and matrix,
and the same three possibilities for Ξ and Υ .

4.1 Basics of Differentiation 147

Continuity

It is clear from the definition of continuity that for the derivative of a function
to exist at a point, the function must be continuous at that point. A function
of a vector or a matrix is continuous if it is continuous for each element
of the vector or matrix. Just as scalar sums and products are continuous,
vector/matrix sums and all of the types of vector/matrix products we have
discussed are continuous. A continuous function of a continuous function is
continuous.

Many of the vector/matrix functions we have discussed are clearly con-
tinuous. For example, the Lp vector norms in equation (2.11) are continuous
over the nonnegative reals but not over the reals unless p is an even (posi-
tive) integer. The determinant of a matrix is continuous, as we see from the
definition of the determinant and the fact that sums and scalar products are
continuous. The fact that the determinant is a continuous function immedi-
ately yields the result that cofactors and hence the adjugate are continuous.
From the relationship between an inverse and the adjugate (equation (3.131)),
we see that the inverse is a continuous function.

Notation and Properties

We write the differential operator with respect to the dummy variable x as
∂/∂x or ∂/∂xT. We usually denote differentiation using the symbol for “par-
tial” differentiation, ∂, whether the operator is written ∂xi for differentiation
with respect to a specific scalar variable or ∂x for differentiation with respect
to the array x that contains all of the individual elements. Sometimes, how-
ever, if the differentiation is being taken with respect to the whole array (the
vector or the matrix), we use the notation d/dx.

The operand of the differential operator ∂/∂x is a function of x. (If it
is not a function of x—that is, if it is a constant function with respect to
x— then the operator evaluates to 0.) The result of the operation, written
∂f/∂x, is also a function of x, with the same domain as f , and we sometimes
write ∂f(x)/∂x to emphasize this fact. The value of this function at the fixed
point x0 is written as ∂f(x0)/∂x. (The derivative of the constant f(x0) is
identically 0, but it is not necessary to write ∂f(x)/∂x|x0 because ∂f(x0)/∂x
is interpreted as the value of the function ∂f(x)/∂x at the fixed point x0.)

If ∂/∂x operates on f , and f : S → T , then ∂/∂x : S → U . The nature
of S, or more directly the nature of x, whether it is a scalar, a vector, or
a matrix, and the nature of T determine the structure of the result U . For
example, if x is an n-vector and f(x) = xTx, then

f : IRn → IR

and
∂f/∂x : IRn → IRn,

148 4 Vector/Matrix Derivatives and Integrals

as we will see. The outer product, h(x) = xxT, is a mapping to a higher rank
array, but the derivative of the outer product is a mapping to an array of the
same rank; that is,

h : IRn → IRn×n

and
∂h/∂x : IRn → IRn.

(Note that “rank” here means the number of dimensions; see page 5.)
As another example, consider g(·) = det(·), so

g : IRn×n �→ IR.

In this case,
∂g/∂X : IRn×n �→ IRn×n;

that is, the derivative of the determinant of a square matrix is a square matrix,
as we will see later.

Higher-order differentiation is a composition of the ∂/∂x operator with
itself or of the ∂/∂x operator and the ∂/∂xT operator. For example, consider
the familiar function in linear least squares

f(b) = (y − Xb)T(y − Xb).

This is a mapping from IRm to IR. The first derivative with respect to the m-
vector b is a mapping from IRm to IRm, namely 2XTXb− 2XTy. The second
derivative with respect to bT is a mapping from IRm to IRm×m, namely, 2XTX.
(Many readers will already be familiar with these facts. We will discuss the
general case of differentiation with respect to a vector in Section 4.2.2.)

We see from expression (4.1) that differentiation is a linear operator; that
is, if D(Φ) represents the operation defined in expression (4.1), Ψ is another
function in the class of functions over which D is defined, and a is a scalar
that does not depend on the variable Ξ, then D(aΦ + Ψ) = aD(Φ) + D(Ψ).
This yields the familiar rules of differential calculus for derivatives of sums or
constant scalar products. Other usual rules of differential calculus apply, such
as for differentiation of products and composition (the chain rule). We can
use expression (4.2) to work these out. For example, for the derivative of the
product ΦΨ , after some rewriting of terms, we have the numerator

Φ(Ξ)
(
Ψ(Ξ + tΥ) − Ψ(Ξ)

)

+Ψ(Ξ)
(
Φ(Ξ + tΥ) − Φ(Ξ)

)

+
(
Φ(Ξ + tΥ) − Φ(Ξ)

)(
Ψ(Ξ + tΥ) − Ψ(Ξ)

)
.

Now, dividing by t and taking the limit, assuming that as

t → 0,

(Φ(Ξ + tΥ) − Φ(Ξ)) → 0,

4.2 Types of Differentiation 149

we have
D(ΦΨ) = D(Φ)Ψ + ΦD(Ψ), (4.3)

where again D represents the differentiation operation.

Differentials

For a differentiable scalar function of a scalar variable, f(x), the differential
of f at c with increment u is udf/dx|c. This is the linear term in a truncated
Taylor series expansion:

f(c + u) = f(c) + u
d
dx

f(c) + r(c, u). (4.4)

Technically, the differential is a function of both x and u, but the notation
df is used in a generic sense to mean the differential of f . For vector/matrix
functions of vector/matrix variables, the differential is defined in a similar
way. The structure of the differential is the same as that of the function; that
is, for example, the differential of a matrix-valued function is a matrix.

4.2 Types of Differentiation

In the following sections we consider differentiation with respect to different
types of objects first, and we consider differentiation of different types of
objects.

4.2.1 Differentiation with Respect to a Scalar

Differentiation of a structure (vector or matrix, for example) with respect to
a scalar is quite simple; it just yields the ordinary derivative of each element
of the structure in the same structure. Thus, the derivative of a vector or a
matrix with respect to a scalar variable is a vector or a matrix, respectively,
of the derivatives of the individual elements.

Differentiation with respect to a vector or matrix, which we will consider
below, is often best approached by considering differentiation with respect to
the individual elements of the vector or matrix, that is, with respect to scalars.

Derivatives of Vectors with Respect to Scalars

The derivative of the vector y(x) = (y1, . . . , yn) with respect to the scalar x
is the vector

∂y/∂x = (∂y1/∂x, . . . , ∂yn/∂x). (4.5)

The second or higher derivative of a vector with respect to a scalar is
likewise a vector of the derivatives of the individual elements; that is, it is an
array of higher rank.

150 4 Vector/Matrix Derivatives and Integrals

Derivatives of Matrices with Respect to Scalars

The derivative of the matrix Y (x) = (yij) with respect to the scalar x is the
matrix

∂Y (x)/∂x = (∂yij/∂x). (4.6)

The second or higher derivative of a matrix with respect to a scalar is
likewise a matrix of the derivatives of the individual elements.

Derivatives of Functions with Respect to Scalars

Differentiation of a function of a vector or matrix that is linear in the elements
of the vector or matrix involves just the differentiation of the elements, fol-
lowed by application of the function. For example, the derivative of a trace of
a matrix is just the trace of the derivative of the matrix. On the other hand,
the derivative of the determinant of a matrix is not the determinant of the
derivative of the matrix (see below).

Higher-Order Derivatives with Respect to Scalars

Because differentiation with respect to a scalar does not change the rank
of the object (“rank” here means rank of an array or “shape”), higher-order
derivatives ∂k/∂xk with respect to scalars are merely objects of the same rank
whose elements are the higher-order derivatives of the individual elements.

4.2.2 Differentiation with Respect to a Vector

Differentiation of a given object with respect to an n-vector yields a vector
for each element of the given object. The basic expression for the derivative,
from formula (4.2), is

lim
t→0

Φ(x + ty) − Φ(x)
t

(4.7)

for an arbitrary conformable vector y. The arbitrary y indicates that the
derivative is omnidirectional; it is the rate of change of a function of the
vector in any direction.

Derivatives of Scalars with Respect to Vectors; The Gradient

The derivative of a scalar-valued function with respect to a vector is a vector
of the partial derivatives of the function with respect to the elements of the
vector. If f(x) is a scalar function of the vector x = (x1, . . . , xn),

∂f

∂x
=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)

, (4.8)

4.2 Types of Differentiation 151

if those derivatives exist. This vector is called the gradient of the scalar-valued
function, and is sometimes denoted by gf (x) or ∇f(x), or sometimes just gf

or ∇f :

gf = ∇f =
∂f

∂x
. (4.9)

The notation gf or ∇f implies differentiation with respect to “all” arguments
of f , hence, if f is a scalar-valued function of a vector argument, they represent
a vector.

This derivative is useful in finding the maximum or minimum of a func-
tion. Such applications arise throughout statistical and numerical analysis. In
Section 6.3.2, we will discuss a method of solving linear systems of equations
by formulating the problem as a minimization problem.

Inner products, bilinear forms, norms, and variances are interesting scalar-
valued functions of vectors. In these cases, the function Φ in equation (4.7) is
scalar-valued and the numerator is merely Φ(x + ty)−Φ(x). Consider, for ex-
ample, the quadratic form xTAx. Using equation (4.7) to evaluate ∂xTAx/∂x,
we have

lim
t→0

(x + ty)TA(x + ty) − xTAx

t

= lim
t→0

xTAx + tyTAx + tyTATx + t2yTAy − xTAx

t

= yT(A + AT)x,

(4.10)

for an arbitrary y (that is, “in any direction”), and so ∂xTAx/∂x = (A+AT)x.
This immediately yields the derivative of the square of the Euclidean norm

of a vector, ‖x‖2
2, and the derivative of the Euclidean norm itself by using

the chain rule. Other Lp vector norms may not be differentiable everywhere
because of the presence of the absolute value in their definitions. The fact that
the Euclidean norm is differentiable everywhere is one of its most important
properties.

The derivative of the quadratic form also immediately yields the derivative
of the variance. The derivative of the correlation, however, is slightly more
difficult because it is a ratio (see Exercise 4.2).

The operator ∂/∂xT applied to the scalar function f results in gT
f .

The second derivative of a scalar-valued function with respect to a vector
is a derivative of the first derivative, which is a vector. We will now consider
derivatives of vectors with respect to vectors.

Derivatives of Vectors with Respect to Vectors; The Jacobian

The derivative of an m-vector-valued function of an n-vector argument con-
sists of nm scalar derivatives. These derivatives could be put into various

152 4 Vector/Matrix Derivatives and Integrals

structures. Two obvious structures are an n×m matrix and an m×n matrix.
For a function f : S ⊂ IRn → IRm, we define ∂fT/∂x to be the n × m ma-
trix, which is the natural extension of ∂/∂x applied to a scalar function, and
∂f/∂xT to be its transpose, the m×n matrix. Although the notation ∂fT/∂x
is more precise because it indicates that the elements of f correspond to the
columns of the result, we often drop the transpose in the notation. We have

∂f

∂x
=

∂fT

∂x
by convention

=
[
∂f1

∂x
. . .

∂fm

∂x

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂f1
∂x1

∂f2
∂x1

· · · ∂fm

∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fm

∂x2

· · ·
∂f1
∂xn

∂f2
∂xn

· · · ∂fm

∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.11)

if those derivatives exist. This derivative is called the matrix gradient and
is denoted by Gf or ∇f for the vector-valued function f . (Note that the ∇
symbol can denote either a vector or a matrix, depending on whether the
function being differentiated is scalar-valued or vector-valued.)

The m × n matrix ∂f/∂xT = (∇f)T is called the Jacobian of f and is
denoted by Jf :

Jf = GT
f = (∇f)T. (4.12)

The absolute value of the determinant of the Jacobian appears in integrals
involving a change of variables. (Occasionally, the term “Jacobian” is used
to refer to the absolute value of the determinant rather than to the matrix
itself.)

To emphasize that the quantities are functions of x, we sometimes write
∂f(x)/∂x, Jf (x), Gf (x), or ∇f(x).

Derivatives of Matrices with Respect to Vectors

The derivative of a matrix with respect to a vector is a three-dimensional
object that results from applying equation (4.8) to each of the elements of the
matrix. For this reason, it is simpler to consider only the partial derivatives
of the matrix Y with respect to the individual elements of the vector x; that
is, ∂Y/∂xi. The expressions involving the partial derivatives can be thought
of as defining one two-dimensional layer of a three-dimensional object.

Using the rules for differentiation of powers that result directly from the
definitions, we can write the partial derivatives of the inverse of the matrix Y
as

∂

∂x
Y −1 = −Y −1

(
∂

∂x
Y

)

Y −1 (4.13)

4.2 Types of Differentiation 153

(see Exercise 4.3).
Beyond the basics of differentiation of constant multiples or powers of a

variable, the two most important properties of derivatives of expressions are
the linearity of the operation and the chaining of the operation. These yield
rules that correspond to the familiar rules of the differential calculus. A simple
result of the linearity of the operation is the rule for differentiation of the trace:

∂

∂x
tr(Y) = tr

(
∂

∂x
Y

)

.

Higher-Order Derivatives with Respect to Vectors; The Hessian

Higher-order derivatives are derivatives of lower-order derivatives. As we have
seen, a derivative of a given function with respect to a vector is a more compli-
cated object than the original function. The simplest higher-order derivative
with respect to a vector is the second-order derivative of a scalar-valued func-
tion. Higher-order derivatives may become uselessly complicated.

In accordance with the meaning of derivatives of vectors with respect to
vectors, the second derivative of a scalar-valued function with respect to a
vector is a matrix of the partial derivatives of the function with respect to the
elements of the vector. This matrix is called the Hessian, and is denoted by
Hf or sometimes by ∇∇f or ∇2f :

Hf =
∂2f

∂x∂xT
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xm

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xm

· · ·
∂2f

∂xm∂x1

∂2f
∂xm∂x2

· · · ∂2f
∂x2

m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.14)

To emphasize that the Hessian is a function of x, we sometimes write
Hf (x) or ∇∇f(x) or ∇2f(x).

Summary of Derivatives with Respect to Vectors

As we have seen, the derivatives of functions are complicated by the problem
of measuring the change in the function, but often the derivatives of functions
with respect to a vector can be determined by using familiar scalar differen-
tiation. In general, we see that

• the derivative of a scalar (a quadratic form) with respect to a vector is
a vector and

• the derivative of a vector with respect to a vector is a matrix.

Table 4.1 lists formulas for the vector derivatives of some common expres-
sions. The derivative ∂f/∂xT is the transpose of ∂f/∂x.

154 4 Vector/Matrix Derivatives and Integrals

Table 4.1. Formulas for Some Vector Derivatives

f(x) ∂f/∂x

ax a
bTx b
xTb bT

xTx 2x
xxT 2xT

bTAx ATb
xTAb bTA
xTAx (A + AT)x

2Ax, if A is symmetric
exp(− 1

2
xTAx) − exp(− 1

2
xTAx)Ax, if A is symmetric

‖x‖2
2 2x

V(x) 2x/(n − 1)

In this table, x is an n-vector, a is a constant scalar, b is a
constant conformable vector, and A is a constant conformable
matrix.

4.2.3 Differentiation with Respect to a Matrix

The derivative of a function with respect to a matrix is a matrix with the same
shape consisting of the partial derivatives of the function with respect to the
elements of the matrix. This rule defines what we mean by differentiation with
respect to a matrix.

By the definition of differentiation with respect to a matrix X, we see that
the derivative ∂f/∂XT is the transpose of ∂f/∂X. For scalar-valued functions,
this rule is fairly simple. For example, consider the trace. If X is a square
matrix and we apply this rule to evaluate ∂ tr(X)/∂X, we get the identity
matrix, where the nonzero elements arise only when j = i in ∂(

∑
xii)/∂xij .

If AX is a square matrix, we have for the (i, j) term in ∂ tr(AX)/∂X,
∂
∑

i

∑
k aikxki/∂xij = aji, and so ∂ tr(AX)/∂X = AT, and likewise, in-

specting ∂
∑

i

∑
k xikxki/∂xij , we get ∂ tr(XTX)/∂X = 2XT. Likewise for

the scalar-valued aTXb, where a and b are conformable constant vectors, for
∂
∑

m(
∑

k akxkm)bm/∂xij = aibj , so ∂aTXb/∂X = abT.
Now consider ∂|X|/∂X. Using an expansion in cofactors (equation (3.21)

or (3.22)), the only term in |X| that involves xij is xij(−1)i+j |X−(i)(j)|,
and the cofactor (x(ij)) = (−1)i+j |X−(i)(j)| does not involve xij . Hence,
∂|X|/∂xij = (x(ij)), and so ∂|X|/∂X = (adj(X))T from equation (3.24).
Using equation (3.131), we can write this as ∂|X|/∂X = |X|X−T.

The chain rule can be used to evaluate ∂ log |X|/∂X.
Applying the rule stated at the beginning of this section, we see that the

derivative of a matrix Y with respect to the matrix X is

4.2 Types of Differentiation 155

dY

dX
= Y ⊗ d

dX
. (4.15)

Table 4.2 lists some formulas for the matrix derivatives of some common
expressions. The derivatives shown in Table 4.2 can be obtained by evaluating
expression (4.15), possibly also using the chain rule.

Table 4.2. Formulas for Some Matrix Derivatives

General X

f(X) ∂f/∂X

aTXb abT

tr(AX) AT

tr(XTX) 2XT

BX In ⊗ B
XC CT ⊗ Im

BXC CT ⊗ B

Square and Possibly Invertible X

f(X) ∂f/∂X

tr(X) In

tr(Xk) kXk−1

tr(BX−1C) −(X−1CBX−1)T

|X| |X|X−T

log |X| X−T

|X|k k|X|kX−T

BX−1C −(X−1C)T ⊗ BX−1

In this table, X is an n × m matrix, a is a
constant n-vector, b is a constant m-vector,
A is a constant m×n matrix, B is a constant
p×n matrix, and C is a constant m×q matrix.

There are some interesting applications of differentiation with respect to
a matrix in maximum likelihood estimation. Depending on the structure of
the parameters in the distribution, derivatives of various types of objects may
be required. For example, the determinant of a variance-covariance matrix, in
the sense that it is a measure of a volume, often occurs as a normalizing factor
in a probability density function; therefore, we often encounter the need to
differentiate a determinant with respect to a matrix.

156 4 Vector/Matrix Derivatives and Integrals

4.3 Optimization of Functions

Because a derivative measures the rate of change of a function, a point at which
the derivative is equal to 0 is a stationary point, which may be a maximum
or a minimum of the function. Differentiation is therefore a very useful tool
for finding the optima of functions, and so, for a given function f(x), the
gradient vector function, gf (x), and the Hessian matrix function, Hf (x), play
important roles in optimization methods.

We may seek either a maximum or a minimum of a function. Since max-
imizing the scalar function f(x) is equivalent to minimizing −f(x), we can
always consider optimization of a function to be minimization of a function.
Thus, we generally use terminology for the problem of finding a minimum of
a function. Because the function may have many ups and downs, we often use
the phrase local minimum (or local maximum or local optimum).

Except in the very simplest of cases, the optimization method must be
iterative, moving through a sequence of points, x(0), x(1), x(2), . . ., that ap-
proaches the optimum point arbitrarily closely. At the point x(k), the direc-
tion of steepest descent is clearly −gf (x(k)), but because this direction may
be continuously changing, the steepest descent direction may not be the best
direction in which to seek the next point, x(k+1).

4.3.1 Stationary Points of Functions

The first derivative helps only in finding a stationary point. The matrix of
second derivatives, the Hessian, provides information about the nature of the
stationary point, which may be a local minimum or maximum, a saddlepoint,
or only an inflection point.

The so-called second-order optimality conditions are the following (see a
general text on optimization for their proofs).

• If (but not only if) the stationary point is a local minimum, then the
Hessian is nonnegative definite.

• If the Hessian is positive definite, then the stationary point is a local
minimum.

• Likewise, if the stationary point is a local maximum, then the Hessian
is nonpositive definite, and if the Hessian is negative definite, then the
stationary point is a local maximum.

• If the Hessian has both positive and negative eigenvalues, then the sta-
tionary point is a saddlepoint.

4.3.2 Newton’s Method

We consider a differentiable scalar-valued function of a vector argument, f(x).
By a Taylor series about a stationary point x∗, truncated after the second-
order term

4.3 Optimization of Functions 157

f(x) ≈ f(x∗) + (x − x∗)Tgf

(
x∗
)

+
1
2
(x − x∗)THf

(
x∗
)
(x − x∗), (4.16)

because gf

(
x∗
)

= 0, we have a general method of finding a stationary point
for the function f(·), called Newton’s method. If x is an m-vector, gf (x) is an
m-vector and Hf (x) is an m × m matrix.

Newton’s method is to choose a starting point x(0), then, for k = 0, 1, . . .,
to solve the linear systems

Hf

(
x(k)

)
p(k+1) = −gf

(
x(k)

)
(4.17)

for p(k+1), and then to update the point in the domain of f(·) by

x(k+1) = x(k) + p(k+1). (4.18)

The two steps are repeated until there is essentially no change from one iter-
ation to the next. If f(·) is a quadratic function, the solution is obtained in
one iteration because equation (4.16) is exact. These two steps have a very
simple form for a function of one variable (see Exercise 4.4a).

Linear Least Squares

In a least squares fit of a linear model

y = Xβ + ε, (4.19)

where y is an n-vector, X is an n×m matrix, and β is an m-vector, we replace
β by a variable b, define the residual vector

r = y − Xb, (4.20)

and minimize its Euclidean norm,

f(b) = rTr, (4.21)

with respect to the variable b. We can solve this optimization problem by
taking the derivative of this sum of squares and equating it to zero. Doing
this, we get

d(y − Xb)T(y − Xb)
db

=
d(yTy − 2bTXTy + bTXTXb)

db

= −2XTy + 2XTXb

= 0,

which yields the normal equations

XTXb = XTy.

158 4 Vector/Matrix Derivatives and Integrals

The solution to the normal equations is a stationary point of the func-
tion (4.21). The Hessian of (y − Xb)T(y − Xb) with respect to b is 2XTX
and

XTX � 0.

Because the matrix of second derivatives is nonnegative definite, the value
of b that solves the system of equations arising from the first derivatives is
a local minimum of equation (4.21). We discuss these equations further in
Sections 6.7 and 9.2.2.

Quasi-Newton Methods

All gradient-descent methods determine the path p(k) to take in the kth step
by a system of equations of the form

R(k)p(k) = −gf

(
x(k−1)

)
.

In the steepest-descent method, R(k) is the identity, I, in these equations.
For functions with eccentric contours, the steepest-descent method traverses
a zigzag path to the minimum. In Newton’s method, R(k) is the Hessian
evaluated at the previous point, Hf

(
x(k−1)

)
, which results in a more direct

path to the minimum. Aside from the issues of consistency of the resulting
equation and the general problems of reliability, a major disadvantage of New-
ton’s method is the computational burden of computing the Hessian, which
requires O(m2) function evaluations, and solving the system, which requires
O(m3) arithmetic operations, at each iteration.

Instead of using the Hessian at each iteration, we may use an approxima-
tion, B(k). We may choose approximations that are simpler to update and/or
that allow the equations for the step to be solved more easily. Methods us-
ing such approximations are called quasi-Newton methods or variable metric
methods.

Because

Hf

(
x(k)

)(
x(k) − x(k−1)

)
≈ gf

(
x(k)

)
− gf

(
x(k−1)

)
,

we choose B(k) so that

B(k)
(
x(k) − x(k−1)

)
= gf

(
x(k)

)
− gf

(
x(k−1)

)
. (4.22)

This is called the secant condition.
We express the secant condition as

B(k)s(k) = y(k), (4.23)

where
s(k) = x(k) − x(k−1)

4.3 Optimization of Functions 159

and
y(k) = gf (x(k)) − gf (x(k−1)),

as above.
The system of equations in (4.23) does not fully determine B(k) of course.

Because B(k) should approximate the Hessian, we may require that it be
symmetric and positive definite.

The most common approach in quasi-Newton methods is first to choose
a reasonable starting matrix B(0) and then to choose subsequent matrices by
additive updates,

B(k+1) = B(k) + B(k)
a , (4.24)

subject to preservation of symmetry and positive definiteness. An approximate
Hessian B(k) may be used for several iterations before it is updated; that is,
B

(k)
a may be taken as 0 for several successive iterations.

4.3.3 Optimization of Functions with Restrictions

Instead of the simple least squares problem of determining a value of b that
minimizes the sum of squares, we may have some restrictions that b must
satisfy; for example, we may have the requirement that the elements of b
sum to 1. More generally, consider the least squares problem for the linear
model (4.19) with the requirement that b satisfy some set of linear restrictions,
Ab = c, where A is a full-rank k × m matrix (with k ≤ m). (The rank of A
must be less than m or else the constraints completely determine the solution
to the problem. If the rank of A is less than k, however, some rows of A and
some elements of b could be combined into a smaller number of constraints.
We can therefore assume A is of full row rank. Furthermore, we assume the
linear system is consistent (that is, rank([A|c]) = k) for otherwise there could
be no solution.) We call any point b that satisfies Ab = c a feasible point.

We write the constrained optimization problem as

min
b

f(b) = (y − Xb)T(y − Xb)

s.t. Ab = c.
(4.25)

If bc is any feasible point (that is, Abc = c), then any other feasible point
can be represented as bc + p, where p is any vector in the null space of A,
N (A). From our discussion in Section 3.5.2, we know that the dimension of
N (A) is m−k, and its order is m. If N is an m×m−k matrix whose columns
form a basis for N (A), all feasible points can be generated by bc + Nz, where
z ∈ IRm−k. Hence, we need only consider the restricted variables

b = bc + Nz

and the “reduced” function

h(z) = f(bc + Nz).

160 4 Vector/Matrix Derivatives and Integrals

The argument of this function is a vector with only m − k elements instead
of m elements as in the unconstrained problem. The unconstrained minimum
of h, however, is the solution of the original constrained problem.

The Reduced Gradient and Reduced Hessian

If we assume differentiability, the gradient and Hessian of the reduced function
can be expressed in terms of the original function:

gh(z) = NTgf (bc + Nz)
= NTgf (b) (4.26)

and

Hh(z) = NTHf (bc + Nz)N
= NTHf (b)N. (4.27)

In equation (4.26), NTgf (b) is called the reduced gradient or projected gradient,
and NTHf (b)N in equation (4.27) is called the reduced Hessian or projected
Hessian.

The properties of stationary points are related to the derivatives referred to
above are the conditions that determine a minimum of this reduced objective
function; that is, b∗ is a minimum if and only if

• NTgf (b∗) = 0,
• NTHf (b∗)N is positive definite, and
• Ab∗ = c.

These relationships then provide the basis for the solution of the optimization
problem.

Lagrange Multipliers

Because the m × m matrix [N |AT] spans IRm, we can represent the vector
gf (b∗) as a linear combination of the columns of N and AT, that is,

gf (b∗) = [N |AT]
(

z∗
λ∗

)

=
(

Nz∗
ATλ∗

)

,

where z∗ is an (m− k)-vector and λ∗ is a k-vector. Because ∇h(z∗) = 0, Nz∗
must also vanish (that is, Nz∗ = 0), and thus, at the optimum, the nonzero
elements of the gradient of the objective function are linear combinations
of the rows of the constraint matrix, ATλ∗. The k elements of the linear
combination vector λ∗ are called Lagrange multipliers.

4.3 Optimization of Functions 161

The Lagrangian

Let us now consider a simple generalization of the constrained problem above
and an abstraction of the results above so as to develop a general method. We
consider the problem

min
x

f(x)

s.t. c(x) = 0,
(4.28)

where f is a scalar-valued function of an m-vector variable and c is a k-vector-
valued function of the variable. There are some issues concerning the equation
c(x) = 0 that we will not go into here. Obviously, we have the same concerns
as before; that is, whether c(x) = 0 is consistent and whether the individual
equations ci(x) = 0 are independent. Let us just assume they are and proceed.
(Again, we refer the interested reader to a more general text on optimization.)

Motivated by the results above, we form a function that incorporates a
dot product of Lagrange multipliers and the function c(x):

F (x) = f(x) + λTc(x). (4.29)

This function is called the Lagrangian. The solution, (x∗, λ∗), of the optimiza-
tion problem occurs at a stationary point of the Lagrangian,

gf (x∗) =
(

0
Jc(x∗)Tλ∗

)

. (4.30)

Thus, at the optimum, the gradient of the objective function is a linear com-
bination of the columns of the Jacobian of the constraints.

Another Example: The Rayleigh Quotient

The important equation (3.208) on page 122 can also be derived by using
differentiation. This equation involves maximization of the Rayleigh quotient
(equation (3.209)),

xTAx/xTx

under the constraint that x �= 0. In this function, this constraint is equivalent
to the constraint that xTx equal a fixed nonzero constant, which is canceled
in the numerator and denominator. We can arbitrarily require that xTx = 1,
and the problem is now to determine the maximum of xTAx subject to the
constraint xTx = 1. We now formulate the Lagrangian

xTAx − λ(xTx − 1), (4.31)

differentiate, and set it equal to 0, yielding

Ax − λx = 0.

162 4 Vector/Matrix Derivatives and Integrals

This implies that a stationary point of the Lagrangian occurs at an eigenvector
and that the value of xTAx is an eigenvalue. This leads to the conclusion that
the maximum of the ratio is the maximum eigenvalue. We also see that the
second order necessary condition for a local maximum is satisfied; A − λI
is nonpositive definite when λ is the maximum eigenvalue. (We can see this
using the spectral decomposition of A and then subtracting λI.) Note that we
do not have the sufficient condition that A − λI is negative definite (A − λI
is obviously singular), but the fact that it is a maximum is established by
inspection of the finite set of stationary points.

Optimization without Differentiation

In the previous example, differentiation led us to a stationary point, but we
had to establish by inspection that the stationary point is a maximum. In
optimization problems generally, and in constrained optimization problems
particularly, it is often easier to use other methods to determine the optimum.

A constrained minimization problem we encounter occasionally is

min
X

(
log |X| + tr(X−1A)

)
(4.32)

for a given positive definite matrix A and subject to X being positive definite.
The derivatives given in Table 4.2 could be used. The derivatives set equal
to 0 immediately yield X = A. This means that X = A is a stationary
point, but whether or not it is a minimum would require further analysis. As
is often the case with such problems, an alternate approach leaves no such
pesky complications. Let A and X be n × n positive definite matrices, and
let c1, . . . , cn be the eigenvalues of X−1A. Now, by property 7 on page 107
these are also the eigenvalues of X−1/2AX−1/2, which is positive definite
(see inequality (3.122) on page 89). Now, consider the expression (4.32) with
general X minus the expression with X = A:

log |X| + tr(X−1A) − log |A| − tr(A−1A) = log |XA−1| + tr(X−1A) − tr(I)
= − log |X−1A| + tr(X−1A) − n

= − log

(
∏

i

ci

)

+
∑

i

ci − n

=
∑

i

(− log ci + ci − 1)

≥ 0

because if c > 0, then log c ≤ c − 1, and the minimun occurs when each
ci = 1; that is, when X−1A = I. Thus, the minimum of expression (4.32)
occurs uniquely at X = A.

4.4 Multiparameter Likelihood Functions 163

4.4 Multiparameter Likelihood Functions

For a sample y = (y1, . . . , yn) from a probability distribution with probability
density function p(·; θ), the likelihood function is

L(θ; y) =
n∏

i=1

p(yi; θ), (4.33)

and the log-likelihood function is l(θ; y) = log(L(θ; y)). It is often easier to
work with the log-likelihood function.

The log-likelihood is an important quantity in information theory and
in unbiased estimation. If Y is a random variable with the given probability
density function with the r-vector parameter θ, the Fisher information matrix
that Y contains about θ is the r × r matrix

I(θ) = Covθ

(
∂l(t, Y)

∂ti
,

∂l(t, Y)
∂tj

)

, (4.34)

where Covθ represents the variance-covariance matrix of the functions of Y
formed by taking expectations for the given θ. (I use different symbols here
because the derivatives are taken with respect to a variable, but the θ in Covθ

cannot be the variable of the differentiation. This distinction is somewhat
pedantic, and sometimes I follow the more common practice of using the
same symbol in an expression that involves both Covθ and ∂l(θ, Y)/∂θi.)

For example, if the distribution is the d-variate normal distribution with
mean d-vector µ and d×d positive definite variance-covariance matrix Σ, the
likelihood, equation (4.33), is

L(µ,Σ; y) =
1

(
(2π)d/2|Σ|1/2

)n exp

(

−1
2

n∑

i=1

(yi − µ)TΣ−1(yi − µ)

)

.

(Note that |Σ|1/2 = |Σ 1
2 |. The square root matrix Σ

1
2 is often useful in

transformations of variables.)
Anytime we have a quadratic form that we need to simplify, we should

recall equation (3.63): xTAx = tr(AxxT). Using this, and because, as is often
the case, the log-likelihood is easier to work with, we write

l(µ,Σ; y) = c − n

2
log |Σ| − 1

2
tr

(

Σ−1
n∑

i=1

(yi − µ)(yi − µ)T
)

, (4.35)

where we have used c to represent the constant portion. Next, we use the
Pythagorean equation (2.47) or equation (3.64) on the outer product to get

l(µ,Σ; y) = c − n

2
log |Σ| − 1

2
tr

(

Σ−1
n∑

i=1

(yi − ȳ)(yi − ȳ)T
)

−n

2
tr
(
Σ−1(ȳ − µ)(ȳ − µ)T

)
. (4.36)

164 4 Vector/Matrix Derivatives and Integrals

In maximum likelihood estimation, we seek the maximum of the likeli-
hood function (4.33) with respect to θ while we consider y to be fixed. If the
maximum occurs within an open set and if the likelihood is differentiable, we
might be able to find the maximum likelihood estimates by differentiation. In
the log-likelihood for the d-variate normal distribution, we consider the pa-
rameters µ and Σ to be variables. To emphasize that perspective, we replace
the parameters µ and Σ by the variables µ̂ and Σ̂. Now, to determine the
maximum, we could take derivatives with respect to µ̂ and Σ̂, set them equal
to 0, and solve for the maximum likelihood estimates. Some subtle problems
arise that depend on the fact that for any constant vector a and scalar b,
Pr(aTX = b) = 0, but we do not interpret the likelihood as a probability. In
Exercise 4.5b you are asked to determine the values of µ̂ and Σ̂ using proper-
ties of traces and positive definite matrices without resorting to differentiation.
(This approach does not avoid the subtle problems, however.)

Often in working out maximum likelihood estimates, students immediately
think of differentiating, setting to 0, and solving. As noted above, this requires
that the likelihood function be differentiable, that it be concave, and that the
maximum occur at an interior point of the parameter space. Keeping in mind
exactly what the problem is —one of finding a maximum — often leads to the
correct solution more quickly.

4.5 Integration and Expectation

Just as we can take derivatives with respect to vectors or matrices, we can
also take antiderivatives or definite integrals with respect to vectors or ma-
trices. Our interest is in integration of functions weighted by a multivariate
probability density function, and for our purposes we will be interested only
in definite integrals.

Again, there are three components:

• the differential (the variable of the operation) and its domain (the range
of the integration),

• the integrand (the function), and
• the result of the operation (the integral).

In the simplest case, all three of these objects are of the same type; they are
scalars. In the happy cases that we consider, each definite integral within the
nested sequence exists, so convergence and order of integration are not issues.
(The implication of these remarks is that while there is a much bigger field
of mathematics here, we are concerned about the relatively simple cases that
suffice for our purposes.)

In some cases of interest involving vector-valued random variables, the
differential is the vector representing the values of the random variable and
the integrand has a scalar function (the probability density) as a factor. In one
type of such an integral, the integrand is only the probability density function,

4.5 Integration and Expectation 165

and the integral evaluates to a probability, which of course is a scalar. In
another type of such an integral, the integrand is a vector representing the
values of the random variable times the probability density function. The
integral in this case evaluates to a vector, namely the expectation of the
random variable over the domain of the integration. Finally, in an example of
a third type of such an integral, the integrand is an outer product with itself
of a vector representing the values of the random variable minus its mean
times the probability density function. The integral in this case evaluates to
a variance-covariance matrix. In each of these cases, the integral is the same
type of object as the integrand.

4.5.1 Multidimensional Integrals and Integrals Involving
Vectors and Matrices

An integral of the form
∫

f(v) dv, where v is a vector, can usually be evaluated
as a multiple integral with respect to each differential dvi. Likewise, an integral
of the form

∫
f(M) dM , where M is a matrix can usually be evaluated by

“unstacking” the columns of dM , evaluating the integral as a multiple integral
with respect to each differential dmij , and then possibly “restacking” the
result.

Multivariate integrals (that is, integrals taken with respect to a vector or a
matrix) define probabilities and expectations in multivariate probability dis-
tributions. As with many well-known univariate integrals, such as Γ(·), that
relate to univariate probability distributions, there are standard multivariate
integrals, such as the multivariate gamma, Γd(·), that relate to multivariate
probability distributions. Using standard integrals often facilitates the com-
putations.

Change of Variables; Jacobians

When evaluating an integral of the form
∫

f(x) dx, where x is a vector, for
various reasons we may form a one-to-one differentiable transformation of the
variables of integration; that is, of x. We write x as a function of the new
variables; that is, x = g(y), and so y = g−1(x). A simple fact from elementary
multivariable calculus is

∫

R(x)

f(x) dx =
∫

R(y)

f(g(y)) |det(Jg(y))|dy, (4.37)

where R(y) is the image of R(x) under g−1 and Jg(y) is the Jacobian of g (see
equation (4.12)). (This is essentially a chain rule result for dx = d(g(y)) =
Jgdy under the interpretation of dx and dy as positive differential elements and
the interpretation of |det(Jg)| as a volume element, as discussed on page 57.)

In the simple case of a full rank linear transformation of a vector, the
Jacobian is constant, and so for y = Ax with A a fixed matrix, we have

166 4 Vector/Matrix Derivatives and Integrals

∫

f(x) dx = |det(A)|−1

∫

f(A−1y) dy.

(Note that we write det(A) instead of |A| for the determinant if we are to
take the absolute value of it because otherwise we would have ||A||, which is
a symbol for a norm. However, |det(A)| is not a norm; it lacks each of the
properties listed on page 16.)

In the case of a full rank linear transformation of a matrix variable of
integration, the Jacobian is somewhat more complicated, but the Jacobian is
constant for a fixed transformation matrix. For a transformation Y = AX,
we determine the Jacobian as above by considering the columns of X one by
one. Hence, if X is an n × m matrix and A is a constant nonsingular matrix,
we have ∫

f(X) dX = |det(A)|−m

∫

f(A−1Y) dY.

For a transformation of the form Z = XB, we determine the Jacobian by
considering the rows of X one by one.

4.5.2 Integration Combined with Other Operations

Integration and another finite linear operator can generally be performed in
any order. For example, because the trace is a finite linear operator, integra-
tion and the trace can be performed in either order:

∫

tr(A(x))dx = tr
(∫

A(x)dx

)

.

For a scalar function of two vectors x and y, it is often of interest to perform
differentiation with respect to one vector and integration with respect to the
other vector. In such cases, it is of interest to know when these operations
can be interchanged. The answer is given in the following theorem, which is
a consequence of the Lebesgue dominated convergence theorem. Its proof can
be found in any standard text on real analysis.

Let X be an open set, and let f(x, y) and ∂f/∂x be scalar-valued
functions that are continuous on X × Y for some set Y. Now
suppose there are scalar functions g0(y) and g1(y) such that

|f(x, y)| ≤ g0(y)

‖ ∂
∂xf(x, y)‖ ≤ g1(y)

⎫
⎬

⎭
for all (x, y) ∈ X × Y,

∫

Y
g0(y) dy < ∞,

and ∫

Y
g1(y) dy < ∞.

4.5 Integration and Expectation 167

Then
∂

∂x

∫

Y
f(x, y) dy =

∫

Y

∂

∂x
f(x, y) dy. (4.38)

An important application of this interchange is in developing the information
inequality. (This inequality is not germane to the present discussion; it is only
noted here for readers who may already be familiar with it.)

4.5.3 Random Variables

A vector random variable is a function from some sample space into IRn, and a
matrix random variable is a function from a sample space into IRn×m. (Tech-
nically, in each case, the function is required to be measurable with respect
to a measure defined in the context of the sample space and an appropriate
collection of subsets of the sample space.) Associated with each random vari-
able is a distribution function whose derivative with respect to an appropriate
measure is nonnegative and integrates to 1 over the full space formed by IR.

Vector Random Variables

The simplest kind of vector random variable is one whose elements are in-
dependent. Such random vectors are easy to work with because the elements
can be dealt with individually, but they have limited applications. More in-
teresting random vectors have a multivariate structure that depends on the
relationships of the distributions of the individual elements. The simplest non-
degenerate multivariate structure is of second degree; that is, a covariance or
correlation structure. The probability density of a random vector with a mul-
tivariate structure generally is best represented by using matrices. In the case
of the multivariate normal distribution, the variances and covariances together
with the means completely characterize the distribution. For example, the fun-
damental integral that is associated with the d-variate normal distribution,
sometimes called Aitken’s integral,

∫

IRd

e−(x−µ)TΣ−1(x−µ)/2 dx = (2π)d/2|Σ|1/2, (4.39)

provides that constant. The rank of the integral is the same as the rank of the
integrand. (“Rank” is used here in the sense of “number of dimensions”.) In
this case, the integrand and the integral are scalars.

Equation (4.39) is a simple result that follows from the evaluation of the
individual single integrals after making the change of variables yi = xi − µi.
It can also be seen by first noting that because Σ−1 is positive definite, as
in equation (3.215), it can be written as PTΣ−1P = I for some nonsingular
matrix P . Now, after the translation y = x − µ, which leaves the integral
unchanged, we make the linear change of variables z = P−1y, with the asso-
ciated Jacobian |det(P)|, as in equation (4.37). From PTΣ−1P = I, we have

168 4 Vector/Matrix Derivatives and Integrals

|det(P)| = (det(Σ))1/2 = |Σ|1/2 because the determinant is positive. Aitken’s
integral therefore is

∫

IRd

e−yTΣ−1y/2 dy =
∫

IRd

e−(Pz)TΣ−1Pz/2 (det(Σ))1/2dz

=
∫

IRd

e−zTz/2 dz (det(Σ))1/2

= (2π)d/2(det(Σ))1/2.

The expected value of a function f of the vector-valued random variable
X is

E(f(X)) =
∫

D(X)

f(x)pX(x) dx, (4.40)

where D(X) is the support of the distribution, pX(x) is the probability den-
sity function evaluated at x, and x dx are dummy vectors whose elements
correspond to those of X. Interpreting

∫
D(X)

dx as a nest of univariate inte-
grals, the result of the integration of the vector f(x)pX(x) is clearly of the
same type as f(x). For example, if f(x) = x, the expectation is the mean,
which is a vector. For the normal distribution, we have

E(X) = (2π)−d/2|Σ|−1/2

∫

IRd

xe−(x−µ)TΣ−1(x−µ)/2 dx

= µ.

For the variance of the vector-valued random variable X,

V(X),

the function f in expression (4.40) above is the matrix (X − E(X))(X −
E(X))T, and the result is a matrix. An example is the normal variance:

V(X) = E
(
(X − E(X))(X − E(X))T

)

= (2π)−d/2|Σ|−1/2

∫

IRd

(
(x − µ)(x − µ)T

)
e−(x−µ)TΣ−1(x−µ)/2 dx

= Σ.

Matrix Random Variables

While there are many random variables of interest that are vectors, there are
only a few random matrices whose distributions have been studied. One, of
course, is the Wishart distribution; see Exercise 4.8. An integral of the Wishart
probability density function over a set of nonnegative definite matrices is the
probability of the set.

A simple distribution for random matrices is one in which the individual el-
ements have identical and independent normal distributions. This distribution

Exercises 169

of matrices was named the BMvN distribution by Birkhoff and Gulati (1979)
(from the last names of three mathematicians who used such random matrices
in numerical studies). Birkhoff and Gulati (1979) showed that if the elements
of the n×n matrix X are i.i.d. N(0, σ2), and if Q is an orthogonal matrix and
R is an upper triangular matrix with positive elements on the diagonal such
that QR = X, then Q has the Haar distribution. (The factorization X = QR
is called the QR decomposition and is discussed on page 190 If X is a random
matrix as described, this factorization exists with probability 1.) The Haar(n)
distribution is uniform over the space of n × n orthogonal matrices.

The measure
µ(D) =

∫

D

HT dH, (4.41)

where D is a subset of the orthogonal group O(n) (see page 105), is called the
Haar measure. This measure is used to define a kind of “uniform” probability
distribution for orthogonal factors of random matrices. For any Q ∈ O(n),
let QD represent the subset of O(n) consisting of the matrices H̃ = QH for
H ∈ D and DQ represent the subset of matrices formed as HQ. From the
integral, we see

µ(QD) = µ(DQ) = µ(D),

so the Haar measure is invariant to multiplication within the group. The mea-
sure is therefore also called the Haar invariant measure over the orthogonal
group. (See Muirhead, 1982, for more properties of this measure.)

A common matrix integral is the complete d-variate gamma function, de-
noted by Γd(x) and defined as

Γd(x) =
∫

D

e−tr(A)|A|x−(d+1)/2 dA, (4.42)

where D is the set of all d × d positive definite matrices, A ∈ D, and
x > (d − 1)/2. A multivariate gamma distribution can be defined in terms
of the integrand. (There are different definitions of a multivariate gamma
distribution.) The multivariate gamma function also appears in the probabil-
ity density function for a Wishart random variable (see Muirhead, 1982, or
Carmeli, 1983, for example).

Exercises

4.1. Use equation (4.6), which defines the derivative of a matrix with respect
to a scalar, to show the product rule equation (4.3) directly:

∂Y W

∂x
=

∂Y

∂x
W + Y

∂W

∂x
.

170 4 Vector/Matrix Derivatives and Integrals

4.2. For the n-vector x, compute the gradient gV(x), where V(x) is the vari-
ance of x, as given in equation (2.53).

Hint: Use the chain rule.
4.3. For the square, nonsingular matrix Y , show that

∂Y −1

∂x
= −Y −1 ∂Y

∂x
Y −1.

Hint: Differentiate Y Y −1 = I.
4.4. Newton’s method.

You should not, of course, just blindly pick a starting point and begin
iterating. How can you be sure that your solution is a local optimum?
Can you be sure that your solution is a global optimum? It is often a
good idea to make some plots of the function. In the case of a function
of a single variable, you may want to make plots in different scales. For
functions of more than one variable, profile plots may be useful (that
is, plots of the function in one variable with all the other variables held
constant).
a) Use Newton’s method to determine the maximum of the function

f(x) = sin(4x) − x4/12.
b) Use Newton’s method to determine the minimum of

f(x1, x2) = 2x4
1 + 3x3

1 + 2x2
1 + x2

2 − 4x1x2.

What is the Hessian at the minimum?
4.5. Consider the log-likelihood l(µ,Σ; y) for the d-variate normal distribu-

tion, equation (4.35). Be aware of the subtle issue referred to in the text.
It has to do with whether

∑n
i=1(yi − ȳ)(yi − ȳ)T is positive definite.

a) Replace the parameters µ and Σ by the variables µ̂ and Σ̂, take
derivatives with respect to µ̂ and Σ̂, set them equal to 0, and solve
for the maximum likelihood estimates. What assumptions do you
have to make about n and d?

b) Another approach to maximizing the expression in equation (4.35) is
to maximize the last term with respect to µ̂ (this is the only term
involving µ) and then, with the maximizing value substituted, to
maximize

−n

2
log |Σ| − 1

2
tr

(

Σ−1
n∑

i=1

(yi − ȳ)(yi − ȳ)T
)

.

Use this approach to determine the maximum likelihood estimates µ̂
and Σ̂.

4.6. Let

D =
{[

c −s
s c

]

: −1 ≤ c ≤ 1, c2 + s2 = 1
}

.

Evaluate the Haar measure µ(D). (This is the class of 2 × 2 rotation
matrices; see equation (5.3), page 177.)

Exercises 171

4.7. Write a Fortran or C program to generate n × n random orthogonal
matrices with the Haar uniform distribution. Use the following method
due to Heiberger (1978), which was modified by Stewart (1980). (See also
Tanner and Thisted, 1982.)
a) Generate n − 1 independent i-vectors, x2, x3, . . . , xn, from Ni(0, Ii).

(xi is of length i.)
b) Let ri = ‖xi‖2, and let H̃i be the i×i reflection matrix that transforms

xi into the i-vector (ri, 0, 0, . . . , 0).
c) Let Hi be the n × n matrix

[
In−i 0

0 H̃i

]

,

and form the diagonal matrix,

J = diag
(
(−1)b1 , (−1)b2 , . . . , (−1)bn

)
,

where the bi are independent realizations of a Bernoulli random vari-
able.

d) Deliver the orthogonal matrix Q = JH1H2 · · ·Hn.
The matrix Q generated in this way is orthogonal and has a Haar distri-
bution.
Can you think of any way to test the goodness-of-fit of samples from this
algorithm? Generate a sample of 1,000 2×2 random orthogonal matrices,
and assess how well the sample follows a Haar uniform distribution.

4.8. The probability density for the Wishart distribution is proportional to

etr(Σ−1W/2)|W |(n−d−1)/2,

where W is a d×d nonnegative definite matrix, the parameter Σ is a fixed
d × d positive definite matrix, and the parameter n is positive. (Often n
is restricted to integer values greater than d.) Determine the constant of
proportionality.

5

Matrix Transformations and Factorizations

In most applications of linear algebra, problems are solved by transformations
of matrices. A given matrix that represents some transformation of a vector is
transformed so as to determine one vector given another vector. The simplest
example of this is in working with the linear system Ax = b. The matrix A
is transformed through a succession of operations until x is determined easily
by the transformed A and b. Each operation is a pre- or postmultiplication
by some other matrix. Each matrix formed as a product must be equivalent
to A; therefore each transformation matrix must be of full rank. In eigen-
problems, we likewise perform a sequence of pre- or postmultiplications. In
this case, each matrix formed as a product must be similar to A; therefore
each transformation matrix must be orthogonal. We develop transformations
of matrices by transformations on the individual rows or columns.

Factorizations

Invertible transformations result in a factorization of the matrix. If B is a
k × n matrix and C is an n × k matrix such that CB = In, for a given
n × m matrix A the transformation BA = D results in a factorization: A =
CD. In applications of linear algebra, we determine C and D such that A =
CD and such that C and D have useful properties for the problem being
addressed. This is also called a decomposition of the matrix. We will use the
terms “matrix factorization” and “matrix decomposition” interchangeably.
Most methods for eigenanalysis and for solving linear systems proceed by
factoring the matrix, as we see in Chapters 6 and 7.

In Chapter 3, we discussed some factorizations, including

• the full rank factorization (equation (3.112)) of a general matrix,
• the equivalent canonical factorization (equation (3.117)) of a general ma-

trix,
• the similar canonical factorization (equation (3.193)) or “diagonal factor-

ization” of a diagonalizable matrix (which is necessarily square),

174 5 Transformations and Factorizations

• the orthogonally similar canonical factorization (equation (3.197)) of a
symmetric matrix (which is necessarily diagonalizable),

• the square root (equation (3.216)) of a nonnegative definite matrix (which
is necessarily symmetric), and

• the singular value factorization (equation (3.218)) of a general matrix.

In this chapter, we consider some general matrix transformations and then
introduce three additional factorizations:

• the LU (and LR and LDU) factorization of a general matrix,
• the QR factorization of a general matrix, and
• the Cholesky factorization of a nonnegative definite matrix.

These factorizations are useful both in theory and in practice. Another
factorization that is very useful in proving various theorems, but that we will
not discuss in this book, is the Jordan decomposition. For a discussion of this
factorization, see Horn and Johnson (1991), for example.

5.1 Transformations by Orthogonal Matrices

In previous chapters, we observed some interesting properties of orthogonal
matrices. From equation (3.228), for example, we see that orthogonal trans-
formations preserve lengths of vectors.

If Q is an orthogonal matrix (that is, if QTQ = I), then, for vectors x and
y, we have

〈Qx,Qy〉 = (xQ)T(Qy) = xTQTQy = xTy = 〈x, y〉,
and hence,

arccos
(

〈Qx,Qy〉
‖Qx‖2 ‖Qy‖2

)

= arccos
(

〈x, y〉
‖x‖2 ‖y‖2

)

. (5.1)

Thus we see that orthogonal transformations also preserve angles.
As noted previously, permutation matrices are orthogonal, and we have

used them extensively in rearranging the columns and/or rows of matrices.
We have noted the fact that if Q is an orthogonal matrix and

B = QTAQ,

then A and B have the same eigenvalues (and A and B are said to be or-
thogonally similar). By forming the transpose, we see immediately that the
transformation QTAQ preserves symmetry; that is, if A is symmetric, then B
is symmetric.

From equation (3.229), we see that ‖Q−1‖2 = 1. This has important im-
plications for the accuracy of numerical computations. (Using computations
with orthogonal matrices will not make problems more “ill-conditioned”.)

We often use orthogonal transformations that preserve lengths and an-
gles while rotating IRn or reflecting regions of IRn. The transformations are
appropriately called rotators and reflectors, respectively.

5.2 Geometric Transformations 175

5.2 Geometric Transformations

In many important applications of linear algebra, a vector represents a point
in space, with each element of the vector corresponding to an element of a
coordinate system, usually a Cartesian system. A set of vectors describes a
geometric object. Algebraic operations are geometric transformations that ro-
tate, deform, or translate the object. While these transformations are often
used in the two or three dimensions that correspond to the easily perceived
physical space, they have similar applications in higher dimensions. Think-
ing about operations in linear algebra in terms of the associated geometric
operations often provides useful intuition.

Invariance Properties of Transformations

Important characteristics of these transformations are what they leave un-
changed; that is, their invariance properties (see Table 5.1). All of these trans-
formations we will discuss are linear transformations because they preserve
straight lines.

Table 5.1. Invariance Properties of Transformations

Transformation Preserves

linear lines
affine lines, collinearity
shearing lines, collinearity
scaling lines, angles (and, hence, collinearity)
translation lines, angles, lengths
rotation lines, angles, lengths
reflection lines, angles, lengths

We have seen that an orthogonal transformation preserves lengths of vec-
tors (equation (3.228)) and angles between vectors (equation (5.1)). Such a
transformation that preserves lengths and angles is called an isometric trans-
formation. Such a transformation also preserves areas and volumes.

Another isometric transformation is a translation, which for a vector x is
just the addition of another vector:

x̃ = x + t.

A transformation that preserves angles is called an isotropic transforma-
tion. An example of an isotropic transformation that is not isometric is a
uniform scaling or dilation transformation, x̃ = ax, where a is a scalar.

The transformation x̃ = Ax, where A is a diagonal matrix with not all ele-
ments the same, does not preserve angles; it is an anisotropic scaling. Another

176 5 Transformations and Factorizations

anisotropic transformation is a shearing transformation, x̃ = Ax, where A is
the same as an identity matrix, except for a single row or column that has a
one on the diagonal but possibly nonzero elements in the other positions; for
example, ⎡

⎣
1 0 a1

0 1 a1

0 0 1

⎤

⎦ .

Although they do not preserve angles, both anisotropic scaling and shear-
ing transformations preserve parallel lines. A transformation that preserves
parallel lines is called an affine transformation. Preservation of parallel lines
is equivalent to preservation of collinearity, and so an alternative character-
ization of an affine transformation is one that preserves collinearity. More
generally, we can combine nontrivial scaling and shearing transformations to
see that the transformation Ax for any nonsingular matrix A is affine. It is
easy to see that addition of a constant vector to all vectors in a set pre-
serves collinearity within the set, so a more general affine transformation is
x̃ = Ax + t for a nonsingular matrix A and a vector t.

A projective transformation, which uses the homogeneous coordinate sys-
tem of the projective plane (see Section 5.2.3), preserves straight lines, but
does not preserve parallel lines. Projective transformations are very useful in
computer graphics. In those applications we do not always want parallel lines
to project onto the display plane as parallel lines.

5.2.1 Rotations

The simplest rotation of a vector can be thought of as the rotation of a plane
defined by two coordinates about the other principal axes. Such a rotation
changes two elements of all vectors in that plane and leaves all the other
elements, representing the other coordinates, unchanged. This rotation can
be described in a two-dimensional space defined by the coordinates being
changed, without reference to the other coordinates.

Consider the rotation of the vector x through the angle θ into x̃. The
length is preserved, so we have ‖x̃‖ = ‖x‖. Referring to Figure 5.1, we can
write

x̃1 = ‖x‖ cos(φ + θ),
x̃2 = ‖x‖ sin(φ + θ).

Now, from elementary trigonometry, we know

cos(φ + θ) = cos φ cos θ − sin φ sin θ,
sin(φ + θ) = sinφ cos θ + cos φ sin θ.

Because cos φ = x1/‖x‖ and sinφ = x2/‖x‖, we can combine these equations
to get

x̃1 = x1 cos θ − x2 sin θ,
x̃2 = x1 sin θ + x2 cos θ.

(5.2)

5.2 Geometric Transformations 177

φ
θ

x

x~

x1

x2

Fig. 5.1. Rotation of x

Hence, multiplying x by the orthogonal matrix
[

cos θ − sin θ
sin θ cos θ

]

(5.3)

performs the rotation of x.
This idea easily extends to the rotation of a plane formed by two coordi-

nates about all of the other (orthogonal) principal axes. By convention, we
assume clockwise rotations for axes that increase in the direction from which
the system is viewed. For example, if there were an x3 axis in Figure 5.1,
it would point toward the viewer. (This is called a “right-hand” coordinate
system.)

The rotation matrix about principal axes is the same as an identity ma-
trix with two diagonal elements changed to cos θ and the corresponding off-
diagonal elements changed to sin θ and − sin θ.

To rotate a 3-vector, x, about the x2 axis in a right-hand coordinate sys-
tem, we would use the rotation matrix

⎡

⎣
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤

⎦ .

A rotation of any hyperplane in n-space can be formed by n successive
rotations of hyperplanes formed by two principal axes. (In 3-space, this fact is
known as Euler’s rotation theorem. We can see this to be the case, in 3-space
or in general, by construction.)

178 5 Transformations and Factorizations

A rotation of an arbitrary plane can be defined in terms of the direction
cosines of a vector in the plane before and after the rotation. In a coordinate
geometry, rotation of a plane can be viewed equivalently as a rotation of the
coordinate system in the opposite direction. This is accomplished by rotating
the unit vectors ei into ẽi.

A special type of transformation that rotates a vector to be perpendicular
to a principal axis is called a Givens rotation. We discuss the use of this type
of transformation in Section 5.4 on page 182.

5.2.2 Reflections

Let u and v be orthonormal vectors, and let x be a vector in the space spanned
by u and v, so

x = c1u + c2v

for some scalars c1 and c2. The vector

x̃ = −c1u + c2v (5.4)

is a reflection of x through the line defined by the vector v, or u⊥.
First consider a reflection that transforms a vector

x = (x1, x2, . . . , xn)

into a vector collinear with a unit vector,

x̃ = (0, . . . , 0, x̃i, 0, . . . , 0)
= ±‖x‖2ei. (5.5)

Geometrically, in two dimensions we have the picture shown in Figure 5.2,
where i = 1. Which vector x is rotated through (that is, which is u and which
is v) depends on the choice of the sign in ±‖x‖2. The choice that was made
yields the x̃ shown in the figure, and from the figure, this can be seen to be
correct. If the opposite choice is made, we get the ˜̃x shown. In the simple
two-dimensional case, this is equivalent to reversing our choice of u and v.

5.2.3 Translations; Homogeneous Coordinates

Translations are relatively simple transformations involving the addition of
vectors. Rotations, as we have seen, and other geometric transformations such
as shearing, as we have indicated, involve multiplication by an appropriate
matrix. In applications where several geometric transformations are to be
made, it would be convenient if translations could also be performed by matrix
multiplication. This can be done by using homogeneous coordinates.

Homogeneous coordinates, which form the natural coordinate system for
projective geometry, have a very simple relationship to Cartesian coordinates.

5.2 Geometric Transformations 179

x2

x1

�
�

�
�

�
��

x

��������� u

�
�

�
�

�
�

�
�

�v

�̃x �˜̃x

Fig. 5.2. Reflections of x about u⊥

The point with Cartesian coordinates (x1, x2, . . . , xd) is represented in homo-
geneous coordinates as (xh

0 , xh
1 , . . . , xh

d), where, for arbitrary xh
0 not equal to

zero, xh
1 = xh

0x1, and so on. Because the point is the same, the two different
symbols represent the same thing, and we have

(x1, . . . , xd) = (xh
0 , xh

1 , . . . , xh
d). (5.6a)

Alternatively, the hyperplane coordinate may be added at the end, and we
have

(x1, . . . , xd) = (xh
1 , . . . , xh

d, xh
0). (5.6b)

Each value of xh
0 corresponds to a hyperplane in the ordinary Cartesian co-

ordinate system. The most common choice is xh
0 = 1, and so xh

i = xi. The
special plane xh

0 = 0 does not have a meaning in the Cartesian system, but in
projective geometry it corresponds to a hyperplane at infinity.

We can easily effect the translation x̃ = x + t by first representing the
point x as (1, x1, . . . , xd) and then multiplying by the (d+1)× (d+1) matrix

T =

⎡

⎢
⎢
⎣

1 0 · · · 0
t1 1 · · · 0

· · ·
td 0 · · · 1

⎤

⎥
⎥
⎦ .

We will use the symbol xh to represent the vector of corresponding homoge-
neous coordinates:

xh = (1, x1, . . . , xd).

We must be careful to distinguish the point x from the vector that represents
the point. In Cartesian coordinates, there is a natural correspondence and
the symbol x representing a point may also represent the vector (x1, . . . , xd).
The vector of homogeneous coordinates of the result Txh corresponds to the
Cartesian coordinates of x̃, (x1 + t1, . . . , xd + td), which is the desired result.

Homogeneous coordinates are used extensively in computer graphics not
only for the ordinary geometric transformations but also for projective trans-
formations, which model visual properties. Riesenfeld (1981) and Morten-
son (1997) describe many of these applications. See Exercise 5.2 for a simple
example.

180 5 Transformations and Factorizations

5.3 Householder Transformations (Reflections)

We have briefly discussed geometric transformations that reflect a vector
through another vector. We now consider some properties and uses of these
transformations.

Consider the problem of reflecting x through the vector u. As before, we
assume that u and v are orthogonal vectors and that x lies in a space spanned
by u and v, and x = c1u + c2v. Form the matrix

H = I − 2uuT, (5.7)

and note that

Hx = c1u + c2v − 2c1uuTu − 2c2uuTv

= c1u + c2v − 2c1u
Tuu − 2c2u

Tvu

= −c1u + c2v

= x̃,

as in equation (5.4). The matrix H is a reflector; it has transformed x into its
reflection x̃ about u.

A reflection is also called a Householder reflection or a Householder trans-
formation, and the matrix H is called a Householder matrix or a Householder
reflector. The following properties of H are immediate:

• Hu = −u.
• Hv = v for any v orthogonal to u.
• H = HT (symmetric).
• HT = H−1 (orthogonal).

Because H is orthogonal, if Hx = x̃, then ‖x‖2 = ‖x̃‖2 (see equation (3.228)),
so x̃1 = ±‖x‖2.

The matrix uuT is symmetric, idempotent, and of rank 1. (A transforma-
tion by a matrix of the form A − vwT is often called a “rank-one” update,
because vwT is of rank 1. Thus, a Householder reflection is a special rank-one
update.)

Zeroing Elements in a Vector

The usefulness of Householder reflections results from the fact that it is easy
to construct a reflection that will transform a vector x into a vector x̃ that has
zeros in all but one position, as in equation (5.5). To construct the reflector
of x into x̃, first form the normalized vector (x − x̃):

v = x − x̃/‖x̃‖2.

We know ‖x̃‖2 to within a sign, and we choose the sign so as not to add quan-
tities of different signs and possibly similar magnitudes. (See the discussions

5.3 Householder Transformations (Reflections) 181

of catastrophic cancellation beginning on page 397, in Chapter 10.) Hence, we
have

q = (x1, . . . , xi−1, xi + sign(xi)‖x‖2, xi+1, . . . , xn), (5.8)

then
u = q/‖q‖2, (5.9)

and finally
H = I − 2uuT. (5.10)

Consider, for example, the vector

x = (3, 1, 2, 1, 1),

which we wish to transform into

x̃ = (x̃1, 0, 0, 0, 0).

We have
‖x‖ = 4,

so we form the vector
u =

1√
56

(7, 1, 2, 1, 1)

and the reflector

H = I − 2uuT

=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
− 1

28

⎡

⎢
⎢
⎢
⎢
⎣

49 7 14 7 7
7 1 2 1 1

14 2 4 2 2
7 1 2 1 1
7 1 2 1 1

⎤

⎥
⎥
⎥
⎥
⎦

=
1
28

⎡

⎢
⎢
⎢
⎢
⎣

−21 −7 −14 −7 −7
−7 27 −2 −1 −1

−14 −2 24 −2 −2
−7 −1 −2 27 −1
−7 −1 −2 −1 27

⎤

⎥
⎥
⎥
⎥
⎦

to yield Hx = (−4, 0, 0, 0, 0).
Carrig and Meyer (1997) describe two variants of the Householder trans-

formations that take advantage of computer architectures that have a cache
memory or that have a bank of floating-point registers whose contents are
immediately available to the computational unit.

182 5 Transformations and Factorizations

5.4 Givens Transformations (Rotations)

We have briefly discussed geometric transformations that rotate a vector in
such a way that a specified element becomes 0 and only one other element in
the vector is changed. Such a method may be particularly useful if only part
of the matrix to be transformed is available. These transformations are called
Givens transformations, or Givens rotations, or sometimes Jacobi transforma-
tions.

The basic idea of the rotation, which is a special case of the rotations
discussed on page 176, can be seen in the case of a vector of length 2. Given
the vector x = (x1, x2), we wish to rotate it to x̃ = (x̃1, 0). As with a reflector,
x̃1 = ‖x‖. Geometrically, we have the picture shown in Figure 5.3.

x2

x1

�
�

�
�

�
��

x

�

���

x̃θ

Fig. 5.3. Rotation of x onto a Coordinate Axis

It is easy to see that the orthogonal matrix

Q =
[

cos θ sin θ
− sin θ cos θ

]

(5.11)

will perform this rotation of x if cos θ = x1/r and sin θ = x2/r, where r =
‖x‖ =

√
x2

1 + x2
2. (This is the same matrix as in equation (5.3), except that

the rotation is in the opposite direction.) Notice that θ is not relevant; we
only need real numbers c and s such that c2 + s2 = 1.

We have

x̃1 =
x2

1

r
+

x2
2

r
= ‖x‖,

x̃2 = −x2x1

r
+

x1x2

r
= 0;

that is,

Q

(
x1

x2

)

=
(
‖x‖
0

)

.

5.4 Givens Transformations (Rotations) 183

Zeroing One Element in a Vector

As with the Householder reflection that transforms a vector

x = (x1, x2, x3, . . . , xn)

into a vector
x̃H = (x̃H1, 0, 0, . . . , 0),

it is easy to construct a Givens rotation that transforms x into

x̃G = (x̃G1, 0, x3, . . . , xn).

We can construct an orthogonal matrix Gpq similar to that shown in equa-
tion (5.11) that will transform the vector

x = (x1, . . . , xp, . . . , xq, . . . , xn)

into
x̃ = (x1, . . . , x̃p, . . . , 0, . . . , xn).

The orthogonal matrix that will do this is

Gpq(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 0 · · · 0

. . .
0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 c 0 · · · 0 s 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0

. . .
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 −s 0 · · · 0 c 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0

. . .
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.12)

where the entries in the pth and qth rows and columns are

c =
xp

r

and
s =

xq

r
,

where r =
√

x2
p + x2

q. A rotation matrix is the same as an identity matrix
with four elements changed.

Considering x to be the pth column in a matrix X, we can easily see that
GpqX results in a matrix with a zero as the qth element of the pth column,
and all except the pth and qth rows and columns of GpqX are the same as
those of X.

184 5 Transformations and Factorizations

Givens Rotations That Preserve Symmetry

If X is a symmetric matrix, we can preserve the symmetry by a transformation
of the form QTXQ, where Q is any orthogonal matrix. The elements of a
Givens rotation matrix that is used in this way and with the objective of
forming zeros in two positions in X simultaneously would be determined in
the same way as above, but the elements themselves would not be the same.
We illustrate that below, while at the same time considering the problem of
transforming a value into something other than zero.

Givens Rotations to Transform to Other Values

Consider a symmetric matrix X that we wish to transform to the symmetric
matrix X̃ that has all rows and columns except the pth and qth the same as
those in X, and we want a specified value in the (pp)th position of X̃, say
x̃pp = a. We seek a rotation matrix G such that X̃ = GTXG. We have

[
c s

−s c

]T [
xpp xpq

xpq xqq

] [
c s

−s c

]

=
[

a x̃pq

x̃pq x̃qq

]

(5.13)

and
c2 + s2 = 1.

Hence
a = c2xpp − 2csxpq + s2xqq. (5.14)

Writing t = s/c (the tangent), we have the quadratic

(xqq − 1)t2 − 2xpqt + xpp − a = 0 (5.15)

with roots

t =
xpq ± 2

√
x2

pq − (xpp − a)(xqq − 1)

(xqq − 1)
. (5.16)

The roots are real if and only if

x2
pq ≥ (xpp − a)(xqq − 1).

If the roots are real, we choose the nonnegative one. (We evaluate equa-
tion (5.16); see the discussion of equation (10.3) on page 398.) We then form

c =
1√

1 + t2
(5.17)

and
s = ct. (5.18)

The rotation matrix G formed from c and s will transform X into X̃.

5.5 Factorization of Matrices 185

Fast Givens Rotations

Often in applications we need to perform a succession of Givens transforma-
tions. The overall number of computations can be reduced using a succession
of “fast Givens rotations”. We write the matrix Q in equation (5.11) as CT ,

[
cos θ sin θ

− sin θ cos θ

]

=
[

cos θ 0
0 cos θ

] [
1 tan θ

− tan θ 1

]

, (5.19)

and instead of working with matrices such as Q, which require four multipli-
cations and two additions, we work with matrices such as T , involving the
tangents, which require only two multiplications and two additions. After a
number of computations with such matrices, the diagonal matrices of the form
of C are accumulated and multiplied together.

The diagonal elements in the accumulated C matrices in the fast Givens
rotations can become widely different in absolute values, so to avoid excessive
loss of accuracy, it is usually necessary to rescale the elements periodically.

5.5 Factorization of Matrices

It is often useful to represent a matrix A in a factored form,

A = BC,

where B and C have some specified desirable properties, such as being trian-
gular. Most direct methods of solving linear systems discussed in Chapter 6
are based on factorizations (or, equivalently, “decompositions”) of the matrix
of coefficients. Matrix factorizations are also performed for reasons other than
to solve a linear system, such as in eigenanalysis. Matrix factorizations are
generally performed by a sequence of transformations and their inverses. The
major important matrix factorizations are:

• full rank factorization (for any matrix);
• diagonal or similar canonical factorization (for diagonalizable matrices);
• orthogonally similar canonical factorization (for symmetric matrices);
• LU factorization and LDU factorization (for nonnegative definite matri-

ces and some others, including nonsquare matrices);
• QR factorization (for any matrix);
• singular value decomposition, SVD, (for any matrix);
• square root factorization (for nonnegative definite matrices); and
• Cholesky factorization (for nonnegative definite matrices).

We have already discussed the full rank, the diagonal canonical, the orthog-
onally similar canonical, the SVD, and the square root factorizations. In the
next few sections we will introduce the LU , LDU , QR, and Cholesky factor-
izations.

186 5 Transformations and Factorizations

5.6 LU and LDU Factorizations

For any matrix (whether square or not) that can be expressed as LU , where
L is unit lower triangular and U is upper triangular, the product LU is called
the LU factorization. If the matrix is not square, or if the matrix is not of
full rank, L and/or U will be of trapezoidal form. An LU factorization exists
and is unique for nonnegative definite matrices. For more general matrices,
the factorization may not exist, and the conditions for the existence are not
so easy to state (see Harville, 1997, for example).

Use of Outer Products

An LU factorization is accomplished by a sequence of Gaussian eliminations
that are constructed so as to generate 0s below the main diagonal in a given
column (see page 66).

Applying these operations to a given matrix A yields a sequence of matrices
A(k) with increasing numbers of columns that contain 0s below the main
diagonal. Each step in Gaussian elimination is equivalent to multiplication of
the current matrix, A(k−1), by some matrix Lk. If we encounter a zero on
the diagonal, or possibly for other numerical considerations, we may need to
rearrange rows or columns of A(k−1) (see page 209), but if we ignore that for
the time being, the Lk matrix has a particularly simple form and is easy to
construct. It is the product of axpy elementary matrices similar to those in
equation (3.50) on page 66, where the multipliers are determined so as to zero
out the column below the main diagonal:

Lk = En,k

(
−a

(k−1)
n,k /a

(k−1)
kk

)
· · ·Ek+1,k

(
−a

(k−1)
k+1,k/a

(k−1)
kk

)
; (5.20)

that is,

Lk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 · · · 0 0 · · · 0
. . .

0 · · · 1 0 · · · 0

0 · · · −a
(k−1)
k+1,k

a
(k−1)
kk

1 · · · 0

. . .

0 · · · −a
(k−1)
nk

a
(k−1)
kk

0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.21)

Each Lk is nonsingular, with a determinant of 1. The whole process of
forward reduction can be expressed as a matrix product,

U = Ln−1Ln−2 . . . L2L1A, (5.22)

and by the way we have performed the forward reduction, U is an upper
triangular matrix. The matrix Ln−1Ln−2 . . . L2L1 is nonsingular and is unit

5.6 LU and LDU Factorizations 187

lower triangular (all 1s on the diagonal). Its inverse therefore is also unit lower
triangular. Call its inverse L; that is,

L = (Ln−1Ln−2 . . . L2L1)−1. (5.23)

The forward reduction is equivalent to expressing A as LU ,

A = LU ; (5.24)

hence this process is called an LU factorization or an LU decomposition.
The diagonal elements of the lower triangular matrix L in the LU factor-

ization are all 1s by the method of construction. If an LU factorization exists,
it is clear that the upper triangular matrix, U , can be made unit upper trian-
gular (all 1s on the diagonal) by putting the diagonal elements of the original
U into a diagonal matrix D and then writing the factorization as LDU , where
U is now a unit upper triangular matrix.

The computations leading up to equation (5.24) involve a sequence of
equivalent matrices, as discussed in Section 3.3.5. Those computations are
outer products involving a column of Lk and rows of A(k−1).

Use of Inner Products

The LU factorization can also be performed by using inner products. From
equation (5.24), we see

aij =
i−1∑

k=1

likukj + uij ,

so

lij =
aij −

∑j−1
k=1 likukj

ujj
for i = j + 1, j + 2, . . . , n. (5.25)

The use of computations implied by equation (5.25) is called the Doolittle
method or the Crout method. (There is a slight difference between the Doolit-
tle method and the Crout method: the Crout method yields a decomposition
in which the 1s are on the diagonal of the U matrix rather than the L matrix.)
Whichever method is used to form the LU decomposition, n3/3 multiplica-
tions and additions are required.

Properties

If a nonsingular matrix has an LU factorization, L and U are unique. It is nei-
ther necessary nor sufficient that a matrix be nonsingular for it to have an LU
factorization. An example of a singular matrix that has an LU factorization
is any upper triangular/trapezoidal matrix with all zeros on the diagonal. In
this case, U can be chosen as the matrix itself and L chosen as the identity.
For example,

188 5 Transformations and Factorizations

A =
[

0 1 1
0 0 0

]

=
[

1 0
0 1

] [
0 1 1
0 0 0

]

= LU. (5.26)

In this case, A is an upper trapezoidal matrix and so is U .
An example of a nonsingular matrix that does not have an LU factorization

is an identity matrix with permuted rows or columns:
[

0 1
1 0

]

.

A sufficient condition for an n×m matrix A to have an LU factorization is
that for k = 1, 2, . . . ,min(n−1,m), each k×k principal submatrix of A, Ak, be
nonsingular. Note that this fact also provides a way of constructing a singular
matrix that has an LU factorization. Furthermore, for k = 1, 2, . . . ,min(n,m),

det(Ak) = u11u22 · · ·ukk.

5.7 QR Factorization

A very useful factorization is
A = QR, (5.27)

where Q is orthogonal and R is upper triangular or trapezoidal. This is called
the QR factorization.

Forms of the Factors

If A is square and of full rank, R has the form
⎡

⎣
X X X
0 X X
0 0 X

⎤

⎦ . (5.28)

If A is nonsquare, R is nonsquare, with an upper triangular submatrix.
If A has more columns than rows, R is trapezoidal and can be written as
[R1 |R2], where R1 is upper triangular.

If A is n×m with more rows than columns, which is the case in common
applications of QR factorization, then

R =
[

R1

0

]

, (5.29)

5.7 QR Factorization 189

where R1 is m × m upper triangular.
When A has more rows than columns, we can likewise partition Q as

[Q1 |Q2], and we can use a version of Q that contains only relevant rows or
columns,

A = Q1R1, (5.30)

where Q1 is an n × m matrix whose columns are orthonormal. This form is
called a “skinny” QR. It is more commonly used than one with a square Q.

Relation to the Moore-Penrose Inverse

It is interesting to note that the Moore-Penrose inverse of A with full column
rank is immediately available from the QR factorization:

A+ =
[
R−1

1 0
]
QT. (5.31)

Nonfull Rank Matrices

If A is square but not of full rank, R has the form
⎡

⎣
X X X
0 X X
0 0 0

⎤

⎦ . (5.32)

In the common case in which A has more rows than columns, if A is
not of full (column) rank, R1 in equation (5.29) will have the form shown in
matrix (5.32).

If A is not of full rank, we apply permutations to the columns of A by
multiplying on the right by a permutation matrix. The permutations can be
taken out by a second multiplication on the right. If A is of rank r (≤ m),
the resulting decomposition consists of three matrices: an orthogonal Q, a T
with an r × r upper triangular submatrix, and a permutation matrix ET

π ,

A = QTET
π . (5.33)

The matrix T has the form

T =
[

T1 T2

0 0

]

, (5.34)

where T1 is upper triangular and is r×r. The decomposition in equation (5.33)
is not unique because of the permutation matrix. The choice of the permuta-
tion matrix is the same as the pivoting that we discussed in connection with
Gaussian elimination. A generalized inverse of A is immediately available from
equation (5.33):

A− = P

[
T−1

1 0
0 0

]

QT. (5.35)

190 5 Transformations and Factorizations

Additional orthogonal transformations can be applied from the right-hand
side of the n × m matrix A in the form of equation (5.33) to yield

A = QRUT, (5.36)

where R has the form

R =
[

R1 0
0 0

]

, (5.37)

where R1 is r×r upper triangular, Q is n×n and as in equation (5.33), and UT

is n × m and orthogonal. (The permutation matrix in equation (5.33) is also
orthogonal, of course.) The decomposition (5.36) is unique, and it provides
the unique Moore-Penrose generalized inverse of A:

A+ = U

[
R−1

1 0
0 0

]

QT. (5.38)

It is often of interest to know the rank of a matrix. Given a decomposition
of the form of equation (5.33), the rank is obvious, and in practice, this QR
decomposition with pivoting is a good way to determine the rank of a matrix.
The QR decomposition is said to be “rank-revealing”. The computations are
quite sensitive to rounding, however, and the pivoting must be done with some
care (see Hong and Pan, 1992; Section 2.7.3 of Björck, 1996; and Bischof and
Quintana-Ort́ı, 1998a,b).

The QR factorization is particularly useful in computations for overde-
termined systems, as we will see in Section 6.7 on page 222, and in other
computations involving nonsquare matrices.

Formation of the QR Factorization

There are three good methods for obtaining the QR factorization: Householder
transformations or reflections; Givens transformations or rotations; and the
(modified) Gram-Schmidt procedure. Different situations may make one of
these procedures better than the two others. The Householder transformations
described in the next section are probably the most commonly used. If the data
are available only one row at a time, the Givens transformations discussed in
Section 5.7.2 are very convenient. Whichever method is used to compute the
QR decomposition, at least 2n3/3 multiplications and additions are required.
The operation count is therefore about twice as great as that for an LU
decomposition.

5.7.1 Householder Reflections to Form the QR Factorization

To use reflectors to compute a QR factorization, we form in sequence the
reflector for the ith column that will produce 0s below the (i, i) element.

For a convenient example, consider the matrix

5.7 QR Factorization 191

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 − 98
28 X X X

1 122
28 X X X

2 − 8
28 X X X

1 66
28 X X X

1 10
28 X X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The first transformation would be determined so as to transform (3, 1, 2, 1, 1)
to (X, 0, 0, 0, 0). We use equations (5.8) through (5.10) to do this. Call this
first Householder matrix P1. We have

P1A =

⎡

⎢
⎢
⎢
⎢
⎣

−4 1 X X X
0 5 X X X
0 1 X X X
0 3 X X X
0 1 X X X

⎤

⎥
⎥
⎥
⎥
⎦

.

We now choose a reflector to transform (5, 1, 3, 1) to (−6, 0, 0, 0). We do not
want to disturb the first column in P1A shown above, so we form P2 as

P2 =

⎡

⎢
⎢
⎢
⎣

1 0 . . . 0
0
... H2

0

⎤

⎥
⎥
⎥
⎦

.

Forming the vector (11, 1, 3, 1)/
√

132 and proceeding as before, we get the
reflector

H2 = I − 1
66

(11, 1, 3, 1)(11, 1, 3, 1)T

=
1
66

⎡

⎢
⎢
⎣

−55 −11 −33 −11
−11 65 −3 −1
−33 −3 57 −3
−11 −1 −3 65

⎤

⎥
⎥
⎦ .

Now we have

P2P1A =

⎡

⎢
⎢
⎢
⎢
⎣

−4 X X X X
0 −6 X X X
0 0 X X X
0 0 X X X
0 0 X X X

⎤

⎥
⎥
⎥
⎥
⎦

.

Continuing in this way for three more steps, we would have the QR decom-
position of A with QT = P5P4P3P2P1.

The number of computations for the QR factorization of an n× n matrix
using Householder reflectors is 2n3/3 multiplications and 2n3/3 additions.

192 5 Transformations and Factorizations

5.7.2 Givens Rotations to Form the QR Factorization

Just as we built the QR factorization by applying a succession of Householder
reflections, we can also apply a succession of Givens rotations to achieve the
factorization. If the Givens rotations are applied directly, the number of com-
putations is about twice as many as for the Householder reflections, but if
fast Givens rotations are used and accumulated cleverly, the number of com-
putations for Givens rotations is not much greater than that for Householder
reflections. As mentioned on page 185, it is necessary to monitor the differ-
ences in the magnitudes of the elements in the C matrix and often necessary
to rescale the elements. This additional computational burden is excessive
unless done carefully (see Bindel et al., 2002, for a description of an efficient
method).

5.7.3 Gram-Schmidt Transformations to Form the
QR Factorization

Gram-Schmidt transformations yield a set of orthonormal vectors that span
the same space as a given set of linearly independent vectors, {x1, x2, . . . , xm}.
Application of these transformations is called Gram-Schmidt orthogonaliza-
tion. If the given linearly independent vectors are the columns of a matrix A,
the Gram-Schmidt transformations ultimately yield the QR factorization of
A. The basic Gram-Schmidt transformation is shown in equation (2.34) on
page 27.

The Gram-Schmidt algorithm for forming the QR factorization is just a
simple extension of equation (2.34); see Exercise 5.9 on page 200.

5.8 Singular Value Factorization

Another factorization useful in solving linear systems is the singular value
decomposition, or SVD, shown in equation (3.218) on page 127. For the n×m
matrix A, this is

A = UDV T,

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix, and
D is a diagonal matrix of the singular values. The SVD is “rank-revealing”:
the number of nonzero singular values is the rank of the matrix.

Golub and Kahan (1965) showed how to use a QR-type factorization to
compute a singular value decomposition. This method, with refinements as
presented in Golub and Reinsch (1970), is the best algorithm for singular
value decomposition. We discuss this method in Section 7.7 on page 253.

5.9 Factorizations of Nonnegative Definite Matrices 193

5.9 Factorizations of Nonnegative
Definite Matrices

There are factorizations that may not exist except for nonnegative definite
matrices, or may exist only for such matrices. The LU decomposition, for
example, exists and is unique for a nonnegative definite matrix; but may not
exist for general matrices. In this section we discuss two important factor-
izations for nonnegative definite matrices, the square root and the Cholesky
factorization.

5.9.1 Square Roots

On page 125, we defined the square root of a nonnegative definite matrix in
the natural way and introduced the notation A

1
2 as the square root of the

nonnegative definite n × n matrix A:

A =
(
A

1
2

)2

. (5.39)

Because A is symmetric, it has a diagonal factorization, and because it is
nonnegative definite, the elements of the diagonal matrix are nonnegative.
In terms of the orthogonal diagonalization of A, as on page 125 we write
A

1
2 = VC

1
2 V T.

We now show that this square root of a nonnegative definite matrix is
unique among nonnegative definite matrices. Let A be a (symmetric) nonneg-
ative definite matrix and A = VCV T, and let B be a symmetric nonnegative
definite matrix such that B2 = A. We want to show that B = VC

1
2 V T or that

B − VC
1
2 V T = 0. Form

(
B − VC

1
2 V T

)(
B − VC

1
2 V T

)
= B2 − VC

1
2 V TB − BVC

1
2 V T +

(
VC

1
2 V T

)2

= 2A − VC
1
2 V TB −

(
VC

1
2 V TB

)T

. (5.40)

Now, we want to show that VC
1
2 V TB = A. The argument below follows

Harville (1997). Because B is nonnegative definite, we can write B = UDUT

for an orthogonal n× n matrix U and a diagonal matrix D with nonnegative
elements, d1, . . . dn. We first want to show that V TUD = C

1
2 V TU . We have

V TUD2 = V TUDUTUDUTU

= V TB2U

= V TAU

= V T(VC
1
2 V T)2U

= V TVC
1
2 V TVC

1
2 V TU

= CV TU.

194 5 Transformations and Factorizations

Now consider the individual elements in these matrices. Let zij be the (ij)th

element of V TU , and since D2 and C are diagonal matrices, the (ij)th element
of V TUD2 is d2

jzij and the corresponding element of CV TU is cizij , and these
two elements are equal, so djzij =

√
cizij . These, however, are the (ij)th

elements of V TUD and C
1
2 V TU , respectively; hence V TUD = C

1
2 V TU . We

therefore have

V C
1
2 V TB = V C

1
2 V TUDUT = V C

1
2 C

1
2 V TUUT = V CV T = A.

We conclude that VC
1
2 V T is the unique square root of A.

If A is positive definite, it has an inverse, and the unique square root of
the inverse is denoted as A− 1

2 .

5.9.2 Cholesky Factorization

If the matrix A is symmetric and positive definite (that is, if xTAx > 0 for
all x �= 0), another important factorization is the Cholesky decomposition. In
this factorization,

A = TTT, (5.41)

where T is an upper triangular matrix with positive diagonal elements. We
occasionally denote the Cholesky factor of A (that is, T in the expression
above) as AC. (Notice on page 34 and later on page 293 that we use a lowercase
c subscript to represent a centered vector or matrix.)

The factor T in the Cholesky decomposition is sometimes called the square
root, but we have defined a different matrix as the square root, A

1
2 (page 125

and Section 5.9.1). The Cholesky factor is more useful in practice, but the
square root has more applications in the development of the theory.

A factor of the form of T in equation (5.41) is unique up to the sign, just
as a square root is. To make the Cholesky factor unique, we require that the
diagonal elements be positive. The elements along the diagonal of T will be
square roots. Notice, for example, that t11 is

√
a11.

Algorithm 5.1 is a method for constructing the Cholesky factorization.
The algorithm serves as the basis for a constructive proof of the existence and
uniqueness of the Cholesky factorization (see Exercise 5.5 on page 199). The
uniqueness is seen by factoring the principal square submatrices.

Algorithm 5.1 Cholesky Factorization

1. Let t11 =
√

a11.
2. For j = 2, . . . , n, let t1j = a1j/t11.
3. For i = 2, . . . , n,

{
let tii =

√
aii −

∑i−1
k=1 t2ki, and

for j = i + 1, . . . , n,
{

5.9 Factorizations of Nonnegative Definite Matrices 195

let tij = (aij −
∑i−1

k=1 tkitkj)/tii.
}

}
There are other algorithms for computing the Cholesky decomposition.

The method given in Algorithm 5.1 is sometimes called the inner product
formulation because the sums in step 3 are inner products. The algorithms for
computing the Cholesky decomposition are numerically stable. Although the
order of the number of computations is the same, there are only about half as
many computations in the Cholesky factorization as in the LU factorization.
Another advantage of the Cholesky factorization is that there are only n(n +
1)/2 unique elements as opposed to n2 + n in the LU decomposition.

The Cholesky decomposition can also be formed as T̃TDT̃ , where D is a di-
agonal matrix that allows the diagonal elements of T̃ to be computed without
taking square roots. This modification is sometimes called a Banachiewicz
factorization or root-free Cholesky. The Banachiewicz factorization can be
formed in essentially the same way as the Cholesky factorization shown in
Algorithm 5.1: just put 1s along the diagonal of T and store the squared
quantities in a vector d.

Cholesky Decomposition of Singular Nonnegative Definite
Matrices

Any symmetric nonnegative definite matrix has a decomposition similar to
the Cholesky decomposition for a positive definite matrix. If A is n × n with
rank r, there exists a unique matrix T such that A = TTT , where T is an
upper triangular matrix with r positive diagonal elements and n − r rows
containing all zeros. The algorithm is the same as Algorithm 5.1, except that
in step 3 if tii = 0, the entire row is set to zero. The algorithm serves as a
constructive proof of the existence and uniqueness.

