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Nonsteroidal Anti-Inflammatory Drugs, Acetaminophen, Cyclooxygenase 2,
and Fever
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Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used antipyretic agents that
most probably exert their antifever effect by inhibiting cyclooxygenase (COX)–2. Thus, COX-
2–selective drugs or null mutation of the COX-2 gene reduce or prevent fever. Acetaminophen
is antipyretic and analgesic, as are NSAIDs, but it lacks the anti-inflammatory and anticoa-
gulatory properties of these drugs. This has led to the speculation that a COX variant exists
that is inhibitable by acetaminophen. An acetaminophen-inhibitable enzyme is inducible in
the mouse J774.2 monocyte cell line. Induction of acetaminophen-inhibitable prostaglandin
E2 synthesis parallels induction of COX-2. Thus, inhibition of pharmacologically distinct
COX-2 enzyme activity by acetaminophen may be the mechanism of action of this important
antipyretic drug.

From an historical viewpoint, the development of modern
nonsteroidal anti-inflammatory drugs (NSAIDs) owes much to
a seminal observation by Reverend Edward Stone, who in 1763
described the fever-reducing value of willow bark extract, a
solution rich in salicylates [1–3]. Reverend Stone extolled the
benefits of his extract for the treatment of agues, an antiquated
synonym for fevers. For 1100 years, willow and other plant
extracts, or their active ingredient, salicylates, were a popular
method for reducing not only fever and pain associated with
feverish diseases but also the pain associated with arthritis. In
an effort to make the unpleasant-tasting salicylates more pal-
atable, in 1898 Felix Hoffman of Bayer made a simple acetyl-
ated derivative: acetylsalicylate, or aspirin (figure 1). This drug
was more effective at inhibiting pain than previous salicylates
and ruled the pharmaceutical industry for treatment of pain,
fever, and inflammation for 80 years. However, in the 1960s
and 1970s, numerous salicylate and nonsalicylate drugs were
produced that were significantly more potent than aspirin. Ex-
amples are indomethacin, ibuprofen, and diclofenac (figure 1).
Significantly, these drugs had the same beneficial effects (anti-
pyresis, analgesia, and anti-inflammation) and the same poten-
tial side effects (stomach ulceration) as aspirin.

Phenacetin, a once-popular antipyretic and analgesic devel-
oped by Bayer and marketed in 1887 [3, 4], fell out of favor
because of a variety of reported side effects, including hepatic
toxicity and nephropathy [3, 4]. In 1948 and 1949, Brodie and
Axelrod reported that acetaminophen, a drug that had been
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used as early as 1893 as an antipyretic, was the major metabolite
of phenacetin [3, 4]. Because of the less severe side effects of
acetaminophen, it replaced phenacetin as an analgesic and anti-
pyretic. Unlike aspirin, acetaminophen is considered to have
little or no anti-inflammatory activity.

None of these drugs had a known mechanism of action until
1971, when John Vane made the pivotal discovery that aspirin,
indomethacin, and salicylate were inhibitors of prostaglandin
(PG) synthesis [5]. Specifically, these drugs inhibited cyclo-
oxygenase (COX), the enzyme that catalyzes the rate-limiting
steps governing the synthesis from arachidonic acid of PGH2,
the precursor of all PG isomers. The next year, Flower and
Vane [6] extended the concept of COX inhibition to the mech-
anism of action of acetaminophen by showing that this drug
was an inhibitor of COX activity in the brain. However, unlike
inhibition by aspirin, inhibition of COX activity by acetamin-
ophen was biphasic and required glutathione and hydroquinone
as cofactors. Because some subsequent studies showed that
COX was insensitive to acetaminophen, the mechanism of ac-
tion of acetaminophen has been unclear.

