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Preface

Though it has been several years since the first edition was published, my goal of the
first edition of Calculus for Biology and Medicine remains true in this edition:

To show students right from the beginning how calculus is used to analyze
phenomena in nature without compromising the rigor of the presentation
of calculus.

The result of this goal is a calculus text that has plentiful life and health sciences
applications and that provides students with the knowledge and skills necessary to
analyze and interpret mathematical models of a diverse array of phenomena in the
living world. Since this text is written for college freshmen, the examples were chosen
so that no formal training in biology is needed.

The rigor of the text prepares students well for more advanced courses in math-
ematics and statistics. My hope is that students will find calculus concepts easier
to understand and more interesting if they are related to their major and career
aspirations.

While the table of contents resembles that of a traditional calculus text, the
content does not: abstract calculus concepts are introduced in a biological context
and students learn how to transfer and apply these concepts to biological situations.
The book does not teach modeling, but students are exposed to and asked to apply
numerous models while they begin to see how simple models can capture the essence
of natural phenomena.

B New to this Edition

m Approximately 20% of the problems have been updated and new problems
have been added.

m The application problems are now labeled to make it easier to identify the area
of application.

m Learning objectives have been added to each chapter to help students structure
their learning and help teachers organize their syllabus and class notes.

m Some sections have been rewritten or reorganized in response to users.

m Additional explanations and examples have been added to aid student under-
standing.

m Where necessary, figures have been added to aid students in visualizing the
mathematics.

m The basic organization of the text has remained the same; however, some
changes to the organization have been made: Practicing integration and partial
fraction decomposition are now in separate sections. The final chapter on
probability and statistics has been expanded to include more statistics and more
on stochastic processes, and it can now be used for a semester-based course.

B Features of the Text

Examples and Explanations Each topic is inspired by biological examples. This
motivating introduction is followed by a thorough discussion outside of the life sci-
ence context to enable students to become familiar with both the meaning and the
mechanics of the mathematical topic. Finally, biological examples are presented to
teach students how to apply the material in a life science context. Examples in the text
are completely worked out, and the steps in the calculations are frequently explained
in words.
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Exercises Calculus cannot be learned by watching someone do it. Because of this,
Calculus for Biology and Medicine, Third Edition, provides students with skill-based
exercises as well as word problems. Word problems are an integral part of teaching
calculus in a life science context. The word problems contained in the text are up-
to-date and are adapted from either standard biology texts or original research. The
exercises and word problems are at the end of each section and are organized by
subsection to help students reference specific subsections of content while complet-
ing homework. This also aids instructors in assigning homework problems.

Technology Calculus for Biology and Medicine takes advantage of graphing cal-
culators. This allows students to develop a much better visual understanding of the
concepts in calculus. Beyond this, no special software is required.

B Reflections and Outlook

The process of revising this book gave me good reason to look back and reflect
upon how this book came about and to make decisions as to where it should go
in the future. The motivation for writing this book more than ten years ago came
from my teaching the second quarter of calculus to a large group of students at the
University of Minnesota Twin Cities. The course covered standard calculus material,
primarily focused on integration techniques, and the students came from diverse
majors outside of the physical and engineering sciences. In fact, many of the students
were life science majors.

Through interactions with colleagues in the life sciences, I increasingly became
aware that much of what was taught in a standard first-year calculus course was of
little use to the students in their pursuit of careers in the life and health sciences. Since
life science majors rarely take more than a year of calculus, they are left with some
rudimentary knowledge of an enormously useful area, but with few skills in applying
this knowledge. I was fortunate to be in an environment where I was able to exper-
iment with a different kind of calculus course with the support of my department
(School of Mathematics) and departments within the College of Biological Sciences.
I developed the course in 1997-98 and taught it for the first time in 1998-99.

Much has happened since then. The life and health sciences have undergone an
information revolution. The human genome project was completed in 2003. Many
more complete genomes have become available since then. High-throughput tech-
nologies, sensor systems, imaging devices, and other new technologies generate data
at a breath-taking pace. The data will ultimately enable us to find solutions to chal-
lenges in areas as diverse as health, energy, environment, and national security. These
revolutionary changes necessitate changes in how we educate future scientists.

National reports on quantitative education of students in the life and health sci-
ences have addressed the needed changes. Foremost, Bio2010, a 2003 report! by the
National Research Council, examined the undergraduate education of life and health
science majors and identified fundamental science and mathematics skills needed to
prepare them for a career in biomedical research. More recently, I was a member of a
committee that was convened by the Association of the American Medical Colleges
(AAMC) and the Howard Hughes Medical Institute (HHMI) and that prepared a
report? on scientific competencies for medical school graduates and undergraduate
students interested in going to medical school. Both reports emphasize the need for
undergraduate students to develop quantitative reasoning skills to analyze, model,
and predict phenomena in the natural world. Increasingly, students must be able to
extract information from large data sets. Many of the mathematics concepts listed in
Bi02010 are covered in this book, including dynamical systems and probability and
statistics.

(1) Bi0o2010: Transforming Undergraduate Education for Future Research Biologists. Committee on
Undergraduate Biology Education to Prepare Research Scientists for the 21st Century, Board of Life
Sciences, Division on Earth and Life Studies, the National Research Council of the National Academies.
2003. (2) Scientific Foundations for Future Physicians. Report of the AAMC-HHMI Committee. 2009.
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I continue to question the way we teach mathematics, statistics, and computation
to students in the life and health sciences. We need to prepare our students for this
data-rich environment. The traditional way of completing paper-and-pencil exercises
and working with moderately-sized data sets (with a focus on developing the skills
to master differentiation and integration techniques) is no longer sufficient.

I have been fortunate to receive funding from HHMI as a HHMI Professor
to develop quantitative curricula for the life and health sciences. This growing set
of resources is available on my web site NUMB3RS COUNT! (http://bioquest.org/
numberscount/). The goal is to take a data-driven approach to algebra, calculus,
probability, and statistics. Worksheets and spreadsheets with authentic data sets have
been written to supplement this book and enrich this course. It is my goal that
students will begin to explore calculus concepts with real data.

B Chapter Summary

Chapter 1 Basic tools from algebra and trigonometry are summarized in Section
1.1. Section 1.2 contains the basic functions used in this text, including exponential
and logarithmic functions. Their graphical properties and their biological relevance
are emphasized. Section 1.3 covers log-log and semi-log plots; these are graphical
tools that are frequently used in the life sciences. In addition, a section on translating
verbal descriptions of biological phenomena into graphs will provide students with
skills that they will need when they read biological literature.

Chapter2 This chapter covers difference equations (or discrete time models) and se-
quences, which provides a more natural way to explain the need for limits. The chap-
ter ends with classical models of population growth, giving students a first glimpse at
how models can aid in understanding biological phenomena.

Chapter 3 Limits and continuity are key concepts for understanding the conceptual
parts of calculus. Visual intuition is emphasized before the theory is discussed. The
formal definition of limits is at the end of the chapter and can be omitted.

Chapter 4 The geometric definition of a derivative as the slope of a tangent line
is given before the formal treatment. After the formal definition of the derivative,
differential equations are introduced as models for biological phenomena. Differen-
tiation rules are discussed. These sections give students time to acquaint themselves
with the basic rules of differentiation before applications are discussed. Related rates
and error propagation, in addition to differential equations, are the main applica-
tions.

Chapter 5 This chapter presents biological and more traditional applications of dif-
ferentiation. Many of the applications are consequences of the mean value theorem.
The word problems originate from either biology textbooks or research articles. This
use of sources puts the traditional applications (such as extrema, monotonicity, and
concavity) in a biological context. Analysis of difference equations is available in an
optional section.

Chapter 6 Integration is motivated geometrically. The fundamental theorem of cal-
culus and its consequences are discussed in depth. Both biological and traditional
applications of integration are provided before integration techniques are covered.

Chapter 7 This chapter contains integration techniques. However, only the most
important techniques are covered. A section on Taylor polynomials is also included
in this chapter. The section on using tables of integrals was moved to the end of
the chapter and is optional. While computer software is not required in this book,
it is likely that students will have access via the web to easy-to-use, free software
to calculate integrals. For instance, WolframAlpha (http://www.wolframalpha.com/)
allows integration of functions on the web and shows the steps.
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Chapter 8 This chapter provides an introduction to differential equations. The treat-
ment is not complete, but it will equip students with both analytical and graphical
skills to analyze differential equations. Eigenvalues are introduced early to facilitate
the analytical treatment of systems of differential equations in Chapter 11. Many
of the differential equations discussed in the text are important models in biology.
Though this text is not a modeling text, students will see how differential equations
can model biological phenomena and will be able to interpret differential equations.
Chapter 8 contains a large number of up-to-date applications of differential equa-
tions in biology.

Chapter9 Matrix algebra is an indispensible tool for every life scientist. The material
in this chapter covers the most basic concepts and is tailored to Chapters 10 and 11,
where matrix algebra is frequently used. Special emphasis is given to the treatment
of eigenvalues and eigenvectors because of their importance in analyzing systems of
differential equations.

Chapter 10 This is an introduction to multidimensional calculus. The treatment is
brief and tailored to Chapter 11, where systems of differential equations are dis-
cussed. The main topics are partial derivatives and linearization of vector-valued
functions. The discussions of gradient and diffusion and the section on extrema and
Lagrange multipliers are not needed for Chapter 11. If difference equations were
covered early in the course, the final section in this chapter provides an introduction
to systems of difference equations with many biological examples.

Chapter 11 This material is most relevant for students in the life sciences. Both
graphical and analytical tools are developed to enable students to analyze systems
of differential equations. The material is divided into linear and nonlinear systems.
Understanding the stability of linear systems in terms of vector fields, eigenvectors,
and eigenvalues helps students to master the more difficult analysis of nonlinear
systems. Theory is explained before applications are given. This sequencing allows
students to become familiar with the mechanics before delving into applications. An
extensive problem set allows students to experience the power of this modeling tool
in a biological context.

Chapter 12 This chapter contains some basic probabilistic and statistical tools. The
statistics section has been expanded and more on stochastic processes has been added.
The chapter can now be used for a full-semester course in probability and statistics,
in particular if supplemented by real data sets, which are available on my web site:
NUMB3RS COUNT! (http://bioquest.org/numberscount/).

B How to Use This Book

This book contains more material than can be covered in one year. The intent is to
allow for more flexibility in the choice of material covered. Sections whose heading
says “Optional” can easily be omitted; the material in those sections is not needed in
subsequent sections.

The book’s content can be arranged so that the course can be taught as a one-
semester, two-quarter, two-semester, four-quarter, or three-semester course. Chap-
ters 1-4 must be covered in that order before any of the other sections are covered.
In addition to Chapters 1-4, the following sections can be chosen:

One semester—integration emphasis 5.1-5.6, 5.8, 6.1-6.3 (without 6.3.4 and 6.3.5)

One semester—differential equation emphasis 5.1-5.6,5.8,6.1,6.2,8.2 (without solv-
ing any of the differential equations)

Two quarters 5.1-5.6, 5.8, 6.1-6.3 (without 6.3.4 and 6.3.5), Chapter 7, Chapter 8

Two semesters 5.1-5.6, 5.8, 6.1-6.3, Chapters 7, 8, and 9, 10.1-10.4, 10.7, 11.1-11.4
(select two of the subsections in Section 11.4)

Four quarters or three semesters All sections that are not labeled optional; optional
sections should be chosen as time permits
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One semester—probability emphasis Chapter 1, only Section 2.2.1 and 2.2.2 in Chap-
ter 2, Chapter 3 (except 3.6), Chapter 4, 5.1-54, 5.8, 6.1, 6.2, 7.1, 7.2.1, 12.1-12.5
(without 12.5.5), 12.6 (if time permits)

M Supplements

Online Instructor’s Solutions Manual Provides fully worked-out solutions to every
textbook exercise, including the Chapter Review problems. Available to download
online at the Instructor Resource Center at www.pearsonhighered.com/irc

Student’s Solutions Manual Provides fully worked-out solutions to the odd-num-
bered exercises in the section and Chapter Review problems. ISBN-13: 978-0-321-
64492-3, ISBN-10: 0-321-64492-1
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Preview and Review

LEARNING OBJECTIVES

The first two sections of this chapter serve as a review of algebra, trigonometry, and precalculus,
material needed to master the topics covered in this book. Section 1.3 reviews graphing functions
and introduces the important concept of transforming functions into linear functions. The section
includes a subsection on visualizing verbal descriptions of biological phenomena.

A Brief Overview of Calculus

Isaac Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) are typically
credited with the invention of calculus and were the first to develop the subject sys-
tematically.

Calculus has two parts: differential and integral calculus. Historically, differential
calculus was concerned with finding lines tangent to curves and with calculating ex-
trema (i.e., maxima and minima) of curves. Integral calculus has its roots in attempting
to determine the areas of regions bounded by curves or in finding the volumes of
solids. The two parts of calculus are closely related: The basic operation of one can be
considered the inverse of the other. This result is known as the fundamental theorem
of calculus and goes back to Newton and Leibniz, who were the first to understand its
meaning and to put it to use in solving difficult problems.

Finding tangents, locating extrema, and calculating areas are basic geometric prob-
lems, and it may be somewhat surprising that their solution led to the development of
methods that are useful in a wide range of scientific fields. The main reason for this
historical development is that the slope of a tangent line at a given point is related
to how quickly the function changes at that point. Knowing how quickly a function
changes at a point opens up the possibility of a dynamic description of biology, such as
a description of population growth, the speed at which a chemical reaction proceeds,
the firing rate of neurons, and the speed at which an invasive species invades a new
habitat. For this reason, calculus has been one of the most powerful tools in the math-
ematical formulation of scientific concepts. Applications of calculus are not restricted
to biology, however; in fact, physics was the driving force in the original development
of calculus. In this text we will be concerned primarily with how calculus is used in
biology.

In addition to developing the theory of differential and integral calculus, we will
consider many examples in which calculus is used to describe or model situations in
the biological sciences. The use of quantitative reasoning is becoming increasingly
more important in biology —for instance, in modeling interactions among species in
a community, describing the activities of neurons, explaining genetic diversity in pop-
ulations, and predicting the impact of global warming on vegetation. Today, calculus
(Chapters 2-11) and probability and statistics (Chapter 12) are among the most im-
portant quantitative tools of a biologist.
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M 1.1 Preliminaries

a b
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-5-4-3-2-1 01 2 3 45

Figure 1.1 The real-number line.

This section reviews some of the concepts and techniques from algebra and trigonom-
etry that are frequently used in calculus. The problems at the end of the section will
help you reacquaint yourself with this material.

B 1.1.1 The Real Numbers

The real numbers can most easily be visualized on the real-number line (see Figure
1.1), on which numbers are ordered so that if a < b, then a is to the left of b. Sets
(collections) of real numbers are typically denoted by the capital letters A, B, C, etc.
To describe the set A, we write

A = {x : condition}

where “condition” tells us which numbers are in the set A. The most important sets
in calculus are intervals. We use the following notations: If a < b, then

the open interval (a, b) = {x : a < x < b}
and
the closed interval [a, b] = {x : a < x < b}

We also use half-open intervals:
[a,b) ={x:a <x < b} and (a,b]={x:a <x < b}
Unbounded intervals are sets of the form {x : x > a}. Here are the possible cases:

[a,00) ={x:x >a}
(—00,a]l ={x:x <a}
(a,00) ={x :x > a}
(—00,a) ={x :x <a}

The symbols “co” and “—o00” mean “plus infinity” and “minus infinity,” respectively.
These symbols are not real numbers, but are used merely for notational convenience.
The real-number line, denoted by R, does not have endpoints, and we can write R in
the following equivalent forms:

R={x:—-00 <x <00} =(—00,00)

The location of the number 0 on the real-number line is called the origin, and we
can measure the distance of the number x to the origin. For instance, —5 is 5 units to
the left of the origin. A convenient notation for measuring distances from the origin
on the real-number line is the absolute value of a real number.

Definition The absolute value of a real number a, denoted by |a/, is

a ifa>0
la] = .
—a ifa <0

For example, | — 7| = —(—7) = 7. We can use absolute values to find the distance
between any two numbers x; and x; as follows:

distance between x; and x; = |x1 — x|

Note that |x; — x3| = |x» — x1|. To find the distance between —2 and 4, we compute
| —2—4|=|—6]=6,0r|4—(—2)|=|4+2| =6.



EXAMPLE 1

Solution

EXAMPLE 2

Solution
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We will frequently need to solve equations containing absolute values, for which
the following property is useful:

Let b > 0. Then

1. Fora > 0, |a] = b is equivalent to a = b.
2. Fora <0, |a| = b is equivalent to —a = b.

Solve |x — 4| = 2.

Ifx —4>0,thenx —4 =2andthusx = 6.If x — 4 < 0, then —(x —4) = 2 and
thus x = 2. The solutions, illustrated graphically in Figure 1.2, are therefore x = 6
and x = 2. The points of intersection of y = |x — 4| and y = 2 are at x = 6 and
x = 2. Solving |x — 4| = 2 can also be interpreted as finding the two numbers that

have distance 2 from 4. ]
y
61 T
2 —

Figure 1.2 The graph of y = |x — 4| and y = 2. The points
of intersection are at x = 6 and x = 2.

We write the solution of an equation of the form |a| = |b| as either a = b or
a = —b, illustrated in the next example.

Solve [3x — 1| = |3x + 1I.

Either

3
—x—1==-x+1 3
2 2 or 7%~ l=—x—-1
=2
* 2x =0
x=0
A graphical solution of this example is shown in Figure 1.3. ]

Returning to Example 1, where we found the two points whose distance from
4 was equal to 2, we can also try to find those points whose distance from 4 is less
than (or greater than) 2. This amounts to solving inequalities with absolute values.
Looking back at Figure 1.2, we see that the set of x-values whose distance from 4 is
less than 2 (i.e., |x — 4| < 2) is the interval (2, 6). Similarly, the set of x-values whose
distance from 4 is greater than 2 (i.e., |[x — 4| > 2) is the union of the two intervals
(—00, 2) and (6, 00), or (—00, 2) U (6, 00).
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EXAMPLE 3

Solution

Figure 1.3 The graphsof y = |%x —1ljandy = |%x +1].
The points of intersection are at x = 0 and x = 2.

In general, to solve absolute-value inequalities, the following two properties are
useful:

Let b > 0. Then

1. |a| < bisequivalentto —b < a < b.
2. |a| > bisequivalenttoa > bora < —b.

(a) Solve [2x — 5] < 3. (b) Solve [4 —3x| > 2.
(a) We rewrite [2x — 5] < 3 as
—3<2x—-5<3
Adding 5 to all three parts, we obtain
2<2x <8
Dividing the result by 2, we find that
l<x<4

The solution is therefore the set {x : 1 < x < 4}. In interval notation, the solution
can be written as the open interval (1, 4).

(b) To solve |4 — 3x| > 2, we go through the following steps:

—3x >
4 ix—zz 4-3x <2
— >
= or —3x < -6
2
x < - x>2
3

The solutionistheset{x : x > 2orx < %}, or, in interval notation, (— oo, %]U[Z, 00).
[

B 1.1.2 Lines in the Plane

We will frequently encounter situations in which the relationship between quantities
can be described by a linear equation. For example, when a weight is attached to a
helical spring made of some elastic material (and the weight is not too heavy), the
relationship between the length y of the spring and the weight x is

Yy =yo+kx (1.1)

where yy denotes the length of the spring when no weight is attached to it and k is a
positive constant. Equation (1.1) is an example of a linear equation, and we say that
x and y satisfy a linear equation.



(. y1)

Figure 1.4 The slope of a straight
line.

EXAMPLE 4

Solution
Y x=nh
k
y=k
h X

Figure 1.5 The horizontal line y = k
and the vertical line x = h.

1.1 m Preliminaries 5

The standard form of a linear equation is given by
Ax+By+C=0

where A, B, and C are constants, A and B are not both equal to 0, and x and y are the
two variables. In algebra, you learned that the graph of a linear equation is a straight
line.
If the two points (x1, y1) and (x, y) lie on a straight line, then the slope of the

line is

2—n

m —
X2 — X1

(See Figure 1.4.) Two points (or one point and the slope) are sufficient to determine
the equation of a straight line.

If you are given one point and the slope, you can use the point-slope form of a
straight line to write its equation, given by

Yy — Yo =m(x — xq)

where m is the slope and (xg, yp) is a point on the line. If you are given two points, first
compute the slope and then use one of the points and the slope to find the equation
of the straight line in point-slope form.
Lastly, the most frequently used form of a linear equation is the slope-intercept
form
y=mx+Db

where m is the slope and b is the y-intercept, which is the point of intersection of the
line with the y-axis; the y-intercept has coordinates (0, b).
We summarize these three forms of linear equations in the following box:

Ax +By+C =0 (Standard Form)
y—yo=m(x —x9) (Point-Slope Form)
y=mx+b (Slope-Intercept Form)

Determine, in slope—intercept form, the equation of the line passing through (-2, 1)
and (3, —3).

The slope of the line is

T _3
=0 2 3
m= = =

2
Xs—x; 3—(=2) 5 10

Using the point-slope form with (=2, 1), we find that

—1——i —(=2)
y = 1O(x )

or, in slope-intercept form,

3 n 2
= ——X —
Y00 TS
We could have used the other point, (3, —%), and obtained the same result. |

We now recall two special cases that we illustrate in Figure 1.5:

y =k horizontal line (slope 0)
x = h vertical line (slope undefined)
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EXAMPLE 5

Solution

(x, )

X0

Figure 1.6 Circle w
centered at (xg, yo)-

X

ith radius r

EXAMPLE 6

Solution

In the next example, we show how to determine the slope and the y-intercept of
a given straight line.

Determine the slope and the y-intercept of the line 3y —2x + 9 = 0.

We solve for y in 3y = 2x — 9. We obtain y = %x — 3. We can now read off the slope

m= % and the y-intercept b = —3. ]
When two quantities x and y are linearly related so that
y =mx

we say that y is proportional to x, with m denoting the constant of proportionality,
and we write
y XX

The symbol o is read “is proportional to.” If we write Equation (1.1) in the form
y— Yo =kx
then the change in length y — yj is proportional to the attached weight with constant
of proportionality k, and we can write
Y= Yo XX

There are two more properties of straight lines we wish to mention. When two
lines /; and /; in the plane have no points in common or are identical, they are called
parallel, denoted by /; || /5. The following criterion is useful in deciding whether two
lines are parallel: Two noncoincident lines /; and [, are parallel (/; || /) if and only
if their slopes are identical. For two noncoincident, nonvertical lines /; and /, with
slopes m; and m,, respectively, the criterion becomes

Lol if and only if my = my

Two lines /; and /; are called perpendicular (I; L ;) if their intersection forms an
angle of 90°. The following criterion is useful for deciding whether two lines are
perpendicular: Two nonvertical lines are perpendicular if and only if their slopes are
negative reciprocals. That is, if /; and /, are nonvertical lines with slopes m; and m;,
then

L LD if and only if mimy; = —1

We will prove this result in Problem 54 at the end of this section.

W 1.1.3 Equation of the Circle

A circle is the set of all points at a given distance, called the radius, from a given
point, called the center. If r is the distance from (xg, y) to (x, y) (see Figure 1.6),
then, using the Pythagorean theorem, we find that

r? = (x — x0)* + (y — )*

If » = 1 and (xg, yo) = (0, 0), the circle is called the unit circle.

Find the equation of the circle with center (2, 3) and passing through (5, 7).

Using the Pythagorean theorem, we can compute the distance in the plane between

(2,3) and (5, 7):
\/(5—2)2+(7—3)2 =y94+16=5

Thus, this circle has radius 5 and center (2, 3), and its equation is

25 = (x =2+ (y = 3)° .



(x, y)

tan 6

sin 6

%) X

cos 6 1 X

Figure 1.7 The trigonometric
functions on a unit circle.

EXAMPLE 7
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B 1.1.4 Trigonometry

We will need a few results from trigonometry. Recall that angles are measured in
either degrees or radians and that a complete revolution on a unit circle (Figure 1.7)
corresponds to 360°, or 27. For reasons that will become clear, the radian measure

is preferred in calculus. To convert between degree and radian measure, we use the
formula
0 measured in degrees 6 measured in radians

360° 2

For instance, to convert 23° into radian measure, we compute

21

0 =23
360

= 0.401

To convert T into degrees, we compute
7 360° .
9 = —— =
6 27
There are four trigonometric functions that you should be familiar with: sine,
cosine, tangent, and secant; the other two, cotangent and cosecant, are rarely used.
The six are defined on a unit circle (see Figure 1.7) and are abbreviated as sin, cos,
tan, sec, cot, and csc, respectively. Recall that a positive angle is measured counter-

clockwise from the positive x-axis, whereas a negative angle is measured clockwise.
The six trigonometric functions are defined as follows:

. y 1 1
sinf ===y csc) = —— = —
1 sinf y

X 1 1

cosf = — =x secH = = —
1 cos 6 X

1

tan@:X coth = =f
X tanf y

There are a number of frequently used trigonometric identities. First, since
tanf = y/x with y = sin6 and x = cos 6, it follows that

Now, applying the Pythagorean theorem to the triangle in Figure 1.7 and using the
notation sin” 0 = (sin 9)2, we find that

sin” 0 + cos’ 0 =1

Next, if we divide the preceding identity by cos” 0, we obtain

sin 0 1

cos’ 6 cos’ 0

Using tan 6 = sinf/ cos 6 and secf = 1/ cos 8, we can write this as
tan’6 + 1 = sec’ @

In the next example, we solve a trigonometric equation.

Solve
2sinf cosd = cosf on [0, 2)
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Solution

y
1
/ (cos 6, sin 0)
0

(cos(—0), sin(—6))

Unit circle

Figure 1.8 Using the unit circle to
define trigonometric identities.

We should not be tempted to cancel cos 6 on each side; this would cause us to lose
solutions. Instead, we bring cos 6 to the left side and factor cos 6 to obtain

cosf(2sinf —1) =0

That is,
cosf =0 or 2sind —1=0

Solving cos 6 = 0, we find that

T 3
0=— or 0 = —
2 2
Solving 2sinf — 1 = 0, we get
1
sinf = —
2
which yields
5
0 = T or 0 = 2
6 6
The solution set is therefore {%, % %”, 37”}. ]

Figure 1.8 yields the following two identities when we compare the two angles
6 and —0 (a positive angle is measured counterclockwise from the positive x-axis,
whereas a negative angle is measured clockwise):

sin(—6@) = —sin 6 and cos(—6) = cos 6

Some exact trigonometric values are collected in Table 1-1. Of course, %f =0,

% 1= %, and %\/Zl = 1, and you should memorize these simplified values. Rewriting
Table 1-1 will make it easier to re-create the table in case you forget the exact values.
Using tan 6 = sin @/ cos 6, you immediately get the values for tan 6.

TABLE 1-1 Some Exact Trigonometric Values

Angle 0 0 T z z z
6 4 3 2

(0°) (30°) (45°) (60°) 90°)
1 1 1 1 1

ind /0 S/ ) A3 - /4
s 70 2 2 2 2
1 1 1 1 1

0 S /4 A3 ) S/ 2 /0
cos SV 73 72 2 2

m 1.1.5 Exponentials and Logarithms

Exponentials and logarithms are particularly important in biological contexts.
An exponential is an expression of the form

ar
where a is called the base and r the exponent. Unless r is an integer or unless r is a
rational number of the form p/q where p is an integer and g is an odd integer, we will
assume that a is positive. We summarize some of the properties of an exponential as
follows:

aa® = ar+s (ab)r —a'b
r r
@ _ s (&) =<
at b b"
1 s
a = — (ar) =a*
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EXAMPLE 9

Solution
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Evaluate the following exponential expressions:
(a) 33352 = 34+5/2 = 3972

2743 27! - . 11
b = — = 27 Tt = 27 = — = —
®) 22 22 23 8
© ﬁ e N 1 -
Sk ak

Logarithms allow us to solve equations of the form
2 =8
The solution of this equation is x = 3, which we can write as
x =log,8 =3
In other words, a logarithm is an exponent. The expression

log, y

is the exponent on the base a that yields the number y. Logarithms are defined only
for y > 0 (where the base is assumed to be positive and different from 1). We have
the following correspondence between logarithms and exponentials:

x =log,y isequivalentto y=a"

‘Which real number x satisfies
(@) logzx = =27 (b) log,,,8 =x?

(a) We write this in the equivalent form

-2

x=3
Hence,
11
TR
(b) We write this in the equivalent form
1 X
(-
2
27 =23
2¥ =273
Setting the exponents equal to each other, we find that x = —3. Note that, in order
to compare exponents, the bases must be the same. ]

Some important properties of logarithms are as follows:
log, (xy) =log, x +log, y
log, G) = log, x —log, y
log, x" =rlog, x

The most important logarithm is the natural logarithm, which has the number
e as its base. The number e is an irrational number whose value is approximately
2.7182818. The natural logarithm is written In x; that is, log, x = Inx.
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EXAMPLE 10

EXAMPLE 11

Solution

Assume that x and y are positive, and simplify the following expressions:

(a) log;(9x%) = log; 9 + log; x> = 2 + 2logs x

(b) logs x25j:3 = logs(x” 4 3) — logs 5 — logs x = logs(x* +3) — 1 — logs x

[Note that log; (x* 4 3) cannot be simplified any further.]
(¢) —Inj=In(3)"' =In2

(d) ln% =In3+Inx’—In/y=Imn3+2Inx -1y

(In the last step, we used the fact that ,/y = y 2.) ]

In algebra, you learned how to solve equations of the form ¢ =3orln(x+1) =
5. We will need to do this frequently. The key to solving such equations are the two
identities

aloga Yo

log,a* =x  and x
The next example illustrates how to use these identities.
Solve for x.
(@) ¢ =3 ®) In(x+1) =5 (¢) 51 =2*

(a) To solve ¥ =3 for x, we take logarithms to base e on both sides:
Ine” =1n3

But In ¢ = 2x: hence,
1
2x =In3, or x:zln3

(b) To solve In(x + 1) = 5, we write the equation in exponential form:
PGS
This simplifies to
x+1=e5, or x=e —1

(¢) To solve 5271 = 2% for x, we observe that the two bases are different. We
therefore cannot compare the exponents directly. Instead, we take logarithms on
both sides. Any positive base (different from 1) for the logarithm would work, and
we choose base ¢, since it is the most commonly used base in calculus. Doing so yields

In5*"! =n2*

or, after simplifying,
2x —DIn5S5=x1n2

Solving for x, we find that

2xIn5 —xIn2 =1In5
x(2In5 —1In2) =1In5

Hence,
In5

T Om5—n2
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Solution
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B 1.1.6 Complex Numbers and Quadratic Equations

The square of a real number is always nonnegative. However, there are situations in
which we need to take a square root of a negative number. Since the resulting square
root cannot be a real number, we introduce a new symbol, which we denote by i, that
will allow us to deal with this case. We set

i’=—1

The symbol i is called the imaginary unit. Thus, instead of writing ,/—17, for instance,

we can now write i,/17.
The symbol i allows us to introduce a new number system, the set of complex
numbers:

A complex number is a number of the form
z=a+bi

where a and b are real numbers. The real number a is the real part of a + bi,
and the real number b is the imaginary part.

For instance, —3 + 7i has real part —3 and imaginary part 7, and 2 — 5i has real part
2 and imaginary part —5. Since a + 0i = a, it follows that the set of real numbers is
a subset of the set of complex numbers. Complex numbers of the form bi are called
purely imaginary numbers.

Two complex numbers are equal if their respective real and imaginary parts are
equal; that is,

a+bi =c+di if and only if a=c and b=d
To add two complex numbers, we use the following rule:
(a+bi)+ (c+di)y=(a+c)+ b +d)i

This rule says that real and imaginary parts are added separately. To calculate the
product of two complex numbers, we proceed as follows:

(a + bi)(c +di) = ac + adi + bci + bdi*
=ac + (ad + bc)i — bd
= (ac — bd) + (ad + bc)i
Note that we used i* = —1 in the penultimate step. There is no need to memorize the

product of two complex numbers, since we can always compute it by the distributive
law.

Find
(@ 2+3i)—(5—6i), (b) 5 —-3)(1 +2i).
@ 2+3i))—5—-6i))=2+4+3i —-5+6i =-3+9i,
() 5—3i))(142)=5+10i —3i —6i> =5+7i — (6)(—=1) = 11 +7i. ]

If z = a + bi is a complex number, its conjugate, denoted by Z, is defined as

Z=a—bi
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EXAMPLE 13

Solution

EXAMPLE 14

Solution

For complex numbers z and w, it can be shown (see Problems 113-115) that

@) =z
z+w=z7+w
w=2zw

Furthermore, if we multiply a complex number by its conjugate, we find that

7z = (a + bi)(a — bi) = a* — abi + abi — b*i®
— aZ 4 bZ

That is,

If z = a + bi, then
Z=a*+b*

Letz =3+ 2i.
(a) Find z. (b) Compute zz.
(a) 7=3—-2i.
(b) zZ2=0CB+2)B3—2i)=9—4i*=9+4=13. ]

We encounter complex numbers primarily when we solve quadratic equations.
Recall that, to solve

ax*+bx+c=0

for a # 0, we use the quadratic formula

—b £ /b? — dac
2a

X12 =

2

where x; , refers to the two solutions x; (with the “+” sign) and x, (with the “—’
sign).

Solve
x*+4dx +5=0

Using the quadratic formula, we obtain

=4+ 4 = DHMD)(5)
X12 =
)1
_ —4+£/16-20 —44 /-4
B 2 B 2

If we allowed solutions only in the real-number system, we would conclude that x4
4x 45 = 0 has no solutions. But if we allow solutions in the complex number system,
we find that

—4+ /42 —4£2i  2(-2%i0)

= = -2+
2 2 2

X1,2 =

Thatis, x; = —2+4+iand x, = —2 —i. |



1.1 ® Preliminaries 13

The term b” — 4ac under the square root sign in the quadratic formula is called
the discriminant. If the discriminant is nonnegative, the two solutions of the corre-
sponding quadratic equation are real. (When the discriminant is equal to 0, the two
solutions are identical.) If the discriminant is negative, the two solutions are complex

conjugates of each other.

EXAMPLE 15

Without solving

2x2—3x+7=0

what can you say about the solution?

Solution

We compute the discriminant

b* —dac = (=3)" = (H(Q)() =9—56=—47 <0

Since the discriminant is negative, the equation 2x* —3x +7 = 0 has two complex
solutions, which are conjugates of each other. ]

Section 1.1 Problems

mi111

1. Find the two numbers that have distance 3 from —1 by (a)
measuring the distances on the real-number line and (b) solving
an appropriate equation involving an absolute value.

2. Find all pairwise distances between the numbers —5, 2, and
7 by (a) measuring the distances on the real-number line and
(b) computing the distances by using absolute values.

3. Solve the following equations:

(@ 2x —4]=6 () |x-3]=2

(¢) 2x +3] =5 d) |7-3x]=-2

4. Solve the following equations:

(@ 2x +4| =|5x —2| (b) |5 —3u| =3+ 2u|
© [4+51=13r-20 @ 253 =75
5. Solve the following inequalities:

(@) [5x —2] <4 () |1 —-3x]>8

(¢) |7x+4| >3 (d) |6 —5x| <7

6. Solve the following inequalities:

(@) [2x +3| <6 (®) 13— 4x|>2
© lx+5/<1 @ |7—2x| <0
m1.1.2

In Problems 7-42, determine the equation of the line that satisfies
the stated requirements. Put the equation in standard form.

7. The line passing through (2, 4) with slope —%
8. The line passing through (1, —2) with slope 2
9. The line passing through (0, —2) with slope —3
10. The line passing through (—3, 5) with slope 1/2
11. The line passing through (—2, —3) and (1, 4)
12. The line passing through (—1, 4) and (2, —%)
13. The line passing through (0, 4) and (3, 0)

14. The line passing through (1, —1) and (4, 5)
15. The horizontal line through (3, %)

16. The horizontal line through (0, —1)

17. The vertical line through (—1, ;)

18. The vertical line through (2, —3)

19. The line with slope 3 and y-intercept (0, 2)

20. The line with slope —1 and y-intercept (0, —3)
21. The line with slope 1/2 and y-intercept (0, 2)

22. The line with slope —1/3 and y-intercept (0, —1)
23. The line with slope —2 and x-intercept (1, 0)

24. The line with slope 1 and x-intercept (—2, 0)

25. The line with slope —1/4 and x-intercept (3, 0)
26. The line with slope 1/5 and x-intercept (—1/2, 0)
27. The line passing through (2, —3) and parallel to

x+2y—4=0
28. The line passing through (1, 2) and parallel to
x—3y—6=0
29. The line passing through (—1, —1) and parallel to the line
passing through (0, 1) and (3, 0)
30. The line passing through (2, —3) and parallel to the line
passing through (0, —1) and (2, 1)
31. The line passing through (1, 4) and perpendicular to
2y =5x+7=0
32. The line passing through (—1, —1) and perpendicular to
x—y+3=0
33. The line passing through (5, —1) and perpendicular to the line
passing through (-2, 1) and (1, —2)
34. The line passing through (4, —1) and perpendicular to the line
passing through (-2, 0) and (1, 1)
35. The line passing through (4, 2) and parallel to the horizontal
line passing through (1, —2)
36. The line passing through (—1, 5) and parallel to the horizontal
line passing through (2, —1)
37. The line passing through (—1, 1) and parallel to the vertical
line passing through (2, —1)
38. The line passing through (3, 1) and parallel to the vertical line
passing through (—1, —2)
39. The line passing through (1, —3) and perpendicular to the
horizontal line passing through (-1, —1)
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40. The line passing through (4,2) and perpendicular to the
horizontal line passing through (3, 1)

41. The line passing through (7,3) and perpendicular to the
vertical line passing through (-2, 4)

42. The line passing through (—2,5) and perpendicular to the
vertical line passing through (1, 4)

43. To convert a length measured in feet to a length measured
in centimeters, we use the facts that a length measured in feet
is proportional to a length measured in centimeters and that 1 ft
corresponds to 30.5 cm. If x denotes the length measured in ft and
y denotes the length measured in cm, then

y = 30.5x

(a) Explain how to use this relationship.

(b) Use the relationship to convert the following measurements
into centimeters:

(i) oft (i) 3ft,2in (iii) 1ft,7in

(¢) Use the relationship to convert the following measurements
into ft:

(i) 173 cm (ii) 75 cm (iii) 48 cm

44. (a) To convert the weight of an object from kilograms (kg)
to pounds (Ib), you use the facts that a weight measured in
kilograms is proportional to a weight measured in pounds and that
1 kg corresponds to 2.20 1b. Find an equation that relates weight
measured in kilograms to weight measured in pounds.

(b) Use your answer in (a) to convert the following measure-
ments:

(i) 631b (i) 1501b (iii) 2.5 kg (iv) 140 kg

45. Assume that the distance a car travels is proportional to the
time it takes to cover the distance. Find an equation that relates
distance and time if it takes the car 15 min to travel 10 mi. What
is the constant of proportionality if distance is measured in miles
and time is measured in hours?

46. Assume that the number of seeds a plant produces is
proportional to its aboveground biomass. Find an equation that
relates number of seeds and aboveground biomass if a plant that
weighs 217 g has 17 seeds.

47. Experimental study plots are often squares of length 1 m. If
1 ft corresponds to 0.305 m, compute the area of a square plot of
length 1 m in ft*.

48. Large areas are often measured in hectares (ha) or in acres.
If 1 ha = 10,000 m? and 1 acre = 4046.86 m?, how many acres is 1
hectare?

49. To convert the volume of a liquid measured in ounces to a
volume measured in liters, we use the fact that 1 liter equals 33.81
ounces. Denote by x the volume measured in ounces and by y the
volume measured in liters. Assume a linear relationship between
these two units of measurements.

(a) Find the equation relating x and y.

(b) A typical soda can contains 12 ounces of liquid. How many
liters is this?

50. To convert a distance measured in miles to a distance
measured in kilometers, we use the fact that 1 mile equals 1.609
kilometers. Denote by x the distance measured in miles and by y
the distance measured in kilometers. Assume a linear relationship
between these two units of measurements.

(a) Find an equation relating x and y.

(b) The distance between Minneapolis and Madison is 261 miles.
How many kilometers is this?

51. Car speed in many countries is measured in kilometers per
hour. In the United States, car speed is measured in miles per hour.
To convert between these units, use the fact that 1 mile equals
1.609 kilometers.

(a) The speed limit on many U.S. highways is 55 miles per hour.
Convert this number into kilometers per hour.

(b) The recommended speed limit on German highways is 130
kilometers per hour. Convert this number into miles per hour.

To measure temperature, three scales are commonly used:
Fahrenheit, Celsius, and Kelvin. These scales are linearly related.
We discuss these scales in Problems 52 and 53.

52. (a) The Celsius scale is devised so that 0°C is the freezing
point of water (at 1 atmosphere of pressure) and 100°C is the
boiling point of water (at 1 atmosphere of pressure). If you are
more familiar with the Fahrenheit scale, then you know that water
freezes at 32°F and boils at 212°F. Find a linear equation that
relates temperature measured in degrees Celsius and temperature
measured in degrees Fahrenheit.

(b) The normal body temperature in humans ranges from 97.6°F
to 99.6°F. Convert this temperature range into degrees Celsius.

53. (a) The Kelvin (K) scale is an absolute scale of temperature.
The zero point of the scale (0 K) denotes absolute zero, the coldest
possible temperature; that is, no body can have a temperature
below 0 K. It has been determined experimentally that 0 K
corresponds to —273.15°C. If 1 K denotes the same temperature
difference as 1°C, find an equation that relates the Kelvin and
Celsius scales.

(b) Pure nitrogen and pure oxygen can be produced cheaply by
first liquefying purified air and then allowing the temperature
of the liquid air to rise slowly. Since nitrogen and oxygen
have different boiling points, they are distilled at different
temperatures. The boiling point of nitrogen is 77.4 K and
of oxygen is 90.2 K. Convert each of these boiling-point
temperatures into Celsius. If you solved Problem 52(a), convert
the boiling-point temperatures into Fahrenheit as well. Consider
the two techniques described for distilling nitrogen and oxygen.
Which element gets distilled first?

54. Use the following steps to show that if two nonvertical lines /4
and /, with slopes m and m,, respectively, are perpendicular, then
mym, = —1: Assume that m; < 0 and m, > 0.

(a) Use a graph to show that if #; and 6, are the respective angles
of inclination of the lines /; and /,, then 6; = 6, + 7. (The angle
of inclination of a line is the angle 8 € [0, ) between the line and
the positively directed x-axis.)

(b) Use the fact that tan(r — x) = — tanx to show that m; =
tan 0; and m, = tan6,.

(¢) Use the fact that tan(3 — x) = cotx and cot(—x) = —cotx
to show that m; = — cot 6,.

(d) From the latter equation, deduce the truth of the claim set
forth at the beginning of this problem.

mi113
55. Find the equation of a circle with center (—1, 4) and radius 3.
56. Find the equation of a circle with center (2, 3) and radius 4.

57. (a) Find the equation of a circle with center (2, 5) and radius
3.

(b) Where does the circle intersect the y-axis?
(¢) Does the circle intersect the x-axis? Explain.

58. (a) Find all possible radii of a circle centered at (3, 6) so that
the circle intersects only one axis.



(b) Find all possible radii of a circle centered at (3, 6) so that the
circle intersects both axes.

59. Find the center and the radius of the circle given by the
equation
(x—=27°4+y*=16

60. Find the center and the radius of the circle given by the
equation
G+ +(r=37=9

61. Find the center and the radius of the circle given by the
equation
0=x>+y>—4dx +2y—11

(To do this, you must complete the squares.)
62. Find the center and the radius of the circle given by the
equation
Wy 4H2x—4y+1=0
(To do this, you must complete the squares.)
mi114
63. (a) Convert 75° to radian measure.
(b) Convert %TL’ to degree measure.
64. (a) Convert —15° to radian measure.
(b) Convert %71 to degree measure.

65. Evaluate the following expressions without using a calculator:
(@) sin(—%) (b) cos(’y) (©) tan(5)

66. Evaluate the following expressions without using a calculator:
(a) sin(¥) (b) cos(—=X (¢) tan(%)

67. (a) Find the values of o € [0, 2rr) that satisfy
. 1
sina = — 5\/5

(b) Find the values of « € [0, 277) that satisfy

tano = \/g

68. (a) Find the values of o € [0, 2m) that satisfy
1
cosa = — 3 \/i

(b) Find the values of « € [0, 27) that satisfy
seca =2
69. Show that the identity
1+ tan’ 6 = sec* 6

follows from
sin®6 + cos’9 =1

70. Show that the identity
1+ cot’@ = csc? 0

follows from

sin 0 + cos? 6 = 1
71. Solve 2cosfsinfd = sin6 on [0, 27).
72. Solve sec’ x = \/gtanx +1on|0, 7).

m1.15

73. Evaluate the following exponential expressions:

1.1 ® Preliminaries 15

323172 sk52k—1

(@) #4725 ) 2 © 3

74. Evaluate the following exponential expressions:

@ @2ry  w () @ (52

75. Which real number x satisfies

(a) logyx =-2? (b) 10g1/3x =-37 (¢) logyx =27
76. Which real number x satisfies

(a) log,,x = —4? (b) log;,,x =27 (¢) logsx =3?

77. Which real number x satisfies

(a) log,,32=x? (b) log;,;81 =x? (¢) log,;0.001 = x?
78. Which real number x satisfies

(a) log, 64 = x? (b) log;,s625 =x? (¢) log 10,000 = x?
79. Simplify the following expressions:

(a) —In1 (b) log,(x2—4)  (c) log,4*!
80. Simplify the following expressions:

@ —Inl (b) In 2 (¢) log, 32+
81. Solve for x.

(a) e 1=2 (b) e =10 (©) e 1=10
82. Solve for x.

(a) 3* =281 (b) 9%+l =27 (¢) 10°* = 1000

83. Solve for x.

@ Inx—-3)=5 (b) nx+2)+Inx—-—2)=1
(c) log; x? —log;2x =2

84. Solve for x.

(@) In2x =3)=0 (b) log,(1 —x)=3

(¢) Inx?—2Inx =1

m1.1.6

In Problems 85-92, simplify each expression and write it in the
standard form a + bi.

85. 3—2i)— (—2+5i) 86. (7+i)—4

87. (4 —2i) + (9 + 4i) 88. (6 —4i) + (2 +5i)
89. 3(5+ 3i) 90. (2 —3i)(5 + 2i)
91. (6 —i)(6+1i) 92. (—4 —3i)(4 +2i)

In Problems 93-98, let 7 = 3 — 2i,u = —4 + 3i, v = 3 + 5i, and
w = 1 —i. Compute the following expressions:

93. z 9. z+u 95. z+v

9. v —w 97. vw 98. uz

99, If z=a+bi,findz+zandz — Z.

100. If z = a + bi, find Z. Use your answer to compute (z), and
compare your answer with z.

In Problems 101-106, solve each quadratic equation in the complex
number system.

101 2x> —3x+2=0
103. —x>+x+2=0 104. —2x2+x+3=0

105. 4x> —3x+1=0 106. —2x% +4x —3=0

In Problems 107-112, first determine whether the solutions of

each quadratic equation are real or complex without solving the
equation. Then solve the equation.

107. 3x> —4x —7=0 108. 3x> —4x+7=0
109. —x>4+2x—1=0 110. 4x> —x+1=0
111. 3x> —5x+6=0 112. —x*4+7x—2=0
113. Show (7) = z.

114. Showz +w =Z +w.

115. Show zw = zZw.

102. 3x* —2x+1=0
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M 1.2 Elementary Functions

f(b)
B{ [(A)

fl@
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b x

Figure 1.9 A function f(x) with
domain A, codomain B, and range

J(A).

EXAMPLE 1

B 1.2.1 What s a Function?

Scientific investigations often study relationships between quantities, such as how
enzyme activity depends on temperature or how the length of a fish is related to its
age. To describe such relationships mathematically, the concept of a function is useful.

The word function (or, more precisely, its Latin equivalent functio, which means
“execution”) was introduced by Leibniz in 1694 in order to describe curves. Later,
Euler (1707-1783) used it to describe any equation involving variables and constants.
The modern definition is much broader and emphasizes the basic idea of expressing
relationships between any two sets.

Definition A function f is a rule that assigns each element x in the set A
exactly one element y in the set B. The element y is called the image (or value)
of x under f and is denoted by f(x) (read “f of x”). The set A is called the
domain of f, the set B is called the codomain of f, and the set f(A) = {y :
y = f(x) for some x € A} is called the range of f.

To define a function, we use the notation

f:A—B
x = fx)

where A and B are subsets of the set of real numbers. Frequently, we simply write
y = f(x) and call x the independent variable and y the dependent variable. We can
illustrate functions graphically in the x—y plane. In Figure 1.9, we see the graph of
y = f(x), with domain A, codomain B, and range f(A).

The function f (x) must be specified; for example, f (x) could be given by a graph
as in Figure 1.9, or it could be expressed algebraically, such as f(x) = x%. Note that
f(A) C B, but not every element in the codomain B must be in f(A). For instance,
let

f:R—>R

2
X —> X

The domain of f is R, but the range of f is only [0, c0) because the square of a real
number is nonnegative; that is, f(R) = [0, oo) # R. Also, the domain of a function
need not be the largest possible set on which we can define the function, as R is in
the preceding example. For instance, we could have defined f on a smaller set, such
as [0, 1], calling the new function g, given by

g:[0,1]—- R
x—>x2

Although the same rule is used for f and g, the two functions are not the same,
because their respective domains are different.

Two functions f and g are equal if and only if

1. f and g are defined on the same domain, and
2. f(x) = g(x) for all x in the domain.

Let
fi:[0,1] - R
x = x°
le [0,1]—>R

x — /x4
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y=s/

Figure 1.10 The vertical line test

X

shows that the graphof y = f(x)isa

function.

y=fx)

Figure 1.11 The vertical line test
shows that the graph of y = f(x) is

not a function.

X
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and

f3ZR—>R

2
X —> X

Determine which of these functions are equal.

Because fi and f, are defined on the same domain and fi(x) = f(x) = x% for all
x € [0, 1], it follows that f; and f, are equal.

Neither f; nor f, is equal to f3, because the domain of f; is different from the
domains of f; and f5. [ |

The choices of domains for the functions that we have thus far considered may
look somewhat arbitrary (and they are arbitrary in the examples we have seen so far).
In applications, however, there is often a natural choice of domain. For instance, if we
look at a certain plant response (such as total biomass or the ratio of above to below
biomass) as a function of nitrogen concentration in the soil, then, given that nitrogen
concentration cannot be negative, the domain for this function could be the set of
nonnegative real numbers. As another example, suppose we define a function that
depends on the fraction of a population infected with a certain virus; then a natural
choice for the domain of this function would be the interval [0, 1] because a fraction
of a population must be a number between 0 and 1.

In our definition of a function, we stated that a function is a rule that assigns, to
each element x € A, exactly one element y € B. When we graph y = f(x) in the
x—y plane, there is a simple test to decide whether or not f(x) is a function: If each
vertical line intersects the graph of y = f(x) at most once, then f(x) is a function.
Figure 1.10 shows the graph of a function: Each vertical line intersects the graph of
y = f(x) at most once. The graph of y = f(x) in Figure 1.11 is not a function, since
there are x-values that are assigned to more than one y-value, as illustrated by the
vertical line that intersects the graph more than once.

Sometimes functions show certain symmetries. For example, in Figure 1.12,
f(x) = x is symmetric about the origin; that is, f(x) = — f(—x). In Figure 1.13,
gx) = x%is symmetric about the y-axis; that is, g(x) = g(—x). In the first case, we
say that f is odd; in the second case, that g is even. To check whether a function is
even or odd, we use the following definition:

A function f : A — B is called

1. evenif f(x) = f(—x)forallx € A, and
2. oddif f(x) = —f(—x)forallx € A.

— y
f(x)_x_ g(x):x2_

-3 -2 -1 0 1 2 3 x

Figure 1.12 The graph of y = x is symmetric about the Figure 1.13 The graph of y = x? is symmetric about the

origin.

y-axis.
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Figure 1.14 The composition of

functions.

EXAMPLE 2

Solution

EXAMPLE 3

Using this criterion, we can show that f(x) = x, x € R, is an odd function:
—f(=x)=—(—x)=x = f(x) forallx e R
Likewise, to show that g(x) = x2, x € R, is an even function, we compute
g(—x) = (—x)>=x*=yg(x) forallx e R

We will now look at the case where one quantity is given as a function of another
quantity that, in turn, can be written as a function of yet another quantity. To illus-
trate this situation, suppose we are interested in the abundance of a predator, which
depends on the abundance of a herbivore, which, in turn, depends on the abundance
of plant biomass. If we denote the plant biomass by x and the herbivore biomass
by u, then x and u are related via a function g, namely, u = g(x). Likewise, if we
denote the predator biomass by y, then « and y are related via a function f, namely,
y = f(u). We can express the predator biomass as a function of the plant biomass
by substituting g(x) for u. That is, we find y = f[g(x)]. Functions that are defined
in such a way are called composite functions.

Definition The composite function f o g (also called the composition of f
and g) is defined as

(fog)x) = flg(x)]

for each x in the domain of g for which g(x) is in the domain of f.

