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ABSTRACT 

Modes in small rooms may lead to uneven frequency responses and extended sound decays at low frequencies. In 

critical listening environments this often causes unwanted coloration effects, which can be detrimental to the sound 

quality. Choosing an appropriately proportioned room may reduce the audible effects of modes. This paper details 

a new methodology for determining the room dimensions for small critical listening spaces. It is based on 

numerical optimisation of the room dimensions to achieve the flattest possible frequency response. The method is 

contrasted with previous techniques. 
 

 

 
INTRODUCTION 

Modes in small rooms often lead to extended sound decays and uneven 

frequency responses. In critical listening spaces, this causes unwanted 
coloration effects that can be detrimental to the sound quality. The 

problem arises at low frequencies because of the relatively low modal 

density. Many designers try to overcome the problems of modes by 
choosing an appropriately proportioned room and by the use of bass 

absorbers. This paper is interested in the former, the choice of room 

dimensions to minimise the coloration effects of modes. The paper 
starts by discussing previous studies by others, which have suggested 

optimum room ratios or design methodologies. Then a new method is 

outlined - this is based on numerical optimisation - and the old and 
new methods are compared philosophically. Results in the form of 

modal responses are given to demonstrate the power of the new 

method. 
 
PREVIOUS WORK 
Many methods and optimum room ratios have been suggested over the 
years to minimise coloration. Essentially these methods try to avoid 

degenerate modes, where multiple modal frequencies fall within a 

small bandwidth, and also bandwidths with absences of modes. The 

assumption being that as music is played in the rooms, the absence or 

boosting of certain tonal elements will detract from the audio quality. 

The starting point for these previous methods to determine room 
dimensions, is usually the equation defining the eigenfrequencies 

within a rigid rectangular enclosure: 
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Where nx, ny and nz are integers and Lx, Ly and Lz the length, width and 
height of the room. Often the best dimensions are given in terms of the 

ratios to the smallest room dimension. Previous methods for 

determining room ratios differ, however, in how they utilize Equation 
(1). 

 

Bolt [1] produced design charts that enabled him to determine good 
room ratios. His method investigated the average modal spacing to try 

and achieve evenly spaced modes; the assumption being that if the 
modal frequencies are evenly spaced, then there will fewer problems 
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with peaks and dips in the modal response. It is now known, however, 
that using the average mode spacing is not ideal, and the standard 

deviation of the mode spacing is a better measure. Ratios of 2:3:5 and 

1: 21/3:41/3 (1:1.26:1.59) are suggested, but Bolt also notes that there is 
a broad area over which the average modal spacing criterion is 

acceptable. (Note, this later ratio is often rounded to the commonly 

quoted figures of 1:1.25:1.6).  
 

Gilford [2] discusses a looser methodology whereby the modal 

frequencies are calculated and listed. The designer then looks for 
groupings and absences assuming a modal bandwidth of about 20Hz. 

The dimensions are adjusted and a recalculation is carried out until a 

satisfactorily even distribution is achieved. This is a cumbersome 
process to undertake by hand, but this type of iterative search is easily 

accomplished using modern computers using numerical optimisation 

techniques. It is this type of computer controlled optimisation that is 
set out below as a method for choosing room dimensions. 

Furthermore, in addition to the use of numerical optimisation to ease 

the burden of searching, a better basis than modal spacing for 
evaluating the effects of modes will be detailed. Gilford also states that 

the 2:3:5 ratio suggested by Bolt is no longer popular and that the axial 

modes cause the major difficulty in rooms. These points will be 
returned to later. 

 

Louden [3] calculated the modal distribution for a large number of 
room ratios and published a list of preferred dimensions based on a 

single figure of merit. The figure of merit used to judge room ratios is 
the standard deviation of the intermode spacing, so again this is a 

regime to achieve evenly spaced modes. The method produces the well 

known room ratio of 1:1.4:1.9. Louden undertook the investigation by 
examining 125 combinations of room ratios at a spacing of 0.1. This 

type of discretized search can limit the potential solutions found. With 

the optimised techniques developed since Louden published his work, 
such as the one used below, the search for the best ratios can be 

undertaken in a more intelligent manner without the need to artificially 

discretize the ratios tested. 
 