A critical piece of information missing during the peak of
NSAID development and exploration was that there were 2
COX enzymes with distinct functional roles. In 1991 studies in
cell division and neoplastic transformation converged with
NSAID pharmacology when 3 laboratories independently
cloned and identified an inducible COX now called COX-2
[7–9]. Unlike COX-1, which had been purified and studied ex-
tensively during the 1970s and 1980s, COX-2, with only a few
exceptions, was found to be a rare protein found in mammalian
tissues. Moreover, it is highly inducible in fibroblasts, macro-
phages, vascular endothelium, and other cell types by a wide
variety of stimuli: cytokines, tumor promoters, oncogenes, and
changes in cellular environment [7–9]. Expression of COX-2
was also found to be down-regulated by anti-inflammatory ster-
oids, findings consistent with a role in inflammation. The di-
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Figure 1. Structural comparison of aspirin, selected carboxylate-
containing, competitively acting nonsteroidal anti-inflammatory drugs,
nonacidic acetaminophen and resveratrol, and cyclooxygenase-2–se-
lective inhibitors.

vergent regulation of constitutively expressed COX-1 versus
inducible COX-2 gave rise to the working hypothesis that COX-
1 was a “physiological form” of COX functioning to maintain
tissue homeostasis, whereas COX-2 was an “inflammatory
form” of COX [10]. Many excellent reviews have been written
on the structure and function of COX-2 [11–13]. Here we de-
scribe the pharmacological progress made in developing select-
ive inhibitors of COX-2, which, along with the results of studies
of molecular genetics in mice, unequivocally prove the role of
COX-2 in fever. Moreover, we explore the mechanism by which
COX-2 may causatively effect fever in humans and other mam-
mals and describe and discuss recent experiments that show
that an acetaminophen-inhibitable COX activity can be induced
in J774.2 cells. Induction of this activity parallels induction of
COX-2.

COX-1/COX-2 Inhibition and Isoenzyme-Specific
NSAIDs

The discovery of a second COX opened the possibility of the
development of isoenzyme-specific drugs, which became a re-
ality in the form of celecoxib [14] and rofecoxib [15], which

were marketed in 1999. As described later, COX-2–selective
drugs are potent antipyretic agents. How NSAIDs function to
inhibit PG synthesis is now known at the level of crystallo-
graphic resolution. Concepts necessary to the understanding of
how NSAIDs bind and inhibit COX are briefly summarized
here, and we refer the reader to more thorough treatments of
the subject [16, 17]. At the primary sequence level, COX-1 and
COX-2 share 60% amino acid identity. However, at the tertiary
and quaternary levels, they show striking similarity. Both iso-
enzymes are homodimers with distinct domains for dimeriza-
tion, membrane binding, and catalysis. Both enzymes colocalize
to the lumen of the nuclear envelope and endoplasmic reticu-
lum, where they tightly adhere to the membrane’s lumenal sur-
face by a series of 4 amphipathic helices [18, 19]. COX-2, but
not COX-1, has also been shown to traffic into the cis-Golgi
[20]. Intralumenal localization in these compartments allows
the enzymes to contain 4 disulfide bonds because the nuclear
envelope/endoplasmic reticulum environment is oxidizing. Ad-
ditionally, each isoenzyme is glycosylated on 3 (COX-1) or 3
or 4 (COX-2) asparagines with high-mannose moieties [16–19].

The catalytic domains of COX-1 and COX-2 each contain
2 distinct active sites. The COX active site binds arachidonic
acid and cyclizes and oxygenates it to form an unstable inter-
mediate PGG2. This short-lived molecule diffuses from the COX
active site to the peroxidase active site, where a hydroperoxyl
moiety on PGG2 is reduced to a hydroxyl. The resulting PGH2

acts as a substrate for isomerase pathways that produce other
PG, thromboxane, and prostacyclin isomers.

Crystallographic elucidation of COX-1 in 1994 by Picot et
al. [18] defined the molecular architecture of the COX and
peroxidase active sites. Only the COX site is bound and inhib-
ited by aspirin and other NSAIDs. This site is a hydrophobic
channel or tunnel whose exit is in the membrane-binding do-
main of the enzyme. Arachidonic acid diffuses into the COX
active site from the membrane domain. Recent studies indicate
that COX-1 and COX-2 bind arachidonic acid in different
ways. COX-1 utilizes arginine 120 in its active site to form an
ionic bond with the carboxylate group of arachidonate. Con-
versely, arginine 120 appears to form a hydrogen bond with
arachidonate in the COX-2 active site, and this interaction con-
tributes less to the binding energy than the ionic bond for-
mation does in COX-1 [21]. Importantly, cocrystallization stud-
ies have shown that many carboxylate-containing NSAIDs
(e.g., indomethacin, flurbiprofen, suprofen, and salicylate) also
form ionic bonds with arginine 120 and that this interaction is
essential for enzyme inhibition [21]. The position of this residue
(at a constriction in the channel near the channel opening)
allows these NSAIDs to occlude the channel and prevent ar-
achidonate entry.