Relations to Other Factorizations

For a symmetric matrix, the LDU factorization is UTDU ; hence, we have for
the Cholesky factor

T = D
1
2 U,

where D
1
2 is the matrix whose elements are the square roots of the correspond-

ing elements of D. (This is consistent with our notation above for Cholesky
factors; D

1
2 is the Cholesky factor of D, and it is symmetric.)

The LU and Cholesky decompositions generally are applied to square ma-
trices. However, many of the linear systems that occur in scientific applications
are overdetermined; that is, there are more equations than there are variables,
resulting in a nonsquare coefficient matrix.

For the n × m matrix A with n ≥ m, we can write

196 5 Transformations and Factorizations

ATA = RTQTQR

= RTR, (5.42)

so we see that the matrix R in the QR factorization is (or at least can be)
the same as the matrix T in the Cholesky factorization of ATA. There is
some ambiguity in the Q and R matrices, but if the diagonal entries of R are
required to be nonnegative, the ambiguity disappears and the matrices in the
QR decomposition are unique.

An overdetermined system may be written as

Ax ≈ b,

where A is n × m (n ≥ m), or it may be written as

Ax = b + e,

where e is an n-vector of possibly arbitrary “errors”. Because not all equations
can be satisfied simultaneously, we must define a meaningful “solution”. A
useful solution is an x such that e has a small norm. The most common
definition is an x such that e has the least Euclidean norm; that is, such that
the sum of squares of the eis is minimized.

It is easy to show that such an x satisfies the square system ATAx = ATb,
the “normal equations”. This expression is important and allows us to analyze
the overdetermined system (not just to solve for the x but to gain some better
understanding of the system). It is easy to show that if A is of full rank (i.e.,
of rank m, all of its columns are linearly independent, or, redundantly, “full
column rank”), then ATA is positive definite. Therefore, we could apply either
Gaussian elimination or the Cholesky decomposition to obtain the solution.

As we have emphasized many times before, however, useful conceptual
expressions are not necessarily useful as computational formulations. That is
sometimes true in this case also. In Section 6.1, we will discuss issues relating
to the expected accuracy in the solutions of linear systems. There we will define
a “condition number”. Larger values of the condition number indicate that
the expected accuracy is less. We will see that the condition number of ATA is
the square of the condition number of A. Given these facts, we conclude that
it may be better to work directly on A rather than on ATA, which appears
in the normal equations. We discuss solutions of overdetermined systems in
Section 6.7, beginning on page 222, and in Section 6.8, beginning on page 229.
Overdetermined systems are also a main focus of the statistical applications
in Chapter 9.

5.9.3 Factorizations of a Gramian Matrix

The sums of squares and cross products matrix, the Gramian matrix XTX,
formed from a given matrix X, arises often in linear algebra. We discuss
properties of the sums of squares and cross products matrix beginning on

5.10 Incomplete Factorizations 197

page 287. Now we consider some additional properties relating to various
factorizations.

First we observe that XTX is symmetric and hence has an orthogonally
similar canonical factorization,

XTX = V CV T.

We have already observed that XTX is nonnegative definite, and so it has
the LU factorization

XTX = LU,

with L lower triangular and U upper triangular, and it has the Cholesky
factorization

XTX = TTT

with T upper triangular. With L = TT and U = T , both factorizations are
the same. In the LU factorization, the diagonal elements of either L or U
are often constrained to be 1, and hence the two factorizations are usually
different.

It is instructive to relate the factors of the m × m matrix XTX to the
factors of the n × m matrix X. Consider the QR factorization

X = QR,

where R is upper triangular. Then XTX = (QR)TQR = RTR, so R is the
Cholesky factor T because the factorizations are unique (again, subject to the
restrictions that the diagonal elements be nonnegative).

Consider the SVD factorization

X = UDV T.

We have XTX = (UDV T)TUDV T = V D2V T, which is the orthogonally sim-
ilar canonical factorization of XTX. The eigenvalues of XTX are the squares
of the singular values of X, and the condition number of XTX (which we
define in Section 6.1) is the square of the condition number of X.

5.10 Incomplete Factorizations

Often instead of an exact factorization, an approximate or “incomplete” fac-
torization may be more useful because of its computational efficiency. This
may be the case in the context of an iterative algorithm in which a matrix
is being successively transformed, and, although a factorization is used in
each step, the factors from a previous iteration are adequate approximations.
Another common situation is in working with sparse matrices. Many exact
operations on a sparse matrix yield a dense matrix; however, we may want to
preserve the sparsity, even at the expense of losing exact equalities. When a
zero position in a sparse matrix becomes nonzero, this is called “fill-in”.

198 5 Transformations and Factorizations

For example, instead of an LU factorization of a sparse matrix A, we may
seek lower and upper triangular factors L̃ and Ũ , such that

A ≈ L̃Ũ , (5.43)

and if aij = 0, then l̃ij = ũij = 0. This approximate factorization is easily
accomplished by modifying the Gaussian elimination step that leads to the
outer product algorithm of equations (5.22) and (5.23).

More generally, we may choose a set of indices S = {(p, q)} and modify
the elimination step to be

a
(k+1)
ij ←

{
a
(k)
ij − a

(k)
ij a

(k)
ij a

(k)
ij if (i, j) ∈ S

aij otherwise.
(5.44)

Note that aij does not change unless (i, j) is in S. This allows us to preserve
0s in L and U corresponding to given positions in A.

Exercises

5.1. Consider the transformation of the 3-vector x that first rotates the vector
30◦ about the x1 axis, then rotates the vector 45◦ about the x2 axis, and
then translates the vector by adding the 3-vector y. Find the matrix
A that effects these transformations by a single multiplication. Use the
vector xh of homogeneous coordinates that corresponds to the vector x.
(Thus, A is 4 × 4.)

5.2. Homogeneous coordinates are often used in mapping three-dimensional
graphics to two dimensions. The perspective plot function persp in R, for
example, produces a 4×4 matrix for projecting three-dimensional points
represented in homogeneous coordinates onto two-dimensional points in
the displayed graphic. R uses homogeneous coordinates in the form of
equation (5.6b) rather than equation (5.6a). If the matrix produced is
T and if ah is the representation of a point (xa, ya, za) in homogeneous
coordinates, in the form of equation (5.6b), then ahT yields transformed
homogeneous coordinates that correspond to the projection onto the two-
dimensional coordinate system of the graphical display. Consider the two
graphs in Figure 5.4. The graph on the left in the unit cube was produced
by the simple R statements

x<-c(0,1)
y<-c(0,1)
z<-matrix(c(0,0,1,1),nrow=2)
persp(x, y, z, theta = 45, phi = 30)

(The angles theta and phi are the azimuthal and latitudinal viewing
angles, respectively, in degrees.) The graph on the right is the same with

Exercises 199

a heavy line going down the middle of the surface; that is, from the point
(0.5, 0, 0) to (0.5, 1, 1). Obtain the transformation matrix necessary to
identify the rotated points and produce the graph on the right.

x y

z

x y

z

Fig. 5.4. Illustration of the Use of Homogeneous Coordinates to Locate Three-
Dimensional Points on a Two-Dimensional Graph

5.3. Determine the rotation matrix that rotates 3-vectors through an angle of
30◦ in the plane x1 + x2 + x3 = 0.

5.4. Let A = LU be the LU decomposition of the n × n matrix A.
a) Suppose we multiply the jth column of A by cj , j = 1, 2, . . . n, to

form the matrix Ac. What is the LU decomposition of Ac? Try to
express your answer in a compact form.

b) Suppose we multiply the ith row of A by ci, i = 1, 2, . . . n, to form
the matrix Ar. What is the LU decomposition of Ar? Try to express
your answer in a compact form.

c) What application might these relationships have?
5.5. Show that if A is positive definite, there exists a unique upper triangular

matrix T with positive diagonal elements such that

A = TTT.

Hint: Show that aii > 0. Show that if A is partitioned into square sub-
matrices A11 and A22,

A =
[

A11 A12

A21 A22

]

,

that A11 and A22 are positive definite. Use Algorithm 5.1 (page 194) to
show the existence of a T , and finally show that T is unique.

5.6. Let X1, X2, and X3 be independent random variables identically distrib-
uted as standard normals.
a) Determine a matrix A such that the random vector

A

⎡

⎣
X1

X2

X3

⎤

⎦

has a multivariate normal distribution with variance-covariance ma-
trix

200 5 Transformations and Factorizations

⎡

⎣
4 2 8
2 10 7
8 7 21

⎤

⎦ .

b) Is your solution unique? (The answer is no.) Determine a different
solution.

5.7. Generalized inverses.
a) Prove equation (5.35) on page 189 (generalized inverse of a nonfull

rank matrix).
b) Prove equation (5.38) on page 190, (Moore-Penrose inverse of a non-

full rank matrix).
5.8. Determine the Givens transformation matrix that will rotate the matrix

A =

⎡

⎢
⎢
⎣

3 5 6
6 1 2
8 6 7
2 3 1

⎤

⎥
⎥
⎦

so that the second column becomes (5, ã22, 6, 0) (see also Exercise 12.3).
5.9. Gram-Schmidt transformations.

a) Use Gram-Schmidt transformations to determine an orthonormal ba-
sis for the space spanned by the vectors

v1 = (3, 6, 8, 2),
v2 = (5, 1, 6, 3),
v3 = (6, 2, 7, 1).

b) Write out a formal algorithm for computing the QR factorization of
the n × m full rank matrix A. Assume n ≥ m.

c) Write a Fortran or C subprogram to implement the algorithm you
described.

6

Solution of Linear Systems

One of the most common problems in numerical computing is to solve the
linear system

Ax = b;

that is, for given A and b, to find x such that the equation holds. The system
is said to be consistent if there exists such an x, and in that case a solution x
may be written as A−b, where A− is some inverse of A. If A is square and of
full rank, we can write the solution as A−1b.

It is important to distinguish the expression A−1b or A+b, which represents
the solution, from the method of computing the solution. We would never
compute A−1 just so we could multiply it by b to form the solution A−1b.

There are two general methods of solving a system of linear equations:
direct methods and iterative methods. A direct method uses a fixed number
of computations that would in exact arithmetic lead to the solution; an itera-
tive method generates a sequence of approximations to the solution. Iterative
methods often work well for very large sparse matrices. We first consider a
characteristic of the problem that affects how easy it is to solve the system
accurately.

6.1 Condition of Matrices

Data are said to be “ill-conditioned” for a particular problem or computation
if the data are likely to cause difficulties in the computations, such as severe
loss of precision. More generally, the term “ill-conditioned” is applied to a
problem in which small changes to the input result in large changes in the
output. In the case of a linear system

Ax = b,

the problem of solving the system is ill-conditioned if small changes to some
elements of A or b will cause large changes in the solution x.

202 6 Solution of Linear Systems

Consider, for example, the system of equations

1.000x1 + 0.500x2 = 1.500,
0.667x1 + 0.333x2 = 1.000.

(6.1)

The solution is easily seen to be x1 = 1.000 and x2 = 1.000.
Now consider a small change in the right-hand side:

1.000x1 + 0.500x2 = 1.500,
0.667x1 + 0.333x2 = 0.999.

(6.2)

This system has solution x1 = 0.000 and x2 = 3.000.
Alternatively, consider a small change in one of the elements of the coeffi-

cient matrix:
1.000x1 + 0.500x2 = 1.500,
0.667x1 + 0.334x2 = 1.000.

(6.3)

The solution now is x1 = 2.000 and x2 = −1.000.
In both cases, small changes of the order of 10−3 in the input (the el-

ements of the coefficient matrix or the right-hand side) result in relatively
large changes (of the order of 1) in the output (the solution). Solving the
system (either one of them) is an ill-conditioned problem.

The nature of the data that cause ill-conditioning depends on the type
of problem. In this case, the problem is that the lines represented by the
equations are almost parallel, as seen in Figure 6.1, and so their point of
intersection is very sensitive to slight changes in the coefficients defining the
lines.

The problem can also be described in terms of the angle between the lines.
When the angle is small, but not necessarily 0, we refer to the condition as
“collinearity”. (This term is somewhat misleading because, strictly speaking,
it should indicate that the angle is exactly 0.) In this example, the cosine of
the angle between the lines, from equation (2.32), is 1− 2× 10−7. In general,
collinearity (or “multicollinearity”) exists whenever the angle between any
line (that is, vector) and the subspace spanned by any other set of vectors is
small.

For a specific problem such as solving a system of equations, we may
quantify the condition of the matrix by a condition number. To develop this
quantification for the problem of solving linear equations, consider a linear
system Ax = b, with A nonsingular and b �= 0, as above. Now perturb the
system slightly by adding a small amount, δb, to b, and let b̃ = b + δb. The
system

Ax̃ = b̃

has a solution x̃ = δx + x = A−1b̃. (Notice that δb and δx do not necessarily
represent scalar multiples of the respective vectors.) If the system is well-
conditioned, for any reasonable norm, if ‖δb‖/‖b‖ is small, then ‖δx‖/‖x‖ is
likewise small.

6.1 Condition of Matrices 203

0 1 2

−2
−1

0
1

2
3

4

x1

x 2

0 1 2

−2
−1

0
1

2
3

4
x1

x 2

Fig. 6.1. Almost Parallel Lines: Ill-Conditioned Coefficient Matrices, Equa-
tions (6.1) and (6.2)

From δx = A−1δb and the inequality (3.222) (page 129), for an induced
norm on A, we have

‖δx‖ ≤ ‖A−1‖ ‖δb‖. (6.4)

Likewise, because b = Ax, we have

1
‖x‖ ≤ ‖A‖ 1

‖b‖ , (6.5)

and equations (6.4) and (6.5) together imply

‖δx‖
‖x‖ ≤ ‖A‖ ‖A−1‖‖δb‖‖b‖ . (6.6)

This provides a bound on the change in the solution ‖δx‖/‖x‖ in terms of the
perturbation ‖δb‖/‖b‖.

The bound in equation (6.6) motivates us to define the condition number
with respect to inversion denoted by κ(·) as

κ(A) = ‖A‖ ‖A−1‖ (6.7)

for nonsingular A. In the context of linear algebra, the condition number with
respect to inversion is so dominant in importance that we generally just refer
to it as the “condition number”. A condition number is a useful measure of the
condition of A for the problem of solving a linear system of equations. There
are other condition numbers useful in numerical analysis, however, such as

204 6 Solution of Linear Systems

the condition number for computing the sample variance (see equation (10.8)
on page 411) or a condition number for a root of a function.

We can write equation (6.6) as

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖ , (6.8)

and, following a development similar to that above, write

‖δb‖
‖b‖ ≤ κ(A)

‖δx‖
‖x‖ . (6.9)

These inequalities, as well as the other ones we write in this section, are sharp,
as we can see by letting A = I.

Because the condition number is an upper bound on a quantity that we
would not want to be large, a large condition number is “bad”.

Notice that our definition of the condition number does not specify the
norm; it only requires that the norm be an induced norm. (An equivalent
definition does not rely on the norm being an induced norm.) We sometimes
specify a condition number with regard to a particular norm, and just as we
sometimes denote a specific norm by a special symbol, we may use a special
symbol to denote a specific condition number. For example, κp(A) may denote
the condition number of A in terms of an Lp norm. Most of the properties of
condition numbers (but not their actual values) are independent of the norm
used.

The coefficient matrix in equations (6.1) and (6.2) is

A =
[

1.000 0.500
0.667 0.333

]

,

and its inverse is

A−1 =
[
−666 1000
1344 −2000

]

.

It is easy to see that
‖A‖1 = 1.667

and
‖A−1‖1 = 3000;

hence,
κ1(A) = 5001.

Likewise,
‖A‖∞ = 1.500

and
‖A−1‖∞ = 3344;

hence,

6.1 Condition of Matrices 205

κ∞(A) = 5016.

Notice that the condition numbers are not exactly the same, but they are close.
Although we used this matrix in an example of ill-conditioning, these condi-
tion numbers, although large, are not so large as to cause undue concern for
numerical computations. Indeed, solving the systems of equations (6.1), (6.2),
and (6.3) would not cause problems for a computer program. Notice also that
the condition numbers are of the order of magnitude of the ratio of the output
perturbation to the input perturbation in those equations.

An interesting relationship for the L2 condition number is

κ2(A) =
maxx�=0

‖Ax‖
‖x‖

minx�=0
‖Ax‖
‖x‖

(6.10)

(see Exercise 6.1, page 238). The numerator and denominator in equa-
tion (6.10) look somewhat like the maximum and minimum eigenvalues, as
we have suggested. Indeed, the L2 condition number is just the ratio of the
largest eigenvalue in absolute value to the smallest (see page 131). The L2

condition number is also called the spectral condition number.
The eigenvalues of the coefficient matrix in equations (6.1) and (6.2) are

1.333375 and −0.0003750, and so

κ2(A) = 3555.67,

which is the same order of magnitude as κ∞(A) and κ1(A) computed above.
Some useful facts about condition numbers are:

• κ(A) = κ(A−1),
• κ(cA) = κ(A), for c �= 0,
• κ(A) ≥ 1,
• κ1(A) = κ∞(AT),
• κ2(AT) = κ2(A),
• κ2(ATA) = κ2

2(A)
≥ κ2(A), and

• if A and B are orthogonally similar (equation (3.191)), then

‖A‖2 = ‖B‖2

and
κ2(A) = κ2(B)

(see equation (3.228)).

Even though the condition number provides a very useful indication of the
condition of the problem of solving a linear system of equations, it can be
misleading at times. Consider, for example, the coefficient matrix

A =
[

1 0
0 ε

]

,

206 6 Solution of Linear Systems

where ε < 1. The condition numbers are

κ1(A) = κ2(A) = κ∞(A) =
1
ε
,

and so if ε is small, the condition number is large. It is easy to see, however,
that small changes to the elements of A or b in the system Ax = b do not cause
undue changes in the solution (our heuristic definition of ill-conditioning). In
fact, the simple expedient of multiplying the second row of A by 1/ε (that is,
multiplying the second equation, a21x1 + a22x2 = b2, by 1/ε) yields a linear
system that is very well-conditioned.

This kind of apparent ill-conditioning is called artificial ill-conditioning.
It is due to the different rows (or columns) of the matrix having a very dif-
ferent scale; the condition number can be changed just by scaling the rows or
columns. This usually does not make a linear system any better or any worse
conditioned.

In Section 6.4 we relate the condition number to bounds on the numerical
accuracy of the solution of a linear system of equations.

The relationship between the size of the matrix and its condition number
is interesting. In general, we would expect the condition number to increase
as the size increases. This is the case, but the nature of the increase depends
on the type of elements in the matrix. If the elements are randomly and
independently distributed as normal or uniform with a mean of zero and
variance of one, the increase in the condition number is approximately linear
in the size of the matrix (see Exercise 10.22, page 427).

Our definition of condition number given above is for nonsingular matri-
ces. We can formulate a useful alternate definition that extends to singular
matrices and to nonsquare matrices: the condition number of a matrix is the
ratio of the largest singular value to the smallest nonzero singular value, and
of course this is the same as the definition for square nonsingular matrices.
This is also called the spectral condition number.

The condition number, like the determinant, is not easy to compute (see
page 440 in Section 11.4).

In the ridge regression discussed on page 291, when X is of full rank, we
can see that the condition number of the matrix XTX + λI is smaller than
that of XTX:

max(di + λ)
min(di + λ)

<
max(di)
min(di)

for λ > 0.

6.2 Direct Methods for Consistent Systems

There are two general approaches to solving the linear system Ax = b. One
class of methods is direct in the sense that the solution is obtained in a preset
number of steps. The number of steps generally depends only on the size of

6.2 Direct Methods for Consistent Systems 207

the matrix. Other methods, called iterative, arrive at the solution through a
sequence of steps whose number depends on some criterion that indicates the
solution has been obtained. (Note, of course, that a purported solution can
be checked out very quickly by simple multiplication.)

6.2.1 Gaussian Elimination and Matrix Factorizations

The most common direct method for the solution of linear systems is Gaussian
elimination. The basic idea in this method is to form equivalent sets of equa-
tions, beginning with the system to be solved, Ax = b, or

aT
1∗x = b1

aT
2∗x = b2

. . . = . . .

aT
n∗x = bn,

where aj∗ is the jth row of A. An equivalent set of equations can be formed
by a sequence of elementary operations on the equations in the given set.

These elementary operations on equations are essentially the same as the
elementary operations on the rows of matrices discussed in Section 3.2.3 and
in Section 5.6. There are three kinds of elementary operations: an interchange
of two equations,

aT
j∗x = bj ← aT

k∗x = bk,

aT
k∗x = bk ← aT

j∗x = bj ,

which affects two equations simultaneously, a scalar multiplication of a given
equation,

aT
j∗x = bj ← caT

j∗x = cbj ,

and a replacement of a single equation with a sum of it and a scalar multiple
of another equation,

aT
j∗x = bj ← aT

j∗x + caT
k∗x = bj + cbk.

The interchange operation can be accomplished by premultiplication by
an elementary permutation matrix (see page 62):

EjkAx = Ejkb.

The scalar multiplication can be performed by premultiplication by an ele-
mentary transformation matrix Ej(c), and the axpy operation can be effected
by premultiplication by an Ejk(c) elementary transformation matrix.

The elementary operation on the equation

aT
2∗x = b2

208 6 Solution of Linear Systems

in which the first equation is combined with it using c1 = −a21/a11 and
c2 = 1 will yield an equation with a zero coefficient for x1. Generalizing this,
we perform elementary operations on the second through the nth equations
to yield a set of equivalent equations in which all but the first have zero
coefficients for x1.

Next, we perform elementary operations using the second equation with
the third through the nth equations, so that the new third through the nth

equations have zero coefficients for x2. This is the kind of sequence of multipli-
cations by elementary operator matrices shown in equation (3.50) on page 66
and grouped together as Lk in equation (5.20) on page 186.

The sequence of equivalent equations, beginning with Ax = b, is

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

(0)
... +

...
...

...
an1x1 + an2x2 + · · · + annxn = bn

, (6.11)

then A(1)x = b(1), or L1Ax = L1b,

a11x1 + a12x2 + · · · + a1nxn = b1

a
(1)
22 x2 + · · · + a

(1)
2n xn = b

(1)
2

(1)
... + · · · +

...
...

a
(1)
n2 x2 + · · · + a

(1)
nnxn = b

(1)
n

, (6.12)

...
...

and finally A(n)x=b(n), or Ln−1 · · ·L1Ax=Ln−1 · · ·L1b, or Ux = Ln−1 · · ·L1b,

a11x1 + a12x2 + · · · + a1nxn = b1

a
(1)
22 x2 + · · · + a

(1)
2n xn = b

(1)
2

(n − 1)
...

...
...

a
(n−2)
n−1,n−1xn−1 + a

(n−2)
n−1,nxn = b

(n−2)
n−1

a
(n−1)
nn xn = b

(n−1)
n

. (6.13)

Recalling equation (5.23), we see that the last system is Ux = L−1b. This
system is easy to solve because the coefficient matrix is upper triangular. The
last equation in the system yields

xn =
b
(n−1)
n

a
(n−1)
nn

.

6.2 Direct Methods for Consistent Systems 209

By back substitution, we get

xn−1 =
(b(n−2)

n−1 − a
(n−2)
n−1,nxn)

a
(n−2)
n−1,n−1

,

and we obtain the rest of the xs in a similar manner. This back substitution
is equivalent to forming

x = U−1L−1b, (6.14)

or x = A−1b with A = LU .
Gaussian elimination consists of two steps: the forward reduction, which

is of order O(n3), and the back substitution, which is of order O(n2).

Pivoting

The only obvious problem with this method arises if some of the a
(k−1)
kk s used

as divisors are zero (or very small in magnitude). These divisors are called
“pivot elements”.

Suppose, for example, we have the equations

0.0001x1 + x2 = 1,
x1 + x2 = 2.

The solution is x1 = 1.0001 and x2 = 0.9999. Suppose we are working with
three digits of precision (so our solution is x1 = 1.00 and x2 = 1.00). After
the first step in Gaussian elimination, we have

0.0001x1 + x2 = 1,
−10, 000x2 = −10, 000,

and so the solution by back substitution is x2 = 1.00 and x1 = 0.000. The
L2 condition number of the coefficient matrix is 2.618, so even though the
coefficients vary greatly in magnitude, we certainly would not expect any
difficulty in solving these equations.

A simple solution to this potential problem is to interchange the equation
having the small leading coefficient with an equation below it. Thus, in our
example, we first form

x1 + x2 = 2,
0.0001x1 + x2 = 1,

so that after the first step we have

x1 + x2 = 2,
x2 = 1,

and the solution is x2 = 1.00 and x1 = 1.00, which is correct to three digits.
Another strategy would be to interchange the column having the small

leading coefficient with a column to its right. Both the row interchange and the

210 6 Solution of Linear Systems

column interchange strategies could be used simultaneously, of course. These
processes, which obviously do not change the solution, are called pivoting. The
equation or column to move into the active position may be chosen in such a
way that the magnitude of the new diagonal element is the largest possible.

Performing only row interchanges, so that at the kth stage the equation
with

n
max
i=k

|a(k−1)
ik |

is moved into the kth row, is called partial pivoting. Performing both row
interchanges and column interchanges, so that

n;n
max

i=k;j=k
|a(k−1)

ij |

is moved into the kth diagonal position, is called complete pivoting. See Exer-
cises 6.2a and 6.2b.

It is always important to distinguish descriptions of effects of actions from
the actions that are actually carried out in the computer. Pivoting is “inter-
changing” rows or columns. We would usually do something like that in the
computer only when we are finished and want to produce some output. In the
computer, a row or a column is determined by the index identifying the row
or column. All we do for pivoting is to keep track of the indices that we have
permuted.

There are many more computations required in order to perform complete
pivoting than are required to perform partial pivoting. Gaussian elimination
with complete pivoting can be shown to be stable; that is, the algorithm
yields an exact solution to a slightly perturbed system, (A + δA)x = b. (We
discuss stability on page 409.) For Gaussian elimination with partial pivot-
ing, there are examples that show that it is not stable. These examples are
somewhat contrived, however, and experience over many years has indicated
that Gaussian elimination with partial pivoting is stable for most problems
occurring in practice. For this reason, together with the computational sav-
ings, Gaussian elimination with partial pivoting is one of the most commonly
used methods for solving linear systems. See Golub and Van Loan (1996) for
a further discussion of these issues.

There are two modifications of partial pivoting that result in stable al-
gorithms. One is to add one step of iterative refinement (see Section 6.5,
page 219) following each pivot. It can be shown that Gaussian elimination
with partial pivoting together with one step of iterative refinement is un-
conditionally stable (Skeel, 1980). Another modification is to consider two
columns for possible interchange in addition to the rows to be interchanged.
This does not require nearly as many computations as complete pivoting
does. Higham (1997) shows that this method, suggested by Bunch and Kauf-
man (1977) and used in LINPACK and LAPACK, is stable.

6.3 Iterative Methods for Consistent Systems 211

Nonfull Rank and Nonsquare Systems

The existence of an x that solves the linear system Ax = b depends on that
system being consistent; it does not depend on A being square or of full rank.
The methods discussed above apply in this case. (See the discussion of LU
and QR factorizations for nonfull rank and nonsquare matrices on pages 188
and 189.) In applications, it is often annoying that many software developers
do not provide capabilities for handling such systems. Many of the standard
programs for solving systems provide solutions only if A is square and of full
rank. This is a poor design decision.

6.2.2 Choice of Direct Method

Direct methods of solving linear systems all use some form of matrix factoriza-
tion, as discussed in Chapter 5. The LU factorization is the most commonly
used method to solve a linear system.

For certain patterned matrices, other direct methods may be more efficient.
If a given matrix initially has a large number of zeros, it is important to
preserve the zeros in the same positions (or in other known positions) in
the matrices that result from operations on the given matrix. This helps to
avoid unnecessary computations. The iterative methods discussed in the next
section are often more useful for sparse matrices.

Another important consideration is how easily an algorithm lends itself to
implementation on advanced computer architectures. Many of the algorithms
for linear algebra can be vectorized easily. It is now becoming more important
to be able to parallelize the algorithms. The iterative methods discussed in
the next section can often be parallelized more easily.

6.3 Iterative Methods for Consistent Systems

In iterative methods for solving the linear system Ax = b, we begin with
starting point x(0), which we consider to be an approximate solution, and
then move through a sequence of successive approximations x(1), x(2), . . ., that
ultimately (it is hoped!) converge to a solution. The user must specify a con-
vergence criterion to determine when the approximation is close enough to
the solution. The criterion may be based on successive changes in the solution
x(k) − x(k−1) or on the difference ‖Ax(k) − b‖.

Iterative methods may be particularly useful for very large systems because
it may not be necessary to have the entire A matrix available for computa-
tions in each step. These methods are also useful for sparse systems. Also,
as mentioned above, the iterative algorithms can often be parallelized (see
Heath, Ng, and Peyton, 1991).

212 6 Solution of Linear Systems

6.3.1 The Gauss-Seidel Method with Successive Overrelaxation

One of the simplest iterative procedures is the Gauss-Seidel method. In this
method, we begin with an initial approximation to the solution, x(0). We then
compute an update for the first element of x:

x
(1)
1 =

1
a11

⎛

⎝b1 −
n∑

j=2

a1jx
(0)
j

⎞

⎠ .

Continuing in this way for the other elements of x, we have for i = 1, . . . , n

x
(1)
i =

1
aii

⎛

⎝bi −
i−1∑

j=1

aijx
(1)
j −

n∑

j=i+1

aijx
(0)
j

⎞

⎠ ,

where no sums are performed if the upper limit is smaller than the lower
limit. After getting the approximation x(1), we then continue this same kind
of iteration for x(2), x(3),

We continue the iterations until a convergence criterion is satisfied. As we
discuss in Section 10.3.3, this criterion may be of the form

∆
(
x(k), x(k−1)

)
≤ ε,

where ∆
(
x(k), x(k−1)

)
is a measure of the difference of x(k) and x(k−1), such as

‖x(k)−x(k−1)‖. We may also base the convergence criterion on ‖r(k)−r(k−1)‖,
where r(k) = b − Ax(k).

The Gauss-Seidel iterations can be thought of as beginning with a re-
arrangement of the original system of equations as

a11x1 = b1 − a12x2 · · · − a1nxn

a21x1 + a22x2 = b2 · · · − a2nxn

... +
...

...
...

a(n−1)1x1 + a(n−1)2x2 + · · · = bn−1 − annxn

an1x1 + an2x2 + · · ·+ annxn = bn

In this form, we identify three matrices: a diagonal matrix D, a lower trian-
gular L with 0s on the diagonal, and an upper triangular U with 0s on the
diagonal:

(D + L)x = b − Ux.

We can write this entire sequence of Gauss-Seidel iterations in terms of these
three fixed matrices:

x(k+1) = (D + L)−1
(
−Ux(k) + b

)
. (6.15)

This method will converge for any arbitrary starting value x(0) if and only
if the spectral radius of (D +L)−1U is less than 1. (See Golub and Van Loan,
1996, for a proof of this.) Moreover, the rate of convergence increases with
decreasing spectral radius.

6.3 Iterative Methods for Consistent Systems 213

Successive Overrelaxation

The Gauss-Seidel method may be unacceptably slow, so it may be modified
so that the update is a weighted average of the regular Gauss-Seidel update
and the previous value. This kind of modification is called successive overre-
laxation, or SOR. Instead of equation (6.15), the update is given by

1
ω

(D + L)x(k+1) =
1
ω

(
(1 − ω)D − ωU

)
x(k) + b, (6.16)

where the relaxation parameter ω is usually chosen to be between 0 and 1. For
ω = 1 the method is the ordinary Gauss-Seidel method; see Exercises 6.2c,
6.2d, and 6.2e.

6.3.2 Conjugate Gradient Methods for Symmetric
Positive Definite Systems

In the Gauss-Seidel methods the convergence criterion is based on successive
differences in the solutions x(k) and x(k−1) or in the residuals r(k) and r(k−1).
Other iterative methods focus directly on the magnitude of the residual

r(k) = b − Ax(k). (6.17)

We seek a value x(k) such that the residual is small (in some sense). Meth-
ods that minimize ‖r(k)‖2 are called minimal residual (MINRES) methods or
generalized minimal residual (GMRES) methods.

For a system with a symmetric positive definite coefficient matrix A, it
turns out that the best iterative method is based on minimizing the conjugate
L2 norm (see equation (3.66))

‖r(k)TA−1r(k)‖2.

A method based on this minimization problem is called a conjugate gradient
method.

The Conjugate Gradient Method

The problem of solving the linear system Ax = b is equivalent to finding the
minimum of the function

f(x) =
1
2
xTAx − xTb. (6.18)

By setting the derivative of f to 0, we see that a stationary point of f occurs
at the point x where Ax = b (see Section 4.3).

If A is positive definite, the (unique) minimum of f is at x = A−1b,
and the value of f at the minimum is − 1

2bTAb. The minimum point can be

214 6 Solution of Linear Systems

approached iteratively by starting at a point x(0), moving to a point x(1)

that yields a smaller value of the function, and continuing to move to points
yielding smaller values of the function. The kth point is x(k−1) +α(k−1)p(k−1),
where α(k−1) is a scalar and p(k−1) is a vector giving the direction of the
movement. Hence, for the kth point, we have the linear combination

x(k) = x(0) + α(1)p(1) + · · · + α(k−1)p(k−1).

At the point x(k), the function f decreases most rapidly in the direction
of the negative gradient, −∇f(x(k)), which is just the residual,

−∇f(x(k)) = r(k).

If this residual is 0, no movement is indicated because we are at the solution.
Moving in the direction of steepest descent may cause a very slow con-

vergence to the minimum. (The curve that leads to the minimum on the
quadratic surface is obviously not a straight line. The direction of steepest
descent changes as we move to a new point x(k+1).) A good choice for the
sequence of directions p(1), p(2), . . . is such that

(p(k))TAp(i) = 0, for i = 1, . . . , k − 1. (6.19)

Such a vector p(k) is A-conjugate to p(1), p(2), . . . p(k−1) (see page 71). Given
a current point x(k) and a direction to move p(k) to the next point, we must
also choose a distance α(k)‖p(k)‖ to move in that direction. We then have the
next point,

x(k+1) = x(k) + α(k)p(k). (6.20)

(Notice that here, as often in describing algorithms in linear algebra, we use
Greek letters, such as α, to denote scalar quantities.)

We choose the directions as in Newton steps, so the first direction is Ar(0)

(see Section 4.3.2). The paths defined by the directions p(1), p(2), . . . in equa-
tion (6.19) are called the conjugate gradients. A conjugate gradient method
for solving the linear system is shown in Algorithm 6.1.

Algorithm 6.1 The Conjugate Gradient Method for Solving the
Symmetric Positive Definite System Ax = b, Starting with x(0)

0. Input stopping criteria, ε and kmax.
Set k = 0; r(k) = b−Ax(k); s(k) = Ar(k); p(k) = s(k); and γ(k) = ‖s(k)‖2.

1. If γ(k) ≤ ε, set x = x(k) and terminate.
2. Set q(k) = Ap(k).
3. Set α(k) = γ(k)

‖q(k)‖2 .

4. Set x(k+1) = x(k) + α(k)p(k).
5. Set r(k+1) = r(k) − α(k)q(k).
6. Set s(k+1) = Ar(k+1).
7. Set γ(k+1) = ‖s(k+1)‖2.

6.3 Iterative Methods for Consistent Systems 215

8. Set p(k+1) = s(k+1) + γ(k+1)

γ(k) p(k).
9. If k < kmax,

set k = k + 1 and go to step 1;
otherwise

issue message that
“algorithm did not converge in kmax iterations”.

There are various ways in which the computations in Algorithm 6.1 could
be arranged. Although any vector norm could be used in Algorithm 6.1, the
L2 norm is the most common one.

This method, like other iterative methods, is more appropriate for large
systems. (“Large” in this context means bigger than 1000 × 1000.)

In exact arithmetic, the conjugate gradient method should converge in n
steps for an n × n system. In practice, however, its convergence rate varies
widely, even for systems of the same size. Its convergence rate generally de-
creases with increasing L2 condition number (which is a function of the max-
imum and minimum nonzero eigenvalues), but that is not at all the complete
story. The rate depends in a complicated way on all of the eigenvalues. The
more spread out the eigenvalues are, the slower the rate. For different sys-
tems with roughly the same condition number, the convergence is faster if all
eigenvalues are in two clusters around the maximum and minimum values.
See Greenbaum and Strakoš (1992) for an analysis of the convergence rates.

Krylov Methods

Notice that the steps in the conjugate gradient algorithm involve the matrix
A only through linear combinations of its rows or columns; that is, in any
iteration, only a vector of the form Av or ATw is used. The conjugate gra-
dient method and related procedures, called Lanczos methods, move through
a Krylov space in the progression to the solution. A Krylov space is the k-
dimensional vector space of order n generated by the n×n matrix A and the
vector v by forming the basis {v,Av,A2v, . . . , Ak−1v}. We often denote this
space as Kk(A, v) or just as Kk:

Kk = V({v,Av,A2v, . . . , Ak−1v}). (6.21)

Methods for computing eigenvalues are often based on Krylov spaces.

GMRES Methods

The conjugate gradient method seeks to minimize the residual vector in equa-
tion (6.17), r(k) = b − Ax(k), and the convergence criterion is based on the
linear combinations of the columns of the coefficient matrix formed by that
vector, ‖Ar(k)‖.

216 6 Solution of Linear Systems

The generalized minimal residual (GMRES) method of Saad and Schultz
(1986) for solving Ax = b begins with an approximate solution x(0) and takes
x(k) as x(k−1) + z(k), where z(k) is the solution to the minimization problem,

min
z∈Kk(A,r(k−1))

‖r(k−1) − Az‖,

where, as before, r(k) = b−Ax(k). This minimization problem is a constrained
least squares problem. In the original implementations, the convergence of
GMRES could be very slow, but modifications have speeded it up consider-
ably. See Walker (1988) and Walker and Zhou (1994) for details of the meth-
ods. Brown and Walker (1997) consider the behavior of GMRES when the
coefficient matrix is singular and give conditions for GMRES to converge to a
solution of minimum length (the solution corresponding to the Moore-Penrose
inverse; see Section 6.7.3, page 227).

Preconditioning

As we mentioned above, the convergence rate of the conjugate gradient
method depends on the distribution of the eigenvalues in rather complicated
ways. The ratio of the largest to the smallest (that is, the L2 condition number
is important) and the convergence rate for the conjugate gradient method is
slower for larger L2 condition numbers. The rate also is slower if the eigenval-
ues are spread out, especially if there are several eigenvalues near the largest
or smallest. This phenomenon is characteristic of other Krylov space methods.

One way of addressing the problem of slow convergence of iterative meth-
ods is by preconditioning; that is, by replacing the system Ax = b with another
system,

M−1Ax = M−1b, (6.22)

where M is very similar (by some measure) to A, but the system M−1Ax =
M−1b has a better condition for the problem at hand. We choose M to be
symmetric and positive definite, and such that Mx = b is easy to solve. If M is
an approximation of A, then M−1A should be well-conditioned; its eigenvalues
should all be close to each other.

A problem with applying the conjugate gradient method to the precondi-
tioned system M−1Ax = M−1b is that M−1A may not be symmetric. We can
form an equivalent symmetric system, however, by decomposing the symmet-
ric positive definite M as M = VCV T and then

M−1/2 = V diag(1/
√

c11, . . . , 1/
√

cnn)V T,

as in equation (3.216), after inverting the positive square roots of C. Multiply-
ing both sides of M−1Ax = M−1b by M1/2, inserting the factor M−1/2M1/2,
and arranging terms yields

(M−1/2AM−1/2)M1/2x = M−1/2b.

6.3 Iterative Methods for Consistent Systems 217

This can all be done and Algorithm 6.1 can be modified without explicit for-
mation of and multiplication by M1/2. The preconditioned conjugate gradient
method is shown in Algorithm 6.2.

Algorithm 6.2 The Preconditioned Conjugate Gradient Method for
Solving the Symmetric Positive Definite System Ax = b, Starting
with x(0)

0. Input stopping criteria, ε and kmax.
Set k = 0; r(k) = b−Ax(k); s(k) = Ar(k); p(k) = M−1s(k); y(k) = M−1r(k);
and γ(k) = y(k)Ts(k).

1. If γ(k) ≤ ε, set x = x(k) and terminate.
2. Set q(k) = Ap(k).
3. Set α(k) = γ(k)

‖q(k)‖2 .

4. Set x(k+1) = x(k) + α(k)p(k).
5. Set r(k+1) = r(k) − α(k)q(k).
6. Set s(k+1) = Ar(k+1).
7. Set y(k+1) = M−1r(k+1).
8. Set γ(k+1) = y(k+1)Ts(k+1).
9. Set p(k+1) = M−1s(k+1) + γ(k+1)

γ(k) p(k).
10. If k < kmax,

set k = k + 1 and go to step 1;
otherwise

issue message that
“algorithm did not converge in kmax iterations”.

The choice of an appropriate matrix M is not an easy problem, and we will
not consider the results here. Benzi (2002) provides a survey of preconditioning
methods. We will also mention the preconditioned conjugate gradient method
in Section 7.1.3, but there, again, we will refer the reader to other sources for
details.

6.3.3 Multigrid Methods

Iterative methods have important applications in solving differential equa-
tions. The solution of differential equations by a finite difference discretiza-
tion involves the formation of a grid. The solution process may begin with a
fairly coarse grid on which a solution is obtained. Then a finer grid is formed,
and the solution is interpolated from the coarser grid to the finer grid to be
used as a starting point for a solution over the finer grid. The process is then
continued through finer and finer grids. If all of the coarser grids are used
throughout the process, the technique is a multigrid method. There are many
variations of exactly how to do this. Multigrid methods are useful solution
techniques for differential equations.

218 6 Solution of Linear Systems

6.4 Numerical Accuracy

The condition numbers we defined in Section 6.1 are useful indicators of the
accuracy we may expect when solving a linear system Ax = b. Suppose the
entries of the matrix A and the vector b are accurate to approximately p
decimal digits, so we have the system

(A + δA) (x + δx) = b + δb

with
‖δA‖
‖A‖ ≈ 10−p

and
‖δb‖
‖b‖ ≈ 10−p.

Assume A is nonsingular, and suppose that the condition number with respect
to inversion, κ(A), is approximately 10t, so

κ(A)
‖δA‖
‖A‖ ≈ 10t−p.

Ignoring the approximation of b (that is, assuming δb = 0), we can write

δx = −A−1δA(x + δx),

which, together with the triangular inequality and inequality (3.222) on
page 129, yields the bound

‖δx‖ ≤ ‖A−1‖ ‖δA‖
(
‖x‖ + ‖δx‖

)
.

Using equation (6.7) with this, we have

‖δx‖ ≤ κ(A)
‖δA‖
‖A‖

(
‖x‖ + ‖δx‖

)

or (

1 − κ(A)
‖δA‖
‖A‖

)

‖δx‖ ≤ κ(A)
‖δA‖
‖A‖ ‖x‖.

If the condition number is not too large relative to the precision (that is, if
10t−p � 1), then we have

‖δx‖
‖x‖ ≈ κ(A)

‖δA‖
‖A‖

≈ 10t−p. (6.23)

Expression (6.23) provides a rough bound on the accuracy of the solution
in terms of the precision of the data and the condition number of the coefficient

6.5 Iterative Refinement 219

matrix. This result must be used with some care, however. Rust (1994), among
others, points out failures of the condition number for setting bounds on the
accuracy of the solution.

Another consideration in the practical use of expression (6.23) is the fact
that the condition number is usually not known, and methods for comput-
ing it suffer from the same rounding problems as the solution of the linear
system itself. In Section 11.4, we describe ways of estimating the condition
number, but as the discussion there indicates, these estimates are often not
very reliable.

We would expect the norms in the expression (6.23) to be larger for larger
size problems. The approach taken above addresses a type of “total” error.
It may be appropriate to scale the norms to take into account the number of
elements. Chaitin-Chatelin and Frayssé (1996) discuss error bounds for indi-
vidual elements of the solution vector and condition measures for elementwise
error.

Another approach to determining the accuracy of a solution is to use ran-
dom perturbations of A and/or b and then to estimate the effects of the
perturbations on x. Stewart (1990) discusses ways of doing this. Stewart’s
method estimates error measured by a norm, as in expression (6.23). Kenney
and Laub (1994) and Kenney, Laub, and Reese (1998) describe an estimation
method to address elementwise error.

Higher accuracy in computations for solving linear systems can be achieved
in various ways: multiple precision, interval arithmetic, and residue arith-
metic. Stallings and Boullion (1972) and Keller-McNulty and Kennedy (1986)
describe ways of using residue arithmetic in some linear computations for
statistical applications.

Another way of improving the accuracy is by using iterative refinement,
which we now discuss.

6.5 Iterative Refinement

Once an approximate solution x(0) to the linear system Ax = b is available,
iterative refinement can yield a solution that is closer to the true solution.
The residual

r = b − Ax(0)

is used for iterative refinement. Clearly, if h = A+r, then x(0) +h is a solution
to the original system.

The problem considered here is not just an iterative solution to the linear
system, as we discussed in Section 6.3. Here, we assume x(0) was computed
accurately given the finite precision of the computer. In this case, it is likely
that r cannot be computed accurately enough to be of any help. If, however,
r can be computed using a higher precision, then a useful value of h can be
computed. This process can then be iterated as shown in Algorithm 6.3.

220 6 Solution of Linear Systems

Algorithm 6.3 Iterative Refinement of the Solution to Ax = b,
Starting with x(0)

0. Input stopping criteria, ε and kmax.
Set k = 0.

1. Compute r(k) = b − Ax(k) in higher precision.
2. Compute h(k) = A+r(k).
3. Set x(k+1) = x(k) + h(k).
4. If ‖h(k)‖ ≤ ε‖x(k+1)‖, then

set x = x(k+1) and terminate; otherwise,
if k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
“algorithm did not converge in kmax iterations”.

In step 2, if A is of full rank then A+ is A−1. Also, as we have emphasized
already, the fact that we write an expression such as A+r does not mean that
we compute A+. The norm in step 4 is usually chosen to be the ∞ norm.
The algorithm may not converge, so it is necessary to have an alternative exit
criterion, such as a maximum number of iterations.

The use of iterative refinement as a general-purpose method is severely
limited by the need for higher precision in step 1. On the other hand, if
computations in higher precision can be performed, they can be applied to
step 2 — or just in the original computations for x(0). In terms of both accu-
racy and computational efficiency, using higher precision throughout is usually
better.

6.6 Updating a Solution to a Consistent System

In applications of linear systems, it is often the case that after the system
Ax = b has been solved, the right-hand side is changed and the system Ax = c
must be solved. If the linear system Ax = b has been solved by a direct method
using one of the factorizations discussed in Chapter 5, the factors of A can
be used to solve the new system Ax = c. If the right-hand side is a small
perturbation of b, say c = b+ δb, an iterative method can be used to solve the
new system quickly, starting from the solution to the original problem.

If the coefficient matrix in a linear system Ax = b is perturbed to result
in the system (A + δA)x = b, it may be possible to use the solution x0 to the
original system efficiently to arrive at the solution to the perturbed system.
One way, of course, is to use x0 as the starting point in an iterative procedure.
Often, in applications, the perturbations are of a special type, such as

Ã = A − uvT,

6.6 Updating a Solution to a Consistent System 221

where u and v are vectors. (This is a “rank-one” perturbation of A, and
when the perturbed matrix is used as a transformation, it is called a “rank-
one” update. As we have seen, a Householder reflection is a special rank-one
update.) Assuming A is an n × n matrix of full rank, it is easy to write Ã−1

in terms of A−1:
Ã−1 = A−1 + α(A−1u)(vTA−1) (6.24)

with
α =

1
1 − vTA−1u

.

These are called the Sherman-Morrison formulas (from Sherman and Mor-
rison, 1950). Ã−1 exists so long as vTA−1u �= 1. Because x0 = A−1b, the
solution to the perturbed system is

x̃0 = x0 +
(A−1u)(vTx0)
(1 − vTA−1u)

.

If the perturbation is more than rank one (that is, if the perturbation is

Ã = A − UV T, (6.25)

where U and V are n × m matrices with n ≥ m), a generalization of the
Sherman-Morrison formula, sometimes called the Woodbury formula, is

Ã−1 = A−1 + A−1U(Im − V TA−1U)−1V TA−1 (6.26)

(from Woodbury, 1950). The solution to the perturbed system is easily seen
to be

x̃0 = x0 + A−1U(Im − V TA−1U)−1V Tx0.

As we have emphasized many times, we rarely compute the inverse of a ma-
trix, and so the Sherman-Morrison-Woodbury formulas are not used directly.
Having already solved Ax = b, it should be easy to solve another system,
say Ay = ui, where ui is a column of U . If m is relatively small, as it is in
most applications of this kind of update, there are not many systems Ay = ui

to solve. Solving these systems, of course, yields A−1U , the most formidable
component of the Sherman-Morrison-Woodbury formula. The system to solve
is of order m also.

Occasionally the updating matrices in equation (6.25) may be used with a
weighting matrix, so we have Ã = A−UWV T. An extension of the Sherman-
Morrison-Woodbury formula is

(A − UWV T)−1 = A−1 + A−1U(W−1 − V TA−1U)−1V TA−1. (6.27)

This is sometimes called the Hemes formula. (The attributions of discovery
are somewhat murky, and statements made by historians of science of the
form “ was the first to ” must be taken with a grain of salt; not every

222 6 Solution of Linear Systems

discovery has resulted in an available publication. This is particularly true in
numerical analysis, where scientific programmers often just develop a method
in the process of writing code and have neither the time nor the interest in
getting a publication out of it.)

Another situation that requires an update of a solution occurs when the
system is augmented with additional equations and more variables:

[
A A12

A21 A22

] [
x
x+

]

=
[

b
b+

]

.

A simple way of obtaining the solution to the augmented system is to use the
solution x0 to the original system in an iterative method. The starting point
for a method based on Gauss-Seidel or a conjugate gradient method can be
taken as (x0, 0), or as (x0, x

(0)
+) if a better value of x

(0)
+ is known.

In many statistical applications, the systems are overdetermined, with A
being n×m and n > m. In the next section, we consider the general problem
of solving overdetermined systems by using least squares, and then in Sec-
tion 6.7.4 we discuss updating a least squares solution to an overdetermined
system.

6.7 Overdetermined Systems; Least Squares

In applications, linear systems are often used as models of relationships be-
tween one observable variable, a “response”, and another group of observable
variables, “predictor variables”. The model is unlikely to fit exactly any set
of observed values of responses and predictor variables. This may be due to
effects of other predictor variables that are not included in the model, mea-
surement error, the relationship among the variables being nonlinear, or some
inherent randomness in the system. In such applications, we generally take
a larger number of observations than there are variables in the system; thus,
with each set of observations on the response and associated predictors making
up one equation, we have a system with more equations than variables.

An overdetermined system may be written as

Xb ≈ y, (6.28)

where X is n×m and rank(X|y) > m; that is, the system is not consistent. We
have changed the notation slightly from the consistent systems Ax = b that
we have been using because now we have in mind statistical applications and
in those the notation y ≈ Xβ is more common. The problem is to determine
a value of b that makes the approximation close in some sense. In applications
of linear systems, we refer to this as “fitting” the system, which is referred to
as a “model”.

Overdetermined systems abound in fitting equations to data. The usual
linear regression model is an overdetermined system and we discuss regression

6.7 Overdetermined Systems; Least Squares 223

problems further in Section 9.2.2. We should not confuse statistical inference
with fitting equations to data, although the latter task is a component of the
former activity. In this section, we consider some of the more mechanical and
computational aspects of the problem.

Accounting for an Intercept

Given a set of observations, the ith row of the system Xb ≈ y represents the
linear relationship between yi and the corresponding xs in the vector xi:

yi ≈ b1x1i + · · · + bmxmi.

A different formulation of the relationship between yi and the corresponding
xs might include an intercept term:

yi ≈ b̃0 + b̃1x1i + · · · + b̃mxmi.

There are two ways to incorporate this intercept term. One way is just to
include a column of 1s in the X matrix. This approach makes the matrix X
in equation (6.28) n × (m + 1), or else it means that we merely redefine x1i

to be the constant 1. Another way is to assume that the model is an exact fit
for some set of values of y and the xs. If we assume that the model fits y = 0
and x = 0 exactly, we have a model without an intercept (that is, with a zero
intercept).

Often, a reasonable assumption is that the model may have a nonzero
intercept, but it fits the means of the set of observations; that is, the equation
is exact for y = ȳ and x = x̄, where the jth element of x̄ is the mean of
the jth column vector of X. (Students with some familiarity with the subject
may think this is a natural consequence of fitting the model. It is not unless
the model fitting is by ordinary least squares.) If we require that the fitted
equation be exact for the means (or if this happens naturally, as in the case of
ordinary least squares), we may center each column by subtracting its mean
from each element in the same manner as we centered vectors on page 34. In
place of y, we have the vector y − ȳ. The matrix formed by centering all of
the columns of a given matrix is called a centered matrix, and if the original
matrix is X, we represent the centered matrix as Xc in a notation analogous
to what we introduced for centered vectors. If we represent the matrix whose
ith column is the constant mean of the ith column of X as X,

Xc = X − X.

Using the centered data provides two linear systems: a set of approximate
equations in which the intercept is ignored and an equation that fits the point
that is assumed to be satisfied exactly:

ȳ = Xb.

224 6 Solution of Linear Systems

In the rest of this section, we will generally ignore the question of an
intercept. Except in a method discussed on page 237, the X can be considered
to include a column of 1s, to be centered, or to be adjusted by any other point.
We will return to this idea of centering the data in Section 8.6.3.

6.7.1 Least Squares Solution of an Overdetermined System

Although there may be no b that will make the system in (6.28) an equation,
the system can be written as the equation

Xb = y − r, (6.29)

where r is an n-vector of possibly arbitrary residuals or “errors”.
A least squares solution b̂ to the system in (6.28) is one such that the

Euclidean norm of the vector of residuals is minimized; that is, the solution
to the problem

min
b

‖y − Xb‖2. (6.30)

The least squares solution is also called the “ordinary least squares” (OLS)
fit.

By rewriting the square of this norm as

(y − Xb)T(y − Xb), (6.31)

differentiating, and setting it equal to 0, we see that the minimum (of both
the norm and its square) occurs at the b̂ that satisfies the square system

XTXb̂ = XTy. (6.32)

The system (6.32) is called the normal equations. The matrix XTX is
called the Gram matrix or the Gramian (see Section 8.6.1). Its condition
determines the expected accuracy of a solution to the least squares problem.
As we mentioned in Section 6.1, however, because the condition number of
XTX is the square of the condition number of X, it may be better to work
directly on X in (6.28) rather than to use the normal equations. The normal
equations are useful expressions, however, whether or not they are used in
the computations. This is another case where a formula does not define an
algorithm, as with other cases we have encountered many times. We should
note, of course, that any information about the stability of the problem that
the Gramian may provide can be obtained from X directly.

Special Properties of Least Squares Solutions

The least squares fit to the overdetermined system has a very useful property
with two important consequences. The least squares fit partitions the space

6.7 Overdetermined Systems; Least Squares 225

into two interpretable orthogonal spaces, as we see from equation (6.32). It is
clear that residual vector y − Xb̂ is orthogonal to each column in X:

XT(y − Xb̂) = 0. (6.33)

A consequence of this fact for models that include an intercept is that the
sum of the residuals is 0. (The residual vector is orthogonal to the 1 vector.)
Another consequence for models that include an intercept is that the least
squares solution provides an exact fit to the mean.

These properties are so familiar to statisticians that some think that they
are essential characteristics of any regression modeling; they are not. We will
see in later sections that they do not hold for other approaches to fitting the
basic model y ≈ Xb. The least squares solution, however, has some desirable
statistical properties under fairly common distributional assumptions, as we
discuss in Chapter 9.

Weighted Least Squares

One of the simplest variations on fitting the linear model Xb ≈ y is to allow
different weights on the observations; that is, instead of each row of X and
corresponding element of y contributing equally to the fit, the elements of
X and y are possibly weighted differently. The relative weights can be put
into an n-vector w and the squared norm in equation (6.31) replaced by a
quadratic form in diag(w). More generally, we form the quadratic form as

(y − Xb)TW (y − Xb), (6.34)

where W is a positive definite matrix. Because the weights apply to both y
and Xb, there is no essential difference in the weighted or unweighted versions
of the problem.

The use of the QR factorization for the overdetermined system in which
the weighted norm (6.34) is to be minimized is similar to the development
above. It is exactly what we get if we replace y − Xb in equation (6.36) by
WC(y − Xb), where WC is the Cholesky factor of W .

Numerical Accuracy in Overdetermined Systems

In Section 6.4, we discussed numerical accuracy in computations for solving
a consistent (square) system of equations and showed how bounds on the
numerical error could be expressed in terms of the condition number of the
coefficient matrix, which we had defined (on page 203) as the ratio of norms
of the coefficient matrix and its inverse. One of the most useful versions of
this condition number is the one using the L2 matrix norm, which is called
the spectral condition number. This is the most commonly used condition
number, and we generally just denote it by κ(·). The spectral condition num-
ber is the ratio of the largest eigenvalue in absolute value to the smallest in

226 6 Solution of Linear Systems

absolute value, and this extends easily to a definition of the spectral condition
number that applies both to nonsquare matrices and to singular matrices: the
condition number of a matrix is the ratio of the largest singular value to the
smallest nonzero singular value. As we saw on page 290, the nonzero singular
values of X are the square roots of the nonzero eigenvalues of XTX; hence

κ(XTX) = (κ(X))2. (6.35)

The condition number of XTX is a measure of the numerical accuracy
we can expect in solving the normal equations (6.32). Because the condition
number of X is smaller, we have an indication that it might be better not to
form the normal equations unless we must. It might be better to work just
with X. That is the approach we will take in the next sections.

6.7.2 Least Squares with a Full Rank Coefficient Matrix

If the n×m matrix X is of full column rank, the least squares solution, from
equation (6.32), is b̂ = (XTX)−1XTy and is obviously unique. A good way to
compute this is to form the QR factorization of X.

First we write X = QR, as in equation (5.27) on page 188, where R is as
in equation (5.29),

R =
[

R1

0

]

,

with R1 an m×m upper triangular matrix. The residual norm (6.31) can be
written as

(y − Xb)T(y − Xb) = (y − QRb)T(y − QRb)
= (QTy − Rb)T(QTy − Rb)
= (c1 − R1b)T(c1 − R1b) + cT

2 c2, (6.36)

where c1 is a vector with m elements and c2 is a vector with n−m elements,
such that

QTy =
(

c1

c2

)

. (6.37)

Because quadratic forms are nonnegative, the minimum of the residual norm
in equation (6.36) occurs when (c1 − R1b)T(c1 − R1b) = 0; that is, when
(c1 − R1b) = 0, or

R1b = c1. (6.38)

We could also use the same technique of differentiation to find the minimum
of equation (6.36) that we did to find the minimum of equation (6.31).

Because R1 is triangular, the system is easy to solve: b̂ = R−1
1 c1. From

equation (5.31), we have
X+ =

[
R−1

1 0
]
,

6.7 Overdetermined Systems; Least Squares 227

and so we have
b̂ = X+y. (6.39)

We also see from equation (6.36) that the minimum of the residual norm
is cT

2 c2. This is called the residual sum of squares in the least squares fit.

6.7.3 Least Squares with a Coefficient Matrix
Not of Full Rank

If X is not of full rank (that is, if X has rank r < m), the least squares
solution is not unique, and in fact a solution is any vector b̂ = (XTX)−XTy,
where (XTX)− is any generalized inverse. This is a solution to the normal
equations (6.32). The residual corresponding to this solution is

y − X(XTX)−XTy = (I − X(XTX)−XT)y.

The residual vector is invariant to the choice of generalized inverse, as we see
from equation (8.51) on page 289.

An Optimal Property of the Solution Using
the Moore-Penrose Inverse

The solution corresponding to the Moore-Penrose inverse is unique because, as
we have seen, that generalized inverse is unique. That solution is interesting
for another reason, however: the b from the Moore-Penrose inverse has the
minimum L2-norm of all solutions.

To see that this solution has minimum norm, first factor X, as in equa-
tion (5.36) on page 190,

X = QRUT,

and form the Moore-Penrose inverse as in equation (5.38):

X+ = U

[
R−1

1 0
0 0

]

QT.

Then
b̂ = X+y (6.40)

is a least squares solution, just as in the full rank case. Now, let

QTy =
(

c1

c2

)

,

as in equation (6.37), except ensure that c1 has exactly r elements and c2 has
n − r elements, and let

UTb =
(

z1

z2

)

,

228 6 Solution of Linear Systems

where z1 has r elements. We proceed as in the equations (6.36). We seek
to minimize ‖y − Xb‖2 (which is the square root of the expression in equa-
tions (6.36)); and because multiplication by an orthogonal matrix does not
change the norm, we have

‖y − Xb‖2 = ‖QT(y − XUUTb)‖2

=
∣
∣
∣
∣

∣
∣
∣
∣

(
c1

c2

)

−
[

R1 0
0 0

](
z1

z2

)∣
∣
∣
∣

∣
∣
∣
∣
2

=
∣
∣
∣
∣

∣
∣
∣
∣

(
c1 − R1z1

c2

)∣
∣
∣
∣

∣
∣
∣
∣
2

. (6.41)

The residual norm is minimized for z1 = R−1
1 c1 and z2 arbitrary. However, if

z2 = 0, then ‖z‖2 is also minimized. Because UTb = z and U is orthogonal,
‖b̂‖2 = ‖z‖2, and so ‖b̂‖2 is the minimum among all least squares solutions.

6.7.4 Updating a Least Squares Solution
of an Overdetermined System

In the last section, we considered the problem of updating a given solution to
be a solution to a perturbed consistent system. An overdetermined system is
often perturbed by adding either some rows or some columns to the coefficient
matrix X. This corresponds to including additional equations in the system,

[
X
X+

]

b ≈
[

y
y+

]

,

or to adding variables,
[
X X+

]
[

b
b+

]

≈ y.

In either case, if the QR decomposition of X is available, the decomposition
of the augmented system can be computed readily. Consider, for example,
the addition of k equations to the original system Xb ≈ y, which has n
approximate equations. With the QR decomposition, for the original full rank
system, putting QTX and QTy as partitions in a matrix, we have

[
R1 c1

0 c2

]

= QT
[
X y

]
.

Augmenting this with the additional rows yields
⎡

⎣
R c1

0 c2

X+ y+

⎤

⎦ =
[

QT 0
0 I

] [
X y
X+ y+

]

. (6.42)

6.8 Other Solutions of Overdetermined Systems 229

All that is required now is to apply orthogonal transformations, such as Givens
rotations, to the system (6.42) to produce

[
R∗ c1∗
0 c2∗

]

,

where R∗ is an m × m upper triangular matrix and c1∗ is an m-vector as
before but c2∗ is an (n − m + k)-vector.

The updating is accomplished by applying m rotations to system (6.42) so
as to zero out the (n+q)th row for q = 1, 2, . . . , k. These operations go through
an outer loop with p = 1, 2, . . . , n and an inner loop with q = 1, 2, . . . , k. The
operations rotate R through a sequence R(p,q) into R∗, and they rotate X+

through a sequence X
(p,q)
+ into 0. At the p, q step, the rotation matrix Qpq

corresponding to equation (5.12) on page 183 has

cos θ =
R

(p,q)
pp

r

and

sin θ =

(
X

(p,q)
+

)

qp

r
,

where

r =

√(
R

(p,q)
pp

)2

+
((

X
(p,q)
+

)
qp

)2

.

Gentleman (1974) and Miller (1992) give Fortran programs that implement
this kind of updating. The software, which was published in Applied Statistics,
is available in statlib (see page 505).

6.8 Other Solutions of Overdetermined Systems

The basic form of an overdetermined linear system may be written as in
equation (6.28) as

Xb ≈ y,

where X is n × m and rank(X|y) > m.
As in equation (6.29) in Section 6.7.1, we can write this as an equation,

Xb = y − r,

where r is a vector of residuals. Fitting the equation y = Xb means minimizing
r; that is, minimizing some norm of r.

There are various norms that may provide a reasonable fit. In Section 6.7,
we considered use of the L2 norm; that is, an ordinary least squares (OLS) fit.
There are various other ways of approaching the problem, and we will briefly
consider a few of them in this section.

230 6 Solution of Linear Systems

As we have stated before, we should not confuse statistical inference with
fitting equations to data, although the latter task is a component of the former
activity. Applications in statistical data analysis are discussed in Chapter 9. In
those applications, we need to make statements (that is, assumptions) about
relevant probability distributions. These probability distributions, together
with the methods used to collect the data, may indicate specific methods for
fitting the equations to the given data. In this section, we continue to address
the more mechanical aspects of the problem of fitting equations to data.

6.8.1 Solutions that Minimize Other Norms
of the Residuals

A solution to an inconsistent, overdetermined system

Xb ≈ y,

where X is n × m and rank(X|y) > m, is some value b that makes y − Xb
close to zero. We define “close to zero” in terms of a norm on y − Xb. The
most common norm, of course, is the L2 norm as in expression (6.30), and
the minimization of this norm is straightforward, as we have seen. In addition
to the simple analytic properties of the L2 norm, the least squares solution
has some desirable statistical properties under fairly common distributional
assumptions, as we have seen.

Minimum L1 Norm Fitting; Least Absolute Values

A common alternative norm is the L1 norm. The minimum L1 norm solution
is called the least absolute values fit or the LAV fit. It is not as affected by
outlying observations as the least squares fit is.

Consider a simple example. Assume we have observations on a response,
y = (0, 3, 4, 0, 8), and on a single predictor variable, x = (1, 3, 4, 6, 7). We have
ȳ = 3 and x̄ = 4.2. We write the model equation as

y ≈ b0 + b1x. (6.43)

The model with the data is
⎡

⎢
⎢
⎢
⎢
⎣

0
3
4
0
8

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1 1
1 3
1 4
1 6
1 7

⎤

⎥
⎥
⎥
⎥
⎦

b + r. (6.44)

A least squares solution yields b̂0 = −0.3158 and b̂1 = 0.7895. With these
values, equation (6.43) goes through the mean, 3, and (1, 4.2). The residual

6.8 Other Solutions of Overdetermined Systems 231

vector from this fit is orthogonal to 1 (that is, the sum of the residuals is 0)
and to x.

A solution that minimizes the L1 norm is b̃0 = −1.333 and b̃1 = 1.333.
The LAV fit may not be unique (although it is in this case). We immediately
note that the least absolute deviations fit does not go through the mean of
the data, nor is the residual vector orthogonal to the 1 vector and to x. The
LAV fit does go through two points in the dataset, however. (This is a special
case of one of several interesting properties of LAV fits, which we will not
discuss here. The interested reader is referred to Kennedy and Gentle, 1980,
Chapter 11, for discussion of some of these properties, as well as assumptions
about probability distributions that result in desirable statistical properties
for LAV estimators.) A plot of the data, the two fitted lines, and the residuals
is shown in Figure 6.2.

0 2 4 6 8

0
2

4
6

8

x

y

L2

L1

mean

Fig. 6.2. OLS and Minimum L1 Norm Fits

The problem of minimizing the L1 norm can be formulated as the linear
programming problem

232 6 Solution of Linear Systems

min
b

1T(e+ + e−)

s.t. Xb + Ie+ − Ie− = y

e+, e− ≥ 0 (6.45)

b unrestricted,

where e+ and e− are nonnegative n-vectors. There are special algorithms
that take advantage of the special structure of the problem to speed up the
basic linear programming simplex algorithm (see Kennedy and Gentle, 1980,
Chapter 11).

Minimum L∞ Norm Fitting; Minimax

Another norm that may be useful in some applications is the L∞ norm. A
solution minimizing that norm is called the least maximum deviation fit. A
least maximum deviation fit is greatly affected by outlying observations. As
with the LAV fit, the least maximum deviation fit does not necessarily go
through the mean of the data. The least maximum deviation fit also may not
be unique.

This problem can also be formulated as a linear programming problem, and
as with the least absolute deviations problem, there are special algorithms that
take advantage of the special structure of the problem to speed up the basic
linear programming simplex algorithm. Again, the interested reader is referred
to Kennedy and Gentle (1980, Chapter 11) for a discussion of some of the
properties of minimum L∞ norm fits, as well as assumptions about probability
distributions that result in desirable statistical properties for minimum L∞
norm estimators.

Lp Norms and Iteratively Reweighted Least Squares

More general Lp norms may also be of interest. For 1 < p < 2, if no element
of y − Xb is zero, we can formulate the pth power of the norm as

‖y − Xb‖p
p = (y − Xb)TW (y − Xb), (6.46)

where
W = diag(| yi − xT

i b|2−p) (6.47)

and xT
i is the ith row of X. The formulation (6.46) leads to the iteratively

reweighted least squares (IRLS) algorithm, in which a sequence of weights
W (k) and weighted least squares solutions b(k) are formed as in Algorithm 6.4.

6.8 Other Solutions of Overdetermined Systems 233

Algorithm 6.4 Iteratively Reweighted Least Squares

0. Input a threshold for a zero residual, ε1 (which may be data dependent),
and a large value for weighting zero residuals, wbig. Input stopping crite-
ria, ε2 and kmax.
Set k = 0. Choose an initial value b(k), perhaps as the OLS solution.

1. Compute the diagonal matrix W (k): w
(k)
i = |yi − xT

i b(k)|2−p, except, if
|yi − xT

i b(k)| < ε1, set w
(k)
i = wbig.

2. Compute b(k+1) by solving the weighted least squares problem: minimize
(y − Xb)TW (k)(y − Xb).

3. If ‖b(k+1) − b(k)‖ ≤ ε2, set b = b(k+1) and terminate.
4. If k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
“algorithm did not converge in kmax iterations”.

Compute b(1) by minimizing equation (6.46) with W = W (0); then compute
W (1) from b(1), and iterate in this fashion. This method is easy to implement
and will generally work fairly well, except for the problem of zero (or small)
residuals. The most effective way of dealing with zero residuals is to set them
to some large value.

Algorithm 6.4 will work for LAV fitting, although the algorithms based on
linear programming alluded to above are better for this task. As mentioned
above, LAV fits generally go through some observations; that is, they fit them
exactly, yielding zero residuals. This means that in using Algorithm 6.4, the
manner of dealing with zero residuals may become an important aspect of the
efficiency of the algorithm.

6.8.2 Regularized Solutions

Overdetermined systems often arise because of a belief that some response y
is linearly related to some other set of variables. This relation is expressed in
the system

y ≈ Xb.

The fact that y �= Xb for any b results because the relationship is not exact.
There is perhaps some error in the measurements. It is also possible that there
is some other variable not included in the columns of X. In addition, there
may be some underlying randomness that could never be accounted for.

In any application in which we fit an overdetermined system, it is likely
that the given values of X and y are only a sample (not necessarily a random
sample) from some universe of interest. Whatever value of b provides the best
fit (in terms of the criterion chosen) may not provide the best fit if some other
equally valid values of X and y were used. The given dataset is fit optimally,
but the underlying phenomenon of interest may not be modeled very well.

234 6 Solution of Linear Systems

The given dataset may suggest relationships among the variables that are not
present in the larger universe of interest. Some element of the “true” b may
be zero, but in the best fit for a given dataset, the value of that element may
be significantly different from zero. Deciding on the evidence provided by a
given dataset that there is a relationship among certain variables when indeed
there is no relationship in the broader universe is an example of overfitting.

There are various approaches we may take to avoid overfitting, but there
is no panacea. The problem is inherent in the process.

One approach to overfitting is regularization. In this technique, we restrain
the values of b in some way. Minimizing ‖y − Xb‖ may yield a b with large
elements, or values that are likely to vary widely from one dataset to another.
One way of “regularizing” the solution is to minimize also some norm of b.
The general formulation of the problem then is

min
b

(‖y − Xb‖r + λ‖b‖b), (6.48)

where λ is some appropriately chosen nonnegative number. The norm on the
residuals, ‖ · ‖r, and that on the solution vector b, ‖ · ‖b, are often chosen
to be the same, and, of course, most often, they are chosen as the L2 norm.
If both norms are the L2 norm, the fitting is called Tikhonov regularization.
In statistical applications, this leads to “ridge regression”. If ‖ · ‖r is the L2

norm and ‖ · ‖b is the L1 norm, the statistical method is called the “lasso”.
We discuss these formulations briefly in Section 9.4.4.

As an example, let us consider the data in equation (6.44) for the equation

y = b0 + b1x.

We found the least squares solution to be b̂0 = −0.3158 and b̂1 = 0.7895,
which fits the means and has a residual vector that is orthogonal to 1 and to
x. Now let us regularize the least squares fit with an L2 norm on b and with
λ = 5. (The choice of λ depends on the scaling of the data and a number of
other things we will not consider here. Typically, in an application, various
values of λ are considered.) Again, we face the question of treating b0 and b1

differently. The regularization, which is a shrinkage, can be applied to both
or just to b1. Furthermore, we have the question of whether we want to force
the equation to fit some data point exactly. In statistical applications, it is
common not to apply the shrinkage to the intercept term and to force the
fitted equation to fit the means exactly. Doing that, we get b̂1λ

= 0.6857,
which is shrunken from the value of b̂1, and b̂0λ

= 0.1200, which is chosen
so as to fit the mean. A plot of the data and the two fitted lines is shown in
Figure 6.3.

6.8.3 Minimizing Orthogonal Distances

In writing the equation Xb = y + r in place of the overdetermined linear
system Xb ≈ y, we are allowing adjustments to y so as to get an equation.

6.8 Other Solutions of Overdetermined Systems 235

0 2 4 6 8

0
2

4
6

8

x

y

L2

L2

shrunk

mean

Fig. 6.3. OLS and L2 Norm Regularized Minimum L2 Norm Fits

Another way of making an equation out of the overdetermined linear system
Xb ≈ y is to write it as

(X + E)b = y + r; (6.49)

that is, to allow adjustments to both X and y. Both X and E are in IRn×m

(and we assume n > m).
In fitting the linear model only with adjustments to y, we determine b so

as to minimize some norm of r. Likewise, with adjustments to both X and
y, we seek b so as to minimize some norm of the matrix E and the vector r.
There are obviously several ways to approach this. We could take norms of
E and r separately and consider some weighted combination of the norms.
Another way is to adjoin r to E and minimize some norm of the n × (m + 1)
matrix [E|r].

A common approach is to minimize ‖[E|r]‖F. This, of course, is the sum
of squares of all elements in [E|r]. The method is therefore sometimes called
“total least squares”.

If it exists, the minimum of ‖[E|r]‖F is achieved at

236 6 Solution of Linear Systems

b = −v2∗/v22, (6.50)

where
[X|y] = UDV T (6.51)

is the singular value decomposition (see equation (3.218) on page 127), and
V is partitioned as

V =
[

V11 v∗2
v2∗ v22

]

.

If E has some special structure, the problem of minimizing the orthogonal
residuals may not have a solution. Golub and Van Loan (1980) show that a
sufficient condition for a solution to exist is that dm ≥ dm+1. (Recall that the
ds in the SVD are nonnegative and they are indexed so as to be nonincreasing.)
Golub and Van Loan (1980) also show that the solution is unique if dm >
dm+1.

Again, as an example, let us consider the data in equation (6.44) for the
equation

y = b0 + b1x.

We found the least squares solution to be b̂0 = −0.3158 and b̂1 = 0.7895,
which fits the mean and has a residual vector that is orthogonal to 1 and to
x. Now we determine a fit so that the L2 norm of the orthogonal residuals is
minimized. Again, we will force the equation to fit the mean exactly. We get
b̂0orth = −4.347 and b̂0orth = 1.749. A plot of the data, the two fitted lines,
and the residuals is shown in Figure 6.4.

The orthogonal residuals can be weighted in the usual way by premulti-
plication by a Cholesky factor of a weight matrix, as discussed on page 225.

If some norm other than the L2 norm is to be minimized, an iterative
approach must be used. Ammann and Van Ness (1988, 1989) describe an iter-
ative method that is applicable to any norm, so long as a method is available
to compute a value of b that minimizes the norm of the usual vertical distances
in a model such as equation (9.9). The method is simple. We first fit y = Xb,
minimizing the vertical distances in the usual way; we then rotate y into ỹ
and X into X̃, so that the fitted plane is horizontal. Next, we fit ỹ = X̃b and
repeat. After continuing this way until the fits in the rotated spaces do not
change from step to step, we adjust the fitted b back to the original unrotated
space. Because of these rotations, if we assume that the model fits some point
exactly, we must adjust y and X accordingly (see the discussion on page 223).
In the following, we assume that the model fits the means exactly, so we center
the data. We let m be the number of columns in the centered data matrix.
(The centered matrix does not contain a column of 1s. If the formulation of
the model y = Xb includes an intercept term, then X is n × (m + 1).)

6.8 Other Solutions of Overdetermined Systems 237

0 2 4 6 8

0
2

4
6

8

x

y

L2

L2

orthogonal

mean

Fig. 6.4. OLS and Minimum Orthogonal L2-Norm Fits

Algorithm 6.5 Iterative Orthogonal Residual Fitting
through the Means

0. Input stopping criteria, ε and kmax.
Set k = 1, y

(0)
c = yc, X

(0)
c = Xc, and D(0) = Im+1.

1. Determine a value b
(k)
c that minimizes the norm of

(
y
(k−1)
c − X

(k−1)
c b

(k)
c

)
.

2. If b
(k)
c ≤ ε, go to step 7.

3. Determine a rotation matrix Q(k) that makes the kth fit horizontal.
4. Transform the matrix

[
y
(k−1)
c |X(k−1)

c

] [
y
(k)
c |X(k)

c

]
by a rotation matrix:

[
y(k)
c |X(k)

c

]
=

[
y(k−1)
c |X(k−1)

c

]
Q(k).

5. Transform D(k−1) by the same rotation: D(k) = D(k−1)Q(k).
6. If k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
“algorithm did not converge in kmax iterations”.

238 6 Solution of Linear Systems

7. For j = 2, . . . ,m, choose bj = dj,m+1/dm+1,m+1 (So long as the rotations
have not produced a vertical plane in the unrotated space, dm+1,m+1 will
not be zero.)

8. Compute b1 = ȳ −
∑k

j=2 bj ∗ x̄j (where x̄j is the mean of the jth column
of the original uncentered X).

An appropriate rotation matrix for Algorithm 6.5 is Q in the QR decomposi-
tion of ⎡

⎣
Im 0

(b(k))T 1

⎤

⎦ .

Note that forcing the fit to go through the means, as we do in Algo-
rithm 6.5, is not usually done for norms other than the L2 norm (see Fig-
ure 6.2).

Exercises

6.1. Let A be nonsingular, and let κ(A) = ‖A‖ ‖A−1‖.
a) Prove equation (6.10):

κ2(A) =
maxx�=0

‖Ax‖
‖x‖

minx�=0
‖Ax‖
‖x‖

.

b) Using the relationship above, explain heuristically why κ(A) is called
the “condition number” of A.

6.2. Consider the system of linear equations

x1 + 4x2 + x3 = 12,
2x1 + 5x2 + 3x3 = 19,
x1 + 2x2 + 2x3 = 9.

a) Solve the system using Gaussian elimination with partial pivoting.
b) Solve the system using Gaussian elimination with complete pivoting.
c) Determine the D, L, and U matrices of the Gauss-Seidel method

(equation (6.15), page 212) and determine the spectral radius of

(D + L)−1U.

d) Do two steps of the Gauss-Seidel method starting with x(0) = (1, 1, 1),
and evaluate the L2 norm of the difference of two successive approx-
imate solutions.

e) Do two steps of the Gauss-Seidel method with successive overrelax-
ation using ω = 0.1, starting with x(0) = (1, 1, 1), and evaluate the
L2 norm of the difference of two successive approximate solutions.

Exercises 239

f) Do two steps of the conjugate gradient method starting with x(0) =
(1, 1, 1), and evaluate the L2 norm of the difference of two successive
approximate solutions.

6.3. The normal equations.
a) For any matrix X with real elements, show that XTX is nonnegative

definite.
b) For any n × m matrix X with real elements and with n < m, show

that XTX is not positive definite.
c) Let X be an n × m matrix of full column rank. Show that XTX is

positive definite.
6.4. Solving an overdetermined system Xb = y, where X is n × m.

a) Count how many multiplications and additions are required to form
XTX. (A multiplication or addition such as this is performed in float-
ing point on a computer, so the operation is called a “flop”. Some-
times a flop is considered a combined operation of multiplication
and addition; at other times, each is considered a separate flop. See
page 415. The distinction is not important here; just count the total
number.)

b) Count how many flops are required to form XTy.
c) Count how many flops are required to solve XTXb = XTy using a

Cholesky decomposition.
d) Count how many flops are required to form a QR decomposition of

X using reflectors.
e) Count how many flops are required to form a QTy.
f) Count how many flops are required to solve R1b = c1 (equation (6.38),

page 226).
g) If n is large relative to m, what is the ratio of the total number of flops

required to form and solve the normal equations using the Cholesky
method to the total number required to solve the system using a QR
decomposition? Why is the QR method generally preferred?

6.5. Verify equation (6.46).

7

Evaluation of Eigenvalues and Eigenvectors

Before we discuss methods for computing eigenvalues, we mention an inter-
esting observation. A given nth-degree polynomial p(c) is the characteristic
polynomial of some matrix. The companion matrix of equation (3.177) is
one such matrix. Thus, given a general polynomial p, we can form a matrix A
whose eigenvalues are the roots of the polynomial; and likewise, given a square
matrix, we can write a polynomial in its eigenvalues. It is a well-known fact in
the theory of equations that there is no general formula for the roots of a poly-
nomial of degree greater than 4. This means that we cannot expect to have
a direct method for calculating eigenvalues of any given matrix. The eigen-
values of some matrices can be evaluated directly of course. The eigenvalues
of a diagonal matrix are merely the diagonal elements. In that case, however,
the characteristic polynomial is of the factored form

∏
(aii − c), whose roots

are immediately obtainable. For general eigenvalue computations, however,
we must use an iterative method.

In statistical applications, the matrices whose eigenvalues are of interest
are often symmetric. Symmetric matrices are diagonalizable and have only
real eigenvalues. (As usual, we will assume the matrices themselves are real.)
The problem of determining the eigenvalues of a symmetric matrix therefore
is simpler than the corresponding problem for a general matrix. In many
statistical applications, the symmetric matrices of interest are nonnegative
definite. Nonsymmetric matrices of interest in statistical applications are often
irreducible nonnegative matrices. Either of these properties can also allow use
of simpler methods.

In this chapter, we describe various methods for computing eigenvalues.
A given method may have some desirable property for particular applica-
tions, and in some cases, the methods may be used in combination. Some
of the methods rely on sequences that converge to a particular eigenvalue or
eigenvector. The power method, discussed in Section 7.2, is of this type; one
eigenpair at a time is computed. Other methods are based on sequences of
similar matrices that converge to a diagonal matrix. An example of such a
method is called the LR method. This method, which we will not consider in

242 7 EVALUATION OF EIGENVALUES

detail, is based on a factorization of A into left and right factors, FL and FR,
and the fact that if c is an eigenvalue of FLFR, then it is also an eigenvalue of
FRFL (property 7, page 107). If A = L(0)U (0) is an LU decomposition of A
with 1s on the diagonal of either L(0) or U (0), iterations of LU decompositions
of the similar matrices

L(k+1)U (k+1) = U (k)L(k),

under some conditions, will converge to a similar diagonal matrix. The suffi-
cient conditions for convergence include nonnegative definiteness.

Most methods for extracting eigenvalues and eigenvectors use a sequence
of orthogonally similar transformations that eventually yield a product of
orthogonal matrices and a diagonal matrix.

7.1 General Computational Methods

For whatever approach is taken for finding eigenpairs, there are some general
methods that may speed up the process or that may help in achieving higher
numerical accuracy.

7.1.1 Eigenvalues from Eigenvectors and Vice Versa

Some methods for eigenanalysis yield the eigenvalues, and other methods yield
the eigenvectors. Given one member of an eigenpair, we usually want to find
the other member.

If we are given an eigenvector v of the matrix A, there must be some
element vj that is not zero. For any nonzero element of the eigenvector, the
eigenvalue corresponding to v is

(Av)j/vj . (7.1)

Likewise, if the eigenvalue c is known, a corresponding eigenvector is any
solution to the singular system

(A − cI)v = 0. (7.2)

(It is relevant to note that the system is singular because most standard
software packages will refuse to solve singular systems whether or not they
are consistent!)

An eigenvector associated with the eigenvalue c can be found using equa-
tion (7.2) if we know the position of any nonzero element in the vector. Sup-
pose, for example, it is known that v1 �= 0. We can set v1 = 1 and form
another system to solve for the remaining elements of v by writing

[
a11 − 1 aT

1

a2 A22 − cIn−1

] [
1
v2

]

=
[

0
0

]

, (7.3)

7.1 General Computational Methods 243

where v2 is an (n − 1)-vector and aT
1 and a2 are the remaining elements in

the first row and first column, respectively, of A. Rearranging this, we get the
(n − 1) × (n − 1) system

(A22 − cIn−1)v2 = −a2. (7.4)

The locations of any zero elements in the eigenvector are critical for using
this method. To form a system as in equation (7.3), the position of some
nonzero element must be known. Another problem in using this method arises
when the geometric multiplicity of the eigenvalue is greater than 1. In that
case, the system in equation (7.4) is also singular, and the process must be
repeated to form an (n−2)×(n−2) system. If the multiplicity of the eigenvalue
is k, the first full rank system encountered while continuing in this way is the
one that is (n − k) × (n − k).

7.1.2 Deflation

Whenever an eigenpair and an associated left eigenvalue of a real matrix A
are available, another matrix can be formed for which all the other nonzero
eigenvalues and corresponding eigenvectors are the same as for A.

Suppose ci is an eigenvalue of A with associated right and left eigenvectors
vi and wi, respectively. Now, suppose that cj is a nonzero eigenvalue of A
such that cj �= ci. Let vj and wj be, respectively, right and left eigenvectors
associated with cj . Now,

〈Avi, wj〉 = 〈civi, wj〉 = ci〈vi, wj〉,

but also
〈Avi, wj〉 = 〈vi, A

Twj〉 = 〈vi, cjwj〉 = cj〈vi, wj〉.
But if

ci〈vi, wj〉 = cj〈vi, wj〉
and cj �= ci, then 〈vi, wj〉 = 0. Consider the matrix

B = A − civiw
H
i . (7.5)

We see that

Bwj = Awj − civiw
H
i wj

= Awj

= cjwj ,

so cj and wj are, respectively, an eigenvalue and an eigenvector of B.
The matrix B has some of the flavor of the sum of some terms in a spectral

decomposition of A. (Recall that the spectral decomposition is guaranteed
to exist only for matrices with certain properties. In Chapter 3, we stated

244 7 EVALUATION OF EIGENVALUES

the existence for diagonalizable matrices but derived it only for symmetric
matrices.)

The ideas above lead to a useful method for finding eigenpairs of a diag-
onalizable matrix. (The method also works if we begin with a simple eigen-
value.) We will show the details only for a real symmetric matrix.

Deflation of Symmetric Matrices

Let A be an n× n symmetric matrix. A therefore is diagonalizable, its eigen-
values and eigenvectors are real, and the left and right eigenvalues are the
same.

Let (c, v), with vTv = 1, be an eigenpair of A. Now let X be an n× n− 1
matrix whose columns form an orthogonal basis for V(A−vvT). One easy way
of doing this is to choose n− 1 of the n unit vectors of order n such that none
are equal to v and then, beginning with v, use Gram-Schmidt transformations
to orthogonalize the vectors, using Algorithm 2.1 on page 28. (Assuming v is
not a unit vector, we merely choose e1, . . . , en−1 together with v as the starting
set of linearly independent vectors.) Now let P = [v|X]. We have

P−1 =
[

vT

XT(I − vvT)

]

,

as we see by direct multiplication, and

P−1AP =
[

c 0
0 B

]

, (7.6)

where B is the (n − 1) × (n − 1) matrix XTAX.
Clearly, B is symmetric and the eigenvalues of B are the same as the other

n − 1 eigenvalues of A. The important point is that B is (n − 1) × (n − 1).

7.1.3 Preconditioning

The convergence of iterative methods applied to a linear system Ax = b
can often be speeded up by replacing the system by an equivalent system
M−1Ax = M−1b. The iterations then depend on the properties, such as the
relative magnitudes of the eigenvalues, of M−1A rather than A. The replace-
ment of the system Ax = b by M−1Ax = M−1b is called preconditioning.
(It is also sometimes called left preconditioning, and the use of the system
AM−1y = b with y = Mx is called right preconditioning. Either or both kinds
of preconditioning may be used in a given iterative algorithm.) The matrix
M is called a preconditioner.

Determining an effective preconditioner matrix M is not straightforward.
Obviously, if M = A, the preconditioned system is simpler than the original
system, but determining M−1 is as difficult as dealing with the original system.

7.2 Power Method 245

In general, the objective would be to determine M−1A so that it is “close”
to I. The salient properties of I are that it is normal (see page 274) and its
eigenvalues are clustered.

There are various kinds of preconditioning; some work better as an ad-
junct to one algorithm, and others work better in conjunction with some
other algorithm. In the case of a sparse matrix A, for example an incomplete
factorization A ≈ L̃Ũ where both L̃ and Ũ are sparse, M = L̃Ũ may be a good
preconditioner. We will not consider any of the details here. Later (page 216)
we will consider preconditioning in the context of an iterative algorithm for
solving linear systems. Benzi (2002) provides a good survey of techniques, but
the effort to identify general methods remains incomplete and is an area of
active research.

7.2 Power Method

The power method is a straightforward method that can be used for a real
diagonalizable matrix with a simple dominant eigenvalue. An important type
of matrix that satisfies this condition is an irreducible nonnegative square
matrix (see Section 8.7.2).