The composition of functions is illustrated in Figure 1.14. We call g the inner function
and f the outer function. The phrase “for each x in the domain of g for which g(x) is
in the domain of f” is best explained with the use of Figure 1.14. In order to compute
f(u), u needs to be in the domain of f. But since u = g(x), we really require that
g(x) be in the domain of f for the values of x we use to compute g(x).

If f(x)=+/x,x>0,and g(x) = x>+ 1,x € R, find
(@) (fog)(x)and (b) (go f)x).
(a) Tofind (f o g)(x), we set f(u) = \/u and g(x) = x*> 4 1. Then

y=fw = flg()] = fE&*+1)=,/x2+1

To determine the domain of f o g, we observe that the domain of the inner function
g is R and its range is [1, 00). Since the range of g is contained in the domain of the
outer function f ([1, co) C [0, 00)), the domain of f o g is R.

(b) Tofind (g o f)(x), weset g(u) = u” +1and f(x) = /x. Then

y=gw) =glf®]=gWx)=x)1 +1=x+1

To determine the domain of g o f, we observe that the domain of the inner function
f is [0, 00) and its range is [0, co0). The range of f is contained in the domain of the
outer function g ([0, c0) C R), so the domain of g o f is [0, 00). ]

In the last example, you should observe that f o g is different from g o f, which
implies that the order in which you compose functions is important. The notation
f o g means that you apply g first and then f. In addition, you should pay attention
to the domains of composite functions. In the next example, the domain is harder to
find.

If f(x)= 2x2,x > 2,and g(x) = 4/x,x > 0,find (f og)(x) together with its domain.



Solution

Restricted domain
of fog

—_——t

0 4

Domain of g(x)

g(x)

Domain of f(x)

0 2

Range of g(x)

Figure 1.15 Finding the domain of a
compositie function: The domain of
g(x) must be restricted in Example 3.
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We compute
(fog)x) = flg)] = f(Vx) =2(Jx)* = 2x

This part was not difficult. However, finding the domain of f o g is more complicated.
The domain of the inner function g is the interval [0, 0o0); hence, the range of g is the
interval [0, c0). The domain of f is only [2, 0co), which means that the range of g is
not contained in the domain of f. We therefore need to restrict the domain of g to
ensure that its range is contained in the domain of f. We can choose only values of
x such that g(x) € [2, 00). Since g(x) = +/x, we need to restrict x to [4, 00). Thus,
for every x € [4, 00), g(x) € [2, 00), which is the domain of f. Therefore,

(f 0 8)(x) =2x,

x >4
See Figure 1.15. ]

In the subsections that follow, we introduce the basic functions that are used
throughout the remainder of this book.

B 1.2.2 Polynomial Functions

Polynomial functions are the simplest elementary functions.

Definition A polynomial function is a function of the form
S (x) =ao+a1x+a2x2+...+anxn

where n is a nonnegative integer and ao, a1, . . . , a, are (real-valued) constants
with a, # 0. The coefficient g, is called the leading coefficient, and 7 is called
the degree of the polynomial function. The largest possible domain of f is R.

We have already encountered polynomials, namely, the constant function f(x) = c,
the linear function f(x) = mx + b, and the quadratic function f(x) = ax’. The
constant, nonzero function has degree 0, the linear function has degree 1, and the

quadratic function has degree 2. Other examples are f(x) = 4x> —=3x 4+ 1,x € R,

which is a polynomial of degree 3, and f(x) =2 — x7, x € R, which is a polynomial

of degree 7. In Figure 1.16, we display y = x" for n = 2 and 3. Looking at the figure,
we see that y = x" is an even function (i.e., symmetric about the y-axis) whenn = 2
and an odd function (i.e., symmetric about the origin) when n = 3. This property
holds in general: y = x" is an even function when n is even and an odd function
when 7 is odd. We can show this algebraically by using the criterion in Section 1.2.1.
(See Problem 28 at the end of this section.)

Figure 1.16 The graphs of y = x" forn =2 and n = 3.

Polynomials arise naturally in many situations. We present two examples.
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EXAMPLE 4

Solution

EXAMPLE 5

Suppose that at time 0 an apple begins to drop from a tree that is 64 ft tall. Ignoring
air resistance, we can show that at time ¢ (measured in seconds) the apple is at height
h(t) (measured in feet) given by

h(t) = 64 — 16¢>

We assume that the height of the ground level is equal to 0. Show that A(¢) is a
polynomial and determine its degree. How long will it take the apple to hit the
ground? Find an appropriate domain for A (t).

h(t)

70 h(t) —

60

50

40

30

20

10

0 I I I I I I I I I
0 02 04 06 08 1 12 14 16 18 2 1t

Figure 1.17 The graph of i(t) = 64 — 16> for 0 <t < 2 of
Example 4.

The function A(¢) is a polynomial of degree 2, with ap = 64, a; = 0, and a, = —16.
The graph of 4 (¢) is shown in Figure 1.17. The apple will hit the ground when /(¢) = 0.
That is, we must solve the quadratic equation 0 = 64 — 1617 as follows:

0 =64 —16¢°
tzzg:
16

t=2 (ort=-2)

Since the apple begins to drop at time t = 0, we can ignore the solutiont = —2 < 0.
We find that it takes the apple 2 seconds to hit the ground (ignoring air resistance).
Note that because /(f) > 0 [where h(¢) is the height above the ground and the height
of the ground level is equal to 0], the range is [0, 64]. Because ¢t > 0, the domain of
h(t) is the interval [0, 2]. [

A Chemical Reaction Consider the reaction rate of the chemical reaction
A+B — AB

in which the molecular reactants A and B form the molecular product AB. The rate
at which this reaction proceeds depends on how often A and B molecules collide. The
law of mass action states that the rate at which this reaction proceeds is proportional
to the product of the respective concentrations of the reactants. Here, concentration
means the number of molecules per fixed volume. If we denote the reaction rate by R
and the concentration of A and B by [A] and [B], respectively, then the law of mass
action says that
R oc[A] - [B]

Introducing the proportionality factor k, we obtain

R =k[A]-[B]
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Note that k > 0, because [A], [B], and R are positive. We assume now that the
reaction occurs in a closed vessel; that is, we add specific amounts of A and B to
the vessel at the beginning of the reaction and then let the reaction proceed without
further additions.

We can express the concentrations of the reactants A and B during the reaction
in terms of their initial concentrations a and b and the concentration of the molecular
product [AB]. If x = [AB], then

[Al]=a—x for0<x<a and [Bl=b—x forO<x<b

The concentration of AB cannot exceed either of the concentrations of A and B. (For
example, suppose five A molecules and seven B molecules are allowed to react; then
a maximum of five AB molecules can result, at which point all of the A molecules are
used up and the reaction ceases. The two B molecules left over have no A molecules
to react with.) Therefore, we get

R(x) =k(a—x)(b—x) forO0<x <aand0<x<bh

The condition 0 < x < a and 0 < x < b can be written as 0 < x < min(a, b), where
min(a, b) denotes the minimum of a and b. To see that R(x) is indeed a polynomial
function, we expand the expression for R(x) as

R(x) = k(ab — ax — bx + x?%)
= kx> —k(a + b)x + kab

for 0 < x < min(a, b). We now see that R(x) is a polynomial of degree 2.

A graphof R(x),0 < x < a,isshownin Figure 1.18 for the case a < b. (We chose
k =2,a = 2,and b = 5 in the figure.) Notice that when x = 0 (i.e., when no AB
molecules have yet formed), the rate at which the reaction proceeds is at a maximum.
As more and more AB molecules form and, consequently, the concentrations of the
reactants decline, the reaction rate decreases. This should also be intuitively clear: As
fewer and fewer A and B molecules are in the vessel, it becomes less and less likely
that they will collide to form the molecular product AB. When x = a = min(a, b),
the reaction rate R(a) = 0. This is the point at which all A molecules are exhausted

and the reaction necessarily ceases. ]
y
251 22 = x)(5 —x)

0
0 02 04 06 08 1 12 14 16 18 2 x

Figure 1.18 The graph of R(x) = 2(2 — x)(5 — x) for
0<x<2.

B 1.2.3 Rational Functions

Rational functions are built from polynomial functions.

Definition A rational function is the quotient of two polynomial functions
p(x) and g (x):

£ =22 for gt %0
q(x)
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EXAMPLE 6

N
r(N)_ r(N)—ak+N—
a
al2
O |
0k N

Figure 1.20 The graph of the Monod

function r(N)

=ak+LNf0rNZO.

Since division by 0 is not allowed, we must exclude those values of x for which g (x) =
0. Here are a couple of examples of rational functions, together with their largest
possible domains:

1
y=- x?éo
X

_x2—|-2x—1

, 3
x—3 x 7

Y

An important example of a rational function is the hyperbola, together with its
largest possible domain:

1
y=—, x#0
X

The graph of y is shown in Figure 1.19.

Figure 1.19 The graphof y = % for x # 0.

Throughout this text, we will encounter populations whose sizes change with
time. The change in population size is described by the growth rate. Roughly
speaking, the growth rate tells you how much a population changes during a small
time interval. (The growth rate is analogous to the velocity of a car: Velocity is also
a rate; it tells you how much the position changes in a small time interval. We will
give a precise definition of rates in Section 4.1.) The per capita growth rate is the
growth rate divided by the population size. The per capita growth rate is also called
the specific growth rate. The next example introduces a function that is frequently
used to describe growth rates.

Monod Growth Function There is a function that is frequently used to describe the
per capita growth rate of organisms when the rate depends on the concentration of
some nutrient and becomes saturated for large enough nutrient concentrations. If we
denote the concentration of the nutrient by N, then the per capita growth rate r(N)
is given by the Monod growth function

aN
N>0

M= N>
rN) =N

where a and k are positive constants. The graph of 7 (V) is shown in Figure 1.20;itis a
piece of a hyperbola. The graph shows a decelerating rise approaching the saturation
level a, which is the maximal specific growth rate. When N = k, r(N) = a/2; for
this reason, k is called the half-saturation constant. The growth rate increases with
nutrient concentration N; however, doubling the nutrient concentration has a much
bigger effect on the growth rate for small values of N than when N is already large.
When this type of function is used in biochemistry to describe enzymatic reactions,
it is called the Michaelis—-Menten function. ]
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B 1.2.4 Power Functions

Definition A power function is of the form
fx)=x"

where r is a real number.

Examples of power functions, with their largest possible domains, are

y=x1/3, xeR

y=x5/2, x>0

y = xl/z, x>0
y = x2 x>0
Polynomials of the form y = x", n = 1,2,..., are a special case of power

functions. Since power functions may involve even roots, asin y = X = (ﬁ)3, we
frequently need to restrict their domain.

Figure 1.21 compares the power functions y = X2, y= x'/%, and y=Xx for
x > 0. Pay close attention to how the exponent determines the ranking according

to size for x between 0 and 1 and for x > 1. We find that x”/* < x'/? < x~ Y% for
0<x < 1,butx5/2 > x1/?

/2 —-1/2

>x Y forx > 1.

] X
3 RV RN
4 x*l/Z
3__

24 .
1+ —--""
0 i : : : : : : :
05 1 15 2 25 3 35 4x
_1 —+

Figure 1.21 Some power functions with rational exponents.

Power functions are frequently found in “scaling relations” between biological
variables (e.g., organ sizes). These are relations of the form

y o x”

where r is anonzero real number. That is, y is proportional to some power of x. Recall
that we can write this relationship as an equation if we introduce the proportionality
factor k:

y = kx"
Finding such relationships is the objective of allometry. For example, in a study of 45
species of unicellular algae, a relationship between cell volume and cell biomass was
sought. It was found [see, for instance, Niklas (1994)] that

cell biomass  (cell volume)®7**

Most scaling relations are to be interpreted in a statistical sense; they are
obtained by fitting a curve to data points. The data points are typically scattered about
the fitted curve given by the scaling relation. (See Figure 1.22.) ]
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EXAMPLE 8

12 + 3)60'794

Cell biomass
oy
T

Cell volume

Figure 1.22 Some data points and the fitted curve of
Example 7. (Note: The “data points” aren't real.)

The next example relates the volume and the surface area of a cube. This
relationship is not to be understood in a statistical sense, because it is an exact
relationship resulting from geometric considerations.

Suppose that we wish to know the scaling relation between the surface area S and the
volume V of a cube. The scaling relations of each of these quantities with the length
L of the cube are as follows:

SoxL?> or S=kL?
VoxL® or V=kL?

Here, k1 and k, denote the constants of proportionality. (We label them with different
subscripts to indicate that they might be different.) To express S in terms of V, we
must first solve L in terms of V and then substitute L in the equation for S. Because

L = (V/ky)'3, it follows that

2
v\’ k
S =k (_) _ %Vz/s
ky K/

Introducing the constant of proportionality k = ky/ kg/ 3, we find that
S = kv, or simply S o V23

In words, the surface area of a cube scales with the volume in proportion to V3 We
can now ask, for instance, by what factor the surface area increases when we double
the volume. When we double the volume, we find that the resulting surface area,
denoted by §', is
S = kQV)? = 223 gy
s

That is, the surface area increases by a factor of 2%* ~ 1.587 if we double the volume

of the cube. This scaling has implications on heat retention in animals: A larger body
has a relatively smaller surface area and will retain more heat. ]

W 1.2.5 Exponential Functions

In our study of exponential functions, let’s first look at an example that illustrates
where they occur.
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Exponential Growth Bacteria reproduce asexually by cellular fission, in which the
parent cell splits into two daughter cells after duplication of the genetic material. This
division may happen as often as every 20 minutes; under ideal conditions, a bacterial
colony can double in size in that time.

Let us measure time such that one unit of time corresponds to the doubling time
of the colony. If we denote the size of the population at time ¢ by N (), then the
function

Nt)y=2", t>0

has the property of doubling its value every unit of time
N@+1) =2 =2.2"=2N(1) (1.2)

The function N(t) =2',¢ > 0, is an exponential function because the variable 7 is in
the exponent. We call the number 2 the base of the exponential function N (7) = 2'.

We find that when + = 0, N(0) = 1; that is, there is just one individual in
the population at time r = 0. If, at time r = 0, 40 individuals were present in the
population, we would write N (0) = 40 and

N()=40-2", t>0 (1.3)

You can verify that N(¢) in (1.3) also satisfies N(t + 1) = 2N (¢).

Itis often desirable not to specify the initial number of individuals in the equation
describing N (¢). This approach has the advantage that the equation for N (¢) then
describes a more general situation, in the sense that we can use the same equation
for different initial population sizes. We often denote the population size at time 0
by Ny (read “N sub 0”) instead of N (0). The equation for N (¢) is then

N({t)=Ng2', t>0
We can verify that N(0) = Ng2” = Nj and that N(t + 1) = N2'™" = 2(Ny2") =
2N (). n

The function f(t) = 2' can be defined for all # € R; its graph is shown in Figure
1.23.

J
35

30
25 1
20 A
15

10

-3 -2 -1 0

Figure 1.23 The function f(r) =2',¢ € R.

Here is the definition of an exponential function:

Definition The function f is an exponential function with base a if
fx)=a*

where a is a positive constant other than 1. The largest possible domain of f
is R.
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When a = 1, f(x) = 1 for all values of x. This is a case that will occur in
biological examples, but is excluded from the definition since it is simply the constant
function.

LN
(1/3) —

Figure 1.24 Exponential growth and exponential decay.

The basic shape of the exponential function f(x) = a* depends on the base a; two
examples are shown in Figure 1.24. As x increases, the graph of f(x) = 2" shows a
rapid increase, whereas the graph of f(x) = (1/3)" shows a rapid decrease toward 0.
We find the rapid increase whenever a > 1 and the rapid decrease whenever 0 < a <
1. Therefore, we say that we have exponential growth when a > 1 and exponential
decay when 0 < a < 1.

Recall that ¢” = 1 and a/* = Ya, where k is a positive integer. In Subsection
1.1.5, we summarized the properties of exponentials. Since they are very important,
we list them again here:

aa* =a"*
r
a_ — ariS
a’
a_r — l
a”
K
(ar) — ars

In many applications, the exponential function is expressed in terms of the base
e = 2.718..., which we encountered in Subsection 1.1.5. The number e is called
the natural exponential base. The exponential function with base e is alternatively
written as exp(x). That is,
exp(x) = ¢€*

The advantage of this alternative form can be seen when we try to write something

2 /
like e*/ x3+1: exp(x2 /+/x3 + 1) is easier to read. More generally, if g(x) is a function
in x, then we can write, equivalently,

explg(x)] or  efW

Bases 2 and 10 are also frequently used; in calculus, however, e will turn out to be the
most common base.

The next two examples provide an important application of exponential
functions.

Radioactive Decay Radioactive isotopes such as carbon 14 are used to determine
the absolute age of fossils or minerals, establishing an absolute chronology of the
geological time scale. This technique was discovered in the early years of the 20th
century and is based on the property of certain atoms to transform spontaneously
by giving off protons, neutrons, or electrons. The phenomenon, called radioactive



W) WD) = Woe ™

Figure 1.25 The function
W(Z) = ‘4/(167“.
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decay, occurs at a constant rate that is independent of environmental conditions. The
method was used, for instance, to trace the successive emergence of the Hawaiian
islands, from the oldest, Kauai, to the youngest, Hawaii (which is about 100,000 years
old).

Carbon 14 is formed high in the atmosphere. It is radioactive and decays into
nitrogen (Nl4). There is an equilibrium between atmospheric carbon 12 (Clz) and
carbon 14 (Cl4)—a ratio that has been relatively constant over a fairly long period.
When plants capture carbon dioxide (CO,) molecules from the atmosphere and build

them into a product (such as cellulose), the initial ratio of C" to C" is the same as
thatin the atmosphere. Once the plants die, however, their uptake of CO, ceases, and

the radioactive decay of C" causes the ratio of C'* to C'? to decline. Because the law
of radioactive decay is known, the change in ratio provides an accurate measure of
the time since the plants’ death.

According to the radioactive decay law, if the amount of C" at time ¢ is denoted
by W(t), with W(0) = W, then

W)= Wee™, t>0

where A > 0 (X is the lowercase Greek letter lambda) denotes the decay rate. The
function W (r) = Woe ™ is another example of an exponential function. Its graph is
shown in Figure 1.25.

Frequently, the decay rate is expressed in terms of the half-life of the material,
which is the length of time that it takes for half of the material to decay. If we denote
this time by T}, then (see Figure 1.25)

— 1 — =Ty,
W(Th) = EWO = W()e

from which we obtain

1
Z— e

2

2 =¢"h
Recall from algebra (or Subsection 1.1.5) that, to solve for the exponent AT}, we
must take logarithms on both sides. Since the exponent has base e, we use natural

logarithms and find that
In2 = AT,

Solving for 7}, or A yields

In2 In2
T, = — or A= —
A T,

It is known that the half-life of C'* is 5730 years. Hence,

_ In2
5730 years

Note that the unit “years” appears in the denominator. It is important to carry the
units along. When we compute At in the exponent of e ™, we need to measure ¢ in
units of years in order for the units to cancel properly. For example, suppose ¢t = 2000
years; then

In2 (In2)(2000)

At = ——— 2000 years
5730 years 5730

and we see that “years” appears in both the numerator and the denominator and thus
can be canceled. ]

~ 0.2419
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Solution

fx)

'

Figure 1.26 The function y = f(x)
and its inverse.

An application of the c* dating method is given in the next example.

Suppose that, on the basis of their C" content, samples of wood found in an

archeological excavation site contain about 23% as much C" as does living plant
material. Determine when the wood was cut.

The ratio of the current amount of C'* to the amount of living plant material is
expressed as

0.23 = w@o _ e M
W (0)

Taking logarithms (base ¢) on both sides, we obtain
In(0.23) = —At

or

1
M = —1In(0.23) =In —
0.23

With A = In2/(5730 years) from Example 10,

5730 years 1 1
n
In2 0.23

Using a calculator to compute this result, we find that the wood was cut about 12,150
years ago. |

B 1.2.6 Inverse Functions

Before we can introduce logarithmic functions, we must understand the concept of
inverse functions. Roughly speaking, the inverse of a function f reverses the effect
of f. Thatis, if f maps x into y = f(x), then the inverse function, denoted by f -
(read “f inverse”), takes y and maps it back into x. (See Figure 1.26.) Not every
function has an inverse: Because an inverse function is a function itself, we require
that every value y in the range of f be mapped into exactly one value x. In other
words, for a function to have an inverse, it must be that whenever x; # x;, it follows
that f(x1) # f(xy) or, equivalently, that f(x;) = f(x,) implies x; = x;. (Recall
the definition of a function, in which we required that each element in the domain be
assigned to exactly one element in the range.)

Functions that have the property “x; # x; implies f(x;) # f(x2)” [or,
equivalently, “ f(x;) = f(x,) implies x; = x,”] are called one to one. If you know
what the graph of a particular function looks like over its domain, then it is easy to
determine whether or not the function is one to one: If no horizontal line intersects
the graph of the function f more than once, then f is one to one. This criterion is
called the horizontal line test. We illustrate it in Figures 1.27 and 1.28.

Y y=x — Y y=x*—

8 - g

6 - 6 -

4

4

2- 2
. : . L L . L | | \|\/| | |
-2 -15 —1-=05 |0 05 1 15 2%x T 1 o 1 5 3

Figure 1.27 Horizontal line test successful. Figure 1.28 Horizontal line test unsuccessful.
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Solution
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Figure 1.29 The graph of
f(x) = x>+ 1in Example 12. The
horizontal line test is successful.
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Figure 1.30 Inverse functions.
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Now consider y = x> and y = x%, for x € R. The function y = x’,x € R,

has an inverse function, because xf # xi whenever x; # x;. (See Figure 1.27.) The
function y = xz, x € R, does not have an inverse function, because x; # x; does not
imply )cl2 # x§ (or, equivalently, )cl2 = x22 does not imply x; = x;; see Figure 1.28).

The equation xlz = xi implies only that |x;| = |x;|. Since x; and x; can be positive
or negative, we cannot simply drop the absolute-value signs. For instance, both —2
and 2 are mapped into 4, and we find that f(—2) = f(2) but —2 # 2. (Note that
| — 2| = |2|.) To invert this function, we would have to map 4 into —2 and 2, but
then it would no longer be a function by our definition. By restricting the domain of
y = x? to, say, x > 0, we can define an inverse function of y = xz, x > 0.

Here is the formal definition of an inverse function:

Definition Let f : A — B be a one-to-one function with range f(A). The
inverse function f ' has domain f(A) and range A and is defined by

fYy)=x ifandonlyif y= f(x)
forally € f(A).

Find the inverse function of f(x) = X+ 1,x >0.

First, note that f(x) is one to one. To see this quickly, graph the function and apply the
horizontal line test. (See Figure 1.29.) Be aware, though, that unless you know what
the graph looks like over its entire domain, the graphical approach can be misleading.
To demonstrate it algebraically, start with f(x;) = f(x) and show that this implies
X1 = Xp.
fx) = fx)
xl3 +1= xi +1

303
X=X

Taking the third root on both sides gives x; = x,, which tells us that f(x) has an
inverse. Now we will find f -1
To find an inverse function, we follow three steps:
1. Write y = f(x):
y=x>+1
2. Solve for x:
=y-1

x=+y—1

The range of f is [1, c0), and this range becomes the domain of f ~1 so we

obtain
o =Vy-1,
Typically, we write functions in terms of x. To do this, we need to interchange
xand yinx = f~'(y). This is the third step:
3. Interchange x and y:

y=1

y=fTm=Jx -1 x21
Note that switching x and y in step 3 corresponds to reflecting the graph of
y = f(x) about the line y = x. The graphs of f and f ~! are shown in Figure
1.30. Look at the graphs carefully, and observe how they are related to each
other: Each can be obtained from the other by reflection about the line y = x.
|
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S =2¢
g(x) =logy x —
h(x)=x — — |

As mentioned in the beginning of this subsection, the inverse of a function f
reverses the effect of f. If we first apply f to x and then f ! to f(x), we obtain the
original value x. Likewise, if we first apply f ~! to x and then ftof _1(x), we obtain
the original value x. That is, if f : A — B has an inverse f ~!, then

FUfe)l=x forallx € A
flf'@]l=x  forallx € f(A)

[A note of warning: The superscript in f ~! does not indicate the reciprocal of
f (ie., 1/f). This difference is further explained in Problem 74 at the end of this
section. ]
B 1.2.7 Logarithmic Functions
Recall from algebra (or Subsection 1.1.5) that, to solve the equation
e* =3
for x, you must take logarithms on both sides:

x=1n3

In other words, applying the natural logarithm undoes the operation of raising e to
the x power. Thus, the natural logarithm is the inverse of the exponential function,
and conversely, the exponential function is the inverse of the logarithmic function.

We will now define the inverse of the exponential function f(x) = a*, x € R.
The base a can be any positive number, except 1.

Definition The inverse of f(x) = a” is called the logarithm to base a and is
written fﬁl(x) = log, x.

The maximum domain of f(x) = a” is the set of all real numbers, and its range is the
set of all positive numbers. Since the range of f is the domain of f ~!, we find that
the maximum domain of f ! (x) = log, x is the set of positive numbers.

Because y = log, x is the inverse function of y = a", we can find the graph of
y = log, x by reflecting the graph of y = a” about the line y = x. Recall that the
graph of y = a" had two basic shapes, depending on whether 0 < a < lora > 1.
(See Figure 1.24.) Figure 1.31 illustrates the graphs of y = a* and y = log, x when
a>1.

y X
o= — .
g(x) =logyp x — //
3 h(x)=x——//

Figure 1.31 The graph of y = a* and the graph of Figure 1.32 The graph of y = a* and the graph of

y =log, x fora = 2.

y =log, x fora = %

Figure 1.32 shows the graphs of y = a* and y = log, x when 0 < a < 1.
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Figure 1.33 The graphs of y = ¢*

and y = Inx.
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We can now summarize the relationship between the exponential and the
logarithmic functions:

1. d°%«* = x forx > 0
2. log,a" =xforx eR

It is important to remember that the logarithm is defined only for positive
numbers; that is, y = log, x is defined only for x > 0. The logarithm satisfies the
following properties:

log,(st) =log, s + log,, t

s
log, (;) =log, s —log,t
log,s" =rlog,s

The inverse of the exponential function with the natural base e is denoted by In x
and is called the natural logarithm of x. The graphs of y = ¢* and y = In x are shown
in Figure 1.33. Note that both ¢* and In x are increasing functions. However, whereas
" climbs very quickly for large values of x, In x increases very slowly for large values
of x. Looking at both graphs, we can see that each can be obtained as the reflection
of the other about the line y = x.

The logarithm to base 10 is frequently written as log x (i.e., the base of 10 in
log;, x is omitted).

Simplify the following expressions:

@) log,[8Gx —2)] () logs9"  (¢) Ine®™ !

(a) We simplify as follows:

log,[8(x — 2)] = log, 8 + log,(x —2) =3 4+ log,(x —2)

No further simplification is possible.

(b) Simplifying yields

log; 9* = xlog; 9 = x log; 3* = 2x

The fact that log; 9 = 2 can be seen in two ways: We can write 9 = 3% and say that

applying log; undoes raising 3 to the second power (as we did previously), or we can
say that log; 9 denotes the exponent to which we must raise 3 in order to get 9.

(¢) We use the fact that In x and e¢* are inverse functions and find that
2
Ine* 1 =3x2 41 ]
Any exponential function with base a can be written as an exponential function

with base e. Likewise, any logarithm to base a can be written in terms of the natural
logarithm. The following two identities show how:

a* = explxInal

log, x = —
Ina

The first identity follows from the fact that exp and In are inversely related (which
implies that a* = exp[lna*]) and the fact that Ina® = xIna. To understand the
second identity, note that

y =log, x means a’ =x
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Taking logarithms to base e on both sides of a” = x, we get

Ina” =Inx
or
yvlna =1Inx
Hence,
Inx
y = 1—
na

EXAMPLE 14 Write the following expressions in terms of base e:
@ 2" () 10" (© logsx () log,(3x — 1)

Solution (@) 2° = exp(In2") = exp(xIn2) = ¢*"?

() 105+ = exp(In 10°*") = exp [(x2 +1)In 10] = (& HDIn10
© 1 Inx
C (0] = —

&3 In3

InGx — 1)

d) log,(3x — 1) = —————~ n
(d) log,(3x — 1) 2

DNA sequences evolve over time by various processes. One such process is the
substitution of one nucleotide for another. The simplest substitution scheme is that of
Jukes and Cantor (1969), which assumes that substitutions are equally likely among
the four types of nucleotide. In comparing two DNA sequences that have a common
origin, it is possible to estimate the number of substitutions per site. Since more
than one substitution can occur per site, the number of observed substitutions may
be smaller than the number of actual substitutions, particularly when the time of
divergence is large. Mathematical models are used to correct for this difference.
The proportion p of observed nucleotide differences between two sequences that
share a common ancestor can be used to find an estimate of the actual number K
of substitutions per site since the time of divergence. According to the substitution
scheme of Jukes and Cantor, K and p are related by

K 3l 1 4
= ——1n —_—
4 3P

provided that p is not too large. Assume that two sequences of length 150 nucleotides
differ from each other by 23 nucleotides. Find K.

Solution The variable p denotes the proportion of observed nucleotide differences, which is
23/150 A 0.1533 in this example. We thus obtain

3 4 23
K=——In({1l—-—)=0.1715 ]
4 3150

W 1.2.8 Trigonometric Functions

The trigonometric functions are examples of periodic functions.

Definition A function f(x) is periodic if there is a positive constant a such
that

fx+a)=fx)

for all x in the domain of f. If a is the smallest number with this property, we
call it the period of f(x).
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We begin with the sine and cosine functions. In Subsection 1.1.4, we recalled
the definition of sine and cosine on a unit circle. There, sin 6 and cos 6 represented
trigonometric functions of angles, and 6 was measured in degrees or radians. Now
we define the trigonometric functions as functions of real numbers . For instance, we

nx—

11
—154
21

\% > define f(x) = sinx for x € R. The value of sin x is then, by definition, the sine of an
au

angle of x radians (and similarly for all the other trigonometric functions).

The graphs of the sine and cosine functions are shown in Figures 1.34 and 1.35,
respectively.

The sine function, y = sinx, is defined for all x € R. Itsrangeis —1 < y < 1.

Figure 1.34 The graph of y = sin x. Likewise, the cosine function, y = cosx, is defined for all x € R with range —1 <

1.
1

(S

y < 1. Both functions are periodic with period 2. That is, sin(x + 27) = sinx and
cos(x + 27) = cosx. [We also have sin(x + 47) = sinx, sin(x 4+ 67) = sinx, ...,

COS X e

and cos(x + 4w) = cosx, cos(x + 6wr) = cosx,..., but, by convention, we use
the smallest possible value to specify the period.] We see from Figures 1.34 and 1.35

N\, ¥

\ / that the graph of the cosine function can be obtained by shifting the graph of the sine
NP

function a distance of 77 /2 units to the left. (We will discuss horizontal shifts of graphs
—2m \—m #0.51 . .- .
\/_1 1 \/ in more detail in the next section.)
151 To define the tangent function, y = tan x, recall that
_2 1
sin x
. tanx =

Figure 1.35 The graph of y = cosx. COS X
y tan x — Because cos x = 0 for values of x that are odd integer multiples of /2, the domain
4l of tan x consists of all real numbers with the exception of odd integer multiples of
5 /2. The range of y = tanx is —oo < y < oo. The graph of y = tanx is shown in

T Figure 1.36, from which we see that tan x is periodic with period 7.

5 > The graphs of the remaining three trigonometric functions are shown in Figures
T i 7T 4 1.37-1.39. Recall that secx = %, cscx = ﬁ, and cotx = ﬁ It follows that
44 the domain of the secant function y = secx consists of all real numbers with the
exception of odd integer multiples of 7 /2; the range is |y| > 1. The domain of the

Figure 1.36 The graph of y = tanx.

cosecant function y = csc x consists of all real numbers with the exception of integer
multiples of r; the range is |y| > 1. The domain of the cotangent function y = cotx
consists of all real numbers with the exception of integer multiples of ; the range is
—00 <y < o0.

SE€C X — cot x —

B X 2\ T \ew X
72 + 4 T
ﬂ 47 ﬂ ﬂ“ ﬂ il

Figure 1.37 The graph of y = secx. Figure 1.38 The graph of y = cscx. Figure 1.39 The graph of y = cotx.

Since the sine and cosine functions are of particular importance, we now describe
them in more detail. Consider the function

f(x) = asin(kx) forx € R

where a is a real number and £ # 0. Now, f(x) takes on values between —a and a.
We call |a| the amplitude. The function f (x) is periodic. To find the period p of f(x),
we set
_2n

|k

Because the cosine function can be obtained from the sine function by a horizontal
shift, we can define the amplitude and period analogously for the cosine function.
That is, f(x) = a cos(kx) has amplitude |a| and period p = 27/|k|.

lk|p =2m or p
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EXAMPLE 16

Solution

Compare
f(x) =3sin (%x) and g(x) =sinx

The amplitude of f(x) is 3, whereas the amplitude of g(x) is 1. The period p of f(x)
satisfies 7 p = 27 or p = 8, whereas the period of g(x) is 27r. Graphs of f(x) and

g(x) are shown in Figure 1.40. [ |
y
4 T 3sin (%x)
3+ sin(x)
2 =4
1 -+
A \
=37 =27t 17 T 27 37'7\ X
_3 .
_4 .

Figure 1.40 The graphs of y
in Example 16.

= 3sin(7x) and g(x) = sinx

Remark. A number is called algebraic if it is the solution of a polynomial equation
with rational coefficients. For instance, /2 is algebraic, as it satisfies the equation
x* —2 = 0. Numbers that are not algebraic are called transcendental. For instance,
7 and e are transcendental.

A similar distinction is made for functions. We call a function y = f (x) algebraic
if it is the solution of an equation of the form

P,(x)y" + -4+ Pi(x)y + Py(x) =0

in which the coefficients are polynomial functions in x with rational coefficients. For
instance, the function y = 1/(1 + x) is algebraic, as it satisfies the equation (x +
1)y —1 = 0. Here, Pi(x) = x + 1 and Py(x) = —1. Other examples of algebraic
functions are polynomial functions with rational coefficients and rational functions
with rational coefficients.

Functions that are not algebraic are called transcendental. All the trigonometric,
exponential, and logarithmic functions that we introduced in this section are
transcendental functions.

Section 1.2 Problems

m1i1.2.1 (b) Are the functions
In Problems 1-4, state the range for the given functions. Graph each F) = x*—1 x#£1
function. Cox—1
1. f(x)=x*>,xeR 2. f(x) =x%xe[0,1] and
3 f)=x%-1<x<0 4 f(x)=x-3<x<} gx)=x+1, xeR
equal?
5. (a) Show that, for x # 1, 6. (a) Show that
2 _ 2(x —1) forx>1
ol 2x — 1] =

x—1

2(1 —x) forx <1



(b) Are the functions

2—2x for0<x <1
fx) =
2x —2 forl<x <2

and
g(x) =2|x — 1], x €[0,2]
equal?
In Problems 7-12, sketch the graph of each function and decide in
each case whether the function is (i) even, (ii) odd, or (iii) does not

show any obvious symmetry. Then use the criteria in Subsection
1.2.1 to check your answers.

7. f(x) =2x 8. f(x) =3x2
9. f(x)=13x]| 10. f(x)=2x+1
1. f(x) = —|x]| 12. f(x) =3x3
13. Suppose that
fx)=x* xeR
and
gx)=34+x, xeR

(a) Show that

(fog))=@B+x)7 xeR
(b) Show that
(go Hx)=3+x>, xeR
14. Suppose that
fx) = X, xeR
and
gx)y=1—-x, xeR
(a) Show that
(fog)x)=(1—-x), xeR
(b) Show that
(gofHx)=1—-x, xeR
15. Suppose that
fx)=1—-x* xeR
and
gx)=2x, x>0
(a) Find
(fog))
together with its domain.
(b) Find
(g0 fHx)
together with its domain.
16. Suppose that
fO) = —— x £
X)=——, Xx#—
x+1
and
g(x) =2x*>, xeR

(a) Find (f o g)(x). (b) Find (g o f)(x).
In both (a) and (b), find the domain.
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17. Suppose that
fx) =322,

x>3

and
x>0

g(x) = V/x,

Find (f o g)(x) together with its domain.

18. Suppose that
fx) =x,

g) = Vx + 1,

Find (f o g)(x) together with its domain.

19. Suppose that f(x) = x>, x > 0,and g(x) = /x, x > 0.
Typically, f o g # g o f, but this is an example in which the order
of composition does not matter. Show that f o g = g o f.

20. Suppose that f(x) = x*,x > 0.Find g(x) so that fog = go f.

x >3

and
x >3
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21. Use a graphing calculator to graph f(x) = x%,x > 0, and
g(x) = x*, x > 0, together. For which values of x is f(x) > g(x),
and for which is f(x) < g(x)?

22. Use a graphing calculator to graph f(x) = x*, x > 0, and
g(x) = x°, x > 0, together. When is f(x) > g(x), and when is
f(x) < gx)?

23. Graphy = x",x > 0,forn = 1,2, 3, and 4 in one coordinate
system. Where do the curves intersect?

24. (a) Graph f(x) = x,x > 0,and g(x) = x2, x > 0, together,
in one coordinate system.

(b) For which values of x is f(x) > g(x), and for which values of
xis f(x) < g(x)?

25. (a) Graph f(x) = x?and g(x) = x> for x > 0, together, in
one coordinate system.

(b) Show algebraically that

forO0 <x <1.

(¢) Show algebraically that

forx > 1.

26. Show algebraically that if n > m,

x"<x™ for0<x<1

and

x">x" forx >1
27. (a) Show that y = x2, x € R, is an even function.
(b) Show that y = x3, x € R, is an odd function.

28. Show that
(a) y =x",x € R, is an even function when # is an even integer.
(b) y =x",x € R,is an odd function when 7 is an odd integer.

29. In Example 5 of this section, we considered the chemical
reaction
A+B— AB

Assume that initially only A and B are in the reaction vessel and
that the initial concentrations are a = [A] =3 and b = [B] = 4.
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(a) We found that the reaction rate R(x), where x is the
concentration of AB, is given by

R(x) =k(a—x)(b—x)

where a is the initial concentration of A, b is the initial
concentration of B, and k is the constant of proportionality.
Suppose that the reaction rate R(x) is equal to 9 when the
concentration of AB is x = 1. Use this relationship to find the
reaction rate R(x).

(b) Determine the appropriate domain of R(x), and use a
graphing calculator to sketch the graph of R(x).

30. An autocatalytic reaction uses its resulting product for the
formation of a new product, as in the reaction

A+X—-X

If we assume that this reaction occurs in a closed vessel, then the
reaction rate is given by

R(x) =kx(a — x)

for 0 < x < a, where a is the initial concentration of A and x is
the concentration of X.

(a) Show that R(x) is a polynomial and determine its degree.
(b) Graph R(x) for k = 2 and a = 6. Find the value of x at which
the reaction rate is maximal.

31. Suppose that a beetle walks up a tree along a straight line at a
constant speed of 1 meter per hour. What distance will the beetle
have covered after 1 hour, 2 hours, and 3 hours? Write an equation
that expresses the distance (in meters) as a function of the time (in
hours), and show that this function is a polynomial of degree 1.

32. Suppose that a fungal disease originates in the middle of an
orchard, initially affecting only one tree. The disease spreads out
radially at a constant speed of 10 feet per day. What area will be
affected after 2 days, 4 days, and 8 days? Write an equation that
expresses the affected area as a function of time, measured in days,
and show that this function is a polynomial of degree 2.
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In Problems 33-36, for each function, find the largest possible
domain and determine the range.

33 - b 34 - x
-f(x)—l_x 'f(x)_(x—Z)(x+3)
2 1
35, f(x) = ;2_9 3. /()= 5

37. Compare y = i and y = Xiz for x > 0 by graphing the
two functions. Where do the curves intersect? Which function is
greater for small values of x? for large values of x?

38. Let n and m be two positive integers with m < n. Answer the
following questions about y = x " and y = x " for x > 0: Where
do the curves intersect? Which function is greater for small values
of x? for large values of x?

39. Let

1
= —, —1
Jx) i 5

(a) Use a graphing calculator to graph f(x).
(b) On the basis of the graph in (a), determine the range of f(x).
(¢) For which values of x is f(x) = 2?

(d) On the basis of the graph in (a), determine how many
solutions f(x) = a has, where a is in the range of f(x).

40. Let
2x

, x>0

fx) =

(a) Use a graphing calculator to graph f(x).

(b) Find the range of f(x).

(¢) For which values of x is f(x) = 1?

(d) Based on the graph in (a), explain in words why, for any value
a in the range of f(x), you can find exactly one value x > 0 such
that f(x) = a. Determine x by solving f(x) = a.

41. Let
3x

, x>0

fx) =

(a) Use a graphing calculator to graph f(x).

(b) Find the range of f(x).

(¢) For which values of x is f(x) = 2?

(d) On the basis of the graph in (a), explain in words why, for any

value a in the range of f(x), you can find exactly one value x > 0
such that f(x) = a. Determine x by solving f(x) = a.

In Problems 42—44, we discuss the Monod growth function, which
was introduced in Example 6 of this section.
42. Use a graphing calculator to investigate the Monod growth
function

aN

, N=0

k+ N
where a and k are positive constants.
(a) Graph r(N) for i)a = S5andk = 1, (ii)a = Sand k = 3,
and (iii) ¢ = 8 and k = 1. Place all three graphs in one coordinate
system.

r(N) =

(b) On the basis of the graphs in (a), describe in words what
happens when you change a.
(¢) On the basis of the graphs in (a), describe in words what
happens when you change k.

43. The Monod growth function r(N) describes growth as a
function of nutrient concentration N. Assume that

N
r(Ny=5——, N=>0
1+ N

Find the percentage increase when the nutrient concentration is
doubled from N = 0.1 to N = 0.2. Compare this result with what
you find when you double the nutrient concentration from N = 10
to N = 20. This is an example of diminishing return.

44. The Monod growth function r(N) describes growth as a
function of nutrient concentration N. Assume that

(N) N N=>0
r :a b p—
k+N

where a and k are positive constants.
(a) What happens to r(N) as N increases? Use this relationship
to explain why a is called the saturation level.

(b) Show that k is the half-saturation constant; that is, show that
if N =k, thenr(N) =a/2.
45. Let

(a) Use a graphing calculator to graph f(x).
(b) On the basis of your graph in (a), find the range of f(x).
(¢) What happens to f(x) as x gets larger?



46. The function

where n is a positive integer and b is a positive real number, is
used in biochemistry to model reaction rates as a function of the
concentration of some reactants.

(a) Use a graphing calculator to graph f(x) forn = 1,2,and 3 in
one coordinate system when b = 2.

(b) Where do the three graphs in (a) intersect?

(¢) What happens to f(x) as x gets larger?

(d) For an arbitrary positive value of b, show that f(b) = 1/2.
On the basis of this demonstration and your answer in (c), explain
why b is called the half-saturation constant.
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In Problems 47-50, use a graphing calculator to sketch the graphs
of the functions.

47. y=x¥%x>0 4. y=x"3 x>0

49. y=x" x>0 50. y=2x""8,x>0

51. (a) Graphy = x "2, x > 0,and y = x'/?, x > 0, together,
in one coordinate system.

(b) Show algebraically that

X2 > x112

for0 <x <1.

(¢) Show algebraically that
X712 < X112

forx > 1.

52. (a) Graphy = x*2,x > 0,and y = x'/2, x > 0, together, in
one coordinate system.
(b) Show algebraically that

x5 < x12

for 0 < x < 1. (Hint: Show that x'/?/x71/? =
0<x<1)

(c) Show algebraically that

x < 1 for

x5 > x12

forx > 1.

In Problems 53-56, sketch each scaling relation (Niklas, 1994).

53. In a sample based on 46 species, leaf area was found to be
proportional to (stem diameter)%*. On the basis of your graph,
as stem diameter increases, does leaf area increase or decrease?

54. Inasample based on 28 species, the volume fraction of spongy
mesophyll was found to be proportional to (leaf thickness)~*4.
(The spongy mesophyll is part of the internal tissue of a leaf
blade.) On the basis of your graph, as leaf thickness increases, does
the volume fraction of spongy mesophyll increase or decrease?

55. In a sample of 60 species of trees, wood density was found
to be proportional to (breaking strength)®$2. On the basis of your
graph, does breaking strength increase as wood density increases?
or as wood density decreases?

56. Suppose that a cube of length L and volume V has mass M
and that M = 0.35V. How does the length of the cube depend on
its mass?
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57. Assume that a population size at time ¢ is N (¢) and that

Nit)y=2", t>0

(a) Find the population size forr =0, 1,2, 3, and 4.
(b) Graph N(¢) fort > 0.
58. Assume that a population size at time ¢ is N (¢) and that

N({)=40-2", t>0

(a) Find the population size at time r = 0.

(b) Show that

N(t) = 40¢'™2, >0

(¢) How long will it take until the population size reaches 1000?
[Hint: Find ¢ so that N (¢) = 1000.]

59. The half-life of C'* is 5730 years. If a sample of C'* has a mass
of 20 micrograms at time # = 0, how much is left after 2000 years?
60. The half-life of C'* is 5730 years. If a sample of C'* has a mass
of 20 micrograms at time 0, how long will it take until (a) 10 grams
and (b) 5 grams are left?

61. After 7 days, a particular radioactive substance decays to half
of its original amount. Find the decay rate of this substance.

62. After 5 days, a particular radioactive substance decays to 37 %
of its original amount. Find the half-life of this substance.

63. Polonium 210 (Po*"’) has a half-life of 140 days.

(a) If a sample of Po’!’ has a mass of 300 micrograms, find a
formula for the mass after # days.

(b) How long would it take this sample to decay to 20% of its
original amount?

(¢) Sketch the graph of the amount of mass left after ¢ days.

64. The half-life of C'* is 5730 years. Suppose that wood found at
an archeological excavation site contains about 35% as much C'
(in relation to C'?) as does living plant material. Determine when
the wood was cut.

65. The half-life of C'* is 5730 years. Suppose that wood found
at an archeological excavation site is 15,000 years old. How much
C'" (based on C'? content) does the wood contain relative to living
plant material?

66. The age of rocks of volcanic origin can be estimated with
isotopes of argon 40 (Ar*’) and potassium 40 (K*'). K* decays
into Ar*’ over time. If a mineral that contains potassium is buried
under the right circumstances, argon forms and is trapped. Since
argon is driven off when the mineral is heated to very high
temperatures, rocks of volcanic origin do not contain argon when
they are formed. The amount of argon found in such rocks can
therefore be used to determine the age of the rock. Assume that a
sample of volcanic rock contains 0.00047% K*. The sample also
contains 0.000079% Ar*’. How old is the rock? (The decay rate of
K* to Ar* is 5.335 x 10719 /yr.)

67. (Adapted from Moss, 1980) Hall (1964) investigated the
change in population size of the zooplankton species Daphnia
galeata mendota in Base Line Lake, Michigan. The population size
N () at time ¢t was modeled by the equation

N(t) = Noe”

where N, denotes the population size at time 0. The constant r is
called the intrinsic rate of growth.

(a) Plot N(¢) as a function of ¢ if Ny = 100 and r = 2. Compare
your graph against the graph of N () when Ny = 100 and r = 3.
Which population grows faster?
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(b) The constant r is an important quantity because it describes
how quickly the population changes. Suppose that you determine
the size of the population at the beginning and at the end of
a period of length 1, and you find that at the beginning there
were 200 individuals and after one unit of time there were 250
individuals. Determine r. [ Hint: Consider the ratio N (t+1) /N (¢).]

68. Fish are indeterminate growers; that is, they grow throughout
their lifetime. The growth of fish can be described by the von
Bertalanffy function

L(x) = Loo(1 — e7*)

for x > 0, where L(x) is the length of the fish at age x and k and
L, are positive constants.

(a) Use a graphing calculator to graph L(x) for L., = 20, for
(i) k =1 and (ii) £ = 0.1.

(b) For k = 1, find x so that the length is 90% of L. Repeat
for 99% of L.,. Can the fish ever attain length L.,? Interpret the
meaning of L.

(¢) Compare the graphs obtained in (a). Which growth curve
reaches 90% of L faster? Can you explain what happens to the
curve of L(x) when you vary k (for fixed L,)?
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69. Which of the following functions is one to one (use the
horizontal line test)?
@ f@x)=x%Lx>0 ) f(x)=x*,xecR

© f@x)=1,x>0 d f(x)=e" xeR

() f(x)=3,x#0 ® fx)=>5.x>0

70. (a) Show that f(x) = x*> — 1, x € R, is one to one, and find
its inverse together with its domain.

(b) Graph f(x) and f~!(x) in one coordinate system, together
with the line y = x, and convince yourself that the graph of f~!(x)
can be obtained by reflecting the graph of f(x) about the line
Yy =x.

71. (a) Show that f(x) = x>+ 1,x > 0, is one to one, and find
its inverse together with its domain.

(b) Graph f(x) and f~!(x) in one coordinate system, together
with the line y = x, and convince yourself that the graph of f~!(x)
can be obtained by reflecting the graph of f(x) about the line
y=x.

72. (a) Show that f(x) = /x,x > 0, is one to one, and find its
inverse together with its domain.

(b) Graph f(x) and f~!(x) in one coordinate system, together
with the line y = x, and convince yourself that the graph of f~!(x)
can be obtained by reflecting the graph of f(x) about the line
y =x.

73. (a) Show that f(x) = 1/x3,x > 0, is one to one, and find its
inverse together with its domain.

(b) Graph f(x) and f~!(x) in one coordinate system, together
with the line y = x, and convince yourself that the graph of f~!(x)
can be obtained by reflecting the graph of f(x) about the line
y = X.

74. The reciprocal of a function f(x) can be written as either
1/f(x) or [f(x)]~!. The point of this problem is to make clear
that a reciprocal of a function has nothing to do with the inverse
of a function. As an example, let f(x) = 2x 41, x € R. Find both
[f(x)]™" and f~'(x), and compare the two functions. Graph all
three functions together.
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75. Find the inverse of f(x) = 3%, x € R, together with its
domain, and graph both functions in the same coordinate system.
76. Find the inverse of f(x) = 5, x € R, together with its
domain, and graph both functions in the same coordinate system.
77. Find the inverse of f(x) = (}1)", x € R, together with its
domain, and graph both functions in the same coordinate system.
78. Find the inverse of f(x) = (%)x, x € R, together with its
domain, and graph both functions in the same coordinate system.
79. Find the inverse of f(x) = 2%, x > 0, together with its
domain, and graph both functions in the same coordinate system.
80. Find the inverse of f(x) = (%)", x > 0, together with its
domain, and graph both functions in the same coordinate system.
81. Simplify the following expressions:

(a) 25 logy x (b) 3410g3 X
(C) 55]0g1/5 x (d) 4—2]og2x
(e) 23 logl/z X (f) 4~ logl/z x

82. Simplify the following expressions:

(a) log, 16* (b) log, 16"

(¢) log, 27* (d) log, n4

(e) log,, 87" () log; 9™

83. Simplify the following expressions:

(@) Inx?+Inx? () Inx* —Inx2

() In(x>=1) —In(x+1) (d) Inx~' +Inx3

84. Simplify the following expressions:

(2) t,:,31n)c (b) e—ln(x2+1)

(C) e—Zln(l/x) (d) e—21nx

85. Write the following expressions in terms of base e, and
simplify:

(a) 3x (b) 4x271 (C) 27)(71 (d) 374x+1

86. Write the following expressions in terms of base e:

(a) log, (x> —1) (b) log;(5x + 1)

(¢) log(x +2) (d) log,(2x* — 1)

87. Show that the function y = (1/2)* can be written in the form
y = e ", where p is a positive constant. Determine u.

88. Show that if 0 < a < 1, then the function y = a”* can be
written in the form y = e™**, where u is a positive constant. Write
i in terms of a.

89. Assume that two DNA sequences of common origin, each of
length 300 nucleotides, differ from each other by 47 nucleotides.
Use the Jukes and Cantor correction of Example 15 to find an
estimate for the number K of substitutions per site.

90. A community measure that takes both species abundance and
species richness into account is the Shannon diversity index H. To
calculate H, the proportion p; of species i in the community is
used. Assume that the community consists of S species. Then

H=—(pilnp+ plnp,+---+ psln ps)

(a) Assume that § = 5 and that all species are equally abundant;

thatis, p; = p, = --- = ps. Compute H.
(b) Assume that § = 10 and that all species are equally abundant;
thatis, p;y = p, = -+ = pyp. Compute H.

(¢) A measure of equitability (or evenness) of the species
distribution can be measured by dividing the diversity index H
byIn S. Compute H/In S for § =5 and S = 10.

(d) Show that, in general, if there are N species and all species
are equally abundant, then
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In Problems 91-96, for each given pair of functions, use a graphing
calculator to compare the functions. Describe what you see.
91. y =sinx and y = 2sinx
92. y =sinx and y = sin(2x)
93. y =cosx and y = 2cosx
94. y = cosx and y = cos(2x)
95. y =tanx and y = 2tanx
96. y = tanx and y = tan(2x)
97. Let
f(x) =3sin(4x), x €R
Find the amplitude and the period of f(x).
98. Let

f(x) = —2sin (%) . xeR

Find the amplitude and the period of f(x).
99. Let

f(x) =4sin(2rx), xR
Find the amplitude and the period of f(x).
100. Let

3 . (&
f(x) :—ism<§x), x eR
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Find the amplitude and the period of f(x).
101. Let

f(x) =4cos (%), xeR

Find the amplitude and the period of f(x).
102. Let

f(x) =T7cos(2x),
Find the amplitude and the period of f(x).
103. Let

x €R

f(x) = —3cos <”5—x> . xeR

Find the amplitude and the period of f(x).