Arginine 120 also plays an important role in inhibition of
COX-1 and COX-2 by aspirin. Formation of a weak ionic bond
with the carboxylate of aspirin positions aspirin 5 Å below a
reactive serine, serine 530, to which it diffuses and transfers its
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acetyl group. The presence of the acetyl adduct to serine 530
is sufficient to sterically prevent cyclization and oxygenation of
arachidonate to PGG2. Thus, unlike all other commercially
available NSAIDs, aspirin inhibits COX-1 and COX-2 by co-
valent modification resulting in permanent inhibition of the
enzymes.

COX-2 has now been crystallized, an analysis that revealed
a number of subtle differences in the COX active site that have
been exploited for drug development. The core residues lining
the COX active sites of the 2 enzymes are identical except for
one: isoleucine 523 in COX-1 is changed to a valine in COX-
2. The less bulky side chain in valine of COX-2 opens up a
hydrophobic side pocket in the COX-2 active site that is not
accessible in COX-1 [17, 19]. This and other subtle differences
in the COX-2 active site have been exploited to produce COX-
2 selective inhibitors celecoxib and rofecoxib. Depending on
the assay used, these drugs are potent by a factor of >30-fold
in inhibiting COX-2 over COX-1.

COX-2 and the Febrile Response

Over the past 2 decades, much evidence for the mediating
role of PGE2 in fever has been reported (for reviews, see Di-
narello et al. [22], Saper [23], and Coceani and Akarsu [24]).
With the discovery of COX-2, it was clear that the different
COX isoforms might play unique roles in fever. Research in
humans and animal models have shown that COX-2 plays a
dynamic role in generating fever induced by lipopolysaccharide
(LPS), yeast, and cytokines.

Fever induction studies in rodents gave the first indications
that COX-2 causes fever and that fever-inducing COX-2 ex-
pression is localized in specific cell types in the brain. Fever
induction in rats by ip injection of LPS, TNF-a, or IL-1b has
been found to be accompanied by COX-2 mRNA induction in
rat brain vasculature [25–31]. Specifically, this induction was
seen in vein/venule endothelial cells and, to a lesser extent, in
arterial endothelial cells throughout the brain, subarachnoidal
space, and spinal cord [31]. Occasional induction in perivascular
cells has also been reported [32]. Expression patterns for COX-
2 mRNA produced by fever-inducing stimuli is similar in
mouse, prepubertal pig, and rat brain [30, 33, 34]. That is, fever
induction is accompanied by an increase in COX-2 expression
throughout the vasculature of the brain.

A current working hypothesis is that PGE2 synthesized from
vascular COX-2 is essential for fever; however, it has also been
postulated that fever-causing PGs may originate from perivas-
cular microglia and meningeal macrophages throughout the
brain after systemic immune challenge [32, 35]. Evidence for a
pivotal role of COX-2 production in brain vascular endothelial
cells in fever is provided by a high correlation between the
number of COX-2 mRNA-positive brain blood vessels and the
intensity of the febrile response in LPS-challenged rats [29, 30].
Moreover, brain vascular endothelial cells cultured in vitro se-

creted PGE2 preferentially on the basal side rather than the
luminal side in a ratio of 4:1, further suggesting that PGE2

synthesized in epithelial cells could conveniently cross into the
CNS [36].

In addition to the brain vasculature, important signaling roles
have been suggested for the organum vasculosum laminae ter-
minalis, the vagus nerve system, the complement system, and
Kupffer cells [37–40].