Bonello [4] developed a criterion based on the fact that the modal 

density should never decrease when going from one third octave band 
to the next highest band in frequency. Modes with coincidental 

frequencies are only tolerated in one third octave bands with five or 

more modes present. Bonello compares his criterion against others 
used by Knudsen, Olson and Bolt. Justification for his methodology is 

drawn from his experience as a consultant in 35 rooms. 

 
Walker [5] develops a low-frequency figure of merit based on the 

modal frequency spacing. The method leads to a range of practical, 

near-optimum room shapes. Walker discusses how blind application 
of optimum room ratios does not necessarily lead to the best room, 

because room quality is volume dependent. The new method outlined 

in this paper does not use generalised room ratios, and so avoids this 
problem. 

 

All the above methods have limitations. Equation (1) is only applicable 
for rigid surfaces. Absorption has a number of effects, for instance it 

shifts the eigenfrequencies. This is critical for evaluation criteria, as is 

the case of all the above methods, which examine the modal 
frequencies or spacing of modes. The new method set out below uses 

a theoretical model, which although not perfect, is a more accurate 

model of low frequency room behaviour than Equation (1). Another 
effect of absorption is that it acts differently on axial, tangential and 

oblique modes – for example, axial modes will have the greatest 

magnitude and least damping. None of the above methods account for 
this fully unlike the new method given below, although Gilford, for 

example, does discuss the prominence of axial modes. A further 

difficulty with the above methods is the choice of criterion used for 
evaluation. For example, Bonello's method makes several assumptions 

– such as the use of a one-third octave bandwidth, and that five modes 

in a bandwidth mask the effects of coincident modes – which are 
empirical rather than fundamental in nature. The new method outlined 

below acts directly on the modal response of the room, so a criterion 
based on mode spacing is no longer required. Although an evaluation 

criterion is still required, as this can be based on the modal response 

of the room, it is much easier to relate to human perception. This is 
because the mode spacing is one level more removed from the actual 

signals received by the listener than the modal response. 

 
Standards and recommendations also stipulate good room ratios for 

activities such as listening tests and broadcasting. European 

Broadcasting Union recommendations [6] are discussed by Walker 
[7]. Walker states that the aim of the regulations appears to be to avoid 

the worse cases, rather than to provide proscriptive optimum ratios. 

Consequently, the recommendations cover a wide range of room 
proportions. 
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In addition, it is stipulated that ratios of Lx, Ly and Lz which are within 

5% of integer values should also be avoid. 

 
The British Standards Institute and International Electrotechnical 

Commission [8] give slightly different criteria for Equation (2): 
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The criteria given by Equation (3) and (4) are also stipulated along 

with recommended floor areas. A recommended room size of 7 x 5.3 

x 2.7m (2.59:1.96:1) is given. Older versions of the standard [9] give 
different recommendations, with a standard room of 6.7 x 4.2 x 2.8m 

(1.59:1.5:1). These values are also reported in a popular textbook [10]. 

 
THE NEW METHOD 
The new method is based on producing the flattest possible modal 
frequency response for the room. It uses an optimising computer 

algorithm to search for best solutions. First, the prediction models used 

will be presented, and then the optimising procedure will be discussed. 

Prediction Models 
For the purposes of this paper, the modal response of the room is 

defined as the frequency spectrum received by an omni-directional 

microphone in a corner of the room, when the room is excited by a 

point source with a flat power spectrum placed in the opposite corner. 

Two possible models to predict the modal response are considered, a 
frequency based modal decomposition model and a time based image 

source model. 