Let A be a real n×n diagonalizable matrix with a simple dominant eigen-
value. Index the eigenvalues ci so that |c1| > |c2| ≥ · · · |cn|, with corresponding
unit eigenvectors vi. Note that the requirement for the dominant eigenvalue
that c1 > c2 implies that c1 and the dominant eigenvector v1 are unique and
that c1 is real (because otherwise c̄1 would also be an eigenvalue, and that
would violate the requirement).

Now let x be an n-vector that is not orthogonal to v1. Because A is assumed
to be diagonalizable, the eigenvectors are linearly independent and so x can
be represented as a linear combination of the eigenvectors,

x = b1v1 + · · · + bnvn. (7.7)

Because x is not orthogonal to v1, b1 �= 0. The power method is based on a
sequence

x, Ax, A2x,

(This sequence is a finite Krylov space generating set; see equation (6.21).)
From the relationships above and the definition of eigenvalues and eigenvec-
tors, we have

246 7 EVALUATION OF EIGENVALUES

Ax = b1Av1 + · · · + bnAvn

= b1c1v1 + · · · + bncnvn

A2x = b1c
2
1v1 + · · · + bnc2

nvn

· · · = · · ·
Ajx = b1c

j
1v1 + · · · + bncj

nvn

= cj
1

(

b1v1 + · · · + bn

(
cn

c1

)j

vn

)

. (7.8)

To simplify the notation, let

u(j) = Ajx/cj
1 (7.9)

(or, equivalently, u(j) = Au(j−1)/c1). From equations (7.8) and the fact that
|c1| > |ci| for i > 1, we see that u(j) → b1v1, which is the nonnormalized
dominant eigenvector.

We have the bound

∥
∥u(j) − b1v1

∥
∥ =

∥
∥
∥
∥
∥
b2

(
c2

c1

)j

v2 + · · ·

· · · + bn

(
cn

c1

)j

vn

∥
∥
∥
∥
∥

≤ |b2|
∣
∣
∣
∣
c2

c1

∣
∣
∣
∣

j

‖v2‖ + · · ·

· · · + |bn|
∣
∣
∣
∣
cn

c1

∣
∣
∣
∣

j

‖vn‖

≤ (|b2| + · · · + |bn|)
∣
∣
∣
∣
c2

c1

∣
∣
∣
∣

j

. (7.10)

The last expression results from the fact that |c2| ≥ |ci| for i > 2 and that the
vi are unit vectors.

From equation (7.10), we see that the norm of the difference of u(j) and
b1v1 decreases by a factor of approximately |c2/c1| with each iteration; hence,
this ratio is an important indicator of the rate of convergence of u(j) to the
dominant eigenvector.

If |c1| > |c2| > |c3|, b2 �= 0, and b1 �= 0, the power method converges
linearly (see page 418); that is,

0 < lim
j→∞

‖x(j+1) − b1v1‖
‖x(j) − b1v1‖

< 1 (7.11)

(see Exercise 7.1c, page 256).

7.3 Jacobi Method 247

If an approximate value of the eigenvector v1 is available and x is taken to
be that approximate value, the convergence will be faster. If an approximate
value of the dominant eigenvalue, ĉ1, is available, starting with any y(0), a few
iterations on

(A − ĉ1I)y(k) = y(k−1)

may yield a better starting value for x. Once the eigenvector associated with
the dominant eigenvalue is determined, the eigenvalue c1 can easily be deter-
mined, as described above.

In some applications, only the dominant eigenvalue is of interest. If other
eigenvalues are needed, however, we find them one at a time by deflation.

If A is nonsingular, we can also use the power method on A−1 to determine
the smallest eigenvalue of A.

7.3 Jacobi Method

The Jacobi method for determining the eigenvalues of a simple symmetric ma-
trix A uses a sequence of orthogonal similarity transformations that eventually
results in the transformation

A = PCP−1

(see equation (3.193) on page 116) or

C = P−1AP,

where C is diagonal. Recall that similar matrices have the same eigenvalues.
The matrices for the similarity transforms are the Givens rotation or Jacobi

rotation matrices discussed on page 182. The general form of one of these
orthogonal matrices, Gpq(θ), given in equation (5.12) on page 183, is the
identity matrix with cos θ in the (p, p)th and (q, q)th positions, sin θ in the
(p, q)th position, and − sin θ in the (q, p)th position:

Gpq(θ) =

p q
I 0 0 0 0

p 0 cos θ 0 sin θ 0
0 0 I 0 0

q 0 − sin θ 0 cos θ 0
0 0 0 0 I

.

The Jacobi iteration is

A(k) = GT
pkqk

(θk)A(k−1)Gpkqk
(θk),

where pk, qk, and θk are chosen so that the A(k) is “more diagonal” than
A(k−1). Specifically, the iterations will be chosen so as to reduce the sum of
the squares of the off-diagonal elements, which for any square matrix A is

248 7 EVALUATION OF EIGENVALUES

‖A‖2
F −

∑

i

a2
ii.

The orthogonal similarity transformations preserve the Frobenius norm
∥
∥
∥A(k)

∥
∥
∥

F
=

∥
∥
∥A(k−1)

∥
∥
∥

F
.

Because the rotation matrices change only the elements in the (p, p)th, (q, q)th,
and (p, q)th positions (and also the (q, p)th position since both matrices are
symmetric), we have

(
a(k)

pp

)2

+
(
a(k)

qq

)2

+ 2
(
a(k)

pq

)2

=
(
a(k−1)

pp

)2

+
(
a(k−1)

qq

)2

+ 2
(
a(k−1)

pq

)2

.

The off-diagonal sum of squares at the kth stage in terms of that at the (k−1)th

stage is
∥
∥
∥A(k)

∥
∥
∥

2

F
−
∑

i

(
a
(k)
ii

)2

=
∥
∥
∥A(k)

∥
∥
∥

2

F
−

∑

i�=p,q

(
a
(k)
ii

)2

−
((

a(k)
pp

)2

+
(
a(k)

qq

)2
)

=
∥
∥
∥A(k−1)

∥
∥
∥

2

F
−
∑

i

(
a
(k−1)
ii

)2

− 2
(
a(k−1)

pq

)2

+ 2
(
a(k)

pq

)2

.

(7.12)

Hence, for a given index pair, (p, q), at the kth iteration, the sum of the squares
of the off-diagonal elements is minimized by choosing the rotation matrix so
that

a(k)
pq = 0. (7.13)

As we saw on page 183, it is easy to determine the angle θ so as to intro-
duce a zero in a single Givens rotation. Here, we are using the rotations in a
similarity transformation, so it is a little more complicated.

The requirement that a
(k)
pq = 0 implies

a(k−1)
pq

(
cos2 θ − sin2 θ

)
+
(
a(k−1)

pp − a(k−1)
qq

)
cos θ sin θ = 0. (7.14)

Using the trigonometric identities

cos(2θ) = cos2 θ − sin2 θ

sin(2θ) = 2 cos θ sin θ,

in equation (7.14), we have

tan(2θ) =
2a

(k−1)
pq

a
(k−1)
pp − a

(k−1)
qq

,

which yields a unique angle in [−π/4, π/4]. Of course, the quantities we need
are cos θ and sin θ, not the angle itself. First, using the identity

7.3 Jacobi Method 249

tan θ =
tan(2θ)

1 +
√

1 + tan2(2θ)
,

we get tan θ from tan(2θ); and then from tan θ we can compute the quantities
required for the rotation matrix Gpq(θ):

cos θ =
1√

1 + tan2 θ
,

sin θ = cos θ tan θ.

Convergence occurs when the off-diagonal elements are sufficiently small.
The quantity (7.12) using the Frobenius norm is the usual value to compare
with a convergence criterion, ε.

From equation (7.13), we see that the best index pair, (p, q), is such that
∣
∣
∣a(k−1)

pq

∣
∣
∣= max

i<j

∣
∣
∣a

(k−1)
ij

∣
∣
∣.

If this choice is made, the Jacobi method can be shown to converge (see
Watkins, 2002). The method with this choice is called the classical Jacobi
method.

For an n × n matrix, the number of operations to identify the maximum
off-diagonal is O(n2). The computations for the similarity transform itself are
only O(n) because of the sparsity of the rotators. Of course, the computations
for the similarity transformations are more involved than those to identify the
maximum off-diagonal, so, for small n, the classical Jacobi method should
be used. If n is large, however, it may be better not to spend time look-
ing for the maximum off-diagonal. Various cyclic Jacobi methods have been
proposed in which the pairs (p, q) are chosen systematically without regard
to the magnitude of the off-diagonal being zeroed. Depending on the nature
of the cyclic Jacobi method, it may or may not be guaranteed to converge.
For certain schemes, quadratic convergence has been proven; for at least one
other scheme, an example showing failure of convergence has been given. See
Watkins (2002) for a discussion of the convergence issues.

The Jacobi method is one of the oldest algorithms for computing eigenval-
ues, and has recently become important again because it lends itself to easy
implementation on parallel processors (see Zhou and Brent, 2003).

Notice that at the kth iteration, only two rows and two columns of A(k) are
modified. This is what allows the Jacobi method to be performed in parallel.
We can form !n/2" pairs and do !n/2" rotations simultaneously. Thus, each
parallel iteration consists of a choice of a set of index pairs and then a batch
of rotations. Although, as we have indicated, the convergence may depend on
which rows are chosen for the rotations, if we are to achieve much efficiency by
performing the operations in parallel, we cannot spend much time in deciding
how to form the pairs for the rotations. Various schemes have been suggested
for forming the pairs for a parallel iteration. A simple scheme, called “mobile
Jacobi” (see Watkins, 2002), is:

250 7 EVALUATION OF EIGENVALUES

1. Perform !n/2" rotations using the pairs

(1, 2), (3, 4), (5, 6),

2. Interchange all rows and columns that were rotated.
3. Perform !(n − 1)/2" rotations using the pairs

(2, 3), (4, 5), (6, 7),

4. Interchange all rows and columns that were rotated.
5. If convergence has not been achieved, go to 1.

The notation above that specifies the pairs refers to the rows and columns
at the current state; that is, after the interchanges up to that point. The
interchange operation is a similarity transformation using an elementary per-
mutation matrix (see page 63), and hence the eigenvalues are left unchanged
by this operation. The method described above is a good one, but there are
other ways of forming pairs. Some of the issues to consider are discussed by
Luk and Park (1989), who analyzed and compared some proposed schemes.

7.4 QR Method

The most common algorithm for extracting eigenvalues is the QR method.
While the power method and the Jacobi method require diagonalizable matri-
ces, which restricts their practical use to symmetric matrices, the QR method
can be used for nonsymmetric matrices. It is simpler for symmetric matrices,
of course, because the eigenvalues are real. Also, for symmetric matrices the
computer storage is less, the computations are fewer, and some transforma-
tions are particularly simple.

The QR method requires that the matrix first be transformed into up-
per Hessenberg form (see page 44). A matrix can be reduced to Hessenberg
form in a finite number of similarity transformations using either Householder
reflections or Givens rotations.

The Hessenberg form for a symmetric matrix is tridiagonal. The Hessen-
berg form allows a large savings in the subsequent computations, even for
nonsymmetric matrices.

The QR method for determining the eigenvalues is iterative and produces
a sequence of Hessenberg matrices A(0), A(1), . . . , A(n), where A(n) is a trian-
gular matrix. An upper Hessenberg matrix is formed and its eigenvalues are
extracted by a process called “chasing”, which consists of steps that alternate
between creating nonzero entries in positions (i+2, i), (i+3, i), and (i+3, i+1)
and restoring these entries to zero, as the nonzero entries are moved farther
down the matrix. For example,

7.4 QR Method 251

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X X X X X X
X X X X X X X
0 X X X X X X
0 Y X X X X X
0 Y Y X X X X
0 0 0 0 X X X
0 0 0 0 0 X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X X X X X X
X X X X X X X
0 X X X X X X
0 0 X X X X X
0 0 Y X X X X
0 0 Y Y X X X
0 0 0 0 0 X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the jth step of the QR method, a bulge is created and is chased down the
matrix by similarity transformations, usually Givens transformations,

G−1
k A(j−1,k)Gk.

The transformations are based on the eigenvalues of 2 × 2 matrices in the
lower right-hand part of the matrix.

There are some variations on the way the chasing occurs. Haag and
Watkins (1993) describe an efficient modified QR algorithm that uses both
Givens transformations and Gaussian elimination transformations, with or
without pivoting. For the n×n Hessenberg matrix A(0,0), the first step of the
Haag-Watkins procedure begins with a 3 × 3 Householder reflection matrix,
G̃0, whose first column is

(A(0,0) − σ1I)(A(0,0) − σ2I)e1,

where σ1 and σ2 are the eigenvalues of the 2×2 matrix
[

an−1,n−1 an−1,n

an−1,n an,n

]

,

and e1 is the first unit vector of length n. The n×n matrix G0 is diag(G̃0, I).
The initial transformation G−1

0 A(0,0)G0 creates a bulge with nonzero elements
a
(0,1)
31 , a

(0,1)
41 , and a

(0,1)
42 .

After the initial transformation, the Haag-Watkins procedure makes n− 3
transformations

A(0,k+1) = G−1
k A(0,k)Gk,

for k = 1, 2, . . . , n−3, that chase the bulge diagonally down the matrix, so that
A(0,k+1) differs from Hessenberg form only by the nonzero elements a

(0,k+1)
k+3,k+1,

a
(0,k+1)
k+4,k+1, and a

(0,k+1)
k+4,k+2. To accomplish this, the matrix Gk differs from the

identity only in rows and columns k +1, k +2, and k +3. The transformation

G−1
k A(0,k)

annihilates the entries a
(0,k)
k+2,k and a

(0,k)
k+3,k, and the transformation

(G−1
k A(0,k))Gk

252 7 EVALUATION OF EIGENVALUES

produces A(0,k+1) with two new nonzero elements, a
(0,k+1)
k+4,k+1 and a

(0,k+1)
k+4,k+2. The

final transformation in the first step, for k = n − 2, annihilates a
(0,k)
n,n−2. The

transformation matrix Gn−2 differs from the identity only in rows and columns
n − 1 and n. These steps are iterated until the matrix becomes triangular.
As the subdiagonal elements converge to zero, the shifts for use in the first
transformation of a step (corresponding to σ1 and σ2) are determined by
2×2 submatrices higher on the diagonal. Special consideration must be given
to situations in which these submatrices contain zero elements. For this, the
reader is referred to Watkins (2002) or Golub and Van Loan (1996).

This description has just indicated the general flavor of the QR method.
There are different variations on the overall procedure and then many com-
putational details that must be observed. In the Haag-Watkins procedure, for
example, the Gks are not unique, and their form can affect the efficiency and
the stability of the algorithm. Haag and Watkins (1993) describe criteria for
the selection of the Gks. They also discuss some of the details of programming
the algorithm.

7.5 Krylov Methods

In the power method, we encountered the sequence

x, Ax, A2x,

This sequence is a finite Krylov space generating set. As we mentioned on
page 215, several methods for computing eigenvalues are often based on a
Krylov space,

Kk = V({v,Av,A2v, . . . , Ak−1v}).
(Aleksei Krylov used these vectors to construct the characteristic polynomial.)

The two most important Krylov methods are the Lanczos tridiagonal-
ization algorithm and the Arnoldi orthogonalization algorithm. We will not
discuss these methods here but rather refer the interested reader to Golub
and Van Loan (1996).

7.6 Generalized Eigenvalues

In Section 3.8.9, we defined the generalized eigenvalues and eigenvectors by
replacing the identity in the definition of ordinary eigenvalues and eigenvectors
by a general (square) matrix B:

|A − cB| = 0. (7.15)

If there exists a finite c such that this determinant is zero, then there is some
nonzero, finite vector v such that

7.7 Singular Value Decomposition 253

Av = cBv. (7.16)

As we have seen in the case of ordinary eigenvalues, symmetry of the
matrix, because of diagonalizability, allows for simpler methods to evaluate
the eigenvalues. In the case of generalized eigenvalues, symmetry together
with positive definiteness allows us to reformulate the problem to be much
simpler. If A and B are symmetric and B is positive definite, we refer to the
pair (A,B) as symmetric.

If A and B are a symmetric pair, B has a Cholesky decomposition, B =
TTT , where T is an upper triangular matrix with positive diagonal elements.
We can therefore rewrite equation (7.16) as

T−TAT−1u = cu, (7.17)

where u = Tv. Note that because A is symmetric, T−TAT−1 is symmetric,
and since c is an eigenvalue of this matrix, it is real. Its associated eigenvector
(with respect to T−TAT−1) is likewise real, and therefore so is the generalized
eigenvector v. Because T−TAT−1 is symmetric, the ordinary eigenvectors can
be chosen to be orthogonal. (Recall from page 119 that eigenvectors corre-
sponding to distinct eigenvalues are orthogonal, and those corresponding to
a multiple eigenvalue can be chosen to be orthogonal.) This implies that the
generalized eigenvectors of the symmetric pair (A,B) can be chosen to be
B-conjugate.

Because of the equivalence of a generalized eigenproblem for a symmetric
pair to an ordinary eigenproblem for a symmetric matrix, any of the methods
discussed in this chapter can be used to evaluate the generalized eigenpairs
of a symmetric pair. The matrices in statistical applications for which the
generalized eigenvalues are required are often symmetric pairs. For example,
Roy’s maximum root statistic, which is used in multivariate analysis, is a
generalized eigenvalue of two Wishart matrices.

The generalized eigenvalues of a pair that is not symmetric are more dif-
ficult to evaluate. The approach of forming upper Hessenberg matrices, as
in the QR method, is also used for generalized eigenvalues. We will not dis-
cuss this method here but instead refer the reader to Watkins (2002) for a
description of the method, which is called the QZ algorithm.

7.7 Singular Value Decomposition

The standard algorithm for computing the singular value decomposition

A = UDV T

is due to Golub and Reinsch (1970) and is built on ideas of Golub and
Kahan (1965). The first step in the Golub-Reinsch algorithm for the singular

254 7 EVALUATION OF EIGENVALUES

value decomposition of the n×m matrix A is to reduce A to upper bidiagonal
form:

A(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X 0 · · · 0 0
0 X X · · · 0 0
0 0 X · · · 0 0

.
0 0 0 · · · X X
0 0 0 · · · 0 X
0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We assume n ≥ m. (If this is not the case, we merely use AT.) This algorithm is
basically a factored form of the QR algorithm for the eigenvalues of A(0)TA(0),
which would be symmetric and tridiagonal.

The Golub-Reinsch method produces a sequence of upper bidiagonal ma-
trices, A(0), A(1), A(2), . . . , which converges to the diagonal matrix D. (Each
of these has a zero submatrix below the square submatrix.) Similar to the QR
method for eigenvalues, the transformation from A(j) to A(j+1) is effected by
a sequence of orthogonal transformations,

A(j+1) = RT
m−2R

T
m−3 · · ·RT

0 A(j)T0T1 · · ·Tm−2

= RTA(j)T,

which first introduces a nonzero entry below the diagonal (T0 does this) and
then chases it down the diagonal. After T0 introduces a nonzero entry in the
(2, 1) position, RT

0 annihilates it and produces a nonzero entry in the (1, 3)
position; T1 annihilates the (1, 3) entry and produces a nonzero entry in the
(3, 2) position, which RT

1 annihilates, and so on. Each of the Rks and Tks are
Givens transformations, and, except for T0, it should be clear how to form
them.

If none of the elements along the main diagonal or the diagonal above the
main diagonal is zero, then T0 is chosen as the Givens transformation such
that TT

0 will annihilate the second element in the vector

(a2
11 − σ1, a11a12, 0, · · · , 0),

where σ1 is the eigenvalue of the lower right-hand 2×2 submatrix of A(0)TA(0)

that is closest in value to the (m,m) element of A(0)TA(0). This is easy to
compute (see Exercise 7.6).

If an element along the main diagonal or the diagonal above the main diag-
onal is zero, we must proceed slightly differently. (Remember that for purposes
of computations “zero” generally means “near zero”; that is, to within some
set tolerance.)

7.7 Singular Value Decomposition 255

If an element above the main diagonal is zero, the bidiagonal matrix is
separated at that value into a block diagonal matrix, and each block (which
is bidiagonal) is treated separately.

If an element on the main diagonal, say akk, is zero, then a singular value
is zero. In this case, we apply a set of Givens transformations from the left.
We first use G1, which differs from the identity only in rows and columns k
and k + 1, to annihilate the (k, k + 1) entry and introduce a nonzero in the
(k, k + 2) position. We then use G2, which differs from the identity only in
rows and columns k and k+2, to annihilate the (k, k+2) entry and introduce
a nonzero in the (k, k+3) position. Continuing this process, we form a matrix
of the form ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X 0 0 0 0 0 0
0 X X 0 0 0 0 0
0 0 X Y 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 X X 0 0
0 0 0 0 0 X X 0
0 0 0 0 0 0 X X
0 0 0 0 0 0 0 X
...

...
... · · ·

...
...

...
...

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The Y in this matrix (in position (k−1, k)) is then chased up the upper block
consisting of the first k rows and columns of the original matrix by using
Givens transformations applied from the right. This then yields two block
bidiagonal matrices (and a 1 × 1 0 matrix). We operate on the individual
blocks as before.

After the steps have converged to yield a diagonal matrix, D̃, all of the
Givens matrices applied from the left are accumulated into a single matrix and
all from the right are accumulated into a single matrix to yield a decomposition

A = ŨD̃Ṽ T.

There is one last thing to do. The elements of D̃ may not be nonnegative.
This is easily remedied by postmultiplying by a diagonal matrix G that is the
same as the identity except for having a −1 in any position corresponding
to a negative value in D̃. In addition, we generally form the singular value
decomposition is such a way that the elements in D are nonincreasing. The
entries in D̃ can be rearranged by a permutation matrix Eπ so they are in
nonincreasing order. So we have

D = ET
π D̃GEπ,

and the final decomposition is

A = ŨEπGDET
π Ṽ T

= UDV T.

256 7 EVALUATION OF EIGENVALUES

If n ≥ 5
3m, a modification of this algorithm by Chan (1982a, b) is more

efficient than the standard Golub-Reinsch method.

Exercises

7.1. Simple matrices and the power method.
a) Let A be an n × n matrix whose elements are generated indepen-

dently (but not necessarily identically) from real-valued continuous
distributions. What is the probability that A is simple?

b) Under the same conditions as in Exercise 7.1a, and with n ≥ 3, what
is the probability that |cn−2| < |cn−1| < |cn|, where cn−2, cn−1, and
cn are the three eigenvalues with the largest absolute values?

c) Prove that the power method converges linearly if |cn−2| < |cn−1| <
|cn|, bn−1 �= 0, and bn �= 0. (The bs are the coefficients in the expan-
sion of x(0).)

Hint: Substitute the expansion in equation (7.10) on page 246 into
the expression for the convergence ratio in equation (7.11).

d) Suppose A is simple and the elements of x(0) are generated indepen-
dently (but not necessarily identically) from continuous distributions.
What is the probability that the power method will converge linearly?

7.2. Consider the matrix ⎡

⎢
⎢
⎣

4 1 2 3
1 5 3 2
2 3 6 1
3 2 1 7

⎤

⎥
⎥
⎦ .

a) Use the power method to determine the largest eigenvalue and an
associated eigenvector of this matrix.

b) Find a 3×3 matrix, as in equation (7.6), that has the same eigenvalues
as the remaining eigenvalues of the matrix above.

c) Using Givens transformations, reduce the matrix to upper Hessenberg
form.

7.3. In the matrix ⎡

⎢
⎢
⎣

2 1 0 0
1 5 2 0
3 2 6 1
0 0 1 8

⎤

⎥
⎥
⎦ ,

determine the Givens transformations to chase the 3 in the (3, 1) position
out of the matrix.

7.4. In the matrix

Exercises 257

⎡

⎢
⎢
⎢
⎢
⎣

2 1 0 0
3 5 2 0
0 0 6 1
0 0 0 8
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

determine the Givens transformations to chase the 3 in the (2, 1) position
out of the matrix.

7.5. In the QR methods for eigenvectors and singular values, why can we
not just use additional orthogonal transformations to triangularize the
given matrix (instead of just forming a similar Hessenberg matrix, as in
Section 7.4) or to diagonalize the given matrix (instead of just forming
the bidiagonal matrix, as in Section 7.7)?

7.6. Determine the eigenvalue σ1 (on page 254) used in forming the matrix
T0 for initiating the chase in the algorithm for the singular value decom-
position. Express it in terms of am,m, am−1,m−1, am−1,m, and am−1,m−2.

Part II

Applications in Data Analysis

8

Special Matrices and Operations Useful
in Modeling and Data Analysis

In previous chapters, we defined a number of special matrices, such as sym-
metric matrices, banded matrices, elementary operator matrices, and so on.
In this chapter, we will discuss some of these matrices in more detail and also
introduce some other special matrices and data structures that are useful in
statistics.

There are a number of special kinds of matrices that are useful in statistical
applications. In statistical applications in which data analysis is the objective,
the initial step is the representation of observational data in some convenient
form, which often is a matrix. We discuss the representation of observations
using matrices in Section 8.1. The matrices for operating on observational
data or summarizing the data often have special structures and properties.

One of the most important properties of many matrices occurring in sta-
tistical data analysis is nonnegative or positive definiteness; this is the subject
of Sections 8.3 and 8.4. Fitted values of a response variable that are associated
with given values of covariates in linear models are often projections of the ob-
servations onto a subspace determined by the covariates. Projection matrices
and Gramian matrices useful in linear models are considered in Sections 8.5
and 8.6. One of the most important properties of many matrices occurring in
statistical modeling over time is irreducible nonnegativeness or positiveness;
this is the subject of Section 8.7.

8.1 Data Matrices and Association Matrices

There are several ways that data can be organized for representation in the
computer. We distinguish logical structures from computer-storage structures.
Data structure in computers is an important concern and can greatly affect
the efficiency of computer processing. We discuss some simple aspects of the
organization for computer storage in Section 11.1, beginning on page 429. In
the present section, we consider some general issues of logical organization
and structure.

262 8 Matrices with Special Properties

There are two important aspects of data in applications that we will not
address here. One is metadata; that is, data about the data. Metadata includes
names or labels associated with data, information about how and when the
data were collected, information about how the data are stored in the com-
puter, and so on. Another important concern in applications is missing data.
In real-world applications it is common to have incomplete data. If the data
are stored in some structure that naturally contains a cell or a region for the
missing data, the computer representation of the dataset must contain some
indication that the cell is empty. For numeric data, the convenient way of
doing this is by using “not-a-number”, or NaN (see page 386). We briefly dis-
cuss issues in handling missing data in Part III. We consider some effects of
missing data on the estimation of matrices in Section 9.4.6.

8.1.1 Flat Files

If several features or attributes are observed on each of several entities, a
convenient way of organizing the data is as a two-dimensional array with each
column corresponding to a specific feature and each row corresponding to a
specific observational entity. In the field of statistics, data for the features are
stored in “variables”, the entities are called “observational units”, and a row
of the array is called an “observation” (see Figure 8.1).

Var 1 Var 2 . . . Var m

Obs 1 x x . . . x
Obs 2 x x . . . x

...
...

... . . .
...

Obs n x x . . . x

Fig. 8.1. Data Appropriate for Representation in a Flat File

The data may be various types of objects, such as names, real numbers,
numbers with associated measurement units, sets, vectors, and so on. If the
data are represented as real numbers, the data array is a matrix. (Note again
our use of the word “matrix”; not just any rectangular array is a matrix in the
sense used in this book.) Other types of data can often be made equivalent to
a matrix in an intuitive manner.

The flat file arrangement emphasizes the relationships of the data both
within an observational unit or row and within a variable or column. Simple
operations on the data matrix may reveal relationships among observational
units or among variables.

8.1.2 Graphs and Other Data Structures

If the numbers of measurements on the observational units varies or if the in-
terest is primarily in simple relationships among observational units or among

8.1 Data Matrices and Association Matrices 263

variables, the flat file structure may not be very useful. Sometimes a graph
structure can be used advantageously.

A graph is a nonempty set V of points, called vertices, together with a
set E of unordered pairs of elements of V , called edges. (Other definitions of
“graph” allow the null set to be a graph.) If we let G be a graph, we represent
it as (V,E). We often represent the set of vertices as V (G) and the set of
edges as E(G). An edge is said to be incident on each vertex in the edge. The
number of vertices (that is, the cardinality of V) is the order of the graph, and
the number of edges, the cardinality of E, is the size of the graph.

An edge in which the two vertices are the same is called a loop. (A simple
graph is sometimes defined as a graph with no loops; that is, one in which
each edge contains only pairs of distinct elements.)

A path or walk is a sequence of edges, e1, . . . , en, such that for i ≥ 2 one
vertex in ei is a vertex in edge ei−1. Alternatively, a path or walk is defined
as a sequence of vertices with common edges.

A graph such that there is a path that includes any pair of vertices is said
to be connected.

A graph with more than one vertex such that all possible pairs of vertices
occur as edges is a complete graph.

A closed path or closed walk is a path such that a vertex in the first edge
(or the first vertex in the alternate definition) is in the last edge (or the last
vertex).

A cycle is a closed path in which all vertices occur exactly twice (or in
the alternate definition, in which all vertices except the first and the last are
distinct). A graph with no cycles is said to be acyclic. An acyclic graph is also
called a tree. Trees are used extensively in statistics to represent clusters.

The number of edges that contain a given vertex (that is, the number of
edges incident on the vertex v) denoted by d(v) is the degree of the vertex.

A vertex with degree 0 is said to be isolated.
We see immediately that the sum of the degrees of all vertices equals twice

the number of edges, that is,
∑

d(vi) = 2#(E).

The sum of the degrees hence must be an even number.
A regular graph is one for which d(vi) is constant for all vertices vi; more

specifically, a graph is k-regular if d(vi) = k for all vertices vi.
The natural data structure for a graph is a pair of lists, but a graph is

often represented graphically (no pun!) as in Figure 8.2, which shows a graph
with five vertices seven edges. While a matrix is usually not an appropriate
structure for representing raw data from a graph, there are various types of
matrices that are useful for studying the data represented by the graph, which
we will discuss in Section 8.8.7.

264 8 Matrices with Special Properties

��

��
c ��

��
a

��

��
b

��

��
d

��

��
e

			

�
�

�
�
� �

�
�

Fig. 8.2. A Simple Graph

If G is the graph represented in Figure 8.2, the vertices are V (G) =
{a, b, c, d, e} and the edges are E(G) = {(a, b), (a, c), (a, d), (a, e), (b, e), (c, d),
(d, e)}.

The presence of an edge between two vertices can indicate the existence
of a relationship between the objects represented by the vertices. The graph
represented in Figure 8.2 may represent five observational units for which our
primary interest is in their relationships with one another. For example, the
observations may be authors of scientific papers, and an edge between two
authors may represent the fact that the two have been coauthors on some
paper.

The same information represented in the 5-order graph of Figure 8.2 may
be represented in a 5 × 5 rectangular array, as in Figure 8.3.

a b c d e

a Y Y Y Y
b Y Y
c Y Y
d Y Y Y
e Y Y Y

Fig. 8.3. An Alternate Representation

In the graph represented in Figure 8.2, there are no isolated vertices and
the graph is connected. (Note that a graph with no isolated vertices is not
necessarily connected.) The graph represented in Figure 8.2 is not complete
because, for example, there is no edge that contains vertices c and e. The
graph is cyclic because of the closed path (defined by vertices) (c, d, e, b, a, c).
Note that the closed path (c, d, a, e, b, a, c) is not a cycle.

This use of a graph immediately suggests various extensions of a basic
graph. For example, E may be a multiset, with multiple instances of edges
containing the same two vertices, perhaps, in the example above, representing
multiple papers in which the two authors are coauthors. A graph in which E
is a multiset is called a multigraph. Instead of just the presence or absence
of edges between vertices, a weighted graph may be more useful; that is, one
in which a real number is associated with a pair of vertices to represent the
strength of the relationship, not just presence or absence, between the two

8.1 Data Matrices and Association Matrices 265

vertices. A degenerate weighted graph (that is, an unweighted graph as dis-
cussed above) has weights of 0 or 1 between all vertices. A multigraph is a
weighted graph in which the weights are restricted to nonnegative integers.
Although the data in a weighted graph carry much more information than a
graph with only its edges, or even a multigraph that allows strength to be rep-
resented by multiple edges, the simplicity of a graph sometimes recommends
its use even when there are varying degrees of strength of relationships. A
standard approach in applications is to set a threshold for the strength of
relationship and to define an edge only when the threshold is exceeded.

Adjacency Matrix; Connectivity Matrix

The connections between vertices in the graphs shown in Figure 8.2 or in
Figure 8.4 can be represented in an association matrix called an adjacency
matrix, a connectivity matrix, or an incidence matrix to represent edges be-
tween vertices, as shown in equation (8.1). (The terms “adjacency”, “connec-
tivity”, and “incidence” are synonymous. “Adjacency” is perhaps the most
commonly used term, but I will naturally use both that term and “connec-
tivity” because of the connotative value of the latter term.) The graph, G,
represented in Figure 8.2 has the symmetric adjacency matrix

C(G) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

. (8.1)

We often use this type of notation; a symbol represents a particular graph,
and other objects that relate to the graph make use of that symbol. There
is no difference in the connectivity matrix and a table such as in Figure 8.3
except for the metadata.

The diagonal elements of the adjacency matrix for a simple graph (one
with no loops) are all 0s.

The relationship can obviously be defined in the other direction; that is,
given an n × n symmetric matrix A, we define the graph of the matrix as the
graph with n vertices and edges between vertices i and j if aij �= 0. We often
denote the graph of the matrix A by G(A).

Generally we restrict the elements of the connectivity matrix to be 1 or 0 to
indicate only presence or absence of a connection, but not to indicate strength
of the connection. In this case, a connectivity matrix is a nonnegative matrix;
that is, all of its elements are nonnegative. We indicate that a matrix A is
nonnegative by

A ≥ 0.

We discuss the notation and properties of nonnegative (and positive) matrices
in Section 8.7.

266 8 Matrices with Special Properties

Digraphs

Another extension of a basic graph is one in which the relationship may not
be the same in both directions. This yields a digraph, or “directed graph”,
in which the edges are ordered pairs called directed edges. The vertices in
a digraph have two kinds of degree, an indegree and an outdegree, with the
obvious meanings.

Although in this book we are more interested in statistical relationships,
the simplest applications of digraphs are for representing networks. Consider,
for example, the digraph represented by the network in Figure 8.4. This is
a network with five vertices, perhaps representing cities, and directed edges
between some of the vertices. The edges could represent airline connections
between the cities; for example, there are flights from x to u and from u to x,
and from y to z, but not from z to y.

��

��
x ��

��
u

��

��
w

��

��
y

��

��
z

			�			

��

�

� �
�

���
�
��

�
��

�
�
�
��

Fig. 8.4. A Simple Digraph

Figure 8.4 represents a digraph with order 5 (there are five vertices) and
size 11 (eleven directed edges). A sequence of edges, e1, . . . , en, constituting
a path in a digraph must be such that for i ≥ 2 the first vertex in ei is the
second vertex in edge ei−1. For example, the sequence x, y, z, w, u, x in the
graph of Figure 8.4 is a path (in fact, a cycle) but the sequence x, u,w, z, y, x
is not a path.

The connectivity matrix for the digraph in Figure 8.4 with nodes ordered
as u,w, x, y, z is

C =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

. (8.2)

A connectivity matrix for a (nondirected) graph is symmetric, but for a di-
graph it is not necessarily symmetric. Given an n×n matrix A, we define the
digraph of the matrix as the digraph with n vertices and edges from vertex i
to j if aij �= 0. We use the same notation for a digraph as we used above for
a graph, G(A).

8.1 Data Matrices and Association Matrices 267

In statistical applications, graphs are used for representing symmetric as-
sociations. Digraphs are used for representing asymmetric associations or one-
way processes such as a stochastic process.

In a simple digraph, the edges only indicate the presence or absence of a
relationship, but just as in the case of a simple graph, we can define a weighted
digraph by associating nonnegative numbers with each directed edge.

Graphical modeling is useful type for analyzing relationships between el-
ements of a collection of sets. For example, in an analysis of internet traffic,
profiles of users may be constructed based on the set of web sites each user
visits in relation to the sets visited by other users. For this kind of applica-
tion, an intersection graph may be useful. An intersection graph, for a given
collection of sets S, is a graph whose vertices correspond to the sets in S and
whose edges between any two sets have a common element.

The word “graph” is often used without qualification to mean any of these
types.

Connectivity of Digraphs

There are two kinds of connected digraphs. A digraph such that there is
a (directed) path that includes any pair of vertices is said to be strongly
connected. A digraph such that there is a path without regard to the direction
of any edge that includes any pair of vertices is said to be weakly connected.
The digraph shown in Figure 8.4 is strongly connected. The digraph shown in
Figure 8.5 is weakly connected but not strongly connected.

A digraph that is not weakly connected must have two sets of nodes with
no edges between any nodes in one set and any nodes in the other set.

��

��
x ��

��
u

��

��
w

��

��
y

��

��
z

			

�

��
�
��

�
��

�
�
�
��

Fig. 8.5. A Digraph that Is Not Strongly Connected

The connectivity matrix of the digraph in Figure 8.5 is

C =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 0 1
0 0 0 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

. (8.3)

268 8 Matrices with Special Properties

The matrix of a digraph that is not strongly connected can always be reduced
to a special block upper triangular form by row and column permutations; that
is, if the digraph G is not strongly connected, then there exists a permutation
matrix Eπ such that

ET
π A(G)Eπ =

[
B11 B12

0 B22

]

, (8.4)

where B11 and B22 are square. Such a transformation is called a symmetric
permutation.

Later we will formally prove this relationship between strong connectivity
and this reduced form of the matrix, but first we consider the matrix in
equation (8.3). If we interchange the second and fourth columns and rows, we
get the reduced form

ET
24CE24 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1 1
1 0 0 0 1
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Irreducible Matrices

Any nonnegative square matrix that can be permuted into the form in equa-
tion (8.4) with square diagonal submatrices is said to be reducible; a matrix
that cannot be put into that form is irreducible. We also use the terms re-
ducible and irreducible to refer to the graph itself.

Strong Connectivity of Digraphs and Irreducibility of Matrices

A nonnegative matrix is irreducible if and only if its digraph is strongly con-
nected. Stated another way, a digraph is not strongly connected if and only if
its matrix is reducible.

To see this, first consider a reducible matrix. In its reduced form of equa-
tion (8.4), none of the nodes corresponding to the last rows have directed
edges leading to any of the nodes corresponding to the first rows; hence, the
digraph is not strongly connected.

Now, assume that a given digraph G is not strongly connected. In that
case, there is some node, say the ith node, from which there is no directed
path to some other node. Assume that there are m − 1 nodes that can be
reached from node i. If m = 1, then we have a trivial partitioning of the n×n
connectivity in which B11 of equation (8.4) is (n − 1) × (n − 1) and B22 is
a 1 × 1 0 matrix (that is, 01). If m ≥ 1, perform symmetric permutations
so that the row corresponding to node i and all other m − 1 nodes are the
last m rows of the permuted connectivity matrix. In this case, the first n − k
elements in each of those rows must be 0. To see that this must be the case,
let k > n − m and j ≤ n − m and assume that the element in the (k, j)th

8.1 Data Matrices and Association Matrices 269

position is nonzero. In that case, there is a path from node i to node k to node
j, which is in the set of nodes not reachable from node i; hence the (k, j)th

element (in the permuted matrix) must be 0. The submatrix corresponding
to B11 is n − m × n − m, and that corresponding to B22 is m × m. These
properties also hold for connectivity matrices with simple loops (with 1s on
the diagonal) and for an augmented connectivity matrix (see page 314).

Reducibility plays an important role in the analysis of Markov chains (see
Section 9.7.1).

8.1.3 Probability Distribution Models

Many phenomena are best characterized in terms of a probability distribution.
Data in rows of flat files are often assumed to be realizations of vector random
variables, some elements of which may have a degenerate distribution (that is,
the elements in some columns of the data matrix may be considered to be fixed
rather than random). The data in one row are often considered independent of
the data in another row. Statistical data analysis is generally concerned with
studying various models of relationships among the elements of the vector
random variables. For example, the familiar linear regression model relates
one variable (one column) to a linear combination of other variables plus a
translation and random noise.

A random graph of fixed order is a discrete probability space over all possi-
ble graphs of that order. For a graph of order n, there are 2(n

2) possible graphs.
Asymptotic properties of the probability distribution refer to the increase of
the order without limit. Occasionally it is useful to consider the order of the
graph to be random also. If the order is unrestricted, the sample space for
a random graph of random order is infinite but countable. The number of
digraphs of order n is 4(n

2).
Random graphs have many uses in the analysis of large systems of inter-

acting objects; for example, a random intersection graph may be used to make
inferences about the clustering of internet users based on the web sites they
visit.

8.1.4 Association Matrices

In data analysis, the interesting questions usually involve the relationships
among the variables or among the observational units. Matrices formed from
the original data matrix for the purpose of measuring these relationships are
called association matrices. There are basically two types: similarity and dis-
similarity matrices. The variance-covariance matrix, which we discuss in Sec-
tion 8.6.3, is an example of an association matrix that measures similarity.
We discuss dissimilarity matrices in Section 8.6.6 and in Section 8.8.7 discuss
a type of similarity matrix for data represented in graphs.

In addition to the distinction between similarity and dissimilarity associ-
ation matrices, we may identify two types of association matrices based on

270 8 Matrices with Special Properties

whether the relationships of interest are among the rows (observations) or
among the columns (variables or features). In applications, dissimilarity rela-
tionships among rows tend to be of more interest, and similarity relationships
among columns are usually of more interest. (The applied statistician may
think of clustering, multidimensional scaling, or Q factor analysis for the for-
mer and correlation analysis, principal components analysis, or factor analysis
for the latter.)

8.2 Symmetric Matrices

Most association matrices encountered in applications are real and symmetric.
Because real symmetric matrices occur so frequently in statistical applications
and because such matrices have so many interesting properties, it is useful to
review some of those properties that we have already encountered and to state
some additional properties.

First, perhaps, we should iterate a trivial but important fact: the product
of symmetric matrices is not, in general, symmetric. A power of a symmetric
matrix, however, is symmetric.

We should also emphasize that some of the special matrices we have dis-
cussed are assumed to be symmetric because, if they were not, we could define
equivalent symmetric matrices. This includes positive definite matrices and
more generally the matrices in quadratic forms.

For convenience, here we list some of the important properties of symmet-
ric matrices, many of which concern their eigenvalues. In the following, let A
be a symmetric matrix:

• If A is nonsingular, then A−1 is also symmetric because (A−1)T =
(AT)−1 = A−1.

• If k is any positive integer, Ak is symmetric.
• If A is nonsingular (so that Ak is defined for nonpositive integers), Ak is

symmetric for any integer k.
• All eigenvalues of a (real) symmetric matrix are real (see page 110).
• A is diagonalizable (or simple), and in fact A is orthogonally diago-

nalizable; that is, it has an orthogonally similar canonical factorization,
A = VCV T (see page 120).

• A has the spectral decomposition A =
∑

i civiv
T
i , where the ci are the

eigenvalues and vi are the corresponding eigenvectors (see page 121).
• A power of A has the spectral decomposition Ak =

∑
i ck

i viv
T
i .

• Any quadratic form xTAx can be expressed as
∑

i b2
i ci, where the bi are

elements in the vector V −1x.
• We have

max
x�=0

xTAx

xTx
= max{ci}

(see page 122). If A is nonnegative definite, this is the spectral radius
ρ(A).

8.2 Symmetric Matrices 271

• For the L2 norm of the symmetric matrix A, we have

‖A‖2 = ρ(A).

• For the Frobenius norm of the symmetric matrix A, we have

‖A‖F =
√∑

c2
i .

This follows immediately from the fact that A is diagonalizable, as do
the facts that

tr(A) =
∑

ci

and
|A| =

∏
ci

(see equations (3.179) and (3.180) on page 110).

Approximation of Symmetric Matrices and an Important
Inequality

In Section 3.10, we considered the problem of approximating a given matrix by
another matrix of lower rank. There are other situations in statistics in which
we need to approximate one matrix by another one. In data analysis, this may
be because our given matrix arises from poor observations and we know the
“true” matrix has some special properties not possessed by the given matrix
computed from the data. A familiar example is a sample variance-covariance
matrix computed from incomplete data (see Section 9.4.6). Other examples in
statistical applications occur in the simulation of random matrices (see Gentle,
2003, Section 5.3.3). In most cases of interest, the matrix to be approximated
is a symmetric matrix.

Consider the difference of two symmetric n × n matrices, A and Ã; that
is,

E = A − Ã. (8.5)

The matrix of the differences, E, is also symmetric. We measure the “close-
ness” of A and Ã by some norm of E.

The Hoffman-Wielandt theorem gives a lower bound on the Frobenius
norm of E in terms of the differences of the eigenvalues of A and Ã: if the
eigenvalues of A are c1, . . . cn and the eigenvalues of Ã are c̃1, . . . c̃n, each set
being arranged in nonincreasing order, we have

n∑

i=1

(ci − c̃i)2 ≤ ‖E‖2
F. (8.6)

This fact was proved by Hoffman and Wielandt (1953) using techniques from
linear programming. Wilkinson (1965) gives a simpler proof (which he at-
tributes to Wallace Givens) along the following lines.

272 8 Matrices with Special Properties

Because A, Ã, and E are symmetric, they are all orthogonally diagonaliz-
able. Let the diagonal factorizations of A and E, respectively, be VCV T and
Udiag((e1, . . . , en))UT, where e1, . . . en are the eigenvalues of E in nonincreas-
ing order. Hence, we have

Udiag((e1, . . . , en))UT = U(A − Ã)UT

= U(VCV T − Ã)UT

= UV(C − V TÃV)V TUT.

Taking norms of both sides, we have

n∑

i=1

e2
i = ‖C − V TÃV ‖2. (8.7)

(All norms in the remainder of this section will be the Frobenius norm.) Now,
let

f(Q) = ‖C − QTÃQ‖2 (8.8)

be a function of any n × n orthogonal matrix, Q. (Equation (8.7) yields
f(V) =

∑
e2

i .) To arrive at inequality (8.6), we show that this function is
bounded below by the sum of the differences in the squares of the elements of
C (which are the eigenvalues of A) and the eigenvalues of QTÃQ (which are
the eigenvalues of the matrix approximating A).

Because the elements of Q are bounded, f(·) is bounded, and because the
set of orthogonal matrices is compact (see page 105) and f(·) is continuous,
f(·) must attain its lower bound, say l. To simplify the notation, let

X = QTÃQ.

Now suppose that there are r distinct eigenvalues of A (that is, the diagonal
element in C):

d1 > · · · > dr.

We can write C as diag(diImi
), where mi is the multiplicity of di. We

now partition QTÃQ to correspond to the partitioning of C represented by
diag(diImi

):

X =

⎡

⎢
⎣

X11 · · · X1r

...
...

...
Xr1 · · · Xrr

⎤

⎥
⎦ . (8.9)

In this partitioning, the diagonal blocks, Xii, are mi×mi symmetric matrices.
The submatrix Xij , is an mi × mj matrix.

We now proceed in two steps to show that in order for f(Q) to attain its
lower bound l, X must be diagonal. First we will show that when f(Q) = l,
the submatrix Xij in equation (8.9) must be null if i �= j. To this end, let Q∇

be such that f(Q∇) = l, and assume the contrary regarding the corresponding

8.2 Symmetric Matrices 273

X∇ = QT
∇ ÃQ∇ ; that is, assume that in some submatrix Xij∇

where i �= j, there
is a nonzero element, say x∇ . We arrive at a contradiction by showing that
in this case there is another X0 of the form QT

0 ÃQ0, where Q0 is orthogonal
and such that f(Q0) < f(Q∇).

To establish some useful notation, let p and q be the row and column,
respectively, of X∇ where this nonzero element x∇ occurs; that is, xpq = x∇ �=
0 and p �= q because xpq is in Xij∇

. (Note the distinction between uppercase
letters, which represent submatrices, and lowercase letters, which represent
elements of matrices.) Also, because X∇ is symmetric, xqp = x∇ . Now let a∇ =
xpp and b∇ = xqq. We form Q0 as Q∇R, where R is an orthogonal rotation
matrix of the form Gpq in equation (5.12). We have, therefore, ‖QT

0 ÃQ0‖2 =
‖RTQT

∇ ÃQ∇R‖2 = ‖QT
∇ ÃQ∇‖2. Let a0, b0, and x0 represent the elements of

QT
0 ÃQ0 that correspond to a∇ , b∇ , and x∇ in QT

∇ ÃQ∇ .
From the definition of the Frobenius norm, we have

f(Q0) − f(Q∇) = 2(a∇ − a0)di + 2(b∇ − b0)dj

because all other terms cancel. If the angle of rotation is θ, then

a0 = a∇ cos2 θ − 2x∇ cos θ sin θ + b∇ sin2 θ,

b0 = a∇ sin2 θ − 2x∇ cos θ sin θ + b∇ cos2 θ,

and so for a function h of θ we can write

h(θ) = f(Q0) − f(Q∇)
= 2di((a∇ − b∇) sin2 θ + x∇ sin 2θ) + 2dj((b∇ − b0) sin2 θ − x∇ sin 2θ)
= 2di((a∇ − b∇) + 2dj(b∇ − b0)) sin2 θ + 2x∇(di − dj) sin 2θ,

and so

d
dθ

h(θ) = 2di((a∇ − b∇) + 2dj(b∇ − b0)) sin 2θ + 4x∇(di − dj) cos 2θ.

The coefficient of cos 2θ, 4x∇(di−dj), is nonzero because di and dj are distinct,
and x∇ is nonzero by the second assumption to be contradicted, and so the
derivative at θ = 0 is nonzero. Hence, by the proper choice of a direction of
rotation (which effectively interchanges the roles of di and dj), we can make
f(Q0)−f(Q∇) positive or negative, showing that f(Q∇) cannot be a minimum
if some Xij in equation (8.9) with i �= j is nonnull; that is, if Q∇ is a matrix
such that f(Q∇) is the minimum of f(Q), then in the partition of QT

∇ ÃQ∇

only the diagonal submatrices Xii∇
can be nonnull:

QT
∇ ÃQ∇ = diag(X11∇

, . . . , Xrr∇
).

The next step is to show that each Xii∇
must be diagonal. Because it is

symmetric, we can diagonalize it with an orthogonal matrix Pi as

274 8 Matrices with Special Properties

PT
i Xii∇

Pi = Gi.

Now let P be the direct sum of the Pi and form

PTCP − PTQT
∇ ÃQ∇P = diag(d1I, . . . , drI) − diag(G1, . . . , Gr)

= C − PTQT
∇ ÃQ∇P.

Hence,
f(Q∇P) = f(Q∇),

and so the minimum occurs for a matrix Q∇P that reduces Ã to a diagonal
form. The elements of the Gi must be the c̃i in some order, so the minimum
of f(Q), which we have denoted by f(Q∇), is

∑
(ci − c̃pi

)2, where the pi are
a permutation of 1, . . . , n. As the final step, we show pi = i. We begin with
p1. Suppose p1 �= 1 but ps = 1; that is, c̃1 ≥ c̃p1 . Interchange p1 and ps in the
permutation. The change in the sum

∑
(ci − c̃pi

)2 is

(c1 − c̃1)2 + (cs − c̃ps
)2 − (c1 − c̃ps

)2 − (cs − c̃1)2 = −2(cs − c1)(c̃p1 − c̃1)
≤ 0;

that is, the interchange reduces the value of the sum. Similarly, we proceed
through the pi to pn, getting pi = i.

We have shown, therefore, that the minimum of f(Q) is
∑n

i=1(ci − c̃i)2,
where both sets of eigenvalues are ordered in nonincreasing value. From equa-
tion (8.7), which is f(V), we have the inequality (8.6).

While an upper bound may be of more interest in the approximation prob-
lem, the lower bound in the Hoffman-Wielandt theorem gives us a measure
of the goodness of the approximation of one matrix by another matrix. Chu
(1991) describes various extensions and applications of the Hoffman-Wielandt
theorem.

Normal Matrices

A real square matrix A is said to be normal if ATA = AAT. (In general, a
square matrix is normal if AHA = AAH.) Normal matrices include symmetric
(and Hermitian), skew symmetric (and Hermitian), and square orthogonal
(and unitary) matrices.

There are a number of interesting properties possessed by normal matrices.
One property, for example, is that eigenvalues of normal matrices are real.
(This follows from properties 12 and 13 on page 110.) Another property of
a normal matrix is its characterization in terms of orthogonal similarity to a
diagonal matrix formed from its eigenvalues; a square matrix is normal if and
only if it can be expressed in the form of equation (3.197), A = VCV T, which
we derived for symmetric matrices.

The normal matrices of most interest to us are symmetric matrices, and
so when we discuss properties of normal matrices, we will generally consider
those properties only as they apply to symmetric matrices.

8.3 Nonnegative Definite Matrices; Cholesky Factorization 275

8.3 Nonnegative Definite Matrices; Cholesky
Factorization

We defined nonnegative definite and positive definite matrices on page 70, and
discussed some of their properties, particularly in Section 3.8.8. We have seen
that these matrices have useful factorizations, in particular, the square root
and the Cholesky factorization. In this section, we recall those definitions,
properties, and factorizations.

A symmetric matrix A such that any quadratic form involving the matrix
is nonnegative is called a nonnegative definite matrix. That is, a symmetric
matrix A is a nonnegative definite matrix if, for any (conformable) vector x,

xTAx ≥ 0. (8.10)

(There is a related term, positive semidefinite matrix, that is not used consis-
tently in the literature. We will generally avoid the term “semidefinite”.)

We denote the fact that A is nonnegative definite by

A � 0. (8.11)

(Some people use the notation A ≥ 0 to denote a nonnegative definite matrix,
but we have decided to use this notation to indicate that each element of A
is nonnegative; see page 48.)

There are several properties that follow immediately from the definition.

• The sum of two (conformable) nonnegative matrices is nonnegative defi-
nite.

• All diagonal elements of a nonnegative definite matrix are nonnegative.
Hence, if A is nonnegative definite, tr(A) ≥ 0.

• Any square submatrix whose principal diagonal is a subset of the prin-
cipal diagonal of a nonnegative definite matrix is nonnegative definite.
In particular, any square principal submatrix of a nonnegative definite
matrix is nonnegative definite.

It is easy to show that the latter two facts follow from the definition by
considering a vector x with zeros in all positions except those corresponding
to the submatrix in question. For example, to see that all diagonal elements
of a nonnegative definite matrix are nonnegative, assume the (i, i) element is
negative, and then consider the vector x to consist of all zeros except for a 1
in the ith position. It is easy to see that the quadratic form is negative, so the
assumption that the (i, i) element is negative leads to a contradiction.

• A diagonal matrix is nonnegative definite if and only if all of the diagonal
elements are nonnegative.

This must be true because a quadratic form in a diagonal matrix is the sum
of the diagonal elements times the squares of the elements of the vector.

276 8 Matrices with Special Properties

• If A is nonnegative definite, then A−(i1,...,ik)(i1,...,ik) is nonnegative defi-
nite.

Again, we can see this by selecting an x in the defining inequality (8.10)
consisting of 1s in the positions corresponding to the rows and columns of A
that are retained and 0s elsewhere.

By considering xTCTACx and y = Cx, we see that

• if A is nonnegative definite, and C is conformable for the multiplication,
then CTAC is nonnegative definite.

From equation (3.197) and the fact that the determinant of a product is
the product of the determinants, we have that

• the determinant of a nonnegative definite matrix is nonnegative.

Finally, for the nonnegative definite matrix A, we have

a2
ij ≤ aiiajj , (8.12)

as we see from the definition xTAx ≥ 0 and choosing the vector x to have a
variable y in position i, a 1 in position j, and 0s in all other positions. For
a symmetric matrix A, this yields the quadratic aiiy

2 + 2aijy + ajj . If this
quadratic is to be nonnegative for all y, then the discriminant 4a2

ij − 4aiiajj

must be nonpositive; that is, inequality (8.12) must be true.

Eigenvalues of Nonnegative Definite Matrices

We have seen on page 124 that a real symmetric matrix is nonnegative (pos-
itive) definite if and only if all of its eigenvalues are nonnegative (positive).

This fact allows a generalization of the statement above: a triangular ma-
trix is nonnegative (positive) definite if and only if all of the diagonal elements
are nonnegative (positive).

The Square Root and the Cholesky Factorization

Two important factorizations of nonnegative definite matrices are the square
root,

A = (A
1
2)2, (8.13)

discussed in Section 5.9.1, and the Cholesky factorization,

A = TTT, (8.14)

discussed in Section 5.9.2. If T is as in equation (8.14), the symmetric matrix
T + TT is also nonnegative definite, or positive definite if A is. The square
root matrix is used often in theoretical developments, such as Exercise 4.5b
for example, but the Cholesky factor is more useful in practice.

8.4 Positive Definite Matrices 277

8.4 Positive Definite Matrices

An important class of nonnegative definite matrices are those that satisfy
strict inequalities in the definition involving xTAx. These matrices are called
positive definite matrices and they have all of the properties discussed above
for nonnegative definite matrices as well as some additional useful properties.

A symmetric matrix A is called a positive definite matrix if, for any (con-
formable) vector x �= 0, the quadratic form is positive; that is,

xTAx > 0. (8.15)

We denote the fact that A is positive definite by

A � 0. (8.16)

(Some people use the notation A > 0 to denote a positive definite matrix,
but we have decided to use this notation to indicate that each element of A
is positive.)

• A positive definite matrix is necessarily nonsingular. (We see this from
the fact that no nonzero combination of the columns, or rows, can be 0.)
Furthermore, if A is positive definite, then A−1 is positive definite. (We
showed this is Section 3.8.8, but we can see it in another way: because
for any y �= 0 and x = A−1y, we have yTA−1y = xTy = xTAx > 0.)

• A diagonally dominant symmetric matrix with positive diagonals is pos-
itive definite. The proof of this is Exercise 8.2.

The properties of nonnegative definite matrices noted above hold also for
positive definite matrices, generally with strict inequalities. It is obvious that
all diagonal elements of a positive definite matrix are positive. Hence, if A is
positive definite, tr(A) > 0. Furthermore, as above and for the same reasons, if
A is positive definite, then A−(i1,...,ik)(i1,...,ik) is positive definite. In particular,
any square submatrix whose principal diagonal is a subset of the principal
diagonal of a positive definite matrix is positive definite, and furthermore, any
square principal submatrix of a positive definite matrix is positive definite.
Because a quadratic form in a diagonal matrix is the sum of the diagonal
elements times the squares of the elements of the vector, a diagonal matrix is
positive definite if and only if all of the diagonal elements are positive.

The definition yields a slightly stronger statement regarding the sums in-
volving positive definite matrices than what we could conclude about nonneg-
ative definite matrices:

• The sum of a positive definite matrix and a (conformable) nonnegative
definite matrix is positive definite.

That is,

xTAx > 0 ∀x �= 0 and yTBy ≥ 0 ∀y =⇒ zT(A + B)z > 0 ∀z �= 0. (8.17)

278 8 Matrices with Special Properties

We cannot conclude that the product of two positive definite matrices is
positive definite, but we do have the useful fact that

• if A is positive definite, and C is of full rank and conformable for the
multiplication AC, then CTAC is positive definite (see page 89).

From equation (3.197) and the fact that the determinant of a product is
the product of the determinants, we have that

• the determinant of a positive definite matrix is positive.

For the positive definite matrix A, we have, analogous to inequality (8.12),

a2
ij < aiiajj , (8.18)

which we see using the same argument as for that inequality.
We have seen from the definition of positive definiteness and the distribu-

tion of multiplication over addition that the sum of a positive definite matrix
and a nonnegative definite matrix is positive definite. We can define an or-
dinal relationship between positive definite and nonnegative definite matrices
of the same size. If A is positive definite and B is nonnegative definite of the
same size, we say A is strictly greater than B and write

A � B (8.19)

if A − B is positive definite; that is, if A − B � 0.
We can form a partial ordering of nonnegative definite matrices of the same

order based on this additive property. We say A is greater than B and write

A � B (8.20)

if A−B is either the 0 matrix or is nonnegative definite; that is, if A−B � 0
(see Exercise 8.1a). The “strictly greater than” relation implies the “greater
than” relation. These relations are partial in the sense that they do not apply
to all pairs of nonnegative matrices; that is, there are pairs of matrices A and
B for which neither A � B nor B � A.

If A � B, we also write B ≺ A; and if A � B, we may write B $ A.

Principal Submatrices of Positive Definite Matrices

A sufficient condition for a symmetric matrix to be positive definite is that
the determinant of each of the leading principal submatrices be positive. To
see this, first let the n × n symmetric matrix A be partitioned as

A =
[

An−1 a
aT ann

]

,

and assume that An−1 is positive definite and that |A| > 0. (This is not the
same notation that we have used for these submatrices, but the notation is
convenient in this context.) From equation (3.147),

8.4 Positive Definite Matrices 279

|A| = |An−1|(ann − aTA−1
n−1a).

Because An−1 is positive definite, |An−1| > 0, and so (ann − aTA−1
n−1a) > 0;

hence, the 1×1 matrix (ann −aTA−1
n−1a) is positive definite. That any matrix

whose leading principal submatrices have positive determinants follows from
this by induction, beginning with a 2 × 2 matrix.

The Convex Cone of Positive Definite Matrices

The class of all n × n positive definite matrices is a convex cone in IRn×n in
the same sense as the definition of a convex cone of vectors (see page 14). If
X1 and X2 are n × n positive definite matrices and a, b ≥ 0, then aX1 + bX2

is positive definite so long as either a �= 0 or b �= 0.
This class is not closed under Cayley multiplication (that is, in particular,

it is not a group with respect to that operation). The product of two positive
definite matrices might not even be symmetric.

Inequalities Involving Positive Definite Matrices

Quadratic forms of positive definite matrices and nonnegative matrices occur
often in data analysis. There are several useful inequalities involving such
quadratic forms.

On page 122, we showed that if x �= 0, for any symmetric matrix A with
eigenvalues ci,

xTAx

xTx
≤ max{ci}. (8.21)

If A is nonnegative definite, by our convention of labeling the eigenvalues, we
have max{ci} = c1. If the rank of A is r, the minimum nonzero eigenvalue
is denoted cr. Letting the eigenvectors associated with c1, . . . , cr be v1, . . . , vr

(and recalling that these choices may be arbitrary in the case where some
eigenvalues are not simple), by an argument similar to that used on page 122,
we have that if A is nonnegative definite of rank r,

vT
i Avi

vT
i vi

≥ cr, (8.22)

for 1 ≤ i ≤ r.
If A is positive definite and x and y are conformable nonzero vectors, we

see that

xTA−1x ≥ (yTx)2

yTAy
(8.23)

by using the same argument as used in establishing the Cauchy-Schwarz in-
equality (2.10). We first obtain the Cholesky factor T of A (which is, of course,
of full rank) and then observe that for every real number t

280 8 Matrices with Special Properties

(
tTy + T−Tx

)T (
tTy + T−Tx

)
≥ 0,

and hence the discriminant of the quadratic equation in t must be nonnegative:

4
(
(Ty)TT−Tx

)2 − 4
(
T−Tx

)T (
T−T − x

)
(Ty)TTy ≤ 0.

The inequality (8.23) is used in constructing Scheffé simultaneous confidence
intervals in linear models.

The Kantorovich inequality for positive numbers has an immediate exten-
sion to an inequality that involves positive definite matrices. The Kantorovich
inequality, which finds many uses in optimization problems, states, for pos-
itive numbers c1 ≥ c2 ≥ · · · ≥ cn and nonnegative numbers y1, . . . , yn such
that

∑
yi = 1, that

(
n∑

i=1

yici

)(
n∑

i=1

yic
−1
i

)

≤ (c1 + c2)2

4c1c2
.

Now let A be an n×n positive definite matrix with eigenvalues c1 ≥ c2 ≥ · · · ≥
cn > 0. We substitute x2 for y, thus removing the nonnegativity restriction,
and incorporate the restriction on the sum directly into the inequality. Then,
using the similar canonical factorization of A and A−1, we have

(
xTAx

) (
xTA−1x

)

(xTx)2
≤ (c1 + cn)2

4c1cn
. (8.24)

This Kantorovich matrix inequality likewise has applications in optimization;
in particular, for assessing convergence of iterative algorithms.

The left-hand side of the Kantorovich matrix inequality also has a lower
bound, (

xTAx
) (

xTA−1x
)

(xTx)2
≥ 1, (8.25)

which can be seen in a variety of ways, perhaps most easily by using the
inequality (8.23). (You were asked to prove this directly in Exercise 3.21.)

All of the inequalities (8.21) through (8.25) are sharp. We know that (8.21)
and (8.22) are sharp by using the appropriate eigenvectors. We can see the
others are sharp by using A = I.

There are several variations on these inequalities and other similar inequal-
ities that are reviewed by Marshall and Olkin (1990) and Liu and Neudecker
(1996).

8.5 Idempotent and Projection Matrices

An important class of matrices are those that, like the identity, have the
property that raising them to a power leaves them unchanged. A matrix A
such that

8.5 Idempotent and Projection Matrices 281

AA = A (8.26)

is called an idempotent matrix. An idempotent matrix is square, and it is either
singular or the identity matrix. (It must be square in order to be conformable
for the indicated multiplication. If it is not singular, we have A = (A−1A)A =
A−1(AA) = A−1A = I; hence, an idempotent matrix is either singular or
the identity matrix.) An idempotent matrix that is symmetric is called a
projection matrix.

8.5.1 Idempotent Matrices

Many matrices encountered in the statistical analysis of linear models are
idempotent. One such matrix is X−X (see page 98 and Section 9.2.2). This
matrix exists for any n × m matrix X, and it is square. (It is m × m.)

Because the eigenvalues of A2 are the squares of the eigenvalues of A, all
eigenvalues of an idempotent matrix must be either 0 or 1.

Any vector in the column space of an idempotent matrix A is an eigenvec-
tor of A. (This follows immediately from AA = A.) More generally, if x and
y are vectors in span(A) and a is a scalar, then

A(ax + y) = ax + y. (8.27)

(To see this, we merely represent x and y as linear combinations of columns
(or rows) of A and substitute in the equation.)

The number of eigenvalues that are 1 is the rank of an idempotent matrix.
(Exercise 8.3 asks why this is the case.) We therefore have, for an idempotent
matrix A,

tr(A) = rank(A). (8.28)

Because the eigenvalues of an idempotent matrix are either 0 or 1, a symmetric
idempotent matrix is nonnegative definite.

If A is idempotent and n × n, then

rank(I − A) = n − rank(A). (8.29)

We showed this in equation (3.155) on page 98. (Although there we were
considering the special matrix A−A, the only properties used were the idem-
potency of A−A and the fact that rank(A−A) = rank(A).)

Equation (8.29) together with the diagonalizability theorem (equation
(3.194)) implies that an idempotent matrix is diagonalizable.

If A is idempotent and V is an orthogonal matrix of the same size, then
V TAV is idempotent (whether or not V is a matrix that diagonalizes A)
because

(V TAV)(V TAV) = V TAAV = V TAV. (8.30)

If A is idempotent, then (I − A) is also idempotent, as we see by mul-
tiplication. This fact and equation (8.29) have generalizations for sums of

282 8 Matrices with Special Properties

idempotent matrices that are parts of Cochran’s theorem, which we consider
below.

Although if A is idempotent so (I − A) is also idempotent and hence is
not of full rank (unless A = 0), for any scalar a �= −1, (I +aA) is of full rank,
and

(I + aA)−1 = I − a

a + 1
A, (8.31)

as we see by multiplication.
On page 114, we saw that similar matrices are equivalent (have the same

rank). For idempotent matrices, we have the converse: idempotent matrices
of the same rank (and size) are similar (see Exercise 8.4).

If A1 and A2 are matrices conformable for addition, then A1 +A2 is idem-
potent if and only if A1A2 = A2A1 = 0. It is easy to see that this condition
is sufficient by multiplication:

(A1 + A2)(A1 + A2) = A1A1 + A1A2 + A2A1 + A2A2 = A1 + A2.

To see that it is necessary, we first observe from the expansion above that
A1 + A2 is idempotent only if A1A2 + A2A1 = 0. Multiplying this necessary
condition on the left by A1 yields

A1A1A2 + A1A2A1 = A1A2 + A1A2A1 = 0,

and multiplying on the right by A1 yields

A1A2A1 + A2A1A1 = A1A2A1 + A2A1 = 0.

Subtracting these two equations yields

A1A2 = A2A1,

and since A1A2 + A2A1 = 0, we must have A1A2 = A2A1 = 0.

Symmetric Idempotent Matrices

Many of the idempotent matrices in statistical applications are symmetric,
and such matrices have some useful properties.

Because the eigenvalues of an idempotent matrix are either 0 or 1, the
spectral decomposition of a symmetric idempotent matrix A can be written
as

V TAV = diag(Ir, 0), (8.32)

where V is a square orthogonal matrix and r = rank(A). (This is from equa-
tion (3.198) on page 120.)

For symmetric matrices, there is a converse to the fact that all eigenvalues
of an idempotent matrix are either 0 or 1. If A is a symmetric matrix all of
whose eigenvalues are either 0 or 1, then A is idempotent. We see this from the

8.5 Idempotent and Projection Matrices 283

spectral decomposition of A, A = V diag(Ir, 0)V T, and, with C = diag(Ir, 0),
by observing

AA = V CV TV CV T = V CCV T = V CV T = A,

because the diagonal matrix of eigenvalues C contains only 0s and 1s.
If A is symmetric and p is any positive integer,

Ap+1 = Ap =⇒ A is idempotent. (8.33)

This follows by considering the eigenvalues of A, c1, . . . , cn. The eigenvalues
of Ap+1 are cp+1

1 , . . . , cp+1
n and the eigenvalues of Ap are cp

1, . . . , c
p
n, but since

Ap+1 = Ap, it must be the case that cp+1
i = cp

i for each i = 1, . . . , n. The only
way this is possible is for each eigenvalue to be 0 or 1, and in this case the
symmetric matrix must be idempotent.

There are bounds on the elements of a symmetric idempotent matrix.
Because A is symmetric and ATA = A,

aii =
n∑

j=1

a2
ij ; (8.34)

hence, 0 ≤ aii. Rearranging equation (8.34), we have

aii = a2
ii +

∑

j �=i

a2
ij , (8.35)

so a2
ii ≤ aii or 0 ≤ aii(1−aii); that is, aii ≤ 1. Now, if aii = 0 or aii = 1, then

equation (8.35) implies ∑

j �=i

a2
ij = 0,

and the only way this can happen is if aij = 0 for all j �= i. So, in summary,
if A is an n × n symmetric idempotent matrix, then

0 ≤ aii ≤ 1 for i = 1, . . . , m, (8.36)

and
if aii = 0 or aii = 1, then aij = aji = 0 for all j �= i. (8.37)

Cochran’s Theorem

There are various facts that are sometimes called Cochran’s theorem. The
simplest one concerns k symmetric idempotent n × n matrices, A1, . . . , Ak,
such that

In = A1 + · · · + Ak. (8.38)

Under these conditions, we have

284 8 Matrices with Special Properties

AiAj = 0 for all i �= j. (8.39)

We see this by the following argument. For an arbitrary j, as in equa-
tion (8.32), for some matrix V , we have

V TAjV = diag(Ir, 0),

where r = rank(Aj). Now

In = V TInV

=
k∑

i=1

V TAiV

= diag(Ir, 0) +
∑

i�=j

V TAiV,

which implies ∑

i�=j

V TAiV = diag(0, In−r). (8.40)

Now, from equation (8.30), for each i, V TAiV is idempotent, and so from
equation (8.36) the diagonal elements are all nonnegative, and hence equa-
tion (8.40) implies that for each i �= j, the first r diagonal elements are 0.
Furthermore, since these diagonal elements are 0, equation (8.37) implies that
all elements in the first r rows and columns are 0. We have, therefore, for each
i �= j,

V TAiV = diag(0, Bi)

for some (n − r) × (n − r) symmetric idempotent matrix Bi. Now, for any
i �= j, consider AiAj and form V TAiAjV . We have

V TAiAjV = (V TAiV)(V TAjV)
= diag(0, Bi)diag(Ir, 0)
= 0.

Because V is nonsingular, this implies the desired conclusion; that is, that
AiAj = 0 for any i �= j.

We can now extend this result to an idempotent matrix in place of I;
that is, for an idempotent matrix A with A = A1 + · · · + Ak. Rather than
stating it simply as in equation (8.39), however, we will state the implications
differently.

Let A1, . . . , Ak be n × n symmetric matrices and let

A = A1 + · · · + Ak. (8.41)

Then any two of the following conditions imply the third one:

8.5 Idempotent and Projection Matrices 285

(a). A is idempotent.
(b). Ai is idempotent for i = 1, . . . , k.
(c). AiAj = 0 for all i �= j.

This is also called Cochran’s theorem. (The theorem also applies to non-
symmetric matrices if condition (c) is augmented with the requirement that
rank(A2

i) = rank(Ai) for all i. We will restrict our attention to symmetric
matrices, however, because in most applications of these results, the matrices
are symmetric.)

First, if we assume properties (a) and (b), we can show that property (c)
follows using an argument similar to that used to establish equation (8.39) for
the special case A = I. The formal steps are left as an exercise.

Now, let us assume properties (b) and (c) and show that property (a)
holds. With properties (b) and (c), we have

AA = (A1 + · · · + Ak) (A1 + · · · + Ak)

=
k∑

i=1

AiAi +
∑

i�=j

k∑

j=1

AiAj

=
k∑

i=1

Ai

= A.

Hence, we have property (a); that is, A is idempotent.
Finally, let us assume properties (a) and (c). Property (b) follows imme-

diately from
A2

i = AiAi = AiA = AiAA = A2
i A = A3

i

and the implication (8.33).
Any two of the properties (a) through (c) also imply a fourth property for

A = A1 + · · · + Ak when the Ai are symmetric:

(d). rank(A) = rank(A1) + · · · + rank(Ak).

We first note that any two of properties (a) through (c) imply the third one,
so we will just use properties (a) and (b). Property (a) gives

rank(A) = tr(A) = tr(A1 + · · · + Ak) = tr(A1) + · · · + tr(Ak),

and property (b) states that the latter expression is rank(A1)+· · ·+rank(Ak),
thus yielding property (d).

There is also a partial converse: properties (a) and (d) imply the other
properties.

One of the most important special cases of Cochran’s theorem is when
A = I in the sum (8.41):

In = A1 + · · · + Ak.

286 8 Matrices with Special Properties

The identity matrix is idempotent, so if rank(A1) + · · · + rank(Ak) = n, all
the properties above hold.

The most important statistical application of Cochran’s theorem is for the
distribution of quadratic forms of normally distributed random vectors. These
distribution results are also called Cochran’s theorem. We briefly discuss it in
Section 9.1.3.

Drazin Inverses

A Drazin inverse of an operator T is an operator S such that TS = ST ,
STS = S, and T k+1S = T k for any positive integer k.

It is clear that, as an operator, an idempotent matrix is its own Drazin
inverse. Interestingly, if A is any square matrix, its Drazin inverse is the matrix
Ak(A2k+1)+Ak, which is unique for any positive integer k. See Campbell and
Meyer (1991) for discussions of properties and applications of Drazin inverses
and more on their relationship to the Moore-Penrose inverse.

8.5.2 Projection Matrices: Symmetric
Idempotent Matrices

For a given vector space V, a symmetric idempotent matrix A whose columns
span V is said to be a projection matrix onto V; in other words, a matrix A is a
projection matrix onto span(A) if and only if A is symmetric and idempotent.
(Some authors do not require a projection matrix to be symmetric. In that
case, the terms “idempotent” and “projection” are synonymous.)

It is easy to see that, for any vector x, if A is a projection matrix onto
V, the vector Ax is in V, and the vector x − Ax is in V⊥ (the vectors Ax
and x−Ax are orthogonal). For this reason, a projection matrix is sometimes
called an “orthogonal projection matrix”. Note that an orthogonal projection
matrix is not an orthogonal matrix, however, unless it is the identity matrix.
Stating this in alternative notation, if A is a projection matrix and A ∈ IRn×n,
then A maps IRn onto V(A) and I −A is also a projection matrix (called the
complementary projection matrix of A), and it maps IRn onto the orthogonal
complement, N (A). These spaces are such that V(A) ⊕N (A) = IRn.

In this text, we use the term “projection” to mean “orthogonal projection”,
but we should note that in some literature “projection” can include “oblique
projection”. In the less restrictive definition, for vector spaces V, X , and Y, if
V = X ⊕ Y and v = x + y with x ∈ X and y ∈ Y, then the vector x is called
the projection of v onto X along Y. In this text, to use the unqualified term
“projection”, we require that X and Y be orthogonal; if they are not, then
we call x the oblique projection of v onto X along Y. The choice of the more
restrictive definition is because of the overwhelming importance of orthogonal
projections in statistical applications. The restriction is also consistent with
the definition in equation (2.29) of the projection of a vector onto another
vector (as opposed to the projection onto a vector space).

8.6 Special Matrices Occurring in Data Analysis 287

Because a projection matrix is idempotent, the matrix projects any of
its columns onto itself, and of course it projects the full matrix onto itself:
AA = A (see equation (8.27)).

If x is a general vector in IRn, that is, if x has order n and belongs to an
n-dimensional space, and A is a projection matrix of rank r ≤ n, then Ax has
order n and belongs to span(A), which is an r-dimensional space. Thus, we
say projections are dimension reductions.

Useful projection matrices often encountered in statistical linear models
are X+X and XX+. (Recall that X−X is an idempotent matrix.) The matrix
X+ exists for any n×m matrix X, and X+X is square (m×m) and symmetric.

Projections onto Linear Combinations of Vectors

On page 25, we gave the projection of a vector y onto a vector x as

xTy

xTx
x.

The projection matrix to accomplish this is the “outer/inner products ma-
trix”,

1
xTx

xxT. (8.42)

The outer/inner products matrix has rank 1. It is useful in a variety of matrix
transformations. If x is normalized, the projection matrix for projecting a
vector on x is just xxT. The projection matrix for projecting a vector onto a
unit vector ei is eie

T
i , and eie

T
i y = (0, . . . , yi, . . . , 0).

This idea can be used to project y onto the plane formed by two vectors, x1

and x2, by forming a projection matrix in a similar manner and replacing x in
equation (8.42) with the matrix X = [x1|x2]. On page 331, we will view linear
regression fitting as a projection onto the space spanned by the independent
variables.

The angle between vectors we defined on page 26 can be generalized to
the angle between a vector and a plane or any linear subspace by defining
it as the angle between the vector and the projection of the vector onto the
subspace. By applying the definition (2.32) to the projection, we see that the
angle θ between the vector y and the subspace spanned by the columns of a
projection matrix A is determined by the cosine

cos(θ) =
yTAy

yTy
. (8.43)

8.6 Special Matrices Occurring in Data Analysis

Some of the most useful applications of matrices are in the representation of
observational data, as in Figure 8.1 on page 262. If the data are represented as

288 8 Matrices with Special Properties

real numbers, the array is a matrix, say X. The rows of the n×m data matrix
X are “observations” and correspond to a vector of measurements on a single
observational unit, and the columns of X correspond to n measurements of a
single variable or feature. In data analysis we may form various association
matrices that measure relationships among the variables or the observations
that correspond to the columns or the rows of X. Many summary statistics
arise from a matrix of the form XTX. (If the data in X are incomplete —
that is, if some elements are missing — problems may arise in the analysis.
We discuss some of these issues in Section 9.4.6.)

8.6.1 Gramian Matrices

A (real) matrix A such that for some (real) matrix B, A = BTB, is called
a Gramian matrix. Any nonnegative definite matrix is Gramian (from equa-
tion (8.14) and Section 5.9.2 on page 194).

Sums of Squares and Cross Products

Although the properties of Gramian matrices are of interest, our starting point
is usually the data matrix X, which we may analyze by forming a Gramian
matrix XTX or XXT (or a related matrix). These Gramian matrices are also
called sums of squares and cross products matrices. (The term “cross product”
does not refer to the cross product of vectors defined on page 33, but rather to
the presence of sums over i of the products xijxik along with sums of squares
x2

ij .) These matrices and other similar ones are useful association matrices in
statistical applications.

Some Immediate Properties of Gramian Matrices

Some interesting properties of a Gramian matrix XTX are:

• XTX is symmetric.
• XTX is of full rank if and only if X is of full column rank or, more

generally,
rank(XTX) = rank(X). (8.44)

• XTX is nonnegative definite and is positive definite if and only if X is
of full column rank.

• XTX = 0 =⇒ X = 0.

These properties (except the first one, which is Exercise 8.7) were shown in
the discussion in Section 3.3.7 on page 90.

Each element of a Gramian matrix is the dot products of the columns
of the constituent matrix. If x∗i and x∗j are the ith and jth columns of the
matrix X, then

(XTX)ij = xT
∗ix∗j . (8.45)

8.6 Special Matrices Occurring in Data Analysis 289

A Gramian matrix is also the sum of the outer products of the rows of the
constituent matrix. If xi∗ is the ith row of the n × m matrix X, then

XTX =
n∑

i=1

xi∗x
T
i∗. (8.46)

This is generally the way a Gramian matrix is computed.
By equation (8.14), we see that any Gramian matrix formed from a general

matrix X is the same as a Gramian matrix formed from a square upper
triangular matrix T :

XTX = TTT.

Another interesting property of a Gramian matrix is that, for any matrices
B and C (that are conformable for the operations indicated),

BXTX = CXTX ⇐⇒ BXT = CXT. (8.47)

The implication from right to left is obvious, and we can see the left to right
implication by writing

(BXTX − CXTX)(BT − CT) = (BXT − CXT)(BXT − CXT)T,

and then observing that if the left-hand side is null, then so is the right-
hand side, and if the right-hand side is null, then BXT − CXT = 0 because
XTX = 0 =⇒ X = 0, as above. Similarly, we have

XTXB = XTXC ⇐⇒ XTB = XTC. (8.48)

Generalized Inverses of Gramian Matrices

The generalized inverses of XTX have useful properties. First, we see from
the definition, for any generalized inverse (XTX)−, that ((XTX)−)T is also a
generalized inverse of XTX. (Note that (XTX)− is not necessarily symmet-
ric.) Also, we have, from equation (8.47),

X(XTX)−XTX = X. (8.49)

This means that (XTX)−XT is a generalized inverse of X.
The Moore-Penrose inverse of X has an interesting relationship with a

generalized inverse of XTX:

XX+ = X(XTX)−XT. (8.50)

This can be established directly from the definition of the Moore-Penrose
inverse.

An important property of X(XTX)−XT is its invariance to the choice of
the generalized inverse of XTX. Suppose G is any generalized inverse of XTX.
Then, from equation (8.49), we have X(XTX)−XTX = XGXTX, and from
the implication (8.47), we have

XGXT = X(XTX)−XT; (8.51)

that is, X(XTX)−XT is invariant to the choice of generalized inverse.

290 8 Matrices with Special Properties

Eigenvalues of Gramian Matrices

If the singular value decomposition of X is UDV T (page 127), then the similar
canonical factorization of XTX (equation (3.197)) is V DTDV T. Hence, we
see that the nonzero singular values of X are the square roots of the nonzero
eigenvalues of the symmetric matrix XTX. By using DDT similarly, we see
that they are also the square roots of the nonzero eigenvalues of XXT.

8.6.2 Projection and Smoothing Matrices

It is often of interest to approximate an arbitrary n-vector in a given m-
dimensional vector space, where m < n. An n × n projection matrix of rank
m clearly does this.

A Projection Matrix Formed from a Gramian Matrix

An important matrix that arises in analysis of a linear model of the form

y = Xβ + ε (8.52)

is
H = X(XTX)−XT, (8.53)

where (XTX)− is any generalized inverse. From equation (8.51), H is invariant
to the choice of generalized inverse. By equation (8.50), this matrix can be
obtained from the pseudoinverse and so

H = XX+. (8.54)

In the full rank case, this is uniquely

H = X(XTX)−1XT. (8.55)

Whether or not X is of full rank, H is a projection matrix onto span(X).
It is called the “hat matrix” because it projects the observed response vector,
often denoted by y, onto a predicted response vector, often denoted by ŷ in
span(X):

ŷ = Hy. (8.56)

Because H is invariant, this projection is invariant to the choice of generalized
inverse. (In the nonfull rank case, however, we generally refrain from referring
to the vector Hy as the “predicted response”; rather, we may call it the “fitted
response”.)

The rank of H is the same as the rank of X, and its trace is the same as
its rank (because it is idempotent). When X is of full column rank, we have

tr(H) = number of columns of X. (8.57)

8.6 Special Matrices Occurring in Data Analysis 291

(This can also be seen by using the invariance of the trace to permutations of
the factors in a product as in equation (3.55).)

In linear models, tr(H) is the model degrees of freedom, and the sum of
squares due to the model is just yTHy.

The complementary projection matrix,

I − H, (8.58)

also has interesting properties that relate to linear regression analysis. In
geometrical terms, this matrix projects a vector onto N (XT), the orthogonal
complement of span(X). We have

y = Hy + (I − H)y
= ŷ + r, (8.59)

where r = (I − H)y ∈ N (XT). The orthogonal complement is called the
residual vector space, and r is called the residual vector. Both the rank and
the trace of the orthogonal complement are the number of rows in X (that
is, the number of observations) minus the regression degrees of freedom. This
quantity is the “residual degrees of freedom” (unadjusted).

These two projection matrices (8.53) or (8.55) and (8.58) partition the
total sums of squares:

yTy = yTHy + yT(I − H)y. (8.60)

Note that the second term in this partitioning is the Schur complement of
XTX in [X y]T [X y] (see equation (3.146) on page 96).

Smoothing Matrices

The hat matrix, either from a full rank X as in equation (8.55) or formed
by a generalized inverse as in equation (8.53), smoothes the vector y onto
the hyperplane defined by the column space of X. It is therefore a smoothing
matrix. (Note that the rank of the column space of X is the same as the rank
of XTX.)

A useful variation of the cross products matrix XTX is the matrix formed
by adding a nonnegative (positive) definite matrix A to it. Because XTX is
nonnegative (positive) definite, XTX + A is nonnegative definite, as we have
seen (page 277), and hence XTX + A is a Gramian matrix.

Because the square root of the nonnegative definite A exists, we can express
the sum of the matrices as

XTX + A =
[

X

A
1
2

]T [
X

A
1
2

]

. (8.61)

In a common application, a positive definite matrix λI, with λ > 0, is
added to XTX, and this new matrix is used as a smoothing matrix. The
analogue of the hat matrix (8.55) is

292 8 Matrices with Special Properties

Hλ = X(XTX + λI)−1XT, (8.62)

and the analogue of the fitted response is

ŷλ = Hλy. (8.63)

This has the effect of shrinking the ŷ of equation (8.56) toward 0. (In regression
analysis, this is called “ridge regression”.)

Any matrix such as Hλ that is used to transform the observed vector y
onto a given subspace is called a smoothing matrix.

Effective Degrees of Freedom

Because of the shrinkage in ridge regression (that is, because the fitted model is
less dependent just on the data in X) we say the “effective” degrees of freedom
of a ridge regression model decreases with increasing λ. We can formally define
the effective model degrees of freedom of any linear fit ŷ = Hλy as

tr(Hλ), (8.64)

analogous to the model degrees of freedom in linear regression above. This
definition of effective degrees of freedom applies generally in data smoothing.
In fact, many smoothing matrices used in applications depend on a single
smoothing parameter such as the λ in ridge regression, and so the same no-
tation Hλ is often used for a general smoothing matrix.

To evaluate the effective degrees of freedom in the ridge regression model
for a given λ and X, for example, using singular value decomposition of X,
X = UDV T, we have

tr(X(XTX + λI)−1XT)
= tr

(
UDV T(V D2V T + λV V T)−1V DUT

)

= tr
(
UDV T(V (D2 + λI)V T)−1V DUT

)

= tr
(
UD(D2 + λI)−1DUT

)

= tr
(
D2(D2 + λI)−1

)

=
∑ d2

i

d2
i + λ

.

(8.65)

When λ = 0, this is the same as the ordinary model degrees of freedom, and
when λ is positive, this quantity is smaller, as we would want it to be by the
argument above. The d2

i /(d2
i + λ) are called shrinkage factors.

If XTX is not of full rank, the addition of λI to it also has the effect of
yielding a full rank matrix, if λ > 0, and so the inverse of XTX+λI exists even
when that of XTX does not. In any event, the addition of λI to XTX yields
a matrix with a better “condition number”, which we define in Section 6.1.
(On page 206, we return to this model and show that the condition number
of XTX + λI is better than that of XTX.)

8.6 Special Matrices Occurring in Data Analysis 293

Residuals from Smoothed Data

Just as in equation (8.59), we can write

y = ŷλ + rλ. (8.66)

Notice, however, that Hλ is not in general a projection matrix. Unless Hλ

is a projection matrix, however, ŷλ and rλ are not orthogonal as are ŷ and
r, and we do not have the additive partitioning of the sum of squares as in
equation (8.60).

The rank of Hλ is the same as the number of columns of X, but the trace,
and hence the model degrees of freedom, is less than this number.

8.6.3 Centered Matrices and Variance-Covariance Matrices

In Section 2.3, we defined the variance of a vector and the covariance of two
vectors. These are the same as the “sample variance” and “sample covariance”
in statistical data analysis and are related to the variance and covariance
of random variables in probability theory. We now consider the variance-
covariance matrix associated with a data matrix. We occasionally refer to
the variance-covariance matrix simply as the “variance matrix” or just as the
“variance”.

First, we consider centering and scaling data matrices.

Centering and Scaling of Data Matrices

When the elements in a vector represent similar measurements or observa-
tional data on a given phenomenon, summing or averaging the elements in the
vector may yield meaningful statistics. In statistical applications, the columns
in a matrix often represent measurements on the same feature or on the same
variable over different observational units as in Figure 8.1, and so the mean
of a column may be of interest.