Effect of COX-2–Selective Inhibitors on Fever

Work done with genetically altered mice showed that wild-
type mice and COX-11/2 and COX-12/2 mice all exhibited a
normal fever response after challenge by LPS [33]. The re-
sponses of COX-21/2 and COX-22/2 mice to a challenge by LPS
or by IL-1b were quite different. COX-2–deficient mice were
unable to mount a febrile response to exogenous pyrogens or
endogenous pyrogens equivalent to that of wild-type mice. In-
stead, the COX-2–deficient mice exhibited a drop in body core
temperature of between 0.57C and 1.47C after ip injection of
LPS or IL-1. This result conclusively confirms the pivotal role
of COX-2 in the development of fever. It would appear, how-
ever, that COX-1 does not participate in the febrile response.
Similarly, mice that lacked the PGE2-EP3 receptors were unable
to develop a normal febrile response to either an exogenous or
an endogenous pyrogenic challenge [41].

Further illustrating a central role of COX-2 in febrinogenesis
are studies in various animal systems that demonstrate the ef-
fectiveness of COX-2 selective or preferential inhibitors in re-
versing or suppressing the febrile response in animals challenged
with exogenous or endogenous pyrogens. The experimental
COX-2–selective drug L-745,337 has been shown to suppress or
reverse the febrile response in both rats [42] and prepubertal pigs
[43] challenged by LPS. The same results have been found when
COX-2–preferential drugs such as nimesulide [44], etodolac [45],
and meloxicam [46] are used. DUP-697, another experimental
COX-2 selective inhibitor, has been shown to be a potent anti-
pyretic in rats [47]. Similarly, the COX-2 selective inhibitor DFU
has been shown to have antipyretic effects in squirrel monkeys
[48] and rats [49] in LPS-induced fever models.

Two recently developed COX-2–specific inhibitors that have
undergone extensive testing in humans are rofecoxib (MK-
0966) and celecoxib (SC-58635). In human whole-blood assays
for COX-1 and COX-2 that use arachidonic acid as a substrate,
rofecoxib showed selectivity ratios for the inhibition of COX-2
to COX-1 of 36. Under the same experimental conditions, ce-
lecoxib showed selectivity ratios for COX-2 to COX-1 of 6.6
[50]. In clinical trials, rofecoxib has also been shown to reduce
naturally occurring fever in humans, as well as reducing LPS-
induced pyrexia in rats and squirrel monkeys [51].
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Table 1. Morphological inhibition of transformation in response to
treatment with nonsteroidal anti-inflammatory drugs (NSAIDs).

NSAID

Effect

100 mM 10 mM

Oxicam
Isoxicam N N
Piroxicam P N

Salicylate
Aspirin N N
Diflunisal C N
Acetaminophenol N N
Acetophenetidin N N
Salicylamide N N

Acetic acid
Indomethacin C C
Acemetacin C P
Tolmetin P N
Sulindac N N
Diclofenac C P
Zomepirac P N

Fenamate
Mefenamic acid C P
Flufenamic acid C P
Niflumic acid C P

Propionic acid
Ketoprofen P N
Naproxen P N
Indoprofen P N
Ibuprofen C N
Flurbiprofen P N
Suprofen P N
Fenbufen P N
Carprofen C N

Pyrazole
Phenylbutazone N N
Oxyphenbutazone N N

NOTE. Chicken embryo fibroblasts (CEF) were transformed with Rous sar-
coma virus (RSV). C, complete inhibition of focus formation; N, no effect; P,
partial inhibition, which was characterized by cell rounding and formation of
small clumps of cells.

COX-2 and Acetaminophen

From a structural standpoint, it is challenging to envision
how acetaminophen would inhibit the COX site of COX be-
cause it lacks a carboxylic acid moiety for interaction with
arginine 120 (figure 1). However, other simple, nonacidic com-
pounds such as resveratrol are also known to inhibit both COX-
1 and COX-2 [52, 53] (figure 1). Their mechanism of inhibition
is currently unknown, and it is unclear whether they inhibit the
COX or peroxidase active sites of the enzyme. The early work
of Flower and Vane [6] established the possibility that aceta-
minophen exerted its action through inhibition of COX. More-
over, their work provided a mechanistic rationale as to why
acetaminophen would possess part of the complement of thera-
peutic activities possessed by NSAIDs (analgesia and antipy-
resis) but lack anti-inflammatory and anticoagulatory activity.
That is, that acetaminophen exerts its effect on a subtype of
COX located in the brain. The finding of 2 forms of COX
confirmed the notion of COX subtypes, but further investi-
gation of COX-2 failed to find it to be significantly inhibited
by acetaminophen [54].