104. Let
3x

fx) = —gcos (—) , xeR
3 b4
Find the amplitude and the period of f(x).
105. Use the fact that secx = Colsx to explain why the maximum
domain of y = secx consists of all real numbers except odd
integer multiples of 7 /2.

106. Use the fact that cscx = ﬁ to explain why the maximum
domain of y = cscx consists of all real numbers except integer
multiples of 7.

In the preceding section, we introduced the functions most important to our study.
You must be able to graph the following functions without a calculator: y = ¢, x, xz,
x3, 1/x, e", Inx, sin x, cos x, sec x, and tan x. This will help you to sketch functions
quickly and to come up with an analytical description of a function based on a graph.
In this section, you will learn how to obtain new functions from these basic functions
and how to graph them. In addition, we will introduce important transformations
that are often used to display data graphically.

W 1.3.1 Graphing and Basic Transformations of Functions

In this subsection, we will recall some basic transformations: vertical and horizontal
translations, reflections about x = 0 and y = 0, and stretching and compressing.

units.

Definition The graph of

is a vertical translation of the graph of y = f(x). If a > 0, the graph of y =
f(x) is shifted up a units; if a < 0, the graph of y = f(x) is shifted down |a]|

y=fx) +a

This definition is illustrated in Figure 1.41, where we display y = x*, y=x"+2,and

y=x2—2.

Definition The graph of

is a horizontal translation of the graph of y = f(x). If ¢ > 0, the graph of
y = f(x) is shifted ¢ units to the right; if ¢ < 0, the graph of y = f(x) is
shifted |c| units to the left.

y=fx—o
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y=x24+2 - -
y=x2—-2 —7/

N =3 T
AN
s
L . L= |
4 3 4 x
Figure 1.41 The graphsof y = x2, y = x> +2 Figure 1.42 The graphs of y = x2, y = (x — 3)?, and
and y = x? — 2. y = (x +3)%

This definition is illustrated in Figure 1.42, where we display y = x?, y=(x— 3)2,
andy = (x + 3)2. Note that y = (x + 3)2 is shifted to the left, since y = (x — (—3))2

and therefore c = —3 < 0.

Reflections about the x-axis (y = 0) and the y-axis (x = 0) are illustrated in
Figure 1.43. We graph y = ./x; its reflection about the x-axis, y = —./x; and its
reflection about the y-axis, y = /—x.

y
4 =+
................... 34
............ 51 \/-;
Ay - — -
“ NV eeeeeees
10 -5 P 5 10 x
_2 I
_3 —+
_4 —+

Figure 1.43 Reflections about the x-axis and the y-axis.

Multiplying a function by a factor between 0 and 1 compresses the graph of the
function; multiplying a function by a factor greater than 1 stretches the graph of the
function. These operations are illustrated in Figure 1.44, where we graph y = x” and
y = %xz, and in Figure 1.45, where we graph y = x*and y = 2x”.

[——

2

— 0.5x2 — 2x

T T T T T T
-4 -3 -2 -1 0 1 2

IX T
4 —4

T
3
Figure 1.44 The graphs of y = x> and y = 3x°. Figure 1.45 The graphs of y = x?> and y = 2x2.
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We illustrate the preceding transformations in the next two examples.

Explain how the graph of

y=2sin<x—%> forx e R

can be obtained from the graph of y = sinx, x € R.

We transform y = sin x in two steps, illustrated in Figure 1.46. First we shift y = sinx
to the right 7 units. This yields y = sin(x — 7). Then we multiply y = sin(x — %) by
2. This corresponds to stretching y = sin(x — 7) by the factor 2. ]

34 sin(x — w/4) = — -
2sin(x — w/4) ——

Figure 1.46 The graphs of y = sinx, y = sin(x — 7), and
y =2sin(x — %).

Explain how the graph of
y=—/x-3-1, x=>3

can be obtained from the graph of y = /x, x > 0.

We transform y = /x in three steps, illustrated in Figure 1.47. First we shift y = /x
three units to the right and obtain y = ,/x — 3. Then we reflect y = ,/x — 3 about

the x-axis, which yields y = —,/x — 3. Finally, we shift y = —,/x — 3 down one unit.

This is the graphof y = —\/x —3 — 1. ]
Y Vi
4+ o
~-Vx—-3---
— X — 3 — 1 ..............
4 T -
1 ,”’I 1 1
T ~ T T T
2~ <4 6 8  x
o1 e
_4 —+

Figure 1.47 The graphs for Example 2.
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B 1.3.2 The Logarithmic Scale

We often encounter sizes that vary over a wide range. For instance, lengths in the
metric system are measured in meters (m). (A meter is a bit longer than a yard:
1 meter is equal to 1.0936 yards.) A longer metric unit that is commonly used
is a kilometer (km), which is 1000 m. Shorter commonly used metric units are a
millimeter (mm), which is 1/1000 of a meter; a micrometer (;«m), which is 1/1,000,000
(one-millionth) of a meter; and a nanometer (nm), which is 1/1,000,000,000 (one-
billionth) of a meter. Here are some examples of lengths of organisms: A ribosome
is about 20 nm (= 2 x 107® m), a poxvirus is about 400 nm (4 x 10~ m), a bacterium is
about 1 um (= 107 m), a tardigrade (or “water bear”) is about 1.2 mm (= 1.2x 10>
m), an adult human is about 1.8 m, a blue whale is between 25 and 35 m, the diameter
of the earth is 12,755 km (=~ 1.3 x 10’ m), and the average distance from the sun to
the earth is about 150 million km (= 1.5 x 10" m). These sizes are conveniently
illustrated with the use of a logarithmic scale—a scale according to which multiples
of 10 are equally distant (Figure 1.48).

Ribosome
Poxvirus
Bacterium
) Diameter of Distance
Tardigrade Human earth sun to earth
l l Blue whale l
} } * } } -o—t } -o——eo— } } } } to—t } } t@— Length (in meters)

1078 1077 107 107> 107* 1073 1072 10" 10° 10' 10> 10° 10* 10° 10° 107 10% 10° 10'° 10" 10"

Figure 1.48
When we take logarithms to base 10 of the quantities displayed in Figure 1.48,
we find that the transformed scale looks like the arithmetic scale we are familiar with
(Figure 1.49). The numbers on the logarithmic scale in Figure 1.49 correspond to
exponents.
Ribosome
Poxvirus
Bacterium
) Diameter of Distance
Tardigrade Human earth sun to earth
\ l Blue whale l
0

—e—t e—+ Jog (Length)

1
-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 [in meters]

Figure 1.49

Let’s look at the two number lines in more detail. The origin of the number line
in Figure 1.49 corresponds to the number 1 in Figure 1.48, since log 1 = 0. If we go to
the left of 1 on the line in Figure 1.48, we get smaller and smaller numbers, but they
are all positive. (Because log x is defined only for x > 0, we cannot logarithmically
transform negative numbers.) Going to the left of 1 in Figure 1.48 corresponds to
going to the left of 0 in Figure 1.49. The negative numbers on the number line in
Figure 1.49 correspond to negative exponents; for instance, the —8 in Figure 1.49
means logx = —8,or x = 107%. A similar interpretation holds when we go to the
right of 1 in Figure 1.48 (or to the right of 0 in Figure 1.49). A logarithmic scale is
typically based on logarithms to base 10, since this base makes conversion between
the two representations in Figures 1.48 and 1.49 easier.
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The lengths in the preceding examples differed by many factors of 10. Instead
of saying that quantities differ by many factors of 10, we will say that they differ by
many orders of magnitude: If two quantities differ by a factor of 10, they differ by
one order of magnitude. (If they differ by a factor of 100, they differ by two orders
of magnitude, and so on.) Orders of magnitude are approximate comparisons: A 1.8-
m-tall human and a 25-m-long blue whale differ by about one order of magnitude.

EXAMPLE 3 Display the numbers 0.003, 0.1, 0.5, 6, 200, and 4000 on a logarithmic scale.

Solution  To display the numbers, we need to take logarithms first:

x 0.003 0.1 0.5 6 200 4000
log x —2.5229 -1 —0.3010 0.7782 2.3010 3.6021

Since log 0.003 = —2.5229, we find this number 2.5229 units to the left of 0 on the
logarithmic scale. Similarly, since log 0.1 = —1, this number is one unit to the left of
0, and log 200 = 2.3010 is 2.3010 units to the right of 0 (Figure 1.50).

f * o— *—1 —e f — log x

-3 -2 -1 0 1 2 3 4

1073 1072 107! 10° 10! 10% 103 104

Figure 1.51 Example 3.

In the biological literature, x rather than log x is used to label logarithmic number
lines. The locations of the numbers are the same; only the labeling changes. That is,
0.003 would be —2.5229 units to the left of the origin of the line (which is now at 1).
The line in Figure 1.50 would then look like the line in Figure 1.51. ]

B 1.3.3 Transformations into Linear Functions

When you look through a biology textbook, you very likely find graphs like the ones
in Figures 1.52 and 1.53. In either graph, you see a straight line (with data points
scattered about it). In Figure 1.52, the vertical axis is logarithmically transformed and
the horizontal axis is on a linear scale; in Figure 1.53, both axes are logarithmically
transformed. Why do we display data like this, and what do these graphs mean?

y
100000

N

10000
°

1000
100

10

[T
1000 x

il
4 X 1
0.1

0.01

Figure 1.52 A straight line when the vertical axis is Figure 1.53 A straight line when both axes are
logarithmically transformed. logarithmically transformed.

The first question is quick to answer: Straight lines (or linear relationships) are
easy to recognize visually. If transforming data results in data points lying along
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a straight line, we should do the transformation, because, as we will see, this will
allow us to obtain a functional relationship between quantities. Now on to the second
question: What do these graphs mean?

Exponential Functions Let’s look at Figure 1.52 and redraw just the straight line,
using log y (instead of y) on the vertical axis and x on the horizontal axis (Figure
1.54). Set Y = log y and forget for a moment where the graph came from. We see a
linear relationship between Y and x —a relationship of the form

Y=c+mx
where c is the Y-intercept and m is the slope. We can read these two quantities off of

the graph in Figure 1.54:

That is, we have
Y =15+0.5x

Now, Y = log y, and thus
logy =1.5+0.5x

Exponentiating both sides, we find that
y = 1015+05% — 1015 (1005
Since 10" & 31.62 and 10™° ~ 3.162, we can write the preceding equation as
y = (31.62)(3.162") (1.4)
Looking at (1.4), we see that it is an exponential function.

Y =logy
3

0.5

|
\
I
(3]
L L
I | <
—_ (]
D
[ 3]
n
=

Figure 1.54 Figure 1.52 redrawn. Now the vertical
axis is labeled log y.

A graph in which the vertical axis is on a logarithmic scale and the horizontal
axis is on a linear scale is called a log-linear plot or a semilog plot. If we display an
exponential function of the form y = ba* on a semilog plot, a straight line results.
To see this, we take logarithms to base 10 on both sides of y = ba™:

log y = log(ba™) (1.5)
Using the properties of logarithms, we simplify the right-hand side to
log(ba™) = logh + loga™ =logh + x loga
If we set Y = log y, then (1.5) becomes

Y =logb + (loga)x (1.6)
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Solution

100

10
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Comparing this equation with the general form of a linear function ¥ = ¢ 4+ mx, we
see that the Y-intercept is log » and the slope is log a. You do not need to memorize
this statement, since you can always do the calculation that resulted in (1.6), but you
should memorize the fact that an exponential function results in a straight line on a
semilog plot. If @ > 1, the slope of the line is positive; if 0 < a < 1, the slope of the
line is negative.

Graph

y=25-3, xeR

on a semilog plot.

We take logarithms first:

logy = log(2.5-3%)
=log2.5+x log3
S—— ~——

~0.3979 ~0.4771

The graph is shown in Figure 1.55. Note that the origin of the coordinate system is
where x = Oand y = 1 (or logy = 0). The labeling on the vertical axis is for y,
and we see that the labels are multiples of 10. To find 2.5 on the vertical axis, we use
the fact that log2.5 = 0.3979 and that 2.5 is therefore 0.3979 units above the x-axis,
as illustrated in Figure 1.55. (One unit on the vertical axis corresponds to a factor of
10.) |

y=25X3" 4

3 -
\ (0, log 100)

Figure 1.55 The graph of y = 2.5 x 3* on a semilog plot.

0.1

EXAMPLE 5

Solution

Figure 1.56 The graph for Example 5. The line goes
through the points (0, 2) and (4, 0).

Find the functional relationship between x and y based on the graph in Figure 1.56.

Figure 1.56 shows a semilog plot. We set Y = log y. Then, in an x-Y graph, the Y-
intercept is log 100 = 2, and, using the two points (0, log 100) and (4, log 1), we find
that the slope of the line is (log 1 —log 100) /(4 —0) = (0—2)/(4—0) = —0.5. Hence,

Y=c+mx=2-05x
Since Y = log y, after exponentiating the linear equation, we obtain

y = 10*7%% = 102(107%%)* = (100)(0.3162)* n

Power Functions Let’s look back at Figure 1.53. There, both axes are logarithmically
transformed. We redraw just the straight line, using ¥ = log y on the vertical axis and
X = log x on the horizontal axis (Figure 1.57).
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EXAMPLE 6

Solution

Y=logy

Figure 1.57 Figure 1.53 redrawn. Now the vertical axis is
labeled log y and the horizontal axis is labeled log x.

Using the linear equation ¥ = ¢ + mX, where c is the Y-intercept and m is the

slope, we find, from Figure 1.57, that
c=4 and m= -2
With Y = log y and X = log x, the linear equation becomes
logy =4 —2logx
Exponentiating both sides, we get
y = 104—210gx — 104(1010gx_2) — 104x—2

The function y = 10°x %isa power function.

A graph in which both the vertical and the horizontal axis are logarithmically
scaled is called a log-log plot or double-log plot. If we display a power function

y = bx" in a double-log plot, a straight line results. To see this, we take logarithms to
base 10 on both sides of y = bx":

log y = log(bx") (1.7)
Using the properties of logarithms on the right-hand side of (1.7), we get
log(bx") =logb + logx” =logb + rlog x
If weset Y = logy and X = log x, then (1.7) becomes
Y =logh+rX
Comparing this equation with the general form of a linear function, ¥ = ¢ + mX,

we see that the Y-intercept is log b and the slope is r. If ¥ > 0, the slope is positive.
If r < 0, the slope is negative.

Graph

y=100x"%3 x>0
on a double-log plot.
We take logarithms first:

-2/3 2
log y = log(100x~ ") = log 100 — glogx



logy

1
Nlogx

Figure 1.58 The graph y = 100x~2/3
on a double-log plot where the axes
are labeled X =logx and Y = log y.

EXAMPLE 7

Solution
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We set Y =logy and X = logx. Then, with log 100 = 2, we find that
2
Y=2--X
3

This is the equation of a straight line with X-intercept 3 and Y-intercept 2 (and thus
slope —2/3). We graph this function in Figure 1.58, where we have X and Y on the
two axes. If we use x and y on the two axes (Figure 1.59), the labels change: The
y-intercept is now 100 (corresponding to log 100 = 2) and the x-intercept is 1000
(corresponding to log 1000 = 3). Note that the origin in Figure 1.58 is X = 0 and
Y = 0; the origin in Figure 1.59isx = land y = 1. ]

100 10000

Figure 1.59 The graph y = 100x~2/* on a double-log
plot where the axes are labeled x and y.

0.1

Find the functional relationship between x and y on the basis of the graph in Figure
1.60.

Y=logy
1_
0.5 /
| | | lelogx
-1 0 1 2 4
—0.5

(log 1000, log 1)

. =(3.0)

A~ T(log 1,102 0.01) = (0, —2)
—251

73_

Figure 1.60 The graph of the function for Example 7: The
two points on the double-log plot used for finding the
relationship are (log 1, 1og 0.01) and (log 1000, log 1).

If Y =logy and X = logx, then, in an X-Y graph, the Y-intercept is log 0.01 = —2
and, using the two points (log 1, 1og 0.01) and (log 1000, log 1), we calculate the slope
as

logl —10og0.01  0—-(-2) 2

log 1000 — log1

3-0 3
Hence, the equation is

Y = 2+2X
o 3
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EXAMPLE 8

Solution

EXAMPLE 9

Solution

With ¥ = log y and X = log x, we find that
2
logy = -2+ glogx
and, after exponentiating both sides of this equation, we get

_ 10—2+§ logx _ 1021 0loex?? — (0.01)x%/>
Thus, the functional relationship between x and y is a power function of the form

y = (0.01)x*? m
Applications

When growing plants at sufficiently high initial densities, we often observe that the
number of plants decreases as the size of the plants grows. This property is called
self-thinning. When the per-plant dry weight of the aboveground biomass is plotted
on a log-log plot as a function of the density of survivors, we frequently find that the
data lie along a straight line with slope —3/2. Assume that, for a particular plant, such
a relationship holds for plant densities between 10% and 10* plants per square meter
and that, at a density of 100 plants per square meter, the dry weight per plant is about
10 grams. Find the functional relationship between dry weight and plant density, and
graph this function on a log-log plot.

Since the relationship between density (x) and dry weight (y) follows a straight line
with slope —3/2 on a log-log plot, we set

3 2 4
logy=C—§logx for 10° <x <10
where C is a constant. To find C, we use the fact that when x = 100, y = 10.

Therefore,

3
log10 = C — 3 log 100

or

1=C—-=-2, which implies that C=4

Hence,
3
logy =4 — Elogx

Exponentiating both sides (and remembering that “log” denotes the logarithm to
base 10), we find that

y= 10*x 732 for 10? <x < 10*

The graph of this function on a log-log scale is shown in Figure 1.61. ]

210 210

Polonium 210 (Po™ ) is a radioactive material. To determine the half-life of Po
experimentally, we measure the amount of radioactive material left after time ¢ for
various values of . When we plot the data on a semilog plot, we find that we can
fit a straight line to the curve. The slope of the straight line is —0.0022/day. Find the
half-life of Po*"’.

Radioactive decay follows the equation

W) = W(0)e ™ forr>0
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Solution
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y
100 =
B y=10"x32 —
10
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100 1000 10000 x

Figure 1.61 The graph of the function for Example
8: The line has slope —3/2 and goes through the
point (log 100, log 10) on a double-log plot.

where W (¢) is the amount of radioactive material left after time ¢. If we log transform
this equation, we obtain

log W(t) = log W(0) — At loge

Note that we use logarithms to base 10. If we plot W(¢) as a function of ¢ on a
semilog plot, we obtain a straight line with slope —X log e. Matching this slope with
the number given in the example, we obtain

Aloge = 0.0022/day

Solving for A yields

1
A = ——0.0022/day
loge

To find the half-life 7}, we use the formula (see Subsection 1.2.5)

T, — In2 B In2 a )d
" T T 00022 0BG
~ 136.8 days ]

Note that in the preceding example we used logarithms to base 10 to do the log
transformation. The radioactive law was given in terms of the natural exponent e.
The slope therefore contained the factor loge ~ 0.4343.

Light intensity in lakes decreases with depth. Denote by /(z) the light intensity at
depth z, with z = 0 representing the surface. Then the percentage surface radiation
at depth z, denoted by PSR(z), is computed as

NIE)
PSR(z) = 1001(0)

When we graph the percentage surface radiation as a function of depth on a semilog
plot, a straight line results. An example of such a curve is given in Figure 1.62,
where the coordinate system is rotated clockwise by 90° so that the depth axis points
downward. Derive an equation for /(z) on the basis of the graph.

We see that the dependent variable, 1007 (z)/1(0), is logarithmically transformed,
whereas the independent variable, z, is on a linear scale. The graph is a straight line.
We thus find that

1(z)
log100—— =
og 70) c+mz
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1(z)
10017(0)
0.01 0.1 1 10 100
O T ||urrr|] T T T 11T

Figure 1.

62 The graph of percentage

surface radiation as a function of

depth.

EXAMPLE 11

where c is the intercept on the percentage surface radiation axis and m is the slope.
We see that
¢ =log 100

and, using the points (0, 100) and (30, 1), we get

_log100 —logl 2 1
o 0— 30 30 15

Hence,

log 10022 _ 10g100 — -
80 T 15°

The left-hand side simplifies to log 100 + log % After canceling log 100 on both
sides and exponentiating both sides, we find that

1(z) —10~-1/19z _ exp[In 10—(1/15)2]
1(0)

Thus
1
I(z) = I(O)e—(ﬁmm)z

The number 11—5 In 10 is called the vertical attenuation coefficient. The magnitude of
this number tells us how quickly light is absorbed in a lake. ]

W 1.3.4 From a Verbal Description to a Graph (Optional)

Being able to sketch a graph on the basis of a verbal explanation of some
phenomenon is an extremely useful skill since a graph can summarize a complex
situation that can be more easily communicated and remembered. Let’s look at an
example.

The following quote in Rosenzweig and Abramsky (1993) relates primary
productivity (i.e., the rate at which autotrophs convert light or inorganic chemical
energy into chemical energy of organic compounds) to species diversity (i.e., number
of species):

The relationship of primary productivity and species diversity on a regional
scale (106 kmz) is not simple. But within such regions, and perhaps even
larger ones, a pattern is emerging: as productivity rises, first diversity
increases, then it declines.

If we wanted to translate this verbal description into a graph, we would
first determine the independent and the dependent variable. Here, we consider
species diversity as a function of primary productivity; hence, primary productivity
is the independent variable and species diversity is the dependent variable. We
will therefore use a coordinate system whose horizontal axis denotes primary
productivity and whose vertical axis denotes species diversity. Since both primary
productivity and species diversity are nonnegative, we need to draw only the first
quadrant (Figure 1.63).

Going back to the quote, we see that as productivity increases, diversity first
increases, then decreases. The graph in Figure 1.64 illustrates this behavior.

The exact shape of the curve cannot be inferred from the quote and will depend
on the system studied. For instance, the graph in Figure 1.65 resembles the curve
from a study in the Costa Rican forests; as productivity increases, the curve shows an
initial increase followed by a decrease in species diversity. The shape of the curve in
Figure 1.65 is quantitatively different from the graph in Figure 1.64, but both have
the same qualitative features of an initial increase followed by a decrease.

As another example, we will look at the functional response of a predator to its
prey density. ]



Species diversity

0 Primary productivity

Figure 1.63 The coordinate system
for species diversity as a function of

primary productivity can be
restricted to the first quadrant.

EXAMPLE 12

Number of prey eaten
per predator

0 Prey density

Figure 1.66 The type 1 functional

response.
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Figure 1.65 The graph of species
diversity as a function of primary
productivity in Costa Rican forests
(redrawn after Holdrige et al. 1971).

Figure 1.64 The graph of species
diversity as a function of primary
productivity is hump shaped.

The functional response of a predator to its prey density relates the number of
prey consumed per predator (the dependent variable) to the prey density (the
independent variable). Holling (1959) introduced three basic types of response. Type
1 describes a response in which the number of prey eaten per predator as a function
of prey density rises linearly to a plateau. The type 2 functional response increases
at a decelerating rate and eventually levels off. The type 3 functional response is S
shaped, or sigmoidal, and also eventually levels off. Now let’s translate these three
ways into graphs. All graphs will be plotted in coordinate systems, with prey density
on the horizontal axis and the number of prey eaten per predator on the vertical
axis. Since both prey density and number of prey eaten per predator are nonnegative
variables, we need to draw only the first quadrant.

Even though this was not mentioned, we will assume that when the prey density
is equal to zero, the number of prey eaten per predator will also be zero, and once
the prey density is positive, the number of prey eaten per predator will be positive.
This means that the three functional response curves all go through the origin.

The type 1 functional response first increases linearly (i.e., results in a straight
line) and then reaches a plateau (stays constant) (See Figure 1.66.)

The type 2 functional response is described as a function that increases at a
decelerating rate. This means that the function will increase less quickly as prey
density increases (Figure 1.67). In contrast to the type 1 functional response, the type
2 response will continue to increase and approach, but not actually reach, the plateau
at a finite value of prey density.
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Prey density

Prey density

Figure 1.68 The type 3 functional
response.

Figure 1.67 The type 2 functional
response.

The type 3 functional response is described as sigmoidal. Sigmoidal curves
are characterized by an initial accelerating increase followed by an increase at a
decelerating rate (Figure 1.68). Similar to the type 2 functional response, the type
3 functional response approaches a plateau as prey density increases, but will not
reach the plateau at a finite value of prey density. ]

For each example discussed so far, the functional relationship depended on just
one variable, such as the number of prey eaten per predator as a function of prey
density. Often, however, a response depends on more than one independent variable.
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EXAMPLE 13

100%

Germination success

0 Temperature

Figure 1.69 The coordinate system
for germination success as a function
of temperature can be restricted to
the first quadrant. Germination
success will be between 0 and 100%.

Section 1.3 Problems

The next example presents a response that depends on two independent variables,
and shows how to draw a graph of this more complex relationship.

The successful germination of seeds depends on both temperature and humidity.
When the humidity is too low, seeds tend not to germinate at all, regardless of the
temperature. Germination success is highest for intermediate values of temperature.
Finally, seeds tend to germinate better when humidity levels are higher.

One way to translate this information into a graph is to graph germination
success as a function of temperature for different levels of humidity. If we measure
temperature in Fahrenheit or Celsius, we can restrict the graphs to the first quadrant
(Figure 1.69), since the temperature needs to be well above freezing for germination
to occur (the temperature at which freezing starts is 0°C, or 32°F). Germination
success will be between 0 and 100%. To sketch the graphs, it is better not to label
the axes beyond what we provided in Figure 1.69, because we do not know the exact
numerical response.

There is enough information to provide three graphs: one for low humidity, one
for intermediate humidity, and one for high humidity. We will graph them all in
one coordinate system, so that it is easier to compare the different responses. The
graph for low humidity is a horizontal line where germination success is 0%. For
intermediate and high humidity, the graphs are hump shaped, since germination
success is highest for intermediate values of temperature. The graph for high
humidity is above the graph for intermediate humidity, because seeds tend to

germinate better when humidity levels are higher (Figure 1.70). ]
100%
é High humidity
=]
g
5]
g
B
L
O
Intermediate humidity
Low humidity

Temperature

Figure 1.70 Germination success as a function of temp-
erature for three humidity levels (low, intermediate, high).

m 1.3.1

19. y =2sin(x + 7w /4) 20. y = 0.2cos(—x)

In Problems 1-22, sketch the graph of each function. Do not use a 21. y = —sin(wx/2) 22. y = —2cos(mx/4)

graphing calculator. (Assume the largest possible domain.)

23. Explain how the following functions can be obtained from

— 52 = —(x —2)?
Ly= x3 +1 2.y= (’z 2" +1 y = x? by basic transformations:
J.y=x"=-2 4 y=—x"+1 @ y=x>-2 M y=x—-1D2+1 (¢) y=-2(x+2)7?
— _2x2 _ — —(3—x)?
5. y=-2x"-3 6.y 3 —x) 24. Explain how the following functions can be obtained from
7. y=3+1/x 8 y=1-1/x y = x? by basic transformations:
9. y=1/(x -1 10. y =1+1/(x +2)? @y=x"+1 (M y=c+D’-1 (0 y=-3x-2)°
11. y =exp(x —2) 12. y = exp(—x) 25. Explain how the following functions can be obtained from
13y =e 14. y = 3e>! y = 1/x by basic transformations:
15. y =1 1 16. y = In(x — 1 1 X
5.y n(x +1) 6. y n(x —3) @ y=1-—- b)) y=——— © y=—-

17. y=—In(x — 1) +1 18. y = —1In(1 —x) x x—1 x+1



26. Explain how the following functions can be obtained from
y = 1/x? by basic transformations:

1 1
@y=5+1 (B y= G112 ©y=-5-2

27. Explain how the following functions can be obtained from
y = e”* by basic transformations:
(@) y=2" -1 (b) y=—" (© y=e"2+1
28. Explain how the following functions can be obtained from
y = e* by basic transformations:
@y=e*—1 () y=—e"+1 (© y=—e"7-2
29. Explain how the following functions can be obtained from
y = In x by basic transformations:
@@ y=Inx—-1 (M) y=—Inx+1 (¢) y=Inkx+3)—1
30. Explain how the following functions can be obtained from
y = Inx by basic transformations:
(a) y=In(1-x) (b) y=In2+x)—1
(© y=—In2—x)+1
31. Explain how the following functions can be obtained from
y = sin x by basic transformations:

b1
(¢) y=—sin (x+ —)

(b) y =sin <x— 5)
4
3

32. Explain how the following functions can be obtained from
y = cosx by basic transformations:

(@ y=1+2cosx  (b) y:—cos(x_{_%)

(c) y:—cos(%—x)

m 1.3.2

33. Find the following numbers on a number line that is on a
logarithmic scale (base 10): 0.0002, 0.02, 1, 5, 50, 100, 1000, 8000,
and 20000.

34. Find the following numbers on a number line that is on a
logarithmic scale (base 10): 0.03, 0.7, 1, 2, 5, 10, 17, 100, 150, and
2000.

35. (a) Find the following numbers on a number line that is on a
logarithmic scale (base 10): 102, 1073, 107*, 1077, and 10~'°.

(b) Canyou find 0 on a number line that is on a logarithmic scale?

(@ y=1—sinx

(¢) Can you find negative numbers on a number line that is on a
logarithmic scale?

36. (a) Find the following numbers on a number line that is on a
logarithmic scale (base 10):
@i 1073,2x107%,5 x 1073
@ii) 10%,2 x 10%,5 x 10?
(b) From your answers to (a), how many units (on a logarithmic
scale) is (i) 2 x 1073 from 1073 (ii) 2 x 107! from 10~' and
(iii) 2 x 10? from 10%?

(¢) From your answers to (a), how many units (on a logarithmic
scale) is (i) 5 x 1073 from 1073 (ii) 5 x 107! from 10~' and
(iii) 5 x 10% from 10??

(i) 1071,2 x 1071, 5 x 107!

In Problems 37-42, insert an appropriate number in the blank
space.

37. The longest known species of worms is the earthworm
Microchaetus rappi of South Africa; in 1937, a 6.7-m-long
specimen was collected from the Transvaal. The shortest worm
is Chaetogaster annandalei, which measures less than 0.51 mm
in length. M. rappi is order(s) of magnitude longer than
C. annandalei.
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38. Both the La Plata river dolphin (Pontoporia blainvillei) and
the sperm whale (Physeter macrocephalus) belong to the suborder
Odontoceti (individuals that have teeth). A La Plata river dolphin
weighs between 30 and 50 kg, whereas a sperm whale weighs
between 35,000 and 40,000 kg. A sperm whale is order(s)
of magnitude heavier than a La Plata river dolphin.

39. Compare a ball of radius 1 cm against a ball of radius 10 cm.
The radius of the larger ball is order(s) of magnitude bigger
than the radius of the smaller ball. The volume of the larger ball is
order(s) of magnitude bigger than the volume of the smaller

ball.

40. Compare a square with side length 1 m against a square with
side length 100 m. The area of the larger square is order(s)
of magnitude larger than the area of the smaller square.

41. The diameter of a typical bacterium is about 0.5 to 1 um. An
exception is the bacterium Epulopiscium fishelsoni, which is about
600 um long and 80 um wide. The volume of E. fishelsoni is about
order(s) of magnitude larger than that of a typical bacterium.
(Hint: Approximate the shape of a typical bacterium by a sphere
and the shape of E. fishelsoni by a cylinder.)

42. The length of a typical bacterial cell is about one-tenth that
of a small eukaryotic cell. Consequently, the cell volume of a
bacterium is about order(s) of magnitude smaller than that
of a small eukaryotic cell. (Hint: Approximate the shapes of both
types of cells by spheres.)

m 133

In Problems 43—46, when logy is graphed as a function of x, a
straight line results. Graph straight lines, each given by two points,
on alog-linear plot, and determine the functional relationship. (The
original x—y coordinates are given.)

43. (. ) = (0.5), (12 y2) = B, 1)

4. (x1, y1) = (=1,4), (x2, y2) = (2,8)

45. (1. 3) = (=2,3), (12, y2) = (1. 1)

46. (x1, y1) = (1,4), (x2, »2) = (6, 1)

In Problems 47-54, use a logarithmic transformation to find a linear
relationship between the given quantities and graph the resulting
linear relationship on a log-linear plot.

47. y=3 x 107> 48. y =4 x 105

49. y =271 50. y =7
51 y =5 x 2% 52. y =6 x 209
53, y =4 x 3> 4. y =5

In Problems 55-58, when log y is graphed as a function of log x, a
straight line results. Graph straight lines, each given by two points,
on a log-log plot, and determine the functional relationship. (The
original x—y coordinates are given.)

85. (x1,y1) = (1,2), (x2, y2) = (5, 1)

56. (x1, y1) = (3,5), (x2, »2) = (1,5)

57. (x1, y1) = (4,2), (x2, y2) = (8,8)

58. (x1,y1) = (2,5), (x2, y2) = (5,2)

In Problems 59-66, use a logarithmic transformation to find a linear

relationship between the given quantities and graph the resulting
linear relationship on a log-log plot.

59. y =2x° 60. y = 3x?
61. y = x° 62. y =5x°
63. y=x"? 64. y =6x"!
65. y =4x3 66. y =7x7°
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In Problems 67-72, use a logarithmic transformation to find a linear
relationship between the given quantities and determine whether
a log-log or log-linear plot should be used to graph the resulting
linear relationship.

67. f(x)=3x!7 68. g(s) =1.8¢7%%

69. N(t) =130 x 21 70, I(u) = 4.8u~"%
71. R(t) = 3.6t12 72. L(c) = 1.7 x 10>%

73. The following table is based on a functional relationship
between x and y that is either an exponential or a power function:

x y
1 1.8
2 2.07
4 2.38

10 2.85

20 3.28

Use an appropriate logarithmic transformation and a graph to
decide whether the table comes from a power function or an
exponential function, and find the functional relationship between
x and y.

74. The following table is based on a functional relationship
between x and y that is either an exponential or a power function:

X y

0.5 7.81
1 34

1.5 2.09
2 1.48

2.5 1.13

Use an appropriate logarithmic transformation and a graph to
decide whether the table comes from a power function or an
exponential function, and find the functional relationship between
x and y.

75. The following table is based on a functional relationship
between x and y that is either an exponential or a power function:

x y
—1 0.398
-0.5 1.26
0 4
0.5 12.68
1 40.18

Use an appropriate logarithmic transformation and a graph to
decide whether the table comes from a power function or an
exponential function, and find the functional relationship between
x and y.

76. The following table is based on a functional relationship
between x and y that is either an exponential or a power function:

x Y

0 3

0.5 2.20
1 1.61
1.5 1.18

2 0.862

Use an appropriate logarithmic transformation and a graph to
decide whether the table comes from a power function or an
exponential function, and find the functional relationship between
x and y.

77. The following table is based on a functional relationship
between x and y that is either an exponential or a power function:

x* J
0.1 0.045
0.5 1.33
1 5.7
1.5 13.36
2 24.44

Use an appropriate logarithmic transformation and a graph to
decide whether the table comes from a power function or an
exponential function, and find the functional relationship between
x and y.

78. The following table is based on a functional relationship
between x and y that is either an exponential or a power function:

x y
0.1 1.72
0.5 141
1 111
15 0.872
2 0.685

Use an appropriate logarithmic transformation and a graph to
decide whether the table comes from a power function or an
exponential function, and find the functional relationship between
x and y.

So far, we have always used base 10 for a logarithmic transforma-
tion. The reason for this is that our number system is based on base
10 and it is therefore easy to logarithmically transform numbers
of the form ...,0.01, 0.1, 1, 10, 100, 1000, ... when we use base
10. In Problems 79-82, use the indicated base to logarithmically
transform each exponential relationship so that a linear relationship
results. Then use the indicated base to graph each relationship in a
coordinate system whose axes are accordingly transformed so that
a straight line results.

79. y =2%; base?2 80. y =3";base3

81. y =27*;base?2 82. y =37*;base 3

83. Suppose that N(¢) denotes a population size at time ¢ and
satisfies the equation

N(t) =2 fort >0

(a) Ifyougraph N () asafunction of f on a semilog plot, a straight
line results. Explain why.

(b) Graph N(z) as a function of 7 on a semilog plot, and determine
the slope of the resulting straight line.

84. Suppose that you follow a population over time. When you
plot your data on a semilog plot, a straight line with slope 0.03
results. Furthermore, assume that the population size at time 0
was 20. If N(¢) denotes the population size at time ¢, what function
best describes the population size at time ¢?

85. Species—Area Curves Many studies have shown that the
number of species on an island increases with the area of
the island. Frequently, the functional relationship between the
number of species (S) and the area (A) is approximated by S =
C A%, where z is a constant that depends on the particular species



and habitat in the study. (Actual values of z range from about 0.2
to 0.35.) Suppose that the best fit to your data points on a log-log
scale is a straight line. Is your model S = CA® an appropriate
description of your data? If yes, how would you find z?

86. Michaelis-Menten Equation Enzymes serve as catalysts in
many chemical reactions in living systems. The simplest such
reactions transform a single substrate into a product with the
help of an enzyme. The Michaelis-Menten equation describes
the initial velocity of such enzymatically controlled reactions. The
equation, which gives the relationship between the initial velocity
of the reaction (vy) and the concentration of the substrate (s), is

_ UmaxS0

Vo= ————
SQ+Km

where v,y is the maximum velocity at which the product may be
formed and K, is the Michaelis—Menten constant. Note that this
equation has the same form as the Monod growth function.

(a) Show that the Michaelis—-Menten equation can be written in

the form
1 K, 1 1

Vo Umax S0 Umax

This formula is known as the Lineweaver—-Burk equation and
shows that there is a linear relationship between 1/vy and 1/s,.
(b) Sketch the graph of the Lineweaver-Burk equation. Use a
coordinate system in which 1/s, is on the horizontal axis and 1/v,
is on the vertical axis. Show that the resulting graph is a line that
intersects the horizontal axis at —1/K,, and the vertical axis at
1/ Umax-

(¢) To determine K,, and v,.x, we measure the initial velocity of
the reaction, denoted by vy, as a function of the concentration of
the substrate, denoted by s, and fit a straight line through the
points in a coordinate system in which the horizontal axis is 1/s
and the vertical axis is 1/vy. Explain how to determine K,, and
Umax from the graph.

(Note that this is an example in which a nonlogarithmic

transformation is used to obtain a linear relationship. Since the
reciprocals of both quantities of interest are used, the resulting
plot is called a double-reciprocal plot.)
87. (Continuation of Problem 86) Estimating vy, and K, from
the Lineweaver-Burk graph as described in Problem 86 is
not always satisfactory. A different transformation typically
yields better estimates (Dowd and Riggs, 1965). Show that the
Michaelis—Menten equation can be written as

Vo _ Umax 1
So Km Km

and explain why this transformation results in a straight line when
you graph v, on the horizontal axis and z—g on the vertical axis.
Explain how you can estimate vy,.x and K, from the graph.

88. (Adapted from Reiss, 1989) In a case study in which the
maximal rates of oxygen consumption (in ml/s) of nine species of
wild African mammals (Taylor et al., 1980) were plotted against
body mass (in kg) on a log-log plot, it was found that the data
points fell on a straight line with slope approximately equal to
0.8 and vertical-axis intercept approximately equal to 0.105. Find
an equation that relates maximal oxygen consumption and body
mass.

89. (Adapted from Benton and Harper, 1997) In vertebrates,
embryos and juveniles have large heads relative to their overall
body size. As the animal grows older, proportions change; for
instance, the ratio of skull length to body length diminishes. That
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this is the case not only for living vertebrates, but also for fossil
vertebrates, is shown by the following example:

Ichthyosaurs are a group of marine reptiles that appeared
in the early Triassic and died out well before the end of the
Cretaceous.! They were fish shaped and comparable in size
to dolphins. In a study of 20 fossil skeletons, the following
allometric relationship between skull length S (measured in cm)
and backbone length B (measured in cm) was found:

S =1.162B%%

(a) Choose suitable transformations of § and B so that the
resulting relationship is linear. Plot the transformed relationship,
and find the slope and the y-intercept.

(b) Explain why the allometric equation confirms that juveniles
had relatively large heads. (Hint: Compute the ratio of S to B for a
number of different values of B —say, 10 cm, 100 cm, 500 cm—and
compare.)

90. Light intensity in lakes decreases exponentially with depth. If
1 (z) denotes the light intensity at depth z, with z = O representing
the surface, then

I(z) =10, z>0

where « is a positive constant called the vertical attenuation
coefficient. Figure 1.71 shows the percentage surface radiation,
defined as 100/ (z)/1(0), as a function of depth in different lakes.

12)
1001(0)
0.1 1 10 100
O T T
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v 15
/
/
/
20— 7
/
/
P Lake | —
K Lake 2 — -
30 ..'. Lake 3 -----

Figure 1.71 Light intensity as a func-
tion of depth for Problem 90.

(a) On the basis of the graph, estimate « for each lake.

(b) Reproduce a graph like the one in Figure 1.71 for Lake
Constance (Germany) in May (¢ = 0.768m~!) and December
(¢ = 0.219m™!) (data from Tilzer et al., 1982).

(¢) Explain why the graphs are straight lines.

(1) The Triassic is a geological period that began about 248 million years

ago and ended about 213 million years ago; the Cretaceous began about
144 million years ago and ended 65 million years ago.
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91. The absorption of light in a uniform water column follows an
exponential law; that is, the intensity / (z) at depth z is

I(z) = 1(0)e™™

where 1(0) is the intensity at the surface (i.e., when z = 0) and
« is the vertical attenuation coefficient. (We assume here that «
is constant. In reality, @ depends on the wavelength of the light
penetrating the surface.)

(a) Suppose that 10% of the light is absorbed in the uppermost
meter. Find «. What are the units of «?

(b) What percentage of the remaining intensity at 1 m is absorbed
in the second meter? What percentage of the remaining intensity
at 2 m is absorbed in the third meter?

(¢) What percentage of the initial intensity remains at 1 m, at 2
m, and at 3 m?

(d) Plot the light intensity as a percentage of the surface intensity
on both a linear plot and a log-linear plot.

(e) Relate the slope of the curve on the log-linear plot to the
attenuation coefficient c.

(f) The level at which 1% of the surface intensity remains is of
biological significance. Approximately, it is the level where algal
growth ceases. The zone above this level is called the euphotic
zone. Express the depth of the euphotic zone as a function of «.

(g) Compare a very clear lake with a milky glacier stream. Is the
attenuation coefficient « for the clear lake greater or smaller than
the attenuation coefficient « for the milky stream?

Y
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Wh——— e e — =

Figure 1.72 Graph for Problem 93.
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Figure 1.74 Graph for Problem 95.
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92. When plants are grown at high densities, we often observe that
the number of plants decreases as plant weights increase (due to
plant growth). If we plot the logarithm of the total aboveground
dry-weight biomass per plant, log w, against the logarithm of the
density of survivors, log d (base 10), a straight line with slope —3/2
results. Find the equation that relates w and d, assuming that
w=1gwhend =10°m—2.

In Problems 93-98, find each functional relationship on the basis
of the given graph.

93. Figure 1.72 94. Figure 1.73

95. Figure 1.74 96. Figure 1.75

97. Figure 1.76 (Hint: This relationship is different from the ones
considered so far. The x-axis is logarithmically transformed, but
the y-axis is linear.)

98. Figure 1.77 (Hint: This relationship is different from the ones
considered so far. The x-axis is logarithmically transformed, but
the y-axis is linear.)

99. The free energy AG expended in transporting an uncharged
solute across a membrane from concentration ¢; to one of
concentration ¢, follows the equation

(&)
AG =2303RT log —
(&)

where R = 1.99 kcal K~ kmol ! is the universal gas constant and
T is temperature measured in kelvins (K). Plot AG as a function
of the concentration ratio ¢;/c; when 7 = 298 K (25°C). Use a

-05 0
-1

Figure 1.73 Graph for Problem 94.

Figure 1.75 Graph for Problem 96.



N
T

|

Lol
1000 x

[T ) | |||||||| Lol
0.1 10 100

_1_

72_

Figure 1.76 Graph for Problem 97.

coordinate system in which the vertical axis is on a linear scale and
the horizontal axis is on a logarithmic scale.

100. Logistic Transformation Suppose that

fx) = (1.8)

1 —+ e_(b+mx)

A function of the form (1.8) is called a logistic function. The
logistic function was introduced by the Dutch mathematical
biologist Verhulst around 1840 to describe the growth of
populations with limited food resources. Show that

1 &=b+mx (1.9)

n
- ()
This transformation is called the logistic transformation. It is

a standard transformation for linearizing functions of the form
(1.8).

m 1.3.4

101. Not every study of species richness as a function of
productivity produces a hump-shaped curve. Owen (1988) studied
rodent assemblages in Texas and found that the number of species
was a decreasing function of productivity. Sketch a graph that
would describe this situation.

102. Species diversity in a community may be controlled by
disturbance frequency. The intermediate disturbance hypothesis
states that species diversity is greatest at intermediate disturbance
levels. Sketch a graph of species diversity as a function of
disturbance level that illustrates this hypothesis.

103. Preston (1962) investigated the dependence of number of
bird species on island area in the West Indian islands. He found
that the number of bird species increased at a decelerating rate as
island area increased. Sketch this relationship.

104. Phytoplankton converts carbon dioxide to organic com-
pounds during photosynthesis. This process requires sunlight.
It has been observed that the rate of photosynthesis is a
function of light intensity: The rate of photosynthesis increases
approximately linearly with light intensity at low intensities,
saturates at intermediate levels, and decreases slightly at high
intensities. Sketch a graph of the rate of photosynthesis as a
function of light intensity.

105. Brown lemming densities in the tundra areas of North
America and Eurasia show cyclic behavior: Every three to four
years, lemming densities build up very rapidly, and they typically
crash the next year. Sketch a graph that describes this situation.
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Figure 1.77 Graph for Problem 98.
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106. Nitrogen productivity can be defined as the amount of
dry matter produced per unit of nitrogen per unit of time.
Experimental studies suggest that nitrogen productivity increases
as a function of light intensity at a decelerating rate. Sketch a graph
of nitrogen productivity as a function of light intensity.

107. A study of Borchert’s (1994) investigated the relationship
between stem water storage and wood density in a number of
tree species in Costa Rica. The study showed that water storage
is inversely related to wood density; that is, higher wood density
corresponds to lower water content. Sketch a graph of water
content as a function of wood density that illustrates this situation.

108. Species richness can be a hump-shaped function of produc-
tivity. In the same coordinate system, sketch two hump-shaped
graphs of species richness as a function of productivity, one in
which the maximum occurs at low productivity and one in which
the maximum occurs at high productivity.

109. The size distribution of zooplankton in a lake is typically
a hump-shaped curve; that is, if the frequency (in percent) of
zooplankton is plotted against the body length of zooplankton,
a curve that first increases and then decreases results. Brooks and
Dodson (1965) studied the effects of introducing a planktivorous
fish in a lake. They found that the composition of zooplankton
after the fish was introduced shifted to smaller individuals.
In the same coordinate system, sketch the size distribution
of zooplankton before and after the introduction of the
planktivorous fish.

110. Daphnia is a genus of zooplankton that comprises a number
of species. The body growth rate of Daphnia depends on food
concentration. A minimum food concentration is required for
growth: Below this level, the growth rate is negative; above, it is
positive. In a study by Gliwicz (1990), it was found that growth
rate is an increasing function of food concentration and that the
minimum food concentration required for growth decreases with
increasing size of the animal. Sketch two graphs in the same
coordinate system, one for a large and one for a small Daphnia
species, that illustrates this situation.

111. Grant (1982) investigated egg weight as a function of adult
body weight among 10 species of Darwin’s finches. He found that
the relationship between the logarithm of the average egg size and
the logarithm of the average body size is linear and that smaller
species lay smaller eggs and larger species lay larger eggs. Graph
this relationship.

112. Grant et al. (1985) investigated the relationship between
mean wing length and mean weight among males of populations
of six ground finch species. They found a positive and nearly
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linear relationship between these two quantities. Graph this
relationship.

113. Bohlen et al. (2001) investigated stream nitrate concen-
tration along an elevation gradient at the Hubbard Brook
Experimental Forest in New Hampshire. They found that the
nitrate concentration in stream water declined with decreasing
elevation. Sketch stream nitrate concentration as a function of
elevation.

114. In Example 13, we discussed germination success as a
function of temperature for varying levels of humidity. We can also
consider germination success as a function of humidity for various
levels of temperature. Sketch the following graphs of germination
success as a function of humidity: one for low temperature, one
for intermediate temperature, and one for high temperature.

115. Boulinier et al. (2001) studied the dynamics of forest bird

communities. They found that the mean local extinction rate
of area-sensitive species declined with mean forest patch size,
whereas the mean extinction rate of non-area-sensitive species did
not depend on mean forest size. In the same coordinate system,
graph the mean extinction rate as a function of mean forest patch
size for (a) an area-sensitive species and (b) a non-area-sensitive
species.

116. Dalling et al. (2001) compared net photosynthetic rates of
two pioneer trees—Alseis blackiana and Miconia argenta—as a
function of gap size in Barro Colorado Island. They found that
net photosynthetic rates (measured on a per-unit basis) increased
with gap size for both trees and that the photosynthetic rate for
Miconia argenta was higher than that for Alseis blackiana. In the
same coordinate system, graph the net photosynthetic rates as
functions of gap size for both tree species.

Chapter 1 Key Terms

Discuss the following definitions and 12. Symmetry of functions: even, odd 27. Half-life
concepls: 13. Composition of functions 28. Inverse function, one to one
L. Real numbers 14. Polynomial 29. Logarithmic function
2. Intervals: open, closed, half-open 15. Degree of a polynomial i ) )
3. Absolute value 16. Chemical reaction: law of mass action 30.d Felat.l (;IHSI-HF; bet\yeen exponential
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1. Population Growth Suppose that the number of bacteria in a
petri dish is given by

B(t) = 10, 000e*"

where ¢ is measured in hours.
(a) How many bacteria are present at = 0, 1,2, 3, and 4?
(b) Find the time t when the number of bacteria reaches 100,000.
2. Population Decline Suppose that a pathogen is introduced
into a population of bacteria at time 0. The number of bacteria
then declines as

B(t) = 25,000e %
where ¢ is measured in hours.
(a) How many bacteria are left after 3 hours?
(b) How long will it be until only 1% of the initial number of
bacteria are left?
3. Chemical Reaction Consider the chemical reaction

A +2B — AB;

Assume that the reaction occurs in a closed vessel and that the
initial concentrations of A and B are a = [A] and b = [B],
respectively.

(a) Explain why the reaction rate R(x) is given by
R(x) = k(a —x)(b —2x)’

where x = [AB,].
(b) Show that R(x) is a polynomial and determine its degree.

(¢) Graph R(x) for the relevant values of x whena = 5,b = 6,
and k£ = 0.3.

4. History of Mathematics Euclid, a Greek mathematician who
lived around 300 B.C., wrote the Elements, by far the most
important mathematical text of that period. The book, arranged in
13 volumes, is a systematic exposition of most of the mathematical
knowledge of that time. In Book III, Euclid discusses the
construction of a tangent to a circle at a point P on the circle. To
phrase the construction in modern terminology, we draw a straight
line through the point P that is perpendicular to the line through
the center of the circle and the point P on the circle.

(a) Use this geometric construction to find the equation of the
line that is tangent to the unit circle at the point (%ﬂ, %).

(b) Determine the angle 6 between the positive x-axis and the
tangent line found in (a). What is the relationship between the
angle 6 and the slope of the tangent line found in (a)?



5. Hypothetical Plants To compare logarithmic and exponential
growth, we consider two hypothetical plants that are of the same
genus, but that exhibit rather different growth rates. Both plants
produce a single leaf whose length continues to increase as long
as the plant is alive. One plant is called Growthus logarithmiensis;
the other one is called Growthus exponentialis. The length L
(measured in feet) of the leaf of G. logarithmiensis at age t
(measured in years) is given by

L(t)y=In(t+1), t>0

The length E (measured in feet) of the leaf of G. exponentialis at
age t (measured in years), is given by

Et)y=¢ -1, t>0

(a) Find the length of each leaf after 1, 10, 100, and 1000 years.

(b) How long would it take for the leaf of G. exponentialis to
reach a length of 233,810 mi, the average distance from the earth
to the moon? (Note that 1 mi = 5280 ft.) How long would the leaf
of G. logarithmiensis then be?

(¢) How many years would it take the leaf of G. logarithmiensis
to reach a length of 233,810 mi? Compare this with the length of
time since life appeared on earth, about 3500 million years. If G.
logarithmiensis had appeared 3,500 million years ago, and if there
was a plant of this species that had actually survived throughout
the entire period, how long would its leaf be today?

(d) Plants started to conquer land only in the late Ordovician
period, around 450 million years ago.? If both G. exponentialis
and G. logarithmiensis had appeared then, and there was a plant
of each species that had actually survived throughout the entire
period, how long would their respective leaves be today?

