
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Elsevier AMS Ch05-N52719 7-8-2006 1:43a.m. Page:57 Trimsize:165×240MM

Theoretical Aspects of Chemical Reactivity
A. Toro-Labbé
© 2006 Elsevier B.V. All rights reserved.

Chapter 5

Understanding and using the electron localization
function

aPatricio Fuentealba, bE. Chamorro, and bJuan C. Santos

aDepartamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras
3425, Casilla 653 and
bDepartamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales,
Universidad Andrés Bello, Av. República 275, Santiago, Chile

1. Introduction

The applications of quantum mechanics to chemistry have primordially two goals. First,
to provide the numerical value of observables which can be confronted with experimental
measurements and, second, to help in understanding many empirical concepts widely
used in chemistry. The electron localization function, ELF, enters in the second goal. It
helps in understanding the empirical concept of electron localization, specially the pair
electron localization in the spirit of Lewis structures. This paper is not an attempt to
review all of the applications of the ELF, rather the aims are to explain in an easy way
with as less as possible of mathematical formalism the significances of the ELF and,
more important, how to use it. Hence, from the very beginning, we give answer to a
common question of chemists in front of theoretical paper: Why should I bother trying
to understand this function, when I do not have any chance to apply it and when I do not
have any software to calculate it? Well, in this case, everybody can calculate the ELF
using the TOPMOD software developed by Silvi and co-workers1 which is free. It uses
the output of popular programs for electronic structure calculation, i.e. the commercial
package of programs GAUSSIAN2 and the free software GAMMES3 to obtain the
ELF and elaborate the necessary topological analysis. The ELF is also implemented in
some other packages designed for periodic systems4 or can also be calculated using the
interfacing program DGRID5 for GAUSSIAN,2 MOLPRO6 and ADF.7 A new algorithm
to fast calculation of the 3D and 2D arrays needed for the topological analysis of ELF
is also available.8

The ELF was introduced by Becke and Edgecombe9 and first applied to a great range
of systems, from atoms to molecules and solids, by Savin et al.10 Some years later, Silvi
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and Savin11 proposed a topological classification and rationalization of the ELF which
helps in giving a quantification of the chemical concepts associated with the function.
After that, and with the launch of the TOPMOD1 free software, there have been many
applications of the ELF to molecules, clusters and solids.

One of the key concepts to understand the significance of the electron localization is
the Fermi hole, which is a direct consequence of the Pauli exclusion principle.12 It permits
to answer the difficult question pointed out by Lewis13 when he introduced in chemistry
the concept of the electron pair. His question is as follows: If the only law of nature
acting on the electron’s movement is the Coulomb’s law which is repulsive between a
pair of electrons, then how is it possible to find a pair of electrons moving together in
a certain region of space? In fact, Lewis postulated the failure of the Coulomb’s law
for small distances. Remember that at this time the quantum mechanics was not fully
understood, and later, Lewis changed his position. In fact, it is important to notice that,
in a rigorous sense, it does not make any sense to talk about a localized electron because
it goes against the Heisenberg’s uncertainty principle. A nice explanation to all of this
is given by Bader,14 and we follow it. The existence of a localized electron pair implies
that there exists a high probability of finding two electrons of opposite spin in a given
region of the space and for which there is a small probability of exchange with other
electrons that are outside of this region. To understand this, it is necessary to think that
as an electron moves through space, it moves also with its Fermi hole. The Fermi hole
related to a given electron in a given position in the space is a distribution function
which measures the decrease due to the Pauli principle in the probability of finding
another electron of the same spin at some position in the space. Hence, it depends on
the position of the reference electron, say �r1, and on the position of the other electron,
say �r2. Therefore, for a given spin, the diagonal of the Fermi hole, �r1 = �r2, should be
equal to the total density for the given spin at this point. This is the only way to be sure
that the probability of finding another electron of the same spin at this position is zero,
condition necessary to respect the Pauli principle. For the same reason, for a fixed �r1, the
position of the reference electron, the integration of the Fermi hole over �r2 corresponds
to the removal of one electron of identical spin. Hence, the Fermi hole describes the
spatial delocalization of the charge of the reference electron. As written by Bader, ‘an
electron can go only where its hole goes and, if the Fermi hole is localized, then so is
the electron’. One example: an electron of a given spin moving near a nucleus. There
is a big attractive potential acting on the electron, and the potential well to get outside
this region is also big. Its Fermi hole is strongly localized around this region of the
space. Suppose now that the Fermi hole is so localized on this region that everywhere
on this region it equals its maximum value, the total density of the given spin, then, all
other electrons of this spin are completely excluded from this region. The same result
would be obtained for an electron of the other spin if it happens to be in the same
region of the space. Hence, this pair of electrons of different spin is confined to move
on this particular region of the space in the vicinity of a nucleus where all the other
electrons irrespective of its spin are excluded. Since repulsions between the electrons
act in opposition to this effect, the localization can never be perfect. It is important to
notice that the Fermi hole does not produce an attraction between a pair of electrons of
different spin, it rather produces an extra repulsion between the pair of electrons and all
the rest. In general, this argumentation is correct for the inner 1s2 pair of electrons, and
may be for the core electrons of any system, but it is clearly difficult to apply to the
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valence electrons which are weakly bonded. Therefore, it is important to have in mind
that the image of localized electrons in a bond or as a lone pair are only good models
in order to understand the chemistry, but they do not have any physical realization.

In the next section, the principal ingredients involved in the ELF will be explained, and
their relation with chemical concepts will be clarified. Then, a brief comparison of the
ELF with other theoretical related tools, like the atoms in molecules model of Bader, will
be done. Next, some elementary concepts from the mathematical theory of topological
analysis will be in a rather crude way presented. After that, some applications, extensions
and results will be discussed, focusing in particular on applications developed at our group.