Recently, our laboratory identified a way to induce murine
J774.2 cells to produce a COX activity that was more sensitive
to acetaminophen inhibition than is COX-1 or COX-2. Ironi-
cally, the inducer of this activity was diclofenac, a potent in-
hibitor of COX-1 and COX-2. The remainder of this review
summarizes those studies.

Induction of COX-2 by NSAIDs

Identification of COX-2 as a v-src–inducible protein led our
laboratory to investigate the effect of NSAIDs on neoplastic
transformation initiated by this oncogene. Our study system
used chicken embryo fibroblasts transformed with a tempera-
ture-sensitive mutant of Rous sarcoma virus [55–57]. Treatment
of these cells with NSAIDs and analgesics showed that 18 of
26 drugs tested inhibited focus formation of transformed cells
at concentrations of 10–100 mM (table 1). Drugs that were
ineffective were prodrugs (e.g., sulindac) or weak inhibitors of
COX (e.g., acetaminophen, acetophenetidin, and salicylamide).
Conversely, active metabolites such as sulindac sulfide were
highly effective at preventing focus formation (unpublished
data). The cytotoxic effects of 8 of the drugs most effective in
preventing focus formation were investigated in detail. All 8
were found to induce apoptosis. Relatively rapid induction of
apoptosis by diclofenac, the most thoroughly studied drug, oc-
curred at concentrations as low as 32 mM. Members of apop-
tosis signaling pathways essential for NSAID induction of pro-
grammed cell death in these cells were later defined [57].

In the process of characterizing NSAID-induced apoptosis
in v-src–transformed chicken embryo fibroblasts, the effect of
these drugs on COX-1 and COX-2 expression was also assessed.
Unexpectedly, it was found that COX-2, but not COX-1, was
highly induced by all of the apoptosis-inducing drugs we in-

vestigated (figure 2). Induction resulted in both elevated COX-
2 mRNA and protein levels. Doses for maximum induction of
COX-2 by diclofenac were 25–50 mM; however, doses of 200
mM or more suppressed induction of COX-2.

Numerous immortalized and nonimmortalized mammalian
cells in culture were evaluated to identify an analogous mam-
malian model to chicken embryo fibroblasts. One cell system
that exhibited a profound incidence of apoptosis, although at
higher concentrations of NSAID than those used in chicken
embryo fibroblasts (CEF), was the murine J774.2 cell line. This
monocytic/macrophage European cell line was isolated from a
tumor that arose in a BALB/c mouse in 1968 and is related
but not identical to the J774A.1 cell line used in the United
States. As with CEF, NSAIDs also induced COX-2 but not
COX-1 in J774.2 cells (figure 3). Unlike in CEF, this induction
required maximally effective doses of diclofenac of 500 mM and
has been reported to occur without a concomitant increase in
COX-2 mRNA [58, 59]. Also, COX-2 induction in J774.2 cells
required 48 h to occur as opposed to 24 h in CEF [56, 58].
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Figure 2. Effect of concentration on diclofenac induction of cyclo-
oxygenase (COX)–1 and COX-2. For Northern blot analysis, 20 mg of
total RNA from Rous sarcoma virus (RSV)–transformed chicken em-
bryo fibroblasts (CEF) with and without treatment with various doses
of diclofenac 29 h after shift to 377C was hybridized to COX-1, COX-
2, or glyceraldehyde phosphate dehydrogenase (GAPDH) probes. Lane
1, Serum-starved RSV-transformed cells without drug treatment. Lanes
2–6, Diclofenac treatment at 25 mM, 50 mM, 100 mM, 200 mM, and
400 mM, respectively. COX-1, 7-day exposure; COX-2, 20-h exposure;
GAPDH, 6-h exposure. From Lu et al. [56].