We may center the column by subtracting its mean from each element in
the same manner as we centered vectors on page 34. The matrix formed by
centering all of the columns of a given matrix is called a centered matrix,
and if the original matrix is X, we represent the centered matrix as Xc in a
notation analogous to what we introduced for centered vectors. If we represent
the matrix whose ith column is the constant mean of the ith column of X as
X,

Xc = X − X. (8.67)

Here is an R statement to compute this:

Xc <- X-rep(1,n)%*%t(apply(X,2,mean))

294 8 Matrices with Special Properties

If the unit of a measurement is changed, all elements in a column of the
data matrix in which the measurement is used will change. The amount of
variation of elements within a column or the relative variation among dif-
ferent columns ideally should not be measured in terms of the basic units
of measurement, which can differ irreconcilably from one column to another.
(One column could represent scores on an exam and another column could
represent weight, for example.)

In analyzing data, it is usually important to scale the variables so that
their variations are comparable. We do this by using the standard deviation
of the column. If we have also centered the columns, the column vectors are
the centered and scaled vectors of the form of those in equation (2.51),

xcs =
xc

sx
,

where sx is the standard deviation of x,

sx =
‖xc‖√
n − 1

.

If all columns of the data matrix X are centered and scaled, we denote the
resulting matrix as Xcs. If si represents the standard deviation of the ith

column, this matrix is formed as

Xcs = Xcdiag(1/si). (8.68)

Here is an R statement to compute this:

Xcs <- Xc%*%diag(1/apply(X,2,sd))

If the rows of X are taken as representative of a population of similar vectors,
it is often useful to center and scale any vector from that population in the
manner of equation (8.68):

x̃ = diag(1/si)xc. (8.69)

(Note that xc is a vector of the same order as a row of Xc.)

Gramian Matrices Formed from Centered Matrices;
Covariance Matrices

An important Gramian matrix is formed as the sums of squares and cross
products matrix from a centered matrix and scaled by (n− 1), where n is the
number of rows of the original matrix:

SX =
1

n − 1
XT

c Xc

= (sij). (8.70)

8.6 Special Matrices Occurring in Data Analysis 295

This matrix is called the variance-covariance matrix associated with the given
matrix X, and we denote it by SX or just S. If x∗i and x∗j are the vectors
corresponding to the ith and jth columns of X, then sij = Cov(x∗i, x∗j); that
is, the off-diagonal elements are the covariances between the column vectors,
as in equation (2.55), and the diagonal elements are variances of the column
vectors.

This matrix and others formed from it, such as RX in equation (8.72)
below, are called association matrices because they are based on measures
of association (covariance or correlation) among the columns of X. We could
likewise define a Gramian association matrix based on measures of association
among the rows of X.

A transformation using the Cholesky factor of SX or the square root of
SX (assuming SX is full rank) results in a matrix whose associated variance-
covariance is the identity. We call this a sphered matrix:

Xsphered = XcS
− 1

2
X . (8.71)

The matrix SX is a measure of the anisometry of the space of vectors
represented by the rows of X as mentioned in Section 3.2.8. The inverse, S−1

X ,
in some sense evens out the anisometry. Properties of vectors in the space
represented by the rows of X are best assessed following a transformation as in
equation (8.69). For example, rather than orthogonality of two vectors u and v,
a more interesting relationship would be S−1

X -conjugacy (see equation (3.65)):

uTS−1
X v = 0.

Also, the Mahalanobis distance,
√

(u − v)TS−1
X (u − v), may be more relevant

for measuring the difference in two vectors than the standard Euclidean dis-
tance.

Gramian Matrices Formed from Scaled Centered Matrices;
Correlation Matrices

If the columns of a centered matrix are standardized (that is, divided by their
standard deviations, assuming that each is nonconstant, so that the stan-
dard deviation is positive), the scaled cross products matrix is the correlation
matrix, often denoted by RX or just R,

RX =
1

n − 1
XT

csXcs

= (rij), (8.72)

where if x∗i and x∗j are the vectors corresponding to the ith and jth columns of
X, rij = Corr(x∗i, x∗j). The correlation matrix can also be expressed as RX =

296 8 Matrices with Special Properties

XT
c DXc, where D is the diagonal matrix whose kth diagonal is 1/

√
V(x∗k),

where V(x∗k) is the sample variance of the kth column; that is, V(x∗k) =∑
i(xik − x̄∗k)2/(n − 1). This Gramian matrix RX is based on measures of

association among the columns of X.
The elements along the diagonal of the correlation matrix are all 1, and the

off-diagonals are between −1 and 1, each being the correlation between a pair
of column vectors, as in equation (2.57). The correlation matrix is nonnegative
definite because it is a Gramian matrix.

The trace of an n×n correlation matrix is n, and therefore the eigenvalues,
which are all nonnegative, sum to n.

Without reference to a data matrix, any nonnegative definite matrix with
1s on the diagonal and with all elements less than or equal to 1 in absolute
value is called a correlation matrix.

8.6.4 The Generalized Variance

The diagonal elements of the variance-covariance matrix S associated with
the n × m data matrix X are the second moments of the centered columns
of X, and the off-diagonal elements are pairwise second central moments of
the columns. Each element of the matrix provides some information about
the spread of a single column or of two columns of X. The determinant of
S provides a single overall measure of the spread of the columns of X. This
measure, |S|, is called the generalized variance, or generalized sample variance,
to distinguish it from an analogous measure of a distributional model.

On page 57, we discussed the equivalence of a determinant and the vol-
ume of a parallelotope. The generalized variance captures this, and when the
columns or rows of S are more orthogonal to each other, the volume of the
parallelotope determined by the columns or rows of S is greater, as shown in
Figure 8.6 for m = 3.

s1

s2

s3

e1

e2

e3

s1

s2
s3

e1

e2

e3

Fig. 8.6. Generalized Variances in Terms of the Columns of S

The columns or rows of S are generally not of much interest in themselves.
Our interest is in the relationship of the centered columns of the n × m data

8.6 Special Matrices Occurring in Data Analysis 297

matrix X. Let us consider the case of m = 2. Let z∗1 and z∗2 represent the
centered column vectors of X; that is, for z∗1, we have z∗1i

= x∗1i
− x̄1. Now,

as in equation (3.33), consider the parallelogram formed by z∗1 and z∗2. For
computing the area, consider z∗1 as forming the base. The length of the base
is

‖z∗1‖ =
√

(n − 1)s11,

and the height is

‖z∗2‖| sin(θ)| =
√

(n − 1)s22(1 − r2
12).

(Recall the relationship between the angle and the correlation from equa-
tion (2.58).)

The area of the parallelogram therefore is

area = (n − 1)
√

s11s22(1 − r2
12).

Now, consider S:

S =
[

s11 s21

s12 s22

]

=
[

s11
√

s11s22r12√
s11s22r12 s22

]

.

The determinant of S is therefore

s11s22(1 − r2
12),

that is,

|S| =
1

(n − 1)m
volume2. (8.73)

Although we considered only the case m = 2, equation (8.73) holds gen-
erally, as can be seen by induction on m (see Anderson, 2003).

Comparing Variance-Covariance Matrices

Many standard statistical procedures for comparing groups of data rely on the
assumption that the population variance-covariance matrices of the groups are
all the same. (The simplest example of this is the two-sample t-test, in which
the concern is just that the population variances of the two groups be equal.)
Occasionally, the data analyst wishes to test this assumption of homogeneity
of variances.

On page 138, we considered the problem of comparing two matrices of
the same size. There we defined a metric based on a matrix norm. For the

298 8 Matrices with Special Properties

problem of comparing variance-covariance matrices, a measure based on the
generalized variances is more commonly used.

In the typical situation, we have an n×m data matrix X in which the first
n1 rows represent observations from one group, the next n2 rows represent
observations from another group, and the last ng rows represent observations
from the gth group. For each group, we form a sample variance-covariance
matrix Si as in equation (8.70) using the ith submatrix of X. Whenever we
have individual variance-covariance matrices in situations similar to this, we
define the pooled variance-covariance matrix:

Sp =
1

(n − g)

g∑

i=1

(ni − 1)Si. (8.74)

Bartlett suggested a test based on the determinants of (ni − 1)Si. (From
equation (3.27), |(ni − 1)Si| = (ni − 1)m|Si|.) A similar test suggested by
Box also uses the generalized variances. One form of the Box M statistic for
testing for homogeneity of variances is

M = (n − g) log(|Sp|) −
g∑

i=1

(ni − 1)Si. (8.75)

8.6.5 Similarity Matrices

Covariance and correlation matrices are examples of similarity association ma-
trices: they measure the similarity or closeness of the columns of the matrices
from which they are formed.

The cosine of the angle between two vectors is related to the correlation
between the vectors, so a matrix of the cosine of the angle between the columns
of a given matrix would also be a similarity matrix. (The angle is exactly the
same as the correlation if the vectors are centered; see equation (2.57).)

Similarity matrices can be formed in many ways, and some are more useful
in particular applications than in others. They may not even arise from a
standard dataset in the familiar form in statistical applications. For example,
we may be interested in comparing text documents. We might form a vector-
like object whose elements are the words in the document. The similarity
between two such ordered tuples, generally of different lengths, may be a
count of the number of words, word pairs, or more general phrases in common
between the two documents.

It is generally reasonable that similarity between two objects be symmet-
ric; that is, the first object is as close to the second as the second is to the first.
We reserve the term similarity matrix for matrices formed from such measures
and, hence, that themselves are symmetric. Occasionally, for example in psy-
chometric applications, the similarities are measured relative to rank order
closeness within a set. In such a case, the measure of closeness may not be
symmetric. A matrix formed from such measures is called a directed similarity
matrix.

8.7 Nonnegative and Positive Matrices 299

8.6.6 Dissimilarity Matrices

The elements of similarity generally increase with increasing “closeness”. We
may also be interested in the dissimilarity. Clearly, any decreasing function of
similarity could be taken as a reasonable measure of dissimilarity. There are,
however, other measures of dissimilarity that often seem more appropriate.
In particular, the properties of a metric (see page 22) may suggest that a
dissimilarity be defined in terms of a metric.

In considering either similarity or dissimilarity for a data matrix, we could
work with either rows or columns, but the common applications make one
or the other more natural for the specific application. Because of the types
of the common applications, we will discuss dissimilarities and distances in
terms of rows instead of columns; thus, in this section, we will consider the
dissimilarity of xi∗ and xj∗, the vectors corresponding to the ith and jth rows
of X.

Dissimilarity matrices are also association matrices in the general sense of
Section 8.1.4.

Dissimilarity or distance can be measured in various ways. A metric is
the most obvious measure, although in certain applications other measures
are appropriate. The measures may be based on some kind of ranking, for
example. If the dissimilarity is based on a metric, the association matrix is
often called a distance matrix. In most applications, the Euclidean distance,
‖xi∗ − xj∗‖2, is the most commonly used metric, but others, especially ones
based on L1 or L∞ norms, are often useful.

Any hollow matrix with nonnegative elements is a directed dissimilarity
matrix. A directed dissimilarity matrix is also called a cost matrix. If the
matrix is symmetric, it is a dissimilarity matrix.

An n × n matrix D = (dij) is an m-dimensional distance matrix if there
exists m-vectors x1 . . . , xn such that, for some metric ∆, dij = ∆(xi, xj).
A distance matrix is necessarily a dissimilarity matrix. If the metric is the
Euclidean distance, the matrix D is called a Euclidean distance matrix.

The matrix whose rows are the vectors xT
1 , . . . , xT

n is called an associated
configuration matrix of the given distance matrix. In metric multidimensional
scaling, we are given a dissimilarity matrix and seek to find a configuration
matrix whose associated distance matrix is closest to the dissimilarity matrix,
usually in terms of the Frobenius norm of the difference of the matrices (see
Trosset, 2002, for basic definitions and extensions).

8.7 Nonnegative and Positive Matrices

A nonnegative matrix, as the name suggests, is a real matrix all of whose
elements are nonnegative, and a positive matrix is a real matrix all of whose
elements are positive. In some other literature, the latter type of matrix is

300 8 Matrices with Special Properties

called strictly positive, and a nonnegative matrix with a positive element is
called positive.

Many useful matrices are nonnegative. We have already considered vari-
ous kinds of nonnegative matrices. The adjacency or connectivity of a graph
is nonnegative. Dissimilarity matrices, including distance matrices, are non-
negative. Matrices used in modeling stochastic processes are nonnegative.

If A is nonnegative, we write

A ≥ 0, (8.76)

and if it is positive, we write
A > 0. (8.77)

Notice that A ≥ 0 and A �= 0 together do not imply A > 0.
We write

A ≥ B

to mean (A − B) ≥ 0 and
A > B

to mean (A−B) > 0. (Recall the definitions of nonnegative definite and posi-
tive definite matrices, and, from equations (8.11) and (8.16), the notation used
to indicate those properties, A � 0 and A � 0. Furthermore, notice that these
definitions and this notation for nonnegative and positive matrices are con-
sistent with analogous definitions and notation involving vectors on page 13.
Some authors, however, use the notation of equations (8.76) and (8.77) to
mean “nonnegative definite” and “positive definite”. We should also note that
some authors use somewhat different terms for these and related properties.
“Positive” for these authors means nonnegative with at least one positive
element, and “strictly positive” means positive as we have defined it.)

Notice that positiveness (nonnegativeness) has nothing to do with posi-
tive (nonnegative) definiteness. A positive or nonnegative matrix need not be
symmetric or even square, although most such matrices useful in applications
are square. A square positive matrix, unlike a positive definite matrix, need
not be of full rank.

The following properties are easily verified.

1. If A ≥ 0 and u ≥ v ≥ 0, then Au ≥ Av.
2. If A ≥ 0, A �= 0, and u > v > 0, then Au > Av.
3. If A > 0 and v ≥ 0, then Av ≥ 0.
4. If A > 0 and A is square, then ρ(A) > 0.

Whereas most of the important matrices arising in the analysis of linear
models are symmetric, and thus have the properties listed on page 270, many
important nonnegative matrices, such as those used in studying stochastic
processes, are not necessarily symmetric. The eigenvalues of real symmetric
matrices are real, but the eigenvalues of real nonsymmetric matrices may have

8.7 Nonnegative and Positive Matrices 301

an imaginary component. In the following discussion, we must be careful to re-
member the meaning of the spectral radius. The definition in equation (3.185)
for the spectral radius of the matrix A with eigenvalues ci,

ρ(A) = max |ci|,

is still correct, but the operator “| · |” must be interpreted as the modulus of
a complex number.

8.7.1 Properties of Square Positive Matrices

We have the following important properties for square positive matrices. These
properties collectively are the conclusions of the Perron theorem.

Let A be a square positive matrix and let r = ρ(A). Then:

1. r is an eigenvalue of A. The eigenvalue r is called the Perron root. Note
that the Perron root is real (although other eigenvalues of A may not
be).

2. There is an eigenvector v associated with r such that v > 0.
3. The Perron root is simple. (That is, the algebraic multiplicity of the

Perron root is 1.)
4. The dimension of the eigenspace of the Perron root is 1. (That is, the

geometric multiplicity of ρ(A) is 1.) Hence, if v is an eigenvector associ-
ated with r, it is unique except for scaling. This associated eigenvector
is called the Perron vector. Note that the Perron vector is real (although
other eigenvectors of A may not be). The elements of the Perron vector
all have the same sign, which we usually take to be positive; that is,
v > 0.

5. If ci is any other eigenvalue of A, then |ci| < r. (That is, r is the only
eigenvalue on the spectral circle of A.)

We will give proofs only of properties 1 and 2 as examples. Proofs of all
of these facts are available in Horn and Johnson (1991).

To see properties 1 and 2, first observe that a positive matrix must have
at least one nonzero eigenvalue because the coefficients and the constant in
the characteristic equation must all be positive. Now scale the matrix so that
its spectral radius is 1 (see page 111). So without loss of generality, let A be
a scaled positive matrix with ρ(A) = 1. Now let (c, x) be some eigenpair of A
such that |c| = 1. First, we want to show, for some such c, that c = ρ(A).

Because all elements of A are positive,

|x| = |Ax| ≤ A|x|,

and so
A|x| − |x| ≥ 0. (8.78)

An eigenvector must be nonzero, so we also have

302 8 Matrices with Special Properties

A|x| > 0.

Now we want to show that A|x| − |x| = 0. To that end, suppose the con-
trary; that is, suppose A|x| − |x| �= 0. In that case, A(A|x| − |x|) > 0 from
equation (8.78), and so there must be a positive number ε such that

A

1 + ε
A|x| > A|x|

or
By > y,

where B = A/(1 + ε) and y = A|x|. Now successively multiplying both sides
of this inequality by the positive matrix B, we have

Bky > y for all k = 1, 2,

Because ρ(B) = ρ(A)/(1+ε) < 1, from equation (3.247) on page 136, we have
limk→∞ Bk = 0; that is, limk→∞ Bky = 0 > y. This contradicts the fact that
y > 0. Because the supposition A|x| − |x| �= 0 led to this contradiction, we
must have A|x| − |x| = 0. Therefore 1 = ρ(A) must be an eigenvalue of A,
and |x| must be an associated eigenvector; hence, with v = |x|, (ρ(A), v) is
an eigenpair of A and v > 0, and this is the statement made in properties 1
and 2.

The Perron-Frobenius theorem, which we consider below, extends these
results to a special class of square nonnegative matrices. (This class includes
all positive matrices, so the Perron-Frobenius theorem is an extension of the
Perron theorem.)

8.7.2 Irreducible Square Nonnegative Matrices

Nonnegativity of a matrix is not a very strong property. First of all, note that
it includes the zero matrix; hence, clearly none of the properties of the Perron
theorem can hold. Even a nondegenerate, full rank nonnegative matrix does
not necessarily possess those properties. A small full rank nonnegative matrix
provides a counterexample for properties 2, 3, and 5:

A =
[

1 1
0 1

]

.

The eigenvalues are 1 and 1; that is, 1 with an algebraic multiplicity of 2 (so
property 3 does not hold). There is only one nonnull eigenvector, (1,−1), (so
property 2 does not hold, but property 4 holds), but the eigenvector is not
positive (or even nonnegative). Of course property 5 cannot hold if property 3
does not hold.

We now consider irreducible square nonnegative matrices. This class in-
cludes positive matrices. On page 268, we defined reducibility of a nonnegative

8.7 Nonnegative and Positive Matrices 303

square matrix and we saw that a matrix is irreducible if and only if its digraph
is strongly connected.

To recall the definition, a nonnegative matrix is said to be reducible if by
symmetric permutations it can be put into a block upper triangular matrix
with square blocks along the diagonal; that is, the nonnegative matrix A is
reducible if and only if there is a permutation matrix Eπ such that

ET
π AEπ =

[
B11 B12

0 B22

]

, (8.79)

where B11 and B22 are square. A matrix that cannot be put into that form
is irreducible. An alternate term for reducible is decomposable, with the as-
sociated term indecomposable. (There is an alternate meaning for the term
“reducible” applied to a matrix. This alternate use of the term means that
the matrix is capable of being expressed by a similarity transformation as the
sum of two matrices whose columns are mutually orthogonal.)

We see from the definition in equation (8.79) that a positive matrix is
irreducible.

Irreducible matrices have several interesting properties. An n×n nonneg-
ative matrix A is irreducible if and only if (I + A)n−1 is a positive matrix;
that is,

A is irreducible ⇐⇒ (I + A)n−1 > 0. (8.80)

To see this, first assume (I+A)n−1 > 0; thus, (I+A)n−1 clearly is irreducible.
If A is reducible, then there exists a permutation matrix Eπ such that

ET
π AEπ =

[
B11 B12

0 B22

]

,

and so

ET
π (I + A)n−1Eπ =

(
ET

π (I + A)Eπ

)n−1

=
(
I + ET

π AEπ

)n−1

=
[

In1 + B11 B12

0 In2 + B22

]

.

This decomposition of (I +A)n−1 cannot exist because it is irreducible; hence
we conclude A is irreducible if (I + A)n−1 > 0.

Now, if A is irreducible, we can see that (I + A)n−1 must be a positive
matrix either by a strictly linear-algebraic approach or by couching the argu-
ment in terms of the digraph G(A) formed by the matrix, as in the discussion
on page 268 that showed that a digraph is strongly connected if (and only if)
it is irreducible. We will use the latter approach in the spirit of applications
of irreducibility in stochastic processes.

For either approach, we first observe that the (i, j)th element of (I +A)n−1

can be expressed as

304 8 Matrices with Special Properties

(
(I + A)n−1

)
ij

=

(
n−1∑

k=0

(
n − 1

k

)

Ak

)

ij

. (8.81)

Hence, for k = 1, . . . , n − 1, we consider the (i, j)th entry of Ak. Let a
(k)
ij

represent this quantity.
Given any pair (i, j), for some l1, l2, . . . , lk−1, we have

a
(k)
ij =

∑

l1,l2,...,lk−1

a1l1al1l2 · · · alk−1j .

Now a
(k)
ij > 0 if and only if a1l1 , al1l2 , . . . , alk−1j are all positive; that is, if

there is a path v1, vl1 , . . . , vlk−1 , vj in G(A). If A is irreducible, then G(A) is
strongly connected, and hence the path exists. So, for any pair (i, j), we have
from equation (8.81)

(
(I + A)n−1

)
ij

> 0; that is, (I + A)n−1 > 0.
The positivity of (I + A)n−1 for an irreducible nonnegative matrix A is a

very useful property because it allows us to extend some conclusions of the
Perron theorem to irreducible nonnegative matrices.

Properties of Square Irreducible Nonnegative Matrices;
the Perron-Frobenius Theorem

If A is a square irreducible nonnegative matrix, then we have the following
properties, which are similar to properties 1 through 4 on page 301 for pos-
itive matrices. These following properties are the conclusions of the Perron-
Frobenius theorem.

1. ρ(A) is an eigenvalue of A. This eigenvalue is called the Perron root, as
before.

2. The Perron root ρ(A) is simple. (That is, the algebraic multiplicity of the
Perron root is 1.)

3. The dimension of the eigenspace of the Perron root is 1. (That is, the
geometric multiplicity of ρ(A) is 1.)

4. The eigenvector associated with ρ(A) is positive. This eigenvector is called
the Perron vector, as before.

The relationship (8.80) allows us to prove properties 1 and 4 in a method
similar to the proofs of properties 1 and 2 for positive matrices. (This is
Exercise 8.9.) Complete proofs of all of these facts are available in Horn and
Johnson (1991). See also the solution to Exercise 8.10b on page 498 for a
special case.

The one property of square positive matrices that does not carry over
to square irreducible nonnegative matrices is property 5: r = ρ(A) is the
only eigenvalue on the spectral circle of A. For example, the small irreducible
nonnegative matrix

A =
[

0 1
1 0

]

8.7 Nonnegative and Positive Matrices 305

has eigenvalues 1 and −1, and so both are on the spectral circle.
It turns out, however, that square irreducible nonnegative matrices that

have only one eigenvalue on the spectral circle also have other interesting
properties that are important, for example, in Markov chains. We therefore
give a name to the property:

A square irreducible nonnegative matrix is said to be primitive if it
has only one eigenvalue on the spectral circle.

In modeling with Markov chains and other applications, the limiting be-
havior of Ak is an important property.

On page 135, we saw that limk→∞ Ak = 0 if ρ(A) < 1. For a primitive
matrix, we also have a limit for Ak if ρ(A) = 1. (As we have done above, we
can scale any matrix with a nonzero eigenvalue to a matrix with a spectral
radius of 1.)

If A is a primitive matrix, then we have the useful result

lim
k→∞

(
A

ρ(A)

)k

= vwT, (8.82)

where v is an eigenvector of A associated with ρ(A) and w is an eigenvector
of AT associated with ρ(A), and w and v are scaled so that wTv = 1. (As
we mentioned on page 123, such eigenvectors exist because ρ(A) is a simple
eigenvalue. They also exist because of property 4; they are both positive.
Note that A is not necessarily symmetric, and so its eigenvectors may include
imaginary components; however, the eigenvectors associated with ρ(A) are
real, and so we can write wT instead of wH.)

To see equation (8.82), we consider
(
A − ρ(A)vwT

)
. First, if (ci, vi) is an

eigenpair of
(
A − ρ(A)vwT

)
and ci �= 0, then (ci, vi) is an eigenpair of A. We

can see this by multiplying both sides of the eigen-equation by vwT:

civwTvi = vwT
(
A − ρ(A)vwT

)
vi

=
(
vwTA − ρ(A)vwTvwT

)
vi

=
(
ρ(A)vwT − ρ(A)vwT

)
vi

= 0;

hence,

Avi =
(
A − ρ(A)vwT

)
vi

= civi.

Next, we show that

ρ
(
A − ρ(A)vwT

)
< ρ(A). (8.83)

If ρ(A) were an eigenvalue of
(
A − ρ(A)vwT

)
, then its associated eigenvector,

say w, would also have to be an eigenvector of A, as we saw above. But since

306 8 Matrices with Special Properties

as an eigenvalue of A the geometric multiplicity of ρ(A) is 1, for some scalar
s, w = sv. But this is impossible because that would yield

ρ(A)sv =
(
A − ρ(A)vwT

)
sv

= sAv − sρ(A)v
= 0,

and neither ρ(A) nor sv is zero. But as we saw above, any eigenvalue of(
A − ρ(A)vwT

)
is an eigenvalue of A and no eigenvalue of

(
A − ρ(A)vwT

)

can be as large as ρ(A) in modulus; therefore we have inequality (8.83).
Finally, we recall equation (3.212), with w and v as defined above, and

with the eigenvalue ρ(A),

(
A − ρ(A)vwT

)k
= Ak − (ρ(A))kvwT, (8.84)

for k = 1, 2,
Dividing both sides of equation (8.84) by (ρ(A))k and rearranging terms,

we have (
A

ρ(A)

)k

= vwT +

(
A − ρ(A)vwT

)

ρ(A)
. (8.85)

Now

ρ

((
A − ρ(A)vwT

)

ρ(A)

)

=
ρ
(
A − ρ(A)vwT

)

ρ(A)
,

which is less than 1; hence, from equation (3.245) on page 135, we have

lim
k→∞

((
A − ρ(A)vwT

)

ρ(A)

)k

= 0;

so, taking the limit in equation (8.85), we have equation (8.82).
Applications of the Perron-Frobenius theorem are far-ranging. It has im-

plications for the convergence of some iterative algorithms, such as the power
method discussed in Section 7.2. The most important applications in statistics
are in the analysis of Markov chains, which we discuss in Section 9.7.1.

8.7.3 Stochastic Matrices

A nonnegative matrix A such that

P1 = 1 (8.86)

is called a stochastic matrix. The definition means that (1, 1) is an eigenpair
of any stochastic matrix. It is also clear that if P is a stochastic matrix,
then ‖P‖∞ = 1 (see page 130), and because ρ(P) ≤ ‖P‖ for any norm (see
page 134) and 1 is an eigenvalue of P , we have ρ(P) = 1.

8.8 Other Matrices with Special Structures 307

A stochastic matrix may not be positive, and it may be reducible or irre-
ducible. (Hence, (1, 1) may not be the Perron root and Perron eigenvector.)

If P is a stochastic matrix such that

1TP = 1T, (8.87)

it is called a doubly stochastic matrix. If P is a doubly stochastic matrix,
‖P‖1 = 1, and, of course, ‖P‖∞ = 1 and ρ(P) = 1.

A permutation matrix is a doubly stochastic matrix; in fact, it is the sim-
plest and one of the most commonly encountered doubly stochastic matrices.
A permutation matrix is clearly reducible.

Stochastic matrices are particularly interesting because of their use in
defining a discrete homogeneous Markov chain. In that application, a sto-
chastic matrix and distribution vectors play key roles. A distribution vector
is a nonnegative matrix whose elements sum to 1; that is, a vector v such
that 1Tv = 1. In Markov chain models, the stochastic matrix is a probability
transition matrix from a distribution at time t, πt, to the distribution at time
t + 1,

πt+1 = Pπt.

In Section 9.7.1, we define some basic properties of Markov chains. Those
properties depend in large measure on whether the transition matrix is re-
ducible or not.

8.7.4 Leslie Matrices

Another type of nonnegative transition matrix, often used in population stud-
ies, is a Leslie matrix, after P. H. Leslie, who used it in models in demography.
A Leslie matrix is a matrix of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 α2 · · · αm−1 αm

σ1 0 · · · 0 0
0 σ2 · · · 0 0
...

...
...

. . .
...

0 0 · · · σm−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (8.88)

where all elements are nonnegative, and additionally σi ≤ 1.
A Leslie matrix is clearly reducible. Furthermore, a Leslie matrix has a

single unique positive eigenvalue (see Exercise 8.10), which leads to some
interesting properties (see Section 9.7.2).

8.8 Other Matrices with Special Structures

Matrices of a variety of special forms arise in statistical analyses and other
applications. For some matrices with special structure, specialized algorithms

308 8 Matrices with Special Properties

can increase the speed of performing a given task considerably. Many tasks
involving matrices require a number of computations of the order of n3, where
n is the number of rows or columns of the matrix. For some of the matrices
discussed in this section, because of their special structure, the order of com-
putations may be n2. The improvement from O(n3) to O(n2) is enough to
make some tasks feasible that would otherwise be infeasible because of the
time required to complete them. The collection of papers in Olshevsky (2003)
describe various specialized algorithms for the kinds of matrices discussed in
this section.

8.8.1 Helmert Matrices

A Helmert matrix is a square orthogonal matrix that partitions sums of
squares. Its main use in statistics is in defining contrasts in general linear
models to compare the second level of a factor with the first level, the third
level with the average of the first two, and so on. (There is another meaning
of “Helmert matrix” that arises from so-called Helmert transformations used
in geodesy.)

For example, a partition of the sum
∑n

i=1 y2
i into orthogonal sums each

involving ȳ2
k and

∑k
i=1(yi − ȳk)2 is

ỹi = (i(i + 1))−1/2

⎛

⎝
i+1∑

j=1

yj − (i + 1)yi+1

⎞

⎠ for i = 1, . . . n − 1,

ỹn = n−1/2
n∑

j=1

yj .

(8.89)

These expressions lead to a computationally stable one-pass algorithm for
computing the sample variance (see equation (10.7) on page 411).

The Helmert matrix that corresponds to this partitioning has the form

Hn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/
√

n 1/
√

n 1/
√

n · · · 1/
√

n

1/
√

2 −1/
√

2 0 · · · 0
1/
√

6 1/
√

6 −2/
√

6 · · · 0
...

...
...

. . .
...

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · − (n−1)√
n(n−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[

1/
√

n 1T
n

Kn−1

]

, (8.90)

where Kn−1 is the (n−1)×n matrix below the first row. For the full n-vector
y, we have

8.8 Other Matrices with Special Structures 309

yTKT
n−1Kn−1y =

∑
(yi − ȳ)2

=
∑

(yi − ȳ)2

= (n − 1)s2
y.

The rows of the matrix in equation (8.90) correspond to orthogonal con-
trasts in the analysis of linear models (see Section 9.2.2).

Obviously, the sums of squares are never computed by forming the Helmert
matrix explicitly and then computing the quadratic form, but the computa-
tions in partitioned Helmert matrices are performed indirectly in analysis of
variance, and representation of the computations in terms of the matrix is
often useful in the analysis of the computations.

8.8.2 Vandermonde Matrices

A Vandermonde matrix is an n×m matrix with columns that are defined by
monomials,

Vn×m =

⎡

⎢
⎢
⎢
⎣

1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2
...

...
...

. . .
...

1 xn x2
n · · · xm−1

n

⎤

⎥
⎥
⎥
⎦

,

where xi �= xj if i �= j. The Vandermonde matrix arises in polynomial regres-
sion analysis. For the model equation yi = β0 + β1xi + · · · + βpx

p
i + εi, given

observations on y and x, a Vandermonde matrix is the matrix in the standard
representation y = Xβ + ε.

Because of the relationships among the columns of a Vandermonde matrix,
computations for polynomial regression analysis can be subject to numeri-
cal errors, and so sometimes we make transformations based on orthogonal
polynomials. (The “condition number”, which we define in Section 6.1, for a
Vandermonde matrix is large.) A Vandermonde matrix, however, can be used
to form simple orthogonal vectors that correspond to orthogonal polynomials.
For example, if the xs are chosen over a grid on [−1, 1], a QR factorization
(see Section 5.7 on page 188) yields orthogonal vectors that correspond to
Legendre polynomials. These vectors are called discrete Legendre polynomi-
als. Although not used in regression analysis so often now, orthogonal vectors
are useful in selecting settings in designed experiments.

Vandermonde matrices also arise in the representation or approximation
of a probability distribution in terms of its moments.

The determinant of a square Vandermonde matrix has a particularly sim-
ple form (see Exercise 8.11).

310 8 Matrices with Special Properties

8.8.3 Hadamard Matrices and Orthogonal Arrays

In a wide range of applications, including experimental design, cryptology, and
other areas of combinatorics, we often encounter matrices whose elements are
chosen from a set of only a few different elements. In experimental design,
the elements may correspond to the levels of the factors; in cryptology, they
may represent the letters of an alphabet. In two-level factorial designs, the
entries may be either 0 or 1. Matrices all of whose entries are either 1 or
−1 can represent the same layouts, and such matrices may have interesting
mathematical properties.

An n × n matrix with −1, 1 entries whose determinant is nn/2 is called a
Hadamard matrix. The name comes from the bound derived by Hadamard for
the determinant of any matrix A with |aij | ≤ 1 for all i, j: |det(A)| ≤ nn/2. A
Hadamard matrix achieves this upper bound. A maximal determinant is often
used as a criterion for a good experimental design. One row and one column of
an n×n Hadamard matrix consist of all 1s; all n− 1 other rows and columns
consist of n/2 1s and n/2 −1s. We often denote an n × n Hadamard matrix
by Hn, which is the same notation often used for a Helmert matrix, but in the
case of Hadamard matrices, the matrix is not unique. All rows are orthogonal
and so are all columns. The norm of each row or column is n, so HT

n Hn = nI.
A Hadamard matrix is often represented as a mosaic of black and white

squares, as in Figure 8.7.

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

Fig. 8.7. A 4 × 4 Hadamard Matrix

Hadamard matrices do not exist for all n. Clearly, n must be even because
|Hn| = nn/2, but some experimentation (or an exhaustive search) quickly
shows that there is no Hadamard matrix for n = 6. It has been conjectured,
but not proven, that Hadamard matrices exist for any n divisible by 4. Given
any n× n Hadamard matrix, Hn, and any m×m Hadamard matrix, Hm, an
nm × nm Hadamard matrix can be formed as a partitioned matrix in which
each 1 in Hn is replaced by the block submatrix Hm and each −1 is replaced
by the block submatrix −Hm. For example, the 4×4 Hadamard matrix shown
in Figure 8.7 is formed using the 2 × 2 Hadamard matrix

[
1 −1
1 1

]

8.8 Other Matrices with Special Structures 311

as both Hn and Hm. Not all Hadamard matrices can be formed from other
Hadamard matrices in this way, however.

A somewhat more general type of matrix corresponds to an n × m array
with the elements in the jth column being members of a set of kj elements
and such that, for some fixed p ≤ m, in every n × p submatrix all possible
combinations of the elements of the m sets occur equally often as a row.
(I make a distinction between the matrix and the array because often in
applications the elements in the array are treated merely as symbols without
the assumptions of an algebra of a field. A terminology for orthogonal arrays
has evolved that is different from the terminology for matrices; for example, a
symmetric orthogonal array is one in which k1 = · · · = km. On the other hand,
treating the orthogonal arrays as matrices with real elements may provide
solutions to combinatorial problems such as may arise in optimal design.)

The 4×4 Hadamard matrix shown in Figure 8.7 is a symmetric orthogonal
array with k1 = · · · = k4 = 2 and p = 4, so in the array each of the possible
combinations of elements occurs exactly once. This array is a member of a
simple class of symmetric orthogonal arrays that has the property that in any
two rows each ordered pair of elements occurs exactly once.

Orthogonal arrays are particularly useful in developing fractional factorial
plans. (The robust designs of Taguchi correspond to orthogonal arrays.) Dey
and Mukerjee (1999) discuss orthogonal arrays with an emphasis on the ap-
plications in experimental design, and Hedayat, Sloane, and Stufken (1999)
provide extensive an discussion of the properties of orthogonal arrays.

8.8.4 Toeplitz Matrices

If the elements of the matrix A are such that ai,i+ck
= dck

, where dck
is

constant for fixed ck, then A is called a Toeplitz matrix,
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d0 d1 d2 · · · dn−1

d−1 d0 d1 · · · dn−2

...
...

...
. . .

...

d−n+2 d−n+3 d−n+4
. . . d1

d−n+1 d−n+2 d−n+3 · · · d0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

that is, a Toeplitz matrix is a matrix with constant codiagonals. A Toeplitz
matrix may or may not be a band matrix (i.e., have many 0 codiagonals) and
it may or may not be symmetric.

Banded Toeplitz matrices arise frequently in time series studies. The
covariance matrix in an ARMA(p, q) process, for example, is a symmetric
Toeplitz matrix with 2max(p, q) nonzero off-diagonal bands. See page 364 for
an example and further discussion.

312 8 Matrices with Special Properties

Inverses of Toeplitz Matrices and Other Banded Matrices

A Toeplitz matrix that occurs often in stationary time series is the n × n
variance-covariance matrix of the form

V = σ2

⎡

⎢
⎢
⎢
⎣

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

...
ρn−1 ρn−2 ρn−3 · · · 1

⎤

⎥
⎥
⎥
⎦

.

It is easy to see that V −1 exists if σ �= 0 and ρ �= 1, and that it is the type 2
matrix

V −1 =
1

(1 − ρ2)σ2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0
0 −ρ 1 + ρ2 · · · 0
...

...
...

...
...

0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Type 2 matrices also occur as the inverses of other matrices with special
patterns that arise in other common statistical applications (see Graybill,
1983, for examples).

The inverses of all banded invertible matrices have off-diagonal submatri-
ces that are zero or have low rank, depending on the bandwidth of the original
matrix (see Strang and Nguyen, 2004, for further discussion and examples).

8.8.5 Hankel Matrices

A Hankel matrix is an n × m matrix H(c, r) generated by an n-vector c and
an m-vector r such that the (i, j) element is

ci+j−1 if i + j − 1 ≤ n,
ri+j−n otherwise.

A common form of Hankel matrix is an n×n skew upper triangular matrix,
and it is formed from the c vector only. This kind of matrix occurs in the
spectral analysis of time series. If f(t) is a (discrete) time series, for t =
0, 1, 2, . . ., the Hankel matrix of the time series has as the (i, j) element

f(i + j − 2) if i + j − 1 ≤ n,
0 otherwise.

The L2 norm of the Hankel matrix of the time series (of the “impulse function”,
f) is called the Hankel norm of the filter frequency response (the Fourier
transform).

The simplest form of the square skew upper triangular Hankel matrix is
formed from the vector c = (1, 2, . . . , n):

8.8 Other Matrices with Special Structures 313

⎡

⎢
⎢
⎢
⎣

1 2 3 · · · n
2 3 4 · · · 0
...

...
... · · ·

...
n 0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

. (8.91)

8.8.6 Cauchy Matrices

Another type of special n × m matrix whose elements are determined by a
few n-vectors and m-vectors is a Cauchy-type matrix. The standard Cauchy
matrix is built from two vectors, x and y. The more general form defined
below uses two additional vectors.

A Cauchy matrix is an n × m matrix C(x, y, v, w) generated by n-vectors
x and v and m-vectors y and w of the form

C(x, y, v, w) =

⎡

⎢
⎢
⎢
⎣

v1w1

x1 − y1
· · · v1wm

x1 − ym
... · · ·

...
vnw1

xn − y1
· · · vnwm

xn − ym

⎤

⎥
⎥
⎥
⎦

. (8.92)

Cauchy-type matrices often arise in the numerical solution of partial dif-
ferential equations (PDEs). For Cauchy matrices, the order of the number
of computations for factorization or solutions of linear systems can be re-
duced from a power of three to a power of two. This is a very significant
improvement for large matrices. In the PDE applications, the matrices are
generally not large, but nevertheless, even in those applications, it it worth-
while to use algorithms that take advantage of the special structure. Fasino
and Gemignani (2003) describe such an algorithm.

8.8.7 Matrices Useful in Graph Theory

Many problems in statistics and applied mathematics can be posed as graphs,
and various methods of graph theory can be used in their solution.

Graph theory is particularly useful in cluster analysis or classification.
These involve the analysis of relationships of objects for the purpose of iden-
tifying similar groups of objects. The objects are associated with vertices of
the graph, and an edge is generated if the relationship (measured somehow)
between two objects is sufficiently great. For example, suppose the question of
interest is the authorship of some text documents. Each document is a vertex,
and an edge between two vertices exists if there are enough words in common
between the two documents. A similar application could be the determination
of which computer user is associated with a given computer session. The ver-
tices would correspond to login sessions, and the edges would be established
based on the commonality of programs invoked or files accessed. In applica-
tions such as these, there would typically be a training dataset consisting of

314 8 Matrices with Special Properties

text documents with known authors or consisting of session logs with known
users. In both of these types of applications, decisions would have to be made
about the extent of commonality of words, phrases, programs invoked, or files
accessed in order to establish an edge between two documents or sessions.

Unfortunately, as is often the case for an area of mathematics or statistics
that developed from applications in diverse areas or through the efforts of ap-
plied mathematicians somewhat outside of the mainstream of mathematics,
there are major inconsistencies in the notation and terminology employed in
graph theory. Thus, we often find different terms for the same object; for ex-
ample, adjacency matrix and connectivity matrix. This unpleasant situation,
however, is not so disagreeable as a one-to-many inconsistency, such as the
designation of the eigenvalues of a graph to be the eigenvalues of one type
of matrix in some of the literature and the eigenvalues of different types of
matrices in other literature.

Adjacency Matrix; Connectivity Matrix

We discussed adjacency or connectivity matrices on page 265. A matrix, such
as an adjacency matrix, that consists of only 1s and 0s is called a Boolean
matrix.

Two vertices that are not connected and hence correspond to a 0 in a
connectivity matrix are said to be independent.

If no edges connect a vertex with itself, the adjacency matrix is a hollow
matrix.

Because the 1s in a connectivity matrix indicate a strong association, and
we would naturally think of a vertex as having a strong association with
itself, we sometimes modify the connectivity matrix so as to have 1s along the
diagonal. Such a matrix is sometimes called an augmented connectivity matrix
or augmented associativity matrix.

The eigenvalues of the adjacency matrix reveal some interesting properties
of the graph and are sometimes called the eigenvalues of the graph. The eigen-
values of another matrix, which we discuss below, are more useful, however,
and we will refer to them as the eigenvalues of the graph.

Digraphs

The digraph represented in Figure 8.4 on page 266 is a network with five
vertices, perhaps representing cities, and directed edges between some of the
vertices. The edges could represent airline connections between the cities; for
example, there are flights from x to u and from u to x, and from y to z, but
not from z to y.

In a digraph, the relationships are directional. (An example of a directional
relationship that might be of interest is when each observational unit has a
different number of measured features, and a relationship exists from vi to vj

if a majority of the features of vi are identical to measured features of vj .)

8.8 Other Matrices with Special Structures 315

Use of the Connectivity Matrix

The analysis of a network may begin by identifying which vertices are con-
nected with others; that is, by construction of the connectivity matrix.

The connectivity matrix can then be used to analyze other levels of as-
sociation among the data represented by the graph or digraph. For example,
from the connectivity matrix in equation (8.2) on page 266, we have

C2 =

⎡

⎢
⎢
⎢
⎢
⎣

4 1 0 0 1
0 1 1 1 1
1 1 1 1 2
1 2 1 1 1
1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

In terms of the application suggested on page 266 for airline connections,
the matrix C2 represents the number of connections between the cities that
consist of exactly two flights. From C2 we see that there are two ways to go
from city y to city w in just two flights but only one way to go from w to y
in two flights.

A power of a connectivity matrix for a nondirected graph is symmetric.

The Laplacian Matrix of a Graph

Spectral graph theory is concerned with the analysis of the eigenvalues of a
graph. As mentioned above, there are two different definitions of the eigenval-
ues of a graph. The more useful definition, and the one we use here, takes the
eigenvalues of a graph to be the eigenvalues of a matrix, called the Laplacian
matrix, formed from the adjacency matrix and a diagonal matrix consisting
of the degrees of the vertices.

Given the graph G, let D(G) be a diagonal matrix consisting of the degrees
of the vertices of G (that is, D(G) = diag(d(G))) and let C(G) be the adjacency
matrix of G. If there are no isolated vertices (that is if d(G) > 0), then the
Laplacian matrix of the graph, L(G) is given by

L(G) = I − D(G)−
1
2 C(G)D(G)−

1
2 . (8.93)

Some authors define the Laplacian in other ways:

La(G) = I − D(G)−1C(G) (8.94)

or
Lb(G) = D(G) − C(G). (8.95)

The eigenvalues of the Laplacian matrix are the eigenvalues of a graph. The
definition of the Laplacian matrix given in equation (8.93) seems to be more
useful in terms of bounds on the eigenvalues of the graph. The set of unique
eigenvalues (the spectrum of the matrix L) is called the spectrum of the graph.

316 8 Matrices with Special Properties

So long as d(G) > 0, L(G) = D(G)−
1
2 La(G)D(G)−

1
2 . Unless the graph

is regular, the matrix Lb(G) is not symmetric. Note that if G is k-regular,
L(G) = I − C(G)/k, and Lb(G) = L(G).

For a digraph, the degrees are replaced by either the indegrees or the
outdegrees. (Some authors define it one way and others the other way. The
essential properties hold either way.)

The Laplacian can be viewed as an operator on the space of functions
f : V (G) → IR such that for the vertex v

L(f(v)) =
1√
dv

∑

w,w∼v

(
f(v)√

dv

− f(w)√
dw

)

,

where w ∼ v means vertices w and v that are adjacent, and du is the degree
of the vertex u.

The Laplacian matrix is symmetric, so its eigenvalues are all real. We can
see that the eigenvalues are all nonnegative by forming the Rayleigh quotient
(equation (3.209)) using an arbitrary vector g, which can be viewed as a real-
valued function over the vertices,

RL(g) =
〈g, Lg〉
〈g, g〉

=
〈g, D− 1

2 LaD− 1
2 g〉

〈g, g〉

=
〈f, Laf〉

〈D 1
2 f, D

1
2 f〉

=
∑

v∼w(f(v) − f(w))2

fTDf
, (8.96)

where f = D− 1
2 g, and f(u) is the element of the vector corresponding to

vertex u. Because the Raleigh quotient is nonnegative, all eigenvalues are
nonnegative, and because there is an f �= 0 for which the Rayleigh quotient is
0, we see that 0 is an eigenvalue of a graph. Furthermore, using the Cauchy-
Schwartz inequality, we see that the spectral radius is less than or equal to 2.

The eigenvalues of a matrix are the basic objects in spectral graph theory.
They provide information about the properties of networks and other systems
modeled by graphs. We will not explore them further here, and the interested
reader is referred to Chung (1997) or other general texts on the subject.

If G is the graph represented in Figure 8.2 on page 264, with V (G) =
{a, b, c, d, e}, the degrees of the vertices of the graph are d(G) = (4, 2, 2, 3, 3).
Using the adjacency matrix given in equation (8.1), we have

Exercises 317

L(G) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −
√

2
4 −

√
2

4 −
√

3
6 −

√
3

6

−
√

2
4 1 0 0 −

√
6

6

−
√

2
4 0 1 −

√
6

6 0

−
√

3
6 0 −

√
6

6 1 − 1
3

−
√

3
6 −

√
6

6 0 − 1
3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.97)

This matrix is singular, and the unnormalized eigenvector corresponding to
the 0 eigenvalue is (2

√
14, 2

√
7, 2

√
7,
√

42,
√

42).

8.8.8 M-Matrices

In certain applications in physics and in the solution of systems of nonlinear
differential equations, a class of matrices called M -matrices is important.

The matrices in these applications have nonpositive off-diagonal elements.
A square matrix all of whose off-diagonal elements are nonpositive is called a
Z-matrix.

A Z-matrix that is positive stable (see page 125) is called an M -matrix.
A real symmetric M -matrix is positive definite.

In addition to the properties that constitute the definition, M -matrices
have a number of remarkable properties, which we state here without proof.
If A is a real M -matrix, then

• all principal minors of A are positive;
• all diagonal elements of A are positive;
• all diagonal elements of L and U in the LU decomposition of A are

positive;
• for any i,

∑
j aij ≥ 0; and

• A is nonsingular and A−1 ≥ 0.

Proofs of these facts can be found in Horn and Johnson (1991).

Exercises

8.1. Ordering of nonnegative definite matrices.
a) A relation �� on a set is a partial ordering if, for elements a, b, and

c,
• it is reflexive: a �� a;
• it is antisymmetric: a �� b �� a =⇒ a = b; and
• it is transitive: a �� b �� c =⇒ a �� c.
Show that the relation � (equation (8.19)) is a partial ordering.

318 8 Matrices with Special Properties

b) Show that the relation � (equation (8.20)) is transitive.
8.2. Show that a diagonally dominant symmetric matrix with positive diag-

onals is positive definite.
8.3. Show that the number of positive eigenvalues of an idempotent matrix

is the rank of the matrix.
8.4. Show that two idempotent matrices of the same rank are similar.
8.5. Under the given conditions, show that properties (a) and (b) on page 285

imply property (c).
8.6. Projections.

a) Show that the matrix given in equation (8.42) (page 287) is a pro-
jection matrix.

b) Write out the projection matrix for projecting a vector onto the
plane formed by two vectors, x1 and x2, as indicated on page 287,
and show that it is the same as the hat matrix of equation (8.55).

8.7. Show that the matrix XTX is symmetric (for any matrix X).
8.8. Correlation matrices.

A correlation matrix can be defined in terms of a Gramian matrix formed
by a centered and scaled matrix, as in equation (8.72). Sometimes in the
development of statistical theory, we are interested in the properties of
correlation matrices with given eigenvalues or with given ratios of the
largest eigenvalue to other eigenvalues.
Write a program to generate n× n random correlation matrices R with
specified eigenvalues, c1, . . . , cn. The only requirements on R are that its
diagonals be 1, that it be symmetric, and that its eigenvalues all be posi-
tive and sum to n. Use the following method due to Davies and Higham
(2000) that uses random orthogonal matrices with the Haar uniform
distribution generated using the method described in Exercise 4.7.
0. Generate a random orthogonal matrix Q; set k = 0, and form

R(0) = Qdiag(c1, . . . , cn)QT.

1. If r
(k)
ii = 1 for all i in {1, . . . , n}, go to step 3.

2. Otherwise, choose p and q with p < j, such that r
(k)
pp < 1 < r

(k)
qq or

r
(k)
pp > 1 > r

(k)
qq , and form G(k) as in equation (5.13), where c and s

are as in equations (5.17) and (5.17), with a = 1.
Form R(k+1) = (G(k))TR(k)G(k).

Set k = k + 1, and go to step 1.
3. Deliver R = R(k).

8.9. Use the relationship (8.80) to prove properties 1 and 4 on page 304.
8.10. Leslie matrices.

a) Write the characteristic polynomial of the Leslie matrix, equa-
tion (8.88).

b) Show that the Leslie matrix has a single, unique positive eigenvalue.

Exercises 319

8.11. Write out the determinant for an n × n Vandermonde matrix.
8.12. Write out the determinant for the n × n skew upper triangular Hankel

matrix in (8.91).

9

Selected Applications in Statistics

Data come in many forms. In the broad view, the term “data” embraces all
representations of information or knowledge. There is no single structure that
can efficiently contain all of these representations. Some data are in free-form
text (for example, the Federalist Papers, which was the subject of a famous
statistical analysis), other data are in a hierarchical structure (for example,
political units and subunits), and still other data are encodings of methods
or algorithms. (This broad view is entirely consistent with the concept of a
“stored-program computer”; the program is the data.)

Structure in Data and Statistical Data Analysis

Data often have a logical structure as described in Section 8.1.1; that is, a
two-dimensional array in which columns correspond to variables or measur-
able attributes and rows correspond to an observation on all attributes taken
together. A matrix is obviously a convenient object for representing numeric
data organized this way. An objective in analyzing data of this form is to un-
cover relationships among the variables, or to characterize the distribution of
the sample over IRm. Interesting relationships and patterns are called “struc-
ture” in the data. This is a different meaning from that of the word used in the
phrase “logical structure” or in the phrase “data structure” used in computer
science.

Another type of pattern that may be of interest is a temporal pattern;
that is, a set of relationships among the data and the time or the sequence in
which the data were observed.

The objective of this chapter is to illustrate how some of the properties of
matrices and vectors that were covered in previous chapters relate to statistical
models and to data analysis procedures. The field of statistics is far too large
for a single chapter on “applications” to cover more than just a small part
of the area. Similarly, the topics covered previously are too extensive to give
examples of applications of all of them.

322 9 Selected Applications in Statistics

A probability distribution is a specification of the stochastic structure of
random variables, so we begin with a brief discussion of properties of multi-
variate probability distributions. The emphasis is on the multivariate normal
distribution and distributions of linear and quadratic transformations of nor-
mal random variables. We then consider an important structure in multivari-
ate data, a linear model. We discuss some of the computational methods used
in analyzing the linear model. We then describe some computational method
for identifying more general linear structure and patterns in multivariate data.
Next we consider approximation of matrices in the absence of complete data.
Finally, we discuss some models of stochastic processes. The special matrices
discussed in Chapter 8 play an important role in this chapter.

9.1 Multivariate Probability Distributions

Most methods of statistical inference are based on assumptions about some
underlying probability distribution of a random variable. In some cases these
assumptions completely specify the form of the distribution, and in other
cases, especially in nonparametric methods, the assumptions are more general.
Many statistical methods in estimation and hypothesis testing rely on the
properties of various transformations of a random variable.

In this section, we do not attempt to develop a theory of probability dis-
tribution; rather we assume some basic facts and then derive some important
properties that depend on the matrix theory of the previous chapters.

9.1.1 Basic Definitions and Properties

One of the most useful descriptors of a random variable is its probability
density function (PDF), or probability function. Various functionals of the
PDF define standard properties of the random variable, such as the mean and
variance, as we discussed in Section 4.5.3.

If X is a random variable over IRd with PDF pX(·) and f(·) is a measurable
function (with respect to a dominating measure of pX(·)) from IRd to IRk, the
expected value of f(X), which is in IRk and is denoted by E(g(X)), is defined
by

E(f(X)) =
∫

IRd

f(t)pX(t) dt.

The mean of X is the d-vector E(X), and the variance or variance-
covariance of X, denoted by V(X), is the d × d matrix

V(X) = E
(
(X − E(X)) (X − E(X))T

)
.

Given a random variable X, we are often interested in a random variable
defined as a function of X, say Y = g(X). To analyze properties of Y , we

9.1 Multivariate Probability Distributions 323

identify g−1, which may involve another random variable. (For example, if
g(x) = x2 and the support of X is IR, then g−1(Y) = (−1)α

√
Y , where α = 1

with probability Pr(X < 0) and α = 0 otherwise.) Properties of Y can be
evaluated using the Jacobian of g−1(·), as in equation (4.12).

9.1.2 The Multivariate Normal Distribution

The most important multivariate distribution is the multivariate normal,
which we denote as Nd(µ,Σ) for d dimensions; that is, for a random d-vector.
The PDF for the d-variate normal distribution is

pX(x) = (2π)−d/2|Σ|−1/2e−(x−µ)TΣ−1(x−µ)/2, (9.1)

where the normalizing constant is Aitken’s integral given in equation (4.39).
The multivariate normal distribution is a good model for a wide range of
random phenomena.

9.1.3 Derived Distributions and Cochran’s Theorem

If X is a random variable with distribution Nd(µ,Σ), A is a q × d matrix
with rank q (which implies q ≤ d), and Y = AX, then the straightforward
change-of-variables technique yields the distribution of Y as Nd(Aµ, AΣAT).

Useful transformations of the random variable X with distribution Nd(µ,Σ)
are Y1 = Σ−1/2X and Y2 = Σ−1

C X, where ΣC is a Cholesky factor of Σ. In
either case, the variance-covariance matrix of the transformed variate Y1 or
Y2 is Id.

Quadratic forms involving a Y that is distributed as Nd(µ, Id) have useful
properties. For statistical inference it is important to know the distribution
of these quadratic forms. The simplest quadratic form involves the identity
matrix: Sd = Y TY .

We can derive the PDF of Sd by beginning with d = 1 and using induction.
If d = 1, for t > 0, we have

Pr(S1 ≤ t) = Pr(Y ≤
√

t) − Pr(Y ≤ −
√

t),

where Y ∼ N1(µ, 1), and so the PDF of S1 is

324 9 Selected Applications in Statistics

pS1(t) =
1

2
√

2πt

(
e−(

√
t−µ)2/2 + e−(−

√
t−µ)2/2

)

=
e−µ2/2e−t/2

2
√

2πt

(
eµ

√
t + e−µ

√
t
)

=
e−µ2/2e−t/2

2
√

2πt

⎛

⎝
∞∑

j=0

(µ
√

t)j

j!
+

∞∑

j=0

(−µ
√

t)j

j!

⎞

⎠

=
e−µ2/2e−t/2

√
2t

∞∑

j=0

(µ2t)j

√
π(2j)!

=
e−µ2/2e−t/2

√
2t

∞∑

j=0

(µ2t)j

j!Γ(j + 1/2)22j
,

in which we use the fact that

Γ(j + 1/2) =
√

π(2j)!
j!22j

(see page 484). This can now be written as

pS1(t) = e−µ2/2
∞∑

j=0

(µ2)j

j!2j

1
Γ(j + 1/2)2j+1/2

tj−1/2e−t/2, (9.2)

in which we recognize the PDF of the central chi-squared distribution with
2j + 1 degrees of freedom,

pχ2
2j+1

(t) =
1

Γ(j + 1/2)2j+1/2
tj−1/2e−t/2.

A similar manipulation for d = 2 (that is, for Y ∼ N2(µ, 1), and maybe
d = 3, or as far as you need to go) leads us to a general form for the PDF of
the χ2

d(δ) random variable Sd:

pSd
(t) = e−µ2/2

∞∑

j=0

(µ2/2)j

j!
pχ2

2j+1
(t). (9.3)

We can show that equation (9.3) holds for any d by induction. The distribu-
tion of Sd is called the noncentral chi-squared distribution with d degrees of
freedom and noncentrality parameter δ = µTµ. We denote this distribution
as χ2

d(δ).
The induction method above involves a special case of a more general fact:

if Xi for i = 1, . . . , k are independently distributed as χ2
ni

(δi), then
∑

i Xi is
distributed as χ2

n(δ), where n =
∑

i ni and δ =
∑

i δi.
In applications of linear models, a quadratic form involving Y is often

partitioned into a sum of quadratic forms. Assume that Y is distributed as

9.2 Linear Models 325

Nd(µ, Id), and for i = 1, . . . k, let Ai be a d × d symmetric matrix with rank
ri such that

∑
i Ai = Id. This yields a partition of the total sum of squares

Y TY into k components:

Y TY = Y TA1Y + · · · + Y TAkY. (9.4)

One of the most important results in the analysis of linear models states
that the Y TAiY have independent noncentral chi-squared distributions χ2

ri
(δi)

with δi = µTAiµ if and only if
∑

i ri = d.
This is called Cochran’s theorem. On page 283, we discussed a form of

Cochran’s theorem that applies to properties of idempotent matrices. Those
results immediately imply the conclusion above.

9.2 Linear Models

Some of the most important applications of statistics involve the study of the
relationship of one variable, often called a “response variable”, to other vari-
ables. The response variable is usually modeled as a random variable, which
we indicate by using a capital letter. A general model for the relationship of
a variable, Y , to other variables, x (a vector), is

Y ≈ f(x). (9.5)

In this asymmetric model and others like it, we call Y the dependent variable
and the elements of x the independent variables.

It is often reasonable to formulate the model with a systematic component
expressing the relationship and an additive random component or “additive
error”. We write

Y = f(x) + E, (9.6)

where E is a random variable with an expected value of 0; that is,

E(E) = 0.

(Although this is by far the most common type of model used by data analysts,
there are other ways of building a model that incorporates systematic and
random components.) The zero expectation of the random error yields the
relationship

E(Y) = f(x),

although this expression is not equivalent to the additive error model above
because the random component could just as well be multiplicative (with an
expected value of 1) and the same value of E(Y) would result.

Because the functional form f of the relationship between Y and x may
contain a parameter, we may write the model as

Y = f(x; θ) + E. (9.7)

326 9 Selected Applications in Statistics

A specific form of this model is

Y = βTx + E, (9.8)

which expresses the systematic component as a linear combination of the xs
using the vector parameter β.

A model is more than an equation; there may be associated statements
about the distribution of the random variable or about the nature of f or x.
We may assume β (or θ) is a fixed but unknown constant, or we may assume
it is a realization of a random variable. Whatever additional assumptions we
may make, there are some standard assumptions that go with the model. We
assume that Y and x are observable and θ and E are unobservable.

Models such as these that express an asymmetric relationship between
some variables (“dependent variables”) and other variables (“independent
variables”) are called regression models. A model such as equation (9.8) is
called a linear regression model. There are many useful variations of the
model (9.5) that express other kinds of relationships between the response
variable and the other variables.

Notation

In data analysis with regression models, we have a set of observations {yi, xi}
where xi is an m-vector. One of the primary tasks is to determine a reasonable
value of the parameter. That is, in the linear regression model, for example,
we think of β as an unknown variable (rather than as a fixed constant or a
realization of a random variable), and we want to find a value of it such that
the model fits the observations well,

yi = βTxi + εi,

where β and xi are m-vectors. (In the expression (9.8), “E” is an uppercase
epsilon. We attempt to use notation consistently; “E” represents a random
variable, and “ε” represents a realization, though an unobservable one, of the
random variable. We will not always follow this convention, however; some-
times it is convenient to use the language more loosely and to speak of εi as a
random variable.) The meaning of the phrase “the model fits the observations
well” may vary depending on other aspects of the model, in particular, on any
assumptions about the distribution of the random component E. If we make
assumptions about the distribution, we have a basis for statistical estimation
of β; otherwise, we can define some purely mathematical criterion for “fitting
well” and proceed to determine a value of β that optimizes that criterion.

For any choice of β, say b, we have yi = bTxi + ri. The ris are determined
by the observations. An approach that does not depend on any assumptions
about the distribution but can nevertheless yield optimal estimators under
many distributions is to choose the estimator so as to minimize some measure
of the set of ris.

9.2 Linear Models 327

Given the observations {yi, xi}, we can represent the regression model and
the data as

y = Xβ + ε, (9.9)

where X is the n × m matrix whose rows are the xis and ε is the vector of
deviations (“errors”) of the observations from the functional model. Through-
out the rest of this section, we will assume that the number of rows of X (that
is, the number of observations n) is greater than the number of columns of X
(that is, the number of variables m).

We will occasionally refer to submatrices of the basic data matrix X using
notation developed in Chapter 3. For example, X(i1,...,ik)(j1,...,jl) refers to the
k × l matrix formed by retaining only the i1, . . . , ik rows and the j1, . . . , jl

columns of X, and X−(i1,...,ik)(j1,...,jl) refers to the matrix formed by deleting
the i1, . . . , ik rows and the j1, . . . , jl columns of X. We also use the notation
xi∗ to refer to the ith row of X (the row is a vector, a column vector), and x∗j

to refer to the jth column of X. See page 487 for a summary of this notation.

9.2.1 Fitting the Model

In a model for a given dataset as in equation (9.9), although the errors are no
longer random variables (they are realizations of random variables), they are
not observable. To fit the model, we replace the unknowns with variables: β
with b and ε with r. This yields

y = Xb + r.

We then proceed by applying some criterion for fitting.
The criteria generally focus on the “residuals” r = y − Xb. Two general

approaches to fitting are:

• Define a likelihood function of r based on an assumed distribution of E,
and determine a value of b that maximizes that likelihood.

• Decide on an appropriate norm on r, and determine a value of b that
minimizes that norm.

There are other possible approaches, and there are variations on these two
approaches. For the first approach, it must be emphasized that r is not a
realization of the random variable E. Our emphasis will be on the second
approach, that is, on methods that minimize a norm on r.

Statistical Estimation

The statistical problem is to estimate β. (Notice the distinction between the
phrases “to estimate β” and “to determine a value of β that minimizes ...”.
The mechanical aspects of the two problems may be the same, of course.) The
statistician uses the model and the given observations to explore relationships
between the response and the regressors. Considering ε to be a realization of
a random variable E (a vector) and assumptions about a distribution of the
random variable ε allow us to make statistical inferences about a “true” β.

328 9 Selected Applications in Statistics

Ordinary Least Squares

The r vector contains the distances of the observations on y from the values
of the variable y defined by the hyperplane bTx, measured in the direction of
the y axis. The objective is to determine a value of b that minimizes some
norm of r. The use of the L2 norm is called “least squares”. The estimate is
the b that minimizes the dot product

(y − Xb)T(y − Xb) =
n∑

i=1

(yi − xT
i∗b)

2. (9.10)

As we saw in Section 6.7 (where we used slightly different notation), using
elementary calculus to determine the minimum of equation (9.10) yields the
“normal equations”

XTXβ̂ = XTy. (9.11)

Weighted Least Squares

The elements of the residual vector may be weighted differently. This is ap-
propriate if, for instance, the variance of the residual depends on the value of
x; that is, in the notation of equation (9.6), V(E) = g(x), where g is some
function. If the function is known, we can address the problem almost identi-
cally as in the use of ordinary least squares, as we saw on page 225. Weighted
least squares may also be appropriate if the observations in the sample are
not independent. In this case also, if we know the variance-covariance struc-
ture, after a simple transformation, we can use ordinary least squares. If the
function g or the variance-covariance structure must be estimated, the fitting
problem is still straightforward, but formidable complications are introduced
into other aspects of statistical inference. We discuss weighted least squares
further in Section 9.2.6.

Variations on the Criteria for Fitting

Rather than minimizing a norm of r, there are many other approaches we
could use to fit the model to the data. Of course, just the choice of the norm
yields different approaches. Some of these approaches may depend on distri-
butional assumptions, which we will not consider here. The point that we
want to emphasize here, with little additional comment, is that the standard
approach to regression modeling is not the only one. We mentioned some of
these other approaches and the computational methods of dealing with them
in Section 6.8. Alternative criteria for fitting regression models are sometimes
considered in the many textbooks and monographs on data analysis using a
linear regression model. This is because the fits may be more “robust” or more
resistant to the effects of various statistical distributions.

9.2 Linear Models 329

Regularized Fits

Some variations on the basic approach of minimizing residuals involve a kind
of regularization that may take the form of an additive penalty on the ob-
jective function. Regularization often results in a shrinkage of the estimator
toward 0. One of the most common types of shrinkage estimator is the ridge
regression estimator, which for the model y = Xβ + ε is the solution of the
modified normal equations (XTX + λI)β = XTy. We discuss this further in
Section 9.4.4.

Orthogonal Distances

Another approach is to define an optimal value of β as one that minimizes a
norm of the distances of the observed values of y from the vector Xβ. This
is sometimes called “orthogonal distance regression”. The use of the L2 norm
on this vector is sometimes called “total least squares”. This is a reasonable
approach when it is assumed that the observations in X are realizations of
some random variable; that is, an “errors-in-variables” model is appropriate.
The model in equation (9.9) is modified to consist of two error terms: one
for the errors in the variables and one for the error in the equation. The
methods discussed in Section 6.8.3 can be used to fit a model using a criterion
of minimum norm of orthogonal residuals. As we mentioned there, weighting
of the orthogonal residuals can be easily accomplished in the usual way of
handling weights on the different observations.

The weight matrix often is formed as an inverse of a variance-covariance
matrix Σ; hence, the modification is to premultiply the matrix [X|y] in equa-
tion (6.51) by the Cholesky factor Σ−1

C . In the case of errors-in-variables,
however, there may be another variance-covariance structure to account for.
If the variance-covariance matrix of the columns of X (that is, the indepen-
dent variables) together with y is T , then we handle the weighting for vari-
ances and covariances of the columns of X in the same way, except of course
we postmultiply the matrix [X|y] in equation (6.51) by T−1

C . This matrix is
(m+1)× (m+1); however, it may be appropriate to assume any error in y is
already accounted for, and so the last row and column of T may be 0 except
for the (m + 1,m + 1) element, which would be 1. The appropriate model
depends on the nature of the data, of course.

Collinearity

A major problem in regression analysis is collinearity (or “multicollinearity”),
by which we mean a “near singularity” of the X matrix. This can be made
more precise in terms of a condition number, as discussed in Section 6.1.
Ill-conditioning may not only present computational problems, but also may
result in an estimate with a very large variance.

330 9 Selected Applications in Statistics

9.2.2 Linear Models and Least Squares

The most common estimator of β is one that minimizes the L2 norm of the
vertical distances in equation (9.9); that is, the one that forms a least squares
fit. This criterion leads to the normal equations (9.11), whose solution is

β̂ = (XTX)−XTy. (9.12)

(As we have pointed out many times, we often write formulas that are not to
be used for computing a result; this is the case here.) If X is of full rank, the
generalized inverse in equation (9.12) is, of course, the inverse, and β̂ is the
unique least squares estimator. If X is not of full rank, we generally use the
Moore-Penrose inverse, (XTX)+, in equation (9.12).

As we saw in equations (6.39) and (6.40), we also have

β̂ = X+y. (9.13)

Equation (9.13) indicates the appropriate way to compute β̂. As we have
seen many times before, however, we often use an expression without com-
puting the individual terms. Instead of computing X+ in equation (9.13)
explicitly, we use either Householder or Givens transformations to obtain the
orthogonal decomposition

X = QR,

or
X = QRUT

if X is not of full rank. As we have seen, the QR decomposition of X can be
performed row-wise using Givens transformations. This is especially useful if
the data are available only one observation at a time. The equation used for
computing β̂ is

Rβ̂ = QTy, (9.14)

which can be solved by back substitution in the triangular matrix R.
Because

XTX = RTR,

the quantities in XTX or its inverse, which are useful for making inferences
using the regression model, can be obtained from the QR decomposition.

If X is not of full rank, the expression (9.13) not only is a least squares
solution but the one with minimum length (minimum Euclidean norm), as we
saw in equations (6.40) and (6.41).

The vector ŷ = Xβ̂ is the projection of the n-vector y onto a space of di-
mension equal to the (column) rank of X, which we denote by rX . The vector
of the model, E(Y) = Xβ, is also in the rX -dimensional space span(X). The
projection matrix I −X(XTX)+XT projects y onto an (n− rX)-dimensional
residual space that is orthogonal to span(X). Figure 9.1 represents these sub-
spaces and the vectors in them.

9.2 Linear Models 331

�
�

�
�

�
�

�
�

�
��

span(X)

0

�
�

�
�

�
�

�
�

�
�

�
�

span(X)⊥

���������
Xβ?

�

y

�

y − ŷ

										�ŷ
θ

										

		

	

Fig. 9.1. The Linear Least Squares Fit of y with X

In the (rX +1)-order vector space of the variables, the hyperplane defined
by β̂Tx is the estimated model (assuming β̂ �= 0; otherwise, the space is of
order rX).

Degrees of Freedom

In the absence of any model, the vector y can range freely over an n-
dimensional space. We say the degrees of freedom of y, or the total degrees
of freedom, is n. If we fix the mean of y, then the adjusted total degrees of
freedom is n − 1.

The model Xβ can range over a space with dimension equal to the (col-
umn) rank of X; that is, rX . We say that the model degrees of freedom is rX .
Note that the space of Xβ̂ is the same as the space of Xβ.

Finally, the space orthogonal to Xβ̂ (that is, the space of the residuals
y − Xβ̂) has dimension n − rX . We say that the residual (or error) degrees
of freedom is n − rX . (Note that the error vector ε can range over an n-
dimensional space, but because β̂ is a least squares fit, y−Xβ̂ can only range
over an (n − rX)-dimensional space.)

The Hat Matrix and Leverage

The projection matrix H = X(XTX)+XT is sometimes called the “hat ma-
trix” because

332 9 Selected Applications in Statistics

ŷ = Xβ̂

= X(XTX)+XTy

= Hy, (9.15)

that is, it projects y onto ŷ in the span of X. Notice that the hat matrix can
be computed without knowledge of the observations in y.

The elements of H are useful in assessing the effect of the particular pattern
of the regressors on the predicted values of the response. The extent to which
a given point in the row space of X affects the regression fit is called its
“leverage”. The leverage of the ith observation is

hii = xT
i∗(X

TX)+xi∗. (9.16)

This is just the partial derivative of ŷi with respect to yi (Exercise 9.2). A
relatively large value of hii compared with the other diagonal elements of the
hat matrix means that the ith observed response, yi, has a correspondingly
relatively large effect on the regression fit.

9.2.3 Statistical Inference

Fitting a model by least squares or by minimizing some other norm of the
residuals in the data might be a sensible thing to do without any concern for
a probability distribution. “Least squares” per se is not a statistical criterion.
Certain statistical criteria, such as maximum likelihood or minimum variance
estimation among a certain class of unbiased estimators, however, lead to an
estimator that is the solution to a least squares problem for specific probability
distributions.

For statistical inference about the parameters of the model y = Xβ + ε in
equation (9.9), we must add something to the model. As in statistical inference
generally, we must identify the random variables and make some statements
(assumptions) about their distribution. The simplest assumptions are that ε
is a random variable and E(ε) = 0. Whether or not the matrix X is random,
our interest is in making inference conditional on the observed values of X.

Estimability

One of the most important questions for statistical inference involves esti-
mating or testing some linear combination of the elements of the parameter
β; for example, we may wish to estimate β1 − β2 or to test the hypothesis
that β1 − β2 = c1 for some constant c1. In general, we will consider the linear
combination lTβ. Whether or not it makes sense to estimate such a linear
combination depends on whether there is a function of the observable random
variable Y such that g(E(Y)) = lTβ.

We generally restrict our attention to linear functions of E(Y) and formally
define a linear combination lTβ to be (linearly) estimable if there exists a
vector t such that

9.2 Linear Models 333

tTE(Y) = lTβ (9.17)

for any β.
It is clear that if X is of full column rank, lTβ is linearly estimable for any

l or, more generally, lTβ is linearly estimable for any l ∈ span(XT). (The t
vector is just the normalized coefficients expressing l in terms of the columns
of X.)

Estimability depends only on the simplest distributional assumption about
the model; that is, that E(ε) = 0. Under this assumption, we see that the
estimator β̂ based on the least squares fit of β is unbiased for the linearly
estimable function lTβ. Because l ∈ span(XT) = span(XTX), we can write
l = XTXt̃. Now, we have

E(lTβ̂) = E(lT(XTX)+XTy)
= t̃TXTX(XTX)+XTXβ

= t̃TXTXβ

= lTβ. (9.18)

Although we have been taking β̂ to be (XTX)+XTy, the equations above
follow for other least squares fits, b = (XTX)−XTy, for any generalized in-
verse. In fact, the estimator of lTβ is invariant to the choice of the generalized
inverse. This is because if b = (XTX)−XTy, we have XTXb = XTy, and so

lTβ̂ − lTb = t̃TXTX(β̂ − b) = t̃T(XTy − XTy) = 0. (9.19)

Other properties of the estimators depend on additional assumptions
about the distribution of ε, and we will consider some of them below.

When X is not of full rank, we often are interested in an orthogonal basis
for span(XT). If X includes a column of 1s, the elements of any vector in
the basis must sum to 0. Such vectors are called contrasts. The second and
subsequent rows of the Helmert matrix (see Section 8.8.1 on page 308) are
contrasts that are often of interest because of their regular patterns and their
interpretability in applications involving the analysis of levels of factors in
experiments.

Testability

We define a linear hypothesis lTβ = c1 as testable if lTβ is estimable. We
generally restrict our attention to testable hypotheses.

It is often of interest to test multiple hypotheses concerning linear combi-
nations of the elements of β. For the model (9.9), the general linear hypothesis
is

H0 : LTβ = c,

where L is m × q, of rank q, and such that span(L) ⊆ span(X).

334 9 Selected Applications in Statistics

The test for a hypothesis depends on the distributions of the random
variables in the model. If we assume that the elements of ε are i.i.d. normal
with a mean of 0, then the general linear hypothesis is tested using an F
statistic whose numerator is the difference in the residual sum of squares from
fitting the model with the restriction LTβ = c and the residual sum of squares
from fitting the unrestricted model. This reduced sum of squares is

(LTβ̂ − c)T (LT(XTX)∗L)−1 (LTβ̂ − c), (9.20)

where (XTX)∗ is any g2 inverse of XTX. This test is a likelihood ratio test.
(See a text on linear models, such as Searle, 1971, for more discussion on this
testing problem.)

To compute the quantity in expression (9.20), first observe

LT(XTX)∗L = (X(XTX)∗L)T (X(XTX)∗L). (9.21)

Now, if X(XTX)∗L, which has rank q, is decomposed as

X(XTX)∗L = P

[
T
0

]

,

where P is an m × m orthogonal matrix and T is a q × q upper triangular
matrix, we can write the reduced sum of squares (9.20) as

(LTβ̂ − c)T (TTT)−1 (LTβ̂ − c)

or (
T−T(LTβ̂ − c)

)T (
T−T(LTβ̂ − c)

)

or
vTv. (9.22)

To compute v, we solve
TTv = LTβ̂ − c (9.23)

for v, and the reduced sum of squares is then formed as vTv.

The Gauss-Markov Theorem

The Gauss-Markov theorem provides a restricted optimality property for es-
timators of estimable functions of β under the condition that E(ε) = 0 and
V(ε) = σ2I; that is, in addition to the assumption of zero expectation, which
we have used above, we also assume that the elements of ε have constant vari-
ance and that their covariances are zero. (We are not assuming independence
or normality, as we did in order to develop tests of hypotheses.)

Given y = Xβ + ε and E(ε) = 0 and V(ε) = σ2I, the Gauss-Markov
theorem states that lTβ̂ is the unique best linear unbiased estimator (BLUE)
of the estimable function lTβ.

9.2 Linear Models 335

“Linear” estimator in this context means a linear combination of y; that
is, an estimator in the form aTy. It is clear that lTβ̂ is linear, and we have
already seen that it is unbiased for lTβ. “Best” in this context means that
its variance is no greater than any other estimator that fits the requirements.
Hence, to prove the theorem, first let aTy be any unbiased estimator of lTβ,
and write l = XTXt̃ as above. Because aTy is unbiased for any β, as we saw
above, it must be the case that aTX = lT. Recalling that XTXβ̂ = XTy, we
have

V(aTy) = V(aTy − lTβ̂ + lTβ̂)

= V(aTy − t̃TXTy + lTβ̂)

= V(aTy − t̃TXTy) + V(lTβ̂) + 2Cov(aTy − t̃TXTy, t̃TXTy).

Now, under the assumptions on the variance-covariance matrix of ε, which is
also the (conditional, given X) variance-covariance matrix of y, we have

Cov(aTy − t̃TXTy, lTβ̂) = (aT − t̃TXT)σ2IXt̃

= (aTX − t̃TXTX)σ2It̃

= (lT − lT)σ2It̃

= 0;

that is,
V(aTy) = V(aTy − t̃TXTy) + V(lTβ̂).

This implies that
V(aTy) ≥ V(lTβ̂);

that is, lTβ̂ has minimum variance among the linear unbiased estimators of
lTβ. To see that it is unique, we consider the case in which V(aTy) = V(lTβ̂);
that is, V(aTy− t̃TXTy) = 0. For this variance to equal 0, it must be the case
that aT − t̃TXT = 0 or aTy = t̃TXTy = lTβ̂; that is, lTβ̂ is the unique linear
unbiased estimator that achieves the minimum variance.

If we assume further that ε ∼ Nn(0, σ2I), we can show that lTβ̂ is the
uniformly minimum variance unbiased estimator (UMVUE) for lTβ. This is
because (XTy, (y − Xβ̂)T(y − Xβ̂)) is complete and sufficient for (β, σ2).
This line of reasoning also implies that (y − Xβ̂)T(y − Xβ̂)/(n − r), where
r = rank(X), is UMVUE for σ2. We will not go through the details here.
The interested reader is referred to a text on mathematical statistics, such as
Shao (2003).

9.2.4 The Normal Equations and the Sweep Operator

The coefficient matrix in the normal equations, XTX, or the adjusted version
XT

c Xc, where Xc is the centered matrix as in equation (8.67) on page 293, is

336 9 Selected Applications in Statistics

often of interest for reasons other than just to compute the least squares esti-
mators. The condition number of XTX is the square of the condition number
of X, however, and so any ill-conditioning is exacerbated by formation of the
sums of squares and cross products matrix. The adjusted sums of squares and
cross products matrix, XT

c Xc, tends to be better conditioned, so it is usually
the one used in the normal equations, but of course the condition number of
XT

c Xc is the square of the condition number of Xc.
A useful matrix can be formed from the normal equations:

[
XTX XTy
yTX yTy

]

. (9.24)

Applying m elementary operations on this matrix, we can get
[

(XTX)+ X+y
yTX+T yTy − yTX(XTX)+XTy

]

.

(If X is not of full rank, in order to get the Moore-Penrose inverse in this
expression, the elementary operations must be applied in a fixed manner.) The
matrix in the upper left of the partition is related to the estimated variance-
covariance matrix of the particular solution of the normal equations, and it
can be used to get an estimate of the variance-covariance matrix of estimates
of any independent set of linearly estimable functions of β. The vector in
the upper right of the partition is the unique minimum-length solution to
the normal equations, β̂. The scalar in the lower right partition, which is the
Schur complement of the full inverse (see equations (3.145) and (3.165)), is the
square of the residual norm. The squared residual norm provides an estimate
of the variance of the residuals in equation (9.9) after proper scaling.

The elementary operations can be grouped into a larger operation, called
the “sweep operation”, which is performed for a given row. The sweep opera-
tion on row i, Si, of the nonnegative definite matrix A to yield the matrix B,
which we denote by

Si(A) = B,

is defined in Algorithm 9.1.

Algorithm 9.1 Sweep of the ith Row

1. If aii = 0, skip the following operations.
2. Set bii = a−1

ii .
3. For j �= i, set bij = a−1

ii aij .
4. For k �= i, set bkj = akj − akia

−1
ii aij .

Skipping the operations if aii = 0 allows the sweep operator to handle
non-full rank problems. The sweep operator is its own inverse:

Si(Si(A)) = A.

The sweep operator applied to the matrix (9.24) corresponds to adding or
removing the ith variable (column) of the X matrix to the regression equation.

9.2 Linear Models 337

9.2.5 Linear Least Squares Subject to Linear
Equality Constraints

In the regression model (9.9), it may be known that β satisfies certain con-
straints, such as that all the elements be nonnegative. For constraints of the
form g(β) ∈ C, where C is some m-dimensional space, we may estimate β by
the constrained least squares estimator; that is, the vector β̂C that minimizes
the dot product (9.10) among all b that satisfy g(b) ∈ C.

The nature of the constraints may or may not make drastic changes to the
computational problem. (The constraints also change the statistical inference
problem in various ways, but we do not address that here.) If the constraints
are nonlinear, or if the constraints are inequality constraints (such as that all
the elements be nonnegative), there is no general closed-form solution.

It is easy to handle linear equality constraints of the form

g(β) = Lβ

= c,

where L is a q × m matrix of full rank. The solution is, analogous to equa-
tion (9.12),

β̂C = (XTX)+XTy + (XTX)+LT(L(XTX)+LT)+(c − L(XTX)+XTy).
(9.25)

When X is of full rank, this result can be derived by using Lagrange multipliers
and the derivative of the norm (9.10) (see Exercise 9.4 on page 365). When X
is not of full rank, it is slightly more difficult to show this, but it is still true.
(See a text on linear regression, such as Draper and Smith, 1998.)

The restricted least squares estimate, β̂C , can be obtained (in the (1, 2)
block) by performing m + q sweep operations on the matrix,

⎡

⎣
XTX XTy LT

yTX yTy cT

L c 0

⎤

⎦ , (9.26)

analogous to matrix (9.24).

9.2.6 Weighted Least Squares

In fitting the regression model y ≈ Xβ, it is often desirable to weight the obser-
vations differently, and so instead of minimizing equation (9.10), we minimize

∑
wi(yi − xT

i∗b)
2,

where wi represents a nonnegative weight to be applied to the ith observation.
One purpose of the weight may be to control the effect of a given observation
on the overall fit. If a model of the form of equation (9.9),

338 9 Selected Applications in Statistics

y = Xβ + ε,

is assumed, and ε is taken to be a random variable such that εi has variance σ2
i ,

an appropriate value of wi may be 1/σ2
i . (Statisticians almost always naturally

assume that ε is a random variable. Although usually it is modeled this way,
here we are allowing for more general interpretations and more general motives
in fitting the model.)

The normal equations can be written as
(
XTdiag((w1, w2, . . . , wn))X

)
β̂ = XTdiag((w1, w2, . . . , wn))y.

More generally, we can consider W to be a weight matrix that is not
necessarily diagonal. We have the same set of normal equations:

(XTWX)β̂W = XTWy. (9.27)

When W is a diagonal matrix, the problem is called “weighted least squares”.
Use of a nondiagonal W is also called weighted least squares but is sometimes
called “generalized least squares”. The weight matrix is symmetric and gen-
erally positive definite, or at least nonnegative definite. The weighted least
squares estimator is

β̂W = (XTWX)+XTWy.

As we have mentioned many times, an expression such as this is not necessar-
ily a formula for computation. The matrix factorizations discussed above for
the unweighted case can also be used for computing weighted least squares
estimates.

In a model y = Xβ + ε, where ε is taken to be a random variable with
variance-covariance matrix Σ, the choice of W as Σ−1 yields estimators with
certain desirable statistical properties. (Because this is a natural choice for
many models, statisticians sometimes choose the weighting matrix without
fully considering the reasons for the choice.) As we pointed out on page 225,
weighted least squares can be handled by premultiplication of both y and
X by the Cholesky factor of the weight matrix. In the case of an assumed
variance-covariance matrix Σ, we transform each side by Σ−1

C , where ΣC is
the Cholesky factor of Σ. The residuals whose squares are to be minimized
are Σ−1

C (y − Xb). Under the assumptions, the variance-covariance matrix of
the residuals is I.

9.2.7 Updating Linear Regression Statistics

In Section 6.7.4 on page 228, we discussed the general problem of updating a
least squares solution to an overdetermined system when either the number
of equations (rows) or the number of variables (columns) is changed. In the
linear regression problem these correspond to adding or deleting observations
and adding or deleting terms in the linear model, respectively.

9.2 Linear Models 339

Adding More Variables

Suppose first that more variables are added, so the regression model is

y ≈
[
X X+

]
θ,

where X+ represents the observations on the additional variables. (We use θ
to represent the parameter vector; because the model is different, it is not just
β with some additional elements.)

If XTX has been formed and the sweep operator is being used to perform
the regression computations, it can be used easily to add or delete variables
from the model, as we mentioned above. The Sherman-Morrison-Woodbury
formulas (6.24) and (6.26) and the Hemes formula (6.27) (see page 221) can
also be used to update the solution.

In regression analysis, one of the most important questions is the identifi-
cation of independent variables from a set of potential explanatory variables
that should be in the model. This aspect of the analysis involves adding and
deleting variables. We discuss this further in Section 9.4.2.

Adding More Observations

If we have obtained more observations, the regression model is
[

y

y+

]

≈
[

X

X+

]

β,

where y+ and X+ represent the additional observations.
If the QR decomposition of X is available, we simply augment it as in

equation (6.42): ⎡

⎣
R c1

0 c2

X+ y+

⎤

⎦ =
[

QT 0
0 I

] [
X y
X+ y+

]

.

We now apply orthogonal transformations to this to zero out the last rows
and produce [

R∗ c1∗
0 c2∗

]

,

where R∗ is an m × m upper triangular matrix and c1∗ is an m-vector as
before, but c2∗ is an (n − m + k)-vector. We then have an equation of the
form (9.14) and we use back substitution to solve it.

Adding More Observations Using Weights

Another way of approaching the problem of adding or deleting observations
is by viewing the problem as weighted least squares. In this approach, we also

340 9 Selected Applications in Statistics

have more general results for updating regression statistics. Following Escobar
and Moser (1993), we can consider two weighted least squares problems: one
with weight matrix W and one with weight matrix V . Suppose we have the
solutions β̂W and β̂V . Now let

∆ = V − W,

and use the subscript ∗ on any matrix or vector to denote the subarray that
corresponds only to the nonnull rows of ∆. The symbol ∆∗, for example, is
the square subarray of ∆ consisting of all of the nonzero rows and columns of
∆, and X∗ is the subarray of X consisting of all the columns of X and only
the rows of X that correspond to ∆∗. From the normal equations (9.27) using
W and V , and with the solutions β̂W and β̂V plugged in, we have

(XTWX)β̂W + (XT∆X)β̂V = XTWy + XT∆y,

and so
β̂V − β̂W = (XTWX)+XT

∗ ∆∗(y − Xβ̂V)∗.

This gives

(y − Xβ̂V)∗ = (I + X(XTWX)+XT
∗ ∆∗)

+(y − Xβ̂W)∗,

and finally

β̂V = β̂W + (XTWX)+XT
∗ ∆∗

(
I + X∗(X

TWX)+XT
∗ ∆∗

)+

(y − Xβ̂W)∗.

If ∆∗ can be written as ±GGT, using this equation and the equa-
tions (3.133) on page 93 (which also apply to pseudoinverses), we have

β̂V = β̂W ± (XTWX)+XT
∗ G(I ± GTX∗(X

TWX)+XT
∗ G)+GT(y − Xβ̂W)∗.

(9.28)
The sign of GGT is positive when observations are added and negative when
they are deleted.