2. ELF developments

2.1. Becke’s proposal and interpretation

In studying the correlation among electrons, it was very early realized that because of
the Pauli principle the movement of electrons of the same spin is strongly correlated
than the one between electrons of different spin. Therefore, it seems convenient to study
the electron pair density for electrons of the same spin and for electrons of different spin,
separately. The electron pair density, ��� ′

2 ��r1� �r2�, gives us the probability of finding an
electron of spin � at point �r1 when a second electron of spin � ′ is located at point
�r2. Because the electron–electron interaction depends only on the distance between the
electrons and not on the angular orientation, it is convenient to change the coordinate
system to the ones defined by �r = ½��r1 +�r2� and �s = �r1 −�r2. The advantage of the new
coordinate system is that now the electron interaction does not depend on six variables
(�r1 and �r2) but only on four (�r and s). Hence, only the spherical average electron pair
density is necessary. This is defined as

��� ′
2 ��r1� s� = 1

4�

∫
��� ′

2 ��r1� s�d�s� (1)

where the integration is over the angles of the vector �s.
Now, Becke and Edgecombe2 preferred to work with the conditional pair density for

electrons of the same spin which is a measure of the conditional probability of finding
an electron at position �r2 when with certainty there is an electron of the same spin at
position �r1. It is given by

P����r� s� = ��� ′
2�av��r� s�

����r�
(2)

where ����r� is the electron density of electrons with spin � which in the Kohn–Sham
approximation is given by

����r� =
�∑
i

	i��r�2 (3)

with the Kohn–Sham orbitals given by the set 
	i�, and the sum is over all the occupied
orbitals with spin � .
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Then, they proposed to examine the Taylor series expansion of the spherical average
conditional pair density in the vicinity of the point s = 0 where one is measuring the
short-range behaviour of the electron at point �r2 approaching the reference point �r1. The
leading term of the Taylor series expansion is given by

P����r� s� = 1
3

��� − 1
4

����2

��

�s2 +· · · · ·� (4)

where �� is the positive definite kinetic energy density defined by

�� =
�∑
i

�	i�
2� (5)

After Becke and Edgecombe, the Taylor expansion contains all the electron local-
ization information. The smaller the probability of finding the second electron near
the point �r the more localized is the reference electron. Hence, electron localization is
directly related to the bracket enclosed in the right hand side of (4)

D� = �� − 1
4

����2

��

� (6)

which is a non-negative quantity.15 One can also easily demonstrate that D� vanishes for
the hydrogen atom and also for the helium atom in the Hartree–Fock (HF) approximation,
and it is also expected to be negligible in the regions near the nuclei, where one finds
the most localized electrons.

Therefore, it is reasonable to expect that the quantity D� will be small in the regions
of the space where the probability of finding a localized electron or a localized pair
of electrons is high. However, the function D� can have very high values in other
places, and one does not know how near to zero should be to consider an electron to
be localized. Hence, Becke and Edgecombe proposed two additional scaling rules. The
homogeneous electron gas, the kinetic energy density of which is given by D0

� = cf �5/3,
is used as a reference, and for numerical convenience the function is mapped to one
which is defined between zero and one. Hence, they proposed the following ELF:

ELF = �1+�2
��−1� (7)

where

�� = D�/D0
� � (8)

In this way, the following inequality is obeyed

0 ≤ ELF ≤ 1 (9)

and a value of the ELF close to one corresponds to a region of the space where there
is a high probability of finding electron localization, whereas an ELF value close to
one-half corresponds to a region of electron gas-like behaviour. The so defined function
is independent of any unitary transformation of the orbitals, and, in principle, it is
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derivable from the electron density. In fact, it is only necessary to have ones of the
currently used procedures to obtain the Kohn–Sham potential from the density to get
from the potential, via the Kohn–Sham equations, the necessary orbitals to calculate the
function �� as it was done by Kohout and Savin.16 Moreover, the function can be, in
the same indirect way, computed from the experimentally obtained density. There have
been approximate determinations of the ELF using electron densities derived from X-ray
diffraction data,17 and also slight modifications of the ELF to bypass the use of orbitals.
They have also the interesting property of relating the ELF to other physical concepts.
The first one18 proposed to use the sum rule for the exchange hole to model directly
the pair conditional probability. Other used an approximate kinetic energy functional to
relate the ELF to the electrostatic potential19 and, finally, the ELF has also been related
to the concept of electronic temperature.20 This connection between local temperature
and electron localization has been recently reviewed.21 We should also mention the
recently introduced electron localizability indicator (ELI),22 based on a functional of the
same-spin pair density which is related to the ELF within an HF approximation, and it
differs from the ELF in the case of correlated wave functions.

2.2. Savin’s interpretation

The so presented ELF is mainly based on an interpretation of the conditional pair
probability density for electrons of the same spin. A conceptually different interpretation
was put forward by Savin et al.23 who realized that the term D� could be generalized
for any density � independent of the spin as

D = 1
2

∑
i

�	i�
2 − 1

8
���2

�
� (10)

One can easily verify that for a closed-shell system, both expressions are the same.
The main point now is to recognize the second term of the right hand side of the last
equation as the von Weizsacker kinetic energy density,24 which is exact for the hydrogen
atom, exact for the helium atom in the HF approximation and exact for a system of
bosons. Remember that boson particles can occupy all of them the same quantum state
being in this case the perfect localization. The first term of the right hand side represents
the kinetic energy density of the molecule under study. Hence, in the region of the
space where there is a high probability of finding a localized electron pair, the von
Weizsacker kinetic energy density will be a good model, and the function D will have a
value near zero. Within this interpretation, the ELF is formally a measure of the excess
of kinetic energy density due to the Pauli exclusion principle. Now, it should be clear
that the concept of electron pair localization is nothing else but a manifestation of the
Pauli exclusion principle.

