
A GUIDE TO BOX-JENKINS MODELING
By George C. S. Wang

Describes in simple language how
to use Box-Jenkins models for
forecasting ... the key requirement
of Box-Jenkins modeling is that
time series is either stationary or
can he transformed into one ... the
most difficult part in this type of
modeling is the identification of a
model.

George Box and Gwilyni Jenkins
developed a statistical approach
for time series modeling. Time

series models developed on the basis of
their approach are called Box-Jenkins
models, also known as ARIMA models. A
time series can be defined as a sequence of
data observed over time.

ARIMA models are univariate, that
is, they are based on a single time series
variable. Box and Jenkins have also
developed procedures for multivariale
modeling. However, in practice, even their
univariate approach, sometimes, is not as
well understood as the classic regression
method. The objective of this article is
to describe the basics of univariate Box-
Jenkins models in simple and layman
terms.

UNIVARIATE MODELING

The purpose of univariate modeling is
to establish a relationship between the
present value of a time series and its past
values so that forecasts can be made on
the basis of the past values alone.

Stationary Time Series: The first
requirement for univariate Box-Jenkins
modeling is that the time series data to be
modeled are either stationary or can be

transformed into one. We can define that a
stationary time series has a constant mean
and has no trend overtime. A plot of the
data is usually enough to see if the data are
stationary. In practice, few time series can
meet this condition, but as long as the data
can be transformed into a stationary series,
a Box-Jenkins model can be developed.

THE MODELING PROCESS

Box-Jenkins modeling of a stationary
time series involves the following four
steps:
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1. Model identification
2. Model estimation
3. Diagnostic Checking
4. Forecasting

The four steps are sinîilar to those
required for linear regression except that
Step I isalittlemoreinvolved. Box-Jenkins
uses a statistical procedure to identify
a model, which can be confusing. The
other three steps are quite straightforward.
Let's first discuss the mechanics of Step
1, model identification, which we would
do in great detail. Then we will use an
example to illustrate the whole modeling
process.

MODEL IDENTIFICATION

ARIMA stands for Autoregressive-
Integrated-Moving Average. The letter"!"
(Integrated) indicates that the modeling
time series has been transformed into a
stationary time series. ARIMA represents
three difTerent types of models: It can be
an AR (autoregressive) model, or a MA
(moving average) model, or an ARMA
which includes both AR and MA terms.
Notice that we have dropped the "1" from
ARIMA for simplicity. Let's briefly define
these three model forms.

AR Model: An AR model looks like
a linear regression model except that
in a regression model the dependent
variable and its independent variables
are different, whereas in an AR model
the independent variables are simply
the time-lagged values of the dependent
variable, so it is autoregressive. An AR
model can include diflcrent numbers ot"
autoregressive ternis. If an AR model
includes only one autoregressive letm.
it is an AR ( 1 ) model; we can also have
AR (2), AR (3), etc. An AR model can be
linear or nonlinear.
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MA Model: A MA model is a weighted
moving average of a fixed number of
forecast errors produced in the past, so
it is called moving average. Unlike the
traditional moving average, the weights
in a MA are not equal and do not sum up
to I. In a traditional moving average, the
weight assigned to each of the n values to
be averaged equals to 1 /n; the n weights are
equal and add up to 1. In a MA, the number
of terms for the model and the weight for
each term are statistically determined by
the pattern of the data; the weights are
not equal and do not add up to I. Usually,
in a MA. the most recent value carries a
larger weight than the more distant values,
For a stationary time series, one may use
its mean or the immediate past value as a
forecast for the next future period. Each
forecast will produce a forecast error. If
the errors so produced in the past exhibit
any pattern, we can develop a MA model.
Notice that these forecast errors are not
observed values; they are generated
values. All MA models, such as MA (1),
MA (2). MA (3), are nonlinear.

ARMA Model: An ARMA model
requires both AR and MA terms. Given
a stationary time series, we must first
identify an appropriate model form. Is it
an AR, or a MA or an ARMA? How many
terms do we need in the identified model?
To answer these questions, we need to
calculate the autocorrelation ftinction and
the partial autocorrelation function of the
series.

What are Autocorrelation Function
(ACF) and Partial Autocorrelation
Function (PACF)? Without going into the
mathematics, ACF values fall between -1
and +1 calculated from the time series at
ditïerent lags to measure the significance
of correlations between the present
observation and the past observations, and
to determine how far back in time (i.e., of
how many time-lags) are they correlated.

PACF values are the coefficients of a
linear regression of the time series using
its lagged values as independent variables.
When the regression includes only one
independent variable of one-period lag.

FIGURE I
THEORETICAL ACF AND PACF CORRELOGRAMS
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the coefficient of the independent variable
is called first order partial autocorrelation
function; when a second term of two-
period lag is added to the regression, the
coefficient of the second term is called
the second order partial autocorrelation
function, etc. The values of PACF will
also fall between -1 and +1 if the time
series is stationary.