6. Population Growth In Chapter 3 of The Origin of Species
(Darwin, 1859), Charles Darwin asserts that a “struggle for
existence inevitably follows from the high rate at which all organic
beings tend to increase. ... Although some species may be now
increasing, more or less rapidly, in numbers, all cannot do so,
for the world would not hold them.” To illustrate this point, he
continues as follows:

There is no exception to the rule that every organic
being naturally increases at so high a rate, that, if not
destroyed, the earth would soon be covered by the
progeny of a single pair. Even slow-breeding man has
doubled in twenty-five years, and at this rate, in a few
thousand years, there would literally not be standing
room for his progeny.

Starting with a single pair, compute the world’s population

after 1000 years and after 2000 years under Darwin’s assumption
that the world’s population doubles every 25 years, and find the
resulting population densities (number of people per square foot).
To answer the last part, you need to know that the earth’s diameter
is about 7900 mi, the surface of a sphere is 4772, where r is the
radius of a sphere, and the continents make up about 29% of the
earth’s surface. (Note that 1 mi = 5280 ft.)
7. Population Growth Assume that a population grows g % each
year. How many years will it take the population to double in size?
Give the functional relationship between the doubling time 7" and
the annual percentage increase g. Produce a table that shows the
doubling time 7 as a function of g forg =1, 2, ..., 10, and graph
T as a function of ¢g. What happens to T as g gets closer to 0?

(2) The Ordovician lasted from about 505 million years ago to about 438
million years ago.
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8. Beverton—-Holt Recruitment Curve Many organisms show
density-dependent mortality. The following is a simple mathemat-
ical model that incorporates this effect: Denote the density of
parents by N, and the density of surviving offspring by N,.

(a) Suppose that without density-dependent mortality, the
number of surviving offspring per parent is equal to R. Show that
if we plot N,/N, versus Np, the result is a horizontal line with y-
intercept 1/R. That is,

N, 1

N, R
or

N,=R-N,

The constant R is called the net reproductive rate.

(b) To include density-dependent mortality, we assume that
N, /N, is an increasing function of N,. The simplest way to do this
is to assume that the graph of N,/N, versus N, is a straight line
with y-intercept 1/R and that goes through the point (K, 1). Show
that this implies that

RN,
1+ ®DN,
K

a =

This relationship is called the Beverton—Holt recruitment curve.

(¢) Explain in words why, for small initial densities N, the model
described by the Beverton—-Holt recruitment curve behaves like
the model for density-independent mortality described in (a).

(d) Show that if N, = K, then N, = K. Furthermore, show
that N, < K implies N, < N, < K and that N, > K implies
K < N, < N,. Explain in words what this means. (Note that K is
called the carrying capacity.)

(e) Plot N, as a function of N, for R = 2 and K = 20. What
happens for large values of N,? Explain in words what this means.

9. Fish Yield (Adapted from Moss, 1980) Oglesby (1977) in-
vestigated the relationship between annual fish yield (¥) and
summer phytoplankton chlorophyll concentration (C). Fish yield
was measured in grams dry weight per square meter per year,
and the chlorophyll concentration was measured in micrograms
per liter. Data from 19 lakes, mostly in the Northern Hemisphere,
yielded the following relationship:

log,, Y = 1.171og,, C — 1.92 (1.10)

(a) Plotlog,, Y as a function of log,, C.

(b) Find the relationship between Y and C; that is, write
Y as a function of C. Explain the advantage of the log-log
transformation resulting in (1.10) versus writing Y as a function
of C. [Hint: Try to plot Y as a function of C, and compare with
your answer in (a).]

(¢) Find the predicted yield (Y,) as a function of the current
yield (Y.) if the current summer phytoplankton chlorophyll
concentration were to double.

(d) By what percentage would the summer phytoplankton
chlorophyll concentration need to increase to obtain a 10%
increase in fish yield?

10. Radioactive Decay (Adapted from Moss, 1980) To trace the
history of a lake, a sample of mud from a core is taken and dated.
One dating method uses radioactive isotopes. The C'* method is
effective for sediments that are younger than 60,000 years. The
C'*: C? ratio has been essentially constant in the atmosphere over
a long time, and living organisms take up carbon in that ratio.
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Upon death, the uptake of carbon ceases and C'* decays, which
changes the C'*: C'? ratio according to

C14 C14 )
_ —At
<C12> _(cu)... ¢
t initial

where ¢ is the time since death.

(a) If the C'*: C'" ratio in the atmosphere is 107!2 and the half-
life of C' is 5730 years, find an expression for ¢, the age of the
material being dated, as a function of the C**:C'? ratio in the
material being dated.

(b) Use your answer in (a) to find the age of a mud sample from
a core for which the C* : C'? ratio is 1.61 x 1071,

11. Fossil Coral Growth (Adapted from Futuyama, 1995, and
Dott and Batten, 1976) Corals deposit a single layer of lime each
day. In addition, seasonal fluctuation in the thickness of the layers
allows for grouping them into years. In modern corals, we can
count 365 layers per year. J. Wells, a paleontologist, counted such
growth layers on fossil corals. To his astonishment, he found that
Devonian® corals that lived about 380 million years ago had about
400 daily layers per year.

(a) Today, the earth rotates about its axis every 24 hours and
revolves around the sun every 365% days. Astronomers have
determined that the earth’s rotation has slowed down in recent
centuries at the rate of about 2 seconds every 100,000 years.
That is, 100,000 years ago, a day was 2 seconds shorter than
today. Extrapolate the slowdown back to the Devonian, and
determine the length of a day and the length of a year back when
Wells’s corals lived. (Hint: The number of hours per year remains
constant. Why?)

(b) Find alinear equation that relates geologic time (in million of
years) to the number of hours per day at a given time.

(¢) Algal stromatolites also show daily layers. A sample of some
fossil stromatolites showed 400 to 420 daily layers per year. Use
your answer in (b) to date the stromatolites.

12. Tree Growth The height y in feet of a certain tree as a
function of age x in years can be approximated by

y =132

(a) Use a graphing calculator to plot the graph of this function.
Describe in words how the tree grows, paying particular attention
to questions such as the following: Does the tree grow equally fast
over time? What happens when the tree is young? What happens
when the tree is old?

(b) How many years will it take for the tree to reach 100 ft in
height?
(¢) Can the tree ever reach a height of 200 ft? Is there a final
height—that is, a maximum height that the tree will eventually
reach?

13. Model for Aging The probability that an individual lives
beyond age ¢ is called the survivorship function and is denoted by
S(t). The Weibull model is a popular model in reliability theory
and in studies of biological aging. Its survivorship function is
described by two parameters, A and $, and is given by

S(1) = exp[—(a1)’]

(3) The Devonian period lasted from about 408 million years ago to about
360 million years ago.

Mortality data from a Drosophila melanogaster population in
Dr. Jim Curtsinger’s lab at the University of Minnesota were
collected and fitted to this model separately for males and females
(Pletcher, 1998). The following parameter values were obtained (¢
was measured in days):

Sex A B
Males 0.019 341
Females 0.022 3.24

(a) Use a graphing calculator to sketch the survivorship function
for both the female and male populations.

(b) For each population, find the value of ¢ for which the
probability of living beyond that age is 1/2.

(¢) If you had a male and a female of this species, which would
you expect to live longer?

14. Carbon Isotope Carbon has two stable isotopes: C!? and
C1B. Organic material contains both stable isotopes but the ratio
[C"]:[C"] in organic material is smaller than that in inorganic
material, reflecting the fact that light carbon (C'?) is preferentially
taken up by plants during photosynthesis. This process is called
isotopic fractionation and is measured as

137. 12
813C _ |: ([Cn ] [Clz ])sample _ 1j|
([C ] . [C ])slandard

The standard is taken from the isotope ratio in the carbon
of belemnite shells found in the Cretaceous Pedee formation
of South Carolina. Explain, on the basis of the preceding
information, why the following quotation from Krauskopf and
Bird (1995) makes sense:

The low [negative] values of §'*C in the hydrocarbons
of petroleum are one of the important bits of evidence
for ascribing the origin of petroleum to the alteration of
organic material rather than to condensation of primeval
gases from the Earth’s interior.

15. Chemical Reaction The speed of an enzymatic reaction is
frequently described by the Michaelis-Menten equation

ax
vV =
k+x

where v is the velocity of the reaction, x is the concentration
of the substrate, a is the maximum reaction velocity, and k is
the substrate concentration at which the velocity is half of the
maximum velocity. This curve describes how the reaction velocity
depends on the substrate concentration.

(a) Show that when x = k, the velocity of the reaction is half the
maximum velocity.

(b) Show that an 81-fold change in substrate concentration is
needed to change the velocity from 10% to 90% of the maximum
velocity, regardless of the value of k.

16. Lake Acidification Atmospheric pollutants can cause acidi-
fication of lakes (by acid rain). This can be a serious problem
for lake organisms; for instance, in fish the ability of hemoglobin
to transport oxygen decreases with decreasing pH levels of the
water. Experiments with the zooplankton Daphnia magna showed
a negligible decline in survivorship at pH = 6, but a marked
decline in survivorship at pH = 3.5, resulting in no survivors after
just eight hours. Illustrate graphically the percentage survivorship
as a function of time for pH = 6 and pH = 3.5.



17. Lake Chemistry The pH level of a lake controls the
concentrations of harmless ammonium ions (NH]) and toxic
ammonia (NH,) in the lake. For pH levels below 8, concentrations
of NH ions are little affected by changes in the pH value, but
they decline over many orders of magnitude as pH levels increase
beyond pH = 8. By contrast, NH; concentrations are negligible at
low pH, increase over many orders of magnitude as the pH level
increases, and reach a high plateau at about pH = 10 (after which
levels of NHj; are little affected by changes in pH levels). Illustrate
the behavior of [NH; | and [NH;] graphically.

18. Development and Growth Egg development times of the
zooplankton Daphnia longispina depend on temperature. It takes
only about 3 days at 20°C, but almost 20 days at 5°C, for an
egg to develop and hatch. When graphed on a log-log plot, egg
development time (in days) as a function of temperature (in °C)
is a straight line.

(a) Sketch a graph of egg development time as a function of
temperature on a log-log plot.

(b) Use the data to find the function that relates egg development
time and temperature for D. longispina.

(¢) Use your answer in (b) to predict egg development time of D.
longispina at 10°C.

(d) Suppose you measured egg development time in hours and
temperature in Fahrenheit. Would you still find a straight line on
a log-log plot?

19. Resource Model Organisms consume resources. The rate
of resource consumption, denoted by v, depends on resource
concentration, denoted by S. The Blackman model of resource
consumption assumes a linear relationship between resource
consumption rate and resource concentration: Below a threshold
concentration (S ), the consumption rate increases linearly with
S = 0 when v = 0; when § = S, the consumption rate v reaches
its maximum value vp,y; for S > S, the resource consumption
rate stays at the maximum value v,,,. A function like this, with
a sharp transition, cannot be described analytically by just one
expression; it needs to be defined piecewise:

v — g(S) for0<S < S
" | e for § > S

Find g(S), and graph the resource consumption rate v as a

function of resource concentration S.

20. Light Intensity Light intensity in lakes decreases exponen-

tially with depth. If 7 (z) denotes the light intensity at depth z, with

z = O representing the surface, then
1) =10 e, z>0

where « is a positive constant called the vertical attenuation
coefficient. This coefficient depends on the wavelength of the light
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and on the amount of dissolved matter and particles in the water.
In the following, we assume that the water is pure:

(a) About 65% of red light (720 nm) is absorbed in the first meter.
Find «.

(b) About 5% of blue light (475 nm) is absorbed in the first meter.
Find «.

(¢) Explain in words why a diver would not see red hues a few
meters below the surface of a lake.

21. Light Intensity Light intensity in lakes decreases with depth
according to the relationship

I(z) =10)e", z>0

where / (z) denotes the light intensity at depth z, z = O represents
the surface, and « is a positive constant denoting the vertical
attenuation coefficient. The depth where light intensity is about
1% of the surface light intensity is important for photosynthesis
in phytoplankton: Below this level, photosynthesis is insufficient
to compensate for respiratory losses. The 1% level is called the
compensation level. An often used and relatively reliable method
for determining the compensation level is the Secchi disk method.
A Secchi disk is a white disk with radius 10 cm. The disk depth is
the depth at which the disk disappears from the viewer. Twice this
depth approximately coincides with the compensation level.

(a) Find « for a lake with Secchi disk depth of 9 m.

(b) Find the Secchi disk depth for a lake with @ = 0.473 m~L.

22. Population Growth Assume that the population size N (¢) at
time ¢ > 0 is given by

N(t) = Noe'!

with Ny = N(0). The parameter r is called the average annual
growth rate.
(a) Show that
N(t+1)
N()
Formula (1.11) is used, for instance, by the U.S. Census Bureau to
track world population growth.

(1.11)

(b) Suppose a population doubles in size within a single year.

(i) What is the percent increase of the population during that
year?

(ii) Whatis the average annual growth rate in percent during that
year, according to (1.11)?

(¢) Suppose the average annual growth rate of a population is
1.3%. How many years will it take the population to double in
size?

(d) To calculate the doubling time of a growing population with
a constant average annual growth rate, we divide the percent
average annual growth rate into 70. Apply this “Rule of 70” to
(c) and compare your answers. Derive the “Rule of 70.”



Discrete-Time Models,
Sequences, and
Difference Equations

LEARNING OBJECTIVES

In this chapter, we discuss models for populations that reproduce at discrete times and we
develop some of the theory needed to analyze this type of model. The models are given by
functions whose domains are subsets of the set of nonnegative integers N = {0,1,2, ...}. These
functions are used extensively in biology to describe, for instance, the population size of a plant
that reproduces once a year and then dies (an annual plant). Specifically, we will learn how to

o describe discrete-time models of population growth and decay—with tables and graphs,
explicitly as functions of time, and recursively from one time step to the next;

« describe sequences a, explicitly, with formulas for the nth term and recursively;
« calculate limits and fixed points of sequences;
« describe the relationship between fixed points and limits of a sequence;

« give examples of density-dependent population growth models and describe their long-
term behavior on the basis of graphs of the size of the population as a function of time.

M 2.1 Exponential Growth and Decay
B 2.1.1 Modeling Population Growth in Discrete Time

Imagine that we observe bacteria that divide every 20 minutes and that,
at the start of the experiment, there was one ,_
bacterium. How will the number of bacteria
change over time? We call the time when we
started the observation time 0. At time 0, thereis ;= o
one bacterium. After 20 minutes, the bacterium
splits in two, so there are two bacteria at time 20.
Twenty minutes later, each of the bacteria splits ¢ =40
again, resulting in four bacteria at time 40, and
so on (Figure 2.1).
We can produce a table that describes the
growth of this population:

Figure 2.1 Bacteria split every 20
units of time.

Time (min) 0 20 40 60 80 100 120
Population size 1 2 4 8 16 32 64

We can simplify the description of the growth of the bacterial population if we
measure time in more convenient units. We say that one unit of time equals 20 min-
utes. Two units of time then corresponds to 40 minutes, three units of time to 60
minutes, and so on. We reproduce the table of population growth with these new
units:

Time (20 min) 0 1 2 3 4 5 6
Population size 1 2 4 8 16 32 64
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The new time units make it easier to write a general formula for the population
size at time . Denoting by N (¢) the population size at time 7, where ¢ is now measured
in the new units (one unit is equal to 20 minutes), we guess from the second table that

Ny =2, t=0,1,2,... (2.1)

We encountered this function in Section 1.2 when we discussed exponential functions.
There, the function was defined for all# > 0, whereas now, the function is defined only
for nonnegative integer values. Equation (2.1) allows us to determine the population
size at any discrete time ¢ directly, without first calculating the population sizes at all
previous time steps. For instance, at time t = 5, we find that N(5) = 25 = 32, as
shown in the second table, or, at time t = 10, N(10) = 2! = 1024. The graph of
N(t) = 2" is shown in Figure 2.2.

Population size

70
60
50
40
30 *
20
10

* N(1) *

N(1)

o

_‘

-
-~ W+ ¢

Figure 2.2 The graph of N(t) =2' forr =0,1,2,...,6.

The function N(t) = 2',¢t = 0,1,2, ..., is an exponential function, and we
call the type of population growth that it represents exponential growth. The base 2
reflects the fact that the population size doubles every unit of time.

Instead of N(z), we will often write N,. The subscript notation is used only for
functions N (¢) where ¢ is a nonnegative integer. So, instead of writing N(¢) = 27,
t=0,1,2,...,wecanwrite N, =2t =0,1,2,....

So far, we assumed that N(0) = Ny = 1. Let’s see what N, looks like if Ny =
100. Regardless of Ny, the population size doubles every unit of time. We obtain the
following table, where time is again measured in units of 20 minutes:

Time (20 min) 0 1 2 3 4 5 6
Population size 100 200 400 800 1600 3200 6400

We can guess the general form of N, with Ny = 100 from the table:
N,=100-2", t=0,1,2,...

We see that the initial population size Ny = 100 appears as a multiplicative factor in
front of the term 2’. If we do not want to specify a numerical value for the population
size Ny at time 0, we can write

N, =Ny, t=0,1,2,...

We already mentioned that the base 2 indicates that the population size doubles
every unit of time. Replacing 2 by another number, we can describe other popula-
tions. For instance,

N, =3, t=0,1,2,...

describes a population with Ny = 1 and that triples in size every unit of time. The
corresponding table is

Time 0 1 2 3 4
Population size 1 3 9 27 81
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Solution

Now that we have some experience with exponential growth in discrete time, we
give the general formula:

N, =NoR', t=0,1,2,... (2.2)

The parameter R is a positive constant called the growth constant. The constant Ny is
nonnegative and denotes the population size at time 0. The assumptions R > 0 and
Ny > 0 are made for biological reasons: Negative values for R or Ny would result in
negative population sizes, and R = 0 would be uninteresting.

Suppose a population of cells reproduces every 15 minutes and we measure its size
every 30 minutes:

Time (min) 0 30 60 90 120 150 180
Population size 1 4 16 64 256 1024 4096
Write a formula for time n = 0, 1, 2, ... when (a) one unit of time is 30 minutes, (b)

one unit of time is 60 minutes, and (c) one unit of time is 15 minutes.

(a) We see from the values listed in the table that when one unit of time is 30
minutes, the population quadruples every unit of time, with Ny = 1. Thus,

N, =4, +=0,1,2,...

(b) This time, we see from the values in the table that when one unit of time is
equal to 60 minutes, the population grows by a factor of 16 each unit of time. Again,
Ny = 1. Hence,

Ny, =16", s=0,1,2,...

We could also have arrived at this answer by noting that the time step in (b) is twice
that of the time step in (a). In other words, when one unit of time elapses in (b), two
units of time elapse in (a):

t 0 1 2 3 4 5
s 0 1 2

We find that r = 2s. If we substitute 2s for ¢ in (a), we find that
N, =4' vyields N, =4* =16°
fors =0,1,2,....

(¢) When one unit of time is 15 minutes, and we use the variable u = 0,1, 2, ...
to denote time, it follows that t = u/2 and

N, =4' vyields N, =4"?=2"
foru=0,1,2,.... ]

The function N; = NyR',t = 0,1,2,..., is an exponential function. We dis-
cussed exponential functions in the previous chapter. There, we looked at f(x) = a*,
x € R. To make the comparison easier, we choose Ny = 1 in (2.2) and restrict the
function f(x) = a* to x > 0. If we choose the same values for R and a, then the two
functions N, and f (x) use the same rule to compute their values. The difference is in
the domain: N, is defined only for nonnegative integers, whereas f(x) is defined for
all nonnegative real numbers. The two functions agree where they are both defined.
This can be seen when we graph N, and f (x) in the same coordinate system for R = a
(Figure 2.3).

In Chapter 1, we learned how f(x) = a*, x € R, behaves for different values
of a. We can use this behavior now to describe that of N, = NyR',t =0,1,2,....
In Figure 2.4, we show the function f(x) = a*, x > 0, for different values of a.
Superimposed are the graphs of N, = NyR',t =0,1,2,...,for R = a and Ny = 1.

We see that when R > 1, the population size N, increases indefinitely; when R =
1, the population size N, stays the same forall =0,1,2,...;and when0 < R < 1,
the population size N; declines and approaches 0 as ¢ increases. The behavior is the
same for other positive initial population sizes (Ny > 0).
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Figure 2.3 The graphs of f(x) =a*,0 < x <10,and N(¢) = R’,
t=0,1,2,...,10,whena = R = 1.3.
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Figure 2.4 The graphs of f(x) =a*,0 <x <10,and N(t) = R',t =0,1,2, ..., 10,
for three different valuesofa = R:a =R =05,a=R=1,anda =R =1.2.

B 2.1.2 Recursions

When we constructed the tables for the bacterial population size with R = 2 at
consecutive time steps, we doubled the population size from time step to time step.
In other words, we computed the population size at time ¢ + 1 on the basis of the
population size at time 7, using the equation

Nz+1 =2N; (2~3)

Equation (2.3) is a rule that is applied repeatedly to go from one time step to the
next and is called a recursion. We say that Equation (2.3) defines the population size
recursively.

If we want to use Equation (2.3) to find the population size, say, at time r = 4, we
need to know the population size at some earlier time, say, time ¢t = 0. Let’s assume
that Ny = 1. Then, applying the recursion (2.3) repeatedly, we find that

Ny =2Ny =2
N, = 2N, = 4
N3 =2N, =8
Ny =2N; = 16

We thus have two equivalent ways to describe this population: Forr =0, 1,2, ...,
N, =2 is equivalent to Nyt =2N; with Ny =1
The recursion for a general value of R is

N:;11 = RN; with Ny = population size at time 0 (2.4)
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N

Slope R

|
|
|
0 f
1 N,

Figure 2.5 The exponential growth
recursion N,;; = RN, when R > 0.

Applying (2.4) repeatedly, we obtain

N; = RN,
N> = RN, = R’N,
N3 = RN, = R*N,
N, = RN; = R*N,

Nl = RN[71 = RIN[)
The two descriptions for t =0, 1,2, ..., namely,
N, = NyR' and N;+1 = RN, with Ny = population size at time 0

are equivalent. We say that N, = NyR’ is a solution of the recursion N,y = RN,
with initial condition Ny at time 0, since the function N; = Ny R’ satisfies the recursion
with initial condition N (0) = N,.

We can visualize recursions by plotting N; on the horizontal axis and N, on the
vertical axis. The exponential growth recursion

Nl+1 == RNt (2.5)

is then a straight line through the origin with slope R (Figure 2.5). Since N, > 0 for
biological reasons, we restrict the graph to the first quadrant.

What does this graph tell us? For any current population size N,, it allows us to
find the population size in the next time step, namely, N;;. For instance, if R = 2 and
Ny = 1, then successive population sizes are 1, 2, 4, 8, 16, 32, . ... For this choice of
Ny, we will never see a population size of, say, 5 or 10. Thus, for a specific choice of N,
only a selected number of points on the graph N,; = RN, will be realized (Figure
2.6). A different choice of initial condition would yield a different set of points.

70
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Figure 2.6 Successive population sizes on the graph of the exponential growth
recursion when R =2 forr =0,1,2,...,5.

We also see from Figure 2.6 that unless we label the points according to the
corresponding 7-value, we would not be able to tell at what time a point (N, N;11)
was realized. We say that time is implicit in this graph. Compare Figure 2.6 with Figure
2.2, in which we graphed N, as a function of ¢ for the same values of R and Nj; in
Figure 2.2, time is explicit.

The hallmark of exponential growth is that the ratio of successive population
sizes, N;/N,.1, is constant. When N; > 0 (and hence N,;; > 0), it follows from
Niy1 = RN, that

N, 1

Niy1i R

If the population consists of annual plants, we can interpret the ratio N; /N, as the
parent—offspring ratio. If this ratio is constant, parents produce the same number of
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Figure 2.7 The graph of the
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function of N, when N, > 0.
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offspring, regardless of the current population density. Such growth is called density

When R > 1, it follows that 1/R, the parent-offspring ratio, is less than 1, imply-
ing that the number of offspring exceeds the number of parents. Density-independent
growth with R > 1 results in an ever-increasing population size. This model eventu-
ally becomes biologically unrealistic, since any population will sooner or later expe-
rience food or habitat limitations that will limit its growth. (We will discuss models
that include such limitations in Section 2.3.)

The density independence in exponential growth is reflected in a graph of N,/ N; 41
as a function of N,, which is a horizontal line at level 1/R (Figure 2.7).

As before, only a selected number of points are realized on the graph of N, /N1,

as a function of N;, and time is implicit in the graph. (See Figure 2.8, with R = 2 and

No=1)
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Figure 2.8 The graph of the parent—offspring ratio
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Section 2.1 Problems

In Problems 1-4, produce a table fort = 0,1,2,...,5 and graph
the function N;.

1. N =3 2. N,=10-2'
25
3. N, = m 4. N, = (0.3)(0.9)

In Problems 5-10, give a formula for N(t),t =0,1,2, ..., on the
basis of the information provided.

5. Ny = 2; population doubles every 20 minutes; one unit of time
is 20 minutes

6. Ny = 4; population doubles every 40 minutes; one unit of time
is 40 minutes

7. Ny = 1; population doubles every 40 minutes; one unit of time
is 80 minutes

8. Ny = 6; population doubles every 40 minutes; one unit of time
is 60 minutes

9. Ny = 2; population quadruples every 30 minutes; one unit of
time is 15 minutes

10. Ny = 10; population quadruples every 20 minutes; one unit
of time is 10 minutes

11. Suppose N, = 20 -4',t = 0,1,2, ..., and one unit of time
corresponds to 3 hours. Determine the amount of time it takes
the population to double in size.

12. Suppose N; 100 -2",¢t = 0,1, 2, ..., and one unit of time
corresponds to 2 hours. Determine the amount of time it takes the
population to triple in size.

13. A strain of bacteria reproduces asexually every hour. That is,
every hour, each bacterial cell splits into two cells. If, initially, there
is one bacterium, find the number of bacterial cells after 1 hour, 2
hours, 3 hours, 4 hours, and 5 hours.

14. A strain of bacteria reproduces asexually every 30 minutes.
That is, every 30 minutes, each bacterial cell splits into two cells.
If, initially, there is one bacterium, find the number of bacterial
cells after 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours.

15. A strain of bacteria reproduces asexually every 23 minutes.
That is, every 23 minutes, each bacterial cell splits into two cells.
If, initially, there is 1 bacterium, how long will it take until there
are 128 bacteria?

16. A strain of bacteria reproduces asexually every 42 minutes.
That is, every 42 minutes, each bacterial cell splits into two cells.
If, initially, there is 1 bacterium, how long will it take until there
are 512 bacteria?

17. A strain of bacteria reproduces asexually every 10 minutes.
That is, every 10 minutes, each bacterial cell splits into two cells.
If, initially, there are 3 bacteria, how long will it take until there
are 96 bacteria?

18. A strain of bacteria reproduces asexually every 50 minutes.
That is, every 50 minutes, each bacterial cell splits into two cells.
If, initially, there are 10 bacteria, how long will it take until there
are 640 bacteria?
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19. Find the exponential growth equation for a population that
doubles in size every unit of time and that has 40 individuals at
time 0.

20. Find the exponential growth equation for a population that
doubles in size every unit of time and that has 53 individuals at
time 0.

21. Find the exponential growth equation for a population that
triples in size every unit of time and that has 20 individuals at time
0.

22. Find the exponential growth equation for a population that
triples in size every unit of time and that has 72 individuals at time
0.

23. Find the exponential growth equation for a population that
quadruples in size every unit of time and that has five individuals
at time 0.

24. Find the exponential growth equation for a population that
quadruples in size every unit of time and that has 17 individuals at
time 0.

25. Find the recursion for a population that doubles in size every
unit of time and that has 20 individuals at time 0.

26. Find the recursion for a population that doubles in size every
unit of time and that has 37 individuals at time 0.

27. Find the recursion for a population that triples in size every
unit of time and that has 10 individuals at time 0.

28. Find the recursion for a population that triples in size every
unit of time and that has 84 individuals at time 0.

29. Find the recursion for a population that quadruples in size
every unit of time and that has 30 individuals at time 0.

30. Find the recursion for a population that quadruples in size
every unit of time and that has 62 individuals at time 0.

In Problems 31-34, graph the functions f(x) = a*, x € [0, 00),

and N, = R', t € N, together in one coordinate system for the
indicated values of a and R.
3l.a=R=2 32.a=R=3

33.a=R=1/2 34.a=R=1/3

In Problems 35-46, find the population sizes fort = 0,1,2,...,5
for each recursion.

35. Nyst = 2N, with Ny =3

37. Nip1 = 3N, with Ny =2

39. Nypt = 5N, with Ny = 1

41. N, = N, with Ny = 1024
42. Nyyy = 3N, with Ny = 4096
43. Ny = LN, with Ny = 729
4. N4y = 1N, with Ny = 3645
45. N1 = 1N, with Ny = 31250
46. N4y = 1N, with Ny = 8192

36. N,oi = 2N, with Ny =5
38. N1 = 3N, with Ny =7
40. N, = 7N, with Ny = 4

M 2.2 Sequences

In Problems 47-58, write N, as a function of t for each recursion.
47. Niyy =2N, with Ny =15  48. N,;; = 2N, with Ny =7
49. N,y =3N, with Ny =12  50. N,;; = 3N, with Ny =3
51. N;y1 = 4N, with Ny =24 52. N,y = 5N, with Ny = 17
53. Nyj1 = 3N, with Ny = 5000

54. N,y = 3N, with Ny = 2300

55. N1 = N, with Ny = 8000

56. Ny41 = 3N, with Ny = 3500

57. N = N, with Ny = 1200

58. Nij1 = 5N, with Ny = 6400

In Problems 59-66, graph the line N,y = RN, inthe N,—N,, plane

for the indicated value of R and locate the points (N;, Ny11),t =0,
1, and 2, for the given value of N.

59. R=2,N, =2 60. R=2,Ny=3
6. R=3,Ny=1 62. R=4,Ny=2
63. R=1,Ny=16 64. R =1, Ny =64

65. R =3, Ny =8l 66. R =7, Ny=16

In Problems 67-74, graph the line X = % in the N~ plane

Nit1 Nit1
for the indicated value of R and locat:z the points (N, #Jlrl;’ t=0,
1, 2, for the given value of Ny. Find the parent—offspring ratio.
67. R=2,Ny=2 68. R=2,Ny=4
69. R=3,Ny=2 70. R=4,Ny=1
7. R=3,Ny=16 72. R =3, Ny=128
73. R= 1, Ny =27 74. R= 1, Ny=64

75. A bird population lives in a habitat where the number of
nesting sites is a limiting factor in population growth. In which of
the following cases would you expect that the growth of this bird
population over the next few generations could be reasonably well
approximated by exponential growth?

(a) All nesting sites are occupied.

(b) The bird population just invaded the habitat, and the
population size is still much smaller than the available nesting
sites.

(¢) Inthe previous year, a hurricane killed more than 90% of the
birds in this habitat.

76. Pollen records show that the number of Scotch pine
(Pinus sylvestris) grew exponentially for about 500 years after
colonization of the Norfolk region of Great Britain about 9500
years ago. Can you find a possible explanation for this growth?

77. Exponential growth generally occurs when population growth
is density independent. List conditions under which a population
might stop growing exponentially.

W 2.2.1 What Are Sequences?

Before we explore other discrete-time population models, we need to develop further
the theory of functions with domain N. The functions are of the form

f:N—=>R
n— f(n)
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Solution
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When the independent variable denotes time, we will frequently use ¢ instead of n.
Tables and graphs are useful tools to illustrate these functions.
Let
f:N—>R
n— fn) =

n—+1

Produce a table forn =0, 1,2...,5 and graph the function.

The table is
n 0 1 2 3 4 5
1 1 1 1 1 1
1 1 3 3 7 3 g

The graph of this function consists of discrete points (Figure 2.9). On the horizontal
axis, we display the variable n; on the vertical axis, the function f(n). Note that we

did not connect the points with lines or curves. ]
1.2
1
0.8
E 06 1
<
¢ ¢ n+1
0.4
*
02 ¢ . .
0 T T T T T
0 1 2 3 4 5 6
n
Figure 2.9 The graph of the function f(n) = ﬁ in Example 1.

We can write the function

f:N—=>R
n— f(n)
asalistof numbers ag, ai, ay, . .., wherea, = f(n). We refer to this list as a sequence.

We will write {a, : n € N} (or {a,} for short) if we mean the entire sequence. Note
that we list the values of the sequence {a,} in order of increasing n:

ap, 1, a, ...
The sequence
n
a, = (1", n=0,1,2,...
takes on values

1,-1,1,-1,1, ... ]

When we see a sequence and recognize a pattern, we can often write an expres-
sion for a,,.
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EXAMPLE 3

Solution

EXAMPLE 4

Solution

Find a, for the sequence
0,1,4,9,16,25, ...

Looking at the sequence, we can guess the next terms, namely, 36, 49, 64, and so on.
We thus find that
a, =n2, n=0,1,2,...
We do not need to start a sequence at n = 0. If we started the sequence atn = 1, we
would write
a,=mn—-1>% n=1,273,...

In either case, it is important to include the domain of the sequence. ]

Find a, for the sequence
11 1 1

9_2751_E9£7"'

This sequence has alternating signs: The first term is positive, the second negative, the
third positive, and so on. This indicates that we need a factor (—1)",n =0,1,2,....
The numerators are all equal to 1, and the denominators are successive squares of
integers, starting with the integer 1. We can thus write

ay = (—1)0i =1
(1)?

ar = (<D= = —=
(2)? 4

a = (_1)2L — 1
3?2 9

and so on. This set of equations suggests that

a, = (=1)" n=20,1,2,...

(n+ 1%’

If we wanted to start the sequence at n = 1, we could write

1
apy=(D""=, n=123, ...
n

or

1
ap=(-1)""=, n=123,...
n

Look carefully at the exponent of (—1). Any of the terms (—1)", (—1)"~!, and (—1)"*+!
produces alternating signs. Since the first term in the sequence {a,} is positive, we
need to use (—1)" if we start with n = 0, and either (—1)"~! or (—1)"*! if we start
withn = 1. [ |

The exponential growth model we considered in the previous section is an ex-
ample of a sequence. We gave two descriptions, one explicit and the other recursive.
These two descriptions can be used for sequences in general. An explicit description
is of the form

a,=fm), n=0,1,2,...

where f(n) is a function of n.
A recursive description is of the form

ap41 =g(aﬂ)7 I’l=0, 1721"‘

where g(a,) is a function of a,. If, as is shown here, the value of a,,; depends only
on the value one time step back, namely, a,, then the recursion is called a first-order
recursion. Later in the chapter, we will see an example of a second-order recursion,
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Solution

EXAMPLE 6

Solution

EXAMPLE 7
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in which the value of a, 11 depends on the values a,, and a,,_; —that is, on the values
one and two time steps back. To determine the values of successive members of a
sequence given in recursive form, we need to specify an initial value a if we start the
sequence at n = 0 (or a; if we start the sequence at n = 1).
In the notation of this section, the exponential growth of the previous section is
given explicitly by
a, =ayR", n=0,1,2,...

and recursively by
ap+1 = Ra,, n=0,1,2,...

Note that, in the recursive definition, the initial value @y needs to be specified.

W 2.2.2 Limits
When studying populations over time, we are often interested in their long-term
behavior. Specifically, if N, is the population size at time 7, = 0, 1,2, ..., we want

to know how N, behaves as ¢ increases, or, more precisely, as ¢ tends to infinity. Using
the notation of this section, we want to know the behavior of a, as n tends to infinity.
When we let n tend to infinity, we say that “we take the limit of the sequence a, as n
goes to infinity” and use the shorthand notation

lim a, or lim,_,  a,

n—o0
read as “the limit of a, as n tends to infinity,” in equations. Let’s first discuss limits
informally to get an idea of what can happen.

Let
1

n+1

an= £ n=0,1,2,...

Find lim,_,  a,.

Plugging successive values of n into a,, we find that a,, is the sequence
1111
9 27 3 b 49 5 99 .
and we guess that the terms will approach 0 as n tends to infinity. This is indeed the
case, and we will learn shortly how to show that

lim =0
n—oo 1
Since the limiting value is a unique number, we say that the limit exists. ]

Note that plugging in successive values of n into a, is only a heuristic way of
determining how a, behaves as n — oo.

Let
a, = (1" n=01,2,...

Find lim,,_,  a,,.

The sequence is of the form
1,-1,1,-1,1, ...

and we see that its terms alternate between 1 and —1. There is thus no single number
we could assign as the limit of @, asn — oo. We then say that the limit does not exist.
|

Let
a,=2", n=0,1,2,...

Find lim,_, _ a,.
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Solution

EXAMPLE 8

Solution

Successive terms of a,, namely,
1,2,4,8,16,32, ...

indicate that the terms continue to grow. Hence, a,, goes to infinity as n — o0, and
we can write lim,, ,  a, = oo. Since infinity (c0) is not a real number, we say that
the limit does not exist. ]

Let’s look at one more example of a limit that exists before we give a formal
definition.
Find
. on—+1
lim

n—oo N

Starting with n = 1 and computing successive terms, we find that

2,

N W
U{I-lk
&1
UIQIO\

We see that the terms get closer and closer to 1, and, indeed,

on+1
lim =

n—oco N

1 ]

The way we solved the first four examples is unsatisfying: We guessed the limiting
values. How do we know that our guesses are correct? There is a formal definition of
limits that can be used to compute them. However, except in the simplest cases, the
formal definition is quite cumbersome to use. Fortunately, there are mathematical
laws that build on simple limits (which can be computed from the formal definition).
We will first discuss the formal definition (as an optional topic) and then introduce
the limit laws.

Formal Definition of Limits (Optional) Example 8 will motivate the formal definition
of limits. When we guessed the limit in Example 8, we realized that successive terms
approached 1. This means that no matter how small an interval about 1 we choose,
all points must lie in this interval for all sufficiently large values of n. Graphically, the
points of the graph of a, must lie between the two dashed lines in Figure 2.10 for all
large enough values of n, no matter how close those lines are to the horizontal line
at height 1.

1.4

1.2 + LN
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ bR 4 g g
RO A S R SR SR S §

0.8 1

0.6

0.4 T T T

Figure 2.10 Convergence of the sequence a, = L ioa =1.

n
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Figure 2.11 An illustration of the
formal definition of limits to show
convergence of the sequence a, to a
asn — oo: Foralln > N, a, lies in
the strip of width 2¢ and centered at
a.

EXAMPLE 9

Solution
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Translating this condition into a formal statement for the general case, we arrive
at the following definition:

Formal Definition of Limits The sequence {a,} has limit a, written as

lim,_,  a, = a, if, for every € > 0, there exists an integer N such that

la, —al <€ whenever n > N

If the limit exists, the sequence is called convergent and we say that a,
converges to a as n tends to infinity. If the sequence has no limit, it is called
divergent.

The value of N will typically depend on €: The smaller € is, the larger N is. We
illustrate the concept of a converging sequence in Figure 2.11. The horizontal dashed
lines are at heights a+€ and a —e, respectively. They form a strip of width 2¢ centered
at the horizontal line at height a. Points a, within this strip satisfy the inequality
la, —a| < €. For a sequence to be convergent, we require that al// points a, lie in this
strip for all n sufficiently large (namely, larger than some N).

Show that

Iim — =0
n—oo N

Before we show this for any arbitrary €, let’s try to find N for a particular choice of
€, say, € = 0.03. We need to find an integer N such that

- — 0‘ < 0.03 whenevern > N
n

Solving the inequality |% — 0] < 0.03 for n positive, we find that

1
n > —— & 33.33
0.03

n

< 0.03, or

The smallest value for N that we can choose is N = 33, which is the largest integer
less than or equal to 1/0.03. Successive values for n > 33 give us confidence that we
are on the right track but don't prove that our choice is correct:

1 1
azy = — ~0.0294, a35 = — ~ 0.0286, andsoon
34 35

To see that our choice for N works, we need to show thatn > 33 implies |1/n| < 0.03.
Now, since n takes on only integer values, n > 33 is equivalent to n > 34, which
implies that 1/n < 1/34 &~ 0.0294. Since n > 0, we have

1
~-0
n

< 0.03 whenevern > 33

To show that a, = ,ll converges to 0, we need to do the same calculation for any
arbitrary €. That is, we need to show that, for every € > 0, we can find an N such that

1
- -0
n

< € whenevern > N

To find a candidate for NV, we solve the inequality |%| < €. Since % > 0, we can drop
the absolute-value signs and find

1 1
— <€, or n> —
n €
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EXAMPLE 10

Solution

EXAMPLE 11

Solution

Let’s choose N so that 1/N > e and 1/(N + 1) < €, or, equivalently, N < 1/e and
N +1 > 1/e. This means that we choose N to be the largest integer less than or equal
tol/e.If n > N,thenn > N + 1, which is equivalent to 1/n < 1/(N + 1). Since N
is the largest integer less than or equal to 1/, it follows that 1/n < 1/(N+1) < € <
1/N for n > N. This condition, together with n > 0, shows that if N is the largest
integer less than or equal to 1/¢, then

1
~-0
n

< ¢ whenevern > N ]

Limit Laws The formal definition of limits is cumbersome when we want to compute
limits in specific examples. Fortunately, there are mathematical laws that facilitate the
computation of limits:

Limit Laws If lim,_, _ a, and lim,_, b, exist and c is a constant, then

lim (a, + b,) = lim a, + lim b,

n—o0 n—oo n—o0
lim (ca,) = ¢ lim a,
n—oo n— o0
lim (a,b,) = (lim a,)(lim b,)
n—0oo n—oo n—0oo
. a lim a . .
lim = = 2% " provided lim b, # 0
n—o00 Op hmn—>oo b, n—00

Although we do not need to know the formal definition of limits in order to use
the limit laws, in the next two examples we will need to know that

lim — =0 (2.6)
n—oo N
which was proved (using the formal definition of limits) in Example 9.
Find
. n+1
lim
n—oco N
We break ”nil into a sum of two terms, namely, 1 4 % Since lim,,_, ., 1 and lim,,_, , -

exist [the former is equal to 1 and the latter to 0, according to (2.6)], it follows that

. on+1 . 1 ) o1
lim =lm([(l+—-)=1Im @)+ lim —=14+0=1

n—oco N n—00 n n—00 n—oo N
as claimed in Example 8. ]
Find
 4n? -1
lim
n— 00 n

‘We rewrite a,,:

a, =
. . . 1 .
Since lim,,_, ., 4 and lim,,_, , ;- exist, we have

. 4nr—-1 11 , 1 1
lim T = Iim (4——-—)=1lm4—( lim — Iim —
n—00 n n—00 n n n—00 n—oo N n—oo N

—4-0.0=4 m
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Solution
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Without proof, we will state the long-term behavior of exponential growth. For R >
0, exponential growth is given by

a, =ayR",n=0,1,2,...
Figure 2.12 indicates that
0 f0<R<1

lim a, =4ay ifR=1
e oo ifR>1

—+—(0<R<I1

—a—R=1

—a— R>1

12

Figure 2.12 Exponential growth in Example 12 for three different values of R.

This conclusion can also be shown rigorously by using the formal definition of
limits. ]

B 2.2.3 Recursions

In the previous subsection, we learned how to find lim,_,  a, when a, is given ex-
plicitly as a function of n. We will now discuss how to find such a limit when a,, is
defined recursively.

When we define a first-order sequence {a, } recursively, we express a,1 in terms
of a, and specify a value for ag. We can then compute successive values of a,,, which
might allow us to guess the limit if it exists. In some cases (as in the next example),
we can find a solution of the recursion and then determine the limit (if it exists), as
in Subsection 2.2.2.

Compute a, forn =1,2,...,5 when
1 3 .
api1 = Zan + 1 with ap = 2 (2.7)

Find a solution of the recursion, and then take a guess at the limiting behavior of the
sequence.

By repeatedly applying the recursion, we find that
1 3 1 3 5

ar=ga+ =7 2+Z=Z:1-25
1 315 3 17
= qa =g 24 = = 10625
1 3 117 3 65
13 165 3 257 _
Q=@+ = = s A 10039
1 31 257 3 1025
as=qati=g 2= 2 21,0010

256 T4 1024

~
~



76 Chapter 2 m Discrete-Time Models

EXAMPLE 14

Solution

There seems to be a pattern, namely, that the denominators are powers of 4 and the
numerators are just 1 larger than the denominators. We therefore set

441

=7 (2.8)

and check whether this is indeed a solution of the recursion. First, we need to check
0

the initial condition: ag = 44—(4)“1 = % = 2. This agrees with the given initial condition.

Next, we need to check whether a,, satisfies the recursion. Accordingly, we write

441 1
an+1 = 4"+_1 =1+ 4 4n

—1+11
B 4 4n

Now, a,, = 4’;{1 implies thata, =1 + 41,1, or 4% = a, — 1. Using the latter equation

and simplifying then yields

11 1 1 3
a"+1:1+4_14_"=1+4_1(an_1)=Zan+4_l

which is the given recursion and thus proves that (2.8) is a solution of (2.7). We can
now use (2.8) to find the limit. We have

. . 4T+ . 1
lim a, = lim =lm(1+— ) =1
n— o0 n—oQ 4” n—od 4’1

1
1

n
since lim,,_, 4i,, =lim,_, ( ) = 0, according to Example 12. |

Finding an explicit expression for a, as in Example 13 is often not a feasible strat-
egy, because solving recursions can be very difficult or even impossible. How, then,
can we say anything about the limiting behavior of a recursively defined sequence?

The following procedure will allow us to identify candidates for limits: A fixed
point is a point such that if ay is equal to the fixed point, then all successive values of
a, are also equal to the fixed point. In mathematical terms, if we call the fixed point
a, then if ay = a, we have a; = a, a, = a, and so on.

Now, if a,+1 = g(ay,), then if ay = a and a is a fixed point, it follows that a; =
g(ap) = g(a) = a,a, = g(ay) = g(a) = a, and so on. That is, a fixed point satisfies
the equation

a=g(a) (2.9)
We will use (2.9) to find fixed points.
In Example 13, we had the recursion a,41 = lan + %. Fixed points for the

1
recursion thus satisfy
1 n 3
a=-a+ -
4 4
Solving this equation for a, we find that @ = 1. It turns out that in Example 13 the
fixed point is also the limiting point. This will not always be the case: A fixed point
is only a candidate for a limit; a sequence does not have to converge to a given fixed
point (unless qy is already equal to the fixed point). The next two examples illustrate
convergence and nonconvergence, respectively.

Assume that lim a,, exists for

n— 00
an+1 = +/3a, withay =2

Find lim,_, _a,.

Since the problem tells us that the limit exists, we don't have to worry about existence.
The problem that remains is to identify the limit. To do this, we compute the fixed

points. We solve
a =./3a



EXAMPLE 15

Solution
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which has two solutions, namely, a = 0 and @ = 3. When ay = 2, we have q,, > 2 for
alln = 1,2,3,...,so we can exclude a = 0 as the limiting value. This leaves only
one possibility, and we conclude that

lim a, =3

n—oo
Using a calculator, we can find successive values of a,, which we collect in the fol-
lowing table (accurate to two decimals):

n 0 1 2 3 4 5 6 7
a, 2 2.45 271 2.85 292 2.96 2.98 2.99

The tabulated values suggest that the limit is indeed 3. ]
Let
3
apy1 = —
a

n
Find the fixed points of this recursion, and investigate the limiting behavior of a,
when gy is not equal to a fixed point.

To find the fixed points, we need to solve

a==
a
This equation is equivalent to a®> = 3; hence, a = \/3 ora = —\/’;’. These are the
two fixed points. If ay = \/3, then a; = ﬁ, a; = ﬁ, and so on, and likewise, if
ag = —+/3,thena; = —/3,a, = —/3, and so on.
Let’s start with a value that is not equal to one of the fixed points—say, ag = 2.
Using the recursion, we find that

3 3
al:a—ozz
W33 32,

aq % 3

3 3
aSZZZE
a4:2:§:3%:2

as % 3

and so on. That is, successive terms alternate between 2 and 3/2. Let’s try another
initial value, say, a9 = —3. Then

a1:—=—=—1

a -3

3 3 3
aHh = — = — = —
2 a —1

3 3
a3:—:—:—1

a )

3 3 3
ag = — = — = —
! as -1

and so on. Successive terms now alternate between —3 and —1. Alternating between
two values, one of which is the initial value, happens with any initial value that is not
one of the fixed points. Specifically, we have

3 3

a = — and a) = — =
o ay

=a0

§|w|b~)
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Thus, as is the same as ay, a4 is the same as a, and hence a, and so on. |

The last two examples illustrate that fixed points are only candidates for limits
and that, depending on the initial condition, the sequence {a,} may or may not con-
verge to a given fixed point. If we know, however, that a sequence {a, } does converge,
then the limit of the sequence must be one of the fixed points.

There is a graphical method for finding fixed points, which we will mention briefly
here: If the recursion is of the form a,, 1 = g(a,), then a fixed point satisfiesa = g(a).
This suggests that if we graph y = g(x) and y = x in the same coordinate system,
then fixed points are located where the two graphs intersect, as shown in Figure 2.13.

y
15 P
-
// y=f
-
P y=x——-
-
10 Pid
-
-
-
-
-
5 | -
-
-
-
-
-
-
0 T T | T
0 5 10 15 20 «x

Figure 2.13 A graphical way to find fixed points. (See text for
explanation.)

We will return to the relationship between fixed points and limits in Section
5.6, where we will learn methods that allow us to determine whether a sequence
converges to a particular fixed point.

Section 2.2 Problems

w221

In Problems 1-16, determine the values of the sequence {a,} for 24. sin E, —sin

n=20,1,2,...,5.
1. a,=n

n
~
~—

3
N—'

|

~

 f) = +1)?
a, = (—1)"n
2

n+1
13. f(n) =eV"

1 n
15. f(n) = (§>

®

11. a, =

23 Jl+e 2+, /346 Ja+et J5+¢6
T b b b

, sin sin —, sin —

4776 U810
2. a, = 3n? In Problems 25-36, find an expression for a, on the basis of the
values of ay, ay, az, . . ..
4 T =105 25.0,1,2,3,4,... 26. 0,2,4,6,8, ...
p 1 27. 1,2,4,8,16, ... 28. 1,3,5,7,9,...
- n = 111 1 12345
v+l 2. 125 5 g R N R TRRRE
8. Jn) = Vl”j“ 3 1.2, -3.4,-5....  32.2,—4.6,-8.10,...
10-an=(_)2 w11 111 Wl 11 11
(n+1 T2°3 45 6 20 8718 32°507 7
_ 3 35. sin(mw), sin(27), sin(37), sin(4m), sin(Sxw), ...
12. a, =n"/n+1 b - o - -
36. —cos —, cos —, —CcOS —, COS —, —COS —, ...
14. f(n) = 3e 0" 2 4 6 8 10
16. f(l’l) — 20.2n ] 222

In Problems 37-44, write the first five terms of the sequence {a,},

In Problems 17-24, find the next four values of the sequence {a,} n=0,1,2,3,..., and find lim a

on the basis of the values of ay, ay, az, . . . , as. 1 2
37. a, = 38. a, =
17. 1,2,3,4,5 18. 0,1, /2, /3, /4 n+2 n+1
111 1 1 11 1 n 2n
9. 1,-, -, —, — 20, -1, -, ——, —, —— 39. a, = 40. a, =
4’9’16’ 25 4 9°16° 25 n+1 n+2
1 1
a L2345 3 L4 9 1625 . a, = — 42. a,=
2’3456 5°10° 17" 26 37 n*+1 Jn+1



—1)* —1)"
43. a,,=u . an=u
n+1 n3+3
In Problems 45-52, write the first five terms of the sequence {a,},
n=0,1,2,3,..., and determine whether lim,_, _ a, exists. If the
limit exists, find it.
n? 3
4. a, = —— 46. a, = ——
n+1 n+1
47. a, = J/n 48. a, = n®
1 n
49. a, = 2" 50- a, = <7>
2
1 n
51. a, =3" 52. a, = <7>
3

Formal Definition of Limits: In Problems 53-64, lim,_, . a, = a.
Find the limit a, and determine N so that |a, —a| < € foralln > N

for the given value of e.

1 1

53. a, = —, ¢ =0.01 54. a, = —, ¢ =0.02
n n
1 1

55. a, = —,€ =0.01 56. a, = —,€ = 0.001
n? n?

57 ! 0.1 58 ! 0.05
ca, = —,¢e=0. . a, = ——,€=0.
Jn Jn
(=" (="

59. a, = ,e =0.01 60. a, = ,€ =.001
n n

n n+1
6l. a, = ,e =0.01 62. a, = ,e=.05
n—+1 n
2 2

= =001 64 a,=——e=.001

n?+1 n?+1
Formal Definition of Limits: In Problems 65-70, use the formal
definition of limits to show that lim,_, _ a, = a; that is, find N such
that for every € > 0, there exists an N such that |a, — a| < €
whenever n > N.

63. a,

1 . 1
65. lim — =0 66. lim =0
n—oo N n—oo N
.1 . 1
67. Im — =0 68. lim =0
n—00 n? n—00 n? +1
1
69. lim “ 11 —1 70. lim —— =1
n—oo N n—soo N

In Problems 71-82, use the limit laws to determine lim a, = a.