Equation (9.28) is particularly simple in the case where W and V are
identity matrices (of different sizes, of course). Suppose that we have ob-
tained more observations in y+ and X+. (In the following, the reader must
be careful to distinguish “+” as a subscript to represent more data and “+”
as a superscript with its usual meaning of a Moore-Penrose inverse.) Suppose
we already have the least squares solution for y ≈ Xβ, say β̂W . Now β̂W is
the weighted least squares solution to the model with the additional data and
with weight matrix

W =
[

I 0
0 0

]

.

We now seek the solution to the same system with weight matrix V , which is
a larger identity matrix. From equation (9.28), the solution is

β̂ = β̂W + (XTX)+XT
+(I + X+(XTX)+XT

+)+(y − Xβ̂W)∗. (9.29)

9.3 Principal Components 341

9.2.8 Linear Smoothing

The interesting reasons for doing regression analysis are to understand rela-
tionships and to predict a value of the dependent value given a value of the
independent variable. As a side benefit, a model with a smooth equation f(x)
“smoothes” the observed responses; that is, the elements in ŷ = f̂(x) exhibit
less variation than the elements in y, meaning the model sum of squares is less
than the total sum of squares. (Of course, the important fact for our purposes
is that ‖y − ŷ‖ is smaller than ‖y‖ or ‖y − ȳ‖.)

The use of the hat matrix emphasizes the smoothing perspective:

ŷ = Hy.

The concept of a smoothing matrix was discussed in Section 8.6.2. From this
perspective, using H, we project y onto a vector in span(H), and that vector
has a smaller variation than y; that is, H has smoothed y. It does not matter
what the specific values in the vector y are so long as they are associated with
the same values of the independent variables.

We can extend this idea to a general n × n smoothing matrix Hλ:

ỹ = Hλy.

The smoothing matrix depends only on the kind and extent of smoothing to
be performed and on the observed values of the independent variables. The
extent of the smoothing may be indicated by the indexing parameter λ. Once
the smoothing matrix is obtained, it does not matter how the independent
variables are related to the model.

In Section 6.8.2, we discussed regularized solutions of overdetermined sys-
tems of equations, which in the present case is equivalent to solving

min
b

(
(y − Xb)T(y − Xb) + λbTb

)
.

The solution of this yields the smoothing matrix

Sλ = X(XTX + λI)−1XT

(see equation (8.62)). This has the effect of shrinking the ŷ of equation (8.56)
toward 0. (In regression analysis, this is called “ridge regression”.)

We discuss ridge regression and general shrinkage estimation in Sec-
tion 9.4.4. Loader (2004) provides additional background and discusses more
general issues in smoothing.

9.3 Principal Components

The analysis of multivariate data involves various linear transformations that
help in understanding the relationships among the features that the data

342 9 Selected Applications in Statistics

represent. The second moments of the data are used to accommodate the
differences in the scales of the individual variables and the covariances among
pairs of variables.

If X is the matrix containing the data stored in the usual way, a useful
statistic is the sums of squares and cross products matrix, XTX, or the “ad-
justed” squares and cross products matrix, XT

c Xc, where Xc is the centered
matrix formed by subtracting from each element of X the mean of the col-
umn containing that element. The sample variance-covariance matrix, as in
equation (8.70), is the Gramian matrix

SX =
1

n − 1
XT

c Xc, (9.30)

where n is the number of observations (the number of rows in X).
In data analysis, the sample variance-covariance matrix SX in equa-

tion (9.30) plays an important role. In more formal statistical inference, it
is a consistent estimator of the population variance-covariance matrix (if it
is positive definite), and under assumptions of independent sampling from a
normal distribution, it has a known distribution. It also has important numer-
ical properties; it is symmetric and positive definite (or, at least, nonnegative
definite; see Section 8.6). Other estimates of the variance-covariance matrix
or the correlation matrix of the underlying distribution may not be positive
definite, however, and in Section 9.4.6 and Exercise 9.14 we describe possible
ways of adjusting a matrix to be positive definite.

9.3.1 Principal Components of a Random Vector

It is often of interest to transform a given random vector into a vector whose el-
ements are independent. We may also be interested in which of those elements
of the transformed random vector have the largest variances. The transformed
vector may be more useful in making inferences about the population. In more
informal data analysis, it may allow use of smaller observational vectors with-
out much loss in information.

Stating this more formally, if Y is a random d-vector with variance-
covariance matrix Σ, we seek a transformation matrix A such that Ỹ = AY
has a diagonal variance-covariance matrix. We are additionally interested in
a transformation aTY that has maximal variance for a given ‖a‖.

Because the variance of aTY is V(aTY) = aTΣa, we have already obtained
the solution in equation (3.208). The vector a is the eigenvector corresponding
to the maximum eigenvalue of Σ, and if a is normalized, the variance of aTY
is the maximum eigenvalue.

Because Σ is symmetric, it is orthogonally diagonalizable and the proper-
ties discussed in Section 3.8.7 on page 119 not only provide the transformation
immediately but also indicate which elements of Ỹ have the largest variances.
We write the orthogonal diagonalization of Σ as (see equation (3.197))

9.3 Principal Components 343

Σ = ΓΛΓT, (9.31)

where ΓΓT = ΓTΓ = I, and Λ is diagonal with elements λ1 ≥ · · · ≥ λm ≥ 0
(because a variance-covariance matrix is nonnegative definite). Choosing the
transformation as

Ỹ = ΓY, (9.32)

we have V(Ỹ) = Λ; that is, the ith element of Ỹ has variance λi, and

Cov(Ỹi, Ỹj) = 0 if i �= j.

The elements of Ỹ are called the principal components of Y . The first principal
component, Ỹ1, which is the signed magnitude of the projection of Y in the
direction of the eigenvector corresponding to the maximum eigenvalue, has
the maximum variance of any of the elements of Ỹ , and V(Ỹ1) = λ1. (It is,
of course, possible that the maximum eigenvalue is not simple. In that case,
there is no one-dimensional first principal component. If m1 is the multiplicity
of λ1, all one-dimensional projections within the m1-dimensional eigenspace
corresponding to λ1 have the same variance, and m1 projections can be chosen
as mutually independent.)

The second and third principal components, and so on, are determined
directly from the spectral decomposition.

9.3.2 Principal Components of Data

The same ideas of principal components carry over to observational data.
Given an n×d data matrix X, we seek a transformation as above that will yield
the linear combination of the columns that has maximum sample variance, and
other linear combinations that are independent. This means that we work with
the centered matrix Xc (equation (8.67)) and the variance-covariance matrix
SX , as above, or the centered and scaled matrix Xcs (equation (8.68)) and
the correlation matrix RX (equation (8.72)). See Section 3.3 in Jolliffe (2002)
for discussions of the differences in using the centered but not scaled matrix
and using the centered and scaled matrix.

In the following, we will use SX , which plays a role similar to Σ for the ran-
dom variable. (This role could be stated more formally in terms of statistical
estimation. Additionally, the scaling may require more careful consideration.
The issue of scaling naturally arises from the arbitrariness of units of mea-
surement in data. Random variables have no units of measurement.)

In data analysis, we seek a normalized transformation vector a to apply
to any centered observation xc, so that the sample variance of aTxc, that is,

aTSXa, (9.33)

is maximized.
From equation (3.208) or the spectral decomposition equation (3.200),

we know that the solution to this maximization problem is the eigenvector,

344 9 Selected Applications in Statistics

v1, corresponding to the largest eigenvalue, c1, of SX , and the value of the
expression (9.33); that is, vT

1 SXv1 at the maximum is the largest eigenvalue.
In applications, this vector is used to transform the rows of Xc into scalars.
If we think of a generic row of Xc as the vector x, we call vT

1 x the first
principal component of x. There is some ambiguity about the precise meaning
of “principal component”. The definition just given is a scalar; that is, a
combination of values of a vector of variables. This is consistent with the
definition that arises in the population model in Section 9.3.1. Sometimes,
however, the eigenvector v1 itself is referred to as the first principal component.
More often, the vector Xcv1 of linear combinations of the columns of Xc is
called the first principal component. We will often use the term in this latter
sense.

If the largest eigenvalue, c1, is of algebraic multiplicity m1 > 1, we have
seen that we can choose m1 orthogonal eigenvectors that correspond to c1

(because SX , being symmetric, is simple). Any one of these vectors may be
called a first principal component of X.

The second and third principal components, and so on, are determined
directly from the nonzero eigenvalues in the spectral decomposition of SX .

The full set of principal components of Xc, analogous to equation (9.32)
except that here the random vectors correspond to the rows in Xc, is

Z = XcV, (9.34)

where V has rX columns. (As before, rX is the rank of X.)

x1

x2

z1

z2

Fig. 9.2. Principal Components

9.3 Principal Components 345

Principal Components Directly from the Data Matrix

Formation of the SX matrix emphasizes the role that the sample covariances
play in principal component analysis. However, there is no reason to form
a matrix such as XT

c Xc, and indeed we may introduce significant rounding
errors by doing so. (Recall our previous discussions of the condition numbers
of XTX and X.)

The singular value decomposition of the n×m matrix Xc yields the square
roots of the eigenvalues of XT

c Xc and the same eigenvectors. (The eigenvalues
of XT

c Xc are (n− 1) times the eigenvalues of SX .) We will assume that there
are more observations than variables (that is, that n > m). In the SVD of the
centered data matrix Xc = UAV T, U is an n × rX matrix with orthogonal
columns, V is an m × rX matrix whose first rX columns are orthogonal and
the rest are 0, and A is an rX × rX diagonal matrix whose entries are the
nonnegative singular values of X − X. (As before, rX is the column rank of
X.)

The spectral decomposition in terms of the singular values and outer prod-
ucts of the columns of the factor matrices is

Xc =
rX∑

i

σiuiv
T
i . (9.35)

The vectors ui are the same as the eigenvectors of SX .

Dimension Reduction

If the columns of a data matrix X are viewed as variables or features that are
measured for each of several observational units, which correspond to rows
in the data matrix, an objective in principal components analysis may be to
determine some small number of linear combinations of the columns of X
that contain almost as much information as the full set of columns. (Here we
are not using “information” in a precise sense; in a general sense, it means
having similar statistical properties.) Instead of a space of dimension equal
to the (column) rank of X (that is, rX), we seek a subspace of span(X) with
rank less than rX that approximates the full space (in some sense). As we
discussed on page 138, the best approximation in terms of the usual norm
(the Frobenius norm) of Xc by a matrix of rank p is

X̃p =
p∑

i

σiuiv
T
i (9.36)

for some p < min(n,m).
Principal components analysis is often used for “dimension reduction” by

using the first few principal components in place of the original data. There
are various ways of choosing the number of principal components (that is, p
in equation (9.36)). There are also other approaches to dimension reduction.
A general reference on this topic is Mizuta (2004).

346 9 Selected Applications in Statistics

9.4 Condition of Models and Data

In Section 6.1, we describe the concept of “condition” of a matrix for certain
kinds of computations. In Section 6.4, we discuss how a large condition num-
ber may indicate the level of numerical accuracy in the solution of a system of
linear equations, and on page 225 we extend this discussion to overdetermined
systems such as those encountered in regression analysis. (We return to the
topic of condition in Section 11.2 with even more emphasis on the numeri-
cal computations.) The condition of the X matrices has implications for the
accuracy we can expect in the numerical computations for regression analysis.

There are other connections between the condition of the data and statis-
tical analysis that go beyond just the purely computational issues. Analysis
involves more than just computations. Ill-conditioned data also make inter-
pretation of relationships difficult because we may be concerned with both
conditional and marginal relationships. In ill-conditioned data, the relation-
ships between any two variables may be quite different depending on whether
or not the relationships are conditioned on relationships with other variables
in the dataset.

9.4.1 Ill-Conditioning in Statistical Applications

We have described ill-conditioning heuristically as a situation in which small
changes in the input data may result in large changes in the solution. Ill-
conditioning in statistical modeling is often the result of high correlations
among the independent variables. When such correlations exist, the compu-
tations may be subject to severe rounding error. This was a problem in using
computer software many years ago, as Longley (1967) pointed out. When there
are large correlations among the independent variables, the model itself must
be examined, as Beaton, Rubin, and Barone (1976) emphasize in reviewing
the analysis performed by Longley. Although the work of Beaton, Rubin, and
Barone was criticized for not paying proper respect to high-accuracy compu-
tations, ultimately it is the utility of the fitted model that counts, not the
accuracy of the computations.

Large correlations are reflected in the condition number of the X matrix.
A large condition number may indicate the possibility of harmful numerical
errors. Some of the techniques for assessing the accuracy of a computed result
may be useful. In particular, the analyst may try the suggestion of Mullet and
Murray (1971) to regress y +dxj on x1, . . . , xm, and compare the results with
the results obtained from just using y.

Other types of ill-conditioning may be more subtle. Large variations in the
leverages may be the cause of ill-conditioning.

Often, numerical problems in regression computations indicate that the
linear model may not be entirely satisfactory for the phenomenon being stud-
ied. Ill-conditioning in statistical data analysis often means that the approach
or the model is wrong.

9.4 Condition of Models and Data 347

9.4.2 Variable Selection

Starting with a model such as equation (9.8),

Y = βTx + E,

we are ignoring the most fundamental problem in data analysis: which vari-
ables are really related to Y , and how are they related?

We often begin with the premise that a linear relationship is at least a good
approximation locally; that is, with restricted ranges of the variables. This
leaves us with one of the most important tasks in linear regression analysis:
selection of the variables to include in the model. There are many statistical
issues that must be taken into consideration. We will not discuss these issues
here; rather we refer the reader to a comprehensive text on regression analysis,
such as Draper and Smith (1998), or to a text specifically on this topic, such
as Miller (2002). Some aspects of the statistical analysis involve tests of linear
hypotheses, such as discussed in Section 9.2.3. There is a major difference,
however; those tests were based on knowledge of the correct model. The basic
problem in variable selection is that we do not know the correct model. Most
reasonable procedures to determine the correct model yield biased statistics.
Some people attempt to circumvent this problem by recasting the problem in
terms of a “full” model; that is, one that includes all independent variables
that the data analyst has looked at. (Looking at a variable and then making
a decision to exclude that variable from the model can bias further analyses.)

We generally approach the variable selection problem by writing the model
with the data as

y = Xiβi + Xoβo + ε, (9.37)

where Xi and Xo are matrices that form some permutation of the columns of
X, Xi|Xo = X, and βi and βo are vectors consisting of corresponding elements
from β. We then consider the model

y = Xiβi + εi. (9.38)

It is interesting to note that the least squares estimate of βi in the
model (9.38) is the same as the least squares estimate in the model

ŷio = Xiβi + εi,

where ŷio is the vector of predicted values obtained by fitting the full
model (9.37). An interpretation of this fact is that fitting the model (9.38)
that includes only a subset of the variables is the same as using that subset
to approximate the predictions of the full model. The fact itself can be seen
from the normal equations associated with these two models. We have

XT
i X(XTX)−1XT = XT

i . (9.39)

348 9 Selected Applications in Statistics

This follows from the fact that X(XTX)−1XT is a projection matrix, and
Xi consists of a set of columns of X (see Section 8.5 and Exercise 9.11 on
page 368).

As mentioned above, there are many difficult statistical issues in the vari-
able selection problem. The exact methods of statistical inference generally
do not apply (because they are based on a model, and we are trying to choose
a model). In variable selection, as in any statistical analysis that involves the
choice of a model, the effect of the given dataset may be greater than war-
ranted, resulting in overfitting. One way of dealing with this kind of problem is
to use part of the dataset for fitting and part for validation of the fit. There are
many variations on exactly how to do this, but in general, “cross validation”
is an important part of any analysis that involves building a model.

The computations involved in variable selection are the same as those
discussed in Sections 9.2.3 and 9.2.7.

9.4.3 Principal Components Regression

A somewhat different approach to the problem of variable selection involves
selecting some linear combinations of all of the variables. The first p princi-
pal components of X cover the space of span(X) optimally (in some sense),
and so these linear combinations themselves may be considered as the “best”
variables to include in a regression model. If Vp is the first p columns from
V in the full set of principal components of X, equation (9.34), we use the
regression model

y ≈ Zpγ, (9.40)

where
Zp = XVp. (9.41)

This is the idea of principal components regression.
In principal components regression, even if p < m (which is the case, of

course; otherwise principal components regression would make no sense), all
of the original variables are included in the model. Any linear combination
forming a principal component may include all of the original variables. The
weighting on the original variables tends to be such that the coefficients of
the original variables that have extreme values in the ordinary least squares
regression are attenuated in the principal components regression using only
the first p principal components.

The principal components do not involve y, so it may not be obvious that a
model using only a set of principal components selected without reference to y
would yield a useful regression model. Indeed, sometimes important indepen-
dent variables do not get sufficient weight in principal components regression.

9.4.4 Shrinkage Estimation

As mentioned in the previous section, instead of selecting specific independent
variables to include in the regression model, we may take the approach of

9.4 Condition of Models and Data 349

shrinking the coefficient estimates toward zero. This of course has the effect of
introducing a bias into the estimates (in the case of a true model being used),
but in the process of reducing the inherent instability due to collinearity in
the independent variables, it may also reduce the mean squared error of linear
combinations of the coefficient estimates. This is one approach to the problem
of overfitting.

The shrinkage can also be accomplished by a regularization of the fitting
criterion. If the fitting criterion is minimization of a norm of the residuals, we
add a norm of the coefficient estimates to minimize

‖r(b)‖f + λ‖b‖b, (9.42)

where λ is a tuning parameter that allows control over the relative weight
given to the two components of the objective function. This regularization is
also related to the variable selection problem by the association of superfluous
variables with the individual elements of the optimal b that are close to zero.

Ridge Regression

If the fitting criterion is least squares, we may also choose an L2 norm on b,
and we have the fitting problem

min
b

(
(y − Xb)T(y − Xb) + λbTb

)
. (9.43)

This is called Tikhonov regularization (from A. N. Tikhonov), and it is by far
the most commonly used regularization. This minimization problem yields the
modified normal equations

(XTX + λI)b = XTy, (9.44)

obtained by adding λI to the sums of squares and cross products matrix. This
is the ridge regression we discussed on page 291, and as we saw in Section 6.1,
the addition of this positive definite matrix has the effect of reducing numerical
ill-conditioning.

Interestingly, these normal equations correspond to a least squares approx-
imation for ⎛

⎝
y

0

⎞

⎠ ≈

⎡

⎣
X

√
λI

⎤

⎦β.

The shrinkage toward 0 is evident in this formulation. Because of this, we
say the “effective” degrees of freedom of a ridge regression model decreases
with increasing λ. In Equation (8.64), we formally defined the effective model
degrees of freedom of any linear fit

ŷ = Sλy

350 9 Selected Applications in Statistics

as
tr(Sλ).

Even if all variables are left in the model, the ridge regression approach
may alleviate some of the deleterious effects of collinearity in the independent
variables.

Lasso Regression

The norm for the regularization in expression (9.42) does not have to be
the same as the norm applied to the model residuals. An alternative fitting
criterion, for example, is to use an L1 norm,

min
b

(y − Xb)T(y − Xb) + λ‖b‖1.

Rather than strictly minimizing this expression, we can formulate a con-
strained optimization problem

min
‖b‖1<t

(y − Xb)T(y − Xb), (9.45)

for some tuning constant t. The solution of this quadratic programming prob-
lem yields a b with some elements identically 0, depending on t. As t de-
creases, more elements of the optimal b are identically 0, and thus this is an
effective method for variable selection. The use of expression (9.45) is called
lasso regression. (“Lasso” stands for “least absolute shrinkage and selection
operator”.)

Lasso regression is computationally expensive if several values of t are ex-
plored. Efron et al. (2004) propose “least angle regression” (LAR) to compute
the entire lasso regularization path simultaneously.

9.4.5 Testing the Rank of a Matrix

The rank of a matrix is not a continuous function of the elements of the
matrix. For this reason, among others, it is difficult to compute the rank
of a matrix. Numerical analysts refer to computations to estimate the rank
of a matrix. (See Section 11.4, where we discuss the rank-revealing QR (or
LU) method for estimating the rank of a matrix.) “Estimation” in that sense
refers to “approximation” rather than to statistical estimation. This is an
important distinction that is often lost. Estimation and testing in a statistical
sense do not apply to a given entity; these methods of inference apply to
properties of a random variable. A statistical test is a decision rule for rejection
of a hypothesis about which empirical evidence is available. The empirical
evidence consists of observations on some random variable, and the hypothesis
is a statement about the distribution of the random variable. In simple cases

9.4 Condition of Models and Data 351

of hypothesis testing, the distribution is assumed to be characterized by a
parameter, and the hypothesis merely specifies the value of that parameter.
The statistical test is based on the distribution of the underlying random
variable if the hypothesis is true.

Gill and Lewbel (1992) describe a statistical test of the rank of a matrix.
The test uses factors from an LDU factorization. The rows and/or columns of
the matrices are permuted so that the values of D that are larger in magnitude
occur in the earlier positions. The n × m matrix A (with n ≥ m without loss
of generality) can be decomposed as

PAQ = LDU

=

⎡

⎣
L11 0 0
L21 L22 0
L31 L32 In−m

⎤

⎦

⎡

⎣
D1 0 0
0 D2 0
0 0 0

⎤

⎦

⎡

⎣
U11 U12

0 U22

0 0

⎤

⎦, (9.46)

where the matrices L11, U11, and D1 are r×r, and the elements of the diagonal
submatrices D1 and D2 are arranged in nonincreasing order. If the rank of A
is r, the entries in D2 are 0.

Now assume A is some parameter characterizing a distribution, and real-
izations of the underlying random variable can be used to estimate A. (The
random variable is vector-valued.) Now let Â be an estimate of A based on k
such realizations, and assume the central limit property,

√
k vec(Â − A) →d N(0, V), (9.47)

where V is nm × nm and positive definite. Now if D2 = 0 (that is, if A has
rank r) and Â is decomposed in the same way as A in equation (9.46), then

√
k diag(D̂2) →d N(0,W)

for some positive definite matrix W , and the quantity

nd̂T
2 W−1d̂2, (9.48)

where
d̂2 = diag(D̂2),

has an asymptotic chi-squared distribution with (m − r) degrees of freedom.
If a consistent estimator of W , say Ŵ , is used in place of W in the expres-
sion (9.48), this would be a test statistic for the hypothesis that the rank of
A is r. (Note that W is m − r × m − r.)

Gill and Lewbel (1992) derive a consistent estimator to use in expres-
sion (9.48) as a test statistic. Following their derivation, first let V̂ be a con-
sistent estimator of V . (It would typically be a sample variance-covariance
matrix.) Then (

Q̂T ⊗ P̂
)

V̂
(
Q̂ ⊗ P̂T

)

352 9 Selected Applications in Statistics

is a consistent estimator of the variance-covariance of vec(P̂ (Â−A)Q̂). Next,
define the matrices

Ĥ =
[
−L̂−1

22 L̂21L̂
−1
11

∣
∣
∣ L̂−1

22

∣
∣
∣ 0

]
,

K̂ =

[
−Û−1

11 Û12Û
−1
22

Û−1
22

]

,

and T such that
vec(D̂2) = T d̂2.

The matrix T is (m − r)2 × (m − r), consisting of a stack of square matrices
with 0s in all positions except for a 1 in one diagonal element. The matrix is
orthogonal; that is,

TTT = Im−r.

The matrix
(K̂ ⊗ ĤT)T

transforms vec(P̂ (Â−A)Q̂) into d̂2; hence the variance-covariance estimator,
(Q̂T ⊗ P̂)V̂ (Q̂ ⊗ P̂T), is adjusted by this matrix. The estimator Ŵ therefore
is given by

Ŵ = TT(K̂T ⊗ Ĥ)(Q̂T ⊗ P̂)V̂ (Q̂ ⊗ P̂T)(K̂ ⊗ ĤT)T.

The test statistic is
nd̂T

2 Ŵ−1d̂2, (9.49)

with an approximate chi-squared distribution with (m−r) degrees of freedom.
The decomposition in equation (9.46) can affect the limiting distribution

of
√

k vec(Â − A). The effect can be exacerbated by complete pivoting, and
Gill and Lewbel (1992) recommend that pivoting be limited to row pivoting.

A test for the rank of matrices has many applications, especially in time
series, and Gill and Lewbel give examples of several.

9.4.6 Incomplete Data

Missing values in a dataset can not only result in ill-conditioned problems
but can cause some matrix statistics to lack their standard properties, such
as covariance or correlation matrices not being positive definite.

In the standard flat data file represented in Figure 8.1, where a row holds
data from a given observation and a column represents a specific variable or
feature, it is often the case that some values are missing for some observa-
tion/variable combination. This can occur for various reasons, such as a failure
of a measuring device, refusal to answer a question in a survey, or an inde-
terminate or infinite value for a derived variable (for example, a coefficient of

9.4 Condition of Models and Data 353

variation when the mean is 0). This causes problems for our standard storage
of data in a matrix. The values for some cells are not available.

The need to make provisions for missing data is one of the important
differences between statistical numerical processing and ordinary numerical
analysis. First of all, we need a method for representing a “not available”
(NA) value, and then we need a mechanism for avoiding computations with
this NA value. There are various ways of doing this, including the use of a
special computer number (see page 386).

The layout of the data may be of the form

X =

⎡

⎢
⎢
⎣

X X NA
X NA NA
X NA X
X X X

⎤

⎥
⎥
⎦ . (9.50)

In the data matrix of equation (9.50), all rows could be used for summary
statistics relating to the first variable, but only two rows could be used for
summary statistics relating to the second and third variables. For summary
statistics such as the mean or variance for any one variable, it would seem to
make sense to use all of the available data.

The picture is not so clear, however, for statistics on two variables, such as
the covariance. If all observations that contain data on both variables are used
for computing the covariance, then the covariance matrix may not be positive
definite. If the correlation matrix is computed using covariances computed in
this way but variances computed on all of the data, some off-diagonal elements
may be larger than 1. If the correlation matrix is computed using covariances
from all available pairs and variances computed only from the data in complete
pairs (that is, the variances used in computing correlations involving a given
variable are different for different variables), then no off-diagonal element can
be larger than 1, but the correlation matrix may not be nonnegative definite.

An alternative, of course, is to use only data in records that are complete.
This is called “casewise deletion”, whereas use of all available data for bivariate
statistics is called “pairwise deletion”. One must be very careful in computing
bivariate statistics from data with missing values; see Exercise 9.13 (and a
solution on page 499).

Estimated or approximate variance-covariance or correlation matrices that
are not positive definite can arise in other ways in applications. For example,
the data analyst may have an estimate of the correlation matrix that was not
based on a single sample.

Various approaches to handling an approximate correlation matrix that
is not positive definite have been considered. Devlin, Gnanadesikan, and
Kettenring (1975) describe a method of shrinking the given R toward a chosen
positive definite matrix, R1, which may be an estimator of a correlation matrix
computed in other ways (perhaps a robust estimator) or may just be chosen
arbitrarily; for example, R1 may just be the identity matrix. The method is
to choose the largest value α in [0, 1] such that the matrix

354 9 Selected Applications in Statistics

R̃ = αR + (1 − α)R1 (9.51)

is positive definite. This optimization problem can be solved iteratively start-
ing with α = 1 and decreasing α in small steps while checking whether R̃ is
positive definite. (The checks may require several computations.) A related
method is to use a modified Cholesky decomposition. If the symmetric matrix
S is not positive definite, a diagonal matrix D can be determined so that
S + D is positive definite. Eskow and Schnabel (1991) describe a method to
determine D with values near zero and to compute a Cholesky decomposition
of S + D.

Devlin, Gnanadesikan, and Kettenring (1975) also describe nonlinear
shrinking methods in which all of the off-diagonal elements rij are replaced
iteratively, beginning with r

(0)
ij = rij and proceeding with

r
(k)
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f−1
(
f
(
r
(k−1)
ij

)
+ δ

)
if r

(k−1)
ij < −f−1(δ)

0 if
∣
∣
∣r

(k−1)
ij

∣
∣
∣ ≤ f−1(δ)

f−1
(
f
(
r
(k−1)
ij

)
− δ

)
if r

(k−1)
ij > f−1(δ)

(9.52)

for some invertible positive-valued function f and some small positive con-
stant δ (for example, 0.05). The function f may be chosen in various ways;
one suggested function is the hyperbolic tangent, which makes f−1 Fisher’s
variance-stabilizing function for a correlation coefficient; see Exercise 9.18b.

Rousseeuw and Molenberghs (1993) suggest a method in which some ap-
proximate correlation matrices can be adjusted to a nearby correlation matrix,
where closeness is determined by the Frobenius norm. Their method applies to
pseudo-correlation matrices. Recall that any symmetric nonnegative definite
matrix with ones on the diagonal is a correlation matrix. A pseudo-correlation
matrix is a symmetric matrix R with positive diagonal elements (but not nec-
essarily 1s) and such that r2

ij ≤ riirjj . (This is inequality (8.12), which is a
necessary but not sufficient condition for the matrix to be nonnegative defi-
nite.)

The method of Rousseeuw and Molenberghs adjusts an m × m pseudo-
correlation matrix R to the closest correlation matrix R̃, where closeness is
determined by the Frobenius norm; that is, we seek R̃ such that

‖R − R̃‖F (9.53)

is minimum over all choices of R̃ that are correlation matrices (that is, ma-
trices with 1s on the diagonal that are positive definite). The solution to this
optimization problem is not as easy as the solution to the problem we consider
on page 138 of finding the best approximate matrix of a given rank. Rousseeuw
and Molenberghs describe a computational method for finding R̃ to minimize

9.5 Optimal Design 355

expression (9.53). A correlation matrix R̃ can be formed as a Gramian matrix
formed from a matrix U whose columns, u1, . . . , um, are normalized vectors,
where

r̃ij = uT
i uj .

If we choose the vector ui so that only the first i elements are nonzero, then
they form the Cholesky factor elements of R̃ with nonnegative diagonal ele-
ments,

R̃ = UTU,

and each ui can be completely represented in IRi. We can associate the m(m−
1)/2 unknown elements of U with the angles in their spherical coordinates. In
ui, the jth element is 0 if j > i and otherwise is

sin(θi1) · · · sin(θi,i−j) cos(θi,i−j+1),

where θi1, . . . , θi,i−j , θi,i−j+1 are the unknown angles that are the variables in
the optimization problem for the Frobenius norm (9.53). The problem now is
to solve

min
m∑

i=1

i∑

j=1

(rij − sin(θi1) · · · sin(θi,i−j) cos(θi,i−j+1))2. (9.54)

This optimization problem is well-behaved and can be solved by steepest
descent (see page 158). Rousseeuw and Molenberghs (1993) also mention that
a weighted least squares problem in place of equation (9.54) may be more
appropriate if the elements of the pseudo-correlation matrix R result from
different numbers of observations.

In Exercise 9.14, we describe another way of converting an approximate
correlation matrix that is not positive definite into a correlation matrix by
iteratively replacing negative eigenvalues with positive ones.

9.5 Optimal Design

When an experiment is designed to explore the effects of some variables (usu-
ally called “factors”) on another variable, the settings of the factors (inde-
pendent variables) should be determined so as to yield a maximum amount
of information from a given number of observations. The basic problem is to
determine from a set of candidates the best rows for the data matrix X. For
example, if there are six factors and each can be set at three different levels,
there is a total of 36 = 729 combinations of settings. In many cases, because
of the expense in conducting the experiment, only a relatively small number
of runs can be made. If, in the case of the 729 possible combinations, only 30
or so runs can be made, the scientist must choose the subset of combinations
that will be most informative. A row in X may contain more elements than

356 9 Selected Applications in Statistics

just the number of factors (because of interactions), but the factor settings
completely determine the row.

We may quantify the information in terms of variances of the estimators.
If we assume a linear relationship expressed by

y = β01 + Xβ + ε

and make certain assumptions about the probability distribution of the resid-
uals, the variance-covariance matrix of estimable linear functions of the least
squares solution (9.12) is formed from

(XTX)−σ2.

(The assumptions are that the residuals are independently distributed with
a constant variance, σ2. We will not dwell on the statistical properties here,
however.) If the emphasis is on estimation of β, then X should be of full rank.
In the following, we assume X is of full rank; that is, that (XTX)−1 exists.

An objective is to minimize the variances of estimators of linear combina-
tions of the elements of β. We may identify three types of relevant measures of
the variance of the estimator β̂: the average variance of the elements of β̂, the
maximum variance of any elements, and the “generalized variance” of the vec-
tor β̂. The property of the design resulting from maximizing the information
by reducing these measures of variance is called, respectively, A-optimality,
E-optimality, and D-optimality. They are achieved when X is chosen as fol-
lows:

• A-optimality: minimize tr((XTX)−1).
• E-optimality: minimize ρ((XTX)−1).
• D-optimality: minimize det((XTX)−1).

Using the properties of eigenvalues and determinants that we discussed in
Chapter 3, we see that E-optimality is achieved by maximizing ρ(XTX) and
D-optimality is achieved by maximizing det(XTX).

D-Optimal Designs

The D-optimal criterion is probably used most often. If the residuals have a
normal distribution (and the other distributional assumptions are satisfied),
the D-optimal design results in the smallest volume of confidence ellipsoids for
β. (See Titterington, 1975; Nguyen and Miller, 1992; and Atkinson and Donev,
1992. Identification of the D-optimal design is related to determination of a
minimum-volume ellipsoid for multivariate data.) The computations required
for the D-optimal criterion are the simplest, and this may be another reason
it is used often.

To construct an optimal X with a given number of rows, n, from a set of
N potential rows, one usually begins with an initial choice of rows, perhaps
random, and then determines the effect on the determinant by exchanging a

9.5 Optimal Design 357

selected row with a different row from the set of potential rows. If the matrix
X has n rows and the row vector xT is appended, the determinant of interest
is

det(XTX + xxT)

or its inverse. Using the relationship det(AB) = det(A) det(B), it is easy to
see that

det(XTX + xxT) = det(XTX)(1 + xT(XTX)−1x). (9.55)

Now, if a row xT
+ is exchanged for the row xT

−, the effect on the determinant
is given by

det(XTX + x+xT
+ − x−xT

−) = det(XTX) ×
(

1 + xT
+(XTX)−1x+ −

xT
−(XTX)−1x−(1 + xT

+(XTX)−1x+) +

(xT
+(XTX)−1x−)2

)
(9.56)

(see Exercise 9.7).
Following Miller and Nguyen (1994), writing XTX as RTR from the QR

decomposition of X, and introducing z+ and z− as

Rz+ = x+

and
Rz− = x−,

we have the right-hand side of equation (9.56):

zT
+z+ − zT

−z−(1 + zT
+z+) + (zT

−z+)2. (9.57)

Even though there are n(N − n) possible pairs (x+, x−) to consider for
exchanging, various quantities in (9.57) need be computed only once. The
corresponding (z+, z−) are obtained by back substitution using the triangu-
lar matrix R. Miller and Nguyen use the Cauchy-Schwarz inequality (2.10)
(page 16) to show that the quantity (9.57) can be no larger than

zT
+z+ − zT

−z−; (9.58)

hence, when considering a pair (x+, x−) for exchanging, if the quantity (9.58)
is smaller than the largest value of (9.57) found so far, then the full compu-
tation of (9.57) can be skipped. Miller and Nguyen also suggest not allowing
the last point added to the design to be considered for removal in the next
iteration and not allowing the last point removed to be added in the next
iteration.

The procedure begins with an initial selection of design points, yielding
the n × m matrix X(0) that is of full rank. At the kth step, each row of X(k)

358 9 Selected Applications in Statistics

is considered for exchange with a candidate point, subject to the restrictions
mentioned above. Equations (9.57) and (9.58) are used to determine the best
exchange. If no point is found to improve the determinant, the process termi-
nates. Otherwise, when the optimal exchange is determined, R(k+1) is formed
using the updating methods discussed in the previous sections. (The programs
of Gentleman, 1974, referred to in Section 6.7.4 can be used.)

9.6 Multivariate Random Number Generation

The need to simulate realizations of random variables arises often in statistical
applications, both in the development of statistical theory and in applied
data analysis. In this section, we will illustrate only a couple of problems
in multivariate random number generation. These make use of some of the
properties we have discussed previously.

Most methods for random number generation assume an underlying source
of realizations of a uniform (0, 1) random variable. If U is a uniform (0, 1)
random variable, and F is the cumulative distribution function of a continuous
random variable, then the random variable

X = F−1(U)

has the cumulative distribution function F . (If the support of X is finite,
F−1(0) and F−1(1) are interpreted as the limits of the support.) This same
idea, the basis of the so-called inverse CDF method, can also be applied to
discrete random variables.

The Multivariate Normal Distribution

If Z has a multivariate normal distribution with the identity as variance-
covariance matrix, then for a given positive definite matrix Σ, both

Y1 = Σ1/2Z (9.59)

and
Y2 = ΣCZ, (9.60)

where ΣC is a Cholesky factor of Σ, have a multivariate normal distribution
with variance-covariance matrix Σ (see page 323).

This leads to a very simple method for generating a multivariate normal
random d-vector: generate into a d-vector z d independent N1(0, 1). Then form
a vector from the desired distribution by the transformation in equation (9.59)
or (9.60) together with the addition of a mean vector if necessary.

9.6 Multivariate Random Number Generation 359

Random Correlation Matrices

Occasionally we wish to generate random numbers but do not wish to specify
the distribution fully. We may want a “random” matrix, but we do not know an
exact distribution that we wish to simulate. (There are only a few “standard”
distributions of matrices. The Wishart distribution and the Haar distribution
(page 169) are the only two common ones. We can also, of course, specify the
distributions of the individual elements.)

We may want to simulate random correlation matrices. Although we do
not have a specific distribution, we may want to specify some characteristics,
such as the eigenvalues. (All of the eigenvalues of a correlation matrix, not
just the largest and smallest, determine the condition of data matrices that
are realizations of random variables with the given correlation matrix.)

Any nonnegative definite (symmetric) matrix with 1s on the diagonal is a
correlation matrix. A correlation matrix is diagonalizable, so if the eigenvalues
are c1, . . . , cd, we can represent the matrix as

V diag(c1, . . . , cd)V T

for an orthogonal matrix V . (For a d×d correlation matrix, we have
∑

ci = d;
see page 295.) Generating a random correlation matrix with given eigenvalues
becomes a problem of generating the random orthogonal eigenvectors and then
forming the matrix V from them. (Recall from page 119 that the eigenvectors
of a symmetric matrix can be chosen to be orthogonal.) In the following, we
let C = diag(c1, . . . , cd) and begin with E = I (the d× d identity) and k = 1.
The method makes use of deflation in step 6 (see page 243). The underlying
randomness is that of a normal distribution.

Algorithm 9.2 Random Correlation Matrices with Given Eigenval-
ues

1. Generate a d-vector w of i.i.d. standard normal deviates, form x = Ew,
and compute a = xT(I − C)x.

2. Generate a d-vector z of i.i.d. standard normal deviates, form y = Ez,
and compute b = xT(I − C)y, c = yT(I − C)y, and e2 = b2 − ac.

3. If e2 < 0, then go to step 2.

4. Choose a random sign, s = −1 or s = 1. Set r =
b + se

a
x − y.

5. Choose another random sign, s = −1 or s = 1, and set vk =
sr

(rTr)
1
2
.

6. Set E = E − vkvT
k , and set k = k + 1.

7. If k < d, then go to step 1.
8. Generate a d-vector w of i.i.d. standard normal deviates, form x = Ew,

and set vd =
x

(xTx)
1
2
.

9. Construct the matrix V using the vectors vk as its rows. Deliver V CV T

as the random correlation matrix.

360 9 Selected Applications in Statistics

9.7 Stochastic Processes

Many stochastic processes are modeled by a “state vector” and rules for up-
dating the state vector through a sequence of discrete steps. At time t, the
elements of the state vector xt are values of various characteristics of the sys-
tem. A model for the stochastic process is a probabilistic prescription for xta

in terms of xtb
, where ta > tb; that is, given observations on the state vec-

tor prior to some point in time, the model gives probabilities for, or predicts
values of, the state vector at later times.

A stochastic process is distinguished in terms of the countability of the
space of states, X , and the index of the state (that is, the parameter space,
T); either may or may not be countable. If the parameter space is continuous,
the process is called a diffusion process. If the parameter space is countable,
we usually consider it to consist of the nonnegative integers.

If the properties of a stochastic process do not depend on the index, the
process is said to be stationary. If the properties also do not depend on any
initial state, the process is said to be time homogeneous or homogeneous with
respect to the parameter space. (We usually refer to such processes simply as
“homogeneous”.)

9.7.1 Markov Chains

The Markov (or Markovian) property in a stochastic process is the condition
where the current state does not depend on any states prior to the imme-
diately previous state; that is, the process is memoryless. If the parameter
space is countable, the Markov property is the condition where the probabil-
ity distribution of the state at time t + 1 depends only on the state at time
t.

In what follows, we will briefly consider some Markov processes in which
both the state space and the parameter space (time) are countable. Such a
process is called a Markov chain. (Some authors’ use of the term “Markov
chain” allows only the state space to be continuous, and others’ allows only
time to be continuous; here we are not defining the term. We will be concerned
with only a subclass of Markov chains, whichever way they are defined. The
models for this subclass are easily formulated in terms of vectors and matri-
ces.)

If the state space is countable, it is equivalent to X = {1, 2, . . .}. If X is a
random variable from some sample space to X , and

πi = Pr(X = i),

then the vector π defines a distribution of X on X . (A vector of nonnegative
numbers that sum to 1 is a distribution.) Formally, we define a Markov chain
(of random variables) X0,X1, . . . in terms of an initial distribution π and a
conditional distribution for Xt+1 given Xt. Let X0 have distribution π, and

9.7 Stochastic Processes 361

given Xt = i, let Xt+1 have distribution (pij ; j ∈ X); that is, pij is the
probability of a transition from state i at time t to state j at time t + 1. Let

P = (pij).

This square matrix is called the transition matrix of the chain. The initial
distribution π and the transition matrix P characterize the chain, which we
sometimes denote as Markov(π, P). It is clear that P is a stochastic matrix,
and hence ρ(P) = ‖P‖∞ = 1, and (1, 1) is an eigenpair of P (see page 306).

If P does not depend on the time (and our notation indicates that we are
assuming this), the Markov chain is stationary.

If the state space is countably infinite, the vectors and matrices have in-
finite order; that is, they have “infinite dimension”. (Note that this use of
“dimension” is different from our standard definition that is based on linear
independence.)

We denote the distribution at time t by π(t) and hence often write the
initial distribution as π(0). A distribution at time t can be expressed in terms
of π and P if we extend the definition of (Cayley) matrix multiplication in
equation (3.34) in the obvious way so that

(P 2)ij =
∑

k∈X
pikpkj .

We see immediately that
π(t) = (P t)Tπ(0). (9.61)

(The somewhat awkward notation here results from the historical convention
in Markov chain theory of expressing distributions as row vectors.) Because
of equation (9.61), P t is often called the t-step transition matrix.

The transition matrix determines various relationships among the states
of a Markov chain. State j is said to be accessible from state i if it can be
reached from state i in a finite number of steps. This is equivalent to (P t)ij > 0
for some t. If state j is accessible from state i and state i is accessible from
state j, states j and i are said to communicate. Communication is clearly
an equivalence relation. (A binary relation ∼ is an equivalence relation over
some set S if for x, y, z ∈ S, (1) x ∼ x, (2) x ∼ y ⇒ x ∼ y, and (3)
x ∼ y ∧ y ∼ z ⇒ x ∼ z; that is, it is reflexive, symmetric, and transitive.)
The set of all states that communicate with each other is an equivalence class.
States belonging to different equivalence classes do not communicate, although
a state in one class may be accessible from a state in a different class. If all
states in a Markov chain are in a single equivalence class, the chain is said to be
irreducible. Reducibility of Markov chains is clearly related to the reducibility
in graphs that we discussed in Section 8.1.2, and reducibility in both cases is
related to properties of a nonnegative matrix; in the case of graphs, it is the
connectivity matrix, and for Markov chains it is the transition matrix.

The limiting behavior of the Markov chain is of interest. This of course can
be analyzed in terms of limt→∞ P t. Whether or not this limit exists depends

362 9 Selected Applications in Statistics

on the properties of P . If P is primitive and irreducible, we can make use of
the results in Section 8.7.2. In particular, because 1 is an eigenvalue and the
vector 1 is the eigenvector associated with 1, from equation (8.82), we have

lim
t→∞

P k = 1πT
s , (9.62)

where πs is the Perron vector of PT.
This also gives us the limiting distribution for an irreducible, primitive

Markov chain,
lim

t→∞
π(t) = πs.

The Perron vector has the property πs = PTπs of course, so this distribution
is the invariant distribution of the chain.

There are many other interesting properties of Markov chains that follow
from various properties of nonnegative matrices that we discuss in Section 8.7,
but rather than continuing the discussion here, we refer the interested reader
to a text on Markov chains, such as Norris (1997).

9.7.2 Markovian Population Models

A simple but useful model for population growth measured at discrete points
in time, t, t + 1, . . ., is constructed as follows. We identify k age groupings for
the members of the population; we determine the number of members in each
age group at time t, calling this p(t),

p(t) =
(
p
(t)
1 , . . . , p

(t)
k

)
;

determine the reproductive rate in each age group, calling this α,

α = (α1, . . . , αk);

and determine the survival rate in each of the first k − 1 age groups, calling
this σ,

σ = (σ1, . . . , σk−1).

It is assumed that the reproductive rate and the survival rate are constant
in time. (There are interesting statistical estimation problems here that are
described in standard texts in demography or in animal population models.)
The survival rate σi is the proportion of members in age group i at time t
who survive to age group i + 1. (It is assumed that the members in the last
age group do not survive from time t to time t + 1.) The total size of the
population at time t is N (t) = 1Tp(t). (The use of the capital letter N for
a scalar variable is consistent with the notation used in the study of finite
populations.)

If the population in each age group is relatively large, then given the sizes
of the population age groups at time t, the approximate sizes at time t + 1
are given by

9.7 Stochastic Processes 363

p(t+1) = Ap(t), (9.63)

where A is a Leslie matrix as in equation (8.88),

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 α2 · · · αm−1 αm

σ1 0 · · · 0 0
0 σ2 · · · 0 0
...

...
...

. . .
...

0 0 · · · σm−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (9.64)

where 0 ≤ αi and 0 ≤ σi ≤ 1.
The Leslie population model can be useful in studying various species of

plants or animals. The parameters in the model determine the vitality of the
species. For biological realism, at least one αi and all σi must be positive. This
model provides a simple approach to the study and simulation of population
dynamics. The model depends critically on the eigenvalues of A.

As we have seen (Exercise 8.10), the Leslie matrix has a single unique
positive eigenvalue. If that positive eigenvalue is strictly greater in modulus
than any other eigenvalue, then given some initial population size, p(0), the
model yields a few damping oscillations and then an exponential growth,

p(t0+t) = p(t0)ert, (9.65)

where r is the rate constant. The vector p(t0) (or any scalar multiple) is called
the stable age distribution. (You are asked to show this in Exercise 9.21a.) If 1
is an eigenvalue and all other eigenvalues are strictly less than 1 in modulus,
then the population eventually becomes constant; that is, there is a stable
population. (You are asked to show this in Exercise 9.21b.)

The survival rates and reproductive rates constitute an age-dependent life
table, which is widely used in studying population growth. The age groups
in life tables for higher-order animals are often defined in years, and the pa-
rameters often are defined only for females. The first age group is generally
age 0, and so α1 = 0. The net reproductive rate, r0, is the average number
of (female) offspring born to a given (female) member of the population over
the lifetime of that member; that is,

r0 =
m∑

i=2

αiσi−1. (9.66)

The average generation time, T , is given by

T =
m∑

i=2

iαiσi−1/r0. (9.67)

The net reproductive rate, average generation time, and exponential growth
rate constant are related by

364 9 Selected Applications in Statistics

r = log(r0)/T. (9.68)

(You are asked to show this in Exercise 9.21c.)
Because the process being modeled is continuous in time and this model

is discrete, there are certain averaging approximations that must be made.
There are various refinements of this basic model to account for continuous
time. There are also refinements to allow for time-varying parameters and for
the intervention of exogenous events. Of course, from a statistical perspective,
the most interesting questions involve the estimation of the parameters. See
Cullen (1985), for example, for further discussions of this modeling problem.

Various starting age distributions can be used in this model to study the
population dynamics.

9.7.3 Autoregressive Processes

Another type of application arises in the pth-order autoregressive time series
defined by the stochastic difference equation

xt + α1xt−1 + · · · + αpxt−p = et,

where the et are mutually independent normal random variables with mean 0,
and αp �= 0. If the roots of the associated polynomial mp+α1m

p−1+· · ·+αp =
0 are less than 1 in absolute value, we can express the parameters of the time
series as

Rα = −ρ, (9.69)

where α is the vector of the αis, the ith element of the vector; ρ is the auto-
covariance of lag i; and the (i, j)th element of the p × p matrix R(h) is the
autocorrelation between xi and xj . Equation (9.69) is called the Yule-Walker
equation. Because the autocorrelation depends only on the difference |i − j|,
the diagonals of R are constant,

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3

...
. . .

...
ρp−1 ρp−2 ρp−3 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

that is, R is a Toeplitz matrix (see Section 8.8.4). Algorithm 9.3 can be used
to solve the system (9.69).

Algorithm 9.3 Solution of the Yule-Walker System (9.69)

1. Set k = 0; α
(k)
1 = −ρ1; b(k) = 1; and a(k) = −ρ1.

2. Set k = k + 1.
3. Set b(k) =

(
1 −

(
a(k−1)

)2)
b(k−1).

Exercises 365

4. Set a(k) = −
(
ρk+1 +

∑k
i=1 ρk+1−iα

(k−1)
1

)
/b(k).

5. For i = 1, 2, . . . , k

set yi = α
(k−1)
i + a(k)α

(k−1)
k+1−i.

6. For i = 1, 2, . . . , k

set α
(k)
i = yi.

7. Set α
(k)
k+1 = a(k).

8. If k < p − 1, go to step 1; otherwise terminate.

This algorithm is O(p) (see Golub and Van Loan, 1996).
The Yule-Walker equations arise in many places in the analysis of stochas-

tic processes. Multivariate versions of the equations are used for a vector time
series (see Fuller, 1995, for example).

Exercises

9.1. Let X be an n × m matrix with n > m and with entries sampled
independently from a continuous distribution (of a real-valued random
variable). What is the probability that XTX is positive definite?

9.2. From equation (9.15), we have ŷi = yTX(XTX)+xi∗. Show that hii in
equation (9.16) is ∂ŷi/∂yi.

9.3. Formally prove from the definition that the sweep operator is its own
inverse.

9.4. Consider the regression model

y = Xβ + ε (9.70)

subject to the linear equality constraints

Lβ = c, (9.71)

and assume that X is of full column rank.
a) Let λ be the vector of Lagrange multipliers. Form

(bTLT − cT)λ

and
(y − Xb)T(y − Xb) + (bTLT − cT)λ.

Now differentiate these two expressions with respect to λ and b,
respectively, set the derivatives equal to zero, and solve to obtain

β̂C = (XTX)−1XTy − 1
2
(XTX)−1LTλ̂C

= β̂ − 1
2
(XTX)−1LTλ̂C

and

366 9 Selected Applications in Statistics

λ̂C = −2(L(XTX)−1LT)−1(c − Lβ̂).

Now combine and simplify these expressions to obtain expres-
sion (9.25) (on page 337).

b) Prove that the stationary point obtained in Exercise 9.4a actually
minimizes the residual sum of squares subject to the equality con-
straints.

Hint: First express the residual sum of squares as

(y − Xβ̂)T(y − Xβ̂) + (β̂ − b)TXTX(β̂ − b),

and show that is equal to

(y−Xβ̂)T(y−Xβ̂)+(β̂−β̂C)TXTX(β̂−β̂C)+(β̂C−b)TXTX(β̂C−b),

which is minimized when b = β̂C .
c) Show that sweep operations applied to the matrix (9.26) on page 337

yield the restricted least squares estimate in the (1,2) block.
d) For the weighting matrix W , derive the expression, analogous to

equation (9.25), for the generalized or weighted least squares estima-
tor for β in equation (9.70) subject to the equality constraints (9.71).

9.5. Derive a formula similar to equation (9.29) to update β̂ due to the
deletion of the ith observation.

9.6. When data are used to fit a model such as y = Xβ + ε, a large leverage
of an observation is generally undesirable. If an observation with large
leverage just happens not to fit the “true” model well, it will cause β̂ to
be farther from β than a similar observation with smaller leverage.
a) Use artificial data to study influence. There are two main aspects

to consider in choosing the data: the pattern of X and the values
of the residuals in ε. The true values of β are not too important,
so β can be chosen as 1. Use 20 observations. First, use just one
independent variable (yi = β0 + β1xi + εi). Generate 20 xis more or
less equally spaced between 0 and 10, generate 20 εis, and form the
corresponding yis. Fit the model, and plot the data and the model.
Now, set x20 = 20, set ε20 to various values, form the yi’s and fit
the model for each value. Notice the influence of x20.
Now, do similar studies with three independent variables. (Do not
plot the data, but perform the computations and observe the effect.)
Carefully write up a clear description of your study with tables and
plots.

b) Heuristically, the leverage of a point arises from the distance from
the point to a fulcrum. In the case of a linear regression model, the
measure of the distance of observation i is

∆(xi,X1/n) = ‖xi,X1/n‖.

Exercises 367

(This is not the same quantity from the hat matrix that is defined as
the leverage on page 332, but it should be clear that the influence of
a point for which ∆(xi,X1/n) is large is greater than that of a point
for which the quantity is small.) It may be possible to overcome some
of the undesirable effects of differential leverage by using weighted
least squares to fit the model. The weight wi would be a decreasing
function of ∆(xi,X1/n).
Now, using datasets similar to those used in the previous part of this
exercise, study the use of various weighting schemes to control the
influence. Weight functions that may be interesting to try include

wi = e−∆(xi,X1/n)

and
wi = max(wmax, ‖∆(xi,X1/n)‖−p)

for some wmax and some p > 0. (Use your imagination!)
Carefully write up a clear description of your study with tables and
plots.

c) Now repeat Exercise 9.6b except use a decreasing function of the
leverage, hii from the hat matrix in equation (9.15) instead of the
function ∆(xi,X1/n).
Carefully write up a clear description of this study, and compare it
with the results from Exercise 9.6b.

9.7. Formally prove the relationship expressed in equation (9.56) on page 357.

Hint: Use equation (9.55) twice.
9.8. On page 161, we used Lagrange multipliers to determine the normalized

vector x that maximized xTAx. If A is SX , this is the first principal
component. We also know the principal components from the spectral
decomposition. We could also find them by sequential solutions of La-
grangians. After finding the first principal component, we would seek the
linear combination z such that Xcz has maximum variance among all
normalized z that are orthogonal to the space spanned by the first prin-
cipal component; that is, that are XT

c Xc-conjugate to the first principal
component (see equation (3.65) on page 71). If V1 is the matrix whose
columns are the eigenvectors associated with the largest eigenvector, this
is equivalent to finding z so as to maximize zTSz subject to V T

1 z = 0.
Using the method of Lagrange multipliers as in equation (4.29), we form
the Lagrangian corresponding to equation (4.31) as

zTSz − λ(zTz − 1) − φV T
1 z,

where λ is the Lagrange multiplier associated with the normalization
requirement zTz = 1, and φ is the Lagrange multiplier associated with
the orthogonality requirement. Solve this for the second principal com-
ponent, and show that it is the same as the eigenvector corresponding
to the second-largest eigenvalue.

368 9 Selected Applications in Statistics

9.9. Obtain the “Longley data”. (It is a dataset in R, and it is also available
from statlib.) Each observation is for a year from 1947 to 1962 and
consists of the number of people employed, five other economic variables,
and the year itself. Longley (1967) fitted the number of people employed
to a linear combination of the other variables, including the year.
a) Use a regression program to obtain the fit.
b) Now consider the year variable. The other variables are measured

(estimated) at various times of the year, so replace the year vari-
able with a “midyear” variable (i.e., add 1

2 to each year). Redo the
regression. How do your estimates compare?

c) Compute the L2 condition number of the matrix of independent
variables. Now add a ridge regression diagonal matrix, as in the
matrix (9.72), and compute the condition number of the resulting
matrix. How do the two condition numbers compare?

9.10. Consider the least squares regression estimator (9.12) for full rank n×m
matrix X (n > m):

β̂ = (XTX)−1XTy.

a) Compare this with the ridge estimator

β̂R(d) = (XTX + dIm)−1XTy

for d ≥ 0. Show that
‖β̂R(d)‖ ≤ ‖β̂‖.

b) Show that β̂R(d) is the least squares solution to the regression model
similar to y = Xβ + ε except with some additional artificial data;
that is, y is replaced with (

y
0

)

,

where 0 is an m-vector of 0s, and X is replaced with
[

X
dIm

]

. (9.72)

Now explain why β̂R(d) is shorter than β̂.
9.11. Use the Schur decomposition (equation (3.145), page 95) of the inverse

of (XTX) to prove equation (9.39).
9.12. Given the matrix

A =

⎡

⎢
⎢
⎣

2 1 3
1 2 3
1 1 1
1 0 1

⎤

⎥
⎥
⎦ ,

assume the random 3 × 2 matrix X is such that

Exercises 369

vec(X − A)

has a N(0, V) distribution, where V is block diagonal with the matrix
⎡

⎢
⎢
⎣

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤

⎥
⎥
⎦

along the diagonal. Generate ten realizations of X matrices, and use
them to test that the rank of A is 2. Use the test statistic (9.49) on
page 352.

9.13. Construct a 9×2 matrix X with some missing values, such that SX com-
puted using all available data for the covariance or correlation matrix is
not nonnegative definite.

9.14. Consider an m×m, symmetric nonsingular matrix, R, with 1s on the di-
agonal and with all off-diagonal elements less than 1 in absolute value.
If this matrix is positive definite, it is a correlation matrix. Suppose,
however, that some of the eigenvalues are negative. Iman and Dav-
enport (1982) describe a method of adjusting the matrix to a “near-
by” matrix that is positive definite. (See Ronald L. Iman and James
M. Davenport, 1982, An Iterative Algorithm to Produce a Positive
Definite Correlation Matrix from an “Approximate Correlation Ma-
trix”, Sandia Report SAND81-1376, Sandia National Laboratories, Al-
buquerque, New Mexico.) For their method, they assumed the eigenval-
ues are unique, but this is not necessary in the algorithm.
Before beginning the algorithm, choose a small positive quantity, ε, to
use in the adjustments, set k = 0, and set R(k) = R.
1. Compute the eigenvalues of R(k),

c1 ≥ c2 ≥ . . . ≥ cm,

and let p be the number of eigenvalues that are negative. If p = 0,
stop. Otherwise, set

c∗i =
{

ε if ci < ε
ci otherwise for i = p1, . . . ,m − p, (9.73)

where p1 = max(1,m − 2p).
2. Let ∑

i

civiv
T
i

be the spectral decomposition of R (equation (3.200), page 120),
and form the matrix R∗:

R∗ =
p1∑

i=1

civiv
T
i +

m−p∑

i=p1+1

c∗i viv
T
i +

m∑

i=m−p+1

εviv
T
i .

370 9 Selected Applications in Statistics

3. Form R(k) from R∗ by setting all diagonal elements to 1.
4. Set k = k + 1, and go to step 1. (The algorithm iterates on k until

p = 0.)
Write a program to implement this adjustment algorithm. Write your
program to accept any size matrix and a user-chosen value for ε. Test
your program on the correlation matrix from Exercise 9.13.

9.15. Consider some variations of the method in Exercise 9.14. For example,
do not make the adjustments as in equation (9.73), or make different
ones. Consider different adjustments of R∗; for example, adjust any off-
diagonal elements that are greater than 1 in absolute value.
Compare the performance of the variations.

9.16. Investigate the convergence of the method in Exercise 9.14. Note that
there are several ways the method could converge.

9.17. Suppose the method in Exercise 9.14 converges to a positive definite
matrix R(n). Prove that all off-diagonal elements of R(n) are less than
1 in absolute value. (This is true for any positive definite matrix with
1s on the diagonal.)

9.18. Shrinkage adjustments of approximate correlation matrices.
a) Write a program to implement the linear shrinkage adjustment of

equation (9.51). Test your program on the correlation matrix from
Exercise 9.13.

b) Write a program to implement the nonlinear shrinkage adjustment
of equation (9.52). Let δ = 0.05 and

f(x) = tanh(x).

Test your program on the correlation matrix from Exercise 9.13.
c) Write a program to implement the scaling adjustment of equa-

tion (9.53). Recall that this method applies to an approximate corre-
lation matrix that is a pseudo-correlation matrix. Test your program
on the correlation matrix from Exercise 9.13.

9.19. Show that the matrices generated in Algorithm 9.2 are correlation ma-
trices. (They are clearly nonnegative definite, but how do we know that
they have 1s on the diagonal?)

9.20. Consider a two-state Markov chain with transition matrix

P =
[

1 − α α
β 1 − β

]

for 0 < α < 1 and 0 < β < 1. Does an invariant distribution exist, and
if so what is it?

9.21. Recall from Exercise 8.10 that a Leslie matrix has a single unique posi-
tive eigenvalue.
a) What are the conditions on a Leslie matrix A that allow a stable

age distribution? Prove your assertion.

Exercises 371

Hint: Review the development of the power method in equa-
tions (7.8) and (7.9).

b) What are the conditions on a Leslie matrix A that allow a stable
population, that is, for some xt, xt+1 = xt?

c) Derive equation (9.68). (Recall that there are approximations that
result from the use of a discrete model of a continuous process.)

Part III

Numerical Methods and Software

10

Numerical Methods

The computer is a tool for storage, manipulation, and presentation of data.
The data may be numbers, text, or images, but no matter what the data are,
they must be coded into a sequence of 0s and 1s. For each type of data, there
are several ways of coding that can be used to store the data and specific ways
the data may be manipulated.

How much a computer user needs to know about the way the computer
works depends on the complexity of the use and the extent to which the
necessary operations of the computer have been encapsulated in software that
is oriented toward the specific application. This chapter covers many of the
basics of how digital computers represent data and perform operations on the
data. Although some of the specific details we discuss will not be important
for the computational scientist or for someone doing statistical computing, the
consequences of those details are important, and the serious computer user
must be at least vaguely aware of the consequences. The fact that multiplying
two positive numbers on the computer can yield a negative number should
cause anyone who programs a computer to take care.

Data of whatever form are represented by groups of 0s and 1s, called bits
from the words “binary” and “digits”. (The word was coined by John Tukey.)
For representing simple text (that is, strings of characters with no special
representation), the bits are usually taken in groups of eight, called bytes, and
associated with a specific character according to a fixed coding rule. Because
of the common association of a byte with a character, those two words are
often used synonymously.

The most widely used code for representing characters in bytes is “ASCII”
(pronounced “askey”, from American Standard Code for Information Inter-
change). Because the code is so widely used, the phrase “ASCII data” is
sometimes used as a synonym for text or character data. The ASCII code for
the character “A”, for example, is 01000001; for “a” it is 01100001; and for
“5” it is 00110101. Humans can more easily read shorter strings with several
different characters than they can longer strings, even if those longer strings
consist of only two characters. Bits, therefore, are often grouped into strings of

376 10 Numerical Methods

fours; a four-bit string is equivalent to a hexadecimal digit, 1, 2, . . . , 9, A, B,
. . . , or F. Thus, the ASCII codes just shown could be written in hexadecimal
notation as 41 (“A”), 61 (“a”), and 35 (“5”).

Because the common character sets differ from one language to another
(both natural languages and computer languages), there are several modifica-
tions of the basic ASCII code set. Also, when there is a need for more different
characters than can be represented in a byte (28), codes to associate characters
with larger groups of bits are necessary. For compatibility with the commonly
used ASCII codes using groups of 8 bits, these codes usually are for groups of
16 bits. These codes for “16-bit characters” are useful for representing charac-
ters in some Oriental languages, for example. The Unicode Consortium (1990,
1992) has developed a 16-bit standard, called Unicode, that is widely used for
representing characters from a variety of languages. For any ASCII character,
the Unicode representation uses eight leading 0s and then the same eight bits
as the ASCII representation.

A standard scheme for representing data is very important when data are
moved from one computer system to another or when researchers at different
sites want to share data. Except for some bits that indicate how other bits
are to be formed into groups (such as an indicator of the end of a file, or the
delimiters of a record within a file), a set of data in ASCII representation is the
same on different computer systems. Software systems that process documents
either are specific to a given computer system or must have some standard
coding to allow portability. The Java system, for example, uses Unicode to
represent characters so as to ensure that documents can be shared among
widely disparate platforms.

In addition to standard schemes for representing the individual data ele-
ments, there are some standard formats for organizing and storing sets of data.
Although most of these formats are defined by commercial software vendors,
two that are open and may become more commonly used are the Common
Data Format (CDF), developed by the National Space Science Data Center,
and the Hierarchical Data Format (HDF), developed by the National Center
for Supercomputing Applications. Both standards allow a variety of types and
structures of data; the standardization is in the descriptions that accompany
the datasets.

Types of Data

Bytes that correspond to characters are often concatenated to form character
string data (or just “strings”). Strings represent text without regard to the
appearance of the text if it were to be printed. Thus, a string representing
“ABC” does not distinguish between “ABC”, “ABC ”, and “ABC”. The ap-
pearance of the printed character must be indicated some other way, perhaps
by additional bit strings designating a font.

The appearance of characters or other visual entities such as graphs or
pictures is often represented more directly as a “bitmap”. Images on a display

10.1 Digital Representation of Numeric Data 377

medium such as paper or a CRT screen consist of an arrangement of small
dots, possibly of various colors. The dots must be coded into a sequence of
bits, and there are various coding schemes in use, such as JPEG (for Joint
Photographic Experts Group). Image representations of “ABC”, “ABC”, and
“ABC” would all be different. The computer’s internal representation may
correspond directly to the dots that are displayed or may be a formula to
generate the dots, but in each case, the data are represented as a set of dots
located with respect to some coordinate system. More dots would be turned
on to represent “ABC” than to represent “ABC”. The location of the dots
and the distance between the dots depend on the coordinate system; thus the
image can be repositioned or rescaled.

Computers initially were used primarily to process numeric data, and num-
bers are still the most important type of data in statistical computing. There
are important differences between the numerical quantities with which the
computer works and the numerical quantities of everyday experience. The
fact that numbers in the computer must have a finite representation has very
important consequences.

10.1 Digital Representation of Numeric Data

For representing a number in a finite number of digits or bits, the two most
relevant things are the magnitude of the number and the precision with which
the number is to be represented. Whenever a set of numbers are to be used
in the same context, we must find a method of representing the numbers that
will accommodate their full range and will carry enough precision for all of
the numbers in the set.

Another important aspect in the choice of a method to represent data is the
way data are communicated within a computer and between the computer and
peripheral components such as data storage units. Data are usually treated
as a fixed-length sequence of bits. The basic grouping of bits in a computer
is sometimes called a “word” or a “storage unit”. The lengths of words or
storage units commonly used in computers are 32 or 64 bits.

Unlike data represented in ASCII (in which the representation is actu-
ally of the characters, which in turn represent the data themselves), the same
numeric data will very often have different representations on different com-
puter systems. It is also necessary to have different kinds of representations
for different sets of numbers, even on the same computer. Like the ASCII
standard for characters, however, there are some standards for representation
of, and operations on, numeric data. The Institute of Electrical and Electron-
ics Engineers (IEEE) and, subsequently, the International Electrotechnical
Commission (IEC) have been active in promulgating these standards, and
the standards themselves are designated by an IEEE number and/or an IEC
number.

378 10 Numerical Methods

The two mathematical models that are often used for numeric data are the
ring of integers, ZZ, and the field of reals, IR. We use two computer models, II
and IF, to simulate these mathematical entities. (Unfortunately, neither II nor
IF is a simple mathematical construct such as a ring or field.)

10.1.1 The Fixed-Point Number System

Because an important set of numbers is a finite set of reasonably sized inte-
gers, efficient schemes for representing these special numbers are available in
most computing systems. The scheme is usually some form of a base 2 repre-
sentation and may use one storage unit (this is most common), two storage
units, or one half of a storage unit. For example, if a storage unit consists
of 32 bits and one storage unit is used to represent an integer, the integer 5
may be represented in binary notation using the low-order bits, as shown in
Figure 10.1.

0 0 0 0 0 0 00 1 0 1

Fig. 10.1. The Value 5 in a Binary Representation

The sequence of bits in Figure 10.1 represents the value 5, using one storage
unit. The character “5” is represented in the ASCII code shown previously,
00110101.

If the set of integers includes the negative numbers also, some way of
indicating the sign must be available. The first bit in the bit sequence (usually
one storage unit) representing an integer is usually used to indicate the sign;
if it is 0, a positive number is represented; if it is 1, a negative number is
represented. In a common method for representing negative integers, called
“twos-complement representation”, the sign bit is set to 1 and the remaining
bits are set to their opposite values (0 for 1; 1 for 0), and then 1 is added to
the result. If the bits for 5 are ...00101, the bits for −5 would be ...11010 + 1,
or ...11011. If there are k bits in a storage unit (and one storage unit is used
to represent a single integer), the integers from 0 through 2k−1 − 1 would be
represented in ordinary binary notation using k − 1 bits. An integer i in the
interval [−2k−1, −1] would be represented by the same bit pattern by which
the nonnegative integer 2k−1 − i is represented, except the sign bit would be
1.

The sequence of bits in Figure 10.2 represents the value −5 using twos-
complement notation in 32 bits, with the leftmost bit being the sign bit and
the rightmost bit being the least significant bit; that is, the 1 position. The
ASCII code for “−5” consists of the codes for “−” and “5”; that is,
00101101 00110101.

10.1 Digital Representation of Numeric Data 379

1 1 1 1 1 1 11 11 1 1 0 1 1

Fig. 10.2. The Value −5 in a Twos-Complement Representation

The special representations for numeric data are usually chosen so as to
facilitate manipulation of data. The twos-complement representation makes
arithmetic operations particularly simple. It is easy to see that the largest
integer that can be represented in the twos-complement form is 2k−1 − 1 and
that the smallest integer is −2k−1.

A representation scheme such as that described above is called fixed-point
representation or integer representation, and the set of such numbers is de-
noted by II. The notation II is also used to denote the system built on this set.
This system is similar in some ways to a ring, which is what the integers ZZ
are.

There are several variations of the fixed-point representation. The number
of bits used and the method of representing negative numbers are two aspects
that generally vary from one computer to another. Even within a single com-
puter system, the number of bits used in fixed-point representation may vary;
it is typically one storage unit or half of a storage unit.

We discuss the operations with numbers in the fixed-point system in Sec-
tion 10.2.1.

10.1.2 The Floating-Point Model for Real Numbers

In a fixed-point representation, all bits represent values greater than or equal
to 1; the base point or radix point is at the far right, before the first bit. In
a fixed-point representation scheme using k bits, the range of representable
numbers is of the order of 2k, usually from approximately −2k−1 to 2k−1.
Numbers outside of this range cannot be represented directly in the fixed-
point scheme. Likewise, nonintegral numbers cannot be represented. Large
numbers and fractional numbers are generally represented in a scheme similar
to what is sometimes called “scientific notation” or in a type of logarithmic
notation. Because within a fixed number of digits the radix point is not fixed,
this scheme is called floating-point representation, and the set of such numbers
is denoted by IF. The notation IF is also used to denote the system built on
this set.

In a misplaced analogy to the real numbers, a floating-point number is also
called “real”. Both computer “integers”, II, and “reals”, IF, represent useful
subsets of the corresponding mathematical entities, ZZ and IR, but while the
computer numbers called “integers” do constitute a fairly simple subset of the
integers, the computer numbers called “real” do not correspond to the real
numbers in a natural way. In particular, the floating-point numbers do not
occur uniformly over the real number line.

380 10 Numerical Methods

Within the allowable range, a mathematical integer is exactly represented
by a computer fixed-point number, but a given real number, even a rational,
of any size may or may not have an exact representation by a floating-point
number. This is the familiar situation where fractions such as 1

3 have no finite
representation in base 10. The simple rule, of course, is that the number must
be a rational number whose denominator in reduced form factors into only
primes that appear in the factorization of the base. In base 10, for exam-
ple, only rational numbers whose factored denominators contain only 2s and
5s have an exact, finite representation; and in base 2, only rational numbers
whose factored denominators contain only 2s have an exact, finite represen-
tation.

For a given real number x, we will occasionally use the notation

[x]c

to indicate the floating-point number used to approximate x, and we will refer
to the exact value of a floating-point number as a computer number. We will
also use the phrase “computer number” to refer to the value of a computer
fixed-point number. It is important to understand that computer numbers are
members of proper finite subsets, II and IF, of the corresponding sets ZZ and
IR.

Our main purpose in using computers, of course, is not to evaluate func-
tions of the set of computer floating-point numbers or the set of computer
integers; the main immediate purpose usually is to perform operations in the
field of real (or complex) numbers or occasionally in the ring of integers. Do-
ing computations on the computer, then, involves using the sets of computer
numbers to simulate the sets of reals or integers.

The Parameters of the Floating-Point Representation

The parameters necessary to define a floating-point representation are the
base or radix, the range of the mantissa or significand, and the range of the
exponent. Because the number is to be represented in a fixed number of bits,
such as one storage unit or word, the ranges of the significand and exponent
must be chosen judiciously so as to fit within the number of bits available. If
the radix is b and the integer digits di are such that 0 ≤ di < b, and there
are enough bits in the significand to represent p digits, then a real number is
approximated by

±0.d1d2 · · · dp × be, (10.1)

where e is an integer. This is the standard model for the floating-point repre-
sentation. (The di are called “digits” from the common use of base 10.)

The number of bits allocated to the exponent e must be sufficient to rep-
resent numbers within a reasonable range of magnitudes; that is, so that the
smallest number in magnitude that may be of interest is approximately bemin

and the largest number of interest is approximately bemax , where emin and emax

10.1 Digital Representation of Numeric Data 381

are, respectively, the smallest and the largest allowable values of the exponent.
Because emin is likely negative and emax is positive, the exponent requires a
sign. In practice, most computer systems handle the sign of the exponent by
defining a bias and then subtracting the bias from the value of the exponent
evaluated without regard to a sign.

The parameters b, p, and emin and emax are so fundamental to the oper-
ations of the computer that on most computers they are fixed, except for a
choice of two or three values for p and maybe two choices for the range of e.

In order to ensure a unique representation for all numbers (except 0),
most floating-point systems require that the leading digit in the significand
be nonzero unless the magnitude is less than bemin . A number with a nonzero
leading digit in the significand is said to be normalized.

The most common value of the base b is 2, although 16 and even 10 are
sometimes used. If the base is 2, in a normalized representation, the first
digit in the significand is always 1; therefore, it is not necessary to fill that
bit position, and so we effectively have an extra bit in the significand. The
leading bit, which is not represented, is called a “hidden bit”. This requires a
special representation for the number 0, however.

In a typical computer using a base of 2 and 64 bits to represent one floating-
point number, 1 bit may be designated as the sign bit, 52 bits may be allocated
to the significand, and 11 bits allocated to the exponent. The arrangement of
these bits is somewhat arbitrary, and of course the physical arrangement on
some kind of storage medium would be different from the “logical” arrange-
ment. A common logical arrangement assigns the first bit as the sign bit, the
next 11 bits as the exponent, and the last 52 bits as the significand. (Com-
puter engineers sometimes label these bits as 0, 1, . . . , and then get confused
as to which is the ith bit. When we say “first”, we mean “first”, whether
an engineer calls it the “0th” or the “1st”.) The range of exponents for the
base of 2 in this typical computer would be 2,048. If this range is split evenly
between positive and negative values, the range of orders of magnitude of
representable numbers would be from −308 to 308. The bits allocated to the
significand would provide roughly 16 decimal places of precision.

Figure 10.3 shows the bit pattern to represent the number 5, using b = 2,
p = 24, emin = −126, and a bias of 127, in a word of 32 bits. The first bit on the
left is the sign bit, the next 8 bits represent the exponent, 129, in ordinary base
2 with a bias, and the remaining 23 bits represent the significand beyond the
leading bit, known to be 1. (The binary point is to the right of the leading bit
that is not represented.) The value is therefore +1.01× 22 in binary notation.

� �
0

� �
1 0 0 0 0 0 0 1

� �
0 1 0

Fig. 10.3. The Value 5 in a Floating-Point Representation

382 10 Numerical Methods

While in fixed-point twos-complement representations there are consider-
able differences between the representation of a given integer and the negative
of that integer (see Figures 10.1 and 10.2), the only difference between the
floating-point representation of a number and its additive inverse is usually
just in one bit. In the example of Figure 10.3, only the first bit would be
changed to represent the number −5.

As mentioned above, the set of floating-point numbers is not uniformly
distributed over the ordered set of the reals. There are the same number of
floating-point numbers in the interval [bi, bi+1] as in the interval [bi+1, bi+2],
even though the second interval is b times as long as the first. Figures 10.4
through 10.6 illustrate this. The fixed-point numbers, on the other hand, are
uniformly distributed over their range, as illustrated in Figure 10.7.

. . .

0 2−2 2−1 20 21

Fig. 10.4. The Floating-Point Number Line, Nonnegative Half

. . .

0−2−2−2−1−20−21

Fig. 10.5. The Floating-Point Number Line, Nonpositive Half

. . .
0 4 8 16 32

Fig. 10.6. The Floating-Point Number Line, Nonnegative Half; Another View

. . .
0 4 8 16 32

Fig. 10.7. The Fixed-Point Number Line, Nonnegative Half

The density of the floating-point numbers is generally greater closer to
zero. Notice that if floating-point numbers are all normalized, the spacing be-
tween 0 and bemin is bemin (that is, there is no floating-point number in that
open interval), whereas the spacing between bemin and bemin+1 is bemin−p+1.
Most systems do not require floating-point numbers less than bemin in mag-
nitude to be normalized. This means that the spacing between 0 and bemin

10.1 Digital Representation of Numeric Data 383

can be bemin−p, which is more consistent with the spacing just above bemin .
When these nonnormalized numbers are the result of arithmetic operations,
the result is called “graceful” or “gradual” underflow.

The spacing between floating-point numbers has some interesting (and,
for the novice computer user, surprising!) consequences. For example, if 1 is
repeatedly added to x, by the recursion

x(k+1) = x(k) + 1,

the resulting quantity does not continue to get larger. Obviously, it could not
increase without bound because of the finite representation. It does not even
approach the largest number representable, however! (This is assuming that
the parameters of the floating-point representation are reasonable ones.) In
fact, if x is initially smaller in absolute value than bemax−p (approximately),
the recursion

x(k+1) = x(k) + c

will converge to a stationary point for any value of c smaller in absolute value
than bemax−p.

The way the arithmetic is performed would determine these values pre-
cisely; as we shall see below, arithmetic operations may utilize more bits than
are used in the representation of the individual operands.

The spacings of numbers just smaller than 1 and just larger than 1 are
particularly interesting. This is because we can determine the relative spac-
ing at any point by knowing the spacing around 1. These spacings at 1 are
sometimes called the “machine epsilons”, denoted εmin and εmax (not to be
confused with emin and emax defined earlier). It is easy to see from the model
for floating-point numbers on page 380 that

εmin = b−p

and
εmax = b1−p;

see Figure 10.8. The more conservative value, εmax, sometimes called “the
machine epsilon”, ε or εmach, provides an upper bound on the rounding that
occurs when a floating-point number is chosen to represent a real number. A
floating-point number near 1 can be chosen within εmax/2 of a real number
that is near 1. This bound, 1

2b1−p, is called the unit roundoff.

. . .
0 1

4
1
2

εmin

�
1

εmax

�
2

Fig. 10.8. Relative Spacings at 1: “Machine Epsilons”

384 10 Numerical Methods

These machine epsilons are also called the “smallest relative spacing” and
the “largest relative spacing” because they can be used to determine the
relative spacing at the point x (Figure 10.8).

.
x

[[x]c − (1 − εmin)[x]c]c
�

[(1 + εmax)[x]c − [x]c]c
�

Fig. 10.9. Relative Spacings

If x is not zero, the relative spacing at x is approximately

x − (1 − εmin)x
x

or
(1 + εmax)x − x

x
.

Notice that we say “approximately”. First of all, we do not even know that x
is representable. Although (1− εmin) and (1+ εmax) are members of the set of
floating-point numbers by definition, that does not guarantee that the product
of either of these numbers and [x]c is also a member of the set of floating-point
numbers. However, the quantities [(1−εmin)[x]c]c and [(1+εmax)[x]c]c are rep-
resentable (by the definition of [·]c as a floating point number approximating
the quantity within the brackets); and, in fact, they are respectively the next
smallest number than [x]c (if [x]c is positive, or the next largest number other-
wise) and the next largest number than [x]c (if [x]c is positive). The spacings
at [x]c therefore are

[x]c − [(1 − εmin)[x]c]c

and
[(1 + εmax)[x]c − [x]c]c.

As an aside, note that this implies it is probable that

[(1 − εmin)[x]c]c = [(1 + εmin)[x]c]c.

In practice, to compare two numbers x and y, we must compare [x]c and
[y]c. We consider x and y different if

[|y|]c < [|x|]c − [εmin[|x|]c]c

or if
[|y|]c > [|x|]c + [εmax[|x|]c]c.

The relative spacing at any point obviously depends on the value repre-
sented by the least significant digit in the significand. This digit (or bit) is

10.1 Digital Representation of Numeric Data 385

called the “unit in the last place”, or “ulp”. The magnitude of an ulp depends
of course on the magnitude of the number being represented. Any real number
within the range allowed by the exponent can be approximated within 1

2 ulp
by a floating-point number.

The subsets of numbers that we need in the computer depend on the kinds
of numbers that are of interest for the problem at hand. Often, however, the
kinds of numbers of interest change dramatically within a given problem.
For example, we may begin with integer data in the range from 1 to 50.
Most simple operations, such as addition, squaring, and so on, with these
data would allow a single paradigm for their representation. The fixed-point
representation should work very nicely for such manipulations.

Something as simple as a factorial, however, immediately changes the par-
adigm. It is unlikely that the fixed-point representation would be able to
handle the resulting large numbers. When we significantly change the range
of numbers that must be accommodated, another change that occurs is the
ability to represent the numbers exactly. If the beginning data are integers be-
tween 1 and 50, and no divisions or operations leading to irrational numbers
are performed, one storage unit would almost surely be sufficient to represent
all values exactly. If factorials are evaluated, however, the results cannot be
represented exactly in one storage unit and so must be approximated (even
though the results are integers). When data are not integers, it is usually ob-
vious that we must use approximations, but it may also be true for integer
data.

Standardization of Floating-Point Representation

As we have indicated, different computers represent numeric data in differ-
ent ways. There has been some attempt to provide standards, at least in the
range representable and in the precision of floating-point quantities. There
are two IEEE standards that specify characteristics of floating-point num-
bers (IEEE, 1985). The IEEE Standard 754, which became the IEC 60559
standard, is a binary standard that specifies the exact layout of the bits for
two different precisions, “single” and “double”. In both cases, the standard
requires that the radix be 2. For single precision, p must be 24, emax must be
127, and emin must be −126. For double precision, p must be 53, emax must
be 1023, and emin must be −1022.

The IEEE Standard 754, or IEC 60559, also defines two additional pre-
cisions, “single extended” and “double extended”. For each of the extended
precisions, the standard sets bounds on the precision and exponent ranges
rather than specifying them exactly. The extended precisions have larger ex-
ponent ranges and greater precision than the corresponding precision that is
not “extended”.

The IEEE Standard 854 requires that the radix be either 2 or 10 and de-
fines ranges for floating-point representations. Formerly, the most widely used
computers (IBM System 360 and derivatives) used base 16 representation; and

386 10 Numerical Methods

some computers still use this base. Additional information about the IEEE
standards for floating-point numbers can be found in Overton (2001). Both
IEEE Standards 754 and 854 are undergoing modest revisions, and it is likely
that 854 will be merged into 754.

Most of the computers developed in the past few years comply with the
standards, but it is up to the computer manufacturers to conform voluntarily
to these standards. We would hope that the marketplace would penalize the
manufacturers who do not conform.

Special Floating-Point Numbers

It is convenient to be able to represent certain special numeric entities, such as
infinity or “indeterminate” (0/0), which do not have ordinary representations
in any base-digit system. Although 8 bits are available for the exponent in the
single-precision IEEE binary standard, emax = 127 and emin = −126. This
means there are two unused possible values for the exponent; likewise, for
the double-precision standard, there are two unused possible values for the
exponent. These extra possible values for the exponent allow us to represent
certain special floating-point numbers. An exponent of emin − 1 allows us to
handle 0 and the numbers between 0 and bemin unambiguously even though
there is a hidden bit (see the discussion above about normalization and gradual
underflow). The special number 0 is represented with an exponent of emin − 1
and a significand of 00 . . . 0.

An exponent of emax + 1 allows us to represent ±∞ or the indetermi-
nate value. A floating-point number with this exponent and a significand of 0
represents ±∞ (the sign bit determines the sign, as usual). A floating-point
number with this exponent and a nonzero significand represents an indeter-
minate value such as 0

0 . This value is called “not-a-number”, or NaN. In
statistical data processing, a NaN is sometimes used to represent a missing
value. Because a NaN is indeterminate, if a variable x has a value of NaN,
x �= x. Also, because a NaN can be represented in different ways, however,
a programmer must be careful in testing for NaNs. Some software systems
provide explicit functions for testing for a NaN. The IEEE binary standard
recommended that a function isnan be provided to test for a NaN. Cody
and Coonen (1993) provide C programs for isnan and other functions use-
ful in working with floating-point numbers. We discuss computations with
floating-point numbers in Section 10.2.2

10.1.3 Language Constructs for Representing Numeric Data

Most general-purpose computer programming languages, such as Fortran and
C, provide constructs for the user to specify the type of representation for
numeric quantities. These specifications are made in declaration statements
that are made at the beginning of some section of the program for which they
apply.

10.1 Digital Representation of Numeric Data 387

The difference between fixed-point and floating-point representations has
a conceptual basis that may correspond to the problem being addressed. The
differences between other kinds of representations often are not because of
conceptual differences; rather, they are the results of increasingly irrelevant
limitations of the computer. The reasons there are “short” and “long”, or
“signed” and “unsigned”, representations do not arise from the problem the
user wishes to solve; the representations are to allow more efficient use of
computer resources. The wise software designer nowadays eschews the space-
saving constructs that apply to only a relatively small proportion of the data.
In some applications, however, the short representations of numeric data still
have a place.

In C, the types of all variables must be specified with a basic declarator,
which may be qualified further. For variables containing numeric data, the
possible types are shown in Table 10.1.

Table 10.1. Numeric Data Types in C

Basic type Basic Fully qualified
declarator declarator

fixed-point int signed short int

unsigned short int

signed long int

unsigned long int

floating-point float

double double

long double

Exactly what these types mean is not specified by the language but de-
pends on the specific implementation, which associates each type with some
natural type supported by the specific computer. Common storage for a fixed-
point variable of type short int uses 16 bits and for type long int uses 32
bits. An unsigned quantity of either type specifies that no bit is to be used
as a sign bit, which effectively doubles the largest representable number. Of
course, this is essentially irrelevant for scientific computations, so unsigned
integers are generally just a nuisance. If neither short nor long is speci-
fied, there is a default interpretation that is implementation-dependent. The
default always favors signed over unsigned. There is a movement toward
standardization of the meanings of these types. The American National Stan-
dards Institute (ANSI) and its international counterpart, the International
Organization for Standardization (ISO), have specified standard definitions
of several programming languages. ANSI (1989) is a specification of the C
language. ANSI C requires that short int use at least 16 bits, that long
int use at least 32 bits, and that long int be at least as long as int, which

388 10 Numerical Methods

in turn must be least as long as short int. The long double type may or
may not have more precision and a larger range than the double type.

C does not provide a complex data type. This deficiency can be overcome
to some extent by means of a user-defined data type. The user must write
functions for all the simple arithmetic operations on complex numbers, just
as is done for the simple exponentiation for floats.

The object-oriented hybrid language built on C, C++ (ANSI, 1998), pro-
vides the user with the ability also to define operator functions, so that the
four simple arithmetic operations can be implemented by the operators “+”,
“−”, “∗”, and “/”. There is no good way of defining an exponentiation op-
erator, however, because the user-defined operators are limited to extended
versions of the operators already defined in the language.

In Fortran, variables have a default numeric type that depends on the
first letter in the name of the variable. The type can be explicitly declared
(and, in fact, should be in careful programming). The signed and unsigned
qualifiers of C, which have very little use in scientific computing, are missing in
Fortran. Fortran has a fixed-point type that corresponds to integers and two
floating-point types that correspond to reals and complex numbers. For one
standard version of Fortran, called Fortran 77, the possible types for variables
containing numeric data are shown in Table 10.2.

Table 10.2. Numeric Data Types in Fortran 77

Basic type Basic Default
declarator variable name

fixed-point integer begin with i–n or I–N

floating-point real begin with a–h or o–z
or with A–H or O–Z

double precision no default, although
d or D is sometimes used

complex complex no default, although
c or C is sometimes used

Although the standards organizations have defined these constructs for the
Fortran 77 language (ANSI, 1978), just as is the case with C, exactly what
these types mean is not specified by the language but depends on the specific
implementation. Some extensions to the language allow the number of bytes
to use for a type to be specified (e.g., real*8) and allow the type double
complex.

The complex type is not so much a data type as a data structure composed
of two floating-point numbers that has associated operations that simulate the
operations defined on the field of complex numbers.