Figure 3. Induction of cyclooxygenase (COX)–2 protein expression
by nonsteroidal anti-inflammatory drugs (NSAIDs). J774.2 cells were
treated with lipopolysaccharide (LPS; 1 mg/mL for 12 h), vehicle (Veh),
or NSAIDs (for 48 h) at the doses indicated. Cellular proteins were
electrophoresed and probed by Western blot with isoenzyme-specific
anti–COX-2 sera. COX-2 was induced 10–30-fold by 0.5 mM indo-
methacin (Ind 0.5%), 0.5 mM flurbiprofen (Flur 0.5), and 0.5 mM
diclofenac (Dic 0.5), but was not detectably induced by 2 mM aceta-
minophen (Acet 2) and was only marginally induced by 2 mM aspirin
(Asa 2). Induction of COX-2 by diclofenac was dose dependent. From
Simmons et al. [58].

Induction of a Novel COX Activity

The results of these 2 experiments in different cell models
suggested that prolonged exposure to NSAIDs at concentra-
tions high enough to completely inhibit COX-1 and COX-2
resulted in induction of COX-2. This induction may have been
an attempt by the cell to salvage itself from the lethal effects
of complete inhibition of COX activity. If this were the case,
it seemed possible that the COX induced may have specific and
distinct enzymatic activities. To test this, J774.2 cells were ex-
posed to various doses of diclofenac for 48 h, after which the
diclofenac-containing mediums were removed and COX activ-
ity was measured by exposing the cells to 30 mM arachidonic
acid. With regard to purified COX-1 and COX-2, or these en-
zymes in cell homogenates, diclofenac acts as a pseudoirrev-
ersible inhibitor. Diclofenac enters the COX active site in a
time-dependent fashion, lodges there tightly, and washes out
with a half-life of hours or days [60, 61]. Consistent with these
properties of binding, diclofenac at 5–50 mM, when given to
J774.2 cells for 48 h as described above, had a dose-dependent
inhibitory effect on COX activity (figure 4). Unexpectedly, how-
ever, at doses above 50 mM, where diclofenac began to induce
apoptosis and COX-2, there was a dramatic, dose-dependent
increase in enzyme activity. This induction was particularly ob-
vious when COX activity was normalized to cellular protein
concentrations (figure 4). After these studies, NSAID-inducible
activity was also identified by others by use of the COX-2
selective drug NS398. This COX-2–selective inhibitor, like di-
clofenac, is a time-dependent inhibitor of COX-2 [62]. However,
chronic treatment of rat fetal hepatocytes with NS398 induces

COX-2 and COX activity that is revealed upon removal of the
NSAID [62].

The finding of this unusual NSAID-induced COX activity
allowed it to be characterized pharmacologically. The increased
COX activity in J774.2 cells induced by diclofenac was more
sensitive to acetaminophen than either COX-2 or COX-1 in
the same cells (figure 5). The 50% inhibitory concentration
(IC50) values for acetaminophen inhibition were 0.125–1 mM,
depending on the experiment. The reason for this experimental
variation is currently unknown but is presumed to be subtleties
in cell treatment that have yet to be identified. Additionally,
the NSAID-induced activity was found to be inhibited by di-
clofenac itself and by other NSAIDs, but at significantly higher
concentrations than those needed to inhibit either COX-1 or
COX-2 in the same cells. For example, COX-2 in J774.2 cells
had been shown to be inhibited by diclofenac, flurbiprofen, or
tolfenamic acid with IC50 values of 1, 0.1, and 0.2 mM, respect-
ively [54]. In contrast, the COX activity induced by diclofenac
was inhibited with IC50 values for same drugs of 10, 230, and
220 mM, respectively, or an increase of 1–5 orders of magnitude.
Perhaps most significant was that aspirin, a relatively weak
inhibitor of COX-2, failed to inhibit the induced NSAID-
induced activity.