2.3. Numerical stability

One important characteristic of the ELF is its numerical stability with respect to the
theoretical level at which the electron density and the molecular orbitals have been
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C(O)

V(H2, O)V(H1, O)

V2(O)

V1(O)

B3LYP HF AM1STO-3G

Figure 1 H2O isosurfaces calculated at different levels of theory

calculated. Contrary to most of the population analysis that depend seriously on the
basis set used or the method of calculation (HF, BLYP, B3LYP, etc.), the ELF is
rather independent of these changes. As an example, one can see in Figure 1 an
isosurface of the ELF for the water molecule calculated at different levels, from AM1
semiempirical method to some of the currently used functionals with a relative big basis
set �6-311++G∗∗�. The qualitative view of the picture is in all cases the same. Hence,
the chemical interpretation of the ELF is also the same. Indeed, there are a series of
works where the ELF has been calculated, specially for solids, using en extended Hückel
method.25�26

This good property of the ELF can be at first glance explained looking at the qualitative
behaviour of the total electron density, which is also very independent of the level of
calculation. Of course the numerical values can be different, so are the expectation
values based on the density. But the maxima and minima are all almost at the same
positions. More precise, all the critical points are almost at the same positions. Next, it
will be shown that mathematically this means that the function is topologically invariant
to the level of calculation.

Burdett and McCormick gave a more precise explanation to this invariance.27 They
concluded that the ELF is primordially based on the nodal properties of the occupied
orbitals of the system. Hence, what matters is the symmetry of the orbitals which is
independent of the level of calculation. According to this view, electrons are localized in
regions of the space where there are significant electron density and few nodes from all
of the occupied orbitals. The number of nodes is also important in order to understand
the ELF for transition metals, as it will be shown later.

2.4. Analogies and differences with the atoms in molecules
(AIM) model

The atoms in molecules (AIM) model of a molecule proposed by Bader14 is completely
based on the properties of the electron density. The maxima and minima of the density
are used to define a volume in the space, which can be associated with a particular
atom in a molecule. Notice that such atoms in a molecule are clearly not spherical,
and they extend over all the space with sharp boundaries between two atoms. The
information about the zones of depletion or accumulation of charge is extracted from
the Laplacian of the density, 2���r�. The Laplacian of a function determines where
the function will locally augment its value, 2���r� < 0, and where it will decrease its
value, 2���r� > 0. This cannot be made using just the density because the density is a
monotonically decreasing function. Hence, the regions of the space where 2���r� < 0
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represent the regions of charge concentration. Bader preferred to work with the negative
of the Laplacian, −2���r�, so that a maximum of this function denotes a position at
which the electron density is maximally concentrated. It has been found that the local
maxima of the function correspond very well to the regions of bonding according to
the VSEPR model of Gillespie.28 Hence, the regions of charge concentration defined by
the Laplacian of the electron density correspond to the regions of space dominated by the
presence of a single pair of electrons. In this sense, one can think that both functions, the
ELF and the negative of the Laplacian of the electron density, have the same information.
Bader et al.29 have done an extensive study of the topological characteristics of both
functions. They found that, in general, both functions are homeomorphic, it means that in
all the studied cases both functions present the same number of maxima and minima and
they are located almost on the same regions. However, there are systematic differences.
In all cases, the radial distance from a nucleus at which the maxima of the ELF is
found is always greater than in the negative of the Laplacian of the electron density,
and, more important, for a single covalent bond the ELF presents a clear region of the
space between both atoms with the only exception of bonds to hydrogen, whereas the
negative of the Laplacian of the electron density yields to separate regions associated
with each of the participating atoms, and it does not give a clear visualization of the
simple covalent bond. In a later work, Bader and Heard30 concluded that the ELF has
no direct relationship to the conditional pair density for same-spin electrons. Hence, it
seems reasonable to use both functions as complementary tools. As an example, Llusar
et al.31 used both functions to study the metal–metal bond in a series of dimers and
complexes, and Chesnut and Bartolotti32 used also both functions to study the aromaticity
in some substituted cyclopentadienyl systems. More recent examples include the study
of unusual bonding in some Bismuth-bridged binuclear molybdocene complexes,33 the
nature of bonding in the Leflunomide and some of its biological active metabolites,34 the
reactivity of hydroxyperoxy radical,35 the bonding in the singlet and triplet gas-phase
ion/molecule reactions of NbO−

3 � NbO−
5 , and NbO2�OH�−

2 with O2,36 the absorption of
Pd on MgO(0 0 1), �-Al2O3�0 0 0 1� and SiO2 surfaces,37 the bonding interactions
metal-carbonyl,38 the gas-phase acidity of some oxyacids39 and the nature of bonding
of the three-centre-four-electron bond.40

2.5. Results in atoms

As a first example of how the ELF works, some results in atoms are presented. Although
in the original paper, Becke and Edgecombe9 presented results for some atoms, it was
the work of Kohout and Savin41 which showed all the potential of the ELF in explaining
the atomic electron structure. The electrons occupying orbitals with the same principal
quantum number define each atomic shell, and the concept is primordial to explain the
periodic properties. However, it is not so clear from the theoretical point of view. The
electron density alone does not show any shell structure, it decays exponentially. It is
necessary to use the radial distribution 4�r2���r� to see the atomic shell structure.42�43

However, it fails for the heavier atoms. On the other side, the ELF is not only able to
show the shell structure but is also able to give the radius of each shell rs and the amount
of electrons qs on each shell.20 The maxima of the ELF indicate the shells. They are
separated by the minima of the ELF which are the radius of each shell. The number of
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Table 1 The ELF shell radii and electron numbers

qk rk qL rL qM rM

Li � 2S� 2.0 1�53 1�0
F � 2P� 2.1 0�34 6�9
Na � 2S� 2.2 0�26 7�9 2�14 1�0
Cl � 2P� 2.2 0�15 7�9 0�82 6�9
Cr � 7S� 2.2 0�10 8�0 0�47 12�3 2.37
Cu � 2S� 2.2 0�08 8�3 0�36 17�2 2.17
Br � 2P� 2.2 0�07 8�5 0�28 17�2 1.10

electrons in each shell is calculated by the numerical integration of the electron density
between the boundaries of the shell. In Table 1, some representative results are shown.
One can see that always the innermost K-shell has around two electrons, the following
shell, the L-shell, has almost always around eight electrons with systematic deviations
for the heavy atoms. Kohout and Savin41 concluded that the ELF is able to resolve the
atomic shell structure for all atoms from Li to Sr, and it also gives for each shell electron
numbers close to those given by the periodic table of the elements. Small deviations
were also explained due to the influence of core-valence separation, especially when d
electrons are present.44

In Figure 2, the ELF curves for some selected atoms are depicted. Here, one can use
the spherical symmetry to plot it as a function of only one variable, the distance to the
nuclei. It is interesting to note that for the alkaline metal atoms the ELF does not decay
to zero when the distance goes to infinity. The same fact occurs for the alkaline-earth-
metal atoms and for any spherical system with an outer shell formed only by electrons
on s-orbitals. In fact, for the hydrogen atom, the ELF is equal to one everywhere. On
the other side, one can perfectly see the shell structure even for rubidium atom. The
same is true for the noble gas atoms and, as shown by Kohout and Savin,22 for all the
atoms to Sr.