. 1 1 . 2 1
71. lim ( — + — 72. lim (— — ———
n—oo \ 1 }’l2 n—oo \ 1 f’l2 + 1
1 2n —3
73. lim <”+ ) 74. lim ( " )
n—o00 n n—00 n
241 3n? -5
75. lim (" + ) 76. lim ( " )
n—o00 nZ n—00 I’l2

M 2.3 More Population Models
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. n+1
77. 1 78.
(i)

79. li Y + Ly 80
. l1m = = .
n—00 3 2

2—]‘!
81. lim " 82.
n—00 n
m 223
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. n+2
lim
n—00 n>—4

lim (37" —47")
n—oo

. n+3™"
lim
n—o0 n

In Problems 83-92, the sequence {a,} is recursively defined.

Compute a, forn =1,2,...,5.

83. a,1 =2a,,a0 =1 84.
85. a,,1 =3a,—2,a0=1 86.

87. a,.1 =4 —2a,,ap =5 88.

Ay

89. a,,1 = —,
Gnt1 1+a,

1
91. a,.1 =a,+ —,a0=1 92.

n

ap=1 90.

ap1 = 2a,,a0 =3

apy1 = 3an - 27 ayg = 2
4

Apyr =4 —2a,,a9 = 3
3

Ay
py1 = —— 5,00 = 2
a, +3’
apy1 = San - —, a4y = 2

n

In Problems 93—102, the sequence {a,} is recursively defined. Find

all fixed points of {a,}.
1

93. a,.1 = Ea,, +2 94.
2 9

95. dpt1 = gan — g 96.
4

97. ayy = — 98.
a,

2
2. a,. = 100.
Ap+1 a 12
101. a,1 = /5a, 102.

In Problems 103-110, assume that lim

1
Ay = zay, + =
+1 3 3
1 + 1
Apy1 = —Z0n n
+1 3 2
7
apy1 = —
an
3
Apyy =
+1 a, — )
Apt1 = o/ Tay

a, exists. Find all fixed

n—00

points of {a,}, and use a table or other reasoning to guess which
fixed point is the limiting value for the given initial condition.

1
103. a,,1 = E(a,, +5),a0 =1

2 a,

104. a, = ! (an + 1>,ao =1
3 9
105. @, = /2a,,a0 =1
106. a,1 = \/2a,,a0 =0
107. a,yy = 2a,(1 — a,), a0 = 0.1
108. Adpy1 = zan(l - an)’ ap = 0
1 4
109. a,,, = 3 (an + 7), ap=1
110. a,,, = ! (an + 3>, ap=—1

The material presented in this section will be revisited in Section 5.6. Section 2.3 can

be postponed until then.

An important biological application of sequences consists of models of season-
ally breeding populations with nonoverlapping generations where the population
size at one generation depends only on the population size of the previous gener-
ation. The exponential growth model of Section 2.1 fits into this category. We denote
the population size at time ¢ by N(¢t) or N;, t = 0,1,2,.... To model how the
population size at generation ¢t + 1 is related to the population size at generation
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t, we write
Niy1 = f(Ny) (2.10)

where the function f describes the density dependence of the population dynamics.

As explained in Section 2.2, a recursion of the form (2.10) is called a first-order
recursion because, to obtain the population size at time ¢ 41, only the population size
at the previous time step ¢ needs to be known. A recursion is also called a difference
equation or an iterated map. [The name difference equation comes from writing the
dynamics in the form N,;; — N, = g(N,), which allows us to track population size
changes from one time step to the next. The name iterated map refers to the recursive
definition.]

When we study population models, we are frequently interested in asking ques-
tions about the long-term behavior of the population, such as, Will the population
size reach a constant value? Will it oscillate predictably? or Will it fluctuate widely
without any recognizable patterns? We will explore these questions in the examples
that follow, in which we will see that discrete-time population models show very rich
and complex behavior.

B 2.3.1 Restricted Population Growth: The Beverton—Holt
Recruitment Curve

In Section 2.1, we discussed exponential growth defined by the recursion
Ny+1 = RN, with Ny = population size at time 0

When R > 1, the population size will grow indefinitely, provided that Ny > 0.
We can understand why this happens if we look at the parent—offspring ratio for
N; > 0, N,;/N;;1, which is equal to the constant 1/R. This means that, regardless
of the current population density, the number of offspring per parent is a constant.
Such growth, called density-independent growth, is biologically unrealistic. As the
size of the population increases, individuals will start to compete with each other for
resources, such as food or nesting sites, thereby reducing population growth. We call
population growth that depends on population density density-dependent growth.
To find a model that incorporates a reduction in growth when the population size
gets large, we start with the ratio of successive population sizes in the exponential
growth model and assume that N, is positive, so that all successive population sizes

are positive:

N, 1
L —— (2.11)
Nyt R

The ratio N,/N, 41 is a constant. If we graphed this ratio as a function of the current
population size N,, we would obtain a horizontal line in a coordinate system in which
N, is on the horizontal axis and the ratio N,/N,;; is on the vertical axis (Figure 2.7).
Note that as long as the parent—offspring ratio N,/ N, is less than 1, the population
size increases, since there are fewer parents than offspring. Once the ratio is equal to
1, the population size stays the same from one time step to the next. When the ratio
is greater than 1, the population size decreases.

To model the reduction in growth when the population size gets larger, we drop
the assumption that the parent—offspring ratio N,/N,; is constant and assume in-
stead that the ratio is an increasing function of the population size N;. That is, we
replace the constant 1/R in (2.11) by a function that increases with N,. The simplest
such function is linear. Graphically, this is a straight line with positive slope (Figure
2.14). To compare the model with density dependence with the exponential growth
model (2.11), we assume that the two models agree when the population sizes are
very small. We can achieve this agreement by assuming that the line corresponding
to density-dependent growth goes through the point (0, 1/R). To make sure that the
population grows at low densities, we also assume that R > 1. The population density
where the parent-offspring ratio is equal to 1 is of particular importance, since it
corresponds to the population size, which does not change from one generation to
the next. We call this population size the carrying capacity and denote it by K, where
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Figure 2.14 Density-dependent
growth: The parent—offspring ratio
increases as a function of current
population size. (Note that this ratio
is defined only for N, > 0.)
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K is a positive constant. We thus require that the line corresponding to density-
dependent growth connect the points (0, 1/R) and (K, 1) in a graph in which N;
is on the horizontal axis and the ratio N,/ N, is on the vertical axis (Figure 2.14).

The straight line in Figure 2.14 has slope (1 —1/R)/K and vertical-axis intercept
1/R, which yields the equation

1
N, 1 1—-<
o2y RNt
N RTK

We solve this equation for N, to obtain a recursion. Multiplying both sides by N,
yields

11—z
Ny =N E + K N,
which allows us to isolate N, 1:
N;
Ny = 1

1y Try

R K
We next simplify the right-hand expression by multiplying numerator and denomi-

nator by R:

RN;
Nt+1 = T (212)
1+ TNt
This recursion is known as the Beverton—Holt recruitment curve.

Using results from Section 2.2, we can compute the fixed points of (2.12). Solving
RN
N=1 RN
T

for N, we immediately find that N = 0. If N # 0, we divide both sides by N,
producing

R
1= R—1
Algebraic manipulation then yields
R -1 R—1
1+—N=R or ——N=R-1

K K

from which we solve for N to obtain
R—-1 1 K
N=Fm =R-Dgq =X
K

We thus have two fixed points when R > 1: the fixed point N = 0, which we call
trivial, since it corresponds to the absence of the population, and the fixed point N =
K, which we call nontrivial, since it corresponds to a positive population size.

In Figure 2.15, we set K = 20 and R = 1.4 and plot N, as a function of ¢ for
three different initial population sizes. For clarity, we include the lines that connect
successive population sizes. We see from the figure that if Ny > 0, then N, will
eventually approach K = 20. (If Ny = K, then N, = K forallr = 1,2,3,...,
since K is a fixed point.) This is the reason for calling K the carrying capacity. On the
basis of on Figure 2.15, we conclude that, when K > 0, R > 1, and Ny > 0, we have

—00
At this point, we need to rely on graphs and tables to investigate the long-term
behavior of the population. This is a serious limitation, since it restricts our investiga-
tions to specific parameter values and we cannot then explore all possible parameter
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K=20,R=14

——N©O) =5
—=— N(0) = 15

b v of —— N(0) = 30
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t

Figure 2.15 The population sizes N, when K =20 and R = 1.4 in
the Beverton—Holt recruitment model for different initial
population densities.

values. It turns out that this example has the same qualitative behavior for all R and
K, provided that R > 1 and K > 0. In Section 5.6, we will learn analytical methods
that will allow us to make general statements (like the one in the previous sentence)
about the behavior of discrete-time population models such that that behavior will
not depend on tables and graphs. In the next subsection, we will see an example
where the behavior depends strongly on the choice of parameters.

B 2.3.2 The Discrete Logistic Equation

The most popular discrete-time single-species model is the discrete logistic equation,
whose recursion is given by

Ny = N, [1 +R <1 - %)} (2.13)

where R and K are positive constants. R is called the growth parameter and K is
called the carrying capacity. The analysis that folllows will explain the terminology.
This model of population growth exhibits very complicated dynamics, described in
an influential review paper by Robert May (1976).

Before we illustrate its behavior, we will rewrite the model in what is called
the canonical form. The advantage of this form is that the resulting recursion will
be simpler. The algebraic steps presented next are not obvious, but will lead to the
canonical form of the discrete logistic equation. We write

N,
Ny =N, [1+R<1— E’)]

R

K
_NA+R |[1- —8 N
o KA+R) '
Now, dividing by 1 4 R yields
L No=w 1 RN
1+R KA+R) '

Let’s multiply both sides by R/K (you'll see why in a moment):

_ R na=Ey [1 - LNZ] (2.14)
K(1+ R) K K1+ R)

If we define the new variable as

R

=—— N, (2.15)
K(1+R)

Xt
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Figure 2.17 A graphical illustration
of the fixed points of the discrete
logistic equation in its canonical
form. The fixed points are where the
parabola and the line y = x
intersect.
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then
R

K(1+R)
and (2.14) becomes

R
Niy1 = X1 and ?Nl =1+ R)x;

X411 =04+ R)x,(1 —xy)

At this point, the new parameter » = 1 4 R is customarily introduced. Note that
r > 1, since R > 0. We thus arrive at the canonical form of the logistic recursion:

Xep1 =rx (1 —x;) (2.16)

The advantage of this form is threefold: (1) The recursion (2.16) looks simpler than
the original recursion (2.13); (2) instead of two parameters (R and K ), there is just
one (r); and (3) the quantity x; is dimensionless. The last point needs some expla-
nation. The original variable N; has units (or dimension) of number of individuals;
the parameter K has the same units. Dividing N, by K in (2.15), we see that the
units cancel and we say that the quantity x, is dimensionless. [The parameter R does
not have a dimension, so multiplying N,/K by R/(1 + R) does not introduce any
additional units.] A dimensionless variable has the advantage that it has the same
numerical value regardless of what the units of measurement are in the original
variable. (See Problems 31-34.) The process of making a quantity dimensionless is
called nondimensionalization.

Let’s go back to the discrete logistic equation in its canonical form (2.16) and
see what its behavior is. The function f(x) = rx(1 — x) is an upside-down parabola,
since r > 1 (Figure 2.16). We see from the figure that if x is outside of the interval
(0, 1), f(x) is nonpositive. Since x; = ﬁN, [see (2.15)], and we want N, to be
positive (it is a population size, after all), we require x; to be positive. This means that
we need to ensure that x,1; = f(x,) stays within the interval (0, 1). The maximum
value of f(x) occurs at x = 1/2,and f(1/2) = r/4, so, in order to make sure that
f(x;) € (0,1), we require that /4 < 1, or r < 4. We already require that r > 1,
since R > 0. Tosummarize, if 1 < r < 4, then x, stays within the interval (0, 1) for all
t =1,2,3, ..., provided that xy € (0, 1). In what follows, we will therefore assume
that1l <r <4 andx, € (0, 1).

o
i
T

0.5 1 1.5 2 x

rx(1 — x)

Figure 2.16 A graph of the discrete logistic equation in its canonical
form. (Here, r = 2.5.)

We first compute fixed points of (2.16). We need to solve
x=rx(1—x)

Solving immediately yields the solution x = 0. If x # 0, we divide both sides by x
and find that

1=r1-—1x), or x=1—-
’

(See Figure 2.17.) Provided that » > 1, both fixed points are in [0, 1).
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We return to the original variable N, for a moment to see what x = 0 and x =

1 —1/r mean in terms of N. Since x = ﬁN , the fixed point x = 0 corresponds

to the fixed point N = 0, which is why we call x = 0 a trivial equilibrium. When
x =1—1/r, then, usingr =1+ R, we obtain

N

_K(1+R)X_K(1+R)(1_;>
R R 1+R
Kl+R)1+R-1
- R 1+R

so N = K is the other fixed point.

The long-term behavior of the discrete logistic equation is very complicated. We
will go through the different cases by simply listing them. Later, in Section 5.6, we will
be able, at least to some extent, to understand why this equation has such complicated

behavior.
When 1 < r < 3 and xj € (0, 1), x, converges to the fixed point 1 — 1/r (Figure
2.18). Increasing r to a value between 3 and 3.449 ..., we learn that x, settles into

a cycle of period 2 (Figure 2.19). This means that, for large enough times, x, will
oscillate back and forth between a larger and a smaller value. For r between 3.449 . ..
and 3.544 ..., the period doubles: A cycle of period 4 appears for large enough
times. The population size now oscillates between the same four values (Figure 2.20).
Increasing r continues to double the period: A cycle of period 8 is born when r =
3.544 ..., a cycle of period 16 when r = 3.564..., and a cycle of period 32 when
r = 3.567.... This doubling of the period continues until r reaches a value of about
3.57, when the population pattern becomes chaotic (Figure 2.21). The population
dynamics seem to be random, although the rules are entirely deterministic! There is
noregular pattern we can discern: x; no longer oscillates between the same values; the
dynamics are aperiodic. Furthermore, starting from ever so slightly different initial
conditions quickly produces very different trajectories (Figure 2.22). This sensitivity
to initial conditions is characteristic of chaotic behavior.
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Figure 2.18 A graph of x, as a function of  when r = 2.
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Figure 2.19 A graph of x, as a function of  when r = 3.2.
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Figure 2.20 A graph of x, as a function of  when r = 3.52.
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Figure 2.21 A graph of x, as a function of  when r = 3.8.
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Figure 2.22 Graphs of x; as a function of # when r = 3.8 for two different initial
values of x;.
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To obtain biologically sensible results, we needed to restrict both r and x,. The
reason was that if x, > 1, then x,,, is negative. This situation can be easily remedied
by changing the dynamics slightly. We discuss such a model in the next subsection.

B 2.3.3 Ricker’s Curve

The discrete logistic map has the biologically unrealistic feature that, unless one
restricts the initial population size and the growth parameter, negative population
sizes can occur. The reason is that the function f(x) = rx(1 — x) takes on negative
values for x > 1,soif x; > 1, then x,,1 < 0. It is not difficult to avoid this problem.
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Figure 2.23 Ricker’s curve when
R=28and K =0.

12

One example of an iterated map that has the same (desirable) properties as the logis-
tic map but does not admit negative population sizes (provided that the population
size at time 0 is positive) is Ricker’s curve. The recursion, called the Ricker logistic

equation, is given by
N
Nt+1 = Nt exp |:R (1 — ?t>:|

where R and K are positive parameters. As in the discrete logistic model, R is the

growth parameter and K is the carrying capacity. The graph of Ricker’s curve (Figure

2.23), f(N;) = N, exp [R ( — %)], is positive for all N, > 0, thus avoiding the prob-

lem of negative population sizes we encountered in the discrete logistic equation.
Fixed points of (2.17) satisfy

)

We find the trivial fixed point N = 0. If N # 0, we can divide both sides of (2.18) by

N, obtaining
N

This equation holds if R(1 — N/K) = 0, from which it follows that N = K. The
parameter K has the same meaning as in the discrete logistic equation, namely, that
it is the carrying capacity.

The Ricker logistic equation shows the same complex dynamics as the discrete
logistic map [convergence to the fixed point for small positive values of R (Figure
2.24), periodic behavior with the period doubling as R increases, and chaotic behavior
for larger values of R (Figure 2.25)]. The values of R where the behavior changes are
different than in the discrete logistic equation. For instance, the onset of chaos in the
discrete logistic equation occurs for R = 2.570.. . ., whereas the onset of chaos in the
Ricker logistic equation occurs for R = 2.692. . ..

(2.17)

(2.18)
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Figure 2.24 The population size N, as a function of r when

R=18and K =09.
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Figure 2.25 The population size N, as a function of r when
R=28and K =09.

W 2.3.4 Fibonacci Sequences

As alast example in this section, we will look at a second-order difference equation —
an equation in which N;;; depends on both N, and N,_;.

A famous example of a second-order difference equation is the Fibonacci se-
quence. The equation comes from the following problem posed in 1202 by Leonardo
of Pisa (1175-1250), an Italian mathematician known by the name Fibonacci: How
many pairs of rabbits are produced if each pair reproduces one pair of rabbits at age
one month and another pair of rabbits at age two months and initially there is one
pair of newborn rabbits?

If N; denotes the number of newborn rabbit pairs at time ¢ (measured in months),
then at time 0, there is one pair of rabbits (Ny = 1). At time 1, the pair of rabbits
we started with is one month old and produces a pair of newborn rabbits, so Ny = 1.
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At time 2, there is one pair of two-month-old rabbits and one pair of one-month-old
rabbits. Each pair produces a pair of newborn rabbits, so N, = 2. At time 3, our
original pair of rabbits is now three months old and will stop reproducing; there is
then one pair of two-month-old rabbits and two pairs of one-month-old rabbits. Since
each pair of one-month-old and two-month-old rabbits produces a pair of newborn
rabbits, at time r = 3 there will be 2 + 1 = 3 newborn rabbits. More generally, to
find the number of pairs of newborn rabbits, we need to add up the number of pairs
of one-month-old rabbits and two-month-old rabbits. The one-month-old rabbits at
time ¢ + 1 were newborn rabbits at time ¢; the two-month-old rabbits were newborns
at time ¢ — 1. So the number of pairs of newborn rabbits at time ¢ 4 1 is

Neyt=Ni+ Ny, t =1,2,3,... withNo=1and N; =1

Note that we need to specify N, for t = 0 and r = 1 in order to be able to use the
recursion. Using the recursion, we find the sequence

1,1,2,3,5,8,13, ...

We see that the number of newborn pairs of rabbits will go to infinity as ¢ tends to
infinity, so N, will not converge to a finite limit. It turns out, however, that the ratio
N;11/ N, converges (although we cannot show this here). We can find a candidate for
the limiting value as follows: Start with the recursion

Nt+1 =N+ N

and divide both sides by N,, yielding

Ni Ni—4
=1+ 2.19
N, N, (2.19)
If we now assume that
N,
lim —L =
t—0o0 1

(A is the lowercase Greek letter lambda), which also implies that

. N
lim =A
t—o0 LVr—1
then
. N . 1 1 1
Iim = lim v = - ~ — _
t—00 ' t—00 N,i] 11mt—>oo ﬁ A

Taking the limit as 1 — oo in (2.19), we find that

A—1+1
- A

which is A> = A + 1 after multiplying both sides by A. We thus need to solve
AV —r—1=0
The formula for solving quadratic equations yields

1+£/1+4 1+£,/5
2 2

A =

One solution is positive, the other negative. Only the positive solution is relevant
when Ny = N; = 1, since then N;1/N, > Oforallt =0, 1,2, .... The ratio

1 5
+2f ~ 1.61803

is the limit of N,1;/N, ast — oo and is called the golden mean.
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A rectangle whose sides bear the golden ratio is called a golden rectangle; it
is thought to be the visually most pleasing proportion a rectangle can have. Golden
rectangles were known to the ancient Greeks, who used them to scale the dimensions
of their buildings (e.g., the Parthenon). Ratios of successive Fibonacci numbers can
be found in nature as well. For instance, the florets on plants such as the sunflower
run in spirals, and the ratios of the number of spirals running in opposite directions
are often successive Fibonacci numbers.

Section 2.3 Problems

m 2.3.1

In Problems 1-6, assume that the population growth is described
by the Beverton—Holt recruitment curve with growth parameter R
and carrying capacity K. For the given values of R and K, graph
N;/ N, as a function of N, and find the recursion for the Beverton—
Holt recruitment curve.
1. R=2,K=15

3. R=15,K =40

5. R=25K =90

2. R=2,K =50

4. R=3,K =120

6. R=2,K =150

In Problems 7-12, assume that the population growth is described

by the Beverton—Holt recruitment curve with growth parameter R
and carrying capacity K. Find R and K.

2N, 3N,
7. Nypp = ————— 8. Nyyj=——
14 N,/20 142N, /40
1.5N, 2N,
9. Ny = ————— 10. Ny = ——————
14 0.5N,/30 14 N,/200
4N, 5N,
1. Ny=—"— 12. Ny = ————
14 N,/150 14 N,/20

In Problems 13-18, assume that the population growth is described
by the Beverton—Holt recruitment curve with growth parameter R
and carrying capacity K. Find all fixed points.

4N, 3N,
1B Nyy=——+— 14 Nyy=——"
1+ N,/30 1+ N,/60
2N, 2N,
15. Ny = ———- 16. Ny = ———
TN, /30 T TN, /100
3N SN
17. Ny = ——+ 18 Nyy=——+
1+ N,/30 1+ N,/120

In Problems 19-24, assume that the population growth is described
by the Beverton—Holt recruitment curve with growth parameter R
and carrying capacity K. Find the population sizes fort = 1,2, ...,
5 and find lim,_, N, for the given initial value Ny.

19. R=2,K =10, Ny =2 20 R=2,K =20,Ny =5
2. R=3,K=15Ny=1 22. R=3,K =30,Ny=0

23. R=4,K =40,Ny =3 24. R=4,K =20,N, =10

m 2.3.2

In Problems 25-30, assume that the discrete logistic equation is used
with parameters R and K. Write the equation in the canonical form
X1 = rx,(1 — x,), and determine r and x, in terms of R, K, and
N,.

25. R=1,K =10
27. R=2,K =15

29. R=25,K =30

26 R=1,K =20
28. R=2,K =20
30. R=25,K =50

In Problems 31-34, we will investigate the advantage of dimension-
less variables.

31. (a) Let N; denote the population size at time ¢ and let
K denote the carrying capacity. Both quantities are measured
in units of number of individuals. Show that x, = N,/K is
dimensionless.

(b) Let M, denote the population size at time ¢ and let L denote
the carrying capacity. Assume that M, and L are measured in units
of 1000 individuals. Show that y, = M, /L is dimensionless.

(¢) How are N, and M, related? How are K and L related?

(d) Use (c)tofind M, and L if there are 20,000 individuals at time
t and the carrying capacity is 5000.

(e) Show that, for the population size and the carrying capacity
in (d), x, = y,.

32. To quantify the spatial structure of a plant population, it
might be convenient to introduce a characteristic length scale.
This length scale might be characterized by the average dispersal
distance of the plant under study. Assume that the characteristic
length scale is denoted by L. Denote by x the distance of seeds
from their source. Define z = x/L. Find z if x = 100 cm and
L = 50 cm, and show that z has the same value if x and L are
measured in units of meters instead.

33. Suppose a bacterium divides every 20 minutes, which we call
the characteristic time scale and denote by T'. Let ¢ be the time
elapsed since the beginning of an experiment that involves this
bacterium. Define z = t/T. Find z if + = 120 minutes, and show
that z has the same value if r and T are measured in units of hours
instead.

34. The time to the most recent common ancestor of a pair
of individuals from a randomly mating population depends on
the population size. Let ¢ denote the time, measured in units of
generations, to the most recent common ancestor, and let 7 be
equal to N generations, where N is the population size of the
randomly mating population. Define z = ¢/7. Show that z is
dimensionless and that the value of z does not change, regardless
of whether  and T are measured in units of generations or in units
of, say, years. (Assume that one generation is equal to n years.)

In Problems 35-46, we investigate the behavior of the discrete
logistic equation
X1 =rx (1 —x)

Compute x, fort =0,1,2,...,20 for the given values of r and x,,
and graph x, as a function of t.

35. r=2,x0=0.2 36. r =2,x0=0.1

37. r=2,x0=0.9 38. r=2,x0=0

39. r=31,x=05 40. r =3.1,x0=0.1

41. r =3.1,x0 =09 2. r=31,x=0

43. r =3.8,x0=0.5 44. r =3.8,x0=0.1

45. r =3.8,x0=0.9 46. r =3.8,x0=0
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In Problems 47-50, graph the Ricker’s curve

N;
N,+1 = Ntexp R({1- ?

in the N,—N,,1 plane for the given values of R and K. Find the
points of intersection of this graph with the line N,y = N,.

47. R=2,K =10 48. R=3,K =15
499. R=25,K =12 50. R=4,K =20

In Problems 51-54, we investigate the behavior of the Ricker’s curve

Nioi = N, R(1 N,
1+1 = Ny €Xp K

Compute N, fort = 1,2, ...,20 for the given values of R, K, and
No, and graph N, as a function of t.

51. (a) R=1,K =20, Ny =5
(b) R=1,K =20,N, =10

(¢) R=1,K =20,Ny, =20

52. (a) R=18,K=20,Ny=5
(b) R=18,K =20,N, =10
(¢) R=18,K =20,N, =20
53. (a) R=21,K =20,Ny=5
(b) R=2.1,K =20, Ny =10
(¢) R=2.1,K =20, Ny =20

d R=1,K=20,Ny=0

(d R=18 K =20,Ny=0

(d R=21,K=20,Ny=0
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54. (a) R=28,K =20,Ny=5
(b) R=28,K =20, Ny =10
(¢) R=28,K =20,Ny, =20
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55. Compute N, and N,/N,_; fort =2,3,4,...,20 when

(d R=28K=20,N,=0

Nt+1 =N+ N

with Ny = 1and N; = 1.

56. Compute N, and N,/N,_; fort =2,3,4,...,20 when
Nt+1 - N, + 2Nt—1

with Ny =1and N; = 1.

57. In the text, an interpretation of the Fibonacci recursion
NH—I =N+ N

is given. Use a similar example to give an interpretation of the
recursion
Nt+1 =N, +2N,

58. In the text, an interpretation of the Fibonacci recursion
NH—l =N+ N

is given. Use a similar example to give an interpretation of the
recursion
Nt+1 =2N;+ N,

Chapter 2 Key Terms

Discuss the following definitions and 8. Sequence

17. Carrying capacity

conceplts: 9. First-order recursion 18. Growth parameter

1. Exponential growth 10. Limit 19. Discrete logistic equation
2. Growth constant 11. Long-term behavior 20. Nondimensionalization
3. Fixed point 12. Convergence, divergence 21. Periodic behavior

4. Equilibrium 13. Limit laws 22. Chaos

5. Recursion 14. Difference equation 23. Ricker’s curve

6. Solution 15. Beverton—Holt recruitment curve 24. Fibonacci sequence

7. Density independence 16. Density dependence 25. Golden mean

Chapter 2 Review Problems

In Problems 1-10, find the limits.

1. lim 27" 2. lim 3"
n—oo n—00
. _ . 2
3. lim 401 —47") 4, lim ——
n—00 n—ooo 1 +271
5. lim a" whena > 1 6. lim " when0 <a <1
n—oQ n— 00
1 2 -6
7. lim w 8. lim w4n->6
n—00 nz—1 Nn—00 n—2
1
0. tim " 10. tim
n—soo N+ 1 n—00 n

In Problems 11-14, write a,, explicitly as a function of n on the basis
of the first five terms of the sequence a,, n =0,1,2, ....

13579 2 6 12 20 30
2746’8 10 274781632
B L2345 1234

2°5710"17° 26 374’56

15. Density-Dependent Growth The Beverton-Holt recruit-
ment curve is given by the recursion

RN,

Ni = —e
1+ %Nt

where R > 1 and K > 0. When N, > 0, lim,_,  N; = K for all
values of R > 0. Toinvestigate how R affects the limiting behavior
of N, find N, fort = 1,2,3,...,10 for K = 100 and Ny = 20
when (a) R = 2, (b) R = 5, and (¢) R = 10, and plot N, as a
function of ¢ for the three choices of R in one coordinate system.
In Problems 16-18, we discuss population models when the
population size at time t + 1 depends not only on the population

size at time t, but also on the growth conditions at time t, which may
vary over time.

16. Temporally Varying Environment The recursion

Nt+1 = R/N,
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describes growth in a temporally varying environment if we
interpret R, as the growth parameter in generation ¢. A population
was followed over 10 years and the population sizes were recorded
each year. Use the data provided to find R, fort =0,1,2,...,9:

t N;

0 10
1 15.5
2 15.6
3 10.8
4 15.6
5 322
6 95.1
7 103.2
8 165.0
9 418.7
10 15.7

17. Temporally Varying Environment The recursion
Niy1 = RN

describes growth in a temporally varying environment if we
interpret R, as the growth parameter in generation ¢. A population
was followed over 20 years and the population sizes were recorded
every year. The following table provides the population size data
and the inferred values of R, for each of the 20 years:

t N; R,
0 10.0 2.78
1 27.8 0.29
2 8.10 0.43
3 3.49 0.25
4 0.87 2.90
5 2.52 1.67
6 421 1.17
7 4.94 0.69
8 3.39 1.45
9 4.92 1.13

10 5.56 0.08
11 0.45 0.88
12 0.40 2.69
13 1.06 0.36
14 0.38 0.08
15 0.03 2.34
16 0.07 213
17 0.15 220
18 0.34 2.80
19 0.94 0.29
20 0.28 1.22

The values of N, indicate that the population heads toward
extinction. The long-term behavior of the geometric mean of the
growth parameter, denoted by R, (read “R sub ¢ hat”), is defined

as

R = (RoRy - - Rt—l)m

and determines whether the population will go extinct. Specifi-
cally, if

lim R, <1

—>00

then the population will go extinct. Compute Ié, for + =
1,2,...,20.
18. Temporally Varying Environment The recursion

Nyt = RN,

describes growth in a temporally varying environment if we
interpret R, as the growth parameter in generation 7.
(a) Show that

Ny = (Ri—1R,—2- - RiRy) Ny
(b) The quantity R, (read “R sub ¢ hat”), defined as
Ri= (R AR - RiR)"
is called the geometric mean. Show that
N, = (R)'No

(¢) The arithmetic mean of a sequence of numbers x, x1, . . .
is defined as

> Xn—1

Xo+xi+ -+ X
n

Yn =
Set r, = In R, and show that

_ InR,_i+InR;, »,+---+1InRy
rI=
t

(d) Use (c) to show that
N; = Nye'

19. Harvesting Model Let N, denote the population size at time
t, and assume that

(1—=c¢)N,
Niyi = (1 —c)N, exp [R (1 — T)]

where R and K are positive constants and ¢ is the fraction
harvested. Find N, fort = 1,2,...,20 when R = 1, K = 100,
and Ny = 50 for (a) ¢ = 0.1, (b) ¢ = 0.5, and (¢) ¢ = 0.9.

20. Harvesting Model Let N, denote the population size at time
t, and assume that

(1 —C¢c)N,
Niy1 =1 —c)N,exp |:R <1 - T)]

where R and K are positive constants and c¢ is the fraction
harvested. Find N, fort = 1,2,...,20 when R = 3, K = 100,
and Ny = 50 for (a) c = 0.1, (b) ¢ = 0.5, and (¢) ¢ = 0.9.



Limits and Continuity

LEARNING OBJECTIVES

The two concepts of limits and continuity are fundamental to differential calculus. Specifically, in
this chapter we will learn how to

« determing the value of a function f(x) at x = ¢ as x approaches ¢, both from graphs and
mathematical expressions defining the function;

« determine whether a function is continuous or discontinous at a point;
« identify where a function is continuous and where it is discontinuous;

« extract information from continuous functions on the basis of generic properties of such
functions.

M 3.1 Limits

In Chapter 2, we discussed limits of the form lim,_, _ a,, where n took on integer
values. In this chapter, we will consider limits of the form

lim £ (x) 3.1)

X—cC

where x is now a continuously varying real variable that tends to a fixed value ¢ (which
may be finite or infinite). Let’s look at an example that will motivate the need for limits
of the form (3.1).

Population growth in populations with discrete breeding seasons (as in Chapter 2)
can be described by the change in population size from generation to generation. By
contrast, in populations that breed continuously, there is no natural time scale such as
generations. Instead, we will look at how the population size changes over small time
intervals. We denote the population size at time ¢ by N(¢), where ¢ is now varying
continuously over the interval [0, oo). We will investigate how the population size
changes during the interval [z, t + k], where & > 0. The absolute change during this
interval, denoted by AN, is

AN = N(t +h) — N(1)

(The symbol A indicates that we are taking a difference.) To obtain the change relative
to the length of the interval [¢, ¢t + k], we divide AN by the length of the interval,
denoted by At, whichis (t + h) — t = h. We find that

AN N@+h) = N@)
At h

This ratio is called the average growth rate.
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We see from Figure 3.1 that AN /At is the slope of the secant line connecting the
points (¢, N(t)) and (¢t + h, N(¢t + h)). The average growth rate AN /At depends on
the length of the interval A¢. This dependency is illustrated in Figure 3.2, where we
see that the slopes of the two secant lines (lines 1 and 2) are different. But we also
see that, as we choose smaller and smaller intervals, the secant lines converge to the
tangent line at the point (¢, N(¢)) of the graph of N(¢) (line 3).

Line 3: Tangent line

N(t N(@®) N(t .
“ Secant line ® Line 2 Line 1
1 e
Ne+h) - - ——5 N(t+h) fmmm e P
NG+ hy) === o= :
NGt + ) — N(t) :
| |
N b=l N |---= | |
! T
l l . . .
| | | | |
| | | | |
l l l l I
1 t+h t t t+hy t+h t
Figure 3.1 The slope of the secant line is the average Figure 3.2 The slope of the secant line converges to

growth rate.

the slope of the tangent line as the length of the
interval [z, t + h] shrinks to 0.

The slope of the tangent line is called the instantaneous growth rate and is a
convenient way to describe the growth of a continuously breeding population. To
obtain this quantity, we need to take a limit; that is, we need to shrink the length of
the interval [¢, t 4 ] to O by letting & tend to 0. We express this operation as

lim N(t+h)—N() (32)
h—0 h

In (3.2), we take a limit of a quantity in which a continuously varying variable,
namely, &, approaches some fixed value, namely, 0. This is a limit of the form (3.1).

B 3.1.1 An Informal Discussion of Limits

Definition The “limit of f(x), as x approaches c, is equal to L” means that
f(x) becomes arbitrarily close to L whenever x is sufficiently close (but not
equal) to c. We denote this statement by

lim f(x) =L

X—>C

or f(x) > Lasx — c.

Iflim, . f(x) = L and L is a finite number, we say that the limit exists and that
f(x) converges to L. If the limit does not exist, we say that f(x) diverges as x tends
toc.

Note that we say that we choose x close, but not equal, to c. That is, when finding
the limit of f(x) as x approaches ¢, we do not simply plug c into f(x). In fact, we
will see examples in which f(x) is not even defined at x = c. The value of f(c) is
irrelevant when we compute the value of lim,_, . f(x).
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Solution

O = N W A N O\
T
|
|
|

[\O Y S ——

[ IS N N N
34 5 6 7 8 9«x

(=]

1

Figure 3.3 As x approaches 2,
f(x) = x* approaches 4.

EXAMPLE 2

Solution
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Furthermore, when we say “x approaches c¢,” we mean that x approaches ¢ in
any fashion. When x approaches ¢ from only one side, we use the notation

lim f(x) when x approaches c from the right
x—ct

lim f(x) when x approaches c¢ from the left

X—cC

and talk about right-handed and left-handed limits, respectively. The notation “x —

¢t indicates that when x approaches ¢ from the right, values of x are greater than c,

and when x approaches ¢ from the left (“x — ¢~”), values of x are less than than c.
Let’s look at some examples.

Limits That Exist

Define f(x) = x?, x € R. Find

lim f(x)

x—>2
The graph of f(x) = x? (see Figure 3.3) immediately shows that the limit of x? is 4
as x approaches 2 (from either side). We also suspect this from the following table,
where we compute values of x? for x close, but not equal, to 2:

x X x o

1.9 3.61 2.1 4.41

1.99 3.9601 2.01 4.0401
1.999 3.996001 2.001 4.004001

1.9999 3.99960001 2.0001 4.00040001

Note that in the left half of the table we approach x = 2 from the left (x — 27),
whereas in the right half of the table we approach x from the right (x — 27).
We find that
limx* =4
x—2
Since this limit is a finite number, we say that the limit exists and that x> converges
to 4 as x tends to 2. The fact that f(x) = x* at x = 2 is 4 as well is a nice property

that will be introduced and named later. Not all functions are like that. ]
(a) Define
o) x> ifx #£2
X) =
§ 5 ifx=2
Find

lim g(x)
x—2

(b) Define h(x) = x?, x # 2. Find

Iim A (x)
x—2
(a) Incomputing the value of lim_, , g(x), the value of g(2) is irrelevant. We find,
as in Example 1, that
lim g(x) = lim x? = 4
x—2 x—2
We note thatlim._, g(x) # g(2).
(b) To obtain the limit of 4 (x) as x — 2, the function /(x) need not be defined at
x = 2. We obtain

lim A(x) = lim x> =4 n
x—2 x—2
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EXAMPLE 3

Solution

O—=NWEAUNAAINO =

o
—
(3
98]
N
9]
=)}
=

Figure 3.4 The graph of
fx) = );2%39 is a straight line with
the point (3, 6) removed.

EXAMPLE 4

Solution

EXAMPLE 5

Solution

Find

o x2-9
lim
x—3 x—=3

In the previous two examples, determining the limits did not require any calculations.

This is not the case here, since both numerator and denominator tend to 0 as x —
2 _

3. We define f(x) =
x—3

when x = 3, we exclude x = 3 from the domain. When x # 3, we can simplify the
expression, namely,

, X # 3. Since the denominator of f(x) is equal to 0

2 _ _
Fay= 2 WO s orx 23
x—3 x =3

We were able to cancel the term x — 3 because x — 3 # 0 for x # 3 and we assumed
that x # 3. (If we allowed x = 3, then canceling x — 3 would mean dividing by 0.)
The graph of f(x) is a straight line with one point deleted at x = 3. (See Figure 3.4.)
Taking the limit, we find that

_xP=9
lim = lim(x + 3)

x—3 X = x—3

Now, using either the graph of y = x 4 3 for x # 3 or a table, we suspect that
lim(x +3)=6

x—3

We conclude that lim,_, 5 f(x) exists and that f(x) converges to 6 as x tends to 3.
Note that f(x) is not defined at x = 3. [

One-Sided Limits To compute one-sided limits, we use the notation

lim f(x) when x approaches c from the right

x—ct

lim f(x) when x approaches c¢ from the left

X—>C

that was introduced previously.

Find
lim e~
x—0
We set
—X
e forx >0
x)=e "=
fex) e forx <0
Figure 3.5 indicates that lim_ ;+ f(x) = lim,_ j+e™* = 1 and lim,_, - f(x) =
lim,_ .- e* = 1. We therefore conclude that
lime ™ =1 m
x—0
Find
lim M and lim m
x—0t X x—0— X
We set f(x) = m,x # 0. Since |x| = x forx > 0 and |x| = —x for x < 0, we find
by
that

_|x|_ +1 forx >0
o -1 forx <0

f(x)
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Figure 3.5 The graph of f(x) = ¢ *lin
Example 4.

EXAMPLE 6

Solution

xm‘_

—2—-15-1-050 05 1

15 2x

Figure 3.7 The graph of f(x) =
in Example 6: The function grows
without bound as x tends to 0.

Figure 3.6 The graph of %' in Example 5:
The function is not defined at x = 0.

The graph of f(x) is shown in Figure 3.6. This function can be used to model a switch,
where the value of f(x) switches from —1 to 41 as x goes through 0. We see that f (x)
converges to 1 as x tends to 0 from the right and that f(x) converges to —1 as x tends
to 0 from the left. We can write this property as

.l . |x
Iim — =1 and Iim — = -1
x>0t X x—0— X
and observe that the one-sided limits exist. ]

In Example 5, we computed one-sided limits. Since the right-hand limit differs
from the left-hand limit, we conclude that
lim m

x—>0 X

does not exist

because the phrase “x approaches 0” (or, in symbols, lim
approaches 0 in any fashion.

«0) Mmeans that x

More Limits That Do Not Exist

Find

A graph of f(x) = 1/x2,x # 0, reveals that f(x) increases without bound as x — 0.
(See Figure 3.7.) We also suspect such an increase when we plug in values close to 0.
By choosing values sufficiently close to 0, we can get arbitrarily large values of f(x):

X —0.1 —0.01 —0.001 0.001 0.01 0.1

fx) 100 10,000 106 106 10,000 100
This table of values indicates that the limit does not exist. ]
When lim,_, . f(x) does not exist, we say that f(x) diverges as x tends to c. The

divergence in Example 6 was such that the function grew without bound. This is an
important case, and we define it in the following box:

lim f(x) = 400 if f(x) increases without bound as x — ¢
X—C
lim f(x) = —oo if f(x) decreases without bound as x — ¢
X—>C

Similar definitions can be given for one-sided limits, which we will need in the next
example. Note that when we write lim,_ . f(x) = +00 (or —00), we say that f(x)

X—>C
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EXAMPLE 7

Solution

EXAMPLE 8

Solution

diverges as x — c. In particular, this means that lim,_, . f(x) does not exist. (The
symbols +00 and —oo do not refer to real real numbers.) Nevertheless, we write
lim,_, . f(x) = 4o0o (or —oo) if f(x) increases (or decreases) without bound as x —
¢, since it is useful to know when a function does that.

Find

lim
3 X —3

The graph of f(x) = 1/(x — 3), x # 3, in Figure 3.8 reveals that

lim
=3t X —

=400 and lim = —00

x—3— X

We arrive at the same conclusion when we compute values of f(x) for x close to 3.
We see that if x is slightly larger than 3, then f(x) is positive and increases without
bound as x approaches 3 from the right. Likewise, if x is slightly smaller than 3, f(x)
is negative and decreases without bound as x approaches 3 from the left. We conclude
that f(x) diverges as x approaches 3. ]

-1 o] 12
_10 =+
715 -+

_20 -+

Figure 3.8 The graph of f(x) = X% in Example 7 grows
without bound as x approaches 3 from the right and
decreases without bound as x approaches 3 from the left.

The next example shows that a function can diverge without having one-sided
limits or without going to 400 or —oo.

Find

.. T
lim sin —
x—0 X
Simply using a calculator and plugging in values to find limits can yield wrong answers
if we do not exercise proper caution. If we produced a table of values of f(x) = sin T
for x = 0.1, 0.01, 0.001, ... ., we would find that sin 7 = 0, sin 5%; = 0, sin 5557 = 0,
and so on. (Note that we measure angles in radians.) These calculations might prompt
us to conclude that the limit of the function is 0. But let’s look at its graph, which is
shown in Figure 3.9. The graph does not support our calculator-based conclusion.
What we find instead is that the values of f(x) oscillate infinitely often between
—1 and +1 as x — 0. We can see why as follows: As x — 0%, the argument in the
sine function goes to infinity. (Likewise, as x — 07, the argument goes to negative
infinity.) That is,

. T
lim — = —o0
x—0— X

1
Iim — =00 and
x—0t X
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0.15 (0, 0.125)

0.05 L ViF16-4

—4 =2 2 4 x
—0.05 +

Figure 3.10 The graph of f(x) in
Example 9: As x tends to 0, the
function approaches 0.125.
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-1.5

Figure 3.9 The graph of f(x) = sin % in Example 8.

As the argument of the sine function goes to +o00 or —oo, the function values oscillate
between —1 and +1. Therefore, sin % continues to oscillate between —1 and +1 as
x — 0. [ ]

The behavior exhibited in Example 8 is called divergence by oscillation.

Pitfalls The next example is an interesting one that shows other limitations of using
a calculator to compute limits.

Find
. /x?+16—4
lim ——rm———
x—0 x2

A/ Xz — . . . . . . .
The graph of f(x) = x;zl“, x # 0, in Figure 3.10 indicates that the limit exists.

So, on the basis of the graph, we conjecture that the limit is equal to 0.125. If, instead,
we use a calculator to produce a table of values of f(x) close to 0, something strange
seems to happen:

x 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
f(x) 0.1249998 0.125 0.125 0.125 0.1 0

As we get closer to 0, we first find that f(x) gets closer to 0.125, but when we get
very close to 0, f(x) seems to drop to 0. What is going on? First, before you worry
too much, note that lim,_ , f(x) = 0.125. In the next section, we will learn how to
compute this limit without resorting to the (somewhat dubious) help of the calculator.
The strange behavior of the calculated values happens because, when x is very small,
the difference in the numerator is so close to 0 that the calculator can no longer
accurately determine its value. The calculator can compute only a certain number
of digits accurately, which is good enough for most cases. Here, however, we need
greater accuracy. The same strange thing happens when you try to graph this function
on a graphing calculator. When the x range of the viewing window is too small, the
graph is no longer accurate. (Try, for instance, —0.00001 < x < 0.00001 and —0.03 <
y < 0.15 as the range for the viewing window.) |

At the end of this chapter, we will discuss how limits are formally defined. The
formal definition is conceptually similar to the one we used to define limits of the
form lim,_,  a,, but we will not use it to compute limits. As in Chapter 2, there are
mathematical laws that will allow us to compute limits much more easily.

B 3.1.2 Limit Laws

We encountered limit laws in Chapter 2. Analogous laws hold for limits of the type
lim,_, . f(x).
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EXAMPLE 10

Solution

EXAMPLE 11

Solution

Limit Laws Suppose that a is a constant and that

lim f(x) and lim g(x)

exist. Then the following rules hold:
1. limaf(x) =alim f(x)

X—>cC =@

2. lim[f(x) 4+ g(x)] = lim f(x) + lim g(x)

3. lim[f(x)-g(x)] = lim f(x) - lim g(x)
lim f(x)
fw = | |
4. lim = — provided that lim g(x) # 0
x—>c 8(x) lim g(x) x—c

You are probably easily convinced that

limx =c¢ (3.3)

X—cC

In Section 3.6, we will use the formal definition of limits to show that this equation is
true. For now, we accept (3.3) as a fact. Starting from that equation, we can use the
limit laws to compute limits of polynomials and rational functions.

Find
lim[x® 4+ 4x — 1]

x—2

Using Rules 1 and 2, we see that this equation becomes

lim x> + 4 lim x — lim 1
x—2 x—2 x—2

provided that the individual limits exist. For the first term, we use Rule 3,

limx® = [ lim x | | lim x | | lim x
x—2 x—2 x—2 x—2

provided that lim,_, x exists. From (3.3), it then follows that lim,_ , x = 2 and we

find that
<lirn x) (hm x) <lim x) =2)2)(2) =8
x—2 x—>2 x—2

To compute the second term, we use (3.3) again to obtain lim,_,, x = 2. For the last
term, we find thatlim,_, 1 = 1. Now that we have shown that the individual limits
exist, we can use Rules 1 and 2 to evaluate

lim[x® +4x —1]=lim x> +4limx — lim1 =8+ (4)(2) — 1 =15 m
x—2 x—2 x—2 x—2
Find
|
lim
x—4 X — 3

Using Rule 4, we find that

o241 lim (x4 1)
lim =

vod X =3 lim,_,(x —3)
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provided that the limits in the numerator and denominator exist and the limit in the
denominator is not equal to 0. Using Rules 2 and 3 in the numerator, we obtain

lim(x?24+ 1D =(limx*] +[lim1])=@®@) +1=17
x—4 x—4 x—4

Breaking up the limit of the sum in the numerator into a sum of limits is justified
only after we have shown that the individual limits exist. Using Rules 1 and 2 in the
denominator, we get

Iim(x —3)=lmx —-Ilim3=4-3=1

x—4 x—4 x—4

Again, using the limit laws is justified only after we have demonstrated that the
individual limits exist. Since the limits in both the denominator and the numerator
exist and the limit in the denominator is not equal to 0, we obtain

241 17
im e Y g -
x4 X —3 1

The computations in Examples 10 and 11 look somewhat awkward, and it
appears that what we have done is plug 2 into the expression x> +4x — 1 in Example
10 and 4 into the expression ’;2%31 in Example 11, even though we emphasized in the

informal definition of limits that we are not allowed to simply plug ¢ into f(x) when
computing lim,_, . f(x). But, in essence, we did the calculation

limx?+4x —1]1=2>+ @Q2)—-1=15

x—2
in Example 10 and the calculation

241 17
im = 7
x—>4x_3 1

in Example 11.

Even though we made a point that we cannot simply substitute the value c into
f(x) when we take the limit x — ¢ of f(x), the limit laws and (3.3) (which we
will prove in Section 3.6) show that we can do just that when we take a limit of a
polynomial or a rational function. Let’s summarize this property and then look at two
more examples that show how to compute limits of polynomials or rational functions
by using these results.

If f(x) is a polynomial, then
lim f(x) = f(c)

X—>cC

If f(x) is a rational function

p(x)
q(x)

fx) =

where p(x) and ¢g(x) are polynomials, and if g (c) # 0, then

lim £(x) = lim 2&) = P©

x—c x—c q(x) B q(c) =/©
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Solution

EXAMPLE 13

Solution

EXAMPLE 14

Solution

EXAMPLE 15

Find
lim[x? — 2x + 1]

x—3

Since f(x) = x? — 2x + 1is a polynomial, it follows that

lim[x*> —2x +1]1=9—-6+1=4 n
x—3
Find
23 —x+5
lim ——
o X2+ 3x +1
Note that
2x3 —x+5
J ) x2+3x+1
is a rational function that is defined for x = —1. (The denominator is not equal to 0

when we substitute x = —1.) We find that

o2 —x4+5 2(-1) —(-D+5 4
lim = - —_4 -
o1 X2 43x+1 (D2 43(-D+1 -1

When you use the limit laws for finding limits of the form

lim[ f(x) + g(x)] or lim[ f(x) - g(x)] or lim ZAC)

x—c x—c X—c g()C)

you need to check first that bothlim, . f(x) andlim,_, . g(x) exist and, in the case of
lim,_, . %, that lim,_, . g(x) # 0. The next two examples illustrate the importance

of checking the assumptions in the limit laws before applying them.

Find
1
lim ——
x—0 % +1

We observe that neither

o1 . 1
lim — nor Iim|{—+1

x—0X x—0 \ X

exist. So we cannot use Rule 4 right away. Multiplying both numerator and
denominator by x, however, will help:

1

< 1
lim —— = lim
x%O%—{—l x>0 1+x

Now we have a rational function on the right-hand side, and we can plug in 0 because
the denominator, 1 4 x, will be different from 0. We get

lim
x*)()l‘l‘x 1+0

Find
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2
x“—16 - . . . .
——1 Is a rational function, but since lim,_,,(x —4) = 0, we

cannot use Rule 4. Instead, we need to simplify f(x) first:

. x*—16 = dHx+49
Iim—=1lim ————
x—4 X — 4 x—4 x—4

Because x # 4, we can cancel x — 4 in the numerator and denominator, which yields

lim(x +4) =8
x—4
where we used the fact that x 4 4 is a polynomial in computing the limit. [

Section 3.1 Problems

m 3.1.1 34. Use a table and a graph to find out what happens to
In Problems 1-32, use a table or a graph to investigate each limit.
x2+3 %
1 limG? —4x +1) 2. lim fo) ="
x—2 x—2 X 2
3. lim 2x > 4. lims(s> — 4) asx — oco. What happens as x — —o0? What happens asx — 1?
o1 1 s—> . . .
i ); ’ 35. Use a graphing calculator to investigate
5. lim 3cos — 6. lim sin(3r)
X—> 4 t—m/9
—m/2 lim sin
7. lim ZSeci 8. lim tan x -/ x—1 X =
x—>m/2 x—>7/2
9. lim /2 10. Lim et +1 36. Use a graphing calculator to investigate
x—>=2 x—02x +3
. . 3 1
11. )lcl_r)r(l) In(x + 1) 12. }1_I)I: Int lim cos —
x—0
216 24
13. lim - 14. lim =
x=3 X 2 X+ 2
15. lim sin(2x) 16. lim cos(x — ) W 3.1.2
ron 1 ron 1 In Problems 37-54, use the limit laws to evaluate each limit.
17. lim 18. lim 37. lim (x° +7x — 1 38, lim(3x* —2x +1
e e Jm 57+ 7= fim3xt =264
1. lim (1 —e™) 20. lim (1 +¢7) 39. lim (4 4 2x%) 40. lim(8x® — 2x 4 4)
x—=5 x—=2
1
21. lim 22, lim 1 X2 2
xdm X syt X =3 41. lim <2x2 - —> 42. lim (— - —>
x—3 X s \ 2 x2
23. lim 24. lim
o1- 1 —x vt 2— X . x>=20 Cox’—=1
43. lim 1 4. lim )
25. lim —— 2. lim —— ot ot
x—»1- 1 =X x—2t XT— 3 2 1 1
1 45, tim = * 46, lim —
27. lim ——— 28. lim x>3 2x —3 x> l—x
x—3 (x — 3)2 x—0 x2 1— x2 9 — u2
/x24+9_3 /x2 414 -2 47. lim 48. lim
2. tim Y20 30. lim Y472 o1 1 —x w3 3= U
x—0 X x—0 X
1—/1T— 2 N ) 2. tim =23 50, 1im &=’
3. lim— Y- 32, lim Y2 VS - "t a1
x—0 x? x—0 X * x
33. Use a table and a graph to find out what happens to 51. lim 22_ X 52. lim — + 42
2 x—=2 X —4 x——4 16 — x
fx)=— 2 2
2 3x -2 1—x-2
* 53, lim T2 54, lim —

asx — o0o. What happens as x — —oo0? What happens as x — 0?

x—>-=2 x+ 2 x—1/2 1—2x
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M 3.2 Continuity

B 3.2.1 What Is Continuity?