Thus far, we have been unable to disassociate the induction
of NSAID-induced enzyme activity from induction of COX-2
in that whenever we have found the elevated activity, we have
found COX-2 to be elevated as well. However, as described
below, there are cell lines in which we can induce COX-2 in
the presence of NSAIDs and not obtain any activity. Our cur-
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Figure 4. Induction of cyclooxygenase (COX) activity by diclofenac
in J774.2 cells. v, J774.2 cells were treated with diclofenac at the
concentrations indicated for 48 h. After treatment cells were washed
twice to remove drug and then exposed to 30 mM arachidonic acid for
15 min, the amount of prostaglandin E2 (PGE2) released was estimated
by radioimmunoassay, expressed here as nanograms of PGE2 per mil-
liliter of media times a factor of 10. m, Values have been recalculated
as picograms of PGE2 per microgram of protein to normalize for the
large decrease in cell number and mass occurring at higher NSAID
concentrations (>200 mM). From Simmons et al. [58].

Figure 5. Sensitivity of diclofenac-induced cyclooxygenase
(COX)–2 but not lipopolysaccharide (LPS)–induced COX-2 to inhi-
bition by acetaminophen. v, J774.2 cells were treated with 0.5 mM
diclofenac for 48 h to induce COX-2 and apoptosis. After this treat-
ment, diclofenac was removed by washing, and the cells were exposed
to acetaminophen for 30 min at the doses indicated. After acetamin-
ophen treatment, cells were exposed to 30 mM arachidonic acid for 15
min, and the amount of prostaglandin E2 (PGE2) released was measured
as nanograms of PGE2 per milliliter of media. m, J774.2 cells were
treated with LPS (1 mg/mL for 12 h) to induce COX-2. Cells were
treated with acetaminophen, and PGE2 released was measured as pi-
cograms of PGE2 per 15 min. From Simmons et al. [58].

rent hypothesis is that the NSAID-induced activity either rep-
resents a variant of COX-2 or a third COX. Induction of this
COX enzyme may occur by activation of peroxisome prolifer-
ator activated receptors by NSAIDs as has been shown for
COX-2 [63, 64]. However, if induction does not require induc-
tion of COX-2 mRNA, as reported [59], this would appear to
be unlikely because peroxisome proliferator–activated receptors
function as transcription factors. We have shown that NSAID
treatment results in a COX-2–luciferase fusion protein localized
in the cytosol, as opposed to membrane [58]. This suggests that
chronic treatment with NSAIDs may result in mobilization of
COX-2 in which COX-2 is either not translocated efficiently
into the lumen of the nuclear envelope/endoplasmic reticulum
or loses its high affinity for membrane. During the apoptosis
that occurs concomitantly with NSAID treatment, large rear-
rangements and mixing of cellular compartments occur, and
this may be the mechanism by which mobilization of COX-2
occurs. It is interesting to note that in nonapoptotic cells, ex-
tralumenal COX-2 subpopulations have been reported in the
nucleus matrix and cytosol [65, 66].

Inhibition of NSAID-induced COX activity by acetamino-
phen but not aspirin, coupled with reduced sensitivity to com-
petitively acting NSAIDs, suggests that large changes in the
COX-2 active site or sites have occurred because of chronic
treatment with high concentrations of NSAIDs. Supporting this

concept is the observation that diclofenac readily washes out
of the active site of the enzyme in cells treated with high, but
not low, concentrations of NSAIDs. What these changes are is
currently unknown. However, it is clear that the factors or
processes that produce this change are cell specific. This is in-
dicated by clear differences in the degree to which this activity
can be induced in different cell types. For example, J774A.1
cells, although derived from the same tumor as J774.2 cells,
show substantially reduced induction relative to J774.2 cells,
and some cells show no detectable induction of activity by
diclofenac, even though COX-2 is present in the cells.

Conclusion

We have identified a COX activity that is more susceptible
to inhibition by acetaminophen than is either COX-1 or COX-
2 in the same cell. The increased susceptibility appears to be
due to cell-specific factors that produce an altered COX-2 or
induction of a new COX-3. However, concentrations of acet-
aminophen needed to evoke a 50% reduction in COX activity
are still relatively high, and the activity is not inhibited by
aspirin. Further research will be needed to determine if this
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activity is found in vivo and whether its inhibition is responsible
for the antipyretic and analgesic properties of acetaminophen.
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