How do we use the pair of ACF and
PACF functions to identify an appropriate
model? A plot of the pair will provide
us with a good indication of what type
of model we want to entertain. The plot
of a pair of ACF and PACF is called a

correlogram. Figure 1 shows three pairs of
theoretical ACF and PACF correlograms.

In modeling, if the actual correlogram
looks like one of these three theoretical
correlograms, in which the ACF dimin-
ishes quickly and the PACF has only one
large spike, we will choose an AR (1)
model for the data. The " I " in parenthesis
indicates that the AR model needs only
one autoregressive term, and the model is
an AR of order 1.

Notice that the ACF patterns in 2a and 3a
are the same, but the large PACF spike in
2b occurs at lag 1, whereas in 3b, it occurs
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at lag 4. Although both correlograms
suggest an AR ( I ) model for the data, the
2a and 2b pattern indicates that the one
autoregressive term in the model is of lag
1; but the 3a and 3b pattern indicates that
the one autoregressive term in the model
is of lag 4. If this lag 4 term is to represent
seasonality of period 4, we wilt denote this
model as SAR (4) or AR (4^) to distinguish
it from an AR (4) model, which includes
four autoregressive terms.

Suppose that in Figure 1, ACF and
PACF exchange their patterns, that is, the
patterns of PACF look like those of the
ACF and the patterns of ACF look Hke the
PACF having only one large spike, then
we will choose a MA (I) model. Suppose
again that the PACF in each pair looks the
same as the ACF, and then we will try an
ARMA(1, 1).

So far we have described the simplest
AR, MA, and ARMA models. Models of
higher order can be so identified, of course,
with difierent patterns of correlograms.
Let's use an example to demonstrate what
we have just discussed.

An Example

Table 1 shows the quarterly electric
demand in New York City from the first
quarter of 1995 through the fourth quarter
of 2005. The demand is a time series.
The data have been modified to simplify
calculations. Columns (2) and (4) show the
original quarterly demand data. Columns
(6) and (8) show the quarterly differenced
data.

Stationarity: Is the demand series
stationary? Figure 2 is a plot of the
original electric demand data in Columns
(2) and (4) of Table 1. The plot clearly
shows that the demand data are quarterly
seasonal trending upward; consequently,
the mean of the data will change over
time. As defined above, this time series is
not stationary.

Since the data are quarterly seasonal, one
way to transform the data into a stationary
series is to perform a four-quarter seasonal
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differencing in the following manner:

Let Yj be the original data point of
quarter t in Table I; let t = 9601, Y,,,„, =
23.39, and let (t-4) = 9501, Y ,̂̂ , - 22'.9I.
The quarterly differenced value ŷ  ^ Ŷ
- Y|^; data in Columns (6) and (8) were
calculated as follows:

V =Y - Y =^23 39 - 22 91=048

Similarly,

y,,„,= 20.65-20.63-0.02

y,,,,,,= 30.02-28.85 =1.17

The differenced values so calculated are
given in Columns (6) and (8) of Table 1 and

plotted in Figure 3, Notice that, originally.
the data base has 44 data points; the first
four points were lost in ditTerencing, and
there are 40 points left for modeling.

After differencing, has the series become
stationary? Figure 3 shows that seasonal
dilTercncing has eliminated the trend from
the data, and the mean ofthe data will not
change over time. The series has become
stationary, and we are ready to develop an
ARMA model.

Modet Identification: As discussed
before, the tools for identifying a good
model for a stationary time series are its
ACF and PACF. ACF and PACF are the
two statistical terms used in Step I of
ARMA modeling. When we go through the
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calculations, we can easily find that they
are analogous to correlation coelficient
and partial correlation coefficient in
multiple linear regression analysis.

The ACF and PACF values are giveiî
in Table 2. which were calculated for
ten lags. Let's demonstrate manually
how to calculate the ACF and PACF of
lag one.

In Table 1. Columns (6) and (8). we
have 40 differenced data points, so n =
40. The differenced data has a mean (u) ^
0.62.

Calculation of ACF of Lag I: The
calculation of ACF is analogous to the
calculation of correlation coefficient. On
the basis of data given in Table 1. ihe ACF
oflag I is calculated below;ACFüflonger
lags can be calculated similarly.

ACF of lag I -

Auto - cov aricmce

Variance

Auto-covariance of lag 1 =

[(0.48-0.62) (0.02-0.62) +
40

(0.02-0.62) (1.17-0.62)

+ ...+ (4.69-0.62) (0.26-0.62)] - 8.53

Variance = — [(0.48-0.62)-+ (0.02-0.62)^
40

+ ...+ (0.26-0.62)-]= 118.27

8.53
ACF of lag 1 = - 0.072.

^ 118.27

Calculation of PACF of Lag 1: In Table
2, the PACF of lag I also equals 0.072.
We can use EXCEL regression add-Íns to
regress y on y and obtain.
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PACF AT DIFFERENT LAGS

PAC
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As defined before, the coefficient, 0.072,
of ŷ  I is the PACF of lag 1. Adding y ,̂ to
this regression equation, we will get the
PACF of lag 2. etc.