 
Modal decomposition model 
The modal decomposition model used is applicable when boundary 

impedances are large and real. The pressure at r(x,y,z) due to a source 

at ro(xo,yo,zo), at an angular frequency , is given by [11]: 
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where 
yx  , and

z  are the average admittance of the walls in the x, 

y and z directions 
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Similar expressions for ny, nz, knx and kny are used.  is the density 

of air, S the surface area of the room, V the volume, c the speed of 

sound. 

Image source model 
The image source model is a fast prediction model for a cuboid room. 
The image solution of a rectangular enclosure rapidly approaches an 

exact solution of the wave equation as the walls of the room become 

rigid. The energy impulse response is given by: 
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Similar expressions for the distances in the y and z direction are used. 

The surface reflection factors are given as follows: 
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Where Rx,1 and Rx,2 are the surface reflection factors for the front and 
rear walls respectively, and similar expressions for the distances in the 

y and z direction are used. Reflection factors are approximated to be 

purely real. Once the energy impulse response is obtained, this is 
Fourier Transformed to form the modal frequency response. For soft 

walls, the image source construct becomes less accurate as 

representing the image sources as pure point sources is no long 
applicable. These inaccuracies become greater as the reflection orders 

increases. 

 
Prediction model critique 
Both the modal decomposition and image source models offer a better 

representation of the sound field in the space than the simple modal 
frequency equation shown in Equation (1). This is primarily because 

the modal decomposition and image source models allow for 

absorption, but also because it is possible to calculate a quantity - the 

modal response - that is easier to relate to the listener experience. Both 
models, however, are not completely accurate. Figure 1 compares 

measurements in a listening room to the modal decomposition and 

image source models. The listening room has dimensions 6.9 x 4.6 x 
2.8m. All the walls were smooth plastered concrete except the back 

wall which was covered with diffusers, some diffusers were on the 

ceiling and the floor which was covered with carpet. 
 

Figure 1. Prediction models compared to a measurement in a listening 

room. 
 

Below 100 Hz, good agreement between the models and the 

measurement are shown. The agreement diverges above 100Hz – see 
below. Slightly better agreement can be achieved [12] by taking more 

terms in Equations (6) and (15). The models deliberately used a 

reduced number of terms in the infinite sums to enable calculations to 
be quick enough for subsequent optimisation. 

 

Great care to normalise for loudspeaker resonance is required for these 
measurements, in this case the loudspeaker resonance was about 80Hz. 

The sound power of the loudspeaker is difficult to measure, as 
anechoic conditions are not achieved at 20Hz in normal test chambers. 

The cone acceleration was used as a reference for the frequency 

response normalisation. This was measured by an accelerometer 
attached near the centre of the loudspeaker cone. If the cone radiates 

as a piston at such low frequencies, the free-field pressure should be 

omni-directional and proportional to the cone acceleration. Thus, the 
cone acceleration provides a convenient means of normalisation. This 

worked well over most of the frequencies from 30 to 100Hz. At the 

lower and upper ends the normalisation might still be affected by poor 
signal to noise ratio and directional radiation form the cone. Indeed, it 

is assumed that the divergence between the measurement and 

predictions above 100Hz is due to cone directivity. 
 

Consequently, the method for choosing room dimensions is based on 

a better prediction model than previous methods. There is, however, 
scope for future improvement, by including better prediction models 

when they are developed. There are some basic problems with both 

the modal decomposition and image source models, and currently 
there are no established solutions to deal with these difficulties. For 

example, while absorption coefficients for surfaces are widely 

available, the surface impedances, which includes both phase and 
magnitude information, are not. Indeed, given that room surfaces at 

low frequencies will often not behave as isolated local reacting 

surfaces, defining a surface impedance can be problematical. 

Consequently, for this work an assumption of no phase change on 

reflection has to be made, which means that the models are more 

accurate for walls that are more rigid. It might be envisaged that a finite 
element model could overcome some of these difficulties, but 

currently the calculation time would be too slow for optimisation. 