2.6. Topological tools

The ELF is a scalar function of three variables, and in order to obtain more information
from it, it is necessary to use a mathematical approach called differential topology
analysis. This was first done by Silvi and Savin,11 and later on extended by them and
co-workers.45�46 Unfortunately, one cannot visualize in a global way a three-dimensional
function. Usually, one resorts to isosurfaces like the ones in Figure 1, or to contour maps.
A three-dimensional function has a richer structure than a one-dimensional function, and
their mathematical characterization introduces some new words which are necessary to
understand in order to go further. It is the purpose of this section to explain this new
terminology in a manner as simpler as possible. Let us begin with a one-dimensional
(1D) example, a function f�x� like the one in Figure 3. The function has three maxima
and two minima characterized by the sign of the second derivative. In three dimensions
(3D) there are more possibilities, for there are nine second derivatives. Hence, one
does not talk about maxima but about attractors. In 1D, the attractors are points, in
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Figure 2 The atomic shell structure determined by ELF
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Figure 3 Localization domains of f�x�

3D they can be a point, a surface or a volume, so are also the minima. In 1D, every
attractor is surrounded by two minima (suppose the limit values at zero and infinity are
minima), which encloses a line (see Figure 3); in 3D they are surrounded by a surface
that encloses a volume. In 1D, mathematically one characterizes the basins saying that
it is the line formed by all the points around the attractor such that the point plus the
first derivative is closer to the attractor. In 3D, one follows the gradient of the function
saying that the basin is formed by all the points enclosed in the volume formed by the
gradient lines ending up in the attractor. One can try to visualize it: look at the 1D
function in Figure 3, rotate around the y - axes in 360� and you will have a 2D function
and the basin indicates in the Figure 3 will be a surface. One more rotation will produce
a 3D function and the basin will be a volume. The concept of isosurface has also its
correspondence in 1D. Look in Figure 3 at the points where the function has the value
f�x� = x0. The lines joining the points are the equivalent to the volume enclosed by
an isosurface. They are called the f-domain. In Figure 3 there are three f-domains at
f�x� = x0. However, if one goes to a lower value of the function, close to f�x� = 0,
one will have only one f-domain. There is an important difference in both cases. In the
first case, at f�x� = x0, the f-domains enclose only one attractor each, but in the second
case, close to f�x� = 0, the only f-domain encloses the three attractors.

The f-domains are said to be reducible when they contain more than one attractor
and irreducible when they contain one attractor. The basins formed by the irreducible
f-domains have a clear chemical meaning and mathematical characterization. There are
basically two types of basins.45 If the basin contains a nucleus (except a proton) it is
a core basin (C). Otherwise it is a valence basin (V). Always a valence basin will be
connected with at least one core basin. A basin representing a lone electron pair will
be connected with only one core basin and its attractor will be called monosynaptic.
A basin representing a covalent bond will be connected with two core basins, and its
attractor will be called disynaptic. There are also higher synaptic orders. Hydrogen is
a particular case because it does not have core electrons. Therefore, it is an exception.
The bond of any atom to hydrogen appears as a basin that contains the proton and,
in general they have a great volume. Silvi has recently discussed the usefulness of
the synaptic order concepts in the context of multicentre bonding analysis.47 For the
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graphical visualization, it is convenient to have a colour code associated with each type
of basin. For example, in the water molecule (Figure 1) there is one core basin for
the oxygen K-shell denoted C(O) of violet colour. Two basins containing the protons
and associated with the O–H bond which are denoted V�H1� O� and V�H2� O� and they
are blue in colour, and there are two basins corresponding to the lone pairs V1�O� and
V2�O� yellow in colour.

In the last example, it is clear that a graphical representation of the ELF is able
to give a qualitative picture of the type of bonds in a molecule and the regions of
the space where it is possible to find electron pairs. However, this is only qualitative
information. To get a more quantitative knowledge about the localization one has to go
to the integrated density and other properties.45 Remember that in the atomic case the
integration of the electron density between two minima of the ELF yields the number
of electrons on each shell. Using the new terminology, we have integrated the electron
density over each basin. Hence, in molecules, the integration of the electron density
over a basin yields the average number of electrons on this basin. In particular, for a
basin labelled �A, its average number of electrons or electron population is given by

Ñ ��A� =
∫

�A

���r�dr� (11)

Therefore, one expects that this number closely correlates with the empirical chemical
knowledge about the number of electrons participating in a bond. For example, for
the water molecule, the basin associated with the oxygen core has an average electron
population of 2.08 electrons. The basins associated with the oxygen–hydrogen bonds
have an average electron population of 1.78 and, finally, the basins associated with
the electron lone pairs have an average electron population of 2.18. It is important to
remember that this is only an average which has a quantum uncertainty. The uncertainty
is given by the variance or fluctuation of the population. It is defined as

�2�Ñ ��A� =< N 2 >�A
− < N >2

�A
� (12)

where N represents the electron number operator and the brackets < >�A
mean an

integration over the volume of the basin. Since N 2 is a bielectronic operator one cannot
evaluate the average using only the density. It is necessary to use the second-order
density matrix. The quantity �2 was investigated by Bader in the context of the atoms
in molecules model48 and by Savin et al. in the context of the ELF.45 The fluctuation
�2 is an extensive quantity, and, therefore, it depends on the number of atoms of the
system making difficult the comparison among molecules with different number of
basins. Hence, it is convenient to introduce the relative fluctuation48