The correlogram for the ACF and
PACF, based on the data given in Table 2,
is shown in Figure 4.

Does this correlogram look like one of
the three sets of correlograms in Figure
1? The ACF in Figure 4 is quite similar
to those in 2a and 3a in Figure I, but the
PACF here seems to look different from
PACF 2b and 3b in Figure 1. However,
of the 10 bars in the PACF chart, there is
only one large spike at lag 4. If we ignore
the nine smaller bars in this chart, then it
becomes similar to chart 3b in Figure 1.
We have said that the patterns of charts
3a and 3b in Figure 1 suggested an AR
(4^) model, and then the two charts in
Figure 4 also suggest an AR (4^) model as
follows:

ŷ  = c + 0ŷ _̂  + â  . -. Í1 )

Although we denote Equation (1) as AR
(4^), it is an AR ( 1 ) model in the sense that
it has only one autoregressive term, which
models seasonality of period 4.

MODEL ESTIMATION AND
DIAGNOSTIC CHECKING

The next two steps are for estimation of
the model coefficients and diagnostically
checking the goodness of fit. These two
steps are usually done together.

Estimation: In fact, most of identified
ARMA models are nonlinear requiring a
nonlinearestimation procedure. Only some
simple AR models are linear and can be
estimated with the Ordinary Least Squares
(OLS) procedure. For either procedure, the
criterion for getting the best estimates of
coefficients is the same, that is, to minimize
the sum of the squared errors.

Equation ( 1 ) is clearly a linear regression

FIGURE 4
CORRELOGRAM OF ACF AND PACF
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equation, where c is the constant term, (j) is
the coefficient of ŷ ^ and â  is the residual.
We have estimated the model with both
procedures as follows:

y, = 0.863 - 0. + a, -.(2)

The residual, a,, in Equation (2) is
expected to be zero in forecasting. The
interested readers can use the data given
in Columns (6) and (8) of Table 1, and
use EXCEL to verify the estimated
coefficients in Equation (2). !f one would
use a nonlinear procedure, it will take
three iterations to get Equation (2).

Suppose that the identified model is a
MA (4^) as follow:

Equation (3) is nonlinear because â  is
not observable, and it must be generated.
We have to use the nonlinear least squares
procedure to produce â  (the historic
forecast errors) before we can iteratively
estimate coefficient 0.

Notice that Box and Jenkins used the
backward shift operator B in their analysis
very extensively. For example, they
denoted ŷ  ^ = By,, y^, ^ B-y, y ^ = B^y.
etc. In this article, we have avoided the
use of B.

Diagnostic Checking: Regardless what
estimation procedure is used in modeling,
the criteria for testing the goodness of fit
are the same. We use the R' to measure

the degree of correlation between the
dependent variable and the independent
variables; we use the t-statistics to test
the significance of the coefficients and the
standard error to measure how closely the
model fits the data.

We also need to check the stability of
the estimated model. For an AR ( 1 ) model,
we require that -l<(t)<l. An AR (2) model
has two coefficients, <[), and tj),, we require
that:

Equation (2) has a coefficient of
-0.4675, which falls between-1 and l.The
model is stable. If these conditions are not
met, either because ihe time series is not
stationary requiring more transformation,
or because the model was not properly
identified.

FORECASTING

Equation (2) is our model for forecasting,
but we want to forecast the demand Y, not
the differenced value ŷ . Therefore, we
must transform the model from the ŷ  fonn
to the Y, form. Recall that y, ^ V, - Ŷ  ^ and
y, _,= Yj _,-Y, j^. Equation (2) becomes,

0.863
-0.465 . . . ( 4 )

Notice that we have dropped the â  tenu
in Equation (4) because in forecasting, a
is assumed to be zero. Re-arranging terms
in Equation (4), we obtain.
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Y - 0.863+ {1 -0.465) Y
+ 0.465Y,,

+0.465Y. . . . ( 5 )

Suppose that we want to forecast the
demand for the first quarter of 2006,
according to Equation (5), we need the
demand data for the first quarters of 2005
and 2004. From Table I. Y,̂ ,„, - 27.08 and
Y„„, = 25.91, then.

= 0.863

Y,,^,,-0.863 + 0.535x27.08
+ 0.465 «25.9! -27.40

Forecast accuracy can be similarly
evaluated as in linear regressioti.

CONCLUDING REMARKS

It is obvious that the tnost difficult step
in ARIMA modeling is Step 1, the model
identification. Once we get a handle on Step
1, the other three steps are quite similar
to those in linear regression. Although
the calculations of the ACF and PACF
and the nonlinear estimation procedure
look complicated and tedious, computer
software is available to do these jobs.

In the example, the data base originally
included 44 points; we lost 4 points in
differencing. The identified model has a
term of lag 4; therefore, only 36 data points
were available for mode! estimation. This
is the reason why in ARIMA modeling,
we need a relatively large sample size to
accommodate data loss due to ditïerencing
and lagged structure of the model. •
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