During an optimisation process, many hundreds or thousands of room 
configurations have to be calculated, consequently the prediction time 

for a single calculation must be kept small. 
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For the results presented here the image source model was favoured 

over the modal decomposition model. This is because the image source 

model is considerably faster. For the modal decomposition model, all 
modes within the frequency range of interest must be considered, plus 

corrections for those outside the range must be done [13]. In the image 

source model, all images contribute to the impulse response in a 
cuboid room. Consequently, using the image source model reduces the 

optimisation time. (Furthermore, the methodology outlined has been 

previously applied to finding the best location for loudspeakers and 
listeners in rooms [14] and using a time based approach for that 

problem enables the early arriving sound to be examined as well as the 

modal response). The relationship between the modal decomposition 
and the image solutions for a loss-less room has been derived and 

shown to be equivalent for a rigid boundary [15]. 

 
Optimisation Procedure 
Numerical optimisation techniques are commonly used to find the best 

designs for a wide variety of engineering problems. In the context of 
this paper, a computer is used to search for the best room dimensions. 

The iterative procedure is illustrated in Figure 2. The user inputs the 

minimum and maximum values for the width, length and height, and 

the computer finds the best dimensions within these limits. The 

computer predicts the modal response of the room and rates the quality 
of the spectra using a single figure of merit (cost parameter). The 

computer then tries other dimensions trying to find those that have the 

lowest figure of merit. A completely random search is too time 
consuming, and so one of the many search algorithms that have been 

developed for engineering problems was used. In this case, a simplex 
method was used [16], which is not the fastest procedure but is robust 

and does not require knowledge of cost parameter derivatives. 

 

In developing a single figure of merit it is necessary to consider what 
would be the best modal response. It is assumed that the flattest modal 

response corresponds to the ideal. This is done even though a perfectly 

flat response can never be achieved, as in the sparse modal region there 
will always be minima and maxima in the frequency response. The 

cost parameter used is the squared deviations of the modal response 

from a least squares straight line drawn through the spectra. If the 
modal response level of the nth frequency is Lp,n then the cost parameter 

 is: 


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Where m and c are the gradient and intercept of the best fit line and 

the sum is carried out over n frequencies, fn. This is illustrated in 
Figure 3. Consequently, this is a least squares minimization criterion, 

which is commonly used in engineering. The deviation from a best fit 

line rather than the mean is used because it is assumed that slow 

variation in the spectrum can be removed by simple equalisation, and 
what is important is to reduce large local variation. Before calculating 

Equation (21), some smoothing over a few adjacent frequency bins is 

used. This is done to reduce the risk of the optimisation routine finding 
a solution that is overly sensitive to the exact room dimensions. 

Furthermore, in prediction models very exact minima can be found 

which would never be replicated in real measurements; the smoothing 
helps mitigate against this. 

 

Test bed 

The optimiser was run for a wide variety of room sizes: 7m  Lx  

11m, 4m  Ly  8m and 3m  Lz  5m. Two hundred solutions were 

gathered. In most multi-dimensional optimisation, repeated running of 
the procedure from random starting positions will give different 

“optimum” solutions. This happens because the optimising algorithm 

gets stuck in a local minimum that is not the best solution available - 
the so-called global minimum. A large number of solutions were 

gathered to enable the performance of the optimisation to be tested and 

a statistical analysis of the solutions found to be undertaken. If used as 
a design tool, far fewer solutions could be found, and the best used. 

The best solutions found were compared to the previously known best 

ratios outlined above. 

 

Figure 2. The optimisation procedure 
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Figure 3. Use of best fit line to get figure of merit (no spectrum 

smoothing). 
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A frequency range of 20-200Hz was chosen, as the flatness of the 

modal response was not particularly sensitive to dimension changes 

above 200Hz. As might be expected, the gains to be made in avoiding 
degenerate modes are at lower frequencies where the modes are 

relatively sparse. The frequency range for optimisation may also be 

guided by the Schroeder frequency. 
 

Results 
To compare to previous work, the best solution whose volume was 
roughly the same to that used by Louden was chosen. This is to enable 

a fair comparison. Absorption coefficients were chosen to be typical 

of those found at low frequency in listening rooms. 
 