Consider the two functions

x> -9 fx £3
if x
f)=1x-3
6 ifx=3
and
x> -9 ffx £ 3
if x
gx) =17 x —
7 ifx=3

We are interested in how these functions behave for x close to 3. Both functions are
defined for all x € R and are the same for x # 3. Furthermore, as we saw in Example
3 of Section 3.1,

)Cz—

9
lim f(x) = lim g(x) = lim —— =6

x—3 x—3 x—3 X —

(3.4)

But the two functions differ at x = 3: f(3) = 6 and g(3) = 7. Comparing these
results with (3.4), we see that

lim f(x) = f(3)  but

x—3

lim g(x) # g(3)

x—3

This difference can also be seen graphically [Figures 3.11(a) and 3.11(b)]: Although
the graph of f(x) can be drawn without lifting the pencil, in graphing g(x) we need
to lift the pencil at x = 3, since lim,_, 5 g(x) # g(3). We say that the function f(x) is
continuous at x = 3, whereas g(x) is discontinuous at x = 3. Here is the definition
of continuity at a point:

Definition A function f is said to be continuous at x = c if

lim f(x) = f(c)

W=

A A

8 8 {63

7k f0 7 )

6 6

5 5

4 4

1~ 1~
< | | | Ly < | | | Ly
-1k 1 2 3 4 -1k 1 2 3 4

Y Y

(@) (b)

Figure 3.11 (a) The graph of y = f(x) is continuous at x = 3. (b) The graph of y = g(x) is
discontinuous at x = 3.

To check whether a function is continuous at x = ¢, we need to check the following
three conditions:
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EXAMPLE 2

Solution

EXAMPLE 3
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1. f(x)isdefined at x = c.
2. lim f(x) exists.

X—>cC

3. lim f(x)isequal to f(c).

X—>C

If any of these three conditions fails, the function is discontinuous at x = c.

Show that f(x) =2x — 3, x € R, is continuous at x = 1.
‘We must check all three conditions:

1. f(x)isdefinedatx =1,since f(1) =2-1—-3 = —1.
2. We use the fact that lim . . x = c to conclude that lim,_,; f(x) exists.
3. Using the limit laws, we find that lim, _,; f(x) = —1. This is the same as f(1).

Since all three conditions are satisfied, f(x) = 2x — 3 is continuous atx = 1. m

Let
fx) = x—3

and find a so that f(x) is continuous at x = 3.

To compute
o xr2—x-6
lim —————
x—3 x—=3

we factor the numerator: x> — x — 6 = (x — 3)(x + 2). Hence, since x # 3,

2_x—6 —3 2
fim = =0 g BTV FD =5
x—3 x_3 x—3 x_3 x—3

To ensure that f(x) is continuous at x = 3, we require that

lim f(x) = f3)

x—3

We therefore need to choose 5 for a. This is the only choice for a that will make f(x)

continuous. Any other value of a would result in f(x) being discontinous. [
2
The function y = ~—+ S x # 3,is not defined at x = 3 and is therefore

automatically discontinuous there. (Condition 1 does not hold.) But we saw in
Example 2 that we can remove the discontinuity by appropriately defining the
function at x = 3. Still, it is not always possible to remove discontinuities, as the
next three examples will show. In the first two, the discontinuity is a jump; that is,
both the left-hand and the right-hand limits exist at the point where the jump occurs,
but the limits differ. In the third example, the function grows without bound where
it is discontinuous.

The floor function
f(x) = [x] = the largest integer less than or equal to x

is graphed in Figure 3.12. The closed circles in the figure correspond to endpoints that
are contained in the graph of the function, whereas the open circles correspond to
endpoints that are not contained in the graph of the function. To explain this function,
we compute a few values: f(2.1) = 2, f(2) = 2, and f(1.9999) = 1. The function
jumps whenever x is an integer. Let k£ be an integer; then f (k) = k and

lim f(x) =4k, lim f(x)=k—-1

x—kt x—k—



104 Chapter 3 W Limits and Continuity

EXAMPLE 4

Solution

Figure 3.13 The function f(x) = &I
is discontinuous at x = 0. '

[x] 4 + ——o0
3+ ® o

2 + —o0

—_ O

*—0—) +
&——o0 -3 +

—o —4 +

Figure 3.12 The floor function f(x) = [x].

That is, only when x approaches an integer from the right is the limit equal to the
value of the function. The function is therefore discontinuous at integer values, and
the discontinuity cannot be removed. If c is not an integer, then f(x) is continuous
atx =c. [ |

Example 3 motivates the definition of one-sided continuity:

Definition A function f is said to be continuous from the right at x = c if

lim f(x) = f(c)

x—ct

and continuous from the left at x = c if

lim f(x) = f(c)

X—>C

The function f(x) = |[x], x € R, of Example 3, is therefore continuous from
the right but not from the left. In the next example, the discontinuity is again a jump;
however, this time we do not even have one-sided continuity.

Show that

x| .
ifx £0

0 ifx=0

fx) =

is discontinuous at x = 0 and that the discontinuity cannot be removed.

The graph of f(x) is shown in Figure 3.13. We can write

1 forx >0

fx) = 0 forx=0
—1 forx <0
since |x| = x for x > 0 and |x| = —x for x < 0. We therefore get
Iim f(x) =1 and lim f(x) =—1
x—0T x—0~

The one-sided limits exist, but they are not equal [which implies that lim,_ , f(x)
does not exist]. When we graph the function, a jump occurs at x = 0. (See Figure
3.13.) This function does not exhibit even one-sided continuity because f(x) is
neither 1 nor —1 at x = 0. There is no way that we could assign a value to f(0)
such that the function would be continuous at x = 0. ]
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At which point is the function
1
(x —4)?

discontinuous? Can the discontinuity be removed?

fx) =

The graph of f(x) is shown in Figure 3.14. The function f(x) cannot be defined for
x = 4,since f(x) is of the form (1—) when x = 4. The function is defined for all other
values of x. Therefore, we look at x = 4. We find that

lim 5 =00 (limit does not exist)
x—4 ()C - 4)

Because oo is not a real number, we cannot assign a value to f(4) such that f(x)
would be continuous at x = 4. We therefore conclude that f(x) is discontinuous at

x = 4 and the discontinuity cannot be removed. ]
y
40
30 Y
20/+
1 —+
| | 1 1 I |

o 1 2 3 4 5 6 7 8«x

Figure 3.14 The function f(x) = ﬁ is

discontinuous at x = 4.

B 3.2.2 Combhinations of Continuous Functions

Using the limit laws, we find that the following statements hold for combinations of
continuous functions:

Suppose that a is a constant and the functions f and g are continuous at x = c.
Then the following functions are continuous at x = c:

1L a-f

2. f+g

R 4

4. i provided that g(c) # 0
8

Proof We will prove only the second statement. We must show that conditions 1-3
of the previous subsection hold:

1. Note that [f + g](x) = f(x) + g(x). Therefore, f + g is defined at x = ¢ and
[f +gl(c) = f(c) + g(o).
2. We assumed that f and g are continuous at x = c. This means, in particular,
that
lim f(x) and lim g(x)
X—C X—C
both exist. That is, the hypothesis in the limit laws holds, and we can apply Rule
2 for limits and find that

lim[f 4 gl(x) = im[f(x) + g(x)] = lim f(x) + lim g(x) (3.5)

X—C X—cC X—C X—C

In other words, lim,_, [ f + g](x) exists and condition 2 holds.

X—>C
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Solution

3. Since f and g are continuous at x = c, it follows that

lim f(x) = f(c) and lim g(x) = g(c) (3.6)

X—>C X—C

Therefore, combining (3.5) and (3.6), we obtain

lim[f 4 g](x) = lim f(x) + lim g(x) = f(c) + g(c)

which is equal to [ f 4 g](c) and hence condition 3 holds.

Since we showed that all three conditions hold, it follows that f + g is continuous
at x = c. The other statements are shown in a similar way, using the limit laws. =

We say that a function f is continuous on an interval [ if f is continuous for all
x € I.Note that if I is a closed interval, then continuity at the left (and, respectively,
right) endpoint of the interval means continuous from the right (and, respectively,
left). Many of the elementary functions are indeed continuous wherever they are
defined. For polynomials and rational functions, this statement follows immediately
from the fact that certain combinations of continuous functions are continuous. We
give a list of the most important cases:

The following functions are continuous wherever they are defined:

1. polynomial functions

rational functions

power functions

trigonometric functions

exponential functions of the form a*,a > O and a # 1

SNk wDd

logarithmic functions of the form log, x,a > Oanda # 1

The phrase “wherever they are defined” is crucial. It helps us to identify points
where a function might be discontinuous. For instance, the power function 1/x? is
defined only for x # 0, and the logarithmic function log, x is defined only for x > 0.
We will illustrate the six cases cited in the preceding box in the next example, paying
particular attention to the phrase “wherever they are defined.”

For which values of x € R are the following functions continuous?
+x+1

@ f@=20=3x+1 B f0)="—"5— (© f()=x/

(d) f(x)=3sinx (e) f(x)=tanx ® fx)=3"

(g) 2In(x +1)

(a) f(x)is a polynomial and is defined for all x € R; it is therefore continuous
for all x € R.

(b) f(x)is arational function defined for all x # 2; it is therefore continuous for
all x # 2.

(¢) f(x) = x'/* = Yx is a power function defined for x > 0 it is therefore
continuous for x > 0.

(d) f(x)isatrigonometric function. Because sin x is defined for all x € R, 3sin x
is continuous for all x € R.

(e) f(x) is a trigonometric function. The tangent function is defined for all x #
% + ki, where k is an integer; it is therefore continuous for all x # % + km, where k
is an integer.

(f) f(x) is an exponential function. f(x) = 3" is defined for all x € R and is
therefore continuous for all x € R.



EXAMPLE 7

Solution

EXAMPLE 8

Solution
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(g) f(x)isalogarithmic function. f(x) = 2In(x+1) isdefined aslongasx+1 > 0
or x > —1; it is therefore continuous for all x > —1. [ |

The following result is useful in determining whether a composition of functions
is continuous:

Theorem If g(x) is continuous at x = ¢ with g(c) = L and f (x) is continuous
atx = L, then (f o g)(x) is continuous at x = c¢. In particular,

lim(f o g)(x) = lim fg(x)] = f[lim g(x)] = flg(c)] = f(L)

=0 F=@ X—>cC

To explain this theorem, recall what it means to compute (f o g)(c) = f[g(c)].
When we compute f[g(c)], we take the value ¢, compute g(c), and then take the
result g(c) and plug it into the function f to obtain f[g(c)]. If, at each step, the
functions are continuous, the resulting function will be continuous.

Determine where the following functions are continuous:

2 i F - -
@) h(x)=e (b) h(x) =sin—= (€) h(x) = =77

(a) Set g(x) = —x? and f(x) = e*. Then h(x) = (f o g)(x). Since g(x) is a
polynomial, it is continuous for all x € R, and the range of g(x) is (—oo, 0]. f(x)
is continuous for all values in the range of g(x). [In fact, f(x) is continuous for all
x € R.] It therefore follows that 4 (x) is continuous for all x € R.

(b) Set g(x) = T and f(x) = sinx. g(x) is continuous for all x # 0. The range
of g(x) is the set of all real numbers, excluding 0. f (x) is continuous for all x in the

range of g(x). Hence, h(x) is continuous for all x # 0. Recall that we showed in
Example 8 of Section 3.1 that

. . T
lim sin —
x—0

does not exist. That is, 4(x) is discontinuous at x = 0.
(¢) Setg(x) =x3and f(x) = —. Then h(x) = (f o g)(x). g(x) is continuous

1+2x
for all x € R, since g(x) = x'/*> = Jx and 3 is an odd integer. The range of g(x) is
(—00, 00). f(x) is continuous for all real x different from —1/2. Since g(—%) = —%,

h(x) is continuous for all real x different from —1/8. Another way to see that we need
to exclude —% from the domain of /(x) is by looking directly at the denominator of

h(x). We have 1 +2x'/> = 0 when x = —¢. n

When we compute lim,_, . f(x) and we know that f(x) is continuous at x = c,
it follows that lim,_, . f(x) = f(c). The next three examples illustrate this property.

. ( x? - 1)
lim sin | 7
x—3 4

2_ . .
The function f(x) = sin (n %) is continuous at x = 3. Hence,

o xr—1 . 9-1 :
lim sin | 7 2 = sin TL’T =sin(2r) =0 [ |

x—3

Find
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EXAMPLE 9 Find
lim /2x3 — 1

x—1

Solution  The function f(x) = /2x3 — 1 is continuous at x = 1. Thus,

lim /263 — 1= J@)1P —1=I=1 -

x—1

EXAMPLE 10 Find

lim ¢!

x—0
Solution The function f(x) = ¢*~! is continuous at x = 0. Therefore,

lime* ' =’ = ¢! ]

x—0

We conclude this section by calculating the limit of the expression in Example 9
of Section 3.1.

EXAMPLE 11 Find
. /X2 +16—4
lim Y———

x—0 x2

Solution We cannot apply Rule 4 of Section 3.1, since f(x) = (y/x2 + 16—4)/x? is not defined
for x = 0. (If we plug in 0, we get the expression 0/0.) We use a trick that will allow
us to find the limit: We rationalize the numerator. For x # 0, we find that

VX216 -4 (Jx2+16 —4) (Vx? + 16+ 4)
x2 B x2 (Vx2+16+4)
2

x2+16 —16

X
(2 1644)  x2(JxZ L 16 +4)
1
/21644

Note that we are allowed to divide by x? in the last step, since we are assuming
that x # 0. We can now apply Rule 4 to 1/(y/x? + 16 + 4). When we do, we obtain

i VX2 +16 —4 I 1 1 0.125
m-——- =1 —F—— = — = U.
x—0 x2 x—0 \/x2+16+4 8

as we saw in Example 9 of Section 3.1. In Chapter 5, we will learn another method
for finding the limit of expressions of the form 0/0. [ ]

Section 3.2 Problems

m 3.2.1 5. Show that

In Problems 1-4, show that each function is continuous at the given xr—x—2 ifx £2
value. Foo) = Y _—2 X

1. f(x)=2x,c=1/2 2. f(x) =—x,c=1 3 ifx =2

. f)=x3—2x+1,c=2 4. f(x)=x>+1,c=-1 is continuous at x = 2.



6. Show that

2x 4+ x—6 e £ 2
i _
fo=1" x+2 *

-7 ifx =-2
is continuous at x = —2.
7. Let

x> —

Fx) = { ifx #3
X —

Which value must you assign to a so that f(x) is continuous at
x =3?
8. Let
xX24+x=2
x —1
a ifx=1

F) = ifx #1

Which value must you assign to a so that f(x) is continuous at
x =17

In Problems 9-12, determine at which points f (x) is discontinuous.

1 1
9. - 10. -
@) = — f@) = ——
x2=3x+4+2 .
1 fo=] x-a2 tx#l
1 ifx=1
21 if
12. f(x):{x ifx=0
X ifx >0

13. Show that the floor function f(x) = |x] is continuous at
x = 5/2 but discontinuous at x = 3.

14. Show that the floor function f(x) = [x] is continuous from
the right at x = 2.
m 3.2.2

In Problems 15-24, find the values of x € R for which the given
functions are continuous.

15. f(x) =3x* —x>+4 16. f(x) = /x2—1

17. f(x) = XZjll 18. f(x) = cos(2x)
19. f(x) = ;IX\ 20. f(x) =In(x —2)
2L () =1In- fr 3 22. f(x) = exp[—/x — 1]
23. f(x) =tan(2mx) 24. f(x) =sin <32%>
25. Let

F) = x24+2 forx <0

x+c¢ forx >0

(a) Graph f(x) when ¢ = 1, and determine whether f(x) is
continuous for this choice of c.

B 3.3 Limits at Infinity
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(b) How must you choose ¢ so that f(x) is continuous for all
x € (—00,00)?
26. Let

1
— forx > 1
X

fx) =

2x+c¢ forx <1
(a) Graph f(x) when ¢ = 0, and determine whether f(x) is
continuous for this choice of c.

(b) How must you choose ¢ so that f(x) is continuous for all
x € (—00,00)?
27. (a) Show that

@) =yx—1,

is continuous from the right at x = 1.

(b) Graph f(x).

(¢) Does it make sense to look at continuity from the left at
x=1?

28. (a) Show that

x>1

fx)=yx?—4,

is continuous from the right at x = 2 and continuous from the left
atx = —2.

(b) Graph f(x).

(¢) Does it make sense to look at continuity from the left at x = 2
and at continuity from the right at x = —2?

In Problems 29-48, find the limits.

x| >2

X
29. lim sin <7) 30. lim cos(2x)
x—>1/3 2 xX—>—m/2
. cos” x . 1+tan’x
3 lim ————— 32. lim ———
x—m/2 1 —sin"x x—>-m/2 SeC” X

33. lim /4 4+ 5x* 34. lim /6 +x

x——1 x—>-=2
35. lim /x2+2x +2 36. lim/x3 +4x — 1
x——1 x—>1
37. lime 73 38. lim &***2
x—0 x—0
39. lime* 40. lim /2!
x—3 x——1
) er -1 ) et — e
41. lim 4. lim —
x—0 e’ —1 x—0 e~ + 1
1 . 1
43. 44. lim

x—>14/3 — 2x2
5—./25+x2

lim ————

x>-2./5x2 — 4
2 —

45, 1im V2073 46

. lim
x—0 X x—0 2x2
47. limIn(1 — x) 48. lim In[e”* cos(x — 1)]
x—0 x—1

The limit laws discussed in Subsection 3.1.2 also hold as x tends to co (or —o0).

Find

EXAMPLE 1

x%oox‘f‘l
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Solution

Weset f(x) = x and g(x) = x+1. Obviously, neither lim, _,  f(x) norlim,_,  g(x)
exists. Thus, we cannot use Rule 4 from Section 3.1. But we can divide both numerator
and denominator by x. When we do, we find that

lim = lim ——

x—>o0 X + x—o0 | 4 <
Since lim, , 1 = 1 and lim,_, (1 + %) = 1, both limits exist. Furthermore,
lim,, (1 + )l—c) # 0. We can now apply Rule 4 of Section 3.1 after having done

the algebraic manipulation:

lim, 1

lim —— = lim - = — =
xooo X+ 1 xso01 4 = lim 1+ 7)

1
- =1 ]
1

In Example 1, we computed the limit of a rational function as x tended to infinity.
Rational functions are ratios of polynomials. To find out how the limit of a rational
function behaves as x tends to infinity, we will first compare the relative growth of
functions of the form y = x": If n > m, then x" dominates x” for large x, in the
sense that

x}’l m
Iim — =0 and Iim — =0
x—o00 X x—o00 X"

The preceding statement follows immediately if we simplify the fractions

n

X _ .
— =" withn —m > 0

xm

and

xm

- = — withn —m > 0
X xn—

This limiting behavior is important when we compute limits of rational functions as
x — 00. We compare the following three limits:

@ I x2+2x —1
a) lim —————
xX—00 X3 —3x+1
2x% —dx +7
b) lm ——
(®) x—so00 3X3 +7x2 —1
4
x*4+2x =5
¢) Iim ————
( ) xX—00 x2 —x+2
To determine whether the numerator or the denominator dominates, we look at each
of their leading terms. (The leading term is the term with the largest exponent.)

The leading term of a polynomial tells us how quickly the polynomial increases as
X increases.

(a) The leading term in the numerator is x?, and the leading term in the
denominator is x>. As x — oo, the denominator grows much faster than the
numerator. We therefore expect the limit to be equal to 0. We can show this
by dividing both numerator and denominator by the higher of the two powers,
namely, x3. We get

1 2 1
. X 42x—1 it o
lim 3 lim 3 :
x—o00 X7 —3x +1 x—)ool—x—z-}—x—3

Since limx_mo(% + % - %) exists (it is equal to 0), and lim, , . (1 — % + %)
exists and is not equal to 0 (it is equal to 1), we can apply Rule 4 to find that
. 1, 2 1

=-=0
1

x— I L_ 3 1
o1 x2+ 3 hmx—>oo<1_;+;)
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(b) The leading term in both the numerator and the denominator is x3, so we
divide numerator and denominator by x* and obtain

2x% —4x +7 ) 2_%"'%3 2
xirgo3x3+7x2—1 :XILH;Q 3421 ~3
x x3
In the last step, we used the facts that the limits in both the numerator and
the denominator exist and that the limit in the denominator is not equal to 0.
Applying Rule 4 yields the limiting value. Note that the limiting value is equal
to the ratio of the coefficients of the leading terms in the numerator and the

denominator.

(¢) The leading term in the numerator is x* and the leading term in the
denominator is x2. Since the leading term in the numerator grows much more
quickly than the leading term in the denominator, we expect the limit to be
undefined. This is indeed the case and can be seen if we divide the numerator
by the denominator. We find that

44ox—5 3
fim T i (21— 20
x2—x+2

X—00 x2—x+2 X—00
It is often useful to determine whether the limit tends to +00 or —oo. Since

x?+x —1 tends to +00 as x — oo and the ratio x2]:3+2 tends to 0 as x — oo,

) does not exist

x4 42x—5

the limit of 5=

tends to +00 as x — +00.

Let’s summarize our findings: If f(x) is a rational function of the form f(x) =
p(x)/q(x), where p(x) is a polynomial of degree deg(p) and ¢ (x) is a polynomial of
deg(q), then

@) 0 if deg(p) < deg(q)
lim f(x) = lim % =1L #0 if deg(p) = deg(q)
e x¥>o0 g does not exist if deg(p) > deg(q)

Here, L is a real number that is the ratio of the coefficients of the leading terms in
the numerator and denominator. The same behavior holds as x — —o0.

EXAMPLE 2 Compute

1—x+2x2 1—x3
a) lim —— b) lim
()x—>—c>o 3x — 5x2 ()x—>ool+x5
2 — x? 4+ 3x2
(© lim — @ lim S
X—00 1 + 2x xX——00 —Tx
Solution (a) Since the degree of the numerator is equal to the degree of the denominator,
1—x+2x2 2 2
Iim —m=—=—-
o —so  3x —5x2 -5 5
(b) Since the degree of the numerator is less than the degree of the denominator,
oo 1=x
lim =0
x—o0 1+ x3

(¢) Since the degree of the numerator is greater than the degree of the
_2
denominator, the limit does not exist. When x is very large, the expression %

g2 .
behaves like =~ = —3, which tends to —oo as x — oo. Hence,
2 —x?

lim = —oo (limit does not exist)
y—o00 1 + 2x
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EXAMPLE 3

N(1)
100
80
60 1+ 9
40
20

0
0 2 4 6 8 10 ¢

Figure 3.16 The graph of the logistic
curve with K = 100, Ny = 10, and
r=1.

(d) The degree of the numerator is greater than the degree of the denominator,
S0

. 4437 . .
lim =00 (limit does not exist)
x——o0o 1 —7x
. 44352 o 3x2 3 .
since 7—- behaves like = = —3x for x large, which tends to +0c0 as x — —0co. ®

Rational functions are not the only functions that involve limits as x — oo (or
x — —o00). Many important applications in biology involve exponential functions.
We will use the following result repeatedly —it is one of the most important limits:

lime™* =0
X—>00

The graph of f(x) = e~ is given in Figure 3.15. You should familiarize yourself
with the basic shape of the function f(x) = e~ and its behavior as x — 00.

et ——

—-0.5 +

Figure 3.15 The graph of f(x) = e~ *.

Logistic Growth The logistic curve describes the density of a population over time,
where the rate of growth depends on the population size. We will discuss this function
in more detail in coming chapters. It suffices here to say that the per capita rate
of growth decreases with increasing population size. If N (¢) denotes the size of the
population at time ¢, then the logistic curve is given by

K

K —

1+ (W - 1) et
The parameters K and r are positive numbers that describe the population dynamics.
We can check that N (0) on the right-hand side is indeed the population size at time
0 [evaluate N (t) at t = 0], and we assume that N (0) is positive. The graph of N(z)
is shown in Figure 3.16. We will interpret K now; the interpretation of r must wait

until the next chapter.

If we are interested in the long-term behavior of the population as it evolves in

accordance with the logistic growth curve, we need to investigate what happens to
N(t) ast — 0o. We find that

N(t) = fort >0

. K
lim =K

t%oo1+<%_1>e—rt

since lim, , . e = 0 for r > 0. That is, as t — 00, the population size approaches
K, which is called the carrying capacity of the population. You will encounter logistic
growth repeatedly in this text; it is one of the most fundamental equations describing
population growth. ]
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Section 3.3 Problems

Evaluate the limits in Problems 1-24.

o 2x*=3x+5 . x24+3
1. Iim ——— 2. lim ———
oo XY —=2x 41 oo X2 —=2x +1
343 2x —1
3. tim T 4 lim =
00 X — 2 x> —00 3 — 4x
1—x3+2x* 1—5x3
5. fim —_% ¢ 6. lim *
X—00 2x2 + x4 x—>00 1+ 3x4
2 _ 2 3 42
7. lim > 8. lim *
xX—00 2x + 1 X——00 1—2x?
. x2—3x+1 . 1—x3
9, Im — 10. lim
X——00 4—x x>—00 2+ X
2 2 2 2
1. lim - 12, lim %
xo—c0 1 — x? x>—00 X +1
4 —x
13. lim — 14. lim
x—oo 1+ e x—oo 1 — e
2 X X
15. lim — 16. lim -
X—00 ex+3 x»ooz_ex
17. lim exp[x] 18. lim exp[—Inx]
X—>—00 X—>00
3 2x 3 2x
19. lim —o 20. lim ——
oo Zer — e oo Zer _ e3x
21. lim 22. lim
xooo 2+ e x>—00 1 + €7
. e* . 2
23. lim 24. lim ————
oo L4+ x 10 € (1 +X)

25. In Section 1.2.3, Example 6, we introduced the Monod growth
function

r(N)=a , N>0

k+N
Find lim,_, ., 7(N).
26. In Problem 86 of Section 1.3, we discussed the Michaelis—
Menten equation, which describes the initial velocity of an enzy-
matic reaction (vy) as a function of the substrate concentration

(s0). The equation was given by

Umax*s0
S0 + Km

Vg =

Find lim V.

50— 00

27. Suppose the size of a population at time ¢ is given by

N = S
EET

(a) Use a graphing calculator to sketch the graph of N(z).

(b) Determine the size of the population as t — oco. We call this
the limiting population size.

(¢) Show that, at time ¢t = 3, the size of the population is half its
limiting size.
28. Logistic Growth Suppose that the size of a population at time
t is given by

100

N(t)= ———
® 1+ 9e~!

fort > 0.
(a) Use a graphing calculator to sketch the graph of N(¢).

(b) Determine the size of the population as t — 00, using the
basic rules for limits. Compare your answer with the graph that
you sketched in (a).

29. Logistic Growth Suppose that the size of a population at time
t is given by
50

N({t)= ——
® 14 3e~!

fort > 0.

(a) Use a graphing calculator to sketch the graph of N ().

(b) Determine the size of the population as t — 00, using the
basic rules for limits. Compare your answer with the graph that
you sketched in (a).

M 3.4 The Sandwich Theorem and Some Trigonometric Limits

What happens during bungee jumping? The jumper is tied to an elastic rope, jumps
off a bridge, and experiences damped oscillations until she comes to rest and will
be hauled in to safety. The trajectory over time might resemble the function (Figure

3.17)

g(x) =e “cos(10x), x>0

We suspect from the graph that

lim e * cos(10x) =0

X—>00

If we wanted to calculate this limit, we would quickly see that none of the rules we

have learned so far apply. Although lim

oo € ¥ =0, we find that lim,_,  cos(10x)

does not exist: The function cos(10x) oscillates between —1 and 1. Still, this property
allows us to sandwich the function g(x) = ¢ cos(10x) between f(x) = —e " and
h(x) = e~*. To do so, we note that from

it follows that

—1 <cos(10x) <1

—e " <e Fcos(10x) <e™*
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EXAMPLE 1

Solution

g(x)

—1.5

Figure 3.17 The graph of f(x) = e¢~* cos x, together with the
two functions g(x) = e * and h(x) = —e™".

Then, since
lim(—e™) = lim e =0
X—>00 X—> 00
our function g(x) = e~ cos(10x) gets squeezed in between the two functions f(x) =
—e " and h(x) = e, which both go to 0 as x tends to infinity. Therefore,
lim e * cos(10x) =0

X—>00

This useful method is known as the sandwich theorem. We will not prove it.

Sandwich Theorem If f(x) < g(x) < h(x) for all x in an open interval
that contains ¢ (except possibly at ¢) and

lim f(x) = limh(x) = L

then
limg(x) =L

X—>C

The theorem is called the sandwich theorem because we “sandwich” the function
g(x) between the two functions f(x) and A(x). Since f(x) and &(x) converge to the
same value as x — ¢, g(x) also must converge to that value as x — c¢, because it is
squeezed in between f(x) and & (x). The sandwich theorem also applies to one-sided
limits. We demonstrate how to use the sandwich theorem in the next example.

Show that
.o, 1

lim x“sin— =0

x—=0 X
First, note that we cannot use Rule 3—which says that the limit of a product is equal
to the product of the limits—because it requires that the limits of both factors exist.
The limit of sin(1/x) as x — 0 does not exist; instead, it diverges by oscillating. (See
Example 8 of Section 3.1 for a similar limit.) However, we know that

o1
—1<sin—<1
X

2

for all x # 0. To go from this set of inequalities to one that involves x~ sin %, we need

to multiply all three parts by x. Performing the multiplication, we find that
1
2 2

sin — < x
X

—xzfx



EXAMPLE 2

Solution
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Since lim_, ,(—x?) = lim,_,, x> = 0, we can apply the sandwich theorem to obtain

.o 1
lim x“sin— =0
x—0 X
This limit is illustrated in Figure 3.18. ]

Figure 3.18 The graph of f(x) = x?sin )17

Show that

limxsin— =0

x—0 X
As in Example 1, note that we cannot use Rule 3—which, again, says that the limit of
a product is equal to the product of the limits—because it requires that the limits of
both factors exist. The limit of sin(1/x) as x — 0 does not exist; instead, it diverges
by oscillating. (See Example 8 of Section 3.1 for a similar limit.) However, we know
that

1
—1<sin— <1
X

forall x # 0.To go from this set of inequalities to one that involves x sin %, we need to
multiply all three parts by x. Since multiplying an inequality by x reverses inequality
signs when x < 0, we need to split the discussion into two cases, one involving x > 0,
the other x < 0.

Multiplying all three parts by x > 0, we find that

—x <xsin— <x
X

Since lim,_ ;+ (—x) = lim,_ 4+ x = 0, we can apply the sandwich theorem to obtain

1
lim xsin— =0
x—071 X
We can repeat the same steps when we multiply by x < 0, except we now need to
reverse the inequality signs. That is, for x < 0,
1
—X > XxSIn— > x
X
Because lim,_, ;- (—x) = lim,_,,- x = 0, we can again apply the sandwich theorem
and get

. 1
Iim xsin— =0

x—0~ X
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A B
(6] 1

Figure 3.20 The unit circle with the
triangles OAD and OBC.

The left-hand and right-hand limits are the same. Therefore, combining the two
results, we find that

. .1
Iimxsin— =0
x—0 X

This limit is illustrated in Figure 3.19. ]

Figure 3.19 The sandwich theorem illustrated on
lim__ ,xsin(1/x).

The following two trigonometric limits are important for developing the
differential calculus for trigonometric functions:

You should memorize these two limits, noting that the angle x is measured in radians.
We will prove both statements. The proof of the first statement uses a nice geometric
argument and the sandwich theorem; the second statement follows from the first.

Proof that lim . _, % = 1 We will need to divide an inequality by sin x. Since

dividing an inequality by a negative number reverses the inequality sign (see
Example 1), we will split the proof into two cases, one in which 0 < x < /2, the
other in which —7/2 < x < 0. In the former case, both x and sinx are positive;
in the latter, both x and sinx are negative. (Since we are interested in the limit as
x — 0, we can restrict the values of x to values close to 0.) We start with the case
0 < x < w /2. In Figure 3.20, we draw the unit circle together with the triangles OAD

and OBC. The angle x is measured in radians. Since OB = 1, we find that

arc length of BD = x

OA = cosx
AD =sinx
BC = tanx

Furthermore, using the symbol A to denote a triangle, we obtain

area of AOAD < area of sector OBD < area of AOBC
The area of a sector of central angle x (measured in radians) and radius r is %rzx.
Therefore,

l—— — 1—» 1——
—~OA-AD < -OB -x < -OB-BC
2 2 2
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or

1

Ecosxsinxﬁ 1% x -1-tanx

IA

1
2

N =

Dividing this pair of inequalities by % sin x (and noting that % sinx > 0for0 < x <
7/2) yields
X 1

sin x COS X

cosx <

S|

On the rightmost part, we used the fact that tanx = Cg;i . Taking reciprocals and

reversing the inequality signs gives

1 sin x
>

> > cosx
COS X X

We can now take the limit as x — 0*. (Remember, we assumed that 0 < x < /2,
so we can approach 0 only from the right.) We find that

. . 1 1
lim cosx =1 and lim = — =1
P o+ cosx  lim,_ + cosx

We now apply the sandwich theorem, which yields

. sinx
lim

x—0t X

=1

sin x
X

We have shown only that lim_ ;+ = 1, but a similar argument can be carried out

when —Z < x < 0. In this case, lim % = 1. The left-hand and the right-hand

2 x—0"
limits are the same, and we conclude that

sin x

Iim — =1 [ ]
x—0 X

1—cosx

Proof that lim . _, = ( Multiplying both numerator and denominator
of f(x) = (1 —cosx)/x by 14 cosx, we can reduce the second statement to the first:

. 1 —cosx . 1 —cosx1+cosx
lim = lim
) X ) X 14 cosx

1 —cos’x

m —
-0 X(1 + cosx)

Using the identity sin® x + cos® x = 1, we write this as

sin” x

im-——
x—0X(1 4+ cosx)

Rewriting again, we obtain
. sinx sinx
lim — ——

sin x

and we can determine the limit. First, we note that lim,_, , —= exists by the first

. sin x .
statement, and lim,_,, 7=~ exists because 1 + cosx # 0 for x close to 0. Then,

by Rule 3 of the limit laws, the limit of a product is the product of the limits. We
therefore find that

. sinx sinx . sinx . sin x
lim — — = lim lim =1-0=0 |
v»0 X 1l4cosx 9 x ,.0l-+4cosx
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EXAMPLE 3

sin 3x

(a) lim
x—0 X

Solution

Find the following limits.

(b) lim

2

sin” x secx — 1

(¢) lim

0 X2 0 XSecx

(a) We cannot apply the first trigonometric limit directly. The trick is to substitute

z = 3x and observe that z — 0 as x — 0. Then

(b) We note that

sin 3x . sinz 3
—— =1lim —— = — lim =
S5x 0392/3  5.,.0 2 5

sin z 3

) . 2 . 2
sin” x . sin x . sinx
= lim =({lim—)] =1
x—0 X x—0 X

Here, we used the fact that the limit of a product is the product of the limits, provided
that the individual limits exist.

(¢c) We first write secx =
denominator by cos x:

1/cosx and then multiply both numerator and

secx — 1 . cosx
im ——— = lim -
x—0 XSECX x—=>0  Cosx
L _ 1) cosx
X COS X 1 —cosx
= hm < = 1 = 0 |
x—0 Cosx COSX x—0 X

Section 3.4 Problems

1. Let

1

f(x)=x*cos—, x#0

X
(a) Use a graphing calculator to sketch the graph of y = f(x).
(b) Show that

—x? < x%cos — < x?
X

holds for x # 0.

(¢) Use your result in (b) and the sandwich theorem to show that

1
lim x?cos — =0

x—0

2. Let
1
f(x)=xcos—, x#0
X

(a) Use a graphing calculator to sketch the graph of y = f(x).
(b) Use the sandwich theorem to show that

. 1
limxcos — =0

x—0

3. Let

1
f)=—2 x>0
X

(a) Use a graphing calculator to graph y = f(x).

(b) Use a graphing calculator to investigate the values of x for
which

Inx 1
_E_

x T Vx

=

= | =

holds.

(¢) Use your result in (b) to explain why the following is true:

. Inx
Iim — =0
x—oo X

4. Let

(a) Use a graphing calculator to graph y = f(x).

(b) Explain why you cannot use the basic rules for finding limits
to compute
. sinx
lim ——
x—oo X
(¢) Show that
1  sinx
—<—<
x - x

= | =

holds for x > 0, and use the sandwich theorem to compute

sin x

1 -

X—>00 X



In Problems 5-20, evaluate the trigonometric limits.

. sin(2x)
5. lim

x—0 2x
7. lim 20OV

x—0 X

sin(rx)

9. lim
x—0 X

. sin(mwx)
11. lim
x—0 \/)?

. sinxcosx
13. lim

x—0 X(l - X)

. 1—cosx
15. Iim —
x—0 2x

17. li

x—0 2x

. sinx(1 —cosx)
19. Im ——

x—0 x2

.1 —cos(5x)
il et

6.

10.

12.

14.

16.

18.

20.

. lim

. sin(2x)
lim

x—0 X

sin x

x—0 —X

. sin(—mx/2)
Iim ——
x—0 2x

. osin’x
lim

x—=0 X

. 1—cos’x
Iim ———
x—0 x2

. 1—-cos(2x)
Iim ——
x—0 3x

li

x—0 X

cscx —cotx
Iim ——
Y0 X CSC X

. 1 —cos(x/2)
il il
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21. (a) Use a graphing calculator to sketch the graph of
f(x) =e"sinx, x>0

fora = —0.1, —0.01, 0, 0.01, and 0.1.

(b) Which part of the function f (x) produces the oscillations that
you see in the graphs sketched in (a)?

(¢) Describe in words the effect that the value of a has on the
shape of the graph of f(x).

(d) Graph f(x) = e“sinx, g(x) = —e*, and h(x) = e
together in one coordinate system for (i) ¢ = 0.1 and (ii) a =
—0.1. [Use separate coordinate systems for (i) and (ii).] Explain
what you see in each case. Show that

—e™ < e™sinx < e

Use this pair of inequalities to determine the values of a for which

lim f(x)

X—>00

exists, and find the limiting value.

M 3.5 Properties of Continuous Functions

B 3.5.1 The Intermediate-Value Theorem

As you hike up a mountain, the temperature decreases with increasing elevation.
Suppose the temperature at the bottom of the mountain is 70°F and the temperature
at the top of the mountain is 40°F. How do you know that at some time during
your hike you must have crossed a point where the temperature was exactly S0°F?
Your answer will probably be something like the following: “To go from 70°F to
40°F, I must have passed through 50°F, since 50°F is between 40°F and 70°F and
the temperature changed continuously as I hiked up the mountain.” This statement
represents the content of the intermediate-value theorem.

The Intermediate-Value Theorem Suppose that f is continuous on the
closed interval [a, b]. If L is any real number with f(a) < L < f(b) or f(b) <
L < f(a), then there exists at least one number ¢ on the open interval (a, b)
such that f(c) = L.

We will not prove this theorem, but Figure 3.21 should convince you that it is true.
In the figure, f is continuous and defined on the closed interval [a, b] with f(a) <
L < f(b). Therefore, the graph of f(x) must intersect the line y = L at least once
on the open interval (a, b).

fb)

flc)

fla)

S h—————

Figure 3.21 The intermediate-value theorem.
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EXAMPLE 1

Solution

EXAMPLE 2

Solution

Let
. 3
f(x) =3+sinx forOfxg7

Show that there exists at least one point ¢ in (0, 37 /2) such that f(c) = 5/2.

The graph of f(x) is shown in Figure 3.22. First, note that f (x) is defined on a closed
interval and is continuous on [0, 377 /2]. Furthermore, we find that

f0)=3+sin0=3+0=3

F(E) = 34sin2t =34 (-1) =2
— | = Sin — = — =
2 2
Given that
2<-<3
2

we conclude from the intermediate-value theorem that there exists a number ¢ such
that f(c) = 5/2. Note that the theorem does not tell us where ¢ is or whether there

is more than one such number. ]

Z L 3+ sinx

2.5 ——

35

3
2.5

2 | | \A

0 s T 37 x
2 2

Figure 3.22 The intermediate-value theorem for
f(x)=34sinx,0<x <3m/2,and L =2.5.

In applying the intermediate-value theorem, it is important to check that f is
continuous. Discontinuous functions can easily miss values; for example, the floor
function in Example 3 of Section 3.2 misses all numbers that are not integers.

As mentioned in Example 1, the intermediate-value theorem gives us only the
existence of a number c; it does not tell us how many such points there are or where
they are located.

You might wonder how such a result can be of any use. One important
application is that the theorem can be used to find approximate roots (or solutions)
of equations of the form f(x) = 0. We show how in the next example.

Find a root of the equation x> — 7x%> +3 = 0.

Let f(x) = x> — 7x? + 3 = 0. Because f(x) is a polynomial, it is continuous for all
x € R. Furthermore,

lim f(x)=—o00 and lim f(x) =00

X—>—00 X—>00

That is, if we choose a large enough interval [a, b], then f(a) < 0 and f(b) > 0 and,
therefore, there must be a number ¢ € (a, b) such that f(c¢) = 0. This number c is a
root of the equation f(x) = 0. The existence of ¢ is guaranteed by the intermediate-
value theorem.



3.5 M Properties of Continuous Functions 121

To find a number ¢ for which f(c) = 0, we use the bisection method. We start
by finding a and b such that f(a) < Oand f(b) > 0. For example,

f(-)=-5 and fQQ)=7

The intermediate-value theorem then tells us that there must be a number in (—1, 2)
for which f(c) = 0. To locate this root with more precision, we take the midpoint
of (—1,2), which is 0.5, and evaluate the function at x = 0.5. [The midpoint of the
interval (a, b) is (a + b)/2.] Now, f(0.5) ~ 1.28 (rounded to two decimals). We thus
have

f(=1)=-5 £(0.5) ~ 1.28 f2) =17

Using the intermediate-value theorem again, we can now guarantee a root in
(—1,0.5),since f(—1) < 0and f(0.5) > 0. Bisecting the new interval and computing
the respective values of f(x), we find that

f(=1) =-5 f(=0.25) ~ 2.562 f(0.5) ~1.28

Using the intermediate-value theorem yet again, we can guarantee a root in
(—1,—0.25), since f(—1) < 0 and f(—0.25) > 0. Repeating this procedure of
bisecting and selecting a new (smaller) interval will eventually produce an interval
that is small enough that we can locate the root to any desired accuracy. The first
several steps are summarized in Table 3-1.

TABLE 3-1 Bisection Method

a ub b f(@ f(452) f()
—1 0.5 2 -5 1.28 7

—1 0.5 2 -5 1.28 7

—1 —0.25 0.5 -5 2.562 1.28
-1 —0.625 —0.25 -5 0.170 2.562
—1 —0.8125 —0.625 -5 —1.975 0.170
—0.8125 —0.71875 —0.625 —1.975 —0.808 0.170
—0.71875 —0.671875 —0.625 —0.808 —0.297 0.170
—0.671875 —0.6484375 —0.625 —0.297 —0.0579 0.170
—0.6484375 —0.63671875 —0.625 —0.0579 0.0575 0.170
—0.6484375 —0.642578125 —0.63671875 —0.0579 9.9 x 1073 0.0575
—0.6484375 —0.642578125

After nine steps, we find that there exists a root in
(—0.6484375, —0.642578125)

The length of this interval is 0.005859375. If we are satisfied with that level of
precision, we can stop here and choose, for instance, the midpoint of the last interval
as an approximate value for a root of the equation x> — 7x% 4 3 = 0. The midpoint is

—0.642578125 + (—0.6484
0.642578125 ;r( 0.6484375) —0.6455078125

~ —(0.646

(rounded to three decimals).

Note that the length of the interval decreases by a factor of 1/2 at each step. That
is, after nine steps, the length of the interval is (1/2)° of the length of the original
interval. In this example, the length of the original interval was 3; hence, the length
of the interval after nine steps is

1\’ 3
3.(2) = 2 —0.005859375
2 512
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as we saw. The bisection method is fairly slow when we need high accuracy. For
instance, to reduce the length of the interval to 1079, we would need at least 22 steps,

since
1 21 1 22
3-(=) >10°>3.(=
2 2

In Section 5.7, we will learn a faster method.

Figure 3.23 shows the graph of f(x) = x> — 7x> 4+ 3. We see that the graph
intersects the x-axis three times. We found an approximation of the leftmost root of
the equation x> — 7x? + 3. If we had used another starting interval —say, [1, 2] —we

would have located an approximation of the rightmost root of the equation. [ ]
y

X =T+ 3 — 10 +
5 =+

_10 -+

Figure 3.23 The graph of f(x) = x° — 7x? + 3.

B 3.5.2 A Final Remark on Continuous Functions

Many functions in biology are in fact discontinuous. For example, if we measure
the size of a population over time, we find that it takes on discrete values only
(namely, nonnegative integers) and therefore changes discontinuously. However, if
the population size is sufficiently large, an increase or decrease by 1 changes the
population size so slightly that it might be justified to approximate it by a continuous
function. For example, if we measure the number of bacteria, in millions, in a petri
dish, then the number 2.1 would correspond to 2,100,000 bacteria. An increase by
1 results in 2,100,001 bacteria, or, if we measure the size in millions, in 2.100001, an
increase of 107°.

Section 3.5 Problems

m 3.5.1,3.5.2
1. Let

f@)=x*—1, 0<x<2
(@) Graphy = f(x)for0 <x <2.
(b) Show that

f0) <0< f(2)
and use the intermediate-value theorem to conclude that there
exists a number ¢ € (0, 2) such that f(c) = 0.
2. Let
f)=x-2x+3, -3<x<-1

(@) Graphy = f(x)for -3 <x < —1.
(b) Use the intermediate-value theorem to conclude that

X —2x+3=0

has a solution in (—3, —1).

3. Let
fx) =vx*+2,
(@) Graphy = f(x)forl <x <2.
(b) Use the intermediate-value theorem to conclude that

1<x<2

x242=2
has a solution in (1, 2).
4. Let
f(x)=sinx —x, —-1<x<I1
(@) Graphy = f(x)for—1 <x <1.
(b) Use the intermediate-value theorem to conclude that
sinx = x

has a solution in (—1, 1).



5. Use the intermediate-value theorem to show that
et =x

has a solution in (0, 1).

6. Use the intermediate-value theorem to show that
COSX = X

has a solution in (0, 1).

7. Use the bisection method to find a solution of
e =X

that is accurate to two decimal places.

8. Use the bisection method to find a solution of
COSX = X

that is accurate to two decimal places.

9. (a) Use the bisection method to find a solution of 3x> — 4x? —
x + 2 = 0 that is accurate to two decimal places.

(b) Graph the function f(x) = 3x> — 4x? — x + 2.

(¢) Which solution did you locate in (a)? Is it possible in this case

to find the other solution by using the bisection method together
with the intermediate-value theorem?

10. In Example 2, how many steps are required to guarantee that
the approximate root is within 0.0001 of the true value of the root?
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11. Suppose that the number of individuals in a population at time
t is given by

54¢
, t>0 (3.7)
1341

(a) Use a calculator to confirm that N(10) is approximately
23.47826. Considering that the number of individuals in a
population is an integer, how should you report your answer?

N(t) =

(b) Now suppose that N(¢) is given by the same function (3.7),
but that the size of the population is measured in millions. How
should you report the population size at time = 10? Make some
reasonable assumptions about the accuracy of a measurement for
the size of such a large population.

(¢) Discuss the use of continuous functions in both (a) and (b).
12. Suppose that the biomass of a population at time ¢ is given by

32.00¢

B(t)y=——, t>
17.00 + ¢

(3.8)

(a) Use a calculator to confirm that B(10) is approximately
1.185185. Considering the function B(¢), how many significant
figures should you report in your answer?

(b) Discuss the use of continuous functions in this problem.
13. Explain why a polynomial of degree 3 has at least one root.

14. Explain why a polynomial of degree n, where n is an odd
number, has at least one root.

15. Explain why y = x? — 4 has at least two roots.

16. On the basis of the intermediate-value theorem, what can you
say about the number of roots of a polynomial of even degree?

M 3.6 A Formal Definition of Limits (Optional)

The ancient Greeks used limiting procedures to compute areas, such as the area of
a circle, by the “method of exhaustion.” In this method, a region was covered (or
“exhausted”) as closely as possible by triangles. Adding the areas of the triangles
then yielded an approximation of the area of the region of interest. Newton and
Leibniz, the inventors of calculus, were aware of the importance of taking limits in
their development of the subject; however, they did not give a rigorous definition of
the procedure. The French mathematician Augustin-Louis Cauchy (1789-1857) was
the first to develop a rigorous definition of limits; the definition we will use goes back
to the German mathematician Karl Weierstrass (1815-1897).

Before we write the formal definition, let’s return to the informal one. In that
definition, we stated that lim,_,. f(x) = L means that the value of f(x) can be
made arbitrarily close to L whenever x is sufficiently close to c¢. But just how close is
sufficient? Take Example 1 from Section 3.1: Suppose we wish to show that

lim x> = 4
x—2

without using the continuity of y = x2, which itself was based on lim,_, x = ¢

X—>C

[Equation (3.3)]. What would we have to do? We would need to show that x? can be
made arbitrarily close to 4 for all values of x sufficiently close, but not equal, to 2. (In
what follows, we will always exclude x = 2 from the discussion, since the value of x2
at x = 2 is irrelevant in finding the limit.) Suppose we wish to make x? within 0.01
of 4; that is, we want |x?> — 4| < 0.01. Does this inequality hold for all x sufficiently
close, but not equal, to 2? We begin with

x> — 4] <0.01
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EXAMPLE 1

which is equivalent to

—0.01 <x*>*—4<0.01
3.99 < x? < 4.01

v3.99 < |x]| < /4.01

Now, ,/3.99 = 1.997498 ... and ,/4.01 = 2.002498. ... We therefore find that values
of x # 2 in the interval (1.998, 2.002) satisfy |x> — 4| < 0.01. (We chose a somewhat
smaller interval than indicated, to get an interval that is symmetric about 2.) That is,
for all values of x within 0.002 of 2 but not equal to 2 (i.e., 0 < |x — 2| < 0.002), x>
is within the prescribed precision —that is, within 0.01 of 4.

You might think about this example in the following way: Suppose that you wish
to stake out a square of area 4 m?. Each side of your square is 2 m long. You bring
along a stick, which you cut to a length of 2 m. We can then ask: How accurately do
we need to cut the stick so that the area will be within a prescribed precision? Our
prescribed precision was 0.01, and we found that if we cut the stick within 0.002 of 2
m, we would be able to obtain the prescribed precision.

There is nothing special about 0.01; we could have chosen any other degree of
precision and would have found a corresponding interval of x-values. We translate
this procedure into a formal definition of limits. (See Figure 3.24.)

Y F) —

| ——

Figure 3.24 The €-§ definition of limits.

Definition The statement
lim f(x) =L

xX—>C

means that, for every € > 0, there exists a number § > 0 such that

|f(x) —L| <€ whenever 0<|x—c|<$§

Note that, as in the informal definition of limits, we exclude the value x = ¢ from the
statement. (This is done in the inequality 0 < |x —c¢|.) To apply the formal definition,
we first need to guess the limiting value L. We then choose an € > 0, the prescribed
precision, and try to find a § > 0 such that f(x) is within € of L whenever x is within
§ of ¢ but not equal to c. [In our example, f(x) = x>,c =2, L = 4,¢ = 0.01, and
8 = 0.002.]

Show that
IimQ2x —3) = —1

x—1



Solution

EXAMPLE 2

Solution

EXAMPLE 3

Solution
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We let f(x) = 2x — 3. Our guess for the limiting value is L = —1. Then
[f(x)— Ll =1[2x =3 = (=1
= |2x — 2|
=2|x — 1]
We now choose € > 0. (¢ is arbitrary, and we do not specify it because our statement
needs to hold for all € > 0.) Our goal is to find a § > 0 such that 2|x — 1] < €
whenever x is within § of 1 but not equal to 1; thatis, 0 < |x — 1| < 4. The value of §

will typically depend on our choice of €. Since |x — 1| < § implies that 2|x — 1| < 24,
we should try 2§ = €. If we choose § = €/2, then, indeed,

If(x)—L|=2|x—1|<23=2§:6

This means that, for every € > 0, we can find a number § > 0 (namely, § = €/2) such
that
[f(x) —(=1)| <€ whenever O<x—1]<$

But this is exactly the definition of

Iim@2x —3) = —1 [

x—1

We promised in Section 3.2 that we would show that
limx =c¢
X—>C

Let f(x) = x. We need to show that, for every € > 0, there corresponds a number
8 > 0 such that

lx —c| <€ whenever O<fx—c|<$ (3.9)

This immediately suggests that we should choose § = €, and, indeed, if § = €, then
(3.9) holds. |

Let’s look at an example in which f(x) is not linear.