���� = �2�Ñ ���

Ñ ���
� (13)

which is a positive quantity and lower than one. An analysis of the electron delocalization
based on the definition of a covariance operator has been recently discussed by Silvi,
both in the AIM and in the ELF frameworks.49

Another useful concept of topological theory, which can help in quantifying the
information carried on the basins, is the concept of bifurcation. At very low values of
the ELF, you have only one f-domain which is reducible (it contains more than one
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f (x ) ˜ 0

C(B)

V(A,B)

C(A)
x o

Figure 4 Bifurcation diagram of f�x�

attractor), and you will look at just one surface containing all the system. Increasing
the value of the ELF, at the point of the minima, the basins separate and more than
one f-domain appears. This is called a bifurcation, and it is clearly visualized by a
bifurcation diagram like the one in Figure 4. This is the bifurcation, diagram of the
function depicted in Figure 3. The first bifurcation corresponds to the separation of the
disynaptic basin and the core basin of point B and occurs at the global minimum of the
function. The second bifurcation appears later on and corresponds to the separation of
the central disynaptic basin and the core basin associated with the point A. Hence, the
points of bifurcation correspond to the minima of the function. In the case of the ELF,
the lower the bifurcation point the more localized are the corresponding basins.

This kind of analysis based on bifurcations is connected to the concept of synaptic
order previously defined,47�49 and it has been applied to the study of electron localization
in some simple chemical systems45 as it will be noted below. A recent application
showing the usefulness of this type of analysis has been reported by Silvi concerning
the bonding nature of the VOx and VOx + �x = 1−4� molecular systems.50

2.7. Other developments

Topological analysis of the ELF constructed from density components has also been
evaluated. Separations of the �–� spin41�51 and the �–�52 electron contributions to
density have been recently reported. Although the total ELF is not recovered by the
addition of the individual components, the separation is a useful tool to evaluate some
important electronic aspects of different classes of chemical systems as radicals or
aromatic species.

The separation of spin components has been used to evaluate the radical characteristics
of aromatic chemical systems.51 The topological analysis was made over a separated
density constructed from the � and � components. In this way, it was possible to
visualize the degree of localization of the unpaired electron mainly in open-shell systems
(see Figure 5). Hence, the � and � spin separation of the ELF provides more insights into
chemical bonding structure. In particular, the ELF� provides a qualitative description of
the space region where is most probable to find an unpaired electron.51 As an example,
Figure 5 shows the ELF� and ELF� for the para-benzine radical in its singlet and
triplet states which are known to be very near in energy. The para-benzine system has
a particularly selective bioactivity and has been widely exploited for anticancer drug
design.53 Further, from a purely theoretical point of view the para-benzine system is
a challenge to current calculation methods. The system undergoes a spatial symmetry
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ELFα ELFβ

Singlet 

Triplet 

Figure 5 ELF isosurfaces of the para-benzine in singlet and triplet states

breaking, which means that the wave function obtained from standard single-determinant
methods fails to transform as an irreducible representation of the molecular point group.
Crawford et al. published a thorough study on this problem.54 From Figure 5 one can
see that the ELF� and ELF� are different. One electron with spin � is located on the
carbon atom at the bottom, whereas the other electron with � spin appears to be located
on the carbon atom at the top of the figure.

Of course, this is an artifact of the calculation because the probability of having an
electron with � and � spin is the same. Kraka et al.55 demonstrated that the on-top
density discussed by Perdew et al.56 is able to reproduce the correct symmetry of the
Hamiltonian.

In the same way as the ���-separation has been performed, one can proceed to a
���-separation.52 This separation has been used to evaluate the aromaticity of organic
molecules and clusters. An index of aromaticity was proposed using a scale based on the
bifurcation analysis of the ELF constructed from the separated densities. In principle, the
total ELF has no information about � and � bonds, it depends only on the total density.
Hence, the ELF does not show clear differences between both kinds of bonds. However,
the topological analysis over separated densities, ones formed by the �-orbitals and
the other ones formed by the �-orbitals, yields the necessary information.52 Of course,
this is possible only for the molecules which present the ��� symmetries, i.e. planar
molecules. The bifurcation analysis of the news ELF� and ELF� can be interpreted as
a measure of the interaction among the different basins and chemically, as a measure
of electron delocalization.45 In this way, the � and � aromaticity for the set of planar
molecules described in the Scheme 1 has been characterized.52

The aromatic rings present the highest and the antiaromatic systems the lowest bifur-
cation values of ELF� . The bifurcation of the ELF� occurs close to 0.75, except in
system where sigma delocalization exists. In this way, the aromaticity of polycyclic
aromatic hydrocarbons was well predicted, and also the aromaticity of new molecules
was corroborated. In the all-metal aromatic compound Al2−

4 important contributions
to stability from the two � aromatic electrons and the � system in the plane of the
molecule were observed. The isosurfaces of the total ELF, ELF� and ELF� functions
are showed in the Figure 6.

By this way, one can predict the existence of � or � aromaticity, but it is difficult to
predict the net aromaticity of species that presents � aromaticity and � antiaromaticity
at the same time as it occurs in systems like Al4−

4 . In this case, the average value of the
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Scheme 1 Bifurcation values of ELF� and ELF� functions for some aromatic and antiaromatic
molecules

Total ELF ELFπ ELFσ

Figure 6 ELF isosurfaces of Al2−
4 cluster

ELF� and ELF� bifurcations was used to construct a general scale to measure the global
aromatic character of a molecular system.57 This general scale predicted the electron
delocalization characteristic of known organic and metallic aromatic and antiaromatic
systems.

On a different development, recently an extension of the ELF to the time-dependent
density functional formalism has been presented.58 With the advent of attosecond laser
pulses, the information of the time scale and temporal order of the different bond break-
ing or bond formation processes will be important, and this is the kind of information
one can extract from the time-dependent version of the ELF.