The Fortran 90/95 language and subsequent versions of Fortran support
the same types as Fortran 77 but also provide much more flexibility in selecting

10.1 Digital Representation of Numeric Data 389

the number of bits to use in the representation of any of the basic types. (There
are only small differences between Fortran 90 and Fortran 95. There is also a
version called Fortran 2003. Most of the features I discuss are in all of these
versions, and since the version I currently use is Fortran 95, I will generally
just refer to “Fortran 95” or “Fortran 90 and subsequent versions”.) A funda-
mental concept for the numeric types in Fortran 95 is called “kind”. The kind
is a qualifier for the basic type; thus a fixed-point number may be an integer
of kind 1 or kind 2, for example. The actual value of the qualifier kind may
differ from one compiler to another, so the user defines a program parameter
to be the kind that is appropriate to the range and precision required for
a given variable. Fortran 95 provides the functions selected int kind and
selected real kind to do this. Thus, to declare some fixed-point variables
that have at least three decimal digits and some more fixed-point variables
that have at least eight decimal digits, the user may write the following state-
ments:

integer, parameter :: little = selected_int_kind(3)
integer, parameter :: big = selected_int_kind(8)
integer (little) :: ismall, jsmall
integer (big) :: itotal_accounts, igain

The variables little and big would have integer values, chosen by the com-
piler designer, that could be used in the program to qualify integer types to en-
sure that range of numbers could be handled. Thus, ismall and jsmall would
be fixed-point numbers that could represent integers between −999 and 999,
and itotal accounts and igain would be fixed-point numbers that could
represent integers between −99,999,999 and 99,999,999. Depending on the ba-
sic hardware, the compiler may assign two bytes as kind = little, meaning
that integers between −32,768 and 32,767 could probably be accommodated
by any variable, such as ismall, that is declared as integer (little). Like-
wise, it is probable that the range of variables declared as integer (big)
could handle numbers in the range −2,147,483,648 and 2,147,483,647. For
declaring floating-point numbers, the user can specify a minimum range and
precision with the function selected real kind, which takes two arguments,
the number of decimal digits of precision and the exponent of 10 for the range.
Thus, the statements

integer, parameter :: real4 = selected_real_kind(6,37)
integer, parameter :: real8 = selected_real_kind(15,307)

would yield designators of floating-point types that would have either six dec-
imals of precision and a range up to 1037 or fifteen decimals of precision and
a range up to 10307. The statements

real (real4) :: x, y
real (real8) :: dx, dy

390 10 Numerical Methods

declare x and y as variables corresponding roughly to real on most systems
and dx and dy as variables corresponding roughly to double precision.

If the system cannot provide types matching the requirements specified
in selected int kind or selected real kind, these functions return −1.
Because it is not possible to handle such an error situation in the declaration
statements, the user should know in advance the available ranges. Fortran 90
and subsequent versions of Fortran provide a number of intrinsic functions,
such as epsilon, rrspacing, and huge, to use in obtaining information about
the fixed- and floating-point numbers provided by the system.

Fortran 90 and subsequent versions also provide a number of intrinsic
functions for dealing with bits. These functions are essentially those specified
in the MIL-STD-1753 standard of the U.S. Department of Defense. These bit
functions, which have been a part of many Fortran implementations for years,
provide for shifting bits within a string, extracting bits, exclusive or inclusive
oring of bits, and so on. (See ANSI, 1992; Lemmon and Schafer 2005; or
Metcalf, Reid, and Cohen, 2004, for more extensive discussions of the types
and intrinsic functions provided in Fortran 90 and subsequent versions.)

Many higher-level languages and application software packages do not give
the user a choice of how to represent numeric data. The software system may
consistently use a type thought to be appropriate for the kinds of applications
addressed. For example, many statistical analysis application packages choose
to use a floating-point representation with about 64 bits for all numeric data.
Making a choice such as this yields more comparable results across a range of
computer platforms on which the software system may be implemented.

Whenever the user chooses the type and precision of variables, it is a
good idea to use some convention to name the variable in such a way as to
indicate the type and precision. Books or courses on elementary programming
suggest using mnemonic names, such as “time”, for a variable that holds the
measure of time. If the variable takes fixed-point values, a better name might
be “itime”. It still has the mnemonic value of “time”, but it also helps us to
remember that, in the computer, itime/length may not be the same thing as
time/xlength. Although the variables are declared in the program to be of a
specific type, the programmer can benefit from a reminder of the type. Even
as we “humanize” computing, we must remember that there are details about
the computer that matter. (The operator “/” is said to be “overloaded”: in
a general way, it means “divide”, but it means different things depending on
the contexts of the two expressions above.) Whether a quantity is a member
of II or IF may have major consequences for the computations, and a careful
choice of notation can help to remind us of that, even if the notation may look
old-fashioned.

Numerical analysts sometimes use the phrase “full precision” to refer to
a precision of about sixteen decimal digits and the phrase “half precision” to
refer to a precision of about seven decimal digits. These terms are not defined
precisely, but they do allow us to speak of the precision in roughly equiv-
alent ways for different computer systems without specifying the precision

10.1 Digital Representation of Numeric Data 391

exactly. Full precision is roughly equivalent to Fortran double precision on
the common 32-bit workstations and to Fortran real on “supercomputers”
and other 64-bit machines. Half precision corresponds roughly to Fortran real
on the common 32-bit workstations. Full and half precision can be handled in
a portable way in Fortran 90 and subsequent versions of Fortran. The follow-
ing statements declare a variable x to be one with full precision:

integer, parameter :: full = selected_real_kind(15,307)
real (full) :: x

In a construct of this kind, the user can define “full” or “half” as appropriate.

Determining the Numerical Characteristics of a Particular
Computer

The environmental inquiry program MACHAR by Cody (1988) can be used
to determine the characteristics of a specific computer’s floating-point rep-
resentation and its arithmetic. The program, which is available in CALGO
from netlib (see page 505 in the Bibliography), was written in Fortran 77
and has been translated into C and R. In R, the results on a given system are
stored in the variable .Machine. Other R objects that provide information
on a computer’s characteristics are the variable .Platform and the function
capabilities.

10.1.4 Other Variations in the Representation of Data;
Portability of Data

As we have indicated already, computer designers have a great deal of latitude
in how they choose to represent data. The ASCII standards of ANSI and ISO
have provided a common representation for individual characters. The IEEE
standard 754 referred to previously (IEEE, 1985) has brought some standard-
ization to the representation of floating-point data but does not specify how
the available bits are to be allocated among the sign, exponent, and signifi-
cand.

Because the number of bits used as the basic storage unit has generally
increased over time, some computer designers have arranged small groups of
bits, such as bytes, together in strange ways to form words. There are two
common schemes of organizing bits into bytes and bytes into words. In one
scheme, called “big end” or “big endian”, the bits are indexed from the “left”,
or most significant, end of the byte, and bytes are indexed within words and
words are indexed within groups of words in the same direction.

In another scheme, called “little end” or “little endian”, the bytes are
indexed within the word in the opposite direction. Figures 10.11 through 10.13
illustrate some of the differences, using the program shown in Figure 10.10.

392 10 Numerical Methods

character a

character*4 b

integer i, j

equivalence (b,i), (a,j)

print ’(10x, a7 , a8)’, ’ Bits ’, ’ Value’

a = ’a’

print ’(1x, a10, z2, 7x, a1)’, ’a: ’, a, a

print ’(1x, a10, z8, 1x, i12)’, ’j (=a): ’, j, j

b = ’abcd’

print ’(1x, a10, z8, 1x, a4)’, ’b: ’, b, b

print ’(1x, a10, z8, 1x, i12)’, ’i (=b): ’, i, i

end

Fig. 10.10. A Fortran Program Illustrating Bit and Byte Organization

Bits Value

a: 61 a

j (=a): 61 97

b: 64636261 abcd

i (=b): 64636261 1684234849

Fig. 10.11. Output from a Little Endian System (VAX Running Unix or VMS)

Bits Value

a: 61 a

j (=a): 00000061 97

b: 61626364 abcd

i (=b): 64636261 1684234849

Fig. 10.12. Output from a Little Endian System (Intel x86, Pentium, or AMD,
Running Microsoft Windows)

Bits Value

a: 61 a

j (=a): 61000000 1627389952

b: 61626364 abcd

i (=b): 61626364 1633837924

Fig. 10.13. Output from a Big Endian System (Sun SPARC or Silicon Graphics,
Running Unix)

The R function .Platform provides information on the type of endian of the
given machine on which the program is running.

These differences are important only when accessing the individual bits
and bytes, when making data type transformations directly, or when mov-
ing data from one machine to another without interpreting the data in the

10.2 Computer Operations on Numeric Data 393

process (“binary transfer”). One lesson to be learned from observing such
subtle differences in the way the same quantities are treated in different com-
puter systems is that programs should rarely rely on the inner workings of
the computer. A program that does will not be portable; that is, it will not
give the same results on different computer systems. Programs that are not
portable may work well on one system, and the developers of the programs
may never intend for them to be used anywhere else. As time passes, however,
systems change or users change systems. When that happens, the programs
that were not portable may cost more than they ever saved by making use of
computer-specific features.

The external data representation, or XDR, standard format, developed by
Sun Microsystems for use in remote procedure calls, is a widely used machine-
independent standard for binary data structures.

10.2 Computer Operations on Numeric Data

As we have emphasized above, the numerical quantities represented in the
computer are used to simulate or approximate more interesting quantities,
namely the real numbers or perhaps the integers. Obviously, because the sets
(computer numbers and real numbers) are not the same, we could not de-
fine operations on the computer numbers that would yield the same field as
the familiar field of the reals. In fact, because of the nonuniform spacing of
floating-point numbers, we would suspect that some of the fundamental prop-
erties of a field may not hold. Depending on the magnitudes of the quantities
involved, it is possible, for example, that if we compute ab and ac and then
ab + ac, we may not get the same thing as if we compute (b + c) and then
a(b + c). Just as we use the computer quantities to simulate real quantities,
we define operations on the computer quantities to simulate the familiar oper-
ations on real quantities. Designers of computers attempt to define computer
operations so as to correspond closely to operations on real numbers, but we
must not lose sight of the fact that the computer uses a different arithmetic
system.

The basic operational objective in numerical computing, of course, is that
a computer operation, when applied to computer numbers, yield computer
numbers that approximate the number that would be yielded by a certain
mathematical operation applied to the numbers approximated by the original
computer numbers. Just as we introduced the notation

[x]c

on page 380 to denote the computer floating-point number approximation to
the real number x, we occasionally use the notation

[◦]c

394 10 Numerical Methods

to refer to a computer operation that simulates the mathematical operation ◦.
Thus,

[+]c

represents an operation similar to addition but that yields a result in a set of
computer numbers. (We use this notation only where necessary for emphasis,
however, because it is somewhat awkward to use it consistently.) The failure
of the familiar laws of the field of the reals, such as the distributive law cited
above, can be anticipated by noting that

[[a]c [+]c [b]c]c �= [a + b]c,

or by considering the simple example in which all numbers are rounded to one
decimal and so 1

3 + 1
3 �= 2

3 (that is, .3 + .3 �= .7).
The three familiar laws of the field of the reals (commutativity of addition

and multiplication, associativity of addition and multiplication, and distrib-
ution of multiplication over addition) result in the independence of the order
in which operations are performed; the failure of these laws implies that the
order of the operations may make a difference. When computer operations
are performed sequentially, we can usually define and control the sequence
fairly easily. If the computer performs operations in parallel, the resulting
differences in the orders in which some operations may be performed can
occasionally yield unexpected results.

Because the operations are not closed, special notice may need to be taken
when the operation would yield a number not in the set. Adding two num-
bers, for example, may yield a number too large to be represented well by
a computer number, either fixed-point or floating-point. When an operation
yields such an anomalous result, an exception is said to exist.

The computer operations for the two different types of computer numbers
are different, and we discuss them separately.

10.2.1 Fixed-Point Operations

The operations of addition, subtraction, and multiplication for fixed-point
numbers are performed in an obvious way that corresponds to the similar
operations on the ring of integers. Subtraction is addition of the additive
inverse. (In the usual twos-complement representation we described earlier, all
fixed-point numbers have additive inverses except −2k−1.) Because there is no
multiplicative inverse, however, division is not multiplication by the inverse.
The result of division with fixed-point numbers is the result of division with
the corresponding real numbers rounded toward zero. This is not considered
an exception.

As we indicated above, the set of fixed-point numbers together with addi-
tion and multiplication is not the same as the ring of integers, if for no other
reason than that the set is finite. Under the ordinary definitions of addition
and multiplication, the set is not closed under either operation. The computer

10.2 Computer Operations on Numeric Data 395

operations of addition and multiplication, however, are defined so that the set
is closed. These operations occur as if there were additional higher-order bits
and the sign bit were interpreted as a regular numeric bit. The result is then
whatever would be in the standard number of lower-order bits. If the lost
higher-order bits are necessary, the operation is said to overflow. If fixed-
point overflow occurs, the result is not correct under the usual interpretation
of the operation, so an error situation, or an exception, has occurred. Most
computer systems allow this error condition to be detected, but most software
systems do not take note of the exception. The result, of course, depends on
the specific computer architecture. On many systems, aside from the interpre-
tation of the sign bit, the result is essentially the same as would result from a
modular reduction. There are some special-purpose algorithms that actually
use this modified modular reduction, although such algorithms would not be
portable across different computer systems.

10.2.2 Floating-Point Operations

As we have seen, real numbers within the allowable range may or may not
have an exact floating-point operation, and the computer operations on the
computer numbers may or may not yield numbers that represent exactly the
real number that would result from mathematical operations on the numbers.
If the true result is r, the best we could hope for would be [r]c. As we have
mentioned, however, the computer operation may not be exactly the same as
the mathematical operation being simulated, and furthermore, there may be
several operations involved in arriving at the result. Hence, we expect some
error in the result.

Errors

If the computed value is r̃ (for the true value r), we speak of the absolute
error,

|r̃ − r|,
and the relative error,

|r̃ − r|
|r|

(so long as r �= 0). An important objective in numerical computation obviously
is to ensure that the error in the result is small.

We will discuss error in floating-point computations further in Section 10.3.1.

Guard Digits and Chained Operations

Ideally, the result of an operation on two floating-point numbers would be the
same as if the operation were performed exactly on the two operands (consid-
ering them to be exact also) and the result was then rounded. Attempting to

396 10 Numerical Methods

do this would be very expensive in both computational time and complexity
of the software. If care is not taken, however, the relative error can be very
large. Consider, for example, a floating-point number system with b = 2 and
p = 4. Suppose we want to add 8 and −7.5. In the floating-point system, we
would be faced with the problem

8 : 1.000 × 23

7.5 : 1.111 × 22.

To make the exponents the same, we have

8 : 1.000 × 23

7.5 : 0.111 × 23 or
8 : 1.000 × 23

7.5 : 1.000 × 23.

The subtraction will yield either 0.0002 or 1.0002 × 20, whereas the correct
value is 1.0002 × 2−1. Either way, the absolute error is 0.510, and the relative
error is 1. Every bit in the significand is wrong. The magnitude of the error
is the same as the magnitude of the result. This is not acceptable. (More
generally, we could show that the relative error in a similar computation could
be as large as b− 1 for any base b.) The solution to this problem is to use one
or more guard digits. A guard digit is an extra digit in the significand that
participates in the arithmetic operation. If one guard digit is used (and this
is the most common situation), the operands each have p + 1 digits in the
significand. In the example above, we would have

8 : 1.0000 × 23

7.5 : 0.1111 × 23,

and the result is exact. In general, one guard digit can ensure that the relative
error is less than 2εmax. The use of guard digits requires that the operands
be stored in special storage units. Whenever multiple operations are to be
performed together, the operands and intermediate results can all be kept
in the special registers to take advantage of the guard digits or even longer
storage units. This is called chaining of operations.

Addition of Several Numbers

When several numbers xi are to be summed, it is likely that as the operations
proceed serially, the magnitudes of the partial sum and the next summand
will be quite different. In such a case, the full precision of the next summand
is lost. This is especially true if the numbers are of the same sign. As we
mentioned earlier, a computer program to implement serially the algorithm
implied by

∑∞
i=1 i will converge to some number much smaller than the largest

floating-point number.
If the numbers to be summed are not all the same constant (and if they

are constant, just use multiplication!), the accuracy of the summation can

10.2 Computer Operations on Numeric Data 397

be increased by first sorting the numbers and summing them in order of
increasing magnitude. If the numbers are all of the same sign and have roughly
the same magnitude, a pairwise “fan-in” method may yield good accuracy. In
the fan-in method, the n numbers to be summed are added two at a time to
yield (n/2) partial sums. The partial sums are then added two at a time, and
so on, until all sums are completed. The name “fan-in” comes from the tree
diagram of the separate steps of the computations:

s
(1)
1 = x1 + x2 s

(1)
2 = x3 + x4 . . . s

(1)
2m−1 = x4m−3 + x4m−2 s

(1)
2m = . . .

↘ ↙ . . . ↘ ↙ . . .

s
(2)
1 = s

(1)
1 + s

(1)
2 . . . s

(2)
m = s

(1)
2m−1 + s

(1)
2m . . .

↘ . . . ↓ . . .

s
(3)
1 = s

(2)
1 + s

(2)
2

It is likely that the numbers to be added will be of roughly the same magnitude
at each stage. Remember we are assuming they have the same sign initially;
this would be the case, for example, if the summands are squares.

Another way that is even better is due to W. Kahan:

s = x1

a = 0
for i = 2, . . . , n
{

y = xi − a
t = s + y
a = (t − s) − y
s = t

}.

(10.2)

Catastrophic Cancellation

Another kind of error that can result because of the finite precision used
for floating-point numbers is catastrophic cancellation. This can occur when
two rounded values of approximately equal magnitude and opposite signs are
added. (If the values are exact, cancellation can also occur, but it is benign.)
After catastrophic cancellation, the digits left are just the digits that repre-
sented the rounding. Suppose x ≈ y and that [x]c = [y]c. The computed result
will be zero, whereas the correct (rounded) result is [x−y]c. The relative error
is 100%. This error is caused by rounding, but it is different from the “round-
ing error” discussed above. Although the loss of information arising from the
rounding error is the culprit, the rounding would be of little consequence were
it not for the cancellation.

To avoid catastrophic cancellation, watch for possible additions of quanti-
ties of approximately equal magnitude and opposite signs, and consider rear-
ranging the computations. Consider the problem of computing the roots of a
quadratic polynomial, ax2 + bx + c (see Rice, 1993). In the quadratic formula

398 10 Numerical Methods

x =
−b ±

√
b2 − 4ac

2a
, (10.3)

the square root of the discriminant, (b2−4ac), may be approximately equal to
b in magnitude, meaning that one of the roots is close to zero and, in fact, may
be computed as zero. The solution is to compute only one of the roots, x1, by
the formula (the “−” root if b is positive and the “+” root if b is negative)
and then compute the other root, x2 by the relationship x1x2 = c/a.

Standards for Floating-Point Operations

The IEEE Binary Standard 754 (IEEE, 1985) applies not only to the represen-
tation of floating-point numbers but also to certain operations on those num-
bers. The standard requires correct rounded results for addition, subtraction,
multiplication, division, remaindering, and extraction of the square root. It
also requires that conversion between fixed-point numbers and floating-point
numbers yield correct rounded results.

The standard also defines how exceptions should be handled. The excep-
tions are divided into five types: overflow, division by zero, underflow, invalid
operation, and inexact operation. If an operation on floating-point numbers
would result in a number beyond the range of representable floating-point
numbers, the exception, called overflow, is generally very serious. (It is se-
rious in fixed-point operations also if it is unplanned. Because we have the
alternative of using floating-point numbers if the magnitude of the numbers is
likely to exceed what is representable in fixed-point numbers, the user is ex-
pected to use this alternative. If the magnitude exceeds what is representable
in floating-point numbers, however, the user must resort to some indirect
means, such as scaling, to solve the problem.)

Division by zero does not cause overflow; it results in a special number if
the dividend is nonzero. The result is either ∞ or −∞, and these have special
representations, as we have seen.

Underflow occurs whenever the result is too small to be represented as a
normalized floating-point number. As we have seen, a nonnormalized repre-
sentation can be used to allow a gradual underflow.

An invalid operation is one for which the result is not defined because of
the value of an operand. The invalid operations are addition of ∞ to −∞,
multiplication of ±∞ and 0, 0 divided by 0 or by ±∞, ±∞ divided by 0 or by
±∞, extraction of the square root of a negative number (some systems, such
as Fortran, have a special type for complex numbers and deal correctly with
them), and remaindering any quantity with 0 or remaindering ±∞ with any
quantity. An invalid operation results in a NaN. Any operation with a NaN
also results in a NaN. Some systems distinguish two types of NaN: a “quiet
NaN” and a “signaling NaN”.

An inexact operation is one for which the result must be rounded. For
example, if all p bits of the significand are required to represent both the

10.2 Computer Operations on Numeric Data 399

multiplier and multiplicand, approximately 2p bits would be required to rep-
resent the product. Because only p are available, however, the result must be
rounded.

Conformance to the IEEE Binary Standard 754 does not ensure that the
results of multiple floating-point computations will be the same on all com-
puters. The standard does not specify the order of the computations, and
differences in the order can change the results. The slight differences are usu-
ally unimportant, but Blackford et al. (1997a) describe some examples of
problems that occurred when computations were performed in parallel using
a heterogeneous network of computers all of which conformed to the IEEE
standard. See also Gropp (2005) for further discussion of some of these issues.

Comparison of Reals and Floating-Point Numbers

For most applications, the system of floating-point numbers simulates the
field of the reals very well. It is important, however, to be aware of some of
the differences in the two systems. There is a very obvious useful measure
for the reals, namely the Lebesgue measure, µ, based on lengths of open
intervals. An approximation of this measure is appropriate for floating-point
numbers, even though the set is finite. The finiteness of the set of floating-point
numbers means that there is a difference in the cardinality of an open interval
and a closed interval with the same endpoints. The uneven distribution of
floating-point values relative to the reals (Figures 10.4 and 10.5) means that
the cardinalities of two interval-bounded sets with the same interval length
may be different. On the other hand, a counting measure does not work well
at all.

Some general differences in the two systems are exhibited in Table 10.3.
The last four properties in Table 10.3 are properties of a field (except for the
divergence of

∑∞
x=1 x). The important facts are that IR is an uncountable field

and that IF is a more complicated finite mathematical structure.

10.2.3 Exact Computations; Rational Fractions

If the input data can be represented exactly as rational fractions, it may be
possible to preserve exact values of the results of computations. Using rational
fractions allows avoidance of reciprocation, which is the operation that most
commonly yields a nonrepresentable value from one that is representable. Of
course, any addition or multiplication that increases the magnitude of an
integer in a rational fraction beyond a value that can be represented exactly
(that is, beyond approximately 223, 231, or 253, depending on the computing
system) may break the error-free chain of operations. Exact computations with
integers can be carried out using residue arithmetic, in which each quantity is
as a vector of residues, all from a vector of relatively prime moduli. (See Szabó
and Tanaka, 1967, for a discussion of the use of residue arithmetic in numerical

400 10 Numerical Methods

Table 10.3. Differences in Real Numbers and Floating-Point Numbers

IR IF

cardinality: uncountable finite

measure: µ((x, y)) = |x − y| ν((x, y)) = ν([x, y]) = |x− y|
µ((x, y)) = µ([x, y]) ∃ x, y, z, w � |x− y| = |z− w|,

but #(x, y) �= #(z, w)

continuity: if x < y, ∃z � x < z < y x < y, but no z � x < z < y

and and

µ([x, y]) = µ((x, y)) #[x, y] > #(x, y)

closure: x, y ∈ IR ⇒ x + y ∈ IR not closed wrt addition

x, y ∈ IR ⇒ xy ∈ IR not closed wrt multiplication
(exclusive of infinities)

operations a = 0, unique a + x = b + x, but b �= a

with an a + x = x, for any x a + x = x, but a + y �= y

identity, a or a: x − x = a, for any x a + x = x, but x− x �= a

convergence
∑∞

x=1 x diverges
∑∞

x=1 x converges,
if interpreted as
(· · · ((1 + 2) + 3) · · ·)

associativity: x, y, z ∈ IR ⇒
(x + y) + z = x + (y + z) not associative

(xy)z = x(yz) not associative

distributivity: x, y, z ∈ IR ⇒
x(y + z) = xy + xz not distributive

10.2 Computer Operations on Numeric Data 401

computations; and see Stallings and Boullion, 1972, and Keller-McNulty and
Kennedy, 1986, for applications of this technology in matrix computations.)

Computations with rational fractions are sometimes performed using a
fixed-point representation. Gregory and Krishnamurthy (1984) discuss in de-
tail these and other methods for performing error-free computations.

10.2.4 Language Constructs for Operations
on Numeric Data

Most general-purpose computer programming languages, such as Fortran and
C, provide constructs for operations that correspond to the common opera-
tions on scalar numeric data, such as “+”, “-”, “*” (multiplication), and “/”.
These operators simulate the corresponding mathematical operations. As we
mentioned on page 393, we will occasionally use notation such as

[+]c

to indicate the computer operator. The operators have slightly different mean-
ings depending on the operand objects; that is, the operations are “over-
loaded”. Most of these operators are binary infix operators, meaning that the
operator is written between the two operands.

Some languages provide operations beyond the four basic scalar arith-
metic operations. C provides some specialized operations, such as the unary
postfix increment “++” and decrement “--” operators, for trivial common
operations but does not provide an operator for exponentiation. (Exponenti-
ation is handled by a function provided in a standard supplemental library
in C, <math.h>.) C also overloads the basic multiplication operator so that it
can indicate a change of meaning of a variable in addition to indicating the
multiplication of two scalar numbers. A standard library in C (<signal.h>)
allows easy handling of arithmetic exceptions. With this facility, for example,
the user can distinguish a quiet NaN from a signaling NaN.

The C language does not directly provide for operations on special data
structures. For operations on complex data, for example, the user must define
the type and its operations in a header file (or else, of course, just do the
operations as if they were operations on an array of length 2).

Fortran provides the four basic scalar numeric operators plus an exponen-
tiation operator (“**”). (Exactly what this operator means may be slightly
different in different versions of Fortran. Some versions interpret the operator
always to mean

1. take log
2. multiply by power
3. exponentiate

if the base and the power are both floating-point types. This, of course, will
not work if the base is negative, even if the power is an integer. Most ver-
sions of Fortran will determine at run time if the power is an integer and use
repeated multiplication if it is.)

402 10 Numerical Methods

Fortran also provides the usual five operators for complex data (the ba-
sic four plus exponentiation). Fortran 90 and subsequent versions of Fortran
provide the same set of scalar numeric operators plus a basic set of array and
vector/matrix operators. The usual vector/matrix operators are implemented
as functions or prefix operators in Fortran 95.

In addition to the basic arithmetic operators, both Fortran and C, as
well as other general programming languages, provide several other types
of operators, including relational operators and operators for manipulating
structures of data.

Multiple Precision

Software packages have been built on Fortran and C to extend their accuracy.
Two ways in which this is done are by using multiple precision and by using
interval arithmetic.

Multiple-precision operations are performed in the software by combining
more than one computer-storage unit to represent a single number. For ex-
ample, to operate on x and y, we may represent x as a · 10p + b and y as
c ·10p +d. The product xy then is formed as ac ·102p +(ad+bc) ·10p +bd. The
representation is chosen so that any of the coefficients of the scaling factors
(in this case powers of 10) can be represented to within the desired accuracy.

Multiple precision is different from “extended precision”, discussed earlier;
extended precision is implemented at the hardware level or at the microcode
level. Brent (1978) and Smith (1991) have produced Fortran packages for
multiple-precision computations, and Bailey (1993, 1995) gives software for
instrumenting Fortran code to use multiple-precision operations.

A multiple-precision package may allow the user to specify the number of
digits to use in representing data and performing computations. The software
packages for symbolic computations, such as Maple, generally provide multiple
precision capabilities.

Interval Arithmetic

Interval arithmetic maintains intervals in which the exact data and solution
are known to lie. Instead of working with single-point approximations, for
which we used notation such as

[x]c

on page 380 for the value of the floating-point approximation to the real
number x and

[◦]c
on page 393 for the simulated operation ◦, we can approach the problem by
identifying a closed interval in which x lies and a closed interval in which the
result of the operation ◦ lies. We denote the interval operation as

10.3 Numerical Algorithms and Analysis 403

[◦]I .

For the real number x, we identify two floating-point numbers, xl and xu,
such that xl ≤ x ≤ xu. (This relationship also implies xl ≤ [x]c ≤ xu.) The
real number x is then considered to be the interval [xl, xu]. For this approach
to be useful, of course, we seek tight bounds. If x = [x]c, the best interval is
degenerate. In other cases, either xl or xc is [x]c and the length of the interval
is the floating-point spacing from [x]c in the appropriate direction.

Addition and multiplication in interval arithmetic yield intervals

x [+]I y = [xl + yl, xu + yu]

and

x [∗]I y = [min(xlyl, xlyu, xuyl, xuyu), max(xlyl, xlyu, xuyl, xuyu)].

A change of sign results in [−xu, −xl] and if 0 �∈ [xl, xu], reciprocation re-
sults in [1/xu, 1/xl]. See Moore (1979) or Alefeld and Herzberger (1983) for
discussions of these kinds of operations and an extensive treatment of interval
arithmetic. The journal Reliable Computing is devoted to interval computa-
tions. The book edited by Kearfott and Kreinovich (1996) addresses various
aspects of interval arithmetic. One chapter in that book, by Walster (1996),
discusses how both hardware and system software could be designed to im-
plement interval arithmetic.

Most software support for interval arithmetic is provided through subrou-
tine libraries. The ACRITH package of IBM (see Jansen and Weidner, 1986) is
a library of Fortran subroutines that perform computations in interval arith-
metic and also in extended precision. Kearfott et al. (1994) have produced a
portable Fortran library of basic arithmetic operations and elementary func-
tions in interval arithmetic, and Kearfott (1996) gives a Fortran 90 module
defining an interval data type. Jaulin et al. (2001) give additional sources of
software. Sun Microsystems Inc. has provided full intrinsic support for inter-
val data types in their Fortran compiler SunTM ONE Studio Fortran 95; see
Walster (2005) for a description of the compiler extensions.

10.3 Numerical Algorithms and Analysis

We will use the term “algorithm” rather loosely but always in the general
sense of a method or a set of instructions for doing something. (Formally,
an “algorithm” must terminate; however, respecting that definition would
not allow us to refer to a method as an algorithm until it has been proven
to terminate.) Algorithms are sometimes distinguished as “numerical”, “semi-
numerical”, and “nonnumerical”, depending on the extent to which operations
on real numbers are simulated.

404 10 Numerical Methods

Algorithms and Programs

Algorithms are expressed by means of a flowchart, a series of steps, or in a
computer language or pseudolanguage. The expression in a computer language
is a source program or module; hence, we sometimes use the words “algorithm”
and “program” synonymously.

The program is the set of computer instructions that implement the algo-
rithm. A poor implementation can render a good algorithm useless. A good
implementation will preserve the algorithm’s accuracy and efficiency and will
detect data that are inappropriate for the algorithm. Robustness is more a
property of the program than of the algorithm.

The exact way an algorithm is implemented in a program depends of course
on the programming language, but it also may depend on the computer and
associated system software. A program that will run on most systems without
modification is said to be portable.

The two most important aspects of a computer algorithm are its accuracy
and its efficiency. Although each of these concepts appears rather simple on
the surface, each is actually fairly complicated, as we shall see.

10.3.1 Error in Numerical Computations

An “accurate” algorithm is one that gets the “right” answer. Knowing that
the right answer may not be representable and that rounding within a set of
operations may result in variations in the answer, we often must settle for an
answer that is “close”. As we have discussed previously, we measure error, or
closeness, as either the absolute error or the relative error of a computation.

Another way of considering the concept of “closeness” is by looking back-
ward from the computed answer and asking what perturbation of the original
problem would yield the computed answer exactly. This approach, developed
by Wilkinson (1963), is called backward error analysis. The backward analysis
is followed by an assessment of the effect of the perturbation on the solu-
tion. Although backward error analysis may not seem as natural as “forward”
analysis (in which we assess the difference between the computed and true so-
lutions), it is easier to perform because all operations in the backward analy-
sis are performed in IF instead of in IR. Each step in the backward analysis
involves numbers in the set IF, that is, numbers that could actually have par-
ticipated in the computations that were performed. Because the properties of
the arithmetic operations in IR do not hold and, at any step in the sequence
of computations, the result in IF may not exist in IR, it is very difficult to
carry out a forward error analysis.

There are other complications in assessing errors. Suppose the answer is
a vector, such as a solution to a linear system. What norm do we use to
compare the closeness of vectors? Another, more complicated situation for
which assessing correctness may be difficult is random number generation. It
would be difficult to assign a meaning to “accuracy” for such a problem.

10.3 Numerical Algorithms and Analysis 405

The basic source of error in numerical computations is the inability to work
with the reals. The field of reals is simulated with a finite set. This has several
consequences. A real number is rounded to a floating-point number; the result
of an operation on two floating-point numbers is rounded to another floating-
point number; and passage to the limit, which is a fundamental concept in
the field of reals, is not possible in the computer.

Rounding errors that occur just because the result of an operation is not
representable in the computer’s set of floating-point numbers are usually not
too bad. Of course, if they accumulate through the course of many operations,
the final result may have an unacceptably large accumulated rounding error.

A natural approach to studying errors in floating-point computations is
to define random variables for the rounding at all stages, from the initial
representation of the operands, through any intermediate computations, to
the final result. Given a probability model for the rounding error in the rep-
resentation of the input data, a statistical analysis of rounding errors can
be performed. Wilkinson (1963) introduced a uniform probability model for
rounding of input and derived distributions for computed results based on
that model. Linnainmaa (1975) discusses the effects of accumulated errors in
floating-point computations based on a more general model of the rounding
for the input. This approach leads to a forward error analysis that provides a
probability distribution for the error in the final result. Analysis of errors in
fixed-point computations presents altogether different problems because, for
values near 0, the relative errors cannot approach 0 in any realistic manner.

The obvious probability model for floating-point representations is that
the reals within an interval between any two floating-point numbers have
a uniform distribution (see Figure 10.4 on page 382 and Calvetti, 1991). A
probability model for the real line can be built up as a mixture of the uniform
distributions (see Exercise 10.9 on page 424). The density is obviously 0 in
the tails. While a model based on simple distributions may be appropriate
for the rounding error due to the finite-precision representation of real num-
bers, probability models for rounding errors in floating point computations are
not so simple. This is because the rounding errors in computations are not
random. See Chaitin-Chatelin and Frayssé (1996) for a further discussion of
probability models for rounding errors. Dempster and Rubin (1983) discuss
the application of statistical methods for dealing with grouped data to the
data resulting from rounding in floating-point computations.

Another, more pernicious, effect of rounding can occur in a single oper-
ation, resulting in catastrophic cancellation, as we have discussed previously
(see page 397).

Measures of Error and Bounds for Errors

For the simple case of representing the real number r by an approximation
r̃, we define absolute error, |r̃ − r|, and relative error, |r̃ − r|/|r| (so long
as r �= 0). These same types of measures are used to express the errors in

406 10 Numerical Methods

numerical computations. As we indicated above, however, the result may not
be a simple real number; it may consist of several real numbers. For example,
in statistical data analysis, the numerical result, r̃, may consist of estimates
of several regression coefficients, various sums of squares and their ratio, and
several other quantities. We may then be interested in some more general
measure of the difference of r̃ and r,

∆(r̃, r),

where ∆(·, ·) is a nonnegative, real-valued function. This is the absolute error,
and the relative error is the ratio of the absolute error to ∆(r, r0), where r0

is a baseline value, such as 0. When r, instead of just being a single number,
consists of several components, we must measure error differently. If r is a
vector, the measure may be based on some norm, and in that case, ∆(r̃, r)
may be denoted by ‖(r̃ − r)‖. A norm tends to become larger as the number
of elements increases, so instead of using a raw norm, it may be appropriate
to scale the norm to reflect the number of elements being computed.

However the error is measured, for a given algorithm, we would like to have
some knowledge of the amount of error to expect or at least some bound on the
error. Unfortunately, almost any measure contains terms that depend on the
quantity being evaluated. Given this limitation, however, often we can develop
an upper bound on the error. In other cases, we can develop an estimate of an
“average error” based on some assumed probability distribution of the data
comprising the problem. In a Monte Carlo method, we estimate the solution
based on a “random” sample, so just as in ordinary statistical estimation,
we are concerned about the variance of the estimate. We can usually derive
expressions for the variance of the estimator in terms of the quantity being
evaluated, and of course we can estimate the variance of the estimator using
the realized random sample. The standard deviation of the estimator provides
an indication of the distance around the computed quantity within which we
may have some confidence that the true value lies. The standard deviation is
sometimes called the “standard error”, and nonstatisticians speak of it as a
“probabilistic error bound”.

It is often useful to identify the “order of the error” whether we are con-
cerned about error bounds, average expected error, or the standard deviation
of an estimator. In general, we speak of the order of one function in terms of
another function as a common argument of the functions approaches a given
value. A function f(t) is said to be of order g(t) at t0, written O(g(t)) (“big O
of g(t)”), if there exists a positive constant M such that

|f(t)| ≤ M |g(t)| as t → t0.

This is the order of convergence of one function to another function at a given
point.

If our objective is to compute f(t) and we use an approximation f̃(t), the
order of the error due to the approximation is the order of the convergence.

10.3 Numerical Algorithms and Analysis 407

In this case, the argument of the order of the error may be some variable that
defines the approximation. For example, if f̃(t) is a finite series approximation
to f(t) using, say, k terms, we may express the error as O(h(k)) for some func-
tion h(k). Typical orders of errors due to the approximation may be O(1/k),
O(1/k2), or O(1/k!). An approximation with order of error O(1/k!) is to be
preferred over one order of error O(1/k) because the error is decreasing more
rapidly. The order of error due to the approximation is only one aspect to
consider; roundoff error in the representation of any intermediate quantities
must also be considered.

We will discuss the order of error in iterative algorithms further in Sec-
tion 10.3.3 beginning on page 417. (We will discuss order also in measuring
the speed of an algorithm in Section 10.3.2.)

The special case of convergence to the constant zero is often of interest. A
function f(t) is said to be “little o of g(t)” at t0, written o(g(t)), if

f(t)/g(t) → 0 as t → t0.

If the function f(t) approaches 0 at t0, g(t) can be taken as a constant and
f(t) is said to be o(1).

Big O and little o convergences are defined in terms of dominating func-
tions. In the analysis of algorithms, it is often useful to consider analogous
types of convergence in which the function of interest dominates another func-
tion. This type of relationship is similar to a lower bound. A function f(t) is
said to be Ω(g(t)) (“big omega of g(t)”) if there exists a positive constant m
such that

|f(t)| ≥ m|g(t)| as t → t0.

Likewise, a function f(t) is said to be “little omega of g(t)” at t0, written
ω(g(t)), if

g(t)/f(t) → 0 as t → t0.

Usually the limit on t in order expressions is either 0 or ∞, and because it
is obvious from the context, mention of it is omitted. The order of the error
in numerical computations usually provides a measure in terms of something
that can be controlled in the algorithm, such as the point at which an infinite
series is truncated in the computations. The measure of the error usually also
contains expressions that depend on the quantity being evaluated, however.

Error of Approximation

Some algorithms are exact, such as an algorithm to multiply two matrices that
just uses the definition of matrix multiplication. Other algorithms are approx-
imate because the result to be computed does not have a finite closed-form
expression. An example is the evaluation of the normal cumulative distribution
function. One way of evaluating this is by using a rational polynomial approxi-
mation to the distribution function. Such an expression may be evaluated with
very little rounding error, but the expression has an error of approximation.

408 10 Numerical Methods

When solving a differential equation on the computer, the differential equa-
tion is often approximated by a difference equation. Even though the differ-
ences used may not be constant, they are finite and the passage to the limit
can never be effected. This kind of approximation leads to a discretization
error. The amount of the discretization error has nothing to do with rounding
error. If the last differences used in the algorithm are δt, then the error is
usually of order O(δt), even if the computations are performed exactly.

Another type of error of approximation occurs when the algorithm uses
a series expansion. The series may be exact, and in principle the evaluation
of all terms would yield an exact result. The algorithm uses only a smaller
number of terms, and the resulting error is truncation error. This is the type of
error we discussed in connection with Fourier expansions on pages 30 and 76.
Often the exact expansion is an infinite series, and we approximate it with
a finite series. When a truncated Taylor series is used to evaluate a function
at a given point x0, the order of the truncation error is the derivative of the
function that would appear in the first unused term of the series, evaluated
at x0.

We need to have some knowledge of the magnitude of the error. For al-
gorithms that use approximations, it is often useful to express the order of
the error in terms of some quantity used in the algorithm or in terms of some
aspect of the problem itself. We must be aware, however, of the limitations
of such measures of the errors or error bounds. For an oscillating function,
for example, the truncation error may never approach zero over any nonzero
interval.

Algorithms and Data

The performance of an algorithm may depend on the data. We have seen that
even the simple problem of computing the roots of a quadratic polynomial,
ax2 + bx + c, using the quadratic formula, equation (10.3), can lead to severe
cancellation. For many values of a, b, and c, the quadratic formula works per-
fectly well. Data that are likely to cause computational problems are referred
to as ill-conditioned data, and, more generally, we speak of the “condition”
of data. The concept of condition is understood in the context of a particular
set of operations. Heuristically, data for a given problem are ill-conditioned if
small changes in the data may yield large changes in the solution.

Consider the problem of finding the roots of a high-degree polynomial,
for example. Wilkinson (1959) gave an example of a polynomial that is very
simple on the surface yet whose solution is very sensitive to small changes of
the values of the coefficients:

f(x) = (x − 1)(x − 2) · · · (x − 20)
= x20 − 210x19 + · · · + 20!.

While the solution is easy to see from the factored form, the solution is
very sensitive to perturbations of the coefficients. For example, changing the

10.3 Numerical Algorithms and Analysis 409

coefficient 210 to 210 + 2−23 changes the roots drastically; in fact, ten of
them are now complex. Of course, the extreme variation in the magnitudes
of the coefficients should give us some indication that the problem may be
ill-conditioned.

Condition of Data

We attempt to quantify the condition of a set of data for a particular set of
operations by means of a condition number. Condition numbers are defined
to be positive and in such a way that large values of the numbers mean that
the data or problems are ill-conditioned. A useful condition number for the
problem of finding roots of a function can be defined to be increasing as the
reciprocal of the absolute value of the derivative of the function in the vicinity
of a root.

In the solution of a linear system of equations, the coefficient matrix de-
termines the condition of this problem. The most commonly used condition
number is the number associated with a matrix with respect to the prob-
lem of solving a linear system of equations. This is the number we discuss in
Section 6.4 on page 218.

Condition numbers are only indicators of possible numerical difficulties for
a given problem. They must be used with some care. For example, according
to the condition number for finding roots based on the derivative, Wilkinson’s
polynomial is well-conditioned.

Robustness of Algorithms

The ability of an algorithm to handle a wide range of data and either to solve
the problem as requested or to determine that the condition of the data does
not allow the algorithm to be used is called the robustness of the algorithm.

Stability of Algorithms

Another concept that is quite different from robustness is stability. An algo-
rithm is said to be stable if it always yields a solution that is an exact solution
to a perturbed problem; that is, for the problem of computing f(x) using the
input data x, an algorithm is stable if the result it yields, f̃(x), is

f(x + δx)

for some (bounded) perturbation δx of x. Stated another way, an algorithm
is stable if small perturbations in the input or in intermediate computations
do not result in large differences in the results.

The concept of stability for an algorithm should be contrasted with the
concept of condition for a problem or a dataset. If a problem is ill-conditioned,

410 10 Numerical Methods

a stable algorithm (a “good algorithm”) will produce results with large dif-
ferences for small differences in the specification of the problem. This is be-
cause the exact results have large differences. An algorithm that is not sta-
ble, however, may produce large differences for small differences in the com-
puter description of the problem, which may involve rounding, truncation,
or discretization, or for small differences in the intermediate computations
performed by the algorithm.

The concept of stability arises from backward error analysis. The sta-
bility of an algorithm may depend on how continuous quantities are dis-
cretized, such as when a range is gridded for solving a differential equation.
See Higham (2002) for an extensive discussion of stability.

Reducing the Error in Numerical Computations

An objective in designing an algorithm to evaluate some quantity is to avoid
accumulated rounding error and to avoid catastrophic cancellation. In the
discussion of floating-point operations above, we have seen two examples of
how an algorithm can be constructed to mitigate the effect of accumulated
rounding error (using equations (10.2) on page 397 for computing a sum) and
to avoid possible catastrophic cancellation in the evaluation of the expres-
sion (10.3) for the roots of a quadratic equation.

Another example familiar to statisticians is the computation of the sample
sum of squares:

n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2. (10.4)

This quantity is (n − 1)s2, where s2 is the sample variance.
Either expression in equation (10.4) can be thought of as describing an

algorithm. The expression on the left-hand side implies the “two-pass” algo-
rithm:

a = x1

for i = 2, . . . , n
{

a = xi + a
}
a = a/n
b = (x1 − a)2

for i = 2, . . . , n
{

b = (xi − a)2 + b
}.

(10.5)

This algorithm yields x̄ = a and (n − 1)s2 = b. Each of the sums computed
in this algorithm may be improved by using equations (10.2). A problem
with this algorithm is the fact that it requires two passes through the data.
Because the quantities in the second summation are squares of residuals, they

10.3 Numerical Algorithms and Analysis 411

are likely to be of relatively equal magnitude. They are of the same sign, so
there will be no catastrophic cancellation in the early stages when the terms
being accumulated are close in size to the current value of b. There will be
some accuracy loss as the sum b grows, but the addends (xi − a)2 remain
roughly the same size. The accumulated rounding error, however, may not be
too bad.

The expression on the right-hand side of equation (10.4) implies the “one-
pass” algorithm:

a = x1

b = x2
1

for i = 2, . . . , n
{

a = xi + a
b = x2

i + b
}
a = a/n
b = b − na2.

(10.6)

This algorithm requires only one pass through the data, but if the xis have
magnitudes larger than 1, the algorithm has built up two relatively large
quantities, b and na2. These quantities may be of roughly equal magnitudes;
subtracting one from the other may lead to catastrophic cancellation (see
Exercise 10.16, page 426).

Another algorithm is shown in equations (10.7). It requires just one pass
through the data, and the individual terms are generally accumulated fairly
accurately. Equations (10.7) are a form of the Kalman filter (see, for example,
Grewal and Andrews, 1993).

a = x1

b = 0
for i = 2, . . . , n
{

d = (xi − a)/i
a = d + a
b = i(i − 1)d2 + b

}.

(10.7)

Chan and Lewis (1979) propose a condition number to quantify the sensi-
tivity in s, the sample standard deviation, to the data, the xis. Their condition
number is

κ =
∑n

i=1 x2
i√

n − 1s
. (10.8)

This is a measure of the “stiffness” of the data. It is clear that if the mean
is large relative to the variance, this condition number will be large. (Recall
that large condition numbers imply ill-conditioning, and also recall that condi-
tion numbers must be interpreted with some care.) Notice that this condition

412 10 Numerical Methods

number achieves its minimum value of 1 for the data xi− x̄, so if the computa-
tions for x̄ and xi − x̄ were exact, the data in the last part of the algorithm in
equations (10.5) would be perfectly conditioned. A dataset with a large mean
relative to the variance is said to be stiff.

Often when a finite series is to be evaluated, it is necessary to accumulate
a set of terms of the series that have similar magnitudes, and then combine
this with similar partial sums. It may also be necessary to scale the individual
terms by some very large or very small multiplicative constant while the terms
are being accumulated and then remove the scale after some computations
have been performed.

Chan, Golub, and LeVeque (1982) propose a modification of the algorithm
in equations (10.7) to use pairwise accumulations (as in the fan-in method dis-
cussed previously). Chan, Golub, and LeVeque (1983) make extensive com-
parisons of the methods and give error bounds based on the condition number.

10.3.2 Efficiency

The efficiency of an algorithm refers to its usage of computer resources. The
two most important resources are the processing units and memory. The
amount of time the processing units are in use and the amount of mem-
ory required are the key measures of efficiency. A limiting factor for the time
the processing units are in use is the number and type of operations required.
Some operations take longer than others; for example, the operation of adding
floating-point numbers may take more time than the operation of adding fixed-
point numbers. This, of course, depends on the computer system and on what
kinds of floating-point or fixed-point numbers we are dealing with. If we have
a measure of the size of the problem, we can characterize the performance of
a given algorithm by specifying the number of operations of each type or just
the number of operations of the slowest type.

High-Performance Computing

In “high-performance” computing, major emphasis is placed on computational
efficiency. The architecture of the computer becomes very important, and the
programs are designed to take advantage of the particular characteristics of
the computer on which they are to run. The three main architectural elements
are memory, processing units, and communication paths. A controlling unit
oversees how these elements work together. There are various ways memory
can be organized. There is usually a hierarchy of types of memory with dif-
ferent speeds of access. The various levels can also be organized into banks
with separate communication links to the processing units. There are various
types of processing units. The unit may be distributed and consist of multiple
central processing units. The units may consist of multiple processors within
the same core. The processing units may include vector processors. Dongarra

10.3 Numerical Algorithms and Analysis 413

et al. (1998) provide a good overview of the various designs and their relevance
to high-performance computing.

If more than one processing unit is available, it may be possible to perform
operations simultaneously. In this case, the amount of time required may be
drastically smaller for an efficient parallel algorithm than it would for the
most efficient serial algorithm that utilizes only one processor at a time. An
analysis of the efficiency must take into consideration how many processors
are available, how many computations can be performed in parallel, and how
often they can be performed in parallel.

Measuring Efficiency

Often, instead of the exact number of operations, we use the order of the
number of operations in terms of the measure of problem size. If n is some
measure of the size of the problem, an algorithm has order O(f(n)) if, as
n → ∞, the number of computations → cf(n), where c is some constant
that does not depend on n. For example, to multiply two n × n matrices
in the obvious way requires O(n3) multiplications and additions; to multiply
an n × m matrix and an m × p matrix requires O(nmp) multiplications and
additions. In the latter case, n, m, and p are all measures of the size of the
problem.

Notice that in the definition of order there is a constant c. Two algorithms
that have the same order may have different constants and in that case are
said to “differ only in the constant”. The order of an algorithm is a measure
of how well the algorithm “scales”; that is, the extent to which the algorithm
can deal with truly large problems.

Let n be a measure of the problem size, and let b and q be constants.
An algorithm of order O(bn) has exponential order, one of order O(nq) has
polynomial order, and one of order O(log n) has log order. Notice that for
log order it does not matter what the base is. Also, notice that O(log nq) =
O(log n). For a given task with an obvious algorithm that has polynomial
order, it is often possible to modify the algorithm to address parts of the
problem so that in the order of the resulting algorithm one n factor is replaced
by a factor of log n.

Although it is often relatively easy to determine the order of an algo-
rithm, an interesting question in algorithm design involves the order of the
problem; that is, the order of the most efficient algorithm possible. A problem
of polynomial order is usually considered tractable, whereas one of exponen-
tial order may require a prohibitively excessive amount of time for its solution.
An interesting class of problems are those for which a solution can be verified
in polynomial time yet for which no polynomial algorithm is known to ex-
ist. Such a problem is called a nondeterministic polynomial, or NP, problem.
“Nondeterministic” does not imply any randomness; it refers to the fact that
no polynomial algorithm for determining the solution is known. Most inter-
esting NP problems can be shown to be equivalent to each other in order by

414 10 Numerical Methods

reductions that require polynomial time. Any problem in this subclass of NP
problems is equivalent in some sense to all other problems in the subclass and
so such a problem is said to be NP-complete.

For many problems it is useful to measure the size of a problem in some
standard way and then to identify the order of an algorithm for the problem
with separate components. A common measure of the size of a problem is L,
the length of the stream of data elements. An n×n matrix would have length
proportional to L = n2, for example. To multiply two n × n matrices in the
obvious way requires O(L3/2) multiplications and additions, as we mentioned
above.

In analyzing algorithms for more complicated problems, we may wish to
determine the order in the form

O(f(n)g(L))

because L is an essential measure of the problem size and n may depend on
how the computations are performed. For example, in the linear programming
problem, with n variables and m constraints with a dense coefficient matrix,
there are order nm data elements. Algorithms for solving this problem gen-
erally depend on the limit on n, so we may speak of a linear programming
algorithm as being O(n3L), for example, or of some other algorithm as being
O(

√
nL). (In defining L, it is common to consider the magnitudes of the data

elements or the precision with which the data are represented, so that L is
the order of the total number of bits required to represent the data. This level
of detail can usually be ignored, however, because the limits involved in the
order are generally not taken on the magnitude of the data but only on the
number of data elements.)

The order of an algorithm (or, more precisely, the “order of operations of
an algorithm”) is an asymptotic measure of the operation count as the size
of the problem goes to infinity. The order of an algorithm is important, but
in practice the actual count of the operations is also important. In practice,
an algorithm whose operation count is approximately n2 may be more useful
than one whose count is 1000(n log n + n), although the latter would have
order O(n log n), which is much better than that of the former, O(n2). When
an algorithm is given a fixed-size task many times, the finite efficiency of the
algorithm becomes very important.

The number of computations required to perform some tasks depends not
only on the size of the problem but also on the data. For example, for most
sorting algorithms, it takes fewer computations (comparisons) to sort data
that are already almost sorted than it does to sort data that are completely
unsorted. We sometimes speak of the average time and the worst-case time of
an algorithm. For some algorithms, these may be very different, whereas for
other algorithms or for some problems these two may be essentially the same.

Our main interest is usually not in how many computations occur but
rather in how long it takes to perform the computations. Because some com-
putations can take place simultaneously, even if all kinds of computations

10.3 Numerical Algorithms and Analysis 415

required the same amount of time, the order of time could be different from
the order of the number of computations.

The actual number of floating-point operations divided by the time required
to perform the operations is called the FLOPS (floating-point operations per
second) rate. Confusingly, “FLOP” also means “floating-point operation”, and
“FLOPs” is the plural of “FLOP”. Of course, as we tend to use lowercase more
often, we must use the context to distinguish “flops” as a rate from “flops”
the plural of “flop”.

In addition to the actual processing, the data may need to be copied from
one storage position to another. Data movement slows the algorithm and may
cause it not to use the processing units to their fullest capacity. When groups
of data are being used together, blocks of data may be moved from ordinary
storage locations to an area from which they can be accessed more rapidly. The
efficiency of a program is enhanced if all operations that are to be performed
on a given block of data are performed one right after the other. Sometimes a
higher-level language prevents this from happening. For example, to add two
arrays (matrices) in Fortran 95, a single statement is sufficient:

A = B + C

Now, if we also want to add B to the array E, we may write

A = B + C
D = B + E

These two Fortran 95 statements together may be less efficient than writing
a traditional loop in Fortran or in C because the array B may be accessed
a second time needlessly. (Of course, this is relevant only if these arrays are
very large.)

Improving Efficiency

There are many ways to attempt to improve the efficiency of an algorithm.
Often the best way is just to look at the task from a higher level of detail and
attempt to construct a new algorithm. Many obvious algorithms are serial
methods that would be used for hand computations, and so are not the best
for use on the computer.

An effective general method of developing an efficient algorithm is called
divide and conquer. In this method, the problem is broken into subproblems,
each of which is solved, and then the subproblem solutions are combined into
a solution for the original problem. In some cases, this can result in a net
savings either in the number of computations, resulting in an improved order
of computations, or in the number of computations that must be performed
serially, resulting in an improved order of time.

Let the time required to solve a problem of size n be t(n), and consider
the recurrence relation

t(n) = pt(n/p) + cn

416 10 Numerical Methods

for p positive and c nonnegative. Then t(n) = O(n log n) (see Exercise 10.18,
page 426). Divide and conquer strategies can sometimes be used together with
a simple method that would be O(n2) if applied directly to the full problem
to reduce the order to O(n log n).

The “fan-in algorithm” is an example of a divide and conquer strategy
that allows O(n) operations to be performed in O(log n) time if the operations
can be performed simultaneously. The number of operations does not change
materially; the improvement is in the time.

Although there have been orders of magnitude improvements in the speed
of computers because the hardware is better, the order of time required to
solve a problem is almost entirely dependent on the algorithm. The improve-
ments in efficiency resulting from hardware improvements are generally dif-
ferences only in the constant. The practical meaning of the order of the time
must be considered, however, and so the constant may be important. In the
fan-in algorithm, for example, the improvement in order is dependent on the
unrealistic assumption that as the problem size increases without bound, the
number of processors also increases without bound. Divide and conquer strate-
gies do not require multiple processors for their implementation, of course.

Some algorithms are designed so that each step is as efficient as possi-
ble, without regard to what future steps may be part of the algorithm. An
algorithm that follows this principle is called a greedy algorithm. A greedy
algorithm is often useful in the early stages of computation for a problem or
when a problem lacks an understandable structure.

Bottlenecks and Limits

There is a maximum FLOPS rate possible for a given computer system. This
rate depends on how fast the individual processing units are, how many
processing units there are, and how fast data can be moved around in the
system. The more efficient an algorithm is, the closer its achieved FLOPS
rate is to the maximum FLOPS rate.

For a given computer system, there is also a maximum FLOPS rate possi-
ble for a given problem. This has to do with the nature of the tasks within the
given problem. Some kinds of tasks can utilize various system resources more
easily than other tasks. If a problem can be broken into two tasks, T1 and
T2, such that T1 must be brought to completion before T2 can be performed,
the total time required for the problem depends more on the task that takes
longer. This tautology has important implications for the limits of efficiency of
algorithms. It is the basis of “Amdahl’s law” or “Ware’s law”, (Amdahl, 1967)
which puts limits on the speedup of problems that consist of both tasks that
must be performed sequentially and tasks that can be performed in parallel.
It is also the basis of the following childhood riddle:

You are to make a round trip to a city 100 miles away. You want
to average 50 miles per hour. Going, you travel at a constant rate
of 25 miles per hour. How fast must you travel coming back?

10.3 Numerical Algorithms and Analysis 417

The efficiency of an algorithm may depend on the organization of the
computer, the implementation of the algorithm in a programming language,
and the way the program is compiled.

Computations in Parallel

The most effective way of decreasing the time required for solving a compu-
tational problem is to perform the computations in parallel if possible. There
are some computations that are essentially serial, but in almost any problem
there are subtasks that are independent of each other and can be performed
in any order. Parallel computing remains an important research area. See
Nakano (2004) for a summary discussion.

10.3.3 Iterations and Convergence

Many numerical algorithms are iterative; that is, groups of computations form
successive approximations to the desired solution. In a program, this usually
means a loop through a common set of instructions in which each pass through
the loop changes the initial values of operands in the instructions.

We will generally use the notation x(k) to refer to the computed value of
x at the kth iteration.

An iterative algorithm terminates when some convergence criterion or
stopping criterion is satisfied. An example is to declare that an algorithm
has converged when

∆(x(k), x(k−1)) ≤ ε,

where ∆(x(k), x(k−1)) is some measure of the difference of x(k) and x(k−1)

and ε is a small positive number. Because x may not be a single number,
we must consider general measures of the difference of x(k) and x(k−1). For
example, if x is a vector, the measure may be some metric, such as we discuss
in Chapter 2. In that case, ∆(x(k), x(k−1)) may be denoted by ‖x(k)−x(k−1)‖.

An iterative algorithm may have more than one stopping criterion. Often,
a maximum number of iterations is set so that the algorithm will be sure to
terminate whether it converges or not. (Some people define the term “algo-
rithm” to refer only to methods that converge. Under this definition, whether
or not a method is an “algorithm” may depend on the input data unless a
stopping rule based on something independent of the data, such as the num-
ber of iterations, is applied. In any event, it is always a good idea, in addition
to stopping criteria based on convergence of the solution, to have a stopping
criterion that is independent of convergence and that limits the number of
operations.)

The convergence ratio of the sequence x(k) to a constant x0 is

lim
k→∞

∆(x(k+1), x0)
∆(x(k), x0)

418 10 Numerical Methods

if this limit exists. If the convergence ratio is greater than 0 and less than
1, the sequence is said to converge linearly. If the convergence ratio is 0, the
sequence is said to converge superlinearly.

Other measures of the rate of convergence are based on

lim
k→∞

∆(x(k+1), x0)
(∆(x(k), x0))r

= c (10.9)

(again, assuming the limit exists; i.e., c < ∞). In equation (10.9), the exponent
r is called the rate of convergence, and the limit c is called the rate constant.
If r = 2 (and c is finite), the sequence is said to converge quadratically. It is
clear that for any r > 1 (and finite c), the convergence is superlinear.

Convergence defined in terms of equation (10.9) is sometimes referred to
as “Q-convergence” because the criterion is a quotient. Types of convergence
may then be referred to as “Q-linear”, “Q-quadratic”, and so on.

The convergence rate is often a function of k, say h(k). The convergence
is then expressed as an order in k, O(h(k)).

Extrapolation

As we have noted, many numerical computations are performed on a discrete
set that approximates the reals or IRd, resulting in discretization errors. By
“discretization error”, we do not mean a rounding error resulting from the
computer’s finite representation of numbers. The discrete set used in com-
puting some quantity such as an integral is often a grid. If h is the interval
width of the grid, the computations may have errors that can be expressed
as a function of h. For example, if the true value is x and, because of the
discretization, the exact value that would be computed is xh, then we can
write

x = xh + e(h).

For a given algorithm, suppose the error e(h) is proportional to some power
of h, say hn, and so we can write

x = xh + chn (10.10)

for some constant c. Now, suppose we use a different discretization, with
interval length rh having 0 < r < h. We have

x = xrh + c(rh)n

and, after subtracting from equation (10.10),

0 = xh − xrh + c(hn − (rh)n)

or

chn =
(xh − xrh)

rn − 1
. (10.11)

10.3 Numerical Algorithms and Analysis 419

This analysis relies on the assumption that the error in the discrete algo-
rithm is proportional to hn. Under this assumption, chn in equation (10.11)
is the discretization error in computing x, using exact computations, and is
an estimate of the error due to discretization in actual computations. A more
realistic regularity assumption is that the error is O(hn) as h → 0; that is,
instead of (10.10), we have

x = xh + chn + O(hn+α)

for α > 0.
Whenever this regularity assumption is satisfied, equation (10.11) provides

us with an inexpensive improved estimate of x:

xR =
xrh − rnxh

1 − rn
. (10.12)

It is easy to see that |x− xR| is less than the absolute error using an interval
size of either h or rh.

The process described above is called Richardson extrapolation, and the
value in equation (10.12) is called the Richardson extrapolation estimate.
Richardson extrapolation is also called “Richardson’s deferred approach to the
limit”. It has general applications in numerical analysis, but is most widely
used in numerical quadrature. Bickel and Yahav (1988) use Richardson ex-
trapolation to reduce the computations in a bootstrap. Extrapolation can be
extended beyond just one step, as in the presentation above.

Reducing the computational burden by using extrapolation is very impor-
tant in higher dimensions. In many cases, for example in direct extensions
of quadrature rules, the computational burden grows exponentially with the
number of dimensions. This is sometimes called “the curse of dimensionality”
and can render a fairly straightforward problem in one or two dimensions
unsolvable in higher dimensions.

A direct extension of Richardson extrapolation in higher dimensions would
involve extrapolation in each direction, with an exponential increase in the
amount of computation. An approach that is particularly appealing in higher
dimensions is splitting extrapolation, which avoids independent extrapolations
in all directions. See Liem, Lü, and Shih (1995) for an extensive discussion of
splitting extrapolation, with numerous applications.

10.3.4 Other Computational Techniques

In addition to techniques to improve the efficiency and the accuracy of com-
putations, there are also special methods that relate to the way we build
programs or store data.

Recursion

The algorithms for many computations perform some operation, update the
operands, and perform the operation again.

420 10 Numerical Methods

1. perform operation
2. test for exit
3. update operands
4. go to 1

If we give this algorithm the name doit and represent its operands by x, we
could write the algorithm as

Algorithm doit(x)
1. operate on x
2. test for exit
3. update x: x′

4. doit(x′)

The algorithm for computing the mean and the sum of squares (10.7) on
page 411 can be derived as a recursion. Suppose we have the mean ak and
the sum of squares sk for k elements x1, x2, . . . , xk, and we have a new value
xk+1 and wish to compute ak+1 and sk+1. The obvious solution is

ak+1 = ak +
xk+1 − ak

k + 1

and

sk+1 = sk +
k(xk+1 − ak)2

k + 1
.

These are the same computations as in equations (10.7) on page 411.
Another example of how viewing the problem as an update problem can

result in an efficient algorithm is in the evaluation of a polynomial of degree d,

pd(x) = cdx
d + cd−1x

d−1 + · · · + c1x + c0.

Doing this in a naive way would require d−1 multiplications to get the powers
of x, d additional multiplications for the coefficients, and d additions. If we
write the polynomial as

pd(x) = x(cdx
d−1 + cd−1x

d−2 + · · · + c1) + c0,

we see a polynomial of degree d−1 from which our polynomial of degree d can
be obtained with but one multiplication and one addition; that is, the number
of multiplications is equal to the increase in the degree— not two times the
increase in the degree. Generalizing, we have

pd(x) = x(· · ·x(x(cdx + cd−1) + · · ·) + c1) + c0, (10.13)

which has a total of d multiplications and d additions. The method for eval-
uating polynomials in equation (10.13) is called Horner’s method.

A computer subprogram that implements recursion invokes itself. Not only
must the programmer be careful in writing the recursive subprogram, but the
programming system must maintain call tables and other data properly to

10.3 Numerical Algorithms and Analysis 421

allow for recursion. Once a programmer begins to understand recursion, there
may be a tendency to overuse it. To compute a factorial, for example, the
inexperienced C programmer may write

float Factorial(int n)
{
if(n==0)
return 1;

else
return n*Factorial(n-1);

}

The problem is that this is implemented by storing a stack of statements.
Because n may be relatively large, the stack may become quite large and
inefficient. It is just as easy to write the function as a simple loop, and it
would be a much better piece of code.

Both C and Fortran 95 allow for recursion. Many versions of Fortran have
supported recursion for years, but it was not part of the Fortran standards
before Fortran 90.

Computations without Storing Data

For computations involving large sets of data, it is desirable to have algorithms
that sequentially use a single data record, update some cumulative data, and
then discard the data record. Such an algorithm is called a real-time algorithm,
and operation of such an algorithm is called online processing. An algorithm
that has all of the data available throughout the computations is called a batch
algorithm.

An algorithm that generally processes data sequentially in a similar man-
ner as a real-time algorithm but may have subsequent access to the same data
is called an online algorithm or an “out-of-core” algorithm. (This latter name
derives from the erstwhile use of “core” to refer to computer memory.) Any
real-time algorithm is an online or out-of-core algorithm, but an online or
out-of-core algorithm may make more than one pass through the data. (Some
people restrict “online” to mean “real-time” as we have defined it above.)

If the quantity t is to be computed from the data x1, x2, . . . , xn, a real-time
algorithm begins with a quantity t(0) and from t(0) and x1 computes t(1). The
algorithm proceeds to compute t(2) using x2 and so on, never retaining more
than just the current value, t(k). The quantities t(k) may of course consist
of multiple elements. The point is that the number of elements in t(k) is
independent of n.

Many summary statistics can be computed in online processes. For exam-
ple, the algorithms discussed beginning on page 411 for computing the sample
sum of squares are real-time algorithms. The algorithm in equations (10.5) re-
quires two passes through the data so it is not a real-time algorithm, although

422 10 Numerical Methods

it is out-of-core. There are stable online algorithms for other similar statis-
tics, such as the sample variance-covariance matrix. The least squares linear
regression estimates can also be computed by a stable one-pass algorithm that,
incidentally, does not involve computation of the variance-covariance matrix
(or the sums of squares and cross products matrix). There is no real-time
algorithm for finding the median. The number of data records that must be
retained and reexamined depends on n.

In addition to the reduced storage burden, a real-time algorithm allows
a statistic computed from one sample to be updated using data from a new
sample. A real-time algorithm is necessarily O(n).

Exercises

10.1. An important attitude in the computational sciences is that the com-
puter is to be used as a tool for exploration and discovery. The com-
puter should be used to check out “hunches” or conjectures, which
then later should be subjected to analysis in the traditional manner.
There are limits to this approach, however. An example is in limit-
ing processes. Because the computer deals with finite quantities, the
results of a computation may be misleading. Explore each of the sit-
uations below using C or Fortran. A few minutes or even seconds of
computing should be enough to give you a feel for the nature of the
computations.
In these exercises, you may write computer programs in which you per-
form tests for equality. A word of warning is in order about such tests.
If a test involving a quantity x is executed soon after the computation
of x, the test may be invalid within the set of floating-point numbers
with which the computer nominally works. This is because the test
may be performed using the extended precision of the computational
registers.
a) Consider the question of the convergence of the series

∞∑

i=1

i.

Obviously, this series does not converge in IR. Suppose, however,
that we begin summing this series using floating-point numbers.
Will the computations overflow? If so, at what value of i (approx-
imately)? Or will the series converge in IF? If so, to what value,
and at what value of i (approximately)? In either case, state your
answer in terms of the standard parameters of the floating-point
model, b, p, emin, and emax (page 380).

b) Consider the question of the convergence of the series

Exercises 423

∞∑

i=1

2−2i

and answer the same questions as in Exercise 10.1a.
c) Consider the question of the convergence of the series

∞∑

i=1

1
i

and answer the same questions as in Exercise 10.1a.
d) Consider the question of the convergence of the series

∞∑

i=1

1
ix

,

for x ≥ 1. Answer the same questions as in Exercise 10.1a, except
address the variable x.

10.2. We know, of course, that the harmonic series in Exercise 10.1c does
not converge (although the naive program to compute it does). It is,
in fact, true that

Hn =
n∑

i=1

1
i

= f(n) + γ + o(1),

where f is an increasing function and γ is Euler’s constant. For various
n, compute Hn. Determine a function f that provides a good fit and
obtain an approximation of Euler’s constant.

10.3. Machine characteristics.
a) Write a program to determine the smallest and largest relative

spacings. Use it to determine them on the machine you are using.
b) Write a program to determine whether your computer system im-

plements gradual underflow.
c) Write a program to determine the bit patterns of +∞, −∞, and

NaN on a computer that implements the IEEE binary standard.
(This may be more difficult than it seems.)

d) Obtain the program MACHAR (Cody, 1988) and use it to deter-
mine the smallest positive floating-point number on the computer
you are using. (MACHAR is included in CALGO, which is available
from netlib. See the Bibliography.)

10.4. Write a program in Fortran or C to determine the bit patterns of fixed-
point numbers, floating-point numbers, and character strings. Run your
program on different computers, and compare your results with those
shown in Figures 10.1 through 10.3 and Figures 10.11 through 10.13.

424 10 Numerical Methods

10.5. What is the numerical value of the rounding unit (1
2 ulp) in the IEEE

Standard 754 double precision?
10.6. Consider the standard model (10.1) for the floating-point representa-

tion,
±0.d1d2 · · · dp × be,

with emin ≤ e ≤ emax. Your answers to the following questions may
depend on an additional assumption or two. Either choice of (standard)
assumptions is acceptable.
a) How many floating-point numbers are there?
b) What is the smallest positive number?
c) What is the smallest number larger than 1?
d) What is the smallest number X such that X + 1 = X?
e) Suppose p = 4 and b = 2 (and emin is very small and emax is very

large). What is the next number after 20 in this number system?
10.7. a) Define parameters of a floating-point model so that the number

of numbers in the system is less than the largest number in the
system.

b) Define parameters of a floating-point model so that the number of
numbers in the system is greater than the largest number in the
system.

10.8. Suppose that a certain computer represents floating-point numbers in
base 10 using eight decimal places for the mantissa, two decimal places
for the exponent, one decimal place for the sign of the exponent, and
one decimal place for the sign of the number.
a) What are the “smallest relative spacing” and the “largest relative

spacing”? (Your answer may depend on certain additional assump-
tions about the representation; state any assumptions.)

b) What is the largest number g such that 417 + g = 417?
c) Discuss the associativity of addition using numbers represented in

this system. Give an example of three numbers, a, b, and c, such
that using this representation (a + b) + c �= a + (b + c) unless
the operations are chained. Then show how chaining could make
associativity hold for some more numbers but still not hold for
others.

d) Compare the maximum rounding error in the computation x+x+
x + x with that in 4 ∗ x. (Again, you may wish to mention the
possibilities of chaining operations.)

10.9. Consider the same floating-point system as in Exercise 10.8.
a) Let X be a random variable uniformly distributed over the interval

[1 − .000001, 1 + .000001].

Develop a probability model for the representation [X]c. (This is a
discrete random variable with 111 mass points.)

Exercises 425

b) Let X and Y be random variables uniformly distributed over the
same interval as above. Develop a probability model for the repre-
sentation [X + Y]c. (This is a discrete random variable with 121
mass points.)

c) Develop a probability model for [X]c [+]c [Y]c. (This is also a
discrete random variable with 121 mass points.)

10.10. Give an example to show that the sum of three floating-point numbers
can have a very large relative error.

10.11. Write a single program in Fortran or C to compute the following
a)

5∑

i=0

(
10
i

)

0.25i0.7520−i.

b)
10∑

i=0

(
20
i

)

0.25i0.7520−i.

c)
50∑

i=0

(
100
i

)

0.25i0.7520−i.

10.12. In standard mathematical libraries, there are functions for log(x) and
exp(x) called log and exp respectively. There is a function in the IMSL
Libraries to evaluate log(1 + x) and one to evaluate (exp(x) − 1)/x.
(The names in Fortran for single precision are alnrel and exprl.)
a) Explain why the designers of the libraries included those functions,

even though log and exp are available.
b) Give an example in which the standard log loses precision. Evaluate

it using log in the standard math library of Fortran or C. Now
evaluate it using a Taylor series expansion of log(1 + x).

10.13. Suppose you have a program to compute the cumulative distribution
function for the chi-squared distribution. The input for the program
is x and df , and the output is Pr(X ≤ x). Suppose you are interested
in probabilities in the extreme upper range and high accuracy is very
important. What is wrong with the design of the program for this
problem?

10.14. Write a program in Fortran or C to compute e−12 using a Taylor series
directly, and then compute e−12 as the reciprocal of e12, which is also
computed using a Taylor series. Discuss the reasons for the differences
in the results. To what extent is truncation error a problem?

10.15. Errors in computations.
a) Explain the difference in truncation and cancellation.
b) Why is cancellation not a problem in multiplication?

426 10 Numerical Methods

10.16. Assume we have a computer system that can maintain seven digits of
precision. Evaluate the sum of squares for the dataset {9000, 9001, 9002}.

a) Use the algorithm in equations (10.5) on page 410.
b) Use the algorithm in equations (10.6) on page 411.
c) Now assume there is one guard digit. Would the answers change?

10.17. Develop algorithms similar to equations (10.7) on page 411 to evaluate
the following.
a) The weighted sum of squares

n∑

i=1

wi(xi − x̄)2.

b) The third central moment

n∑

i=1

(xi − x̄)3.

c) The sum of cross products

n∑

i=1

(xi − x̄)(yi − ȳ).

Hint: Look at the difference in partial sums,

j∑

i=1

(·) −
j−1∑

i=1

(·).

10.18. Given the recurrence relation

t(n) = pt(n/p) + cn

for p positive and c nonnegative, show that t(n) is O(n log n).

Hint: First assume n is a power of p.
10.19. In statistical data analysis, it is common to have some missing data.

This may be because of nonresponse in a survey questionnaire or
because an experimental or observational unit dies or discontinues
participation in the study. When the data are recorded, some form
of missing-data indicator must be used. Discuss the use of NaN as a
missing-value indicator. What are some of its advantages and disad-
vantages?

10.20. Consider the four properties of a dot product listed on page 15. For
each one, state whether the property holds in computer arithmetic.
Give examples to support your answers.

Exercises 427

10.21. Assuming the model (10.1) on page 380 for the floating-point number
system, give an example of a nonsingular 2× 2 matrix that is algorith-
mically singular.

10.22. A Monte Carlo study of condition number and size of the matrix.
For n = 5, 10, . . . , 30, generate 100 n×n matrices whose elements have
independent N(0, 1) distributions. For each, compute the L2 condition
number and plot the mean condition number versus the size of the ma-
trix. At each point, plot error bars representing the sample “standard
error” (the standard deviation of the sample mean at that point). How
would you describe the relationship between the condition number and
the size?
In any such Monte Carlo study we must consider the extent to which
the random samples represent situations of interest. (How often do we
have matrices whose elements have independent N(0, 1) distributions?)

11

Numerical Linear Algebra

Most scientific computational problems involve vectors and matrices. It is
necessary to work with either the elements of vectors and matrices individually
or with the arrays themselves. Programming languages such as Fortran 77
and C provide the capabilities for working with the individual elements but
not directly with the arrays. Fortran 95 and higher-level languages such as
Octave or Matlab and R allow direct manipulation with vectors and matrices.

The distinction between the set of real numbers, IR, and the set of floating-
point numbers, IF, that we use in the computer has important implications
for numerical computations. As we discussed in Section 10.2, beginning on
page 393, an element x of a vector or matrix is approximated by [x]c, and
a mathematical operation ◦ is simulated by a computer operation [◦]c. The
familiar laws of algebra for the field of the reals do not hold in IF, especially
if uncontrolled parallel operations are allowed. These distinctions, of course,
carry over to arrays of floating-point numbers that represent real numbers,
and the properties of vectors and matrices that we discussed in earlier chapters
may not hold for their computer counterparts. For example, the dot product
of a nonzero vector with itself is positive (see page 15), but 〈xc, xc〉c = 0 does
not imply xc = 0.

A good general reference on the topic of numerical linear algebra is Č́ıžková
and Č́ıžek (2004).

11.1 Computer Representation of Vectors
and Matrices

The elements of vectors and matrices are represented as ordinary numeric
data, as we described in Section 10.1, in either fixed-point or floating-point
representation.

430 11 Numerical Linear Algebra

Storage Modes

The elements are generally stored in a logically contiguous area of the com-
puter’s memory. What is logically contiguous may not be physically contigu-
ous, however.

Accessing data from memory in a single pipeline may take more computer
time than the computations themselves. For this reason, computer memory
may be organized into separate modules, or banks, with separate paths to the
central processing unit. Logical memory is interleaved through the banks; that
is, two consecutive logical memory locations are in separate banks. In order to
take maximum advantage of the computing power, it may be necessary to be
aware of how many interleaved banks the computer system has. We will not
consider these issues further but rather refer the interested reader to Dongarra
et al. (1998).

There are no convenient mappings of computer memory that would allow
matrices to be stored in a logical rectangular grid, so matrices are usually
stored either as columns strung end-to-end (a “column-major” storage) or as
rows strung end-to-end (a “row-major” storage). In using a computer language
or a software package, sometimes it is necessary to know which way the matrix
is stored.

For some software to deal with matrices of varying sizes, the user must
specify the length of one dimension of the array containing the matrix. (In
general, the user must specify the lengths of all dimensions of the array except
one.) In Fortran subroutines, it is common to have an argument specifying
the leading dimension (number of rows), and in C functions it is common
to have an argument specifying the column dimension. (See the examples in
Figure 12.1 on page 459 and Figure 12.2 on page 460 for illustrations of the
leading dimension argument.)

Strides

Sometimes in accessing a partition of a given matrix, the elements occur at
fixed distances from each other. If the storage is row-major for an n × m
matrix, for example, the elements of a given column occur at a fixed distance
of m from each other. This distance is called the “stride”, and it is often more
efficient to access elements that occur with a fixed stride than it is to access
elements randomly scattered.

Just accessing data from the computer’s memory contributes significantly
to the time it takes to perform computations. A stride that is not a multi-
ple of the number of banks in an interleaved bank memory organization can
measurably increase the computational time in high-performance computing.

Sparsity

If a matrix has many elements that are zeros, and if the positions of those
zeros are easily identified, many operations on the matrix can be speeded up.

11.2 General Computational Considerations 431

Matrices with many zero elements are called sparse matrices. They occur of-
ten in certain types of problems; for example in the solution of differential
equations and in statistical designs of experiments. The first consideration is
how to represent the matrix and to store the matrix and the location infor-
mation. Different software systems may use different schemes to store sparse
matrices. The method used in the IMSL Libraries, for example, is described on
page 458. An important consideration is how to preserve the sparsity during
intermediate computations.

11.2 General Computational Considerations
for Vectors and Matrices

All of the computational methods discussed in Chapter 10 apply to vectors
and matrices, but there are some additional general considerations for vectors
and matrices.

11.2.1 Relative Magnitudes of Operands

One common situation that gives rise to numerical errors in computer opera-
tions is when a quantity x is transformed to t(x) but the value computed is
unchanged:

[t(x)]c = [x]c; (11.1)

that is, the operation actually accomplishes nothing. A type of transformation
that has this problem is

t(x) = x + ε, (11.2)

where |ε| is much smaller than |x|. If all we wish to compute is x + ε, the fact
that we get x is probably not important. Usually, of course, this simple com-
putation is part of some larger set of computations in which ε was computed.
This, therefore, is the situation we want to anticipate and avoid.

Another type of problem is the addition to x of a computed quantity y
that overwhelms x in magnitude. In this case, we may have

[x + y]c = [y]c. (11.3)

Again, this is a situation we want to anticipate and avoid.

Condition

A measure of the worst-case numerical error in numerical computation in-
volving a given mathematical entity is the “condition” of that entity for the
particular computations. The condition number of a matrix is the most gener-
ally useful such measure. For the matrix A, we denote the condition number
as κ(A). We discussed the condition number in Section 6.1 and illustrated it

432 11 Numerical Linear Algebra

in the toy example of equation (6.1). The condition number provides a bound
on the relative norms of a “correct” solution to a linear system and a solution
to a nearby problem. A specific condition number therefore depends on the
norm, and we defined κ1, κ2, and κ∞ condition numbers (and saw that they
are generally roughly of the same magnitude). We saw in equation (6.10) that
the L2 condition number, κ2(A), is the ratio of magnitudes of the two extreme
eigenvalues of A.

The condition of data depends on the particular computations to be per-
formed. The relative magnitudes of other eigenvalues (or singular values)
may be more relevant for some types of computations. Also, we saw in Sec-
tion 10.3.1 that the “stiffness” measure in equation (10.8) is a more appropri-
ate measure of the extent of the numerical error to be expected in computing
variances.

Pivoting

Pivoting, discussed on page 209, is a method for avoiding a situation like that
in equation (11.3). In Gaussian elimination, for example, we do an addition,
x+y, where the y is the result of having divided some element of the matrix by
some other element and x is some other element in the matrix. If the divisor is
very small in magnitude, y is large and may overwhelm x as in equation (11.3).

“Modified” and “Classical” Gram-Schmidt Transformations

Another example of how to avoid a situation similar to that in equation (11.1)
is the use of the correct form of the Gram-Schmidt transformations.

The orthogonalizing transformations shown in equations (2.34) on page 27
are the basis for Gram-Schmidt transformations of matrices. These transfor-
mations in turn are the basis for other computations, such as the QR factor-
ization. (Exercise 5.9 required you to apply Gram-Schmidt transformations
to develop a QR factorization.)

As mentioned on page 27, there are two ways we can extend equa-
tions (2.34) to more than two vectors, and the method given in Algorithm 2.1
is the correct way to do it. At the kth stage of the Gram-Schmidt method, the
vector x

(k)
k is taken as x

(k−1)
k and the vectors x

(k)
k+1, x

(k)
k+2, . . . , x

(k)
m are all made

orthogonal to x
(k)
k . After the first stage, all vectors have been transformed.

This method is sometimes called “modified Gram-Schmidt” because some
people have performed the basic transformations in a different way, so that at
the kth iteration, starting at k = 2, the first k− 1 vectors are unchanged (i.e.,
x

(k)
i = x

(k−1)
i for i = 1, 2, . . . , k− 1), and x

(k)
k is made orthogonal to the k− 1

previously orthogonalized vectors x
(k)
1 , x

(k)
2 , . . . , x

(k)
k−1. This method is called

“classical Gram-Schmidt” for no particular reason. The “classical” method is
not as stable, and should not be used; see Rice (1966) and Björck (1967) for
discussions. In this book, “Gram-Schmidt” is the same as what is sometimes

11.2 General Computational Considerations 433

called “modified Gram-Schmidt”. In Exercise 11.1, you are asked to experi-
ment with the relative numerical accuracy of the “classical Gram-Schmidt”
and the correct Gram-Schmidt. The problems with the former method show
up with the simple set of vectors x1 = (1, ε, ε), x2 = (1, ε, 0), and x3 = (1, 0, ε),
with ε small enough that

[1 + ε2]c = 1.

11.2.2 Iterative Methods

As we saw in Chapter 6, we often have a choice between direct methods
(that is, methods that compute a closed-form solution) and iterative methods.
Iterative methods are usually to be favored for large, sparse systems.

Iterative methods are based on a sequence of approximations that (it is
hoped) converge to the correct solution. The fundamental trade-off in iter-
ative methods is between the amount of work expended in getting a good
approximation at each step and the number of steps required for convergence.

Preconditioning

In order to achieve acceptable rates of convergence for iterative algorithms, it
is often necessary to precondition the system; that is, to replace the system
Ax = b by the system

M−1Ax = M−1b

for some suitable matrix M . As we indicated in Chapters 6 and 7, the choice
of M involves some art, and we will not consider any of the results here.
Benzi (2002) provides a useful survey of the general problem and work up to
that time, but this is an area of active research.

Restarting and Rescaling

In many iterative methods, not all components of the computations are up-
dated in each iteration. An approximation to a given matrix or vector may be
adequate during some sequence of computations without change, but then at
some point the approximation is no longer close enough, and a new approxi-
mation must be computed. An example of this is in the use of quasi-Newton
methods in optimization in which an approximate Hessian is updated, as in-
dicated in equation (4.24) on page 159. We may, for example, just compute
an approximation to the Hessian every few iterations, perhaps using second
differences, and then use that approximate matrix for a few subsequent iter-
ations.

Another example of the need to restart or to rescale is in the use of fast
Givens rotations. As we mentioned on page 185 when we described the fast
Givens rotations, the diagonal elements in the accumulated C matrices in
the fast Givens rotations can become widely different in absolute values, so

434 11 Numerical Linear Algebra

to avoid excessive loss of accuracy, it is usually necessary to rescale the el-
ements periodically. Anda and Park (1994, 1996) describe methods of doing
the rescaling dynamically. Their methods involve adjusting the first diagonal
element by multiplication by the square of the cosine and adjusting the second
diagonal element by division by the square of the cosine. Bindel et al. (2002)
discuss in detail techniques for performing Givens rotations efficiently while
still maintaining accuracy. (The BLAS routines (see Section 12.1.4) rotmg and
rotm, respectively, set up and apply fast Givens rotations.)

Preservation of Sparsity

In computations involving large sparse systems, we may want to preserve
the sparsity, even if that requires using approximations, as discussed in Sec-
tion 5.10. Fill-in (when a zero position in a sparse matrix becomes nonzero)
would cause loss of the computational and storage efficiencies of software for
sparse matrices.

In forming a preconditioner for a sparse matrix A, for example, we may
choose a matrix M = L̃Ũ , where L̃ and Ũ are approximations to the matrices
in an LU decomposition of A, as in equation (5.43). These matrices are con-
structed as indicated in equation (5.44) so as to have zeros everywhere A has,
and A ≈ L̃Ũ . This is called incomplete factorization, and often, instead of an
exact factorization, an approximate factorization may be more useful because
of computational efficiency.

Iterative Refinement

Even if we are using a direct method, it may be useful to refine the solution by
one step computed in extended precision. A method for iterative refinement
of a solution of a linear system is given in Algorithm 6.3.

11.2.3 Assessing Computational Errors

As we discuss in Section 10.2.2 on page 395, we measure error by a scalar
quantity, either as absolute error, |r̃−r|, where r is the true value and r̃ is the
computed or rounded value, or as relative error, |r̃ − r|/r (as long as r �= 0).
We discuss general ways of reducing them in Section 10.3.1.

Errors in Vectors and Matrices

The errors in vectors or matrices are generally expressed in terms of norms;
for example, the relative error in the representation of the vector v, or as a
result of computing v, may be expressed as ‖ṽ − v‖/‖v‖ (as long as ‖v‖ �= 0),
where ṽ is the computed vector. We often use the notation ṽ = v + δv, and
so ‖δv‖/‖v‖ is the relative error. The choice of which vector norm to use may

11.3 Multiplication of Vectors and Matrices 435

depend on practical considerations about the errors in the individual elements.
The L∞ norm, for example, gives weight only to the element with the largest
single error, while the L1 norm gives weights to all magnitudes equally.

Assessing Errors in Given Computations

In real-life applications, the correct solution is not known, but we would still
like to have some way of assessing the accuracy using the data themselves.
Sometimes a convenient way to do this in a given problem is to perform inter-
nal consistency tests. An internal consistency test may be an assessment of the
agreement of various parts of the output. Relationships among the output are
exploited to ensure that the individually computed quantities satisfy these re-
lationships. Other internal consistency tests may be performed by comparing
the results of the solutions of two problems with a known relationship.

The solution to the linear system Ax = b has a simple relationship to the
solution to the linear system Ax = b+caj , where aj is the jth column of A and
c is a constant. A useful check on the accuracy of a computed solution to Ax =
b is to compare it with a computed solution to the modified system. Of course,
if the expected relationship does not hold, we do not know which solution
is incorrect, but it is probably not a good idea to trust either. Mullet and
Murray (1971) describe this kind of consistency test for regression software.
To test the accuracy of the computed regression coefficients for regressing
y on x1, . . . , xm, they suggest comparing them to the computed regression
coefficients for regressing y + dxj on x1, . . . , xm. If the expected relationships
do not obtain, the analyst has strong reason to doubt the accuracy of the
computations.

Another simple modification of the problem of solving a linear system with
a known exact effect is the permutation of the rows or columns. Although this
perturbation of the problem does not change the solution, it does sometimes
result in a change in the computations, and hence it may result in a different
computed solution. This obviously would alert the user to problems in the
computations.