Use the formal definition of limits to show that

limx® =0
x—0

We need to show that, for every € > 0, there corresponds a number § > 0 such that
|x’| <€ whenever 0 < |x|<$ (3.10)

Now, |x®| < € is equivalent to

—e<x’<e¢
—e'P < x <€l?
This pair of inequalities suggests that we set § = €'/3. Accordingly, if 0 < |x| < €!/3,
then
—eP < x <€
or
—e<x’<e
which is the same as |x3| < €. n

We can also use the formal definition to show that a limit does not exist.
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EXAMPLE 4

Solution

Show that
5 x|
im —
x—0 X
does not exist.
y
2+ A}
X
1 o
} } } }
—4 -2 2 4 X
_2 4

Figure 3.25 The graph of f(x) = % in Example 4: The
limit of ‘XL‘ as x tends to 0 does not exist.

Showing that this limit does not exist is tricky. (See Figure 3.25.) The approach is as
follows: First, we set f(x) = |x|/x, x # 0. Then we assume that the limit exists and
try to find a contradiction.! Suppose, then, that there exists an L such that

. |xl
Iim — =1L
x—0 X

If we look at Figure 3.25, we see that if, for instance, we choose L = 1, then we cannot
get close to L when x is less than 0. Similarly, we see that, for any value of L, either
the distance to 41 exceeds 1 or the distance to —1 exceeds 1. That is, regardless of the
value of L, if ¢ < 1, we will not be able to find a value of § such thatif 0 < |x| < 4,
then | f(x) — L| < €, since f(x) takes on both the values +1 and —1 for 0 < |x| < §.
Therefore, lim,_, %' does not exist. u

In the previous section, we considered an example in which lim,_, . f(x) = oco.
This statement can be made precise as well.

Definition The statement
lim f(x) = o0

X—>C

means that, for every M > 0, there exists a § > 0 such that

f(x) > M whenever 0<|x—c| <6

Similar definitions hold for the case when f(x) decreases without bound as x —
c and for one-sided limits. We will not give definitions for all possible cases; rather,
we illustrate how we would use such a definition.

(1) This approach is called “indirect proof” or “reductio ad absurdum.” We assume the opposite of what
we wish to prove, and then we show that assuming the opposite leads to a contradiction. Therefore, what
we originally sought to prove must be true.



EXAMPLE 5

Solution

EXAMPLE 6
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Show that

lim — =00
x—>0X

100 |+ LI
80|

60|

|
|
|
|
|
|
-2 -15 -1 —-0.5-6086 0.5 1 1.5 2 x
Figure 3.26 The function f(x) = XLZ in Example 5: The

limit of xiz as x tends to 0 does not exist.

The graph of f(x) = 1/x2, x # 0, is shown in Figure 3.26. We fix M > 0. (Again, M
is arbitrary, because our solution must hold for all M > 0.) We need to finda § > 0
such that f(x) > M whenever 0 < |x| < §. (Note that ¢ = 0.) We start with the
inequality f(x) > M and try to determine how to choose §. We have

1 . , 1
- > M is the same as Xt < —
X M

Taking square roots on both sides, we find that

x| <

<~

This suggests that we should choose 6 = 1/+v M. Let’s try that value: Given
M > 0, we choose § = 1//M.If0 < |x| < §, then

5 ’ 1 1
x° < 6%, or = > 5= M
X 82
That is, 1/x?> > M whenever 0 < |x| <8 =1/ M. ]

There is also a formal definition when x — oo (and a similar one for x — —o0).
This definition is analogous to that in Chapter 2.

Definition The statement
lim f(x) =1L

X—>00

means that, for every € > 0, there exists an xy > 0 such that

|f(x) — L| <€ wheneverx > x

Note that, in the definition, xg is a real number.

Show that
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Solution

This limit is illustrated in Figure 3.27. You can see that f(x) = x/(0.5 4+ x),x > 0,
is in the strip of width 2¢ and centered at the limiting value L = 1 for all values of
x greater than xq. (We assume that 0 < € < 1, since, when € > 1, the choice xy = 1
works.) We now determine xo when € < 1. To do this, we try to solve

X
05+x

-1

<€

for € > 0. This inequality is equivalent to the pair of inequalities
X

< —1<e€
05+x

or, after adding 1 to all three parts,

1—€< <1+4¢€

0.5+ x

Since 52 < 1forx > 0, the right-hand inequality always holds. We therefore need

only consider
1—€<

05+x

Because we are interested in the behavior of f(x) as x — oo, we need only look
at large values of x. Multiplying by 0.5 4+ x (and noticing that we can assume that
0.5+ x > 0, because we let x — 00), we obtain

1—-e)054x) <x
Solving for x yields
1=€)0.5) <x—x(1—¢)
(1 —-€)(0.5) < ex
1—¢€
2e
For instance, if € = 0.1 (as in Figure 3.27), then
0.9
X > 02 =45

That is, we would set xo = 4.5 and conclude that, for x > 4.5, | f(x) — 1| < 0.1.

<X

0 I [ I I I
0 2 4x, 6 8 10 x

Figure 3.27 The function f(x) = 955> in Example

6: The limit of f(x) as x tends to infinity is 1.

More generally, we find that, for every 0 < € < 1, there exists an
1—€
X0 =
0 2e

such that
|f(x) —1] <€ whenever x > xg [
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Section 3.6 Problems

1. Find the values of x such that

[2x — 1| < 0.01
2. Find the values of x such that

[3x — 9| < 0.01
3. Find the values of x such that

x2—9] < 0.1
4. Find the values of x such that

[2/x — 5] < 0.1

5. Let

f(x)y=2x—-1, xR
(@) Graphy = f(x)for -3 <x <5.
(b) For which values of x is y = f(x) within 0.1 of 3? [Hint: Find
values of x such that |[(2x — 1) — 3| < 0.1.]
(¢) Tlustrate your result in (b) on the graph that you obtained in
(a).
6. Let

f) =x,
(a) Graphy = f(x)for0 <x <6.
(b) For which values of x is y = f(x) within 0.2 of 1? (Hint: Find
values of x such that |/x — 1] < 0.2.)
(¢) Illustrate your result in (b) on the graph that you obtained in
(a).
7. Let

x>0

1
fX)y=—-, x>0
X

(@) Graphy = f(x)for0 < x <4.
(b) For which values of x is y = f(x) greater than 4?
(¢) Illustrate your result in (b) on the graph that you obtained in
(a).
8. Let

f)y=e",
(a) Graphy = f(x)for0 <x <6.
(b) For which values of x is y = f(x) less than 0.1?
(¢) Illustrate your result in (b) on the graph that you obtained in

(a).

In Problems 9-22, use the formal definition of limits to prove each
statement.

x>0

9. Iim2x —1) =3 10. limx*> =0
x—2 x—0
. s .1
11. Iimx’ =0 12. Iim — =1
x—0 x—>1X
4 -2
13. lim — =0 14. lim — = —0
x—0 xZ x—0 x2
et . 1
15. Iim — = o0 16. lim =00
r—0 x4 =3 (x — 3)2
.2 .
17 llm—2=0 18. lim e =0
x—=o00 X xX—>00
19. lim —— —1 20. lim —— =1
oo X +1 x—>—o00 X 1

21. lim(mx) = mc, where m is a constant
X—>C

22. lim(mx + b) = mc + b, where m and b are constants

X—cC

Chapter 3 Key Terms

Discuss the following definitions and
concepts:

. Convergence

. Divergence
1. Limit of f(x) as x approaches ¢

2. One-sided limits

. Limit laws
. Continuity

N N W

3. Infinite limits

4. Divergence by oscillations

11. Removable discontinuity
12. Sandwich theorem

13. Trigonometric limits

14. Intermediate-value theorem

9. One-sided continuity 15. Bisection method
10. Continuous function 16. ¢-4 definition of limits

Chapter 3 Review Problems

In Problems 1-4, determine where each function is continuous.
Investigate the behavior as x — =Fo00. Use a graphing calculator
to sketch the corresponding graphs.

sin x £ 0
L f(x)=e 2 f(x) = I ffx # )
ILx =
1
IO = e A f0 ===

5. Sketch the graph of a function that is discontinuous from the
left and continuous from the right at x = 1.

6. Sketch the graph of a function f(x) thatis continuous on [0, 2],
except at x = 1, where f(1) = 4, lim f(x) = 2, and
lim,_ ¢+ f(x) =3.

7. Sketch the graph of a continuous function on [0, co) with

x—1"

f()=0andlim_,  f(x)=1.

8. Sketch the graph of a continuous function on (—o00, co) with
fO) =1, f(x) >0forallx € R,and lim, _,  f(x) =0.

9. Show that the floor function

fx) = [x]

is continuous from the right, but discontinuous from the left at
x = -2
10. Suppose f(x) is continuous on the interval [1, 3]. If f(1) =0
and f(3) = 2, explain why there must be a number ¢ € (1, 3) such
that f(c) = 1.
11. Population Size Assume that the size of a population at time
tis
at
k+1t

N(t) = , t>0
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where a and k are positive constants. Suppose that the limiting
population size is

lim N(r) = 1.24 x 10°

t—00

and that, at time ¢+ = 5, the population size is half the limiting
population size. Use the preceding information to determine the
constants a and k.

12. Population Size Suppose that

N(@t) =10+2¢"¥sint, >0
describes the size of a population (in millions) at time 7 (measured
in weeks).

(a) Use a graphing calculator to sketch the graph of N(¢), and
describe in words what you see.

(b) Give lower and upper bounds on the size of the population;
that is, find N, and N, such that, for all r > 0,

N =N@®) =N,

(¢) Find lim

13. Physiology Suppose that an organism reacts to a stimulus
only when the stimulus exceeds a certain threshold. Assume that
the stimulus is a function of time ¢ and that it is given by

N(2). Interpret this expression.

t—00

s(t) =sin(mwet), t>0

The organism reacts to the stimulus and shows a certain reaction
when s(t) > 1/2. Define a function g(¢) such that g(¢r) = 0 when
the organism shows no reaction at time ¢ and g(¢#) = 1 when the
organism shows the reaction.

(a) Plots(¢) and g(¢) in the same coordinate system.

(b) Is s(t) continuous? Is g(¢) continuous?

14. Tree Height The following function describes the height of a
tree as a function of age:

Fx) =132 x>0

Find lim,_,_  f(x).

15. Predator-Prey Model There are a number of mathematical
models that describe predator—prey interactions. Typically, they
share the feature that the number of prey eaten per predator
increases with the density of the prey. In the simplest version, the
number of encounters with prey per predator is proportional to
the product of the total number of prey and the period over which
the predators search for prey. That is, if we let N be the number of
prey, P be the number of predators, 7 be the period available for
searching, and N, be the number of encounters with prey, then

N,
— =aTN

- (3.11)

where a is a positive constant. The quantity N,/ P is the number
of prey encountered per predator.

(a) Set f(N) = aT N, and sketch the graph of f(N) whena =
0land T =2for N > 0.

(b) Predators usually spend some time eating the prey that they
find. Therefore, not all of the time 7 can be used for searching. The
actual searching time is reduced by the per-prey handling time 7},

and can be written as

N,
T—-T,—
P

Show that if T — T, % is substituted for 7 in (3.11), then

N, aTN
—_ = (3.12)
P 14+aT,N
Define
(N) = aT N
S =T AN

and graph g(N) for N > Owhena =0.1,T =2,and 7}, = 0.1.
(¢) Show that (3.12) reduces to (3.11) when 7;, = 0.
(d) Find

lim —

N—oo
in the cases when 7}, = 0 and when 7;, > 0. Explain, in words, the
difference between the two cases.

16. Community Respiration Duarte and Agusti (1998) investi-
gated the CO, balance of aquatic ecosystems. They related the
community respiration rates (R) to the gross primary production
rates (P) of aquatic ecosystems. (Both quantities were measured
in the same units.) They made the following statement:

Our results confirm the generality of earlier reports that
the relation between community respiration rate and
gross production is not linear. Community respiration
is scaled as the approximate two-thirds power of gross
production.

(a) Use the preceding quote to explain why
R=aP’

can be used to describe the relationship between the community
respiration rates (R) and the gross primary production rates (P).
What value would you assign to b on the basis of their quote?

(b) Suppose that you obtained data on the gross production
and respiration rates of a number of freshwater lakes. How
would you display your data graphically to quickly convince an
audience that the exponent b in the power equation relating R
and P is indeed approximately 2/3? (Hint: Use an appropriate
log transformation.)

(¢) The ratio R/ P for an ecosystem is important in assessing the
global CO, budget. If respiration exceeds production (i.e., R >
P), then the ecosystem acts as a carbon dioxide source, whereas if
production exceeds respiration (i.e., P > R), then the ecosystem
acts as a carbon dioxide sink. Assume now that the exponent in
the power equation relating R and P is 2/3. Show that the ratio
R/ P, as a function of P, is continuous for P > 0. Furthermore,
show that

Iim — =00
poor P
and
Iim — =0
P—oo

Use a graphing calculator to sketch the graph of the ratio R/ P as a
function of P for P > 0. (Experiment with the graphing calculator
to see how the value of a affects the graph.)

(d) Use your results in (c) and the intermediate-value theorem to
conclude that there exists a value P* such that the ratio R/P at
P* is equal to 1. On the basis of your graph in (c), is there more
than one such value P*?

(e) Use your results in (d) to identify production rates P where
the ratio R/P > 1 (i.e., where respiration exceeds production).



(f) Use your resultsin (a)—(e) to explain the following quote from
Duarte and Agusti:

Unproductive aquatic ecosystems ... tend to be het-
erotrophic (R > P), and act as carbon dioxide sources.

17. Hyperbolic functions are used in the sciences. We take a
look at the following three examples: the hyperbolic sine, sinh x;
the hyperbolic cosine, cosh x; and the hyperbolic tangent, tanh x,
defined respectively as

et —e™
sinhx:T, x eR
et +e*
coshx:T, x eR
¥ — e
tanhx = —, xeR
eX e *

(a) Show that these three hyperbolic functions are continuous for
all x € R. Use a graphing calculator to sketch the graphs of all
three functions.

Chapter 3 W Review Problems

(b) Find
lim sinh x lim sinhx
X—> 00 X—>—00
lim cosh x lim coshx
X—>00 X—>—00
lim tanh x lim tanh x
X—>00 X—>—00

131

(¢) Show that the two identities
cosh’x —sinh®>x =1

and

are valid.

(d) Show that sinh x and tanh x are odd functions and that cosh x
is even.

(Note: 1t can be shown that if a flexible cable is suspended
between two points at equal heights, the shape of the resulting
curve is given by the hyperbolic cosine function. This curve is
called a catenary.)



Differentiation

LEARNING OBJECTIVES
This chapter presents the fundamentals of differentiation. Specifically, we will learn how to
o formally define a derivative;
« differentiate specific functions;
« approximate a function by a linear function;
o Calculate how a measurement error propagates.

Differential calculus allows us to solve two of the basic problems that we mentioned
in Chapter 1: constructing a tangent line to a curve (Figure 4.1) and finding maxima
and minima of a curve (Figure 4.2). The solutions to these two problems, by them-
selves, cannot explain the impact calculus has had on the sciences. Calculus is one of
the most important analytical tools for investigating dynamic problems. Applications
of differential calculus in the life sciences include simple growth models, interac-
tions between organisms, invasions of organisms, the working of neurons, enzymatic
reactions, harvesting models in fishery, epidemiological modeling, changes of gene
frequencies under random mating, evolutionary strategies, and many others.

y y
Tangent line Maximum
P
y=r®
Minimum
x x

Figure 4.1 Tangent line to a curve at a Figure 4.2 Maxima and minima of a
point. curve.

Growth models will be of particular interest to us. Let’s revisit the example at
the beginning of Chapter 3, in which we looked at a population whose size at time ¢
is given by N (¢). The average growth rate during the time interval [¢, t 4 /] is equal

to
[change in population size] AN

th rate] = e
[average growth rate] [length of time interval] At

where
AN =N@+h)— N(@) and At=(t+h)—t=h

Thus,
AN Nt +h)— N(@)

At h
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The instantaneous rate of growth is defined as the limit of AN/Afr as At — 0 (or
h — 0), or

. . Nt+h)—NQ@)
lim — = lim
A0 AT 0 h

provided that this limit exists.

We are interested in the geometric interpretation of the limit when it exists. When
we draw a straight line through the points (¢, N(¢)) and (t + h, N(t + h)), we obtain
the secant line. The slope of this line is given by the quantity AN /At (Figure 4.3). In
the limit as At — 0, the secant line converges to the line that touches the graph at
the point (¢, N(¢)). This line is called the tangent line at the point (¢, N (¢)) (Figure
4.4). The limit of AN /At as the length of the time interval [¢, r + ] goes to O (i.e.,
At — Oor h — 0) will therefore be equal to the slope of the tangent line at (¢, N (¢)).
We denote the limiting value of AN/At as At — 0 by N'(¢) (read “N prime of ™)
and call this quantity the derivative of N (). That is,

AN N(t+h)— N(t
N'(t) = lim — = lim @+h )
At—0 At h—0 h

provided that this limit exists.

s of N(1)
N(1) Slope of .
200 secant line = % 200 - Tangent Secant
! line line
150 - 150 -
AN AN
P
- 100 |-
100 At I At :
! I
! I
50 |- ! >0 i ;
I ' 200 _—
: 200m — : 1+t
0 I I T I I I I 0 : : Lot : ' : :
t t+h t t+h
Figure 4.3 The average growth rate AN /At is equal to the Figure 4.4 The instantaneous growth rate is the limit
slope of the secant line. AN /At as At — 0. Geometrically, the point Q moves

toward the point P on the graph of N(¢), and the secant line
through P and Q becomes the tangent line at P. The
instantaneous growth rate is then equal to the slope of the
tangent line.

Finding derivatives is the topic of this chapter.

B 4.1 Formal Definition of the Derivative

Definition The derivative of a function f at x, denoted by f’(x), is

£ — i LEHED =@

h—0 h

provided that the limit exists.

If the limit exists, then we say that f is differentiable at x. The phrase “provided
that the limit exists” is crucial: If we take an arbitrary function f, the limit may not
exist. In fact, we saw many examples in the previous chapter in which limits did not
exist. The geometric interpretation will help us to understand when the limit exists
and under which conditions we cannot expect the limit to exist. Notice that lim,__  is
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a two-sided limit (i.e., we approach 0 from both the negative and the positive side).
The quotient
fx+h) - fx)
h

is called the difference quotient, and we denote it by i—ﬁ. (See Figure 4.5.)

y
S
, Secant
line
Secant =
line P
/Ax =x+h, —x Ax =%+ hy —x
Af=flx + hy) — f(x) Af=fx+ ) = fx)
I I I
x+ hy X x+ hy x

hy <0 hy >0

Figure 4.5 The difference quotient L2=/0) when
h=hy>0andh =h, <O.

We say that f is differentiable on (a, b) if f is differentiable at every x € (a, b).
(Since the limit in the definition is two sided, we exclude the endpoints of the in-
terval. At endpoints, only one-sided limits can be computed, which yield one-sided
derivatives.)

If we want to compute the derivative at x = ¢, we can also write

f@x) = flo)
X

—C

f'(c) = lim

X—>C

which emphasizes that the point (x, f(x)) converges to the point (¢, f(c)) as we take
the limit as x — ¢ (Figure 4.6). This approach will be important when we discuss the
geometric interpretation of the derivative in the next subsection.

y

Secant line through

(¢, f(©)) and (x, f (x))

Tangent line

at (¢, f(c))

Cc X X

Figure 4.6 The derivative f'(c) = lim__ % is the slope
of the tangent line at (c, f(c)).

There is more than one way to write the derivative of a function y = f(x). The
following expressions are equivalent:

dy

! !/
= — = X) =
y=20=/%
The notation % goes back to Leibniz and is called Leibniz notation. (Leibniz had a
real talent for finding good notation.) It should remind you that we take the limit of
Af/Ax as Ax approaches 0.

df _d
E_dxf(x)
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If we wish to emphasize that we evaluate the derivative of f(x) at x = ¢, we
write

df
/

c) = —
Je© dx lx=c

Newton used different notation to denote the derivative of a function. He wrote

y (read “y dot”) for the derivative of y. This notation is still common in physics when
derivatives are taken with respect to a variable that denotes time. We will use either
Leibniz notation or the notation f'(x).

W 4.1.1 Geometric Interpretation and Using the Definition
Let’s look at f(x) = x2, x € R. (Refer to Figures 4.7 and 4.8 as we go along.) To

compute the derivative of f at, say, x = 1 from the definition, we first compute the
difference quotient at x = 1. For h # 0,

Af _fO4+m—fA) _ (A+m? -1

Ax h h
_142h+h*—1  2h+h*  hQ2+h)
a h hh
=2+h

The difference quotient Af/Ax is the slope of the secant line through the points
(1,1) and (1 + h, (1 + h)?) (Figure 4.7).

y y
4+ 2 4+ 2
Secant line Secant line
3k 3k Tangent line (h — 0)
1+ h, (1 + h)?
(I +h A+ h? ( ¢ )
2 F 2k
Af=f1+h) —f(1) Af
- (1,1 1+ (1,1
1= (LD o (L, 1 il
I I
I ! I I I I I | ! | | | | |
1 1+h2 3 4 5 6 x 1 1+h2 3 4 5 6 x
Figure 4.7 The slope of the secant line through (1, 1) and Figure 4.8 Taking the limit # — 0, the secant line

A+ h, A+ h)?)is Af/Ax.

converges to the tangent line at (1, 1).

To find the derivative f'(1), we need to take the limit as 4 — 0 (Figure 4.8):

(1) = lim A AC lim2+h) =2
h—0 h—0

Taking the limit as # — 0 means that the point (1+#, (1+h)?) approaches the point
(1, 1). [The limit as & — 0 is a two-sided limit; in Figure 4.8, we only drew one point
(1 4+ h, (1 + h)?) for some h > 0.] As h — 0, the secant lines through the points
(1,1) and (1 + A, (1 + h)?) converge to the line that touches the graph at (1, 1).
As mentioned earlier, the limiting line is called the tangent line. Since f’(1) is the
limiting value of the slope of the secant line as the point (14 /4, (14 4)?) approaches
(1, 1), we find that f'(1) = 2 is the slope of the tangent line at the point (1, 1).
Motivated by this example, we define the tangent line formally:



136 Chapter 4 m Differentiation

I I
X x+h X

Figure 4.10 The slope of a
horizontal line is m = 0.

EXAMPLE 1

Definition of the Tangent Line If the derivative of a function f exists at
x = c,then the tangent line at x = c is the line going through the point (c, f(c))

with slope
£ — tim LCED = F©
h—0 h

Knowing the derivative at a point (which is the slope of the tangent line at that
point) and the coordinates of that point allows us to find the equation of the tangent
line at the point by using the point-slope form of a straight line, namely,

Yy — Yo = m(x — xo)
where (xo, o) is the point and m is the slope. Going back to the function y = x2, we
see that the point at ¢ = x¢p = 1 has coordinates (xy, o) = (1, 1) and its derivative
atc = 1is m = 2. The equation of the tangent line is then given by

y—1=2(x—1), or y=2x—1

(Figure 4.9).

. 2x — 1 ——
Tangent line

—
T
—~
—
—_
~—

L.
N

_]
.l
.l
A—_
.l
.l
=

2+

Figure 4.9 The slope of f(x) = x%at (1, 1) ism = 2. The
equation of the tangent line at (1, 1) is y = 2x — 1.

Equation of the Tangent Line If the derivative of a function f exists at x = c,
then f'(c) is the slope of the tangent line at the point (c, f(c)). The equation
of the tangent line is given by

y—f©=fx-0o

The geometric interpretation will help us to compute derivatives in the next two
examples.

The Derivative of a Constant Function The graph of f(x) = a is a horizontal line
that intersects the y-axis at (0, a) (Figure 4.10). Since the graph is a straight line, the
tangent line at x coincides with the graph of f(x) and, therefore, the slope of the
tangent line at x is equal to the slope of the straight line. The slope of a horizontal
line is 0; we thus expect that f'(x) = 0. Using the formal definition with f(x) = a
and f(x + h) = a, we find that

h) — 0
Fay = tim 2O =@ a9 imo=o
=0 h h—0 h—0 h—0




EXAMPLE 2

mx + b —

| |
X x+h X

Figure 4.11 The slope of the line

y=mx +bism.
EXAMPLE 3

Solution
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Here again, it is important to remember that when we take the limit as & — 0, h
approaches 0 (from both sides) but is not equal to 0. Since & # 0, the expression
0/h = 0. This property was used in going from lim,__, % to lim,_, 0. ]

The Derivative of a Linear Function The graph of f(x) = mx + b is a straight line
with slope m and y-intercept b (Figure 4.11). The derivative of f(x) is the slope of
the tangent line at x. Since the graph is a straight line, the tangent line at x coincides
with the graph of f(x) and, therefore, the slope of the tangent line at x is equal to the
slope of the straight line. We thus expect that f’(x) = m. Using the formal definition,
we can confirm this expectation:

fx+h) —f&x) . mx+h)+b— (mx+Db)
= lim

f'(x) = lim
h—0 h h—0 h
. mx+mh+b—mx—>b . mh .
= lim =lim—=1lmm=m
h—0 h h—0 h h—0

In going from lim,_, ’"Th to lim,_, , m, we were able to cancel 4 because i # 0.
The preceding reasoning yields the following: If f(x) = mx+b, then f'(x) = m.
This includes the special case of a constant function, for which m = 0 (Example 1).
|

Using the Definition Find the derivative of

f()c):l forx #0
X

We will use the formal definition of the derivative to compute f’(x) (Figure 4.12).

Figure 4.12 The graph of f(x) = 1/x for Example 3.

The main algebraic step is the computation of f(x + h) — f(x); we will do this first.
With f(x + h) = —, we find that

x+h’

ORI S |

fl )_fx)_x—l-h_x
_x—(x+h  —h

x(x+h)  x(x+h)

To compute f’(x), we need to divide both sides of this equation by % and take the
limit as h — O:

_—=h
£ = tim LEFR TS 3
h=0 h h—0

. h 1 . 1 1
= lim (———) = lim (_—> - _
h—0 x(x +h)h h—0 x(-x +h) x2
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That is, if f(x) = -, x # 0, then
) 1
flx) = -, x#0 ]
X

Looking back at the first three examples, we see that in order to compute f'(x)
from the formal definition of the derivative, we evaluate the limit

G O AC)
m

h—0 h

Since both lim,_, ([ f(x + &) — f(x)] and lim,_, , i are equal to 0, we cannot simply
evaluate the limits in the numerator and the denominator separately, because this
would result in the undefined expression 0/0. It is important to simplify the difference
quotient before we take the limit.

B 4.1.2 The Derivative as an Instantaneous Rate of Change: A First
Look at Differential Equations

Velocity Suppose that you ride your bike on a straight road. Your position (in miles)
at time ¢ (in hours) is given by (Figure 4.13)

s(t)=—t>+6t>2 for0<t<6

s(t)
35+ 4,32) s(0)

25 (5,25)

20 | s(4) —s5(2)
2,16
151 &1 4-2

10 -

0 1 2 3 4 5 6 t

Figure 4.13 The average velocity % is the slope of the
secant line through (2, 16) and (4, 32). The velocity at time ¢
is the slope of the tangent line at #: At ¢ = 2, the velocity is

positive; at ¢ = 5, the velocity is negative.

You might ask what the average velocity during the interval (say) [2, 4] is. This
velocity is defined as the net change in position during the interval, divided by the
length of the interval. To compute the average velocity, find the position at time 2 and
at time 4, and take the difference of these two quantities. Then divide this difference
by the time that it took you to travel that distance. At time r = 2,5(2) = -8+ 24 =
16, and at time = 4, s(4) = —64 + 96 = 32. Hence, the average velocity is

s(4) —s(2)  32-16
4-2  4-=2

= 8 mph

We recognize this ratio as the difference quotient

As  s(t+h)—s()

At h
and call the difference quotient As /At the average velocity, which is an average rate
of change.
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Figure 4.14 The reaction rate for
a<b.
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The instantaneous velocity at time ¢ is defined as the limit of % as At — 0, or

. As . s+ h)—s@)
lim — = lim ———— "~~~
A0 AT 50 h

provided that the limit exists. This quantity is the derivative of s(¢) at time ¢, which

we denote by
ds As

— = lim —

dt Ao At
Note that Z—j is an instantaneous rate of change. The instantaneous velocity (or, sim-
ply, the velocity) is, then, the slope of the tangent line at a given point of the position
function s(¢), provided that the derivative at this point exists.

Let’s look at two points on the graph of s(¢), namely, (2, 16) and (5, 25). We find
that the slope of the tangent line is positive at (2, 16) and negative at (5, 25). The
velocity is therefore positive at time + = 2 and negative at time t = 5. Att = 2 we
move away from our starting point, whereas at t = 5 we move toward our starting
point. At these two times, we move in opposite directions.

There is a difference between velocity and speed. If you had a speedometer on
your bike, it would tell you the speed and not the velocity. Speed is the absolute value
of velocity; it ignores direction.

Interpreting the derivative as an instantaneous rate of change will turn out to be
extremely important to us. In fact, when you encounter derivatives in your science
courses, this will be the interpretation most often used. This interpretation will allow
us to describe a quantity in terms of how quickly it changes with respect to another
quantity. To illustrate the point, we revisit two previous examples and introduce one
new application.

Population Growth At the beginning of this chapter, we described the growth of a
population at time ¢ by the continuous function N (¢). If the derivative of N(¢) exists
at time ¢, we can define the instantaneous growth rate of the population by

dN
N'(t) = o = [instantaneous population growth rate at time ¢]

We are frequently interested in the instantaneous per capita growth rate. This is
the growth rate per individual, and it can be obtained by dividing the instantaneous
growth rate of the population by the population size at that time. That is,

1 dN
—— —— = [instantaneous per capita growth rate at time ¢
NG di [ p pitag ]

In biology textbooks (and in this book), the dependence on ¢ is often not explicitly
spelled out, and we write

1 dN . 1 dN
—_— instead of _
N dt N(t) dt

The Rate of a Chemical Reaction Another illustration of the use of the derivative
as an instantaneous rate of change is in Example 5 of Subsection 1.2.2, where we
discussed the reaction rate of the irreversible chemical reaction

A+B— AB

which is proportional to the concentrations of A and B. If the concentration of the
product AB is denoted by x, then the reaction rate is equal to

k(a—x)(b—x)

where a = [A] is the initial concentration of A and b = [B] is the initial concentra-
tion of B (Figure 4.14). The reaction rate tells us how quickly the concentration of x
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S(R) R
a k+R
a
) /_-
|
|
0
0 R* R

Figure 4.15 Growth balances loss
when R = R*.

changes with time as the reaction proceeds. The concentration x is thus a function of
time #: x = x(¢). The reaction rate is an instantaneous rate of change, namely,

o ox(t+ At —x(1)
lim

Al—0 At

We can identify the limit as At — 0 as the derivative of the function x () with respect

to ¢ and therefore write
dx
i k(a —x)(b —x) (4.1)
Equation (4.1) is an example of a differential equation —an equation that contains the
derivative of a function. We will discuss such equations extensively in later chapters.
From this point on, when we say “rate of change,” we will always mean “instan-
taneous rate of change.” When we are interested in the average rate of change, we
will always state this explicitly.
The rate of change in a chemical reaction is described by a differential equation.
Itis sometimes possible to solve such differential equations—that is, to state explicitly
a function whose derivative satisfies the given equation. We will discuss this situation
in detail later. More often, it is not possible (or not necessary) to explicitly find a solu-
tion. Without solving the differential equation, we can still obtain useful information
about its behavior. We illustrate this property in the next application.

Tilman’s Model for Resource Competition David Tilman (1982) of the University
of Minnesota developed a theoretical framework to describe the outcome of
competition for limited resources. To test the predictions of his theory, he conducted
many experiments on the grassland habitat at Cedar Creek Natural History Area in
Minnesota. For this grassland habitat, nitrogen is a limiting resource; that is, adding
nitrogen to the soil will result in an increase in biomass. We will discuss the case where
one species competes for a single limited resource. We assume that the rate of change
of biomass has two components: rate of growth and rate of loss. We write

[rate of biomass change] = [rate of growth] — [rate of loss]

We denote the biomass of the plant population at time # by B(¢) and assume that the
rate of growth depends on a single resource whose concentration is denoted by R.
We will write an equation for the specific rate of change of biomass, which is defined
as the change of biomass per unit of biomass, or %%. We assume that the per-unit
rate of loss of biomass is constant and denote this quantity by m. A simple model for

how the biomass changes over time is then

1dB

——=f(R)—m 42

5= f®) (42)
where the function f(R) describes the specific growth rate as a function of resource
concentration. A common choice for f(R) is the Monod growth function (or
Michaelis—Menten equation) that we considered in Example 6 of Subsection 1.2.3,
or

f(R)=a (4.3)

k+ R
where a and k are positive constants. Let’s graph f(R) and m together in Figure
4.15. Doing so yields the following observations: When 0 < m < a, the graphs of the
functions y = f(R) and y = m intersect at R = R* (read “R star”). Consequently,
at the resource level R*, f(R) = m, and thus the specific rate of change %‘fl—f is equal
to 0. That is, growth balances loss, and the biomass of the species no longer changes.
We say that the biomass is at equilibrium. If the resource level R were held at a value
less than R*, then f(R) —m < 0, and the specific rate of growth would be negative;
that is, biomass would decrease. If R > R*, then f(R) — m > 0, and biomass would
increase.
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Figure 4.16 f is not differentiable at
x =0.
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Slope from (¢, f(e))
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!

c X

Figure 4.17 f(x) is continuous at

x = ¢ but not differentiable at x = c:

The derivatives from the left and the
right are not equal.
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We can compute R* in the case when f(R) is given by (4.3). Since R* satisfies
f(R*) = m, we obtain

R* mk
TR =m, or R* =

a

a—m

B 4.1.3 Differentiability and Continuity

Using the geometric interpretation, we can find situations in which f’(c) does not
exist at one or more values of c.

A Function with a “Corner” Let

x forx >0

Jx) = Ix|=

—x forx <O

The graph of f(x) is shown in Figure 4.16. Looking at the graph, we realize that there
is no tangent line at x = 0 and therefore we do not expect that f”(0) exists. We can
define the slope of the secant line when we approach 0 from the right and also when
we approach 0 from the left; however, the slopes converge to different values in the
limit. The former is +1, the latter is —1. In this example, we can read off the slopes
from the graph. But we can also find the slopes formally by taking appropriate limits.
When i > 0, f(h) = |h| = h and

fO+h)— f(0) :h—O

lim =1
h—04 h h
When h < 0, f(h) = |h| = —h and
. fO+h)—fO0) —-h-0
lim = =-1
h—0— h h

Since 1 # —1, it follows that

i LO+M = £O)
1m

h—0 h

and thus f7(0), do not exist.
At all other points, the derivative exists. We can find the derivative by simply
looking at the graph. We see that

_J+1 forx >0
T l=1 forx <0

[0
Example 4 shows that continuity alone is not enough for a function to be
differentiable: The function f(x) = |x| is continuous at all values of x, but it is
not differentiable at x = 0. To draw the graph of a continuous function that is not
differentiable at a point, put in a “corner” at that point (Figure 4.17).
However, if a function is differentiable, it is also continuous. We say that
continuity is a necessary, but not a sufficient, condition for differentiability. This result
is important enough that we will formulate it as a theorem and prove it:

Theorem If f is differentiable at x = ¢, then f is also continuous at x = c.

Proof Since f is differentiable at x = ¢, we know that the limit

i S~ f(©
m-—-———-

x—>c X —C

(4.4)
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O/_f(x)

|
C X

Figure 4.18 The function y = f(x)
is not differentiable at x = c.

EXAMPLE 5

Solution

exists and is equal to f'(c). To show that f is continuous at x = ¢, we must show that

lim f(x) = (&), or  lm[f(x) = f(©]=0

X—cC X—>cC

First, note that f is defined at x = c. [Otherwise, we could not have computed the

difference quotient M] Now,
X—cC

lim[f(x) = f(c)] = lim

X—cC X—>C

S =1
X —C

Given that
. fx) = f(eo)
im *————

x—c X —cC

[this is Equation (4.4)] exists and is equal to f'(c), and that

Iim(x — ¢)
X—C

exists (it is equal to 0), we can apply the product rule for limits and find that

lim M(x —¢) = lim f@ = 7@ lim(x —¢) = f'(c)-0=0

x—c X —C x—c X —=cC x—c

This set of equations shows that

lim[f(x) = f(c)]=0

X—>cC

and consequently that f is continuous at x = c. ]

It follows from the preceding theorem that if a function f is not continuous at
x = ¢, then f is not differentiable at x = c¢. The function y = f(x) in Figure 4.18 is
discontinuous at x = c; we cannot draw a tangent line there.

Functions can have vertical tangent lines, but since the slope of a vertical line is
not defined, the function would not be differentiable at any point where the tangent
line is vertical. This situation is illustrated in the next example.

Vertical Tangent Line Show that
OESES

is not differentiable at x = 0.

We see from the graph of f(x) in Figure 4.19 that f (x) is continuous at x = 0. Using
the formal definition, we find that

f(h) — f(0) h'? =0

f/(0) = lim = lim
h—0 h h—0 h
= im}) i =00 does not exist

Since the limit does not exist, f(x) is not differentiable at x = 0. We see from the
graph that the tangent line at x = 0 is vertical. ]
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1/3

Figure 4.19 The function f(x) = x'/3 has a vertical
tangent line at x = 0. It is therefore not differentiable at

x =0.

Section 4.1 Problems

m411
In Problems 1-8, find the derivative at the indicated point from the
graph of each function.

1. fx)=5x=1

. f(x)=4x —3;x =—1
. f) =2x%x =0

2. f(x)=-3x;x =-2
4. f(x) = -5x+1;x=0
6. f(Xx) =@ +2%x=1

8. f(x) =sinx;x = %

e Y )

. f(x)=cosx;x =0

In Problems 9-16, find c so that f'(c) = 0.

9. f(x)=-3x"+1 10. f(x) = —x>+4
1L f(x)=(x-27 12. f(x)=(x+3)

13, f(x)=x—6x+9 4. f(x)=x>+4x+4

15. f(x) =sin <%x>

In Problems 17-20, compute f(c+h)— f(c) at the indicated point.
17. f(x) =-2x+1;c=2 18. f(x) =3x%c=1

19. f(x) = /x;c=4 20. f(x):%;c:—2

21. (a) Use the formal definition of the derivative to find the
derivative of y = 5x? at x = —1.

(b) Show that the point (—1, 5) is on the graph of y = 5x?, and
find the equation of the tangent line at the point (—1, 5).

(¢) Graph y = 5x? and the tangent line at the point (—1, 5) in the
same coordinate system.

22. (a) Use the formal definition to find the derivative of y =
—2x%atx =1.

(b) Show that the point (1, —2) is on the graph of y = —2x?, and
find the equation of the tangent line at the point (1, —2).

16. cos(mr — x)

(¢) Graph y = —2x? and the tangent line at the point (1, —2) in
the same coordinate system.

23. (a) Use the formal definition to find the derivative of y =
1—xatx =2.

(b) Show that the point (2, —7) is on the graph of y = 1 —x?, and
find the equation of the normal line at the point (2, —7).

(¢) Graph y =1 — x3 and the tangent line at the point (2, —7) in
the same coordinate system.

24. (a) Use the formal definition to find the derivative of y = )1—‘
atx = 2.

(b) Show that the point (2, %) is on the graph of y = %, and find

the equation of the normal line at the point (2, %).

(¢) Graphy = % and the tangent line at the point (2, %) in the
same coordinate system.
25. Use the formal definition to find the derivative of

y=+/x

for x > 0.

26. Use the formal definition to find the derivative of

1
x+1

fx) =

for x # —1.

27. Find the equation of the tangent line to the curve y = 3x? at
the point (1, 3).

28. Find the equation of the tangent line to the curve y = 2/x at
the point (2, 1).

29. Find the equation of the tangent line to the curve y = /x at
the point (4, 2).

30. Find the equation of the tangent line to the curve y = x? —
3x + 1 at the point (2, —1).

31. Find the equation of the normal line to the curve y = —3x?
at the point (—1, —3).

32. Find the equation of the normal line to the curve y = 4/x at
the point (—1, —4).

33. Find the equation of the normal line to the curve y = 2x? — 1
at the point (1, 1).

34. Find the equation of the normal line to the curve y =
at the point (5, 2).

35. The following limit represents the derivative of a function f
at the point (a, f(a)):

x—1

. 2(a+h)? =24
lim ——
h—0 h

Find f(x).
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36. The following limit represents the derivative of a function f
at the point (a, f(a)):
. da+h) —4a’
lim —
h—0 h

Find f(x).
37. The following limit represents the derivative of a function f
at the point (a, f(a)):
11
. Q)21 5
lim —
h—0 h
Find f and a.
38. The following limit represents the derivative of a function f
at the point (a, f(a)):

sin(% + h) — sin %

lim
h—0 h

Find f and a.
m4.1.2

39. Velocity A car moves along a straight road. Its location at
time ¢ is given by

s(t) =202, 0<tr <2

where ¢ is measured in hours and s(7) is measured in kilometers.
(a) Graphs(f)for0 <t <2.

(b) Find the average velocity of the car between t = 0 and t = 2.
[llustrate the average velocity on the graph of s().

(¢) Use calculus to find the instantaneous velocity of the car at
t = 1. lllustrate the instantaneous velocity on the graph of s(¢).
40. Velocity A train moves along a straight line. Its location at
time 7 is given by

100

where 7 is measured in hours and s(¢) is measured in kilometers.
(a) Graphs(¢) forl <t <5.
(b) Find the average velocity of the train between r+ = 1 and
t = 5. Where on the graph of s(#) can you find the average
velocity?
(¢) Use calculus to find the instantaneous velocity of the train at
t = 2. Where on the graph of s(¢) can you find the instantaneous
velocity? What is the speed of the train at t = 2?
41. Velocity If s(¢) denotes the position of an object that moves
along a straight line, then As/At, called the average velocity, is
the average rate of change of s(¢), and v(t) = ds/dt, called the
(instantaneous) velocity, is the instantaneous rate of change of
s(t). The speed of the object is the absolute value of the velocity,
lv(D)].

Suppose now that a car moves along a straight road. The
location at time ¢ is given by

160 ,

where 7 is measured in hours and s(¢) is measured in kKilometers.
(a) Where is the car at r = 3/4, and where isitat ¢ = 1?

(b) Find the average velocity of the car between + = 3/4 and
t=1.

(¢) Find the velocity and the speed of the car att = 3/4.

42. Velocity Suppose a particle moves along a straight line. The

position at time ¢ is given by
s)=3t—1>, t>0

where ¢ is measured in seconds and s(¢) is measured in meters.

(a) Graphs(¢) fort > 0.

(b) Use the graph in (a) to answer the following questions:

(i) Where is the particle at time 0?

(ii) Is there another time at which the particle visits the location

where it was at time 0?

(iii) How far to the right on the straight line does the particle

travel?

(iv) How far to the left on the straight line does the particle

travel?

(v) Where is the velocity positive? where negative? equal to 0?

(¢) Find the velocity of the particle.

(d) When is the velocity of the particle equal to 1 m/s?

43. Tilman’s Resource Model In Subsection 4.1.2, we considered

Tilman’s resource model. Denote the biomass at time ¢ by B(#),

and assume that

1dB _ R)
Bar S -m

where R denotes the resource level,
f(R) =200 R
754 R

and m = 40. Use the graphical approach to find the value R* at
which %‘fl—f = 0. Then compute R* by solving %‘2—? =0.
44. Exponential Growth Assume that N(¢) denotes the size of
a population at time ¢ and that N(t) satisfies the differential
equation
dN N
i A
dt
where r is a constant.
(a) Find the per capita growth rate.

(b) Assume thatr < 0 and that N(0) = 20. Is the population size
at time 1 greater than 20 or less than 20? Explain your answer.

45. Logistic Growth Assume that N(z) denotes the size of a
population at time ¢ and that N(¢) satisfies the differential

equation
dN N
— =3N|(1—- =
dt 20

Let f(N) =3N({1 — %) for N > 0. Graph f(N) as a function of
N and identify all equilibria (i.e., all points where ‘ﬁl—’;} =0).

46. Island Model Assume that a species lives in a habitat that
consists of many islands close to a mainland. The species occupies
both the mainland and the islands, but, although it is present on
the mainland at all times, it frequently goes extinct on the islands.
Islands can be recolonized by migrants from the mainland. The
following model keeps track of the fraction of islands occupied:
Denote the fraction of islands occupied at time 7 by p(¢). Assume
that each island experiences a constant risk of extinction and that
vacant islands (the fraction 1 — p) are colonized from the mainland
at a constant rate. Then

d
d—’t’zc(l—p)—ep

where ¢ and e are positive constants.



(a) The gain from colonization is f(p) = c¢(1 — p) and the
loss from extinction is g(p) = ep. Graph f(p) and g(p) for
0 < p < 1 in the same coordinate system. Explain why the two
graphs intersect whenever e and ¢ are both positive. Compute the
point of intersection and interpret its biological meaning.

(b) The parameter ¢ measures how quickly a vacant island
becomes colonized from the mainland. The closer the islands, the
larger is the value of ¢. Use your graph in (a) to explain what
happens to the point of intersection of the two lines as c increases.
Interpret your result in biological terms.

47. Chemical Reaction Consider the chemical reaction
A+B — AB

If x(z) denotes the concentration of AB at time ¢, then

dx

— =k(a—x)(b—x

T ( )( )
where k is a positive constant and a and b denote the
concentrations of A and B, respectively, at time 0. Assume that
k = 3,a = 7,and b = 4. For what values of x is dx/dt = 0?
Interpret the meaning of dx/dt = 0.

48. Chemical Reaction Consider the autocatalytic reaction
A+X—X

which was introduced in Problem 30 of Section 1.2. Find a
differential equation that describes the rate of change of the
concentration of the product X.

49. Logistic Growth Suppose that the rate of change of the size
of a population is given by

dN ( N)
— =rN(1-~—
dt K

where N = N (¢) denotes the size of the population at time ¢ and
r and K are positive constants. Find the equilibrium size of the
population—that is, the size at which the rate of change is equal
to 0. Use your answer to explain why K is called the carrying
capacity.

50. Biotic Diversity (Adapted from Valentine, 1985.) Walker and
Valentine (1984) suggested a model for species diversity which
assumes that species extinction rates are independent of diversity
but speciation rates are regulated by competition. Denoting the
number of species at time # by N(¢), the speciation rate by b, and
the extinction rate by a, they used the model

enle-)-]

where K denotes the number of “niches,” or potential places for
species in the ecosystem.
(a) Find possible equilibria under the condition a < b.
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(b) Use your result in (a) to explain the following statement by
Valentine (1985):

In this situation, ecosystems are never “full,” with all
potential niches occupied by species so long as the
extinction rate is above zero.

(¢) What happens when a > b?
m 413

51. Which of the following statements is true?

(A) If f(x) is continuous, then f(x) is differentiable.

(B) If f(x) is differentiable, then f(x) is continuous.

52. Explain the relationship between continuity and differentia-
bility.

53. Sketch the graph of a function that is continuous at all points
in its domain and differentiable in the domain except at one point.
54. Sketch the graph of a periodic function defined on R that is
continuous at all points in its domain and differentiable in the
domain except at c = k, k € Z.

55. If f(x) is differentiable for all x € R exceptatx = c,isit true
that f(x) must be continuous at x = ¢? Justify your answer.

In Problems 56-69, graph each function and, on the basis of the
graph, guess where the function is not differentiable. (Assume the
largest possible domain.)

56. y = |x — 2| 57. y = —|x + 5|
58. y=2—|x — 3| 59. y=I|x+2|—-1
60. y = ! 6l. y = !
'y_2—|—x 'y_x—3
62 y=2 % 63 y=""1
'y_3+x 'y_x—i—l
64. y = |x*> — 3] 65. vy =[2x? — 1]
X forx <0
66. = -
Fe x+1 forx >0
2x forx <1
67. = -
F&) x+2 forx >1
x? forx < —1
68. = -
F&) 2—x% forx > —1
241 f <0
69. fx)={* "1 forx=

e forx >0

70. Suppose the function f(x) is piecewise defined; that is,
f(x) = fi(x)forx <aand f(x) = f>(x) for x > a. Assume that
fi1(x) is continuous and differentiable for x < a and that f5(x) is
continuous and differentiable for x > a. Sketch graphs of f(x)
for the following three cases:

(a) f(x) is continuous and differentiable at x = a.

(b) f(x) is continuous, but not differentiable, at x = a.

(¢) f(x)isneither continuous nor differentiable at x = a.

B 4.2 The Power Rule, the Basic Rules of Differentiation, and the Derivatives

of Polynomials

In this section, we will begin a systematic treatment of the computation of derivatives.
Knowing how to differentiate is fundamental to your understanding of the rest of the
course. Although computer software is now available to compute derivatives of many
functions (such as y = cx” or y = ¢*"¥), it is nonetheless important that you master
the techniques of differentiation.
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The power rule is the simplest of the differentiation rules. It allows us to compute
the derivative of a function of the form y = x", where n is a positive integer.

Power Rule Let n be a positive integer; then

_(xn) — nxn—l

dx

We found the rule for the constant function f(x) = a in the previous section.

If f(x) is the constant function f(x) = a, then

d =0
Ef(x)_

We prove the power rule first for n = 2—that is, for f(x) = x? (Figure 4.20). In
Subsection 4.1.1, we computed the derivative of y = x? at x = 1. In this section, we
compute the difference quotient % at any arbitrary x:

Af _ fa+h)—f) _ (x +h)? —x?
Ax h B h

N

Figure 4.20 The slope of the secant line through (x, x?)
and (x 4/, (x + h)?) is GH2=2,

Using the expansion (x + h)? = x? + 2xh + h?, we find that

Af  xX*4+2xh+h*>—x*  2xh+h?
Ax h h

after canceling 4 in both the numerator and the denominator. To find the derivative,
we need to let h — 0:

A
f'(x) = lim Af = limQ2x + h) = 2x
Ax—0 DX po0

This sequence of steps proves the power rule for n = 2. The proof of the rule for
other positive integers of n is conceptually no different from the case n = 2, but
it gets algebraically much more involved. For general n, we need the expansion of
(x + h)", given by the binomial theorem, which we will not prove.
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Binomial Theorem If n is a positive integer, then

”(”_1)xn—2 2
2-1
—D(n—2
n(n )(n )xn_3y3
3-2-1
nm—1)---(n—k+1) , ,
X0y
k(k—1)---2-1
+__'+nxyn—1+yn

(x+ )" =x"+nx""y+

The expansion of (x 4 y)" is thus a sum of terms of the form
Coxx" Y5, k=0,1,...,n

where C,, ; is a coefficient that depends on n and k. The exact form of the coefficients
C,.r will not be important in the proof of the power rule, except for the two terms
C,.0 = 1and C, 1 = n, which are the coefficients for x" and x" 1y, respectively.

Proof of the Power Rule We use the binomial theorem to expand and then
compute the difference in the numerator of the difference quotient:

Af =fx+h) —fx)=&+n" —x"
= (Cpox" + Co1x"Th + Coox"2h* + Cp3x"3h3
4+ Cop1xh™ N+ Cp ™) — X"

Since C, o = 1, the x” terms cancel. We can then factor 4 out of the remaining terms
and find that

f(-x + h) - f()C) = h [C’n,l-xn_1 + Cn,2xn_2h + Cn,3-xn_3h2 + et + Cn,nhn_l]
When we divide by % and let 2 — 0, we obtain

) — tim LEED = 100

h—0 h

= lim [C,1x" " + Coox" 2h + Co3x" h2 4 -+ + Cp "]
h—0

All terms except for the first have £ as a factor and thus tend to 0 as 7 — 0. (The first
term does not depend on /.) We find that

f/(x) = Cpax"!
With C,,; = n, this is then
f(x) =nx"""

which proves the power rule. ]

We apply the power rule to various functions and take the opportunity to practice
the different notations.

(a) If f(x) = x5, then f'(x) = 6x°.

(b) If f(x) = x3%, then f’(x) = 300x%>%.
(¢) If g(t) = £, then Lg(1) = 5t*.

(d) If z = 5°, then £ = 352,

(e) If x = y*, then j—y = 4y3, m
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dy
Slope -~

y=fx)

Dependent variable -

Independent variable

Figure 4.21 If y = f(x), then x is
the independent variable and y is the
dependent variable.

EXAMPLE 2

Solution

EXAMPLE 3

Example 1 illustrates the importance of knowing how the variables depend on
each other (Figure 4.21). If y = f(x), we call x the independent variable and y the
dependent variable, because y depends on the variable x. For instance, in (a), y is a
function of x; thus, x is the independent, and y is the dependent, variable. In (e), by
contrast, x is a function of y; thus, y is now the independent, and x the dependent,
variable. The Leibniz notation % emphasizes this dependence. When we write %,
we consider y to be a function of x (i.e., y is the dependent, and x is the independent,
variable) and differentiate y with respect to x.