3. Some applications

3.1. Molecular geometry and bond types

One of the first and most direct applications of the ELF is to the explanation and
confirmation of the VSEPR model of Gillespie.28 This was first done by Savin et al.10 In
molecular systems rich in electrons, the molecular distribution of the pairs of electrons
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ab2 BeCl2

ab3 BCl3

ab4 CH4

ab5 PCI5

ab6 SCI6

ab3e NH3

ab2e3 XeCl2

ab3e2 ClF3

ab4e SF4

ab5e BrF5 

Figure 7 ELF isosurfaces for some molecules with typical geometries predicted by VSEPR
model.

(lone and bonding) predicted by the VSEPR method can be visualized by means of
the topological description of the ELF (see Figure 7). The classical representation of
systems without lone pairs in the central atom �abx� x = 2–6� is very clear. In the
systems with lone pairs on the central atom, it is important to appreciate the antiposition
of the ELF attractors in molecules of type ab3e2, which is more distinctive than the
VSEPR model. In molecules with three lone electron pairs at the central atom �ab2e3�,
the attractors are cylindrical in shape. There are also other studies of special molecules
like the hexafluoride of xenon and related molecules.59 The relevance of the octet rule
in hypervalent molecules in the context of the ELF has been also studied.60 Indeed, the
molecules that present a non-VSEPR geometry have been also rationalized by means of
the ELF.61

The typical kind of bonding in organic molecules can be easily seen in Figure 8.
The C–H simple bond is represented by a disynaptic basin V(C,H) in blue colour. The
C–C simple bonds are described by a circular region (green colour) between two core
regions (violet colour). The C–C double bond is shown as a double region perpendicular
to the line joining the atoms, and the attractors corresponding to C–C triple bond are
distributed in a cylindrical shape. The two lone pairs of electrons in the oxygen atoms
are clearly in antiposition as was commented before for systems abxe2.
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Methane Ethane Propane 

Ethene Propene Allene

Ethyne Propyne 

Formaldehyde Dimethyl-ether Propenaldehyde 

Figure 8 ELF isosurfaces of some classical organic molecules

The ELF is not only used to explain or to visualize the type of bond in the well-
known molecules. It is also useful to clarify the type of bond in new molecules. For
instance, it has been found that the new NaSN2 material has all the characteristics of
a Zintl phase,62 that the phase transition in iodine under compression is due to the
presence of the lone pairs,63 that the magnetic cluster Fe4 is characterized by a large
delocalization of the electron density64 and that the contribution to bonding from the d
electrons in the iridium atom in the new material IrGa2 is important.65 The localization
nature of bonding at the superconducting stannide SrSn4 has been also explained, just
like the homonuclear multiple bond between main group elements other than carbon, in
particular the possible existence of a Ga–Ga triple bond in some new complexes.66

3.2. The nature of pericyclic and pseudopericyclic bonding
at concerted transition states

ELF analysis has been probed to be a powerful scheme to elucidate between the
pericyclic and pseudopericyclic character of bonding at concerted transition states. In
this context, ELF methodology has been recently applied to get new insights con-
cerning the nature of bonding at the transition states of the thermal electrocyclization
of (Z)-1,2,4,6-heptatetraene (X==CH2) and its heterosubstituted analogues, (2Z)-2,4,5-
hexatrienal (X==O) and (2Z)-2,4,5-hexatrien-1-imine (X==NH) (see Scheme 2).67

It is known that a pseudopericylic pathway is characterized by the lack of cyclic
orbital overlap, that is, there exists one or more disconnections in the bonding along the
cyclic array of interacting centres.68�69 Other characteristics which make interesting these
type of reactions are that they have nearly planar and no anti-aromatic transition states,
providing low activation barriers. On the other hand, pericyclic reactions involve no
disconnection in the cyclic array of overlapping orbitals, non-planar allowed or forbidden
transition states (depending on the number of electrons) with characteristic activation
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C3

C2 X7
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C1

Pericyclic TS Pseudopericyclic TS
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C2 X7

C6

C5C4

C1

C3

C2 X7
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Scheme 2 Transition structures for the thermal electrocyclization of (Z)-1,2,4,6-heptatetraene
(X==CH2) and its heterosubstituted analogues, (2Z)-2,4,5-hexatrienal (X==O) and (2Z)-2,4,5-
hexatrien-1-imine (X==NH)

energy barriers.69 In the present case,67 ELF results provide further evidence in support
of a single disrotatory pericyclic interaction for the X==NH, X==O and X==CH2 cases.
This conclusion is based on the fluctuation analysis of electron density (i.e. covariance
contributions interpreted in terms of delocalization) at the cyclic reaction centre upon
the formation of the new C2–X7 bond. The fluctuation pattern is found to be very similar
in the three cases. Furthermore, it is found that lone pair populations when X==NH and
X==O is lower than 5%, and it seems to play, as suggested first by Rodriguez-Otero and
Cabaleiro-Lago,70 only a stabilizing role in the global electrocyclization process. These
findings based on ELF analysis contribute to the relevant controversy concerning the
pericyclic or pseudopericyclic intimate nature of bonding at these heterocyclic transition
structures (TSs).71�72

It has also been previously shown73 that the fluctuation pattern of electron density
in the ELF basins provides a consistent description of pseudopericyclic and pericyclic
bonding in concerted processes such as thermal chelotropic decarbonilation reactions.74

Experimental support for planar pseudopericyclic transition states in chelotropic decar-
bonilations has been recently reported.75 ELF picture of bonding reveals that for the
eight transition states analysed (see Scheme 3), the departing CO can be visualized in
terms of a carbon monoxide structure with a ‘lone pair’ region on the carbon atom.