Another simple internal consistency test that is applicable to many prob-
lems is to use two levels of precision in the computations. In using this test,
one must be careful to make sure that the input data are the same. Rounding
of the input data may cause incorrect output to result, but that is not the
fault of the computational algorithm.

Internal consistency tests cannot confirm that the results are correct; they
can only give an indication that the results are incorrect.

11.3 Multiplication of Vectors and Matrices

Arithmetic on vectors and matrices involves arithmetic on the individual el-
ements. The arithmetic on the individual elements is performed as we have
discussed in Section 10.2.

436 11 Numerical Linear Algebra

The way the storage of the individual elements is organized is very impor-
tant for the efficiency of computations. Also, the way the computer memory is
organized and the nature of the numerical processors affect the efficiency and
may be an important consideration in the design of algorithms for working
with vectors and matrices.

The best methods for performing operations on vectors and matrices in
the computer may not be the methods that are suggested by the definitions
of the operations.

In most numerical computations with vectors and matrices, there is more
than one way of performing the operations on the scalar elements. Consider
the problem of evaluating the matrix times vector product, c = Ab, where A
is n × m. There are two obvious ways of doing this:

• compute each of the n elements of c, one at a time, as an inner product
of m-vectors, ci = aT

i b =
∑

j aijbj , or
• update the computation of all of the elements of c simultaneously as

1. For i = 1, . . . , n, let c
(0)
i = 0.

2. For j = 1, . . . ,m,
{

for i = 1, . . . , n,
{

let c
(i)
i = c

(i−1)
i + aijbj .

}
}

If there are p processors available for parallel processing, we could use a fan-in
algorithm (see page 397) to evaluate Ax as a set of inner products:

c
(1)
1 = c

(1)
2 = . . . c

(1)
2m−1 = c

(1)
2m = . . .

ai1b1 + ai2b2 ai3b3 + ai4b4 . . . ai,4m−3b4m−3 + ai,4m−2b4m−2
↘ ↙ . . . ↘ ↙ . . .

c
(2)
1 = . . . c

(2)
m = . . .

c
(1)
1 + c

(1)
2 . . . c

(1)
2m−1 + c

(1)
2m . . .

↘ . . . ↓ . . .

c
(3)
1 = c

(2)
1 + c

(2)
2

The order of the computations is nm (or n2).
Multiplying two matrices A and B can be considered as a problem of mul-

tiplying several vectors bi by a matrix A, as described above. In the following
we will assume A is n × m and B is m × p, and we will use the notation
ai to represent the ith column of A, aT

i to represent the ith row of A, bi to
represent the ith column of B, ci to represent the ith column of C = AB, and
so on. (This notation is somewhat confusing because here we are not using aT

i

to represent the transpose of ai as we normally do. The notation should be

11.3 Multiplication of Vectors and Matrices 437

clear in the context of the diagrams below, however.) Using the inner product
method above results in the first step of the matrix multiplication forming

⎡

⎢
⎢
⎢
⎣

aT
1

· · ·
. . .
· · ·

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

· · ·
b1 · · ·

. . .
· · ·

⎤

⎥
⎥
⎥
⎦
−→

⎡

⎢
⎢
⎢
⎣

c11 = aT
1 b1 · · ·

· · ·
...

. . .
· · ·

⎤

⎥
⎥
⎥
⎦

.

Using the second method above, in which the elements of the product vec-
tor are updated all at once, results in the first step of the matrix multiplication
forming

⎡

⎢
⎢
⎢
⎣

· · ·
a1 · · ·

. . .
· · ·

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

b11 · · ·
· · ·

...
. . .
· · ·

⎤

⎥
⎥
⎥
⎦
−→

⎡

⎢
⎢
⎢
⎢
⎣

c
(1)
11 = a11b11 · · ·

c
(1)
21 = a21b11 · · ·

...
. . .

c
(1)
n1 = an1b11 · · ·

⎤

⎥
⎥
⎥
⎥
⎦

.

The next and each successive step in this method are axpy operations:

c
(k+1)
1 = b(k+1),1a1 + c

(k)
1 ,

for k going to m − 1.
Another method for matrix multiplication is to perform axpy operations

using all of the elements of bT
1 before completing the computations for any of

the columns of C. In this method, the elements of the product are built as
the sum of the outer products aib

T
i . In the notation used above for the other

methods, we have
⎡

⎢
⎢
⎢
⎣

· · ·
a1 · · ·

. . .
· · ·

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

bT
1

· · ·
. . .
· · ·

⎤

⎥
⎥
⎥
⎦
−→

⎡

⎢
⎢
⎣

c
(1)
ij = a1b

T
1

⎤

⎥
⎥
⎦ ,

and the update is
c
(k+1)
ij = ak+1b

T
k+1 + c

(k)
ij .

The order of computations for any of these methods is O(nmp), or just
O(n3), if the dimensions are all approximately the same. Strassen’s method,
discussed next, reduces the order of the computations.

Strassen’s Algorithm

Another method for multiplying matrices that can be faster for large ma-
trices is the so-called Strassen algorithm (from Strassen, 1969). Suppose A
and B are square matrices with equal and even dimensions. Partition them

438 11 Numerical Linear Algebra

into submatrices of equal size, and consider the block representation of the
product, [

C11 C12

C21 C22

]

=
[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]

,

where all blocks are of equal size. Form

P1 = (A11 + A22)(B11 + B22),
P2 = (A21 + A22)B11,

P3 = A11(B12 − B22),
P4 = A22(B21 − B11),
P5 = (A11 + A12)B22,

P6 = (A21 − A11)(B11 + B12),
P7 = (A12 − A22)(B21 + B22).

Then we have (see the discussion on partitioned matrices in Section 3.1)

C11 = P1 + P4 − P5 + P7,

C12 = P3 + P5,

C21 = P2 + P4,

C22 = P1 + P3 − P2 + P6.

Notice that the total number of multiplications of matrices is seven instead
of the eight it would be in forming

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

directly. Whether the blocks are matrices or scalars, the same analysis holds.
Of course, in either case there are more additions. The addition of two k ×
k matrices is O(k2), so for a large enough value of n the total number of
operations using the Strassen algorithm is less than the number required for
performing the multiplication in the usual way.

The partitioning of the matrix factors can also be used recursively; that
is, in the formation of the P matrices. If the dimension, n, contains a factor
2e, the algorithm can be used directly e times, and then conventional matrix
multiplication can be used on any submatrix of dimension ≤ n/2e.) If the
dimension of the matrices is not even, or if the matrices are not square, it
may be worthwhile to pad the matrices with zeros, and the use the Strassen
algorithm recursively.

The order of computations of the Strassen algorithm is O(nlog2 7), instead
of O(n3) as in the ordinary method (log2 7 = 2.81). The algorithm can be
implemented in parallel (see Bailey, Lee, and Simon, 1990).

11.4 Other Matrix Computations 439

11.4 Other Matrix Computations

Rank Determination

It is often easy to determine that a matrix is of full rank. If the matrix is
not of full rank, however, or if it is very ill-conditioned, it is difficult to de-
termine its rank. This is because the computations to determine the rank
eventually approximate 0. It is difficult to approximate 0; the relative error
(if defined) would be either 0 or infinite. The rank-revealing QR factorization
(equation (5.36), page 190) is the preferred method for estimating the rank.
When this decomposition is used to estimate the rank, it is recommended

that complete pivoting be used in computing the decomposition. The LDU
decomposition, described on page 186, can be modified the same way we used
the modified QR to estimate the rank of a matrix. Again, it is recommended
that complete pivoting be used in computing the decomposition.

The singular value decomposition (SVD) shown in equation (3.218) on
page 127 also provides an indication of the rank of the matrix. For the n×m
matrix A, the SVD is

A = UDV T,

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix, and
D is a diagonal matrix of the singular values. The number of nonzero singular
values is the rank of the matrix. Of course, again, the question is whether or
not the singular values are zero. It is unlikely that the values computed are
exactly zero.

A problem related to rank determination is to approximate the matrix
A with a matrix Ar of rank r ≤ rank(A). The singular value decomposition
provides an easy way to do this,

Ar = UDrV
T,

where Dr is the same as D, except with zeros replacing all but the r largest
singular values. A result of Eckart and Young (1936) guarantees Ar is the
rank r matrix closest to A as measured by the Frobenius norm,

‖A − Ar‖F,

(see Section 3.10). This kind of matrix approximation is the basis for dimen-
sion reduction by principal components.

Computing the Determinant

The determinant of a square matrix can be obtained easily as the product of
the diagonal elements of the triangular matrix in any factorization that yields
an orthogonal matrix times a triangular matrix. As we have stated before, it
is not often that the determinant need be computed, however.

One application in statistics is in optimal experimental designs. The D-
optimal criterion, for example, chooses the design matrix, X, such that |XTX|
is maximized (see Section 9.2.2).

440 11 Numerical Linear Algebra

Computing the Condition Number

The computation of a condition number of a matrix can be quite involved.
Clearly, we would not want to use the definition, κ(A) = ‖A‖ ‖A−1‖, directly.
Although the choice of the norm affects the condition number, recalling the
discussion in Section 6.1, we choose whichever condition number is easiest to
compute or estimate.

Various methods have been proposed to estimate the condition number
using relatively simple computations. Cline et al. (1979) suggest a method
that is easy to perform and is widely used. For a given matrix A and some
vector v, solve

ATx = v

and then
Ay = x.

By tracking the computations in the solution of these systems, Cline et al.
conclude that

‖y‖
‖x‖

is approximately equal to, but less than, ‖A−1‖. This estimate is used with re-
spect to the L1 norm in the LINPACK software library (Dongarra et al., 1979),
but the approximation is valid for any norm. Solving the two systems above
probably does not require much additional work because the original problem
was likely to solve Ax = b, and solving a system with multiple right-hand
sides can be done efficiently using the solution to one of the right-hand sides.
The approximation is better if v is chosen so that ‖x‖ is as large as possible
relative to ‖v‖.

Stewart (1980) and Cline and Rew (1983) investigated the validity of the
approximation. The LINPACK estimator can underestimate the true condi-
tion number considerably, although generally not by an order of magnitude.
Cline, Conn, and Van Loan (1982) give a method of estimating the L2 con-
dition number of a matrix that is a modification of the L1 condition number
used in LINPACK. This estimate generally performs better than the L1 esti-
mate, but the Cline/Conn/Van Loan estimator still can have problems (see
Bischof, 1990).

Hager (1984) gives another method for an L1 condition number. Higham
(1988) provides an improvement of Hager’s method, given as Algorithm 11.1
below, which is used in the LAPACK software library (Anderson et al., 2000).

Algorithm 11.1 The Hager/Higham LAPACK Condition Number
Estimator γ of the n × n Matrix A
Assume n > 1; otherwise set γ = ‖A‖. (All norms are L1 unless specified
otherwise.)

0. Set k = 1; v(k) = 1
nA1; γ(k) = ‖v(k)‖; and x(k) = ATsign(v(k)).

Exercises 441

1. Set j = min{i, s.t. |x(k)
i | = ‖x(k)‖∞}.

2. Set k = k + 1.
3. Set v(k) = Aej .
4. Set γ(k) = ‖v(k)‖.
5. If sign(v(k)) = sign(v(k−1)) or γ(k) ≤ γ(k−1), then go to step 8.
6. Set x(k) = ATsign(v(k)).
7. If ‖x(k)‖∞ �= x

(k)
j and k ≤ kmax, then go to step 1.

8. For i = 1, 2, . . . , n, set xi = (−1)i+1
(
1 + i−1

n−1

)
.

9. Set x = Ax.
10. If 2‖x‖

(3n) > γ(k), set γ(k) = 2‖x‖
(3n) .

11. Set γ = γ(k).

Higham (1987) compares Hager’s condition number estimator with that of
Cline et al. (1979) and finds that the Hager LAPACK estimator is generally
more useful. Higham (1990) gives a survey and comparison of the various
ways of estimating and computing condition numbers. You are asked to study
the performance of the LAPACK estimate using Monte Carlo methods in
Exercise 11.5 on page 442.

Exercises

11.1. Gram-Schmidt orthonormalization.
a) Write a program module (in Fortran, C, R or S-Plus, Octave or Mat-

lab, or whatever language you choose) to implement Gram-Schmidt
orthonormalization using Algorithm 2.1. Your program should be for
an arbitrary order and for an arbitrary set of linearly independent
vectors.

b) Write a program module to implement Gram-Schmidt orthonormal-
ization using equations (2.34) and (2.35).

c) Experiment with your programs. Do they usually give the same re-
sults? Try them on a linearly independent set of vectors all of which
point “almost” in the same direction. Do you see any difference in
the accuracy? Think of some systematic way of forming a set of
vectors that point in almost the same direction. One way of doing
this would be, for a given x, to form x + εei for i = 1, . . . , n − 1,
where ei is the ith unit vector and ε is a small positive number. The
difference can even be seen in hand computations for n = 3. Take
x1 = (1, 10−6, 10−6), x2 = (1, 10−6, 0), and x3 = (1, 0, 10−6).

11.2. Given the n× k matrix A and the k-vector b (where n and k are large),
consider the problem of evaluating c = Ab. As we have mentioned, there
are two obvious ways of doing this: (1) compute each element of c, one
at a time, as an inner product ci = aT

i b =
∑

j aijbj , or (2) update the
computation of all of the elements of c in the inner loop.

442 11 Numerical Linear Algebra

a) What is the order of computation of the two algorithms?
b) Why would the relative efficiencies of these two algorithms be dif-

ferent for different programming languages, such as Fortran and C?
c) Suppose there are p processors available and the fan-in algorithm

on page 436 is used to evaluate Ax as a set of inner products. What
is the order of time of the algorithm?

d) Give a heuristic explanation of why the computation of the inner
products by a fan-in algorithm is likely to have less roundoff error
than computing the inner products by a standard serial algorithm.
(This does not have anything to do with the parallelism.)

e) Describe how the following approach could be parallelized. (This is
the second general algorithm mentioned above.)

for i = 1, . . . , n
{

ci = 0
for j = 1, . . . , k
{

ci = ci + aijbj

}
}

f) What is the order of time of the algorithms you described?
11.3. Consider the problem of evaluating C = AB, where A is n × m and B

is m × q. Notice that this multiplication can be viewed as a set of ma-
trix/vector multiplications, so either of the algorithms in Exercise 11.2d
above would be applicable. There is, however, another way of performing
this multiplication, in which all of the elements of C could be evaluated
simultaneously.
a) Write pseudocode for an algorithm in which the nq elements of C

could be evaluated simultaneously. Do not be concerned with the
parallelization in this part of the question.

b) Now suppose there are nmq processors available. Describe how the
matrix multiplication could be accomplished in O(m) steps (where
a step may be a multiplication and an addition).

Hint: Use a fan-in algorithm.
11.4. Write a Fortran or C program to compute an estimate of the L1 LA-

PACK condition number γ using Algorithm 11.1 on page 440.
11.5. Design and conduct a Monte Carlo study to assess the performance of

the LAPACK estimator of the L1 condition number using your program
from Exercise 11.4. Consider a few different sizes of matrices, say 5× 5,
10×10, and 20×20, and consider a range of condition numbers, say 10,
104, and 108. In order to assess the accuracy of the condition number
estimator, the random matrices in your study must have known con-
dition numbers. It is easy to construct a diagonal matrix with a given

Exercises 443

condition number. The condition number of the diagonal matrix D, with
nonzero elements d1, . . . , dn, is max |di|/min |di|. It is not so clear how
to construct a general (square) matrix with a given condition number.
The L2 condition number of the matrix UDV , where U and V are or-
thogonal matrices is the same as the L2 condition number of U . We
can therefore construct a wide range of matrices with given L2 condi-
tion numbers. In your Monte Carlo study, use matrices with known L2

condition numbers. The next question is what kind of random matri-
ces to generate. Again, make a choice of convenience. Generate random
diagonal matrices D, subject to fixed κ(D) = max |di|/min |di|. Then
generate random orthogonal matrices as described in Exercise 4.7 on
page 171. Any conclusions made on the basis of a Monte Carlo study, of
course, must be restricted to the domain of the sampling of the study.
(See Stewart, 1980, for a Monte Carlo study of the performance of the
LINPACK condition number estimator.)

12

Software for Numerical Linear Algebra

There is a variety of computer software available to perform the operations
on vectors and matrices discussed in Chapter 11. We can distinguish the
software based on the kinds of applications it emphasizes, the level of the
objects it works with directly, and whether or not it is interactive. Some
software is designed only to perform certain functions, such as eigenanalysis,
while other software provides a wide range of computations for linear algebra.
Some software supports only real matrices and real associated values, such as
eigenvalues. In some software systems, the basic units must be scalars, and so
operations on matrices or vectors must be performed on individual elements.
In these systems, higher-level functions to work directly on the arrays are often
built and stored in libraries. In other software systems, the array itself is a
fundamental operand. Finally, some software for linear algebra is interactive
and computations are performed immediately in response to the user’s input.

There are many software systems that provide capabilities for numerical
linear algebra. Some of these grew out of work at universities and government
labs. Others are commercial products. These include the IMSLTM Libraries,
MATLAB R©, S-PLUS R©, the GAUSS Mathematical and Statistical SystemTM,
IDL R©, PV-Wave R©, Maple R©, Mathematica R©, and SAS IML R©. In this chapter,
we briefly discuss some of these systems and give some of the salient features
from the user’s point of view. We also occasionally refer to two standard
software packages for linear algebra, LINPACK (Dongarra et al., 1979) and
LAPACK. (Anderson et al., 2000).

The Guide to Available Mathematical Software (GAMS) is a good source
of information about software. This guide is organized by types of computa-
tions. Computations for linear algebra are in Class D. The web site is

http://gams.nist.gov/serve.cgi/Class/D/

Much of the software is available through statlib or netlib (see page 505
in the Bibliography).

For some types of software, it is important to be aware of the way the
data are stored in the computer, as we discussed in Section 11.1 beginning on

446 12 Software for Numerical Linear Algebra

page 429. This may include such things as whether the storage is row-major or
column-major, which will determine the stride and may determine the details
of an algorithm so as to enhance the efficiency. Software written in a language
such as Fortran or C often requires the specification of the number of rows
(in Fortran) or columns (in C) that have been allocated for the storage of a
matrix. As we have indicated before, the amount of space allocated for the
storage of a matrix may not correspond exactly to the size of the matrix.

There are many issues to consider in evaluating software or to be aware
of when developing software. The portability of the software is an important
consideration because a user’s programs are often moved from one computing
environment to another.

Some situations require special software that is more efficient than general-
purpose software would be. Software for sparse matrices, for example, is
specialized to take advantage of the zero entries. For sparse matrices it is
necessary to have a scheme for identifying the locations of the nonzeros and
for specifying their values. The nature of storage schemes varies from one soft-
ware package to another. The reader is referred to GAMS as a resource for
information about software for sparse matrices.

Occasionally we need to operate on vectors or matrices whose elements are
variables. Software for symbolic manipulation, such as Maple, can perform
vector/matrix operations on variables. See Exercise 12.6 on page 476.

Operations on matrices are often viewed from the narrow perspective of
the numerical analyst rather than from the broader perspective of a user with
a task to perform. For example, the user may seek a solution to the linear
system Ax = b. Most software to solve a linear system requires A to be square
and of full rank. If this is not the case, then there are three possibilities:
the system has no solution, the system has multiple solutions, or the system
has a unique solution. A program to solve a linear system that requires A to
be square and of full rank does not distinguish among these possibilities but
rather always refuses to provide any solution. This can be quite annoying to
a user who wants to solve a large number of systems using the same code.

Writing Mathematics and Writing Programs

In writing either mathematics or programs, it is generally best to think of
objects at the highest level that is appropriate for the problem at hand. The
details of some computational procedure may be of the form

∑

i

∑

j

∑

k

akixkj . (12.1)

We sometimes think of the computations in this form because we have pro-
grammed them in some low-level language at some time. In some cases, it is
important to look at the computations in this form, but usually it is better

12.1 Fortran and C 447

to think of the computations at a higher level, say

ATX. (12.2)

The compactness of the expression is not the issue (although it certainly is
more pleasant to read). The issue is that expression (12.1) leads us to think of
some nested computational loops, while expression (12.2) leads us to look for
more efficient computational modules, such as the BLAS, which we discuss
below. In a higher-level language system such as R, the latter expression is
more likely to cause us to use the system more efficiently.

12.1 Fortran and C

Fortran and C are the most commonly used procedural languages for scien-
tific computation. The American National Standards Institute (ANSI) and
its international counterpart, the International Organization for Standardiza-
tion (ISO), have specified standard definitions of these languages. Whenever
ANSI and ISO both have a standard for a given version of a language, the
standards are the same. There are various dialects of these languages, most of
which result from “extensions” provided by writers of compilers. While these
extensions may make program development easier and occasionally provide
modest enhancements to execution efficiency, a major effect of the extensions
is to lock the user into a specific compiler. Because users usually outlive com-
pilers, it is best to eschew the extensions and to program according to the
ANSI/ISO standards. Several libraries of program modules for numerical lin-
ear algebra are available both in Fortran and in C.

C began as a low-level language that provided many of the capabilities of a
higher-level language together with more direct access to the operating system.
It lacks some of the facilities that are very useful in scientific computation, such
as complex data types, an exponentiation operator, and direct manipulation
of arrays as vectors or matrices.

C++ is an object-oriented programming language built on C. The object-
oriented features make it much more useful in computing with vectors and
matrices or other arrays and more complicated data structures. Class libraries
can be built in C++ to provide capabilities similar to those available in For-
tran. There are ANSI standard versions of both C and C++.

An advantage of C is that it provides for easier communication between
program units, so it is often used when larger program systems are being put
together. Another advantage of C is that inexpensive compilers are readily
available, and it is widely taught as a programming language in beginning
courses in computer science.

Fortran has evolved over many years of use by scientists and engineers.
There are two related families of Fortran languages, which we will call “For-
tran 77” and “Fortran 95” or “Fortran 90 and subsequent versions”, after

448 12 Software for Numerical Linear Algebra

the model ISO/ANSI standards. Both ANSI and ISO have specified standard
definitions of various versions of Fortran. A version called FORTRAN was de-
fined in 1977 (see ANSI, 1978). We refer to this version along with a modest
number of extensions as Fortran 77. If we meant to exclude any extensions
or modifications, we refer to it as ANSI Fortran 77. A new standard (not
a replacement standard) was adopted in 1990 by ANSI, at the insistence of
ISO. This standard language is called ANSI Fortran 90 or ISO Fortran 90 (see
ANSI, 1992). It has a number of features that extend its usefulness, especially
in numerical linear algebra. There have been a few revisions of Fortran 90 in
the past several years. There are only small differences between Fortran 90
and subsequent versions, which are called Fortran 95, Fortran 2000, and For-
tran 2003. Most of the features I discuss are in all of these versions, and
since the version I currently use is Fortran 95, I will generally just refer to
“Fortran 95”, or to “Fortran 90 and subsequent versions”.

Fortran 95 provides additional facilities for working directly with arrays.
For example, to add matrices A and B we can write the Fortran expression
A+B (see Lemmon and Schafer, 2005; Metcalf, Reid, and Cohen, 2004; or Press
et al., 1996).

Compilers for Fortran are often more expensive and less widely available
than compilers for C/C++. An open-source compiler for Fortran 95 is avail-
able at

http://www.g95.org/

Another disadvantage of Fortran is that fewer people outside of the nu-
merical computing community know the language.

12.1.1 Programming Considerations

Both users and developers of Fortran and C software need to be aware of a
number of programming details.

Indexing Arrays

Neither Fortran 77 nor C allow vectors and matrices to be treated as atomic
units. Numerical operations on vectors and matrices are performed either
within loops of operations on the individual elements or by invocation of a
separate program module.

The natural way of representing vectors and matrices in the earlier versions
of Fortran and in C is as array variables with indexes. Fortran handles arrays
as multiply indexed memory locations, consistent with the nature of the ob-
ject. Indexes start at 1, just as in the mathematical notation used throughout
this book. The storage of two-dimensional arrays in Fortran is column-major;
that is, the array A is stored as vec(A). To reference the contiguous memory

12.1 Fortran and C 449

locations, the first subscript varies fastest. In general-purpose software con-
sisting of Fortran subprograms, it is often necessary to specify the lengths of
all dimensions of a Fortran array except the last one.

An array in C is an ordered set of memory locations referenced by a pointer
or by a name and an index. Indexes start at 0. The indexes are enclosed in
rectangular brackets following the variable name. An element of a multidi-
mensional array in C is indexed by multiple indexes, each within rectangular
brackets. If the 3×4 matrix A is as stored in the C array A, the (2, 3) element
A2,3 is referenced as A[1][2]. This disconnect between the usual mathemat-
ical representations and the C representations results from the historical de-
velopment of C by computer scientists, who deal with arrays, rather than by
mathematical scientists, who deal with matrices and vectors.

Multidimensional arrays in C are arrays of arrays, in which the array con-
structors operate from right to left. This results in two-dimensional C arrays
being stored in row-major order, that is, the array A is stored as vec(AT). To
reference the contiguous memory locations, the last subscript varies fastest.
In general-purpose software consisting of C functions, it is often necessary to
specify the lengths of all dimensions of a C array except the first one.

Reverse Communication in Iterative Algorithms

Sometimes within the execution of an iterative algorithm it is necessary to
perform some operation outside of the basic algorithm itself. The simplest ex-
ample of this is in an online algorithm, in which more data must be brought in
between the operations of the online algorithm. The simplest example of this
is perhaps the online computation of a correlation matrix using an algorithm
similar to equations (10.7) on page 411. When the first observation is passed
to the program doing the computations, that program must be told that this
is the first observation (or, more generally, the first n1 observations). Then,
for each subsequent observation (or set of observations), the program must
be told that these are intermediate observations. Finally, when the last ob-
servation (or set of observations, or even a null set of observations) is passed
to the computational program, the program must be told that these are the
last observations, and wrap-up computations must be performed (computing
correlations from sums of squares). Between the first and last invocations of
the computational program, the computational program may preserve inter-
mediate results that are not passed back to the calling program. In this simple
example, the communication is one-way, from calling routine to called routine.

In more complicated cases using an iterative algorithm, the computational
routine may need more general input or auxiliary computations, and hence
there may be two-way communication between the calling routine and the
called routine. This is sometimes called reverse communication. An example is
the repetition of a preconditioning step in a routine using a conjugate gradient
method; as the computations proceed, the computational routine may detect a
need for rescaling and so return to a calling routine to perform those services.

450 12 Software for Numerical Linear Algebra

Barrett et al. (1994) and Dongarra and Eijkhout (2000) describe a variety of
uses of reverse communication in software for numerical linear algebra.

Computational Efficiency

Two seemingly trivial things can have major effects on computational effi-
ciency. One is movement of data from the computer’s memory into the com-
putational unit. How quickly this movement occurs depends, among other
things, on the organization of the data in the computer. Multiple elements of
an array can be retrieved from memory more quickly if they are in contiguous
memory locations. (Location in computer memory does not necessarily refer
to a physical place; in fact, memory is often divided into banks, and adjacent
“locations” are in alternate banks. Memory is organized to optimize access.)
The main reason that storage of data in contiguous memory locations affects
efficiency involves the different levels of computer memory. A computer often
has three levels of randomly accessible memory, ranging from “cache” mem-
ory, which is very fast, to “disk” memory, which is relatively slower. When
data are used in computations, they may be moved in blocks, or pages, from
contiguous locations in one level of memory to a higher level. This allows
faster subsequent access to other data in the same page. When one block of
data is moved into the higher level of memory, another block is moved out.
The movement of data (or program segments, which are also data) from one
level of memory to another is called “paging”.

In Fortran, a column of a matrix occupies contiguous locations, so when
paging occurs, elements in the same column are moved. Hence, a column of
a matrix can often be operated on more quickly in Fortran than a row of a
matrix. In C, a row can be operated on more quickly for similar reasons.

Some computers have array processors that provide basic arithmetic oper-
ations for vectors. The processing units are called vector registers and typically
hold 128 or 256 full-precision floating-point numbers (see Section 10.1). For
software to achieve high levels of efficiency, computations must be organized
to match the length of the vector processors as often as possible.

Another thing that affects the performance of software is the execution of
loops. In the simple loop

do i = 1, n
sx(i) = sin(x(i))

end do

it may appear that the only computing is just the evaluation of the sine of
the elements in the vector x. In fact, a nonnegligible amount of time may be
spent in keeping track of the loop index and in accessing memory. A compiler
on a vector computer may organize the computations so that they are done
in groups corresponding to the length of the vector registers. On a computer
that does not have vector processors, a technique called “unrolling do-loops”

12.1 Fortran and C 451

is sometimes used. For the code segment above, unrolling the do-loop to a
depth of 7, for example, would yield the following code:

do i = 1, n, 7
sx(i) = sin(x(i))
sx(i+1) = sin(x(i+1))
sx(i+2) = sin(x(i+2))
sx(i+3) = sin(x(i+3))
sx(i+4) = sin(x(i+4))
sx(i+5) = sin(x(i+5))
sx(i+6) = sin(x(i+6))

end do

plus a short loop for any additional elements in x beyond 7!n/7". Obviously,
this kind of programming effort is warranted only when n is large and when the
code segment is expected to be executed many times. The extra programming
is definitely worthwhile for programs that are to be widely distributed and
used, such as the BLAS that we discuss later.

Matrix Storage Modes

Matrices that have multiple elements with the same value can often be stored
in the computer in such a way that the individual elements do not all have
separate locations. Symmetric matrices and matrices with many zeros, such
as the upper or lower triangular matrices of the various factorizations we have
discussed, are examples of matrices that do not require full rectangular arrays
for their storage.

A special indexing method for storing symmetric matrices, called sym-
metric storage mode, uses a linear array to store only the unique elements.
Symmetric storage mode is a much more efficient and useful method of stor-
ing a symmetric matrix than would be achieved by a vech(·) operator because
with symmetric storage mode, the size of the matrix affects only the elements
of the vector near the end. If the number of rows and columns of the matrix
is increased, the length of the vector is increased, but the elements are not
rearranged. For example, the symmetric matrix

⎡

⎢
⎢
⎣

1 2 4 · · ·
2 3 5 · · ·
4 5 6 · · ·

· · ·

⎤

⎥
⎥
⎦

in symmetric storage mode is represented by the array

(1, 2, 3, 4, 5, 6, · · ·).
By comparison, the vech(·) operator yields (1, 2, 4, · · · , 3, 5, · · · , 6, · · · , · · ·).
For an n × n symmetric matrix A, the correspondence with the n(n + 1)/2-
vector v is vi(i−1)/2+j = ai,j for i ≥ j. Notice that the relationship does not
involve n. For i ≥ j, in Fortran, it is

452 12 Software for Numerical Linear Algebra

v(i*(i-1)/2+j) = a(i,j)

and in C it is

v[i*(i+1)/2+j] = a[i][j]

Although the amount of space saved by not storing the full symmetric matrix
is only about one half of the amount of space required, the use of rank 1 arrays
rather than rank 2 arrays can yield some reference efficiencies. (Recall that in
discussions of computer software objects, “rank” usually means the number
of dimensions.) For band matrices and other sparse matrices, the savings in
storage can be much larger.

12.1.2 Fortran 95

For the scientific programmer, one of the most useful features of Fortran 95 and
other versions in that family of Fortran languages is the provision of primitive
constructs for vectors and matrices. Whereas all of the Fortran 77 intrinsics
are scalar-valued functions, Fortran 95 provides array-valued functions. For
example, if aa and bb represent matrices conformable for multiplication, the
statement

cc = matmul(aa, bb)

yields the Cayley product in cc. The matmul function also allows multiplica-
tion of vectors and matrices.

Indexing of arrays starts at 1 by default (any starting value can be speci-
fied, however), and storage is column-major.

Space must be allocated for arrays in Fortran 95, but this can be done
at run time. An array can be initialized either in the statement allocating
the space or in a regular assignment statement. A vector can be initialized
by listing the elements between “(/” and “/)”. This list can be generated in
various ways. The reshape function can be used to initialize matrices.

For example, a Fortran 95 statement to declare that the variable aa is to
be used as a 3 × 4 array and to allocate the necessary space is

real, dimension(3,4) :: aa

A Fortran 95 statement to initialize aa with the matrix
⎡

⎣
1 4 7 10
2 5 8 11
3 6 9 12

⎤

⎦

is

aa = reshape((/ 1., 2., 3., &
4., 5., 6., &
7., 8., 9., &
10.,11.,12./), &

(/3,4/))

12.1 Fortran and C 453

Fortran 95 has an intuitive syntax for referencing subarrays, shown in
Table 12.1.

Table 12.1. Subarrays in Fortran 95

aa(2:3,1:3) the 2 × 3 submatrix in rows 2 and 3
and columns 1 to 3 of aa

aa(:,1:4:2) refers to the submatrix with all three rows
and the first and third columns of aa

aa(:,4) refers to the column vector that is the fourth column of aa

Notice that because the indexing starts with 1 (instead of 0) the corre-
spondence between the computer objects and the mathematical objects is a
natural one. The subarrays can be used directly in functions. For example, if
bb is the matrix ⎡

⎢
⎢
⎣

1 5
2 6
3 7
4 8

⎤

⎥
⎥
⎦ ,

the Fortran 95 function reference

matmul(aa(1:2,2:3), bb(3:4,:))

yields the Cayley product [
4 7
5 8

] [
3 7
4 8

]

. (12.3)

Libraries built on Fortran 95 allow some of the basic operations of lin-
ear algebra to be implemented as operators whose operands are vectors or
matrices.

Fortran 95 also contains some of the constructs, such as forall, that have
evolved to support parallel processing.

More extensive later revisions (Fortran 2000 and subsequent versions) in-
clude such features as exception handling, interoperability with C, allocatable
components, parameterized derived types, and object-oriented programming.

12.1.3 Matrix and Vector Classes in C++

In an object-oriented language such as C++, it is useful to define classes corre-
sponding to matrices and vectors. Operators and/or functions corresponding
to the usual operations in linear algebra can be defined so as to allow use of
simple expressions to perform these operations.

A class library in C++ can be defined in such a way that the computer
code corresponds more closely to mathematical code. The indexes to the arrays

454 12 Software for Numerical Linear Algebra

can be defined to start at 1, and the double index of a matrix can be written
within a single pair of parentheses. For example, in a C++ class defined for
use in scientific computations, the (10, 10) element of the matrix A (that is,
a10,10) could be referenced as

aa(10,10)

instead of as

aa[9][9]

as it would be in ordinary C. Many computer engineers prefer the latter
notation, however.

There are various C++ class libraries or templates for matrix and vector
computations; for example, those of Numerical Recipes (Press et al., 2000).
The Template Numerical Toolkit

http://math.nist.gov/tnt/

and the Matrix Template Library

http://www.osl.iu.edu/research/mtl/

are templates based on the design approach of the C++ Standard Template
Library

http://www.sgi.com/tech/stl/

The class library in Numerical Recipes comes with wrapper classes for use
with the Template Numerical Toolkit or the Matrix Template Library.

Use of a C++ class library for linear algebra computations may carry
a computational overhead that is unacceptable for large arrays. Both the
Template Numerical Toolkit and the Matrix Template Library are designed
to be computationally efficient (see Siek and Lumsdaine, 2000).

12.1.4 Libraries

There are a number of libraries of Fortran and C subprograms. The libraries
vary in several ways: free or with licensing costs or user fees; low-level com-
putational modules or higher-level, more application-oriented programs; spe-
cialized or general purpose; and quality, from high to low.

BLAS

There are several basic computations for vectors and matrices that are very
common across a wide range of scientific applications. Computing the dot
product of two vectors, for example, is a task that may occur in such diverse
areas as fitting a linear model to data or determining the maximum value
of a function. While the dot product is relatively simple, the details of how
the computations are performed and the order in which they are performed

12.1 Fortran and C 455

can have effects on both the efficiency and the accuracy. See the discussion
beginning on page 396 about the order of summing a list of numbers.

The sets of routines called “basic linear algebra subprograms” (BLAS) im-
plement many of the standard operations for vectors and matrices. The BLAS
represent a very significant step toward software standardization because the
definitions of the tasks and the user interface are the same on all computing
platforms. The actual coding, however, may be quite different to take ad-
vantage of special features of the hardware or underlying software, such as
compilers.

The level 1 BLAS or BLAS-1, the original set of the BLAS, are for vector
operations. They were defined by Lawson et al. (1979). Matrix operations,
such as multiplying two matrices, were built using the BLAS-1. Later, a set of
the BLAS, called level 2 or the BLAS-2, for operations involving a matrix and
a vector was defined by Dongarra et al. (1988), a set called the level 3 BLAS
or the BLAS-3, for operations involving two dense matrices, was defined by
Dongarra et al. (1990), and a set of the level 3 BLAS for sparse matrices
was proposed by Duff et al. (1997). An updated set of BLAS is described by
Blackford et al. (2002).

The operations performed by the BLAS often cause an input variable to
be updated. For example, in a Givens rotation, two input vectors are rotated
into two new vectors. In this case, it is natural and efficient just to replace the
input values with the output values (see below). A natural implementation of
such an operation is to use an argument that is both input and output. In some
programming paradigms, such a “side effect” can be somewhat confusing, but
the value of this implementation outweighs the undesirable properties.

There is a consistency of the interface among the BLAS routines. The
nature of the arguments and their order in the reference are similar from one
routine to the next. The general order of the arguments is:

1. the size or shape of the vector or matrix,
2. the array itself, which may be either input or output,
3. the stride, and
4. other input arguments.

The first and second types of arguments are repeated as necessary for each of
the operand arrays and the resultant array.

A BLAS routine is identified by a root character string that indicates the
operation, for example, dot or axpy. The name of the BLAS program mod-
ule may depend on the programming language. In Fortran, the root may be
prefixed by s to indicate single precision, by d to indicate double precision, or
by c to indicate complex, for example. If the language allows generic function
and subroutine references, just the root of the name is used.

The axpy operation we referred to on page 10 multiplies one vector by
a constant and then adds another vector (ax + y). The BLAS routine axpy
performs this operation. The interface is

456 12 Software for Numerical Linear Algebra

axpy(n, a, x, incx, y, incy)

where

n is the number of elements in each vector,
a is the scalar constant,
x is the input/output one-dimensional array that contains the elements of the

vector x,
incx is the stride in the array x that defines the vector,
y is the input/output one-dimensional array that contains the elements of the

vector y, and
incy is the stride in the array y that defines the vector.

Another example, the routine rot to apply a Givens rotation (similar to
the routine rotm for Fast Givens that we referred to earlier), has the interface

rot(n, x, incx, y, incy, c, s)

where

n is the number of elements in each vector,
x is the input/output one-dimensional array that contains the elements of the

vector x,
incx is the stride in the array x that defines the vector,
y is the input/output one-dimensional array that contains the elements of the

vector y,
incy is the stride in the array y that defines the vector,
c is the cosine of the rotation, and
s is the sine of the rotation.

This routine is invoked after rotg has been called to determine the cosine and
the sine of the rotation (see Exercise 12.3, page 476).

Source programs and additional information about the BLAS can be ob-
tained at

http://www.netlib.org/blas/

There is a software suite called ATLAS (Automatically Tuned Linear Al-
gebra Software) that provides Fortran and C interfaces to a portable BLAS
binding as well as to other software for linear algebra for various processors.
Information about the ATLAS software can be obtained at

http://math-atlas.sourceforge.net/

12.1 Fortran and C 457

Other Fortran and C Libraries

When work was being done on the BLAS-1 in the 1970s, those lower-level
routines were being incorporated into a higher-level set of Fortran routines
for matrix eigensystem analysis called EISPACK (Smith et al., 1976) and into
a higher-level set of Fortran routines for solutions of linear systems called
LINPACK (Dongarra et al., 1979). As work progressed on the BLAS-2 and
BLAS-3 in the 1980s and later, a unified set of Fortran routines for both eigen-
value problems and solutions of linear systems was developed, called LAPACK
(Anderson et al., 2000). A Fortran 95 version, LAPACK95, is described by
Barker et al. (2001). Information about LAPACK is available at

http://www.netlib.org/lapack/

There is a graphical user interface to help the user navigate the LAPACK site
and download LAPACK routines.

ARPACK is a collection of Fortran 77 subroutines to solve large-scale
eigenvalue problems. It is designed to compute a few eigenvalues and corre-
sponding eigenvectors of a general matrix, but it also has special abilities for
large sparse or structured matrices. See Lehoucq, Sorensen, and Yang (1998)
for a more complete description and for the software itself.

Two of the most widely used Fortran and C libraries are the IMSL Libraries
and the Nag Library. The GNU Scientific Library (GSL) is a widely used and
freely distributed C library. See Galassi et al., (2002) and the web site

http://www.gnu.org/gsl/

All of these libraries provide large numbers of routines for numerical lin-
ear algebra, ranging from very basic computations as provided in the BLAS
through complete routines for solving various types of systems of equations
and for performing eigenanalysis.

12.1.5 The IMSL Libraries

The IMSLTM libraries are available in both Fortran and C versions and in
both single and double precisions. These libraries use the BLAS and other
software from LAPACK.

Matrix Storage Modes

The BLAS and the IMSL Libraries implement a wide range of matrix storage
modes:

Symmetric mode. A full matrix is used for storage, but only the upper or
lower triangular portion of the matrix is used. Some library routines
allow the user to specify which portion is to be used, and others require
that it be the upper portion.

458 12 Software for Numerical Linear Algebra

Hermitian mode. This is the same as the symmetric mode, except for the
obvious changes for the Hermitian transpose.

Triangular mode. This is the same as the symmetric mode (with the obvious
changes in the meanings).

Band mode. For the n×m band matrix A with lower band width wl and upper
band width wu, an wl +wu ×m array is used to store the elements. The
elements are stored in the same column of the array, say aa, as they are
in the matrix; that is,

aa(i − j + wu + 1, j) = ai,j

for i = 1, 2, . . . , wl + wu + 1.
Band symmetric, band Hermitian, and band triangular modes are all
defined similarly. In each case, only the upper or lower bands are refer-
enced.

Sparse storage mode. There are several different schemes for representing
sparse matrices. The IMSL Libraries use three arrays, each of rank 1
and with length equal to the number of nonzero elements. The integer
array i contains the row indicator, the integer array j contains the col-
umn indicator, and the floating-point array a contains the corresponding
values; that is, the (i(k), j(k)) element of the matrix is stored in a(k).
The level 3 BLAS for sparse matrices proposed by Duff et al. (1997)
have an argument to allow the user to specify the type of storage mode.

Examples of Use of the IMSL Libraries

There are separate IMSL routines for single and double precisions. The names
of the Fortran routines share a common root; the double-precision version
has a D as its first character, usually just placed in front of the common
root. Functions that return a floating-point number but whose mnemonic
root begins with an I through an N have an A in front of the mnemonic root
for the single-precision version and have a D in front of the mnemonic root for
the double-precision version. Likewise, the names of the C functions share a
common root. The function name is of the form imsl f root name for single
precision and imsl d root name for double precision.

Consider the problem of solving the system of linear equations

x1 + 4x2 + 7x3 = 10,
2x1 + 5x2 + 8x3 = 11,
3x1 + 6x2 + 9x3 = 12.

Write the system as Ax = b. The coefficient matrix A is real (not necessarily
REAL) and square. We can use various IMSL subroutines to solve this problem.
The two simplest basic routines are LSLRG/DLSLRG and LSARG/DLSARG. Both
have the same set of arguments:

12.1 Fortran and C 459

N, the problem size;
A, the coefficient matrix;
LDA, the leading dimension of A (A can be defined to be bigger than it actually

is in the given problem);
B, the right-hand sides;
IPATH, an indicator of whether Ax = b or ATx = b is to be solved; and
X, the solution.

The difference in the two routines is whether or not they do iterative refine-
ment. A program to solve the system using LSARG (without iterative refine-
ment) is shown in Figure 12.1.

C Fortran 77 program

parameter (ida=3)

integer n, ipath

real a(ida, ida), b(ida), x(ida)

C Storage is by column;

C nonblank character in column 6 indicates continuation

data a/1.0, 2.0, 3.0,

+ 4.0, 5.0, 6.0,

+ 7.0, 8.0, 9.0/

data b/10.0, 11.0, 12.0/

n = 3

ipath = 1

call lsarg (n, a, lda, b, ipath, x)

print *, ’The solution is’, x

end

Fig. 12.1. IMSL Fortran Program to Solve the System of Linear Equations

The IMSL C function to solve this problem is lin sol gen, which is avail-
able as float *imsl f lin sol gen or double *imsl d lin sol gen. The only
required arguments for *imsl f lin sol gen are:

int n, the problem size;
float a[], the coefficient matrix; and
float b[], the right-hand sides.

Either function will allow the array a to be larger than n, in which case the
number of columns in a must be supplied in an optional argument. Other
optional arguments allow the specification of whether Ax = b or ATx = b is
to be solved (corresponding to the argument IPATH in the Fortran subroutines
LSLRG/DLSLRG and LSARG/DLSARG), the storage of the LU factorization, the
storage of the inverse, and so on. A program to solve the system is shown in
Figure 12.2. Note the difference between the column orientation of Fortran
and the row orientation of C.

460 12 Software for Numerical Linear Algebra

* C program *\

#include <imsl.h>

#include <stdio.h>

main()

{

int n = 3;

float *x;

* Storage is by row;

statements are delimited by ’;’,

so statements continue automatically. */

float a[] = {1.0, 4.0, 7.0,

2.0, 5.0, 8.0,

3.0, 6.0, 9.0};

float b[] = {10.0, 11.0, 12.0};

x = imsl_f_lin_sol_gen (n, a, IMSL_A_COL_DIM, 3, b, 0);

printf ("The solution is %10.4f%10.4f%10.4f\n",

x[0], x[1], x[2]);

}

Fig. 12.2. IMSL C Program to Solve the System of Linear Equations

The argument IMSL A COL DIM is optional, taking the value of n, the num-
ber of equations, if it is not specified. It is used in Figure 12.2 only for illus-
tration.

12.1.6 Libraries for Parallel Processing

Another standard set of routines, called the BLACS (Basic Linear Algebra
Communication Subroutines), provides a portable message-passing interface
primarily for linear algebra computations with a user interface similar to that
of the BLAS. A slightly higher-level set of routines, the PBLAS, combine both
the data communication and computation into one routine, also with a user
interface similar to that of the BLAS. Filippone and Colajanni (2000) provide
a set of parallel BLAS for sparse matrices. Their system, called PSBLAS,
shares the general design of the PBLAS for dense matrices and the design of
the level 3 BLAS for sparse matrices proposed by Duff et al. (1997).

A distributed memory version of LAPACK, called ScaLAPACK (see Black-
ford et al., 1997a), has been built on the BLACS and the PBLAS modules.

A parallel version of the ARPACK library is also available. The message-
passing layers currently supported are BLACS and MPI. Parallel ARPACK
(PARPACK) is provided as an extension to the current ARPACK library
(Release 2.1).

Standards for message passing in a distributed-memory parallel process-
ing environment are evolving. The MPI (message-passing interface) standard
being developed primarily at Argonne National Laboratories allows for stan-
dardized message passing across languages and systems. See Gropp, Lusk, and

12.2 Interactive Systems for Array Manipulation 461

Skjellum (1999) for a description of the MPI system. IBM has built the Mes-
sage Passing Library (MPL) in both Fortran and C, which provides message-
passing kernels. PLAPACK is a package for linear algebra built on MPI (see
Van de Geijn, 1997).

Trilinos is a collection of compatible software packages that support par-
allel linear algebra computations, solution of linear and nonlinear equations
and eigensystems of equations and related capabilities. The majority of pack-
ages are written in C++ using object-oriented techniques. All packages are
self-contained, with the Trilinos top layer providing a common look and feel
and infrastructure.

The main Trilinos web site is

http://software.sandia.gov/trilinos/

All of these packages are available on a range of platforms, especially on high-
performance computers.

General references that describe parallel computations and software for
linear algebra include Nakano (2004), Quinn (2003), and Roosta (2000).

12.2 Interactive Systems for Array Manipulation

Many of the computations for linear algebra are implemented as simple oper-
ators on vectors and matrices in some interactive systems. Some of the more
common interactive systems that provide for direct array manipulation are
Octave or Matlab, R or S-Plus, SAS IML, APL, Lisp-Stat, Gauss, IDL, and
PV-Wave. There is no need to allocate space for the arrays in these systems
as there is for arrays in Fortran and C.

Mathematical Objects and Computer Objects

Some difficult design decisions must be made when building systems that
provide objects that simulate mathematical objects. One issue is how to treat
scalars, vectors, and matrices when their sizes happen to coincide.

• Is a vector with one element a scalar?
• Is a 1 × 1 matrix a scalar?
• Is a 1 × n matrix a row vector?
• Is an n × 1 matrix a column vector?
• Is a column vector the same as a row vector?

While the obvious answer to all these questions is “no”, it is often convenient
to design software systems as if the answer, at least to some questions some
of the time, is “yes”. The answer to any such software design question always
must be made in the context of the purpose and intended use (and users)
of the software. The issue is not the purity of a mathematical definition. We

462 12 Software for Numerical Linear Algebra

have already seen that most computer objects and operators do not behave
exactly like the mathematical entities they simulate.

The experience of most people engaged in scientific computations over
many years has shown that the convenience resulting from the software’s
equivalent treatment of such different objects as a 1 × 1 matrix and a scalar
outweighs the programming error detection that could be possible if the ob-
jects were made to behave as nearly as possible to the way the mathematical
entities they simulate behave.

Consider, for example, the following arrays of numbers:

A = [1 2], B =
[

1
2

]

, C =

⎡

⎣
1
2
3

⎤

⎦ . (12.4)

If these arrays are matrices with the usual matrix algebra, then ABC, where
juxtaposition indicates Cayley multiplication, is not a valid expression. (Under
Cayley multiplication, of course, we do not need to indicate the order of the
operations because the operation is associative.)

If, however, we are willing to allow mathematical objects to change types,
we come up with a reasonable interpretation of ABC. If the 1× 1 matrix AB
is interpreted as the scalar 5, then the expression (AB)C can be interpreted
as 5C, that is, a scalar times a matrix.

There is no (reasonable) interpretation that would make the expression
A(BC) valid.

If A is a row vector and B is a column vector, it hardly makes sense
to define an operation on them that would yield another vector. A vector
space cannot consist of such mixtures. Under a strict interpretation of the
operations, (AB)C is not a valid expression.

We often think of the “transpose” of a vector (although this is not a viable
concept in a vector space), and we denote a dot product in a vector space as
xTy. If we therefore interpret a row vector such as A in (12.4) as xT for some
x in the vector space of which B is a member, then AB can be interpreted as
a dot product (that is, as a scalar) and again (AB)C is a valid expression.

The software systems discussed in this section treat the arrays in (12.4) as
different kinds of objects when they evaluate expressions involving the arrays.
The possible objects are scalars, row vectors, column vectors, and matrices,
corresponding to ordinary mathematical objects, and arrays, for which there is
no common corresponding mathematical object. The systems provide different
subsets of these objects; some may have only one class of object (matrix would
be the most general), while some distinguish all five types. Some systems
enforce the mathematical properties of the corresponding objects, and some
systems take a more pragmatic approach and coerce the object types to ones
that allow an expression to be valid if there is an unambiguous interpretation.

In the next two sections we briefly describe the facilities for linear algebra
in Matlab and R. The purpose is to give a very quick comparative introduction.

12.2 Interactive Systems for Array Manipulation 463

12.2.1 MATLAB and Octave

MATLAB R©, or Matlab R©, is a proprietary software package distributed by The
Mathworks, Inc. It is built on an interactive, interpretive expression language.
The package also has a graphical user interface.

Octave is a freely available package that provides essentially the same
core functionality in the same language as Matlab. The graphical interfaces
for Octave are more primitive than those for Matlab and do not interact as
seamlessly with the operating system.

General Properties

The basic object in Matlab is a rectangular array of numbers (possibly com-
plex). Scalars (even indices) are 1 × 1 matrices; equivalently, a 1 × 1 matrix
can be treated as a scalar.

Statements in Matlab are line-oriented. A statement is assumed to end
at the end of the line, unless the last three characters on the line are periods
(...). If an assignment statement in Matlab is not terminated with a semicolon,
the matrix on the left-hand side of the assignment is printed. If a statement
consists only of the name of a matrix, the object is printed to the standard
output device (which is likely to be the monitor).

A comment statement in Matlab begins with a percent sign, “%”.

Basic Operations with Vectors and Matrices and for Subarrays

The indexing of arrays in Matlab starts with 1.
A matrix is initialized in Matlab by listing the elements row-wise within

brackets and with a semicolon marking the end of a row. (Matlab also has
a reshape function similar to that of Fortran 95 that treats the matrix in a
column-major fashion.)

In general, the operators in Matlab refer to the common vector/matrix
operations. For example, Cayley multiplication is indicated by the usual mul-
tiplication symbol, “*”. The meaning of an operator can often be changed
to become the corresponding element-by-element operation by preceding the
operator with a period; for example, the symbol “.*” indicates the Hadamard
product of two matrices. The expression

aa * bb

indicates the Cayley product of the matrices, where the number of columns
of aa must be the same as the number of rows of bb; and the expression

aa .* bb

indicates the Hadamard product of the matrices, where the number of rows
and columns of aa must be the same as the number of rows and columns of
bb. The transpose of a vector or matrix is obtained by using a postfix operator
“′”, which is the same ASCII character as the apostrophe:

464 12 Software for Numerical Linear Algebra

aa’

Figure 12.3 below shows Matlab code that initializes the same matrix aa
that we used as an example for Fortran 95 above. The code in Figure 12.3
also initializes a vector xx and a 4 × 2 matrix bb and then forms and prints
some products.

% Matlab program fragment

xx = [1 2 3 4];

% Storage is by rows; continuation is indicated by ...

aa = [1 4 7 10; ...

2 5 8 11; ...

3 6 9 12];

bb = [1 5; 2 6; 3 7; 4 8];

% Printing occurs automatically unless ’;’ is used

yy = a*xx’

yy = xx(1:3)*aa

cc = aa*bb

Fig. 12.3. Matlab Code to Define and Initialize Two Matrices and a Vector and
Then Form and Print Their Product

Matlab distinguishes between row vectors and column vectors. A row vec-
tor is a matrix whose first dimension is 1, and a column vector is a matrix
whose second dimension is 1. In either case, an element of the vector is refer-
enced by a single index.

Subarrays in Matlab are defined in much the same way as in Fortran 95,
except for one major difference: the upper limit and the stride are reversed
in the triplet used in identifying the row or column indices. Examples of
subarray references in Matlab are shown in Table 12.2. Compare these with
the Fortran 95 references shown in Table 12.1.

Table 12.2. Subarrays in Matlab

aa(2:3,1:3) the 2 × 3 submatrix in rows 2 and 3
and columns 1 to 3 of aa

aa(:,1:2:4) the submatrix with all three rows
and the first and third columns of aa

aa(:,4) the column vector that is the fourth column of aa

The subarrays can be used directly in expressions. For example, the ex-
pression

12.2 Interactive Systems for Array Manipulation 465

aa(1:2,2:3) * bb(3:4,:)

yields the product [
4 7
5 8

] [
3 7
4 8

]

as on page 453.

Functions of Vectors and Matrices

Matlab has functions for many of the basic operations on vectors and matrices,
some of which are shown in Table 12.3.

Table 12.3. Some Matlab Functions for Vector/Matrix Computations

norm Matrix or vector norm.
For vectors, all Lp norms are available.
For matrices, the L1, L2, L∞, and Frobenius norms are available.

rank Number of linearly independent rows or columns.
det Determinant.
trace Trace.
cond Matrix condition number.
null Null space.
orth Orthogonalization.
inv Matrix inverse.
pinv Pseudoinverse.
lu LU decomposition.
qr QR decomposition.
chol Cholesky factorization.
svd Singular value decomposition.
linsolve Solve system of linear equations.
lscov Weighted least squares.

The operator “\” can be used for ordinary least squares.
nnls Nonnegative least squares.
eig Eigenvalues and eigenvectors.
poly Characteristic polynomial.
hess Hessenberg form.
schur Schur decomposition.
balance Diagonal scaling to improve eigenvalue accuracy.
expm Matrix exponential.
logm Matrix logarithm.
sqrtm Matrix square root.
funm Evaluate general matrix function.

In addition to these functions, Matlab has special operators “\” and “/”
for solving linear systems or for multiplying one matrix by the inverse of
another. While the statement

466 12 Software for Numerical Linear Algebra

aa\bb

refers to a quantity that has the same value as the quantity indicated by

inv(aa)*bb

the computations performed are different (and, hence, the values produced
may be different). The second expression is evaluated by performing the two
operations indicated: aa is inverted, and the inverse is used as the left factor in
matrix or matrix/vector multiplication. The first expression, aa\bb, indicates
that the appropriate computations to evaluate x in Ax = b should be per-
formed to evaluate the expression. (Here, x and b may be matrices or vectors.)
Another difference between the two expressions is that inv(aa) requires aa to
be square algorithmically nonsingular, whereas aa\bb produces a value that
simulates A−b.

References

There are a number of books on Matlab, including, for example, Hanselman
and Littlefield (2004). The book by Coleman and Van Loan (1988) is not
specifically on Matlab but shows how to perform matrix computations in
Matlab.

12.2.2 R and S-PLUS

The software system called S was developed at Bell Laboratories in the mid-
1970s. S is both a data analysis system and an object-oriented programming
language.

S-PLUS R© is an enhancement of S, developed by StatSci, Inc. (now a part of
Insightful Corporation). The enhancements include graphical interfaces with
menus for common analyses, more statistical analysis functionality, and sup-
port.

There is a freely available open source system called R that provides gen-
erally the same functionality in the same language as S. This system, as well
as additional information about it, is available at

http://www.r-project.org/

There are graphical interfaces for installation and maintenance of R that in-
teract well with the operating system. The menus for analyses provided in
S-Plus are not available in R.

In the following, rather than continuing to refer to each of the systems, I
will generally refer only to R, but most of the discussion applies to either of
the systems. There are some functions that are available in S-Plus and not in
R and some available in R and not in S-Plus.

12.2 Interactive Systems for Array Manipulation 467

General Properties

The most important R entity is the function. In R, all actions are “functions”,
and R has an extensive set of functions (that is, verbs). Many functions are
provided through packages that although not part of the core R can be easily
installed.

Assignment is made by “<-” or “ ”. (The symbol “ ” should never be used
for assignment, in my opinion. It is not mnemonic, and it is often used as a
connective. I have seen students use a variable L p, with “ ” being used as a
connective, and then use a statement such as norm L p, in which the first “ ”
is an assignment. Using this symbol instead of <- saves exactly one unshifted
keystroke!)

A comment statement in R begins with a pound sign, “#”.
R has a natural syntax and powerful functions for dealing with vectors and

matrices, which are objects in the base language. R has functions for printing,
but if a statement consists of just the name of an object, the object is printed
to the standard output device (which is likely to be the monitor).

Basic Operations with Vectors and Matrices and for Subarrays

Indexing of arrays starts at 1, and storage is column-major. Indexes are in-
dicated by “[]”; for example, xx[1] refers to the first element of the one-
dimensional array xx.

A list is constructed by the c function. A list can be treated as a vec-
tor without modification. A matrix is constructed from a list by the matrix
function. A matrix can also be constructed by binding vectors as the columns
of the matrix (the cbind function) or by binding vectors as the rows of the
matrix (the rbind function).

Cayley multiplication is indicated by the symbol “%*%”. Most operators
with array operands are applied elementwise; for example, the symbol “*”
indicates the Hadamard product of two matrices. The expression

aa %*% bb

indicates the Cayley product of the matrices, where the number of columns
of aa must be the same as the number of rows of bb and the expression

aa * bb

indicates the Hadamard product of the matrices, where the number of rows
and columns of aa must be the same as the number of rows and columns of
bb. The transpose of a vector or matrix is obtained by using the function “t”:

t(aa)

Figure 12.4 below shows R code that does the same thing as the Matlab
code in Figure 12.3; that is, initialize two matrices and a vector, and then
form and print their products.

468 12 Software for Numerical Linear Algebra

R program fragment

xx <- c(1 2 3 4)

Storage is by column, but a matrix can be constructed by rows;

the form of a statement indicates when it is complete, so

statements continue automatically.

aa <- matrix(c(1, 4, 7, 10,

2, 5, 8, 11,

3, 6, 9, 12),

nrow=3, byrow=T)

bb <- matrix(seq(1,8), nrow=4)

yy <- aa %*% xx

Printing is performed by entering the name of the object

yy

yy <- xx[c(1,2,3)] %*% aa

yy

cc <- aa %*% bb

cc

Fig. 12.4. R Code to Define and Initialize Two Matrices and a Vector and Then
Form and Print Their Product

To the extent that R distinguishes between row vectors and column vec-
tors, a vector is considered to be a column vector. In many cases, however, it
does not distinguish. For example, if

xx <- c(1,2)
yy <- c(1,2)

the expression xx %*% yy is the dot product; that is, xx %*% yy is the same
as t(xx) %*% yy; that is, the transpose operator is not required.

The outer product, however, requires either explicit transposition or use
of a special binary operator. The outer product is formed by xx %*% t(yy)
or by using the special outer product operator %o%; thus, xx %o% yy=xx %*%
t(yy). There is also a useful function, outer, that allows more general combi-
nations of the elements of two vectors. For example, if func is a scalar function
of two scalar variables, outer(xx,yy,FUN=func) forms a matrix with the rows
corresponding to xx and the columns corresponding to yy, and whose (ij)th

element corresponds to func(xx[i],yy[j]). Strings can be used as the ar-
gument FUN; thus, outer(xx,yy,FUN="*") = xx %o% yy.

In the expressions

yy <- aa %*% xx

and

yy <- xx[c(1,2,3)] %*% aa

in Figure 12.4, the vector is interpreted as a row or column as appropriate
for the multiplication to be defined. Compare the similar expressions in the

12.2 Interactive Systems for Array Manipulation 469

Matlab code in Figure 12.3 in which a distinction is made between column
and row vectors.

Like many other software systems for array manipulation, R usually does
not distinguish between scalars and arrays of size 1. For example, if

xx <- c(1,2)
yy <- c(1,2)
zz <- c(1,2,3)

the expression xx %*% yy %*% zz yields the same value as 5*zz because the
expression xx %*% yy %*% zz is interpreted as (xx %*% yy) %*% zz and (xx
%*% yy) is a scalar. The expression xx %*% (yy %*% zz) is invalid because
yy and zz are not conformable for multiplication.

Examples of subarray references in R are shown in Table 12.4. Compare
these with the Fortran 95 references shown in Table 12.1 and the Matlab
references shown in Table 12.2. In R, a missing index indicates that the entire
corresponding dimension is to be used. Groups of indices can be formed by
the c function or the seq function, which is similar to the i:j:k notation of
Fortran 95.

Table 12.4. Subarrays in R

aa[c(2,3),c(1,3)] the 2 × 3 submatrix in rows 2 and 3
and columns 1 to 3 of aa

aa[,seq(1,4,2)] the submatrix with all 3 rows

and the 1st and 3rd columns of aa

aa[,4] the column vector that is the 4th column of aa

The subarrays can be used directly in expressions. For example, the ex-
pression

aa[c(1,2),c(2,3)] %*% bb[c(3,4),]

yields the product [
4 7
5 8

] [
3 7
4 8

]

as on page 453.

Functions of Vectors and Matrices

R has functions for many of the basic operations on vectors and matrices.
Some of the R functions are shown in Table 12.5.

470 12 Software for Numerical Linear Algebra

Table 12.5. Some R Functions for Vector/Matrix Computations

norm Matrix norm.
The L1, L2, L∞, and Frobenius norms are available.

vecnorm Vector Lp norm.
det Determinant.
rcond.Matrix Matrix condition number.
solve.Matrix Matrix inverse or pseudoinverse.
lu LU decomposition.
qr QR decomposition.
chol Cholesky factorization.
svd Singular value decomposition.
solve.Matrix Solve system of linear equations.
lsfit Ordinary or weighted least squares.
nnls.fit Nonnegative least squares.
eigen Eigenvalues and eigenvectors.

References

Chambers (1998) provides a basic description of the S language. (John Cham-
bers was the principal designer of S.) There are several texts that describe the
use of R in statistical data analysis, such as Maindonald and Braun (2003),
Venables and Ripley (2003), and Everitt and Nothorn (2006).

12.3 High-Performance Software

Because computations for linear algebra are so pervasive in scientific appli-
cations, it is important to have very efficient software for carrying out these
computations. We have discussed several considerations for software efficiency
in previous chapters. Goedecker and Hoisie (2001) discuss some of these issues
more extensively.

Parallel Processing

It is important that software for numerical linear algebra take full advantage
of vector or parallel computer architecture. We discussed some of the issues
on page 460. Surveys of specialized software for vector architectures and par-
allel processors are available in Dongarra and Walker (1995) and Dongarra
et al. (2002).

ScaLAPACK, described by Blackford et al. (1997b), is a distributed mem-
ory version of LAPACK that uses the BLACS and the PBLAS modules. The
computations in ScaLAPACK are organized as if performed in a “distributed
linear algebra machine” (DLAM), which is constructed by interconnecting
BLAS with a BLACS network. The BLAS perform the usual basic computa-
tions and the BLACS network exhanges data using primitive message-passing

12.3 High-Performance Software 471

operations. The DLAM can be constructed either with or without a host
process. If a host process is present, it would act like a server in receiving
a user request, creating the BLACS network, distributing the data, starting
the BLAS processes, and collecting the results. ScaLAPACK has routines for
LU , Cholesky, and QR decompositions and for computing eigenvalues of a
symmetric matrix. The routines are similar to the corresponding routines in
LAPACK. Even the names are similar, for example, in Fortran:

LAPACK ScaLAPACK
dgetrf pdgetrf LU factorization
dpotrf pdpotrf Cholesky factorization
dgeqrf pdgeqrf QR factorization
dsyevx pdsyevx eigenvalues/vectors of symmetric matrix

The constructs of Fortran 95 are helpful in thinking of operations in such
a way that they are naturally parallelized. While the addition of arrays in
Fortran 77 or C is an operation that leads to loops of sequential scalar oper-
ations, in Fortran 95 it is thought of as a single higher-level operation. How
to perform operations in parallel efficiently is still not a natural activity, how-
ever. For example, the two Fortran 95 statements to add the arrays aa and
bb and then to add aa and cc

dd = aa + bb
ee = aa + cc

may be less efficient than loops because the array aa may be accessed twice.

Clusters of Computers

The software package PVM, or Parallel Virtual Machine, which was developed
at Oak Ridge National Laboratory, the University of Tennessee, and Emory
University, provides a set of C functions or Fortran subroutines that allow a
heterogeneous collection of Unix or Linux computers to operate smoothly as
a multicomputer (see Geist et al., 1994). Likewise, the libraries built on the
MPI standard provide functions that effectively build a multicomputer from
a heterogeneous collection of Unix computers.

A cluster of computers is a very cost-effective method for high-performance
computing. A standard technology for building a cluster of Unix or Linux
computers is called Beowulf (see Gropp, Lusk, and Sterling, 2003). A system
called Pooch is available for linking Apple computers into clusters (see Dauger
and Decyk, 2005).

Processing Sparse Matrices

If the matrices in large-scale problems are sparse, it is important to take
advantage of that sparsity both in the storage and in all computations. We

472 12 Software for Numerical Linear Algebra

discussed storage schemes on page 451. It is also important to preserve the
sparsity during intermediate computations.

Duff, Heroux, and Pozo (2002) discusses special software for sparse matri-
ces. Duff and Vömel (2002) provide a set of Fortran BLAS for sparse matrices.

12.4 Software for Statistical Applications

Statistical applications have needs that go beyond simple linear algebra. The
two most common additional requirements are for

• handling metadata and
• accommodating missing data.

Software packages designed for data analysis, such as SAS/IML and R, gen-
erally provide for metadata and missing values. Fortran/C libraries generally
do not provide for metadata or for handling missing data.

Two other needs that often arise in statistical analysis but often are not
dealt with adequately in available software, are the

• graceful handling of nonfull rank matrices and
• working with nonsquare matrices.

Aside from these general capabilities, of course, software packages for sta-
tistical applications, even if they are designed for some specific type of analysis,
should provide the common operations such as computation of simple uni-
variate statistics, linear regression computations, and some simple graphing
capabilities.

12.5 Test Data

Testbeds for software consist of test datasets that vary in condition but have
known solutions or for which there is an easy way of verifying the solution.
Test data maybe fixed datasets or randomly generated datasets over some
population with known and controllable properties.

For testing software for matrix computations, a very common matrix is
the Hilbert matrix, which has elements

hij =
1

i + j − 1
.

Hilbert matrices have large condition numbers; for example, the 10×10 Hilbert
matrix has a generates an n × n Hilbert matrix.

Randomly generated test data can provide general information about the
performance of a computational method over a range of datasets with specified

12.5 Test Data 473

characteristics. Examples of studies using randomly generated datasets are the
paper by Birkhoff and Gulati (1979) on the accuracy of computed solutions xc

of the linear system Ax = b, where A is n×n from a BMvN distribution, and
the paper by Stewart (1980) using random matrices from a Haar distribution
to study approximations to condition numbers (see page 169 and Exercise 4.7).
As it turns out, matrices from the BMvN distribution are not sufficiently ill-
conditioned often enough to be useful in studies of the accuracy of solutions
of linear systems. Birkhoff and Gulati developed a procedure to construct
arbitrarily ill-conditioned matrices from ones with a BMvN distribution and
then used these matrices in their empirical studies.

Ericksen (1985) describes how to generate matrices with known inverses
in such a way that the condition numbers vary widely. To generate an n × n
matrix A, choose x1, x2, . . . , xn arbitrarily, except such that x1 �= 0, and take

a1j = x1 for j = 1, . . . , n,
ai1 = xi for i = 2, . . . , n,
aij = ai,j−1 + ai−1,j−1 for i, j = 2, . . . , n.

To represent the elements of the inverse, first define y1 = x−1
1 , and for i =

2, . . . , n,

yi = −y1

i−1∑

k=0

xi−kyk.

Then the elements of the inverse of A, B = (bij), are given by

bin = (−1)i+k

(
n − 1
i − 1

)

y1 for i = 1, . . . , n,

bnj = yn+1−j for j = 1, . . . , n − 1,

bij = x1binbnj +
∑n

k=i+1 bk,j+1 for i, j = 1, . . . , n − 1,

where the binomial coefficient,
(

k
m

)

, is defined to be 0 if k < m or m < 0.

The nonzero elements of L and U in the LU decomposition of A are

easily seen to be lij = xi+1−j and uij =
(

j − 1
i − 1

)

. The nonzero elements

of the inverses of L and U are then seen to have (i, j) elements yi+1−j and

(−1)i−j

(
j − 1
i − 1

)

. The determinant of A is xn
1 . For some choices of x1, . . . , xn,

it is easy to determine the condition numbers, especially with respect to the
L1 norm, of the matrices A generated in this way. Ericksen (1985) suggests
that the xs be chosen as

x1 = 2m for m ≤ 0

and

474 12 Software for Numerical Linear Algebra

xi =
(

k
i − 1

)

for i = 2, . . . , n and k ≥ 2,

in which case the L1 condition number of 10 × 10 matrices will range from
about 107 to 1017 as n ranges from 2 to 20 for m = 0 and will range from
about 1011 to 1023 as n ranges from 2 to 20 for m = −1.

For testing algorithms for computing eigenvalues, a useful matrix is a
Wilkinson matrix, which is a symmetric, tridiagonal matrix with 1s on the
off-diagonals. For an n × n Wilkinson matrix, the diagonal elements are

n − 1
2

,
n − 3

2
,

n − 5
2

, . . . ,
n − 5

2
,

n − 3
2

,
n − 1

2
.

If n is odd, the diagonal includes 0, otherwise all of the diagonal elements are
positive. The 5 × 5 Wilkinson matrix, for example, is

⎡

⎢
⎢
⎢
⎢
⎣

2 1 0 0 0
1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
0 0 0 1 2

⎤

⎥
⎥
⎥
⎥
⎦

.

The two largest eigenvalues of a Wilkinson matrix are very nearly equal. Other
pairs are likewise almost equal to each other: the third and fourth largest
eigenvalues are also close in size, the fifth and sixth largest are likewise, and
so on. The largest pair is closest in size, and each smaller pair is less close in
size.

The Matlab function wilkinson(n) generates an n×n Wilkinson matrix.
Another test matrix available in Matlab is the Rosser test matrix, which is
an 8 × 8 matrix with an eigenvalue of multiplicity 2 and three nearly equal
eigenvalues. It is constructed by the Matlab function rosser.

A well-known, large, and wide-ranging set of test matrices for computa-
tional algorithms for various problems in linear algebra was compiled and
described by Gregory and Karney (1969). Higham (1991, 2002) describes a
set of test matrices and provides Matlab programs to generate the matrices.

Another set of test matrices is available through the “Matrix Market”,
designed and developed by R. Boisvert, R. Pozo, and K. Remington of the
U.S. National Institute of Standards and Technology with contributions by
various other people. The test matrices can be accessed at

http://math.nist.gov/MatrixMarket

The database can be searched by specifying characteristics of the test matrix,
such as size, symmetry, and so on. Once a particular matrix is found, its
sparsity pattern can be viewed at various levels of detail, and other pertinent
data can be reviewed. If the matrix seems to be what the user wants, it can be
downloaded. The initial database for the Matrix Market is the approximately
300 problems from the Harwell-Boeing Sparse Matrix Collection.

Exercises 475

A set of test datasets for statistical analyses has been developed by the
National Institute of Standards and Technology. This set, called “statistical
reference datasets” (StRD), includes test datasets for linear regression, analy-
sis of variance, nonlinear regression, Markov chain Monte Carlo estimation,
and univariate summary statistics. It is available at

http://www.itl.nist.gov/div898/strd/

Assessing the Accuracy of a Computed Result

In real-life applications, the correct solution is not known, and this may also
be the case for randomly generated test datasets. If the correct solution is not
known, internal consistency tests as discussed in Section 11.2.3 may be used
to assess the accuracy of the computations in a given problem.

Software Reviews

Reviews of available software play an important role in alerting the user to
both good software to be used and bad software to be avoided. Software
reviews also often have the salutary effect of causing the software producers
to improve their products.

Exercises

12.1. Write a recursive function in Fortran, C, Octave or Matlab, R or S-
Plus, or PV-Wave to multiply two square matrices using the Strassen
algorithm (page 437). Write the function so that it uses an ordinary
multiplication method if the size of the matrices is below a threshold
that is supplied by the user.

12.2. There are various ways to evaluate the efficiency of a program: count-
ing operations, checking the “wall time”, using a shell level timer, and
using a call within the program. In C, the timing routine is ctime, and
in Fortran 95 it is the subroutine system clock. Fortran 77 does not
have a built-in timing routine, but the IMSL Fortran Library provides
one. For this assignment, you are to write six short C programs and
six short Fortran programs. The programs in all cases are to initialize
an n × m matrix so that the entries are equal to the column numbers;
that is, all elements in the first column are 1s, all in the second column
are 2s, etc. The six programs arise from three matrices of different sizes
10,000×10,000, 100×1,000,000, and 1,000,000×100; and from two dif-
ferent ways of nesting the loops: for each size matrix, first nest the row
loop within the column loop and then reverse the loops. The number of
operations is the same for all programs. For each program, use both a

476 12 Software for Numerical Linear Algebra

shell level timer (e.g., in Unix, use time) and a timer called from within
your program. Make a table of the times:

10000 × 10000 100 × 1000000 1000000 × 100
Fortran column-in-row — — —

row-in-column — — —
C column-in-row — — —

row-in-column — — —

12.3. Obtain the BLAS routines rotg and rot for constructing and applying
a Givens rotation. These routines exist in both Fortran and C; they are
available in the IMSL Libraries or from CALGO (Collected Algorithms
of the ACM; see the Bibliography).
a) Using these two routines, apply a Givens rotation to the matrix used

in Exercise 5.8 in Chapter 5,

A =

⎡

⎢
⎢
⎣

3 5 6
6 1 2
8 6 7
2 3 1

⎤

⎥
⎥
⎦ ,

so that the second column becomes (5, ã22, 6, 0).
b) Write a routine in Fortran or C that accepts as input a matrix and its

dimensions and uses the BLAS routines rotg and rot to produce
its QR decomposition. There are several design issues you should
address: how the output is returned (for purposes of this exercise,
just return two arrays or pointers to the arrays in full storage mode),
how to handle nonfull rank matrices (for this exercise, assume that
the matrix is of full rank, so return an error message in this case),
how to handle other input errors (what do you do if the user inputs
a negative number for a dimension?), and others.

12.4. Using the BLAS routines rotg and rot for constructing and applying
a Givens rotation and the program you wrote in Exercise 12.3, write
a Fortran or C routine that accepts a simple symmetric matrix and
computes its eigenvalues using the mobile Jacobi scheme. The outer
loop of your routine consists of the steps shown on page 249, and the
multiple actions of each of those steps can be implemented in a loop
in serial mode. The importance of this algorithm, however, is realized
when the actions in the individual steps on page 249 are performed in
parallel.

12.5. Compute the two largest eigenvalues of the 21×21 Wilkinson matrix to
15 digits.

12.6. Use a symbolic manipulation software package such as Maple to deter-
mine the inverse of the matrix:

⎡

⎣
a b c
d e f
g h i

⎤

⎦ .

Exercises 477

Determine conditions for which the matrix would be singular. (You can
use the solve() function in Maple on certain expressions in the symbolic
solution you obtained.)

12.7. Consider the 3 × 3 symmetric Toeplitz matrix with elements a, b, and
c; that is, the matrix that looks like this:

⎡

⎣
a b c
b a b
c b a

⎤

⎦ .

a) Invert this matrix.
b) Determine conditions for which the matrix would be singular.

12.8. Develop a class library in C++ for matrix and vector operations. Discuss
carefully the issues you consider in designing the class constructors.
Design them in such a way that the references

xx(1)
YY(1,1)

refer to the implied mathematical entities. Design the operators “+” and
“*” so that the references

aa + bb
aa * bb

will determine whether a and b are matrices and/or vectors conformable
for the implied mathematical operations and, if so, will produce the
object corresponding to the implied mathematical entity represented by
the expression.

A

Notation and Definitions

All notation used in this work is “standard”. I have opted for simple nota-
tion, which, of course, results in a one-to-many map of notation to object
classes. Within a given context, however, the overloaded notation is generally
unambiguous. I have endeavored to use notation consistently.

This appendix is not intended to be a comprehensive listing of definitions.
The Index, beginning on page 519, is a more reliable set of pointers to defini-
tions, except for symbols that are not words.

A.1 General Notation

Uppercase italic Latin and Greek letters, such as A, B, E, Λ, etc., are generally
used to represent either matrices or random variables. Random variables are
usually denoted by letters nearer the end of the Latin alphabet, such X, Y , and
Z, and by the Greek letter E. Parameters in models (that is, unobservables
in the models), whether or not they are considered to be random variables,
are generally represented by lowercase Greek letters. Uppercase Latin and
Greek letters are also used to represent cumulative distribution functions.
Also, uppercase Latin letters are used to denote sets.

Lowercase Latin and Greek letters are used to represent ordinary scalar or
vector variables and functions. No distinction in the notation is made
between scalars and vectors; thus, β may represent a vector and βi may
represent the ith element of the vector β. In another context, however, β may
represent a scalar. All vectors are considered to be column vectors, although
we may write a vector as x = (x1, x2, . . . , xn). Transposition of a vector or a
matrix is denoted by the superscript “T”.

Uppercase calligraphic Latin letters, such D, V, and W, are generally used
to represent either vector spaces or transforms (functionals).

Subscripts generally represent indexes to a larger structure; for example,
xij may represent the (i, j)th element of a matrix, X. A subscript in paren-
theses represents an order statistic. A superscript in parentheses represents

480 Appendix A. Notation and Definitions

an iteration; for example, x
(k)
i may represent the value of xi at the kth step

of an iterative process.

xi The ith element of a structure (including a sample,
which is a multiset).

x(i) The ith order statistic.

x(i) The value of x at the ith iteration.

Realizations of random variables and placeholders in functions associated
with random variables are usually represented by lowercase letters correspond-
ing to the uppercase letters; thus, ε may represent a realization of the random
variable E.

A single symbol in an italic font is used to represent a single variable. A
Roman font or a special font is often used to represent a standard operator
or a standard mathematical structure. Sometimes a string of symbols in a
Roman font is used to represent an operator (or a standard function); for
example, exp(·) represents the exponential function. But a string of symbols
in an italic font on the same baseline should be interpreted as representing
a composition (probably by multiplication) of separate objects; for example,
exp represents the product of e, x, and p. Likewise a string of symbols in
a Roman font (usually a single symbol) is used to represent a fundamental
constant; for example, e represents the base of the natural logarithm, while e
represents a variable.

A fixed-width font is used to represent computer input or output, for ex-
ample,

a = bx + sin(c).

In computer text, a string of letters or numerals with no intervening spaces
or other characters, such as bx above, represents a single object, and there is
no distinction in the font to indicate the type of object.

Some important mathematical structures and other objects are:

IR The field of reals or the set over which that field is
defined.

IRd The usual d-dimensional vector space over the reals or
the set of all d-tuples with elements in IR.

ZZ The ring of integers or the set over which that ring is
defined.

A.2 Computer Number Systems 481

GL(n) The general linear group; that is, the group of n × n
full rank (real) matrices with Cayley multiplication.

O(n) The orthogonal group; that is, the group of n × n or-
thogonal (orthonormal) matrices with Cayley multipli-
cation.

e The base of the natural logarithm. This is a constant;
e may be used to represent a variable. (Note the dif-
ference in the font.)

i The imaginary unit,
√
−1. This is a constant; i may

be used to represent a variable. (Note the difference in
the font.)

A.2 Computer Number Systems

Computer number systems are used to simulate the more commonly used
number systems. It is important to realize that they have different properties,
however. Some notation for computer number systems follows.

IF The set of floating-point numbers with a given preci-
sion, on a given computer system, or this set together
with the four operators +, -, *, and /. (IF is similar to
IR in some useful ways; see Section 10.1.1.)

II The set of fixed-point numbers with a given length,
on a given computer system, or this set together with
the four operators +, -, *, and /. (II is similar to ZZ in
some useful ways; see Section 10.1.2 and Table 10.3 on
page 400.)

emin and emax The minimum and maximum values of the exponent in
the set of floating-point numbers with a given length
(see page 381).

εmin and εmax The minimum and maximum spacings around 1 in the
set of floating-point numbers with a given length (see
page 383).

ε or εmach The machine epsilon, the same as εmin (see page 383).

[·]c The computer version of the object · (see page 393).

482 Appendix A. Notation and Definitions

NA Not available; a missing-value indicator.

NaN Not-a-number (see page 386).

A.3 General Mathematical Functions and Operators

Functions such as sin, max, span, and so on that are commonly associated
with groups of Latin letters are generally represented by those letters in a
Roman font.

Operators such as d (the differential operator) that are commonly associ-
ated with a Latin letter are generally represented by that letter in a Roman
font.

Note that some symbols, such as | · |, are overloaded; such symbols are
generally listed together below.

× Cartesian or cross product of sets, or multiplication of
elements of a field or ring.

|x| The modulus of the real or complex number x; if x is
real, |x| is the absolute value of x.

(x) The ceiling function evaluated at the real number x:
(x) is the largest integer less than or equal to x.

!x" The floor function evaluated at the real number x: !x"
is the smallest integer greater than or equal to x.

x! The factorial of x. If x is a positive integer, x! = x(x−
1) · · · 2 · 1.

O(f(n)) Big O; g(n) = O(f(n)) means g(n)/f(n) → c as n →
∞, where c is a nonzero finite constant. In particular,
g(n) = O(1) means g(n) is bounded.

o(f(n)) Little o; g(n) = o(f(n)) means g(n)/f(n) → 0 as n →
∞. In particular, g(n) = o(1) means g(n) → 0.

oP (f(n)) Convergent in probability; X(n) = oP (f(n)) means
that for any positive ε, Pr(|X(n) − f(n)| > ε) → 0 as
n → ∞.

d The differential operator.

A.3 General Mathematical Functions and Operators 483

∆ A perturbation operator; ∆x represents a perturbation
of x and not a multiplication of x by ∆, even if x is a
type of object for which a multiplication is defined.

∆(·, ·) A real-valued difference function; ∆(x, y) is a mea-
sure of the difference of x and y. For simple objects,
∆(x, y) = |x − y|. For more complicated objects, a
subtraction operator may not be defined, and ∆ is a
generalized difference.

x̃ A perturbation of the object x; ∆(x, x̃) = ∆x.

x̃ An average of a sample of objects generically denoted
by x.

x̄ The mean of a sample of objects generically denoted
by x.

x̄ The complex conjugate of the complex number x; that
is, if x = r + ic, then x̄ = r − ic.

sign(x) For the vector x, a vector of units corresponding to the
signs:

sign(x)i = 1 if xi > 0,
= 0 if xi = 0,
= −1 if xi < 0,

with a similar meaning for a scalar.

Special Functions

A good general reference on special functions in mathematics is the venerable
book edited by Abramowitz and Stegun (1964), which has been kept in print
by Dover Publications.

log x The natural logarithm evaluated at x.

sin x The sine evaluated at x (in radians) and similarly for
other trigonometric functions.

484 Appendix A. Notation and Definitions

Γ(x) The complete gamma function: Γ(x) =
∫∞
0

tx−1e−tdt.
(This is called Euler’s integral.) Integration by parts
immediately gives the replication formula Γ(x + 1) =
xΓ(x), and so if x is a positive integer, Γ(x + 1) = x!,
and more generally, Γ(x + 1) defines x!. Direct evalu-
ation of the integral yields Γ(1/2) =

√
π. Using this

and the replication formula, with some manipulation
we get for the positive integer j

Γ(j + 1/2) =
1 · 2 · · · (2j − 1)

2j

√
π.

The notation Γd(x) denotes the multivariate gamma
function (page 169), although in other literature this
notation denotes the incomplete univariate gamma
function.

A.4 Linear Spaces and Matrices

V(G) For the set of vectors (all of the same order) G, the
vector space generated by that set.

V(X) For the matrix X, the vector space generated by the
columns of X.

dim(V) The dimension of the vector space V; that is, the max-
imum number of linearly independent vectors in the
vector space.

span(Y) For Y either a set of vectors or a matrix, the vector
space V(Y)

.

⊥ Orthogonality relationship (vectors, see page 22; vector
spaces, see page 23).

V⊥ The orthogonal complement of the vector space V (see
page 23).

N (A) The null space of the matrix A; that is, the set of vec-
tors generated by all solutions, z, of the homogeneous
system Az = 0; N (A) is the orthogonal complement of
V(AT).

A.4 Linear Spaces and Matrices 485

tr(A) The trace of the square matrix A, that is, the sum of
the diagonal elements.

rank(A) The rank of the matrix A, that is, the maximum num-
ber of independent rows (or columns) of A.

ρ(A) The spectral radius of the matrix A (the maximum
absolute value of its eigenvalues).

A > 0
A ≥ 0

If A is a matrix, this notation means, respectively, that
each element of A is positive or nonnegative.

A � 0
A � 0

This notation means that A is a symmetric matrix and
that it is, respectively, positive definite or nonnegative
definite.

AT For the matrix A, its transpose (also used for a vector
to represent the corresponding row vector).

AH The conjugate transpose, also called the adjoint, of the
matrix A; AH = ĀT = AT.

A−1 The inverse of the square, nonsingular matrix A.

A−T The inverse of the transpose of the square, nonsingular
matrix A.

A+ The g4 inverse, the Moore-Penrose inverse, or the
pseudoinverse of the matrix A (see page 102).

A− A g1, or generalized, inverse of the matrix A (see
page 102).

A
1
2 The square root of a nonnegative definite or positive

definite matrix A; (A
1
2)2 = A.

A− 1
2 The square root of the inverse of a positive definite

matrix A; (A− 1
2)2 = A−1.

⊗ Kronecker multiplication (see page 72).

⊕ The direct sum of two matrices; A ⊕ B = diag(A,B)
(see page 47).

⊕ Direct sum of vector spaces (see page 13).

486 Appendix A. Notation and Definitions

Norms and Inner Products

Lp For real p ≥ 1, a norm formed by accumulating the
pth powers of the moduli of individual elements in an
object and then taking the (1/p)th power of the result
(see page 17).

‖ · ‖ In general, the norm of the object ·.

‖ · ‖p In general, the Lp norm of the object ·.

‖x‖p For the vector x, the Lp norm

‖x‖p =
(∑

|xi|p
) 1

p

(see page 17).

‖X‖p For the matrix X, the Lp norm

‖X‖p = max
‖v‖p=1

‖Xv‖p

(see page 130).

‖X‖F For the matrix X, the Frobenius norm

‖X‖F =
√∑

i,j

x2
ij

(see page 131).

〈x, y〉 The inner product or dot product of x and y (see
page 15; and see page 74 for matrices).

κp(A) The Lp condition number of the nonsingular square
matrix A with respect to inversion (see page 203).

A.4 Linear Spaces and Matrices 487

Matrix Shaping Notation

diag(v) For the vector v, the diagonal matrix whose nonzero
elements are those of v; that is, the square matrix, A,
such that Aii = vi and for i �= j, Aij = 0.

diag(A1, A2, . . . , Ak) The block diagonal matrix whose submatrices along
the diagonal are A1, A2, . . . , Ak.

vec(A) The vector consisting of the columns of the matrix A
all strung into one vector; if the column vectors of A
are a1, a2, . . . , am, then

vec(A) = (aT
1 , aT

2 , . . . , aT
m).

vech(A) For the m × m symmetric matrix A, the vector con-
sisting of the lower triangular elements all strung into
one vector:

vech(A) = (a11, a21, . . . , am1, a22, . . . , am2, . . . , amm).