Figure 4 shows the new optimised modal response compared to one of 

the ratios suggested by Bolt, 2:3:5. In addition, the modal spectrum for 
the worst dimensions found during the search is shown to give a sense 

of the range of spectra that can be achieved. (The worst case had a ratio 

1:1.075:1.868). As expected, a completely flat spectrum is not 
achieved with optimisation. Clear improvement on the Bolt 2:3:5 room 

is seen, however. The 2:3:5 rooms suffers from significant dips, for 

example at 110Hz. 

 

Figure 4. Modal response for three room dimensions including Bolt’s 
2:3:5 ratio. 

 

The best ratio found by Louden, 1:1.4:1.9, is compared to the new 
optimised response in Figure 5. Improvement on the Louden ratio is 

achieved, although the improvement is less marked than with 2:3:5. 

Bolt also suggested the ratios 1:1.25:1.6, which also meets Bonello's 
criteria. Figure 6 shows the spectra compared to the optimised 

solution. The modal response spectrum achieved by optimisation is 

clearly flatter. 

Figure 5. Modal response for three rooms, including the best ratio 

found by Louden 1:1.4:1.9. 
The optimised solution was also compared to the regulations and 

standards mentioned above. All of the ratios by Bolt, Bonello and 

Louden presented before pass the EBU and IEC regulations as does 
the best optimised solution. Only the worst case fails to meet the 

regulations. The standards appear to achieve their remit of not being 

overly proscriptive while avoiding the worst cases. 
 

A comparison with the preferred standard room sizes given in the 

standards and regulations was also undertaken. Figure 7 compares the 
optimised solution to the old and new IEC regulations. The new 

standard room and the optimised solution are very similar in 

performance. While the cost parameter for the optimised solution is 
better (2.2) than for the new standard room (2.5), this does not translate 

into an obvious improvement in the spectra. (This gives a little 

evidence for the sensitivity of the cost parameter; the difference limen 
appears to be greater than 0.3). The old standard room, however, is far 

from optimum, indicating a wise revision of the standard. 

 

Figure 7. Comparison of optimised solution with standard rooms. 

 
Finally, the optimised solution is compared to the “golden ratio” in 

Figure 8. The golden ratio is often quoted in the audio press, and so is 

of interest. It was tested for this reason, despite the fact that the 
rationale behind the golden ratio for room dimensions does not appear 

particularly compelling from a scientific point of view. It can be seen 
that the optimised solution has a more even modal response and so is 

better. 

 
Discussions 
The new method produces as good or better room dimensions than 

those based on previous work. The new method has been shown to be 
an efficient way of finding optimum dimensions. The modal spectrum 

in a room is complex, and there does not appear to be one set of 

magical dimensions that significantly surpass all others in 
performance. There may be a numerically global minimum, but many 

of the local minima in the optimisation problem are actually equivalent 

in terms of the modal response achieved. One significant advantage of 

 

 Figure 6. Three modal spectra including 1:1.26:1.59. 
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this optimisation technique is that it is possible to incorporate 
constraints that may happen in real buildings. For example, if the 

height of the ceiling is fixed in the building, then it can be fixed in the 

optimiser, which can then look for the best room width and length 
within constraints given by the user. 

 
Conclusions 
A method has been presented to enable the size of small critical 

listening spaces to be determined. The criteria for room size being to 

minimise the coloration effects of low frequency modes monitored by 
a predicted modal response. The method is an improvement on 

previous methods in that the theoretical basis is a more accurate model 

of the room response than examining the modal spacing in frequency 
for a rigid box. The system is flexible in that it can search for the best 

dimensions within constraints set by the designer. Furthermore, the 

procedure has flexibility in that as better prediction models of rooms 
become available, they can be used in the general optimisation design 

procedure. Results demonstrate that the new search method produce 

room sizes that match or improve on the room ratios published in 
literature. 
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Figure 8. Three room modal responses compared including the  
“golden ratio” 
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