Based upon the average bonding contributions (in per cent) to the ‘lone pair’ region
centred at the carbon atom of the CO-leaving group and bifurcation diagrams, a clear
distinction between the pseudopericyclic and pericyclic topologies can be achieved.
Henceforth, this type of covariance analysis based on the ELF topology could constitute a
complementary value to the traditional Woodward–Hoffmann symmetry-orbital rules.76

3.3. The ELF and the chemical bonding along reaction processes

Some of the concepts of the catastrophe theory77 have been recently invoked in con-
nection with ELF topological analysis to study the changes of bonding characteristics
along chemical processes. In this context, Krokidis and co-workers have investigated
the ammonia inversion, the breaking of the ethane C–C bond, and the breaking of the
dative bond in NH3BH3,78 the proton transfer in malonaldehyde,79 the proton transfer
in the protonated water dimmer,80 the isomerization mechanisms in XNO (X=H� Cl),81
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Transition states for some thermal decarbonilations
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Scheme 3 Analysis of the pericyclic and pseudopericyclic nature of bonding for some thermal
decarbonilations

and more recently the nature of the electron transfer and three-electron bonding in the
reaction of Li with Cl2.82

The nature of the change in chemical bonding along the reaction coordinate of some
simple pericyclic reactions has been also explored.83 For instance, ELF analysis has
been found useful for describing the bond breaking/bond forming at concerted transition
states. In particular, a concerted antarafacial bonding nature for the [1s,3a]hydrogen, a
biradical interaction for the [1a,3s]methyl and an ionic interaction for the [1a,3s]fluorine
sigmatropic rearrangements in the allyl system (see Scheme 4) have been fully charac-
terized through the examination of integrated densities over the ELF basins and their
related variance properties.

On the one hand, the fluctuation of electron density forms a cyclic and characteristic
antarafacial pattern of bonding in the first case, while on the other, monosynaptic

C3C2

C1H
H

H

H
H

X

X = CH3, F

C3C2

C1

H

H

H

H

H

X

X = H 

Scheme 4 [1s,3a]hydrogen, [1a,3s]methyl and [1a,3s]fluorine sigmatropic rearrangements in
the allyl system. ELF analysis reveals a concerted interaction in the first case, a biradical interaction
in the second one and a ion-pair interaction in the last one
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basins, localizing approximately one electron, have been found on the methyl and allyl
fragments. In the case of the fluorine migration, the ELF basin structure allows us to
determine a charge separation of 0.6e between negative-charged fluorine and a positive
allyl fragment. A deeper understanding of these molecular reaction mechanisms can thus
be achieved in terms of the rearrangement of electron density among the ELF basins.

The [1a,3s] sigmatropic shift of the fluorine atom in the 3-fluorpropene system
has been also previously discussed in detail. The transition state has been thoroughly
characterized in terms of a ion-pair structure with a charge separation of 0.6e, and the
changes in the bonding characteristics along the intrinsic reaction coordinate reaction
(IRC) path (see Schemes 5a and 5b) were described in terms of the ELF basin properties,
i.e. electron populations, variance and delocalization indexes.84

We would also like to mention here that ELF analysis has been also found valuable into
the detailed description of intramolecular proton-transfer reactions in some thiooxalic
acid derivatives HY-C�==O�-C�S�-XH, (1) X==O� Y==O; (2) X==O, Y==S; (3) X==S,
Y==S, depicted in Scheme 6.85

In all these cases, ion-pair transition structures have been characterized, and the
intimate nature of bonding has been discussed using the electron properties arising from
ELF analysis. In particular, charge separations of 0.48e, 0.42e and 0.18e can be deduced
from the basin structure and populations for the oxygen to oxygen, sulfur to oxygen and
sulfur to sulfur proton-transfer transition states, respectively.

3.4. Reactions yielding aromatic products

3.4.1. Radical reactions: Bergman reaction

The reaction mechanism of the Bergman cyclization of the (Z)-hexa-1,5-diyne-3-ene to
yield p-benzyne (Scheme 7 and Figure 9) has been studied recently in the framework
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E
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Scheme 5a Total energy along the IRC for the [1a,3s]F sigmatropic shift
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of the ELF.86 In this study, the evolution of the bonding along the reaction path
is modelled by the changes in the number and synaptic order of the ELF valence
basins, and each topological configuration comprised a structural a step or stability
domains.



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Elsevier AMS Ch05-N52719 7-8-2006 1:43a.m. Page:77 Trimsize:165×240MM

Understanding and using the ELF 77

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2
–230.88

–230.87

–230.86

–230.85

–230.84

–230.83

E
ne

rg
y,

 (
au

)

R x, amu1/2 bohr

TS

I

III

IVII V

Figure 9 IRC profile of the Bergman cyclization of (Z)-hexa-1,5-diyn-3-ene

Five domains of structural stability of the ELF along the intrinsic reaction path were
determined. The first is the most costly in terms of energy, and it presents strongly
geometry changes with small variations in the population of ELF basins. In the second
step appears two monosynaptic basins V(C2) and V(C5) in the backside of C2 and C5,
enhancing the biradicaloid character of the moiety. The TS or third step shows a strong
electron rearrangement with participation for the first time of the double bond C3–C4. In
step IV, two monosynaptic basins are created on C1 and C6 atoms by electron transfer
from the initial triple bonds basins as a prelude to cyclization. In this step, characteristics
of biradical system are appreciated. The last step corresponds to the closure of the ring
by the formation of a disynaptic basin V�C1� C6� to reach the electronic characteristics
of the p-benzyne. The ELF basin isosurfaces of the steps described before are depicted
in Figure 10. In addition, the separation of the ELF into in-plane �ELF�� and out-of-
plane �ELF�� contributions allowed discussing the aromaticity profiles (see Figure 11).
� aromaticity appears in the vicinities of the TS, and it is provided exclusively by the
delocalization of the in-plane electronic system, while � aromaticity takes place in the
final stage of the reaction path, once the ring has been formed, being maximum in the
p-benzyne.