A(i1,...,ik) The matrix formed from rows i1, . . . , ik and columns
i1, . . . , ik from a given matrix A. This kind of subma-
trix and the ones below occur often when working with
determinants (for square matrices). If A is square, the
determinants of these submatrices are called minors
(see page 51). Because the principal diagonal elements
of this matrix are principal diagonal elements of A, it
is called a principal submatrix of A. Generally, but not
necessarily, ij < ij+1.

A(i1,...,ik)(j1,...,jl) The submatrix of a given matrix A formed from rows
i1, . . . , ik and columns j1, . . . , jl from A.

A(i1,...,ik)(∗)
or
A(∗)(j1,...,jl)

The submatrix of a given matrix A formed from rows
i1, . . . , ik and all columns or else all rows and columns
j1, . . . , jl from A.

A−(i1,...,ik)(j1,...,jl) The submatrix formed from a given matrix A by delet-
ing rows i1, . . . , ik and columns j1, . . . , jl.

488 Appendix A. Notation and Definitions

A−(i1,...,ik)()

or
A−()(j1,...,jl)

The submatrix formed from a given matrix A by delet-
ing rows i1, . . . , ik (and keeping all columns) or else by
deleting columns j1, . . . , jl from A.

Notation for Rows or Columns of Matrices

ai∗ The vector that corresponds to the ith row of the ma-
trix A. As with all vectors, this is a column vector, so
it often appears in the form aT

i∗.

a∗j The vector that corresponds to the jth column of the
matrix A.

Notation Relating to Matrix Determinants

|A| The determinant of the square matrix A, |A| =
det(A).

det(A) The determinant of the square matrix A, det(A) =
|A|.

|A(i1,...,ik)| A principal minor of a square matrix A; in this case, it
is the minor corresponding to the matrix formed from
rows i1, . . . , ik and columns i1, . . . , ik from a given ma-
trix A.

|A−(i)(j)| The minor associated with the (i, j)th element of a
square matrix A.

a(ij) The cofactor associated with the (i, j)th element of a
square matrix A; that is, a(ij) = (−1)i+j |A−(i)(j)|.

adj(A) The adjugate, also called the classical adjoint, of the
square matrix A: adj(A) = (a(ji)); that is, the matrix
of the same size as A formed from the cofactors of the
elements of AT.

A.4 Linear Spaces and Matrices 489

Matrix-Vector Differentiation

dt The differential operator on the scalar, vector, or ma-
trix t. This is an operator; d may be used to represent
a variable. (Note the difference in the font.)

gf

or ∇f
For the scalar-valued function f of a vector variable,
the vector whose ith element is ∂f/∂xi. This is the
gradient, also often denoted as gf .

∇f For the vector-valued function f of a vector variable,
the matrix whose element in position (i, j) is

∂fj(x)
∂xi

.

This is also written as ∂fT/∂x or just as ∂f/∂x. This
is the transpose of the Jacobian of f .

Jf For the vector-valued function f of a vector variable,
the Jacobian of f denoted as Jf . The element in posi-
tion (i, j) is

∂fi(x)
∂xj

.

This is the transpose of (∇f): Jf = (∇f)T.

Hf

or ∇∇f
or ∇2f

The Hessian of the scalar-valued function f of a vector
variable. The Hessian is the transpose of the Jacobian
of the gradient. Except in pathological cases, it is sym-
metric. The element in position (i, j) is

∂2f(x)
∂xi∂xj

.

The symbol ∇2f is sometimes also used to denote the
diagonal of the Hessian, in which case it is called the
Laplacian.

Special Vectors and Matrices

1 or 1n A vector (of length n) whose elements are all 1s.

490 Appendix A. Notation and Definitions

0 or 0n A vector (of length n) whose elements are all 0s.

I or In The (n × n) identity matrix.

ei The ith unit vector (with implied length) (see page 12).

Elementary Operator Matrices

Epq The (p, q)th elementary permutation matrix (see
page 63).

Eπ The permutation matrix that permutes the rows ac-
cording to the permutation π.

Ep(a) The pth elementary scalar multiplication matrix (see
page 64).

Epq(a) The (p, q)th elementary axpy matrix (see page 65).

A.5 Models and Data

A form of model used often in statistics and applied mathematics has three
parts: a left-hand side representing an object of primary interest; a function
of another variable and a parameter, each of which is likely to be a vector;
and an adjustment term to make the right-hand side equal the left-hand side.
The notation varies depending on the meaning of the terms. One of the most
common models used in statistics, the linear regression model with normal
errors, is written as

Y = βTx + E. (A.1)

The adjustment term is a random variable, denoted by an uppercase epsilon.
The term on the left-hand side is also a random variable. This model does not
represent observations or data. A slightly more general form is

Y = f(x; θ) + E. (A.2)

A single observation or a single data item that corresponds to model (A.1)
may be written as

y = βTx + ε,

or, if it is one of several,

A.5 Models and Data 491

yi = βTxi + εi.

Similar expressions are used for a single data item that corresponds to
model (A.2).

In these cases, rather than being a random variable, ε or εi may be a
realization of a random variable, or it may just be an adjustment factor with
no assumptions about its origin.

A set of n such observations is usually represented in an n-vector y, a
matrix X with n rows, and an n-vector ε:

y = Xβ + ε

or
y = f(X; θ) + ε.

B

Solutions and Hints for Selected Exercises

Exercises Beginning on Page 37

2.2. Let one vector space consist of all vectors of the form (a, 0) and the other
consist of all vectors of the form (0, b). The vector (a, b) is not in the
union if a �= 0 and b �= 0.

2.4. Give a counterexample to the triangle inequality; for example, let x =
(9, 25) and y = (16, 144).

2.6a. We first observe that if ‖x‖p = 0 or ‖y‖q = 0, we have x = 0 or y = 0,
and so the inequality is satisfied because both sides are 0; hence, we need
only consider the case ‖x‖p > 0 and ‖y‖q > 0. We also observe that if
p = 1 or q = 1, we have the Manhattan and Chebyshev norms and the
inequality is satisfied; hence we need only consider the case 1 < p < ∞.
Now, for p and q as given, for any numbers ai and bi, there are numbers
si and ti such that |ai| = esi/p and |bi| = eti/q. Because ex is a convex
function, we have esi/p+ti/q ≤ 1

pes
i + 1

q et
i, or

aibi ≤ |ai||bi| ≤ |ai|p/p + |bi|q/q.

Now let
ai =

xi

‖x‖p
and bi =

yi

‖y‖q
,

and so
xi

‖x‖p

yi

‖y‖q
≤ 1

p

|xi|p
‖x‖p

p
+

1
q

|yi|q
‖y‖q

q
.

Now, summing these equations over i, we have

〈x, y〉
‖x‖p‖y‖q

≤ 1
p

‖x‖p
p

‖x‖p
p

+
1
q

‖y‖q
q

‖y‖q
q

= 1.

Hence, we have the desired result.

494 Appendix B. Solutions and Hints for Exercises

As we see from this proof, the inequality is actually a little stronger
than stated. If we define u and v by ui = |xi| and vi = |yi|, we have

〈x, y〉 ≤ 〈u, v〉 ≤ ‖x‖p‖y‖q.

We observe that equality occurs if and only if

(
|xi|
‖x‖p

) 1
q

=
(

|yi|
‖y‖q

) 1
p

and
sign(xi) = sign(yi)

for all i.
We note a special case by letting y = 1:

x̄ ≤ ‖x‖p,

and with p = 2, we have a special case of the Cauchy-Schwarz inequality,

nx̄2 ≤ ‖x‖2
2,

which guarantees that V(x) ≥ 0.
2.6b. Using the triangle inequality for the absolute value, we have |xi + yi| ≤

|xi| + |yi|. This yields the result for p = 1 and p = ∞ (in the limit).
Now assume 1 < p < ∞. We have

‖x + y‖p
p ≤

n∑

i=1

|xi + yi|p−1|xi| +
n∑

i=1

|xi + yi|p−1|yi|.

Now, letting q = p/(p − 1), we apply Hölder’s inequality to each of the
terms on the right:

n∑

i=1

|xi + yi|p−1|xi| ≤
(

n∑

i=1

|xi + yi|(p−1)q

) 1
q
(

n∑

i=1

|xi|p
) 1

p

and

n∑

i=1

|xi + yi|p−1|xi| ≤
(

n∑

i=1

|xi + yi|(p−1)q

) 1
q
(

n∑

i=1

|yi|p
) 1

p

,

so

n∑

i=1

|xi+yi|p ≤
(

n∑

i=1

|xi + yi|(p−1)q

) 1
q

⎛

⎝

(
n∑

i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

⎞

⎠

or, because (p − 1)q = p and 1 − 1
q = 1

p ,

Appendix B. Solutions and Hints for Exercises 495

(
n∑

i=1

|xi + yi|p
) 1

p

≤
(

n∑

i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

,

which is the same as

‖x + y‖p ≤ ‖x‖p + ‖y‖p,

the triangle inequality.
2.13e. In IR3,

angle(x, y) = sin−1

(
‖x × y‖
‖x‖ ‖y|

)

.

Because x × y = −y × x, this allows us to determine the angle from x
to y; that is, the direction within (−π, π] in which x would be rotated
to y.

2.15. Just consider the orthogonal vectors x = (1, 0) and y = (0, 1). The
centered vectors are xc = (1

2 ,− 1
2) and yc = (− 1

2 , 1
2). The angle between

the uncentered vectors is π/2, while that between the centered vectors
is π.

Exercises Beginning on Page 140

3.16. For property 7, let c be a nonzero eigenvalue of AB. Then there exists
v (�= 0) such that ABv = cv, that is, BABv = Bcv. But this means
BAw = cw, where w = Bv �= 0 (because ABv �= 0) and so c is an
eigenvalue of BA. We use the same argument starting with an eigenvalue
of BA. For square matrices, there are no other eigenvalues, so the set
of eigenvalues is the same.
For property 8, see the discussion of similarity transformations on
page 114.

3.27. Let A and B be such that AB is defined.

‖AB‖2
F =

∑

ij

∣
∣
∣
∣
∣

∑

k

aikbkj

∣
∣
∣
∣
∣

2

≤
∑

ij

(
∑

k

a2
ik

)(
∑

k

b2
kj

)

(Cauchy-Schwarz)

=

⎛

⎝
∑

i,k

a2
ik

⎞

⎠

⎛

⎝
∑

k,j

b2
kj

⎞

⎠

= ‖A‖2
F‖B‖2

F.

496 Appendix B. Solutions and Hints for Exercises

Exercises Beginning on Page 169

4.5b. The first step is to use the trick of equation (3.63), xTAx = tr(AxxT),
again to undo the earlier expression, and write the last term in equa-
tion (4.36) as

−n

2
tr
(
Σ−1(ȳ − µ)(ȳ − µ)T

)
= −n

2
(ȳ − µ)Σ−1(ȳ − µ)T.

Now Σ−1 is positive definite, so (ȳ − µ)Σ−1(ȳ − µ)T ≥ 0 and hence
is minimized for µ̂ = ȳ. Decreasing this term increases the value of
l(µ,Σ; y), and so l(µ̂, Σ; y) ≥ l(µ,Σ; y) for all positive definite Σ−1.
Now, we consider the other term. Let A =

∑n
i=1(yi − ȳ)(yi − ȳ)T. The

first question is whether A is positive definite. We will refer to a text
on multivariate statistics for the proof that A is positive definite with
probability 1 (see Muirhead, 1982, for example). We have

l(µ̂, Σ; y) = c − n

2
log |Σ| − 1

2
tr
(
Σ−1A

)

= c − n

2
(
log |Σ| + tr

(
Σ−1A/n

))
.

Because c is constant, the function is maximized at the minimum of the
latter term subject to Σ being positive definite, which, as shown for
expression (4.32), occurs at Σ̂ = A/n.

4.8. 2dn/2Γd(n/2)|Σ|n/2.
Make the change of variables W = 2Σ

1
2 Y Σ

1
2 , determine the Jacobian,

and integrate.

Exercises Beginning on Page 198

5.2. The R code that will produce the graph is

x<-c(0,1)
y<-c(0,1)
z<-matrix(c(0,0,1,1),nrow=2)
persp(x, y, z, theta = 45, phi = 30)
bottom<-c(.5,0,0,1)%*%trans
top<-c(.5,1,1,1)%*%trans
xends<-c(top[,1]/top[,4],bottom[,1]/bottom[,4])
yends<-c(top[,2]/top[,4],bottom[,2]/bottom[,4])
lines(xends,yends,lwd=2)

Exercises Beginning on Page 238

6.1. First, show that

max
x�=0

‖Ax‖
‖x‖ =

(

min
x�=0

‖A−1x‖
‖x‖

)−1

Appendix B. Solutions and Hints for Exercises 497

and

max
x�=0

‖A−1x‖
‖x‖ =

(

min
x�=0

‖Ax‖
‖x‖

)−1

.

6.2a. The matrix at the first elimination is
⎡

⎣
2 5 3 19
1 4 1 12
1 2 2 9

⎤

⎦ .

The solution is (3, 2, 1).
6.2b. The matrix at the first elimination is

⎡

⎣
5 2 3 19
4 1 1 12
2 1 2 9

⎤

⎦ ,

and x1 and x2 have been interchanged.
6.2c.

D =

⎡

⎣
2 0 0
0 4 0
0 0 2

⎤

⎦ ,

L =

⎡

⎣
0 0 0
1 0 0
1 2 0

⎤

⎦ ,

U =

⎡

⎣
0 −5 −3
0 0 −1
0 0 −2

⎤

⎦ ,

ρ((D + L)−1U) = 0.9045.

6.4a. nm(m + 1) − m(m + 1)/2. (Remember ATA is symmetric.)
6.4g. Using the normal equations with the Cholesky decomposition requires

only about half as many flops as the QR, when n is much larger than
m. The QR method oftens yields better accuracy, however.

Exercises Beginning on Page 256

7.1a. 1.
7.1b. 1.
7.1d. 1. (All that was left was to determine the probability that cn �= 0 and

cn−1 �= 0.)
7.2a. 11.6315.
7.3. ⎡

⎢
⎢
⎣

3.08 −0.66 0 0
−0.66 4.92 −3.27 0

0 −3.27 7.00 −3.74
0 0 −3.74 7.00

⎤

⎥
⎥
⎦ .

498 Appendix B. Solutions and Hints for Exercises

Exercises Beginning on Page 317

8.10a.

p(c) = cm−α1c
m−1−α2σ1c

m−2−α3σ1σ2c
m−3−· · ·−αmσ1σ2 · · ·σm−1.

8.10b. Define

f(c) = 1 − p(c)
cm

.

This is a monotone decreasing continuous function in c, with f(c) → ∞
as c → 0+ and f(c) → 0 as c → ∞. Therefore, there is a unique value
c∗ for which f(c∗) = 1. The uniqueness also follows from Descartes’ rule
of signs, which states that the maximum number of positive roots of a
polynomial is the number of sign changes of the coefficients, and in the
case of the polynomial p(c), this is one.

8.12. (−1)
n/2�nn, where !·" is the floor function (the greatest integer func-
tion). For n = 1, 2, 3, 4, the determinants are 1,−4,−27, 256.

Exercises Beginning on Page 365

9.1. 1. This is because the subspace that generates a singular matrix is a lower
dimensional space than the full sample space, and so its measure is 0.

9.4d. Assuming W is positive definite, we have

β̂W,C = (XTWX)−1XTWy +

(XTWX)−1LT(L(XTWX)+LT)−1(c − L(XTWX)+XTWy) .

9.11. Let X = [Xi | Xo] and Z = XT
o Xo − XT

o Xi(XT
i Xi)−1XT

i Xo. Note that
XT

o Xi = XT
i Xo. We have

XT
i X(XTX)−1XT

= XT
i [Xi | Xo]

[
XT

i Xi

XT
o Xi

∣
∣
∣
∣

XT
i Xo

XT
o Xo

]−1

[Xi | Xo]
T

=
[
XT

i Xi | XT
i Xo

]
[

(XT
i Xi)−1 − (XT

i Xi)−1(XT
o Xi)Z−1(XT

i Xo)(XT
i Xi)−1

−Z−1(XT
o Xi)(XT

i Xi)−1

∣
∣
∣
∣

−(XT
i Xi)−1(XT

i Xo)Z−1

Z−1

]

[
XT

i

XT
o

]

=
[
I − (XT

o Xi)Z−1(XT
i Xo)(XT

i Xi)−1 − XT
i XoZ

−1(XT
o Xi)(XT

i Xi)−1 |
−XT

i XoZ
−1 + XT

i XoZ
−1

]
[

XT
i

XT
o

]

= XT
i ,

Appendix B. Solutions and Hints for Exercises 499

9.13. One possibility is ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

20 100
5 25
5 25

10 NA
10 NA
10 NA
NA 10
NA 10
NA 10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The variance-covariance matrix computed from all pairwise complete
observations is [

30 375
375 1230

]

,

while that computed only from complete cases is
[

75 375
375 1875

]

.

The correlation matrix computed from all pairwise complete observa-
tions is [

1.00 1.95
1.95 1.00

]

.

Note that this example is not a pseudo-correlation matrix.
In the R software system, the cov and cor functions have an argu-
ment called “use”, which can take the values “all.obs”, “complete.obs”,
or “pairwise.complete.obs”. The value “all.obs” yields an error if the
data matrix contains any missing values. In cov, the values “com-
plete.obs” and “pairwise.complete.obs” yield the variance-covariances
shown above. The function cor with use="pairwise.complete.obs"
yields [

1.00 1.00
1.00 1.00

]

.

However, if cov is invoked with use="pairwise.complete.obs" and
the function cov2cor is applied to the result, the correlations are 1.95,
as in the first correlation matrix above.

9.16. This is an open question. If you get a proof of convergence, submit it
for publication. You may wish to try several examples and observe the
performance of the intermediate steps. I know of no case in which the
method has not converged.

9.18b. Starting with the correlation matrix given above as a possible solution
for Exercise 9.13, four iterations of equation (9.52) using δ = 0.05 and
f(x) = tanh(x) yield [

1.00 0.997
0.997 1.00

]

.

500 Appendix B. Solutions and Hints for Exercises

9.20. We can develop a recursion for pt
11 based on pt−1

11 and pt−1
12 ,

pt
11 = pt−1

11 (1 − α) + pt−1
12 β,

and because p11 + p12 = 1, we have pt
11 = pt−1

11 (1 − α − β) + β. Putting
this together, we have

lim
t→∞

P =
[

β/(α + β) α/(α + β)
β/(α + β) α/(α + β)

]

,

and so the limiting (and invariant) distribution is πs = (β/(α +
β), α/(α + β)).

9.21c. From the exponential growth, we have N (T) = N (0)erT ; hence,

r =
1
T

log
(
N (T)/N (0)

)
=

1
T

log(r0).

Exercises Beginning on Page 422

10.1a. The computations do not overflow. The first floating-point number x
such that x + 1 = x is

0.10 · · · 0 × bp+1.

Therefore, the series converges at the value of i such that i(i+1)/2 = x.
Now solve for i.

10.2. The function is log(n), and Euler’s constant is 0.57721....
10.5. 2−56. (The standard has 53 bits normalized, so the last bit is 2−55, and

half of that is 2−56.)
10.6a. Normalized: 2bp−1(b − 1)(emax − emin + 1) + 1.

Nonnormalized: 2bp−1(b − 1)(emax − emin + 1) + 1 + 2bp−1.
10.6b. Normalized: bemin−1.

Nonnormalized: bemin−p.
10.6c. 1 + b−p+1 or 1 + b−p when b = 2 and the first bit is hidden.
10.6d. bp.
10.6e. 22.
10.11. First of all, we recognize that the full sum in each case is 1. We therefore

accumulate the sum from the direction in which there are fewer terms.
After computing the first term from the appropriate direction, take a
logarithm to determine a scaling factor, say sk. (This term will be the
smallest in the sum.) Next, proceed to accumulate terms until the sum
is of a different order of magnitude than the next term. At that point,
perform a scale adjustment by dividing by s. Resume summing, making
similar scale adjustments as necessary, until the limit of the summation
is reached.

10.13. The result is close to 1.
What is relevant here is that numbers close to 1 have only a very few
digits of accuracy; therefore, it would be better to design this program so
that it returns 1−Pr(X ≤ x) (the “significance level”). The purpose and
the anticipated use of a program determine how it should be designed.

Appendix B. Solutions and Hints for Exercises 501

10.16a. 2.
10.16b. 0.
10.16c. No (because the operations in the “for” loop are not chained).
10.17c.

a = x1

b = y1

s = 0
for i = 2, n
{

d = (xi − a)/i
e = (yi − b)/i
a = d + a
b = e + b
s = i(i − 1)de + s

}.
10.20. 1. No; 2. Yes; 3. No; 4. No.
10.21. A very simple example is

[
1 1 + ε
1 1

]

,

where ε < b−p, because in this case the matrix stored in the computer
would be singular. Another example is

[
1 a(1 + ε)

a(1 + ε) a2(1 + 2ε)

]

,

where ε is the machine epsilon.

Exercises Beginning on Page 441

11.2a. O(nk).
11.2c. At each successive stage in the fan-in, the number of processors doing

the additions goes down by approximately one-half.
If p ≈ k, then O(n log k) (fan-in on one element of c at a time)
If p ≈ nk, then O(log k) (fan-in on all elements of c simultaneously)
If p is a fixed constant smaller than k, the order of time does not change;
only the multiplicative constant changes.
Notice the difference in the order of time and the order of the number of
computations. Often there is very little that can be done about the order
of computations.

11.2d. Because in a serial algorithm the magnitudes of the summands become
more and more different. In the fan-in, they are more likely to remain
relatively equal. Adding magnitudes of different quantities results in
benign roundoff, but many benign roundoffs become bad. (This is not
catastrophic cancellation.) Clearly, if all elements are nonnegative, this

502 Appendix B. Solutions and Hints for Exercises

argument would hold. Even if the elements are randomly distributed,
there is likely to be a drift in the sum (this can be thought of as a
random walk). There is no difference in the number of computations.

11.2e. Case 1: p ≈ n. Give each ci a processor – do an outer loop on each.
This would likely be more efficient because all processors are active at
once.
Case 2: p ≈ nk. Give each aijbj a processor – fan-in for each. This would
be the same as the other.
If p is a fixed constant smaller than n, set it up as in Case 1, using n/p
groups of ci’s.

11.2f. If p ≈ n, then O(k).
If p ≈ nk, then O(log k).
If p is some small fixed constant, the order of time does not change; only
the multiplicative constant changes.

Exercises Beginning on Page 475

12.1. Here is a recursive Matlab function for the Strassen algorithm due to
Coleman and Van Loan. When it uses the Strassen algorithm, it requires
the matrices to have even dimension.

function C = strass(A,B,nmin)
%
% Strassen matrix multiplication C=AB
% A, B must be square and of even dimension
% From Coleman and Van Loan
% If n <= nmin, the multiplication is done conventionally
%

[n n] = size(A);
if n <= nmin

C = A * B; % n is small, get C conventionally
else

m = n/2; u = 1:m; v = m+1:n;
P1 = strass(A(u,u)+A(v,v), B(u,u)+B(v,v), nmin);
P2 = strass(A(v,u)+A(v,v), B(u,u), nmin);
P3 = strass(A(u,u), B(u,v)-B(v,v), nmin);
P4 = strass(A(v,v), B(v,u)-B(u,u), nmin);
P5 = strass(A(u,u)+A(u,v), B(v,v), nmin);
P6 = strass(A(v,u)-A(u,u), B(u,u)+B(u,v), nmin);
P7 = strass(A(u,v)-A(v,v), B(v,u)+B(v,v), nmin);
C = [P1+P4-P5+P7 P3+P5; P2+P4 P1+P3-P2+P6];

end

Appendix B. Solutions and Hints for Exercises 503

12.3a.

real a(4,3)
data a/3.,6.,8.,2.,5.,1.,6.,3.,6.,2.,7.,1./
n = 4
m = 3
x1 = a(2,2) ! Temporary variables must be used because of
x2 = a(4,2) ! the side effects of srotg.
call srotg(x1, x2,, c, s)
call srot(m, a(2,1), n, a(4,1), n, c, s)
print *, c, s
print *, a
end

This yields 0.3162278 and 0.9486833 for c and s. The transformed matrix
is ⎡

⎢
⎢
⎣

3.000000 5.000000 6.000000
3.794733 3.162278 1.581139
8.000000 6.000000 7.000000

−5.059644 −0.00000002980232 −1.581139

⎤

⎥
⎥
⎦ .

12.5. 10.7461941829033 and 10.7461941829034.

Bibliography

The references that I have cited in this text are generally traditional books,
journal articles, or compact discs. This usually means that the material has
been reviewed by someone other than the author. It also means that the author
possibly has newer thoughts on the same material. The Internet provides a
mechanism for the dissemination of large volumes of information that can
be updated readily. The ease of providing material electronically is also the
source of the major problem with the material: it is often half-baked and has
not been reviewed critically. Another reason that I have refrained from making
frequent reference to material available over the Internet is the unreliability
of some sites. The average life of a Web site is measured in weeks.

For statistics, one of the most useful sites on the Internet is the electronic
repository statlib, maintained at Carnegie Mellon University, which contains
programs, datasets, and other items of interest. The URL is

http://lib.stat.cmu.edu.

The collection of algorithms published in Applied Statistics is available in
statlib. These algorithms are sometimes called the ApStat algorithms.

Another very useful site for scientific computing is netlib, which was
established by research workers at AT&T (now Alcatel-Lucent) Bell Labora-
tories and national laboratories, primarily Oak Ridge National Laboratories.
The URL is

http://www.netlib.org

The Collected Algorithms of the ACM (CALGO), which are the Fortran, C,
and Algol programs published in ACM Transactions on Mathematical Soft-
ware (or in Communications of the ACM prior to 1975), are available in
netlib under the TOMS link.

A wide range of software is used in the computational sciences. Some of the
software is produced by a single individual who is happy to share the software,
sometimes for a fee, but who has no interest in maintaining it. At the other
extreme is software produced by large commercial companies whose continued

506 Bibliography

existence depends on a process of production, distribution, and maintenance
of the software. Information on much of the software can be obtained from
GAMS, as we mentioned at the begining of Chapter 12. Some of the free
software can be obtained from statlib or netlib.

The following bibliography obviously covers a wide range of topics in statis-
tical computing and computational statistics. Except for a few of the general
references, all of these entries have been cited in the text.

The purpose of this bibliography is to help the reader get more information;
hence I eschew “personal communications” and references to technical reports
that may or may not exist. Those kinds of references are generally for the
author rather than for the reader.

Abramowitz, Milton, and Irene A. Stegun (Editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Ta-
bles, National Bureau of Standards (NIST), Washington. (Reprinted in
1965 by Dover Publications, Inc., New York.)

Alefeld, Göltz, and Jürgen Herzberger (1983), Introduction to Interval Com-
putation, Academic Press, New York.

Amdahl, G. M. (1967), Validity of the single processor approach to achieving
large-scale computing capabilities, Proceedings of the American Federation
of Information Processing Societies 30, Washington, D.C., 483–485.

Ammann, Larry, and John Van Ness (1988), A routine for converting regres-
sion algorithms into corresponding orthogonal regression algorithms, ACM
Transactions on Mathematical Software 14, 76–87.

Ammann, Larry, and John Van Ness (1989), Standard and robust orthogonal
regression, Communications in Statistics — Simulation and Computation
18, 145–162.

Anda, Andrew A., and Haesun Park (1994), Fast plane rotations with dynamic
scaling, SIAM Journal of Matrix Analysis and Applications 15, 162–174.

Anda, Andrew A., and Haesun Park (1996), Self-scaling fast rotations for stiff
least squares problems, Linear Algebra and Its Applications 234, 137–162.

Anderson, E.; Z. Bai; C. Bischof; L. S. Blackford; J. Demmel; J. Dongarra; J.
Du Croz; A. Greenhaum; S. Hammarling; A. McKenney; and D. Sorensen
(2000), LAPACK Users’ Guide, third edition, Society for Industrial and
Applied Mathematics, Philadelphia.

Anderson, T. W. (2003), An Introduction to Multivariate Statistical Analysis,
third edition, John Wiley and Sons, New York.

ANSI (1978), American National Standard for Information Systems — Pro-
gramming Language FORTRAN, Document X3.9-1978, American
National Standards Institute, New York.

ANSI (1989), American National Standard for Information Systems — Pro-
gramming Language C, Document X3.159-1989, American National Stan-
dards Institute, New York.

Bibliography 507

ANSI (1992), American National Standard for Information Systems — Pro-
gramming Language Fortran-90, Document X3.9-1992, American National
Standards Institute, New York.

ANSI (1998), American National Standard for Information Systems — Pro-
gramming Language C++, Document ISO/IEC 14882-1998, American Na-
tional Standards Institute, New York.

Atkinson, A. C., and A. N. Donev (1992), Optimum Experimental Designs,
Oxford University Press, Oxford, United Kingdom.

Bailey, David H. (1993), Algorithm 719: Multiprecision translation and exe-
cution of FORTRAN programs, ACM Transactions on Mathematical Soft-
ware 19, 288–319.

Bailey, David H. (1995), A Fortran 90-based multiprecision system, ACM
Transactions on Mathematical Software 21, 379–387.

Bailey, David H.; King Lee; and Horst D. Simon (1990), Using Strassen’s
algorithm to accelerate the solution of linear systems, Journal of Super-
computing 4, 358–371.

Barker, V. A.; L. S. Blackford; J. Dongarra; J. Du Croz; S. Hammarling;
M. Marinova; J. Wasniewsk; and P. Yalamov (2001), LAPACK95 Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia.

Barrett, R.; M. Berry; T. F. Chan; J. Demmel; J. Donato; J. Dongarra; V.
Eijkhout; R. Pozo; C. Romine; and H. Van der Vorst (1994), Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods,
second edition, Society for Industrial and Applied Mathematics, Philadel-
phia.

Basilevsky, Alexander (1983), Applied Matrix Algebra in the Statistical Sci-
ences, North Holland, New York.

Beaton, Albert E.; Donald B. Rubin; and John L. Barone (1976), The accept-
ability of regression solutions: Another look at computational accuracy,
Journal of the American Statistical Association 71, 158–168.

Benzi, Michele (2002), Preconditioning techniques for large linear systems: A
survey, Journal of Computational Physics 182, 418–477.

Bickel, Peter J., and Joseph A. Yahav (1988), Richardson extrapolation and
the bootstrap, Journal of the American Statistical Association 83, 387–
393.

Bindel, David; James Demmel; William Kahan; and Osni Marques (2002), On
computing Givens rotations reliably and efficiently, ACM Transactions on
Mathematical Software 28, 206–238.

Birkhoff, Garrett, and Surender Gulati (1979), Isotropic distributions of test
matrices, Journal of Applied Mathematics and Physics (ZAMP) 30, 148–
158.

Bischof, Christian H. (1990), Incremental condition estimation, SIAM Journal
of Matrix Analysis and Applications 11, 312–322.

Bischof, Christian H., and Gregorio Quintana-Ort́ı (1998a), Computing rank-
revealing QR factorizations, ACM Transactions on Mathematical Software
24, 226–253.

508 Bibliography

Bischof, Christian H., and Gregorio Quintana-Ort́ı (1998b), Algorithm 782:
Codes for rank-revealing QR factorizations of dense matrices, ACM Trans-
actions on Mathematical Software 24, 254–257.

Björck, Åke (1967), Solving least squares problems by Gram-Schmidt orthog-
onalization, BIT 7, 1–21.

Björck, Åke (1996), Numerical Methods for Least Squares Problems, Society
for Industrial and Applied Mathematics, Philadelphia.

Blackford, L. S.; J. Choi; A. Cleary; E. D’Azevedo; J. Demmel; I. Dhillon; J.
Dongarra; S. Hammarling; G. Henry; A. Petitet; K. Stanley; D. Walker;
and R. C. Whaley (1997a), ScaLAPACK Users’ Guide, Society for Indus-
trial and Applied Mathematics, Philadelphia.

Blackford, L. S.; A. Cleary; A. Petitet; R. C. Whaley; J. Demmel; I. Dhillon;
H. Ren; K. Stanley; J. Dongarra; and S. Hammarling (1997b), Practical
experience in the numerical dangers of heterogeneous computing, ACM
Transactions on Mathematical Software 23, 133–147.

Blackford, L. Susan; Antoine Petitet; Roldan Pozo; Karin Remington; R. Clint
Whaley; James Demmel; Jack Dongarra; Iain Duff; Sven Hammarling;
Greg Henry; Michael Heroux; Linda Kaufman; and Andrew Lumsdaine
(2002), An updated set of basic linear algebra subprograms (BLAS), ACM
Transactions on Mathematical Software 28, 135–151.

Brent, Richard P. (1978), A FORTRAN multiple-precision arithmetic package,
ACM Transactions on Mathematical Software 4, 57–70.

Brown, Peter N., and Homer F. Walker (1997), GMRES on (nearly) singular
systems, SIAM Journal of Matrix Analysis and Applications 18, 37–51.

Bunch, James R., and Linda Kaufman (1977), Some stable methods for calcu-
lating inertia and solving symmetric linear systems, Mathematics of Com-
putation 31, 163–179.

Calvetti, Daniela (1991), Roundoff error for floating point representation of
real data, Communications in Statistics 20, 2687–2695.

Campbell, S. L., and C. D. Meyer, Jr. (1991), Generalized Inverses of Linear
Transformations, Dover Publications, Inc., New York.

Carmeli, Moshe (1983), Statistical Theory and Random Matrices, Marcel
Dekker, Inc., New York.

Carrig, James J., Jr., and Gerard G. L. Meyer (1997), Efficient Householder
QR factorization for superscalar processors, ACM Transactions on Math-
ematical Software 23, 362–378.

Chaitin-Chatelin, Françoise, and Valérie Frayssé (1996), Lectures on Finite
Precision Computations, Society for Industrial and Applied Mathematics,
Philadelphia.

Chambers, John M. (1998), Programming with Data: A Guide to the S Lan-
guage, Springer-Verlag, New York.

Chan, T. F. (1982a), An improved algorithm for computing the singular value
decomposition, ACM Transactions on Mathematical Software 8, 72–83.

Bibliography 509

Chan, T. F. (1982b), Algorithm 581: An improved algorithm for computing
the singular value decomposition, ACM Transactions on Mathematical
Software 8, 84–88.

Chan, T. F.; G. H. Golub; and R. J. LeVeque (1982), Updating formulae
and a pairwise algorithm for computing sample variances, in Compstat
1982: Proceedings in Computational Statistics (edited by H. Caussinus, P.
Ettinger, and R. Tomassone), Physica-Verlag, Vienna, 30–41.

Chan, Tony F.; Gene H. Golub; and Randall J. LeVeque (1983), Algorithms
for computing the sample variance: Analysis and recommendations, The
American Statistician 37, 242–247.

Chan, Tony F., and John Gregg Lewis (1979), Computing standard deviations:
Accuracy, Communications of the ACM 22, 526–531.

Chu, Moody T. (1991), Least squares approximation by real normal matrices
with specified spectrum, SIAM Journal on Matrix Analysis and Applica-
tions 12, 115–127.

Chung, Fan R. K. (1997), Spectral Graph Theory, American Mathematical
Society, Providence, Rhode Island.

Č́ıžková, Lenka, and Pavel Č́ıžek (2004), Numerical linear algebra, in Hand-
book of Computational Statistics: Concepts and Methods (edited by James
E. Gentle, Wolfgang Härdle, and Yuichi Mori), Springer, Berlin, 103–136.

Cline, Alan K.; Andrew R. Conn; and Charles F. Van Loan (1982), General-
izing the LINPACK condition estimator, in Numerical Analysis, Mexico,
1981 (edited by J. P. Hennart), Springer-Verlag, Berlin, 73–83.

Cline, A. K.; C. B. Moler; G. W. Stewart; and J. H. Wilkinson (1979), An
estimate for the condition number of a matrix, SIAM Journal of Numerical
Analysis 16, 368–375.

Cline, A. K., and R. K. Rew (1983), A set of counter-examples to three condi-
tion number estimators, SIAM Journal on Scientific and Statistical Com-
puting 4, 602–611.

Cody, W. J. (1988), Algorithm 665: MACHAR: A subroutine to dynamically
determine machine parameters, ACM Transactions on Mathematical Soft-
ware 14, 303–329.

Cody, W. J., and Jerome T. Coonen (1993), Algorithm 722: Functions to sup-
port the IEEE standard for binary floating-point arithmetic, ACM Trans-
actions on Mathematical Software 19, 443–451.

Coleman, Thomas F., and Charles Van Loan (1988), Handbook for Matrix
Computations, Society for Industrial and Applied Mathematics, Philadel-
phia.

Cullen, M. R. (1985), Linear Models in Biology, Halsted Press, New York.
Dauger, Dean E., and Viktor K. Decyk (2005), Plug-and-play cluster com-

puting: High-performance computing for the mainstream, Computing in
Science and Engineering 07(2), 27–33.

Davies, Philip I., and Nicholas J. Higham (2000), Numerically stable genera-
tion of correlation matrices and their factors, BIT 40, 640–651.

510 Bibliography

Dempster, Arthur P., and Donald B. Rubin (1983), Rounding error in regres-
sion: The appropriateness of Sheppard’s corrections, Journal of the Royal
Statistical Society, Series B 39, 1–38.

Devlin, Susan J.; R. Gnanadesikan; and J. R. Kettenring (1975), Robust esti-
mation and outlier detection with correlation coefficients, Biometrika 62,
531–546.

Dey, Aloke, and Rahul Mukerjee (1999), Fractional Factorial Plans, John Wi-
ley and Sons, New York.

Dodson, David S.; Roger G. Grimes; and John G. Lewis (1991), Sparse exten-
sions to the FORTRAN basic linear algebra subprograms, ACM Transac-
tions on Mathematical Software 17, 253–263.

Dongarra, J. J.; J. R. Bunch; C. B. Moler; and G. W. Stewart (1979), LIN-
PACK Users’ Guide, Society for Industrial and Applied Mathematics,
Philadelphia.

Dongarra, J. J.; J. DuCroz; S. Hammarling; and I. Duff (1990), A set of level 3
basic linear algebra subprograms, ACM Transactions on Mathematical
Software 16, 1–17.

Dongarra, J. J.; J. DuCroz; S. Hammarling; and R. J. Hanson (1988), An ex-
tended set of Fortran basic linear algebra subprograms, ACM Transactions
on Mathematical Software 14, 1–17.

Dongarra, Jack J.; Ian S. Duff; Danny C. Sorensen; and Henk A. van der
Vorst (1998), Numerical Linear Algebra for High-Performance Computers,
Society for Industrial and Applied Mathematics, Philadelphia.

Dongarra, Jack J., and Victor Eijkhout (2000), Numerical linear algebra algo-
rithms and software, Journal of Computational and Applied Mathematics
123, 489–514.

Dongarra, Jack J.; Ian Foster; Geoffrey C. Fox; William Gropp; Ken Kennedy;
Linda Torczon; and Andy White (2002), The Sourcebook of Parallel Com-
puting, Morgan Kaufmann, San Francisco.

Dongarra, Jack J., and David W. Walker (1995), Software libraries for lin-
ear algebra computations on high performance computers, SIAM Review
37, 151–180. (Also published as Libraries for linear algebra, in High Per-
formance Computing, edited by Gary W. Sabot, 1995, Addison-Wesley
Publishing Company, Reading, Massachusetts, 93–134.)

Draper, Norman R., and Harry Smith (1998), Applied Regression Analysis,
third edition, John Wiley and Sons, New York.

Duff, Iain S.; Michael A. Heroux; and Roldan Pozo (2002), An overview of
the sparse basic linear algebra subprograms: the new standard from the
BLAS technical forum, ACM Transactions on Mathematical Software 28,
239–267.

Duff, Iain S.; Michele Marrone; Guideppe Radicati; and Carlo Vittoli (1997),
Level 3 basic linear algebra subprograms for sparse matrices: A user-level
interface, ACM Transactions on Mathematical Software 23, 379–401.

Bibliography 511

Duff, Iain S., and Christof Vömel (2002), Algorithm 818: A reference model
implementation of the sparse BLAS in Fortran 95, ACM Transactions on
Mathematical Software 28, 268–283.

Eckart, Carl, and Gale Young (1936), The approximation of one matrix by
another of lower rank, Psychometrika 1, 211–218.

Ericksen, Wilhelm S. (1985), Inverse pairs of matrices, ACM Transactions on
Mathematical Software 11, 302–304.

Efron, Bradley; Trevor Hastie; Iain Johnstone; and Robert Tibshirani (2004),
Least angle regression, The Annals of Statistics 32, 407–499.

Escobar, Luis A., and E. Barry Moser (1993), A note on the updating of
regression estimates, The American Statistician 47, 192–194.

Eskow, Elizabeth, and Robert B. Schnabel (1991), Algorithm 695: Software
for a new modified Cholesky factorization, ACM Transactions on Mathe-
matical Software 17, 306–312.

Everitt, Brian S., and Torsten Nothorn (2006), A Handbook of Statistical
Analyses Using R, Chapman and Hall, New York.

Fasino, Dario, and Luca Gemignani (2003), A Lanczos-type algorithm for the
QR factorization of Cauchy-like matrices, in Fast Algorithms for Struc-
tured Matrices: Theory and Applications (edited by Vadim Olshevsky),
American Mathematical Society, Providence, Rhode Island, 91–104.

Filippone, Salvatore, and Michele Colajanni (2000), PSBLAS: A library for
parallel linear algebra computation on sparse matrices, ACM Transactions
on Mathematical Software 26, 527–550.

Forsythe, George E., and Cleve B. Moler (1967), Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Fuller, Wayne A. (1995), Introduction to Statistical Time Series, second edi-
tion, John Wiley and Sons, New York.

Galassi, Mark; Jim Davies; James Theiler; Brian Gough; Gerard Jungman;
Michael Booth; and Fabrice Rossi (2002), GNU Scientific Library Refer-
ence Manual, second edition, Network Theory Limited, Bristol, United
Kingdom.

Gantmacher, F. R. (1959) The Theory of Matrices, Volumes I and II, trans-
lated by K. A. Hirsch, Chelsea, New York.

Geist, Al; Adam Beguelin; Jack Dongarra; Weicheng Jiang; Robert Manchek;
and Vaidy Sunderam (1994), PVM. Parallel Virtual Machine. A Users’
Guide and Tutorial for Networked Parallel Computing, The MIT Press,
Cambridge, Massachusetts.

Gentle, James E. (2002), Elements of Computational Statistics, Springer-
Verlag, New York.

Gentle, James E. (2003), Random Number Generation and Monte Carlo Meth-
ods, second edition, Springer-Verlag, New York.

Gentle, James E. (2007), Optimization Methods for Applications in Statistics,
Springer-Verlag, New York.

Gentleman, W. M. (1974), Algorithm AS 75: Basic procedures for large, sparse
or weighted linear least squares problems, Applied Statistics 23, 448–454.

512 Bibliography

Gill, Len, and Arthur Lewbel (1992), Testing the rank and definiteness of
estimated matrices with applications to factor, state-space and ARMA
models, Journal of the American Statistical Association 87, 766–776.

Goedecker, Stefan, and Adolfy Hoisie (2001), Performance Optimization of
Numerically Intensive Code, Society for Industrial and Applied Mathe-
matics, Philadelphia.

Golub, G., and W. Kahan (1965), Calculating the singular values and pseudo-
inverse of a matrix, SIAM Journal of Numerical Analysis, Series B 2, 205–
224.

Golub, G. H., and C. Reinsch (1970), Singular value decomposition and least
squares solutions, Numerische Mathematik 14, 403–420.

Golub, G. H., and C. F. Van Loan (1980), An analysis of the total least squares
problem, SIAM Journal of Numerical Analysis 17, 883–893.

Golub, Gene H., and Charles F. Van Loan (1996), Matrix Computations, third
edition, The Johns Hopkins Press, Baltimore.

Graybill, Franklin A. (1983), Introduction to Matrices with Applications
in Statistics, second edition, Wadsworth Publishing Company, Belmont,
California.

Greenbaum, Anne, and Zdeněk Strakoš (1992), Predicting the behavior of
finite precision Lanczos and conjugate gradient computations, SIAM Jour-
nal for Matrix Analysis and Applications 13, 121–137.

Gregory, Robert T., and David L. Karney (1969), A Collection of Matrices
for Testing Computational Algorithms, John Wiley and Sons, New York.

Gregory, R. T., and E. V. Krishnamurthy (1984), Methods and Applications
of Error-Free Computation, Springer-Verlag, New York.

Grewal, Mohinder S., and Angus P. Andrews (1993), Kalman Filtering Theory
and Practice, Prentice-Hall, Englewood Cliffs, New Jersey.

Griffiths, P., and I. D. Hill (Editors) (1985), Applied Statistics Algorithms,
Ellis Horwood Limited, Chichester, United Kingdom.

Gropp, William D. (2005), Issues in accurate and reliable use of parallel com-
puting in numerical programs, in Accuracy and Reliability in Scientific
Computing (edited by Bo Einarsson), Society for Industrial and Applied
Mathematics, Philadelphia, 253–263.

Gropp, William; Ewing Lusk; and Anthony Skjellum (1999), Using MPI, sec-
ond edition, The MIT Press, Cambridge, Massachusetts.

Gropp, William; Ewing Lusk; and Thomas Sterling (Editors) (2003), Beowulf
Cluster Computing with Linux, second edition, The MIT Press, Cam-
bridge, Massachusetts.

Haag, J. B., and D. S. Watkins (1993), QR-like algorithms for the nonsym-
metric eigenvalue problem, ACM Transactions on Mathematical Software
19, 407–418.

Hager, W. W. (1984), Condition estimates, SIAM Journal on Scientific and
Statistical Computing 5, 311–316.

Hanselman, Duane C., and Bruce L. Littlefield (2004), Mastering MATLAB
7, Prentice-Hall, Englewood Cliffs, New Jersey.

Bibliography 513

Hansen, Per Christian (1998), Rank-Deficient and Discrete Ill-Posed Prob-
lems: Numerical Aspects of Linear Inversion, Society for Industrial and
Applied Mathematics, Philadelphia.

Harville, David A. (1997), Matrix Algebra from a Statistician’s Point of View,
Springer-Verlag, New York.

Heath, M. T.; E. Ng; and B. W. Peyton (1991), Parallel algorithms for sparse
linear systems, SIAM Review 33, 420–460.

Hedayat, A. S.; N. J. A. Sloane; and John Stufken (1999), Orthogonal Arrays:
Theory and Applications, Springer-Verlag, New York.

Heiberger, Richard M. (1978), Algorithm AS127: Generation of random or-
thogonal matrices, Applied Statistics 27, 199–205.

Higham, Nicholas J. (1987), A survey of condition number estimation for
triangular matrices, SIAM Review 29, 575–596.

Higham, Nicholas J. (1988), FORTRAN codes for estimating the one-norm of
a real or complex matrix, with applications to condition estimation, ACM
Transactions on Mathematical Software 14, 381–386.

Higham, Nicholas J. (1990), Experience with a matrix norm estimator, SIAM
Journal on Scientific and Statistical Computing 11, 804–809.

Higham, Nicholas J. (1991), Algorithm 694: A collection of test matrices in
Matlab, ACM Transactions on Mathematical Software 17, 289–305.

Higham, Nicholas J. (1997), Stability of the diagonal pivoting method with
partial pivoting, SIAM Journal of Matrix Analysis and Applications 18,
52–65.

Higham, Nicholas J. (2002), Accuracy and Stability of Numerical Algorithms,
second edition, Society for Industrial and Applied Mathematics, Philadel-
phia.

Hoffman, A. J., and H. W. Wielandt (1953), The variation of the spectrum
of a normal matrix, Duke Mathematical Journal 20, 37–39.

Hong, H. P., and C. T. Pan (1992), Rank-revealing QR factorization and
SV D, Mathematics of Computation 58, 213–232.

Horn, Roger A., and Charles R. Johnson (1991), Topics in Matrix Analysis,
Cambridge University Press, Cambridge, United Kingdom.

IEEE (1985), IEEE Standard for Binary Floating-Point Arithmetic, Std 754-
1985, IEEE, Inc. New York.

Jansen, Paul, and Peter Weidner (1986), High-accuracy arithmetic software —
some tests of the ACRITH problem-solving routines, ACM Transactions
on Mathematical Software 12, 62–70.

Jolliffe, I. T. (2002), Principal Component Analysis, second edition, Springer-
Verlag, New York.

Kearfott, R. Baker (1996), Interval arithmetic: A Fortran 90 module for
an interval data type. ACM Transactions on Mathematical Software 22,
385–392.

Kearfott, R. Baker, and Vladik Kreinovich (Editors) (1996), Applications of
Interval Computations, Kluwer, Dordrecht, Netherlands.

514 Bibliography

Kearfott, R. B.; M. Dawande; K. Du; and C. Hu (1994), Algorithm 737:
INTLIB: A portable Fortran 77 interval standard-function library, ACM
Transactions on Mathematical Software 20, 447–459.

Keller-McNulty, Sallie, and W. J. Kennedy (1986), An error-free generalized
matrix inversion and linear least squares method based on bordering, Com-
munications in Statistics — Simulation and Computation 15, 769–785.

Kendall, M. G. (1961), A Course in the Geometry of n Dimensions, Charles
Griffin and Company Limited, London.

Kennedy, William J., and James E. Gentle (1980), Statistical Computing,
Marcel Dekker, Inc., New York.

Kenney, C. S., and A. J. Laub (1994), Small-sample statistical condition esti-
mates for general matrix functions, SIAM Journal on Scientific Computing
15, 191–209.

Kenney, C. S.; A. J. Laub; and M. S. Reese (1998), Statistical condition es-
timation for linear systems, SIAM Journal on Scientific Computing 19,
566–583.

Lawson, C. L.; R. J. Hanson; D. R. Kincaid; and F. T. Krogh (1979), Ba-
sic linear algebra subprograms for Fortran usage, ACM Transactions on
Mathematical Software 5, 308–323.

Lehoucq, R. B.; D. C. Sorensen; and C. Yang (1998), ARPACK Users’ Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods, Society for Industrial and Applied Mathematics,
Philadelphia.

Lemmon, David R., and Joseph L. Schafer (2005), Developing Statistical Soft-
ware in Fortran 95, Springer-Verlag, New York.

Liem, C. B.; T. Lü; and T. M. Shih (1995), The Splitting Extrapolation
Method, World Scientific, Singapore.

Linnainmaa, Seppo (1975), Towards accurate statistical estimation of round-
ing errors in floating-point computations, BIT 15 165–173.

Liu, Shuangzhe and Heinz Neudecker (1996), Several matrix Kantorovich-
type inequalities, Journal of Mathematical Analysis and Applications 197,
23–26.

Loader, Catherine (2004), Smoothing: Local regression techniques, in Hand-
book of Computational Statistics: Concepts and Methods (edited by James
E. Gentle, Wolfgang Härdle, and Yuichi Mori), Springer, Berlin, 539–563.

Longley, James W. (1967), An appraisal of least squares problems for the
electronic computer from the point of view of the user, Journal of the
American Statistical Association 62, 819–841.

Luk, F. T., and H. Park (1989), On parallel Jacobi orderings, SIAM Journal
on Scientific and Statistical Computing 10, 18–26.

Magnus, Jan R., and Heinz Neudecker (1999), Matrix Differential Calculus
with Applications in Statistics and Econometrics, revised edition, John
Wiley and Sons, New York.

Maindonald, John, and John Braun (2003), Data Analysis and Graphics Using
R, Cambridge University Press, Cambridge, United Kingdom.

Bibliography 515

Marshall, A. W., and I. Olkin (1990), Matrix versions of the Cauchy and
Kantorovich inequalities, Aequationes Mathematicae 40, 89–93.

Metcalf, Michael, John Reid, and Malcolm Cohen (2004), Fortran 95/2003
Explained, third edition, Oxford University Press, Oxford, United King-
dom.

Miller, Alan J. (1992), Algorithm AS 274: Least squares routines to supple-
ment those of Gentleman, Applied Statistics 41, 458–478 (Corrections,
1994, ibid. 43, 678).

Miller, Alan (2002), Subset Selection in Regression, second edition, Chapman
and Hall/CRC, Boca Raton.

Miller, Alan J., and Nam-Ky Nguyen (1994), A Fedorov exchange algorithm
for D-optimal design, Applied Statistics 43, 669–678.

Mizuta, Masahiro (2004), Dimension reduction methods, in Handbook of
Computational Statistics: Concepts and Methods (edited by James E.
Gentle, Wolfgang Härdle, and Yuichi Mori), Springer, Berlin, 565–589.

Moore, E. H. (1920), On the reciprocal of the general algebraic matrix, Bul-
letin of the American Mathematical Society, 26, 394–395.

Moore, Ramon E. (1979), Methods and Applications of Interval Analysis,
Society for Industrial and Applied Mathematics, Philadelphia.

Mortenson, Michael E. (1997), Geometric Modeling, second edition, John
Wiley and Sons, New York.

Muirhead, Robb J. (1982), Aspects of Multivariate Statistical Theory, John
Wiley and Sons, New York.

Mullet, Gary M., and Tracy W. Murray (1971), A new method for examining
rounding error in least-squares regression computer programs, Journal of
the American Statistical Association 66, 496–498.

Nachbin, Leopoldo (1965), The Haar Integral, translated by Lulu Bechtol-
sheim, D. Van Nostrand Co Inc, Princeton, New Jersey.

Nakano, Junji (2004), Parallel computing techniques, in Handbook of Com-
putational Statistics: Concepts and Methods (edited by James E. Gentle,
Wolfgang Härdle, and Yuichi Mori), Springer, Berlin, 237–266.

Nash, Stephen G., and Ariela Sofer (1996), Linear and Nonlinear Program-
ming, McGraw-Hill, New York.

Nguyen, Nam-Ky, and Alan J. Miller (1992), A review of some exchange
algorithms for constructing D-optimal designs, Computational Statistics
and Data Analysis 14, 489–498.

Norris, J. R. (1997), Markov Chains, Cambridge University Press, Cambridge,
United Kingdom.

Olshevsky, Vadim (Editor) (2003), Fast Algorithms for Structured Matrices:
Theory and Applications, American Mathematical Society, Providence,
Rhode Island.

Overton, Michael L. (2001), Numerical Computing with IEEE Floating Point
Arithmetic, Society for Industrial and Applied Mathematics, Philadelphia.

Penrose, R. (1955), A generalized inverse for matrices, Proceedings of the
Cambridge Philosophical Society, 51, 406–413.

516 Bibliography

Press, William H.; Saul A. Teukolsky; William T. Vetterling; and Brian P.
Flannery (1996), Numerical Recipes in Fortran 90, Cambridge Univer-
sity Press, Cambridge, United Kingdom. (Also called Fortran Numerical
Recipes, Volume 2, second edition.)

Quinn, Michael J. (2003), Parallel Programming in C with MPI and OpenMP,
McGraw-Hill, New York.

Rice, John R. (1966), Experiments on Gram-Schmidt orthogonalization, Math-
ematics of Computation 20, 325–328.

Rice, John R. (1993), Numerical Methods, Software, and Analysis, second
edition, McGraw-Hill Book Company, New York.

Riesenfeld, R. F. (1981), Homogeneous coordinates and projective planes in
computer graphics, IEEE Computer Graphics and Applications 1, 50–55.

Rogers, Gerald S. (1980), Matrix Derivatives, Marcel Dekker, Inc., New York.
Roosta, Seyed H. (2000), Parallel Processing and Parallel Algorithms: Theory

and Computation, Springer-Verlag, New York.
Rousseeuw, Peter J., and Geert Molenberghs (1993), Transformation of non-

positive semidefinite correlation matrices, Communications in Statistics —
Theory and Methods 22, 965–984.

Rust, Bert W. (1994), Perturbation bounds for linear regression problems,
Computing Science and Statistics 26, 528–532.

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems, SIAM Journal on
Scientific and Statistical Computing 7, 856–869.

Schott, James R. (2004), Matrix Analysis for Statistics, second edition, John
Wiley and Sons, New York.

Searle, S. R. (1971), Linear Models, John Wiley and Sons, New York.
Searle, Shayle R. (1982), Matrix Algebra Useful for Statistics, John Wiley and

Sons, New York.
Shao, Jun (2003), Mathematical Statistics, second edition, Springer-Verlag,

New York.
Sherman, J., and W. J. Morrison (1950), Adjustment of an inverse matrix

corresponding to a change in one element of a given matrix, Annals of
Mathematical Statistics 21, 124–127.

Siek, Jeremy, and Andrew Lumsdaine (2000), A modern framework for
portable high-performance numerical linear algebra, in Advances in Soft-
ware Tools for Scientific Computing (edited by Are Bruaset, H. Langtan-
gen, and E. Quak), Springer-Verlag, New York, 1–56.

Skeel, R. D. (1980), Iterative refinement implies numerical stability for
Gaussian elimination, Mathematics of Computation 35, 817–832.

Smith, B. T.; J. M. Boyle; J. J. Dongarra; B. S. Garbow; Y. Ikebe; V. C.
Klema; and C. B. Moler (1976), Matrix Eigensystem Routines — EIS-
PACK Guide, Springer-Verlag, Berlin.

Smith, David M. (1991), Algorithm 693: A FORTRAN package for floating-
point multiple-precision arithmetic, ACM Transactions on Mathematical
Software 17, 273–283.

Bibliography 517

Stallings, W. T., and T. L. Boullion (1972), Computation of pseudo-inverse
using residue arithmetic, SIAM Review 14, 152–163.

Stewart, G. W. (1980), The efficient generation of random orthogonal matrices
with an application to condition estimators, SIAM Journal of Numerical
Analysis 17, 403–409.

Stewart, G. W. (1990), Stochastic perturbation theory, SIAM Review 32,
579–610.

Strang, Gilbert, and Tri Nguyen (2004), The interplay of ranks of submatrices,
SIAM Review 46, 637–646.

Strassen, V. 1969, Gaussian elimination is not optimal, Numerische Mathe-
matik 13, 354–356.

Szabó, S., and R. Tanaka (1967), Residue Arithmetic and Its Application to
Computer Technology, McGraw-Hill, New York.

Tanner, M. A., and R. A. Thisted (1982), A remark on AS127. Generation of
random orthogonal matrices, Applied Statistics 31, 190–192.

Titterington, D. M. (1975), Optimal design: Some geometrical aspects of
D-optimality, Biometrika 62, 313–320.

Trosset, Michael W. (2002), Extensions of classical multidimensional scaling
via variable reduction, Computational Statistics 17, 147–163.

Unicode Consortium (1990), The Unicode Standard, Worldwide Character
Encoding, Version 1.0, Volume 1, Addison-Wesley Publishing Company,
Reading, Massachusetts.

Unicode Consortium (1992), The Unicode Standard, Worldwide Character
Encoding, Version 1.0, Volume 2, Addison-Wesley Publishing Company,
Reading, Massachusetts.

Van de Geijn, Robert (1997), Using PLAPACK: Parallel Linear Algebra Pack-
age, The MIT Press, Cambridge, Massachusetts.

Van Loan, Charles F. (1987), On estimating the condition of eigenvalues and
eigenvectors, Linear Algebra and Its Applications 88, 715–732.

Van Loan, Charles F. (1997), Introduction to Scientific Computing: A Matrix-
Vector Approach Using MATLAB, Prentice-Hall, Englewood Cliffs, New
Jersey.

Venables, W. N., and B. D. Ripley (2003), Modern Applied Statistics with S,
fourth edition, Springer-Verlag, New York.

Walker, Homer F. (1988), Implementation of the GMRES method using
Householder transformations, SIAM Journal on Scientific and Statistical
Computing 9, 152–163.

Walker, Homer F., and Lu Zhou (1994), A simpler GMRES, Numerical Linear
Algebra with Applications 1, 571–581.

Walster, G. William (1996), Stimulating hardware and software support for in-
terval arithmetic, in Applications of Interval Computations, (edited by R.
Baker Kearfott and Vladik Kreinovich), Kluwer, Dordrecht, Netherlands,
405–416.

518 Bibliography

Walster, G. William (2005), The use and implementation of interval data
types, in Accuracy and Reliability in Scientific Computing (edited by Bo
Einarsson), 173–194.

Watkins, David S. (2002), Fundamentals of Matrix Computations, second
edition, John Wiley and Sons, New York.

Wilkinson, J. H. (1959), The evaluation of the zeros of ill-conditioned poly-
nomials, Numerische Mathematik 1, 150–180.

Wilkinson, J. H. (1963), Rounding Errors in Algebraic Processes, Prentice-
Hall, Englewood Cliffs, New Jersey. (Reprinted by Dover Publications,
Inc., New York, 1994).

Wilkinson, J. H. (1965), The Algebraic Eigenvalue Problem, Oxford University
Press, New York.

Woodbury, M. A. (1950), “Inverting Modified Matrices”, Memorandum Re-
port 42, Statistical Research Group, Princeton University.

Zhou, Bing Bing, and Richard P. Brent (2003), An efficient method for com-
puting eigenvalues of a real normal matrix, Journal of Parallel and Dis-
tributed Computing 63, 638–648.

Index

A-optimality, 356

absolute error, 395, 404, 434

ACM Transactions on Mathematical
Software, 505

adj(·), 53

adjacency matrix, 265, 266, 314

adjoint (see also conjugate transpose),
44

adjoint, classical (see also adjugate), 53

adjugate, 53, 488

adjugate and inverse, 93

affine group, 90, 141

affine space, 32

affine transformation, 176

Aitken’s integral, 167

algebraic multiplicity, 113

algorithm, definition, 417

Amdahl’s law, 416

angle between matrices, 132

angle between vectors, 26, 174, 287

ANSI (standards), 387, 447, 448

Applied Statistics algorithms, 505

approximation of a matrix, 137, 271,
354, 439

approximation of a vector, 30

arithmetic mean, 24, 26

Arnoldi method, 252

artificial ill-conditioning, 206

ASCII code, 375

association matrix, 261, 265, 287, 295,
296, 299

ATLAS (Automatically Tuned Linear
Algebra Software), 456

augmented associativity matrix, 314
augmented connectivity matrix, 314
Automatically Tuned Linear Algebra

Software (ATLAS), 456
axpy, 10, 36, 65
axpy elementary operator matrix, 65

backward error analysis, 404, 410
Banachiewicz factorization, 195
base, 380
base point, 379
basis, 14, Exercise 2.3:, 38
batch algorithm, 421
Beowulf (cluster computing), 471
bias, in exponent of floating-point

number, 381
big endian, 391
big O (order), 406, 413
big omega (order), 407
bilinear form, 69, 105
bit, 375
bitmap, 376
BLACS (software), 460, 470
BLAS (software), 454, 455, 460, 470,

472
BMvN distribution, 169, 473
Bolzano-Weierstrass theorem for

orthogonal matrices, 105
Boolean matrix, 314
Box M statistic, 298
byte, 375

C (programming language), 387, 401,
447–461

520 Index

C++ (programming language), 388
CALGO (Collected Algorithms of the

ACM), 505
cancellation error, 399, 410
canonical form, equivalent, 86
canonical form, similar, 116
canonical singular value factorization,

127
Cartesian geometry, 24, 57
catastrophic cancellation, 397
Cauchy matrix, 313
Cauchy-Schwarz inequality, 16, 75
Cauchy-Schwarz inequality for matrices,

75, 140
Cayley multiplication, 59
Cayley-Hamilton theorem, 109
CDF (Common Data Format), 376
centered matrix, 223, 293
centered vector, 35
chaining of operations, 396
character data, 376
character string, 376
characteristic equation, 108
characteristic polynomial, 108
characteristic value (see also eigenvalue),

106
characteristic vector (see also eigenvec-

tor), 106
chasing, 250
Chebyshev norm, 17
Cholesky decomposition, 194, 276, 354
classification, 313
cluster analysis, 313
cluster computing, 471
Cochran’s theorem, 283, 325
cofactor, 52, 488
Collected Algorithms of the ACM

(CALGO), 505
collinearity, 202, 329, 350
column rank, 76
column space, 41, 69, 81, 82
column-major, 430, 446, 448
column-sum norm, 130
Common Data Format (CDF), 376
companion matrix, 109, 241
complementary projection matrix, 286
complete graph, 262
complete pivoting, 210
completing the Gramian, 139

complex data type, 388, 401, 402, 447
condition (problem or data), 408
condition number, 202, 218, 225, 346,

409, 411, 431, 440
condition number for nonfull rank

matrices, 225
condition number for nonsquare

matrices, 225
condition number with respect to

computing a sample standard
deviation, 411

condition number with respect to
inversion, 203, 218

conditional inverse, 102
cone, 14, 32
configuration matrix, 299
conjugate gradient method, 213–217
conjugate norm, 71
conjugate transpose, 44, 104
conjugate vectors, 71, 105
connected vertices, 263, 267
connectivity matrix, 265, 266, 314
consistency property, 128
consistency test, 435, 475
consistent system of equations, 82, 206,

211
constrained least squares, equality

constraints, 337, Exercise 9.4d:,
366

continuous function, 147
contrast, 333
convergence criterion, 417
convergence of a sequence of matrices,

105, 118, 134
convergence of a sequence of vectors, 20
convergence of powers of a matrix, 135,

305
convergence rate, 417
convex cone, 14, 32, 279
Corr(·, ·), 37
correlation, 37
correlation matrix, 295, Exercise 8.8:,

318, 342
correlation matrix, positive definite

approximation, 353
cost matrix, 299
Cov(·, ·), 36
covariance, 36
covariance matrix, 295

Index 521

cross product of vectors, 33
cross products matrix, 196, 288
cross products, computing sum of

Exercise 10.17c:, 426
Crout method, 187
curse of dimensionality, 419

D-optimality, 356–358, 439
daxpy, 10
decomposable matrix, 303
defective (deficient) matrix, 116, 117
deficient (defective) matrix, 116, 117
deflation, 243–244
degrees of freedom, 291, 292, 331, 350
derivative with respect to a vector or

matrix, 145
det(·), 50
determinant, 50–58, 276, 278, 356, 439
determinant as a volume, 57
determinant of a partitioned matrix, 96
determinant of the inverse, 92
determinant of the transpose, 54
diag(·), 45
diag(·) (matrix arguments), 47
diagonal element, 42
diagonal expansion, 57
diagonal factorization, 116, 119
diagonal matrix, 42
diagonalizable matrix, 116–119
diagonalization, 116
diagonally dominant matrix, 42, 46, 78,

277
differential, 149
differentiation of vectors and matrices,

145
digraph, 266
digraph of a matrix, 266
dim(·), 12
dimension of vector space, 11
dimension reduction, 287, 345
direct method for solving linear systems,

201
direct product, 73
direct sum, 13, 48
direct sum of matrices, 47
directed dissimilarity matrix, 299
direction cosines, 27, 178
discrete Legendre polynomials, 309
discretization error, 408, 418

dissimilarity matrix, 299
distance matrix, 299
distributed linear algebra machine, 470
distribution vector, 307
divide and conquer, 415
dominant eigenvalue, 111
Doolittle method, 187
dot product of matrices, 74
dot product of vectors, 15, 69
double precision, 385, 391
doubly stochastic matrix, 306
Drazin inverse, 286
dual cone, 32

E(·), 168
E-optimality, 356
echelon form, 86
edge of a graph, 262
effective degrees of freedom, 292, 350
eigenpair, 106
eigenspace, 113
eigenvalue, 105–128, 131, 241–256
eigenvalues of a graph, 314
eigenvalues of a polynomial Exer-

cise 3.17:, 141
eigenvector, 105–128, 241–256
eigenvector, left, 106, 123
eigenvectors, linear independence of,

112
EISPACK, 457
elementary operation, 61
elementary operator matrix, 62, 78, 186,

207
elliptic metric, 71
elliptic norm, 71
endian, 391
equivalence of norms, 19, 133
equivalence relation, 361
equivalent canonical factorization, 87
equivalent canonical form, 86, 87
equivalent matrices, 86
error bound, 406
error of approximation, 407
error, cancellation, 399, 410
error, discretization, 408
error, measures of, 219, 395, 404–406,

434
error, rounding, 399, 404, 405

522 Index

error, rounding, models of, 405,
Exercise 10.9:, 424

error, truncation, 408
error-free computations, 399
errors-in-variables, 329
essentially disjoint vector spaces, 12, 48
estimable combinations of parameters,

332
Euclidean distance, 22, 299
Euclidean distance matrix, 299
Euclidean matrix norm (see also

Frobenius norm), 131
Euclidean vector norm, 17
Euler’s constant Exercise 10.2:, 423
Euler’s integral, 484
Euler’s rotation theorem, 177
exact computations, 399
exception, in computer operations, 394,

398
exponent, 380
exponential order, 413
extended precision, 385
extrapolation, 418

factorization of a matrix, 85, 87, 114,
116, 173–174, 185–198, 206, 209

fan-in algorithm, 397, 416
fast Givens rotation, 185, 433
fill-in, 197, 434
Fisher information, 163
fixed-point representation, 379
flat, 32
floating-point representation, 379
FLOP, or flop, 415
FLOPS, or flops, 415
Fortran, 388, 389, 415, 447–461
Fourier coefficient, 29, 30, 76, 122, 128,

133
Fourier expansion, 25, 29, 75, 122, 128,

133
Frobenius norm, 131–134, 138, 248, 271,

299
full precision, 390
full rank, 77, 78, 80, 87, 88
full rank factorization, 85
full rank partitioning, 80, 95

g1 inverse, 102
g2 inverse, 102

g4 inverse (see also Moore-Penrose
inverse), 102

gamma function, 169, 484
GAMS (Guide to Available Mathemati-

cal Software), 445
Gauss (software), 461
Gauss-Seidel method, 212
Gaussian elimination, 66, 186, 207, 251
general linear group, 90, 105
generalized eigenvalue, 126, 252
generalized inverse, 97, 100–103, 189,

289
generalized least squares, 337
generalized least squares with equality

constraints Exercise 9.4d:, 366
generalized variance, 296
generating set, 14
generating set of a cone, 15
generation of random numbers, 358
geometric multiplicity, 113
geometry, 24, 57, 175, 178
Givens transformation (rotation),

182–185, 192, 251
GMRES, 216
GNU Scientific Library (GSL), 457
graceful underflow, 383
gradient of a function, 151, 152
gradual underflow, 383, 398
Gram-Schmidt transformation, 27, 29,

192, 432
Gramian matrix, 90, 92, 196, 224,

288–290
graph of a matrix, 265
graph theory, 8, 262, 313
greedy algorithm, 416
group, 90, 105
GSL (GNU Scientific Library), 457
guard digit, 396

Hölder norm, 17
Hölder’s inequality, 38
Haar distribution, 169, Exercise 4.7:,

171, Exercise 8.8:, 318, 473
Haar invariant measure, 169
Hadamard matrix, 310
Hadamard multiplication, 72
half precision, 390
Hankel matrix, 312
Hankel norm, 312

Index 523

hat matrix, 290, 331
HDF (Hierarchical Data Format), 376
Helmert matrix, 308, 333
Hemes formula, 221, 339
Hermite form, 87
Hermitian matrix, 42, 45
Hessenberg matrix, 44, 250
Hessian of a function, 153
hidden bit, 381
Hierarchical Data Format (HDF), 376
high-performance computing, 412
Hilbert matrix, 472
Hilbert-Schmidt norm (see also

Frobenius norm), 132
Hoffman-Wielandt theorem, 271
hollow matrix, 42, 299
homogeneous coordinates, 178
homogeneous coordinates in graphics

applications, Exercise 5.2:, 198
homogeneous system, 96
Horner’s method, 420
Householder transformation (reflection),

180–181, 190, 251
hyperplane, 32
hypothesis testing, 332

idempotent matrix, 280–287
identity matrix, 60
IDL (software), 461
IEC standards, 377, 385
IEEE standards, 377, 385, 391, 398
ill-conditioned (problem or data), 408
ill-conditioned data, 201, 346, 409, 431
image data, 377
IMSL Libraries, 457–460
incidence matrix, 265, 266, 314
incomplete data, 352
incomplete factorization, 197, 434
independent vertices, 314
induced matrix norm, 129
infinity, floating-point representation,

386, 398
infix operator, 401
inner product, 15, 187
inner product of matrices, 74
inner product space, 15
inner pseudoinverse, 102
integer representation, 379
integration of vectors and matrices, 165

intersection graph, 267
interval arithmetic, 402, 403
invariance property, 175
invariant vector (eigenvector), 106
inverse of a matrix, 83
inverse of a partitioned matrix, 95
inverse of products or sums of matrices,

93
inverse of the transpose, 83
inverse, determinant of, 92
IRLS (iteratively reweighted least

squares), 232
irreducible Markov chain, 361
irreducible matrix, 245, 267, 302
isnan, 386
ISO (standards), 387, 447, 448
isometric matrix, 131
isometric transformation, 175
isotropic transformation, 175
iterative method, 241, 417, 433
iterative method for solving linear

systems, 201, 211, 217
iterative refinement, 219
iteratively reweighted least squares, 232

Jacobi method for eigenvalues, 247–250
Jacobi transformation (rotation), 182
Jacobian, 152, 167
Jordan decomposition, 174
Jordan form, 87

Kalman filter, 411
Kantorovich inequality, 280
kind (for data types), 389
Kronecker multiplication, 72
Krylov method, 215, 252
Krylov space, 215

L2 norm of a matrix (see also spectral
norm), 131

Lp norm of a matrix, 130
Lp norm of a vector, 17, 147
Lagrange multiplier, 160, 337,

Exercise 9.4a:, 365
Lagrangian function, 161
Lanczos method, 252
LAPACK, 210, 440, 445, 457
LAPACK95, 457
Laplace expansion, 52

524 Index

Laplacian matrix, 315
Laplacian operator, 489
lasso regression, 350
latent root (see also eigenvalue), 106
LAV (least absolute values), 230
LDU factorization, 187
leading principal submatrix, 47
least absolute values, 230
least squares, 196, 224
left eigenvector, 106, 123
left inverse, 84
length of a vector, 4, 17, 21
Leslie matrix, 307, Exercise 8.10:, 318,

363, Exercise 9.21:, 370
leverage, 332, Exercise 9.6:, 366
life table, 363
likelihood function, 163
linear convergence, 418
linear independence, 10, 76
linear independence of eigenvectors, 112
linear regression, 326
LINPACK, 210, 440, 445, 457
Lisp-Stat (software), 461
little endian, 391
little o (order), 407
little omega (order), 407
log order, 413
log-likelihood function, 163
Longley data Exercise 9.9:, 368
loop unrolling, 451
lower triangular matrix, 43
LR method, 241
LU factorization, 186–188

M -matrix, 317
MACHAR, 391, Exercise 10.3d:, 423
machine epsilon, 383
Mahalanobis distance, 72, 295
Manhattan norm, 17
manifold of a matrix, 41
Maple (software), 402, 446
Markov chain, 360–362
Matlab (software), 463–466
matrix, 5
matrix derivative, 145
matrix factorization, 85, 87, 114, 116,

173–174, 185–198, 206, 209
matrix function, 118
matrix gradient, 152

matrix inverse, 83
matrix multiplication, 59, 61, 436

matrix norm, 128–134
matrix of type 2, 43, 312

matrix pencil, 127
matrix polynomial, 61, Exercise 3.17:,

141
matrix storage mode, 451, 457

Matrix Template Library, 454
max norm, 17

maximal linearly independent subset,
10

mean, 24, 26

message passing, 460
Message Passing Library, 461

metric, 22, 138
MIL-STD-1753 standard, 390

Minkowski inequality, 17, 38
Minkowski norm, 17

minor, 51, 487
MINRES method, 213

missing data, 352
missing value, representation of, 386

mobile Jacobi scheme, 249
modified Cholesky decomposition, 354

modified Gram-Schmidt (see also
Gram-Schmidt transformation),
29

Moore-Penrose inverse, 102, 189, 190,
227, 286

MPI (message passing interface), 460,
471

MPL (Message Passing Library), 461
multicollinearity, 202, 329

multigrid method, 217
multiple precision, 402

multiplicity of an eigenvalue, 113
multivariate gamma function, 169

multivariate normal distribution, 323,
358

N (·), 99
Nag Libraries, 457

NaN (“not-a-number”), 386, 398
netlib, xii, 505

Newton’s method, 156
nilpotent matrix, 137

noncentral chi-squared distribution, 324

Index 525

nonnegative definite matrix, 70, 124,
194, 275–280

nonnegative matrix, 299
nonsingular matrix, 77, 87
norm, 16
norm equivalence, 19, 133
norm of matrix, 128–134
norm of vector, 17–22
normal equations, 196, 224, 328
normal matrix, 274
normalized floating-point numbers, 381
normalized generalized inverse (see also

Moore-Penrose inverse), 102
normalized vector, 22
normed space, 17
not-a-number (“NaN”), 386
NP-complete problem, 414
null space, 99, 100, 112
nullity, 99

oblique projection, 286
Octave (software), 463
OLS (ordinary least squares), 224
one vector, 12, 23
online algorithm, 421
online processing, 421
operator matrix, 62, 207
optimal design, 355–358
optimization of vector/matrix functions,

156
order of a graph, 262
order of a vector, 4
order of a vector space, 12
order of computations, 413
order of convergence, 406
order of error, 406
orthogonal array, 310
orthogonal complement, 23, 99, 103
orthogonal distance regression, 329
orthogonal group, 105, 169
orthogonal matrices, binary relation-

ship, 75
orthogonal matrix, 103–105
orthogonal transformation, 174
orthogonal vector spaces, 23, 103
orthogonal vectors, 22, Exercise 2.3:, 38
orthogonalization transformation, 27
orthogonalization, Gram-Schmidt, 192,

432

orthogonally diagonalizable, 114, 120,
270, 274, 343

orthogonally invariant norm, 129, 131,
132

orthogonally similar, 114, 120, 129, 132,
205, 274

orthonormal vectors, 23
out-of-core algorithm, 421
outer product, 69, 187
outer product for matrix multiplication,

437
outer pseudoinverse, 102
outer/inner products matrix, 287
overdetermined linear system, 97, 195,

222
overfitting, 234, 349
overflow, in computer operations, 395,

398
overloading, 9, 47, 129, 390, 401

p-inverse (see also Moore-Penrose
inverse), 102

paging, 450
parallel processing, 436, 438, 470
parallelotope, 58
Parseval’s identity, 29, 133
partial ordering, 278, Exercise 8.1a:,

317
partial pivoting, 210
partitioned matrix, 46, 61, 101
partitioned matrix, determinant, 96
partitioned matrix, inverse, 95, 96, 101
PBLAS (parallel BLAS), 460, 470
pencil, 127
permutation matrix, 62, 66, 207, 307
Perron root, 301, 304
Perron theorem, 301
Perron vector, 301, 304
Perron-Frobenius theorem, 304
pivoting, 66, 189, 210
PLAPACK, 461
polar cone, 32
polynomial in a matrix, 61, Exer-

cise 3.17:, 141
polynomial order, 413
polynomial regression, 309
polynomial, evaluation of, 420
pooled variance-covariance matrix, 298
population model, 362

526 Index

portability, 393, 404, 446
positive definite matrix, 70, 78, 124–126,

194, 277–280, 342
positive matrix, 299
positive semidefinite matrix, 275
positive stable, 125, 317
power method for eigenvalues, 245–247
precision, double, 385, 391
precision, extended, 385
precision, multiple, 402
precision, single, 385, 391
preconditioning, 216, 244, 433
primitive matrix, 305
principal axis, 25
principal components, 341–345
principal components regression, 348
principal minor, 56, 81, 488
principal submatrix, 46, 81, 188, 275,

277
probabilistic error bound, 406
projected gradient, 160
projected Hessian, 160
projection matrix, 286–287, 331
projective transformation, 176
proper value (see also eigenvalue), 106
PSBLAS (parallel sparse BLAS), 460
pseudo-correlation matrix, 354
pseudoinverse (see also Moore-Penrose

inverse), 102
PV-Wave (software), 6, 461

Q-convergence, 418
QR factorization, 188–192
QR method for eigenvalues, 250–252
quadratic convergence, 418
quadratic form, 69, 71
quasi-Newton method, 158

R (software), 466–470
radix, 380
random correlation matrix, 359
random graph, 269
random number generation, 358–359
range of a matrix, 41
rank deficiency, 77, 113
rank determination, 439
rank of a matrix, 76, 190, 192, 350, 439
rank of an array, 5
rank reduction, 439

rank(·), 76
rank, linear independence, 76, 439
rank, number of dimensions, 5
rank-one update, 180, 221
rank-revealing QR, 190, 350, 439
rate constant, 418
rate of convergence, 418
Rayleigh quotient, 122, 161, 316
real numbers, 379
real-time algorithm, 421
recursion, 419
reduced gradient, 160
reduced Hessian, 160
reducibility, 245, 267, 302
reflection, 178, 180
reflector, 180
reflexive generalized inverse, 102
register, in computer processor, 396
regression, 326
regression variable selection, 347
regular graph, 262
regular matrix (see also diagonalizable

matrix), 116
regularization, 233, 329, 348
relative error, 395, 404, 434
relative spacing, 383
Reliable Computing, 403
residue arithmetic, 399
restarting, 433
reverse communication, 449
Richardson extrapolation, 419
ridge regression, 292, 329, 341, 348,

Exercise 9.10a:, 368
right direct product, 73
right inverse, 84
robustness (algorithm or software), 409
root of a function, 398
root-free Cholesky, 195
Rosser test matrix, 474
rotation, 176, 182
rounding error, 399, 405
row echelon form, 86
row rank, 76
row space, 41
row-major, 430, 446, 449
row-sum norm, 130

S, S-Plus (software), 466–470
sample variance, computing, 410

Index 527

saxpy, 10
ScaLAPACK, 460, 470
scalar, 9
scalar product, 15
scaled matrix, 295
scaled vector, 35
scaling of a vector or matrix, 206
scaling of an algorithm, 413
Schur complement, 95, 336
Schur factorization, 114
Schur norm (see also Frobenius norm),

132
self-adjoint matrix (see also Hermitian

matrix), 42
seminorm, 17
semisimple eigenvalue, 113, 116
sequences of matrices, 134
sequences of vectors, 20
shape of matrix, 5
shearing transformation, 176
Sherman-Morrison formula, 221, 339
shrinkage, 329
side effect, 455
sign bit, 378
sign(·), 12
significand, 380
similar canonical form, 116
similar matrices, 114
similarity matrix, 299
similarity transformation, 114–116, 247,

251
simple eigenvalue, 113
simple graph, 262
simple matrix (see also diagonalizable

matrix), 116
single precision, 385, 391
singular matrix, 77
singular value, 127, 192, 345, 439
singular value decomposition, 127, 192,

253, 345, 439
skew diagonal element, 42
skew diagonal matrix, 42
skew symmetric matrix, 42, 45
skew upper triangular matrix, 43, 312
skinny QR factorization, 189
smoothing matrix, 291, 341
software testing, 472
SOR (method), 213
span(·), 14

spanning set, 14

spanning set of a cone, 15

sparse matrix, 42, 198, 211, 431, 434,
446, 458, 472

spectral circle, 111

spectral condition number, 205, 206,
225

spectral decomposition, 121, 128

spectral norm, 131

spectral projector, 121

spectral radius, 111, 131, 134, 212

spectrum of a graph, 315

spectrum of a matrix, 111

splitting extrapolation, 419

square root matrix, 125, 193, 194, 276

stability, 210, 409

standard deviation, 35, 294

standard deviation, computing, 410

Standard Template Library, 454

stationary point of vector/matrix
functions, 156

statistical reference datasets (StRD),
475

statlib, xii, 505

steepest descent, 156, 158

Stiefel manifold, 105

stiff data, 411, 412

stochastic matrix, 306

stochastic processes, 360–365

stopping criterion, 417

storage mode, for matrices, 451, 457

storage unit, 377, 380, 391

Strassen algorithm, 437

StRD (statistical reference datasets),
475

stride, 430, 446, 455

string, character, 376

strongly connected graph, 267

submatrix, 46, 61

successive overrelaxation, 213

sum of vector spaces, 13

summing vector, 23

Sun ONE Studio Fortran 95, 403

superlinear convergence, 418

SVD (singular value decomposition),
127, 192, 253, 345, 439

sweep operator, 336

Sylvester’s law of nullity, 92

528 Index

symmetric matrix, 42, 45, 88, 119–126,
270–274

symmetric pair, 253
symmetric storage mode, 46, 451

Taylor series, 149, 157
Template Numerical Toolkit, 454
tensor, 5
testable hypothesis, 333
testbed, 472
testing software, 472
Tikhonov regularization, 234, 348
time series, variance-covariance matrix,

312
Toeplitz matrix, 311, 312, 364, 477
total least squares, 235, 329
tr(·), 49
trace of a matrix, 49
translation transformation, 178
transpose, 44
transpose of partitioned matrices, 47
transpose of the product of matrices, 60
transpose of the sum of matrices, 48
transpose, determinant of, 54
transpose, generalized inverse of, 98
transpose, inverse of, 83
transpose, norm of, 129
transpose, trace of, 49
trapezoidal matrix, 43, 186, 188
triangle inequality, 17, 38, 128
triangular matrix, 43, 186
tridiagonal matrix, 43
triple scalar product, 39
triple vector product, 39
truncation error, 30, 76, 408
twos-complement representation, 378,

394
type 2 matrix, 43, 312

ulp (“unit in the last place”), 385
underdetermined linear system, 97
underflow, in computer operations, 383,

398
Unicode, 376
unit in the last place, 385
unit roundoff, 383
unit vector, 12, 25, 60

unitary matrix, 103–105
unrolling do-loop, 451
updating a solution, 220, 228, 338
upper Hessenberg form, 44, 250
upper triangular matrix, 43
usual norm (see also Frobenius norm),

132

V(·), 14, 41
V(·), 35, 168
Vandermonde matrix, 309
variable metric method, 158
variable selection, 347
variance, computing, 410
variance-covariance matrix, 295, 342
variance-covariance matrix, nonpositive

definite approximation, 353
vec(·), 45
vec-permutation matrix, 64
vecdiag(·), 45
vech(·), 46
vector, 4
vector derivative, 145
vector processing, 470
vector space, 11, 41, 48, 49, 99, 100
vertex of a graph, 262
volume as a determinant, 57

Ware’s law, 416
weighted graph, 262
weighted least squares, 337
weighted least squares with equality

constraints Exercise 9.4d:, 366
weighted norm, 18, 71
Wilkinson matrix, 474
Wishart distribution, 95
Wishart distribution Exercise 4.8:, 171
Woodbury formula, 221, 339
word, computer, 377, 380, 391

XDR (external data representation),
393

Yule-Walker equation, 364

Z-matrix, 317
zero of a function, 398
zero vector, 12

Springer Texts in Statistics (continued from p. ii)

Robert/Casella: Monte Carlo Statistical Methods, Second Edition
Rose/Smith: Mathematical Statistics with Mathematica
Ruppert: Statistics and Finance: An Introduction
Sen/Srivastava: Regression Analysis: Theory, Methods, and Applications
Shao: Mathematical Statistics, Second Edition
Shorack: Probability for Statisticians
Shumway/Stoffer: Time Series Analysis and Its Applications,

Second Edition
Simonoff: Analyzing Categorical Data
Terrell: Mathematical Statistics: A Unified Introduction
Timm: Applied Multivariate Analysis
Toutenberg: Statistical Analysis of Designed Experiments, Second Edition
Wasserman: All of Nonparametric Statistics
Wasserman: All of Statistics: A Concise Course in Statistical Inference
Weiss: Modeling Longitudinal Data
Whittle: Probability via Expectation, Fourth Edition

Robert: The Bayesian Choice: From Decision-Theoretic Foundations to
Computational Implementation, Second Edition

springer.com

Random Number Generation and
Monte Carlo Methods, Second Edition

J.E. Gentle
This book surveys techniques of random number generation and the
use of random numbers in Monte Carlo simulation. The book covers
basic principles, as well as newer methods such as parallel random
number generation, nonlinear congruential generators, quasi Monte
Carlo methods, and Markov chain Monte Carlo. The best methods for
generating random variates from the standard distributions are pre-
sented, but also general techniques useful in more complicated mod-
els and in novel settings are described. The emphasis throughout the
book is on practical methods that work well in current computing
environments. The book includes exercises and can be used as a
test or supplementary text for various courses in modern statistics.

2003. 300 pp. (Statistics and Computing) Hardcover ISBN 978-0-387-00178-4

Handbook of Computational Statistics
Concepts and Methods

J.E. Gentle, W. Härdle, and Y. Mori (Eds.)
The Handbook of Computational Statistics - Concepts and Methods
is divided into 4 parts. It begins with an overview of the field of Com-
putational Statistics, how it emerged as a separate discipline, how it
developed along the development of hard- and software, including a
discussion of current active research. The second part presents sev-
eral topics in the supporting field of statistical computing. Emphasis is
placed on the need for fast and accurate numerical algorithms, and it
discusses some of the basic methodologies for transformation, data
base handling and graphics treatment. The third part focuses on
statistical methodology.

2004. 1070 pp. Hardcover ISBN 978-3-540-40464-4

Time Series Analysis and Its Applications
Second Edition

Robert H. Shumway and David S. Stoffer
Time Series Analysis and Its Applications, Second Edition, presents
a balanced and comprehensive treatment of both time and frequency
domain methods with accompanying theory. Numerous examples
using non-trivial data illustrate solutions to problems such as evalua-
ting pain perception experiments using magnetic resonance imaging,
monitoring a nuclear test ban treaty, evaluating the volatility of an
asset, or finding a gene in a DNA sequence.

2006. 592 pp. (Springer Texts in Statistics) Hardcover
ISBN 978-0-387-23917-2

Easy Ways to Order► Call: Toll-Free 1-800-SPRINGER ▪ E-mail: orders-ny@springer.com ▪ Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 ▪ Visit: Your
local scientific bookstore or urge your librarian to order.