A related study but concerning the 1,3-dipolar cycloaddition of fulminic acid and
ethyne was previously reported.87

3.4.2. Trimerization of acetylene

The reaction mechanism and the development of the aromaticity along the trimerization
of acetylene to yield benzene (Scheme 8, Figure 12) have been analysed by the ELF in
the same framework of structural stability domains described before.88

The electronic rearrangements associated with bond breaking/forming processes deter-
mined five steps along the intrinsic reaction path, the ELF isosurfaces that characterized
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Figure 10 ELF isosurfaces for: (a) (Z)-hexa-1,5-diyn-3-ene, (b) step II, (c) step III (TS),
(d) step IV, (e) step V and (f) p-benzyne
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Figure 11 Evolution of the ELF�� ELF� and average ELF�–ELF� along the IRC path of
Bergman cyclization

each step are shown in the Figure 13. In the first step, there is an approximation
between acetylene moieties without rearrangement of electron density between ELF
basins. In step II, which includes the TS, each valence basin corresponding to a triple
bond is transformed into two degenerate basins out of plane of the molecule. This
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Scheme 8 Trimerization of acetylene
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Figure 12 IRC profile of the trimerization of acetylene

step is characterized by the deformation of the acetylene units in order to reduce the
closed-shell repulsive interaction. Step III corresponds to the simultaneous formation
of a monosynaptic basin over each carbon atom preparing for the cyclization of the
system. In the fourth step occurs the formation of a six-membered cycle, associated
with the formation of three disynaptic basins representing new C–C covalent bonds.
In the last step, the three pairs of disynaptic basins are transformed into monosynaptic
basins, and the valence basin populations are equalized resembling the transformation
of non-aromatic into aromatic benzene.

The analysis of in-plane �ELF�� and out-of-plane �ELF�� contributions (Figure 14)
shows that the TS has a low �-electron delocalization which is assigned to a process
of through-space electron delocalization without �-aromatic character. At the end of
step IV, ELF� increases sharply while ELF� decreases slowly, according with the
beginning of diatropic � current as was previously observed by the analysis of magnetic
properties.89 The increase of ELF� bifurcation values in this step of the reaction does
not reveal aromaticity according to the separated ELF scale. The � aromaticity only is
developed at the final stage of the reaction.
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Figure 13 ELF isosurfaces for: (a) acetylenes moieties, (b) step II (TS), (c) step III, (d) step IV
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Figure 14 Evolution of the ELF� , ELF� and average ELF�–ELF� along the IRC path of
trimerization of acetylene

3.5. Applications to atomic clusters

The atomic clusters are defined as a conglomerate of atoms from as few as two to
hundreds of them. They are usually produced by evaporation of the metal, and most
of them are highly reactive. Hence, most of them exist only in gas phase. One of
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the most known exceptions is the fullerene, which is so stable that crystallize easily.
Besides its importance in the nanotechnology, they are from a theoretical point of view
interesting due to the variety of bonding they present. For instance, the magnesium
dimer, the smallest magnesium cluster, presents a van der Waals type of bonding, the
bigger clusters, say Mg10, present a covalent bond and when the cluster is growing at
same point the bond should be metallic in character like the solid. To elucidate the
type of bonding in clusters, the ELF is of high utility. It is important to notice that
most of them do not follow the Lewis rules of bonding, and they are not described by
a simple Lewis structure. For instance, think on the Li4 cluster. On the ground state,
it is a rhombus completely planar. Hence, each lithium atom is surrounded by two
other lithium atoms, and there are four valence electrons to bind all the atoms. It is
impossible to draw a Lewis structure. In Figure 15, one can see an ELF isosurface for
Li4. There are two valence basins surrounding three lithium atoms each. The population
of each basin is of around 2e. Therefore, the picture is very clear. The Li4 cluster is held
together through two two-electron-three-centre bonds. In an exhaustive work, Rousseau
and Marx90 used the ELF to understand the variations in the type of bonding of lithium
clusters, nanoclusters, bulk metal and surfaces. They concluded that the electrons prefer
to localize in the interstitial regions, leading to multicentre bonding for both the clusters
and the solids, including their surfaces. For nanoscale clusters �Li40�, only the surface
presents strong localization and the interior displays localization properties similar to
the bulk metallic solid.

The ELF not only permits to understand the type of bonding but also to do some
predictions about the reactivity of the clusters.91 Taking again Li4 as an example, one
can try to predict at which position will a hydrogen atom bind to the cluster, on top of
a lithium atom, in a bridge position between two atoms or from above the four atoms?.
The hydrogen atom is more electronegative than a lithium atom. Therefore, the hydrogen
atom will take charge from the cluster, and the bond will be polar. Hence, it is reasonable
to think that the hydrogen atom will approach the cluster on the regions where it is most
probable to find the valence electrons. Looking at the ELF isosurface, one can predict
that the hydrogen atoms will attach to the cluster at a bridge position between two
lithium atoms. In Figure 15 one can see an ELF isosurface for the hydrogenated cluster
of Li4H2. Each hydrogen basin has a population of 2e and the two-electron-three-centre
basin remain at the top of the figure with a population of around 2e. Note that the
cluster is divided into two regions, one with delocalized electrons and one with localized
electrons, as should be in a model for a metallic–insulator interphase.

A special branch of the atomic cluster research is the study of clusters of the metal
transition atoms, especially because of their catalytic properties. However, for the tran-
sition metal atoms, the application of the ELF deserves to be carefully analysed. One

Li4 Li4H2

Figure 15 ELF isosurface of Li4 and Li4H2
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observes two characteristic features in systems formed by transition metal atoms. The
ELF presents very low values almost everywhere, and the number of attractors aug-
ments considerably. For instances, in a recent study of the ground state of Fe4 the ELF
analysis64 reveals 21 attractors, and it presents always values lower than 0.5, the electron
gas reference value. These two features obviously complicate the analysis.92−94 Kohout
et al. have carefully examined this point.95

4. Conclusions and outlook

Some general aspects related to the derivation, and interpretations of ELF analysis,
as well as some representative applications have been briefly discussed. The ELF has
emerged as a powerful tool to understand in a qualitative way the behaviour of the
electrons in a nuclei system. It is possible to explain a great variety of bonding situations
ranging from the most standard covalent bond to the metallic bond. The ELF is a
well-defined function with a nice pragmatic characteristic. It does not depend neither on
the method of calculation nor on the basis set used. Its application to understand new
bond phenomenon is already well documented and it can be used safely. Its relationship
with the Pauli exclusion principle has been carefully studied, and its consequence to
understand the chemical concept of electron pair has also been discussed. A point to be
further studied is its application to transition metal atoms with an open d-shell. The role
of the nodes of the molecular orbitals and the meaning of ELF values below 0.5 should
be clarified.
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