Since polynomials and rational functions are built up by the basic operations of
addition, subtraction, multiplication, and division operating on power functions of
the formy = x",n = 0,1, 2, ..., we need differentiation rules for such operations.

We begin with the following rules:

Theorem Suppose a is a constant and f (x) and g(x) are differentiable at x.
Then the following relationships hold:

1 d[ 1= d
. Eaf(x) —aaf(x)

d d d
2. L)+l = ——fx) + ——gx)

Rule 1 says that a constant factor can be pulled out of the derivative expression;
Rule 2 says that the derivative of a sum of two functions is equal to the sum of the
derivatives of the functions. Similarly, since f(x) — g(x) = f(x) + (=1)g(x), the
derivative of a difference of functions is the difference of the derivatives:

d d d d
E[f(x) —g)] = E[f(x) + (=Dg)] = af(x) + 2 HEDel

Using Rule 1 on the rightmost term, we find that L[(=1)g(x)] = (=1)<Lg(x).
Therefore,

d d d
E[f(x) —g)] = Ef(x) ~ 80

Rules 1 and 2 allow us to differentiate polynomials, as illustrated in the next three
examples.

Differentiate y = 2x* — 3x3 +x — 7.

d d d d d
— 2t =3 —D = —@xhH - —GxH+ —x - —7
dx(x S ) dx(x) dx(x)+dxx dx
d d d d
=2—x* -3 — x4+ —x—-——7
dx dx dx dx
=24xH =3Bx) +1-0=8x>—9x? +1 m

(@) L (=5x7+2x3 —10) = —35x° + 6x?
(b) £(r* — 812 4 31) = 3t> — 161 + 3

(¢) Suppose that n is a positive integer and a is a constant. Then (%(as”) =

ans"1.
(d) 55+ NIn7) =In7
(e) d‘l—r(r2 sinZ —ricos & +sinZ) =2rsin % — 3r?cos |

In the previous section, we related the derivative to the slope of the tangent line;
the next example uses this interpretation.
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EXAMPLE 4 Tangent and Normal Lines If f(x) = 2x>—3x +1, find the tangent and normal lines
at (—1,2).

Solution The slope of the tangent line at (—1, 2) is f’(—1). We begin calculating this derivative
as follows:
f(x) =6x*—3

Evaluating f'(x) at x = —1, we get
fl(-1) =6(-1)>-3=3
Therefore, the equation of the tangent line at (—1, 2) is
y—2=3x—(-1)), or y=3x+5

To find the equation of the normal line, recall that the normal line is
perpendicular to the tangent line; hence, the slope m of the normal line is given by

1 1

NI

The normal line goes through the point (—1, 2) as well. The equation of the normal
line is therefore

2 1( (=1)) ! +5
—2=——(x —(—=1)), or =—— -
Y 3 Y=T3E T3

The graph of f(x), including the tangent and normal lines at (—1, 2), is shown in
Figure 4.22. [ ]

Tangent line 4

Normal line

\ /T

: : : . . : .
—4 =3 %/ -1 __\/1 2 3 4"
—2 203 —3x 4+ 1 —

Figure 4.22 The graph of f(x) = 2x> —3x +1,
together with the tangent and normal lines at (—1, 2).

Look again at the last example: When we computed f'(—1), we first computed
f'(x); the second step was to evaluate f'(x) at x = —1. It makes no sense to plug
—1 into f(x) and then differentiate the result. Since f(—1) = 2 is a constant, the
derivative would be 0, which is obviously not f’(—1). Just look at Figure 4.22 to
convince yourself. The notation f’(—1) means that we evaluate the function f’(x) at

x =—1.
Section 4.2 Problems
Differentiate the functions given in Problems 1-22 with respect to 7. g(s) =557 4+ 25° — 55 8. g(s) =3 —4s? — 453
the independent variable. 1 1
1. f(x) =4x>—7x +1 2. f(x) = —3x* 4+ 5x? 9. h(t) = —§t4 + 4t 10. h(t) = Etz —3t4+2
3. f(x)=—2x"+7x — 4 4. f(x) = —3x*+6x> -2

o T T _ 3 T T
5, f(x)=3—4x—5x2 6. f(x)=—1+3x2—2x4 11. f(x)—x Sll’lg-i‘tanz 12. f(x)—2x COS§+COSE
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o adg T T
13. f(x) = —3x"tan 6 cot 5
14. f(x) = x’sec % + 3x sec %

1
15. f(t) =Pe >+t +e! 16. f(x) = §x263 —x*

17. f(s) = %€ + 3e 18. f)=24exte
e

XXt 2

19. =20x3 —4x° +9x%  20. = _ 4=
Fx) = 2007 =422 + O fO=5"20"1
, 1 o x ,  x'm
21, f(x)=nmnx"— — 4+ — 22, f(x) =mxe” — —
T e
23. Differentiate
fx) = ax’

with respect to x. Assume that a is a constant.
24. Differentiate

fx)=x*+a
with respect to x. Assume that a is a constant.
25. Differentiate

f(x) =ax*—2a
with respect to x. Assume that a is a constant.
26. Differentiate
fx)= a’xt = 2ax?

with respect to x. Assume that a is a constant.
27. Differentiate

h(s) =rs* —r
with respect to s. Assume that r is a constant.
28. Differentiate

f@r)= rs*—r
with respect to r. Assume that s is a constant.
29. Differentiate

) =rs?x® —rx +s

with respect to x. Assume that r and s are constants.
30. Differentiate

f(x)=#—rsx+(r+s)x—rs
rs

with respect to x. Assume that r and s are nonzero constants.
31. Differentiate
NZ
f(N)Z(b—l)N“—?
with respect to N. Assume that b is a nonzero constant.
32. Differentiate
bN*+ N

FN) = K+b

with respect to N. Assume that b and K are positive constants.

33. Differentiate
gt) = a’t —at®

with respect to #. Assume that a is a constant.
34. Differentiate

2
s

h(s) = a*s®> —as* + —
at

with respect to s. Assume that a is a positive constant.

35. Differentiate
V() = Vo(1+y1)
with respect to 7. Assume that V;, and y are positive constants.

36. Differentiate
NkT

p(T) = T

with respect to 7. Assume that N, k, and V are positive constants.

37. Differentiate
(N)=N (1 N
sV = K

with respect to N. Assume that K is a positive constant.
38. Differentiate

N)=rN|(1 N
g()—”(‘g)

with respect to N. Assume that K and r are positive constants.

39. Differentiate
(N)=rN*(1- N
sV = K

with respect to N. Assume that K and r are positive constants.
40. Differentiate

N)=rN N)(1 N
g(N) =rN (a - ’(‘E)

with respect to N. Assume that r, @, and K are positive constants.
41. Differentiate
270 kY,

R(T) = ST
with respect to 7. Assume that k, ¢, and & are positive constants.
In Problems 42-48, find the tangent line, in standard form, to y =
f(x) at the indicated point.
42, y=3x>—4x+7 atx =2
43, y=7x>+2x —l,atx = -3
4. y=-2x-3x+1latx =1
45. y =2x* —Sx,atx =1
46. y = —x> —2x% atx =0

1
47. y = —x*— 2,atx =4

NG

bid
48. y =37x — EX3’ atx = —1

In Problems 49-54, find the normal line, in standard form, to y =
f(x) at the indicated point.

49. y =2+ x% atx = —1

50. y=1-3x%atx = -2

51y = /3x* —2/3x%atx = —/3
52. y=-2x*—x,atx =0

53. y=x’—-3,atx =1

54. y=1—nmx*atx = —1

55. Find the tangent line to

f(x) = ax?

at x = 1. Assume that a is a positive constant.
56. Find the tangent line to

f(x) =ax® —2ax

at x = —1. Assume that a is a positive constant.



57. Find the tangent line to

ax?

a?+2

fx) =

at x = 2. Assume that a is a positive constant.
58. Find the tangent line to

x2

f(x):a+1

at x = a. Assume that a is a positive constant.
59. Find the normal line to

f(x) = ax®
at x = —1. Assume that a is a positive constant.
60. Find the normal line to
f(x) = ax?* —3ax
at x = 2. Assume that a is a positive constant.

61. Find the normal line to

ax2

a+1

at x = 2. Assume that a is a positive constant.
62. Find the normal line to

fx) =

x3

f(x):a—i-l

at x = 2a. Assume that a is a positive constant.

In Problems 63-70, find the coordinates of all of the points of the
graph of y = f(x) that have horizontal tangents.

63. f(x)=x? 64. f(x) =2 —x?
65. f(x) =3x —x? 66. f(x)=4x + 2x?
67. f(x) =3x>—x? 68. f(x) = —4x*+x°
I R a5 S
69. f(x)_zx 3x 2x 70. f(x) =3x 2x

71. Find a point on the curve
y=4-— x?

whose tangent line is parallel to the line y = 2. Is there more than
one such point? If so, find all other points with this property.

72. Find a point on the curve
y=@-x’

whose tangent line is parallel to the line y = —3. Is there more
than one such point? If so, find all other points with this property.
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73. Find a point on the curve

1
=2x% — =
y=2"-=3

whose tangent line is parallel to the line y = x. Is there more than
one such point? If so, find all other points with this property.

74. Find a point on the curve
y=1-3x3

whose tangent line is parallel to the line y = —x. Is there more
than one such point? If so, find all other points with this property.

75. Find a point on the curve
y=x 4+2x+2

whose tangent line is parallel to the line 3x — y = 2. Is there more
than one such point? If so, find all other points with this property.

76. Find a point on the curve
y=2x>—4x +1

whose tangent line is parallel to the line y —2x = 1. Is there more
than one such point? If so, find all other points with this property.

77. Show that the tangent line to the curve

y=x’

at the point (1, 1) passes through the point (0, —1).
78. Find all tangent lines to the curve

y=x

that pass through the point (0, —1).
79. Find all tangent lines to the curve
y=x
that pass through the point (0, —a?), where a is a positive number.
80. How many tangent lines to the curve
y =x>42x

pass through the point (—%, —3)?
81. Suppose that P(x) is a polynomial of degree 4. Is P'(x) a
polynomial as well? If yes, what is its degree?

82. Suppose that P(x) is a polynomial of degree k. Is P/(x) a
polynomial as well? If yes, what is its degree?

B 4.3 The Product and Quotient Rules, and the Derivatives of Rational

and Power Functions

B 4.3.1 The Product Rule

The derivative of a sum of differentiable functions is the sum of the derivatives of the
functions. The rule for products is not so simple, as can be seen from the following
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gx + Ax)
I

g(x)

h(x) I

f&) flx + Ax) X
Figure 4.23 The product rule.

example: Consider y = x> = (x%)(x?). We know that

d

— x> =5x4
dx

d
—x3=3x2
dx

d ,

i
dxx X

This chain of reasoning shows that

d d d
—x° is not equal to —x3 ) [ —x?
dx dx dx

(Leibniz first thought that the multiplication rule was as simple as that, but he quickly
realized his mistake and found the correct formula for differentiating products of
functions.)

The Product Rule If #(x) = f(x)g(x) and both f(x) and g(x) are differen-
tiable at x, then

R(x) = f'(x)g(x) + f(x)g'(x)
If wesetu = f(x) and v = g(x), then

wv) =u'v+u

Proof Since h(x) = f(x)g(x) is a product of two functions, we can visualize A (x)
as the area of a rectangle with sides f(x) and g(x). To compute the derivative, we
need h(x + Ax); this is given by

h(x + Ax) = f(x + Ax)g(x + Ax)
To compute 4’(x), we must compute h(x + Ax) — h(x) (Figure 4.23). We find that
h(x + Ax) — h(x) = area of I + area of 11

=[f(x+Ax) — f(0)]gk)
+[g(x + Ax) — g()]f (x + Ax)

Dividing this result by Ax and taking the limit as Ax — 0, we obtain
h(x + Ax) — h(x)

W (x) = lim
Ax—0 Ax
— lim [f(x+ Ax) — f(x0)]gx) + [g(x + Ax) — g(x)]f (x + Ax)
B Ax—0 Ax

_ lim [f(X+AX)—f(X)g(x)+g(X+AX)—g(X)

Ar Ar fx+ Ax)]

Ax—0

Now, we need the assumption that f'(x) and g’(x) exist and that f(x) is continuous
at x [which follows from the fact that f(x) is differentiable at x]. These assumptions
allow us to use the basic rules for limits, and we write the last expression as

<lirn f(x+Ax)_f(x)>g(x)+<lim g(x+Ax)_g(x))<nm f(x—l—Ax))
X

Ax—0 A Ax—0 Ax Ax—0

The limits of the difference quotients are the respective derivatives. Using the fact
that f(x) is continuous at x, we find that lim,,_,, f(x + Ax) = f(x). Therefore,

W (x) = f'(x)g(x) + g (x) f(x)

as claimed. [}
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Solution

EXAMPLE 2

Solution

EXAMPLE 3

Solution
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Differentiate f(x) = 3x + 1)(2x> —5).
We write u = 3x + 1 and v = 2x% — 5. The product rule says that (uv)’ = u'v + uv'.
That is, we need the derivatives of both u# and v:
u=3x+1 v=2x>-5
u' =3 v = 4x
Then
uv) =u'v+uv
=3(2x" —5) + (Bx + 1)(4x)
= 6x” — 15+ 12x” + 4x = 18x” + 4x — 15
Of course, we could have gotten this result by first multiplying out (3x +1)(2x% —

5) = 6x> — 15x + 2x? — 5, which is simply a polynomial function. We then would
have found that

d
d—(6x3 —15x +2x> —5) = 18x% — 15 + 4x
X

which is the same answer. |

Differentiate f(x) = (3x> — 2x)2.

Again, we could simply expand the square and then differentiate the resulting
polynomial—but we can also use the product rule. To do so, we write u = v =
3x3—2x.Then f(x) = uv and (uv)’ = u'v+uv'. Since u = v, it follows that u’ = v’,
and the formula simplifies to (uv) = (4?)' = v'u+uu’ = 2uu’. Because u’ = 9x>—2,
we have

fl(x) =203x* —2x)(9x* = 2) m

Population Growth In many population models, the population growth rate depends
only on the current population size. We can express this quantity by

dN

2L — (N

o =)
where N(¢) denotes the size of the population at time ¢ and f(N) is the population
growth rate, which depends only on the current population size N = N (t). The per

capita growth rate %% is then also just a function of N, namely,
1dN )
T
with
J(N) = Ng(N)

Assume that g(N) is differentiable and that limy_, + g(N) and limy_, o+ g'(N) exist.
Show that

. d
8(0) = Nlin; AR

Using the product rule, we compute the derivative of the population growth rate
J(N) = Ng(N):

d /
7y (NVe(N)) = g(N) + Ng'(N)

Then we take the limitas N — 0F:

d
lim —= (Ng(N)) = lim [g(N) + Ng'(N)] = g(0)
N—0+ N—0O*

(Note that we can take only one-sided limits here, since N > 0 for biological reasons.)
|
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EXAMPLE 4

Solution

EXAMPLE 5

Solution

Apply the product rule repeatedly to find the derivative of

y=2x+1DHx+1DBx —4)

Since the product rule is formulated for products of two factors, we group the terms
in our function as follows:

u=Q2x+DHx+1

Then y = uv, with v = 3x — 4. Note that any other grouping into two factors would
work as well. Now, to differentiate u, we need to use the product rule:

w=2x+1 z=x+1
w =2 7 =1

Therefore,
W =2x+D+2x+DA)=2x4+2+2x+1=4x+3
With v’ = 3, we find that

y =@x+3)GBx —4) +32x + D(x + 1)
=12x* —16x + 9x — 12 + 6x> + 6x + 3x + 3
=18x*+2x —9 -

B 4.3.2 The Quotient Rule

The quotient rule will allow us to compute the derivative of a quotient of two
functions. In particular, the rule will allow us to compute the derivative of a rational
function, because a rational function is the quotient of two polynomial functions.

The Quotient Rule If 41(x) = %, g(x) # 0, and both f’(x) and g’(x) exist,
then
_ S)g&) = f(x)g'(x)

h/
) g1

In short, with u = f(x) and v = g(x),
(u)’ . u'v—uv
v/ V2

We could prove the quotient rule much as we did the product rule, by using the
formal definition of derivatives, but that would not be very exciting. Instead, we will
give a different proof of the quotient rule in the next subsection.

Note carefully the exact forms of the product and quotient rules. In the product
rule we add f’g and fg’, whereas in the quotient rule we subtract fg’ from f’g. As
mentioned, we can use the quotient rule to find the derivative of rational functions.
We illustrate this application in the next two examples.

X3 —3x42

et (This function is defined for all x € R, since x> + 1 # 0.)

Differentiate y =

We set u = x> — 3x +2 and v = x% + 1. Both u and v are polynomials, which we
know how to differentiate. We find that

u=x>-3x+2 v=x>+1

' =3x*—3 v =2x
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Solution
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Using the quotient rule, we compute y’:

u'v—uv B Bx? —=3)(x%2+1) — (x3 —3x +2)2x

!

Y= 2+ 1)2
_ 3x* 4+ 3x2 —3x%2 —3 —2x* + 6x2 — 4x
B (x2 +1)?
x*4+6x2—4x =3
= |
(x2 + 1)2

Monod Growth Function Differentiate the Monod growth function

aR

f(R):k+R’

R>0

where a and k are positive constants.

Since a and k are positive constants, f(R) is defined for all R > 0. We write u = aR
and v = k + R and obtain

=aR v=k+R

u' =a vV =1
Hence,
d wv—uv ak+R)—aR-1 ak
_f(R): 5 = 5 = 2
dR (k+R) (k+R)

In Figure 4.24, we graph both f(R) and f’(R). We see that the slope of the
tangent line at (R, f(R)) is positive for all R > 0. We can also draw this conclusion
from the graph of f’(R), since it is positive for all R > 0. Furthermore, we see that
f(R) becomes less steep as R increases, which is reflected in the fact that f'(R)
becomes smaller as R increases. [

|2

f(R)zakiR -

f'(Ry =%

(k + R)?
0 l
0 R

Figure 4.24 The graph of f(R) and f’(R) in Example 6.

The quotient rule allows us to extend the power rule to the case where the
exponent is a negative integer:

Power Rule (Negative Integer Exponents) If f(x) = x ", where n is a positive
integer, then
£ = —nx !

Note that the power rule for negative integer exponents works the same way as
the power rule for positive integer exponents: We write the exponent of the original
function x" in front and decrease the exponent by 1. We will now prove the power
rule for negative integer exponents.
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Proof We write f(x) = % and setu = 1 and v = x". Then

u = V=X
u' =0 U/ — nx"fl
and, therefore,
, u'v —uv’ 0-x"—1-nx"1! nx"1 ot
fx)= 2 = )2 =T T —nx ]
EXAMPLE 7 (a) Ify = )1” then
/ d —1 —1-1 1
Y= = =
) Ifg(x) = )%, then
d d 12
gx) = d—(3x_4) = 3d—x_4 =3(—dx =127 = -— n
X X X

There is a general form of the power rule in which the exponent can be any real
number. In the next section, we give the proof for the case when the exponent is
rational; we prove the general case in Section 4.7.

Power Rule (General Form) Let f(x) = x", where r is any real number. Then

[l =rx™!

EXAMPLE 8 (a) If y = /X, then

Y= 4 (x'7?) = lx'_1 1x*l/z L

dx 2 2 2J/x
(b) If y = J/x, then

d . | 1 1 1

r_ = /Sy — —,A/5-1 _ ~ . —4/5 _
y'= gy () =5 T5Y 0 T 5

(©) Ifg(t) = 3% then

/ _ d —-1/3\ _ 1 (-1/3)—1 _ 1 —4/3 __ 1
§O =g ) =(=3)"" =5)"" =

(d) If h(s) = s7, then h'(s) = ws™ . []

The function f(x) = ./x, x > 0, appears quite frequently. It is therefore

worthwhile to memorize its derivative, which is defined only for x > 0:

d 1
Jx

axV T 2%

EXAMPLE 9 Combining the Rules Differentiate f(x) = /x (x> — 1).
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Solution 2

EXAMPLE 10

Solution

EXAMPLE 11

Solution

EXAMPLE 12

Solution
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We can consider f(x) to be a product of two functions. Let

u=/x v=x>—-1

1
u' vV =2x

G

Hence,

flx)=uwv+u = L(xz — 1) + V/x(2x)

2J/x
=14 X Qi)2¢x X —1+4x7 5x7—1
N 2/x 2y 2yx

Since f(x) = /x(x> — 1) = x%? — x/2, we can also use the general version of the
power rule. We find that

Lapa _Sap 1 ¥ -1_ s¢?-1

5
ooy — D621 _ _ _
Fl=ax 2 2 2J% 2Jx 2J%

A Function That Contains a Constant Differentiate i (¢) = (at)'/*(a+1) —a, where
a is a positive constant.

Since h(z) is a function of ¢, we need to differentiate with respect to ¢, keeping in
mind that a is a constant. Rewriting 4 (¢) will make this easier:

h(t) =aPla+1)"? —a
The factor a'/3(a + 1) in front of #'/3 is a constant. Thus,

1 a3 a+1)
") = g3 g2 T
h'(t)=a (a+1)3t 0= Y [

Differentiating a Function That Is Not Specified Suppose f(2) =3 and f'(2) = 1/4.
Find

o)
atx =2.

Since x f (x) is a product, we can use the product rule

d
T [xf ()] = f(x) 4+ xf'(x)
X
Hence,
d , {7
Wl =@+ =3+5= .

2 2 2

Differentiating a Function That Is Not Specified Suppose that f(x) is differentiable.
Find an expression for the derivative of

J(x)

x2

We set
u= f(x) v = x?
u' = f'(x) v =2x
and use the quotient rule. We find that
y = flo0x? = f(x)2x _ X)) =2f(x)

x4 x3
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Section 4.3 Problems

m 4.3.1

In Problems 1-16, use the product rule to find the derivative with
respect to the independent variable.

L f(x) = (x+35x*=3)

f) =2x* =13 +2x?)

f(x) = (Bx* —5)(2x — 5x3)

f(x) = GBx* —x2+1)@2x% - 5x3)

1
fx) = <§x2 — l) (2x +3x?%)

LU

6. f(x)=203x>—2x%(1 —5x?)

7. f(x)= %(x2 — D2+

8. f(x) =3(x2+2)(4x>—5x% -3

9. f(x)=Bx—1)? 10. f(x) = (4 —2x%)?

1. f(x) =31 —2x)? 12. f(x) = (2362—2—)6-}-1)2 +2

13. g(s) = (25> — 55)2 14. h(t) =432 - DRt +1)

15. g(t) =322 = 5tH% 16, h(s) = (4 — 35% + 45%)2

In Problems 17-20, apply the product rule to find the tangent line,

in slope—intercept form, of y = f(x) at the specified point.

17. f(x) = Bx?> =2)(x —1),atx =1

18. f(x) =1 —2x)(1+2x),atx =2

19. f(x) =4Qx* +3x)(4 —2x?),atx = —1

20. f(x) = Bx>—3)2—2x3),atx =0

In Problems 21-24, apply the product rule to find the normal line,

in slope—intercept form, of y = f(x) at the specified point.

21, f(x)=(1—x)2—x?),atx =2

22, f(x)=Qx+1)Bx*—1,atx =1

23. f(x)=51—-2x)(x+1)—=3,atx =0

ST )
4

In Problems 25-28, apply the product rule repeatedly to find the

derivative of y = f(x).

25. f(x)=C2x —1DBx +H(A —x)

26. f(x)=(x—3)2—-3x)(5—x)

27. f(x) = (x —3)2x>2+ 1)1 —x?)

28. f(x)=(2x + 1)@ — x> +x?)

29. Differentiate

atx = —1

fx)y=ax—-—1D2x -1

with respect to x. Assume that a is a positive constant.
30. Differentiate

fx)=(a—-x)(a+x)
with respect to x. Assume that a is a positive constant.
31. Differentiate

f(x)=2a(x*—a)*+a

with respect to x. Assume that a is a positive constant.

32. Differentiate
3(x —1)?
fw ==

with respect to x. Assume that a is a positive constant.

33. Differentiate

g(0) = (ar +1)°
with respect to 7. Assume that a is a positive constant.
34. Differentiate

h(t) = Va(t —a) +a

with respect to 7. Assume that a is a positive constant.

35. Suppose that f(2) = —4,g(12) =3, f/(2) = 1,and g'(2) =
—2. Find

(f9)'(
36. Suppose that f(2) = —4,g(12) =3, f'(2) = 1,and g'(2) =
—2. Find
S+

In Problems 37-40, assume that f(x) is differentiable. Find an
expression for the derivative of y at x = 1, assuming that f(1) =2
and f'(1) = —1.
37. y =2xf(x)

39. y = —-5x3f(x) —2x 40. y

38. y =3x2f(x)

X/

2

In Problems 41-44, assume that f (x) and g(x) are differentiable at
x. Find an expression for the derivative of y.

41. y =3[ (x)g(x) 2. y=[f(x)—3lg)

3. y=[f(x)+2g(x)]gx)

4.y = [-2f(x) - 3g(0)]g(x) + 2L

45. Let B(t) denote the biomass at time ¢ with specific growth rate

g(B). Show that the specific growth rate at B = 0 is given by the
slope of the tangent line on the graph of the growth rate at B = 0.

46. Let N(t) denote the size of a population at time ¢.

Differentiate
f(N) N1 N
=r _—
K

with respect to N, where r and K are positive constants.

47. Let N(t) denote the size of a population at time z.
Differentiate

N)=r(aN —N?) (1 N
f(N)=r(aN — )( —?>

with respect to N, where r, K, and a are positive constants.
48. Consider the chemical reaction

A+B— AB

If x denotes the concentration of AB at time 7, then the reaction
rate R(x) is given by

R(x) =k(a —x)(b—x)
where k, a, and b are positive constants. Differentiate R(x).

m 4.3.2

In Problems 49-70, differentiate with respect to the independent
variable.

9. £(x) 3x—1 50, £(x) 1 —4x°
. X) = . X) =
x+1 1—x
3x2 —2x +1 xt4+2x —1
51. -— 52. - - =
Fe) 2% 1 O =51
3—x3 1+ 2x? — 4x*
53. = 54. = -
fx) T » fx) 55



2 —=3t+1 3—¢2
55. h(t) = T 56. h(t) = T2

4 —2g? 253 — 45> +55 =17
57. f(5) = —— B f6) =" 55
59. f(x) = /x(x—1) 60. f(x) = /x(x*—5x?)

V5x(1+x?)

61 f(x) = B3x(x*—1) 62. f(x)= 7

, 1 s 1
63. f(x):)r——3 64. f(x):)r——5
X X
3x—1 2x% -3
65. f(x) =24 — 66. f(x) = —x>+ =
4x4
si3 1 U7 g2/
67. g(s) = T 68. g(s) = P
2
69. f(x)=(1-2x) < 2x + ﬁ)
1
70. f(x)=x>-3x>+2) [+ —=—1
X

In Problems 71-74, find the tangent line, in slope—intercept form,
of y = f(x) at the specified point.

x2+3
71. f(x) =3, atx = =2

X

+5
T f =0t 2 ata=1
. fX)=—— —+ —,atx =
X  Jx o x?
2x —5 5
73. f(x) = —.atx =2 74 f(x)=/x(x—1),atx =1
X
75. Differentiate
ax
f(X)—3+x

with respect to x. Assume that a is a positive constant.

76. Differentiate
ax
fx) = T x
with respect to x. Assume that a and k are positive constants.
77. Differentiate

with respect to x. Assume that a is a positive constant.
78. Differentiate

ax?

X)=—5——

fO =5
with respect to x. Assume that a and k are positive constants.
79. Differentiate

Ril

FR) = 5
with respect to R. Assume that & is a positive constant and 7 is a
positive integer.
80. Differentiate

h(r) = Vat(1 —a) +a

with respect to ¢. Assume that a is a positive constant.
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81. Differentiate
h(t) = Vat(t —a) + at

with respect to ¢. Assume that a is a positive constant.
82. Suppose that f(2) = —4,g(2) =3, f'(2) = 1,and g'Q2) =

—2.Find
!

83. Suppose that f(2) = —4,¢(2) =3, f'2) = 1,and ¢g'(2) =

—2. Find
f !
() @

In Problems 84-87, assume that f(x) is differentiable. Find an
expression for the derivative of y at x = 2, assuming that f(2) =
—land f'2) =1

AC) X4 )

84. y = Tl 8. y= 7f(x)
86. — 2 _ L 87. — &
y=[f)] I y 7o) +x

In Problems 88-91, assume that f (x) and g(x) are differentiable at
x. Find an expression for the derivative of y.

2f(x) +1 Sx)
88- = - 89. =
YT T 300 MRRTIEINE
2
9. y= — 91 y = /xf(x)g(x)

fx) —g)
92. Assume that f(x) is a differentiable function. Find the
derivative of the reciprocal function g(x) = 1/f(x) at those points
x where f(x) # 0.

93. Find the tangent line to the hyperbola yx = ¢, where c is a
positive constant, at the point (x;, y;) with x; > 0. Show that the
tangent line intersects the x-axis at a point that does not depend
onc.

94. (Adapted from Roff, 1992) The males in the frog species
Eleutherodactylus coqui (found in Puerto Rico) take care of their
brood. On the other hand, while they protect the eggs, they cannot
find other mates and therefore cannot increase their number
of offspring. On the other hand, if they do not spend enough
time with their brood, then the offspring might not survive. The
proportion w(t) of offspring hatching per unit time is given as
a function of (1) the probability f(7) of hatching if time ¢ is
spent brooding, and (2) the cost C associated with the time spent
searching for other mates:

f@

Wi =

Find the derivative of w(t).

M 4.4 The Chain Rule and Higher Derivatives
B 4.4.1 The Chain Rule

In Section 1.2, we defined the composition of functions. To find the derivative of
composite functions, we need the chain rule, the proof of which is given at the end

of this section.
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EXAMPLE 1

Solution

EXAMPLE 2

Solution

Chain Rule If g is differentiable at x and f is differentiable at y = g(x), then
the composite function (f o g)(x) = f[g(x)] is differentiable at x, and the
derivative is given by

(fog)(x)= flg(x)]g (x)

This formula looks complicated. Let’s take a moment to see what we need to
do to find the derivative of the composite function (f o g)(x). The function g is the
inner function; the function f is the outer function. The expression f'[g(x)]g’(x)
thus means that we need to find the derivative of the outer function, evaluated at
g(x), and the derivative of the inner function, evaluated at x, and then multiply the
two together.

A Polynomial Find the derivative of
h(x) = (3x* — 1)?
The inner function is g(x) = 3x? — 1; the outer function is f(u) = u?. Then
g'(x) = 6x and f'(u) =2u
Evaluating f’(u) at u = g(x) yields
flgn)] =2g(x) =232 = 1)

Thus,

W (x) = (fog)(x) = flgx)g (x)

=2(3x* — 1)6x = 12x(3x* — 1) n

The derivative of f o g can be written in Leibniz notation. If we set u = g(x), then

_ df du

d
T (el =

This form of the chain rule emphasizes that, in order to differentiate fog, we multiply
the derivative of the outer function and the derivative of the inner function, the
former evaluated at u, the latter at x.

A Polynomial Find the derivative of

h(x) = 2x +1)°

Ifwesetu = g(x) =2x+1and f(u) = u?, then h(x) = (f o g)(x). We need to find
both f’[g(x)] and g’(x) to compute i’(x). Now,

gx)=2 and  f'(u) =3’
Hence, since f'[g(x)] = 3(g(x))?> = 3(2x + 1)?, it follows that

W'(x) = fllg)]g'(x) =3Q2x +1)*-2

=6(2x +1)°
If we use Leibniz notation, this becomes
df d
Wy =9 52 0300412
du dx

=6(Q2x +1)° n



EXAMPLE 3

Solution

EXAMPLE 4

Solution

EXAMPLE 5

Solution
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A Radical Find the derivative of h(x) = /x2 + 1.
If wesetu = g(x) = x>+ 1 and f(u) = /u, then h(x) = (f o g)(x). We find that

g (x) =2x and ) = b

2Ju

We need to evaluate f’ at g(x)—that is,

1

! _ 1 _
SN = 37 ~ 222+ 1

Therefore,

W (x) = flg0)]g'(x) =

1 X
2x =
2yx2+1 * VX2 1

A Radical Find the derivative of

h(x) = {/2x2 + 3x

h(x) = 2x* +3x)Y7

‘We write

The inner function is u = g(x) = 2x> 4 3x and the outer function is f(u) = u'/’.
Thus, we find that

1
— 7(2x2 +3x)7%7(4x 4 3)
dx + 3

= 72x% 4 3x)57

2
A Rational Function Find the derivative of h(x) = (ﬁ) .

Ifwesetu = g(x) = xx? and f(u) = u?,then h(x) = (fog)(x). We use the quotient
rule to compute the derivative of g(x):

oy L+ —x-1 1
A P | Y e
Since f'(u) = 2u, we obtain
/ / / X 1 2x
h(x)=flg&x)]g x) =2 = m

x+1x+1D2  (x+1)3

The Proof of the Quotient Rule We can use the chain rule to prove the quotient
rule. Assume that g(x) 7~ 0 for all x in the domain of g. If we define h(x) = %, then

1
(hog)(x) =hlgx)] = ——
g(x)

We used the formal definition of the derivative in Example 3 in Section 4.1 to show
that 4’ (x) = —xiz. This, together with the chain rule, yields

L v o (l):_g_/
[g(x)]? ' g g’

(hog)(x)=—
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EXAMPLE 6

Solution

EXAMPLE 7

Solution

EXAMPLE 8

Solution

Since £ = f %, we can use the product rule to find the derivative of f:

8

f ' / 1 1 ' / 1 g/

) =r-tr(o) =+ (-5

8 8 8 8 8

_fle—1¢
g2

Note that we did not use the power rule for negative integer exponents (Subsection
4.3.2) to compute h'(x), but instead used the formal definition of derivatives to
compute the derivative of 1/x. Using the power rule for negative integer exponents
would have been circular reasoning: We used the quotient rule to prove the power

rule for negative integer exponents, so we cannot use the power rule for negative
integer exponents to prove the quotient rule.

A Function with Parameters Find the derivative of
h(x) = (ax* —2)"
where a > 0 and # is a positive integer.
If weset u = g(x) = ax?> —2and f(u) = u", then h(x) = (f o g)(x). Since
g (x) = 2ax and () = nu"!
it follows that

h'(x) = f'lg(0)]g (x) = n(ax® —2)""2ax
= 2anx(ax® —2)"!
Looking at /' (x) = n(ax®> —2)"~!' - 2ax, we see that we first differentiated the outer

function f, which yielded n(ax?> — 2)"~! via the power rule, and then multiplied the
result by 2ax, the derivative of the inner function g. ]

Differentiating a Function That Is Not Specified Suppose f (x) is differentiable. Find

4 1
dx VT

We set

1
(x) %) [Lf (0]

Now, u = f(x) is the inner function and h(u) = u~'/?

is the outer function; hence,

d dh du 1

e _ =32 g
dxh(x) T dudx 2u Fx)
R TP A C))
= 2en ! W= e .

Generalized Power Rule Suppose f(x) is differentiable and r is a real number. Find

d[ I
Ef(x)

Using the general form of the power rule and the chain rule, we find that

d
L1 = rLf O (x) m
X



EXAMPLE 9

Solution

EXAMPLE 10

Solution

EXAMPLE 11

Solution
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Differentiating a Function That Is Not Specified Suppose that f'(x) = 3x — 1. Find
d 2
—f(x%) atx =3
dx
The inner function is u = x?, the outer function is f (u), and we find that
d 2 12
d—f(x ) =2xf(x%)
X
If we substitute x = 3into f’(x?), we obtain f'(3%) = f/(9) = (3)(9) — 1 = 26. Thus,

=2)3)f'(9) = (6)(26) = 156 |

d 2
Ef(x ) .

The chain rule can be applied repeatedly, as shown in the next two examples.

Nested Chain Rule Find the derivative of

2
h(x) = <,/x2 +1+ 1)

If we set h(x) = (f o g)(x), then g(x) = \/x2+ 141 and f(u) = u®>. We see that
g(x) isitself a composition of two functions, with inner function v = x2+1 and outer
function /v + 1. To differentiate i (x), we proceed stepwise. First,

d 2 d
/ /.2 _ 2 “ 2
h(x)—dx( x+1—|—1> —2< x—|—1—|—1>dx< x—l—l—l—l)

Then, since
d ( 14 1) 2x x
_— X = =
dx 2J/x2+1  Jx2+1

(where we used the chain rule to differentiate /x2 + 1), we get

li _ 2 X
W)y =2 (2 +141) —— .
x24+1

Nested Chain Rule Find the derivative of

3
h(x) = <2x3 —/3x4 — 2)

As in the previous example, we proceed stepwise:
> d
W(x)=3 (2x3 —/3x4 — 2) — <2x3 —\/3x% = 2)
dx
2 3
12
=3(2x3— 3x4—2> ox2 - ——
2\/3x% =2
: X
= 18x? (2x3—,/3x4—2) - —— n
3x* =2

We conclude this subsection with the proof of the chain rule. The first part of the
proof follows along the lines of the argument we sketched out at the beginning of the
section, but the second part is much more technical and deals with the problem that
Au could be zero.
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Proof of the Chain Rule We will use the definition of the derivative to prove the
chain rule. Formally,

(o0 — tim JE@I= /18]

x—c X —=cC

We need to show that the right-hand side is equal to f'[g(c)]g’(c). Aslong as g(x) #
g(c), we can write

L flel = flg@] _ e W — O]
im = lim
x—c X —C x—c X —C
:hmf@@ﬂ—fmwﬂﬂﬂ—g@)
x—c g(X)—g(C) X —cC

Since g(x) is continuous at x = c, it follows thatlim,_, . g(x) = g(c), and hence,

flg@)] — flg()]
m

li =7
TR TR
Furthermore,
5 g(x) —g(c) ,
im &2 (o)
x—c X —C

Since these limits exist, we can use the fact that the limit of a product is the product
of the limits. We find that

o S8~ flg(e)] flg)]— flglo)] . gx) —g(o)

li = lim lim
x—c X —cC x—c g(x) - g(c) x—c X —C
= f'lg(0)]g ()

In the preceding calculation, we needed to assume that g(x) — g(c) # 0. Of
course, when we take the limit as x — ¢, there might be x-values such that g(x) =
g(c), and we must deal with this possibility.

Weset y = g(x) and d = g(c). The expression

— f
Foy=19=1®
is defined only for y # d. Since
i SO LD
y—>d y = d

we can extend f*[g(x)] by defining f*[g(x)] = f'[g(x)] to make f*[g(x)] a
continuous function:

Slg@)] — flg(o)]
flg)] = g(x) —gle)
J'lg(©)] for g(x) = g(c)

for g(x) # g(c)

This means that, for all x,

Flg)] = flgo)] = fTlg)]lg(x) — g(o)]
With this equivalence, we can repeat our calculations to obtain

. Slg)] = flgl . flg()]lg(x) — g(c)]
im = lim

x—c X —=C x—c X —cC

lim f*[g(x)] lim @ = fIg(e)] - g'(0)

X—C X—>cC

Note that in the last step we used the fact that f*[g(x)] is continuousatx =c. =



EXAMPLE 12

Solution
A
(x,y)
NS
~
~ .
y Slope — 5
I'x
X+yr=1

Figure 4.25 The slope of the tangent
line at the unit circle x> + y> = 1 at

(x,y)ism = -3

X

EXAMPLE 13
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B 4.4.2 Implicit Functions and Implicit Differentiation

So far, we have considered only functions of the form y = f(x), which define y
explicitly as a function of x. It is also possible to define y implicitly as a function of x,
as in the following equation:

Yxr—yx+2y" =Vx

Here, y is still given as a function of x (i.e., y is the dependent variable), but there is
no obvious way to solve for y. Fortunately, there is a very useful technique, based on
the chain rule, that will allow us to find dy/dx for implicitly defined functions. This
technique is called implicit differentiation. We explain the procedure in the next
example.

Find 2 if x> + 2 = L.

Remembering that y is a function of x, we differentiate both sides of the equation
x? 4+ y? = 1 with respect to x:

d  , 2_i
E(x +y)_dx(1)

Since the derivative of a sum is the sum of the derivatives, we find that

i( z)+i( 2)—1(1)
dx o dx )= dx

Starting with the left-hand side and using the power rule, we have %(xz) = 2x.To
differentiate y?> with respect to x, we apply the chain rule to get %(yz) = Zy%. On
the right-hand side, we obtain (%(1) = 0. We therefore have

2 d _

We can now solve for %:
dy 2x X

dx 2y y

Since x?> + y? = 1 is the equation for the unit circle centered at the origin (Figure

4.25), we can use a geometric argument to convince ourselves that we have indeed

obtained the correct derivative. The line that connects (0, 0) and (x, y) has slope y/x

and is perpendicular to the tangent line at (x, y). Since the slopes of perpendicular

lines are negative reciprocals of each other, the slope of the tangent line at (x, y)
must be —x/y.

We could have solved x? + y?> = 1 for y and then differentiated with respect to

x; this would have yielded the same answer but would have been more complicated.

]

We summarize the steps we take to find dy/dx when an equation defines y
implicitly as a differentiable function of x:

StEP 1. Differentiate both sides of the equation with respect to x, keeping in mind
that y is a function of x.
StEP 2. Solve the resulting equation for dy/dx.

Note that differentiating terms involving y typically requires the chain rule. Here is

another example; this time, we can neither use a geometric argument nor easily solve
for y.

Find £ when y3x? — yx +2)? = x.
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Solution We differentiate both sides of the equation with respect to x:
d 5, d d _, d
= = Z v = —
) — 0+ o2y = o)
To differentiate y*>x? and yx with respect to x, we use the product rule:

d 3 d 3\ 2, 3(d > d 3\ » 3

_— = _— _— = _— 2

e (dxy AR e )T O0En

o= () o () = ()
E(yx)_ P (x)+y Rl Bl Grw x+y

To find % y3, we use the chain rule to get

d , ,dy
23 =3y
dxy Y dx
Furthermore,
d dy
= (2v?) = 4y—=
dx( o) Yo
and

d =1
E(X)—

Putting the pieces together, we obtain

d d d
%@%w%+w%am—[&%)x+4+43§=1

Factoring % yields
d
£[3yzx2 —x+4yl+2xy —y=1

Solving for % gives
dy y+1-— 2xy?
dx  3y2x2—x +4y

The next example prepares us for the power rule for rational exponents.

EXAMPLE 14 Find ;% when y? = x3. Assume that x > O and y > 0.

Solution We differentiate both sides with respect to x:

4y =L
07 = -0

dy )
2y— =3
ydx *
Therefore,
dy 3x2
dx 2y

Since y = x3/2, it follows that

dy 322 32 34
dx 2y 2x32 2

This is the answer we expect from the general version of the power rule:

d d
dy _ 4 sp_ 3 ap
dx dx 2
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Power Rule for Rational Exponents We can generalize Example 14 to functions of the
form y = x”, where r is arational number. This will provide a proof of the generalized
form of the power rule when the exponent is a rational number, something we
promised in the previous section. We write r = p/q, where p and ¢ are integers
and are in lowest terms. (If ¢ is even, we require x and y to be positive.) Then

y=x"1 — yl=xP
Differentiating both sides of y¢ = x? with respect to x, we find that

dy

gy?™ o= = px"!
X

Hence,

dy pxt=' p xr!

dx - q yq_l - ;(_xp/q)q_l

p—1
— p X — Exp—l—pﬂ?/q
q xP—pla q

= Ex”/q*1 =rx"!
q

We summarize the preceding result:

If r is a rational number, then

— (") =rx"!

dx

B 4.4.3 Related Rates

An important application of implicit differentiation is related-rates problems. We
begin with a motivating example.

Consider a parcel of air rising quickly in the atmosphere. The parcel expands
without exchanging heat with the surrounding air. Laws of physics tell us that the
volume (V) and the temperature (7') of the parcel of air are related via the formula

TVl =C

where y (lowercase Greek gamma) is approximately 1.4 for sufficiently dry air and
C is a constant. The temperature is measured in kelvin,' a scale chosen so that the
temperature is always positive. (The Kelvin scale is the absolute temperature scale.)
Since rising air expands, the volume of the parcel of air increases with time; we
express this relationship mathematically as dV /dt > 0, where ¢ denotes time.

To determine how the temperature of the air parcel changes as it rises, we
implicitly differentiate 7V?~! = C with respect to ¢:

dT dv
vl LTy — )V =0
7 +T(y -1 o
or
dT T(y —1)Vr24y 1dv
— == — =Ty —-1)—=—
dt vr-1 V dt

(1) To compare the Celsius and the Kelvin scales, note that a temperature difference of 1°C is equal to a
temperature difference of 1 K, and that 0°C = 273.15K and 100°C = 373.15K.
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If we use y = 1.4, then

aTr 1dV

— =-T04)——

dt V dt
implying that if air expands (i.e., dV/dt > 0), then temperature decreases (i.e.,
dT/dt < 0), since both T and V are positive: The temperature of a parcel of air
decreases as the parcel rises, and the temperature of a falling air parcel increases.
These phenomena can be observed close to high mountains.

In a typical related-rates problem, one quantity is expressed in terms of another
and both quantities change with time. We usually know how one of the quantities
changes with time and are interested in finding out how the other quantity changes.
For instance, suppose that y is a function of x and both y and x depend on time. If we
know how x changes with time (i.e., if we know dx /dt), then we might want to know
how y changes with time (i.e, dy/dt). We illustrate this situation in the next example.

AOVIAIREY  Find 2 whenx? + y* = 1and & =2 for x = ,/7/8.

Solution  In this example, both x and y are functions of ¢. Implicit differentiation with respect

to t yields
a o+ y%) d €y
—(x [ p—
ar T T
Hence,
dx dy
2x— +3y*—= =0
Ya T
Solving for ‘é—f gives
dy  2xdx
dt — 3y*dt
When x = /7/8,
7 1
3 2
—1—-x’=1—--="=
Y * 8§ 8

Thus, y = 1/2. Therefore,

dy  27/8 16 7 4
X AN s LT 14 n
dt 3 1/4 38 3

We present two applications of related rates.

EXAMPLE 16 Changing Volume A spherical balloon is being filled with air. When the radiusr = 6
cm, the radius is increasing at a rate of 2 cm/s. How fast is the volume changing at
this time?

Solution  The volume V of a sphere of radius r is given by

y ot (4.6)
3
(See Figure 4.26.) Note that V is a function of r. Since r is increasing at a certain rate,
we think of » as a function of time ¢; that is, » = r(¢). Because the volume V depends
on r, it changes with time ¢ as well. We therefore consider V also as a function of
time 7. Differentiating both sides of (4.6) with respect to ¢, we find that

av 4 d d
A P Rl P i
dt 3 dt dt
When r = 6 cm and dr/dt = 2 cm/s,
dv c cm?

Y arem2 SR = 288y
dt S S

Figure 4.26 The volume of a sphere

. . . 4
with radius r is V = 3777

Note that the unit of dV /dt is cm® /s, which is what you should expect, because the
unit of the volume is cm® and time is measured in seconds. ]
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Solution
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Allometric Growth (Adapted from Benton and Harper, 1997) Ichthyosaurs are a
group of marine reptiles that were fish shaped and comparable in size to dolphins.
They became extinct during the Cretaceous.”? On the basis of a study of 20 fossil
skeletons, it was found that the skull length (in cm) and backbone length (in cm) of an
individual ichthyosaur were related through the allometric equation. (We introduced
allometric equations in Example 7 of Section 1.2.)

[skull length] = 1.162[backbone length]*"*

How is the growth rate of the backbone related to the growth rate of the skull?
Let x denote the age of the ichthyosaur, and set

S = S(x) = skull length at age x
B = B(x) = backbone length at age x

so that
S(x) = (1.162)[B(x)]***

We are interested in the relationship between dS/dx and d B /dx, the growth rates of
the skull and the backbone, respectively. Differentiating the equation for S(x) with
respect to x, we find that

ds = (1.162)(0.933)[B(x)]°-933—1d—B
dx dx

Rearranging terms on the right-hand side, we write this as

ds 1 dB
= = (1.162)[B(x)]*°*(0.933) —— —
. ( BT ( )B(x) T2
S(x)
Hence,
1 dS 1 dB

— =0933———

S(x) dx B(x) dx
This equation relates the relative growth rates é% and %‘[Il—f. The factor 0.933 is less
than 1, which indicates that skulls grow less quickly than backbones. This finding
should be familiar to us: Relative to their body sizes, juvenile vertebrates often have

larger heads than adults. ]

B 4.4.4 Higher Derivatives

The derivative of a function f is itself a function. We refer to this derivative as the
first derivative, denoted f’. If the first derivative exists, we say that the function is
once differentiable. Given that the first derivative is a function, we can define its
derivative (where it exists). This derivative is called the second derivative and is
denoted f”. If the second derivative exists, we say that the original function is twice
differentiable. This second derivative is again a function; hence, we can define its
derivative (where it exists). The result is the third derivative, denoted /. If the third
derivative exists, we say that the original function is three times differentiable. We
can continue in this manner; from the fourth derivative on, we denote the derivatives
by f@, £©, and so on. If the nth derivative exists, we say that the original function
is n times differentiable.

Polynomials are functions that can be differentiated as many times as desired.
The reason is that the first derivative of a polynomial of degree n is a polynomial of
degree n — 1. Since the derivative is a polynomial as well, we can find its derivative,
and so on. Eventually, the derivative will be equal to 0, as is illustrated in the next
example.

(2) The Cretaceous period began about 144 million years ago and ended about 65 million years ago.
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EXAMPLE 18

Solution

EXAMPLE 19

Solution

EXAMPLE 20

Solution

Find the nth derivative of f(x) = X forn=1,2,....

Differentiating f (x), we find the first derivative to be
f(x) = 5x*
Differentiating f’(x), we find the second derivative to be
F(x) = 5(4x%) = 20x°
Differentiating f”(x), we obtain the third derivative:
£ (x) = 20(3x?) = 60x>

"

Differentiating f"’(x), we find the fourth derivative:
F@(x) = 60(2x) = 120x
Differentiating f® (x), we get the fifth derivative:
O ) =120
Differentiating f© (x), we find the sixth derivative:
O =0
All higher-order derivatives—that is, £, f®, ... —are equal to 0 as well. ]

We can write higher-order derivatives in Leibniz notation: The nth derivative of
f(x) is denoted by
d'f

dxn

Find the second derivative of f(x) = +/x, x > 0.

First, we find the first derivative:

d d ,, 1
4 4 ap_ L ap
LVEE g 2

forx >0

To find the second derivative, we differentiate the first derivative

& d (d d (1 _ 1/ 1
- - — (= R vt VA I (=1/2)-1
dxzﬁ dx (dxﬁ> dx <2x > 2 ( 2>x

1
= ——x

4

-3/2

When functions are implicitly defined, we can use the technique of implicit
differentiation to find higher derivatives.

Find % when x2 + y? = 1.

We found
dy  x
dx y
in Example 12. Differentiating both sides of this equation with respect to x, we get

d [dy]| d X
dx |dx|  dx y

The left-hand side can be written as

Ly

dx?



EXAMPLE 21

Solution

EXAMPLE 22

Solution
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On the right-hand side, we use the quotient rule. Hence,

d
oy 1y-xk

>~ 2

Substituting —)5“ for %, we obtain

X
ey 27
dx2 32
2
YEY P+
y? y?

Since x? + y? = 1, we can simplify the rightmost expression further and obtain

d? 1
@y _ = m

dx? y3

We introduced the velocity of an object that moves on a straight line as the
derivative of the object’s position. The derivative of the velocity is the acceleration.
If s(¢) denotes the position of an object moving on a straight line, v(¢) its velocity,
and a(t) its acceleration, then the three quantities are related as follows:

o ds d o dv d’s

v - an a = — = —

dt dr  dr?

Acceleration Assume that the position of a car moving along a straight line is given
by

s(t)y =3 -2t +1

Find the car’s velocity and acceleration.

To find the velocity, we need to differentiate the position:

=% _o2_»
v = — = —_
dt
To find the acceleration, we differentiate the velocity:
=2 s _ g .
a = — = — =
dt  dt?

Neglecting air resistance, we find that the distance (in meters) an object falls when
dropped from rest from a height is

Ky —
2

where g = 9.81m/s? is the earth’s gravitational constant and ¢ is the time (in seconds)
elapsed since the object was released.

(a) Find the object’s velocity and acceleration.
(b) If the height is 30 m, how long will it take until the object hits the ground, and
what is its velocity at the time of impact?

(a) The velocity is
o ds ;
v = — =
T
and the acceleration is
o dv
a = — =
a8

Note that the acceleration is constant.
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(b) To find the time it takes the object to hit the ground, we set s(#) = 30 m and

solve for t:

This yields

30m = £(9.81) 22
m=-(9.81)—
2 2

60 , 60
= ——5s°, or t= | —s~247s
9.81 9.81

(We need consider only the positive solution.) The velocity at the time of impact is

then

0 = or = 08D [ <~ 0g3™ .
=S =T g os T T T

Section 4.4 Problems

m4.41

In Problems 1-28, differentiate the functions with respect to the

independent variable.

1. f(x) =(x—3)? 2. f(x) = (4x+5)°
3. f(x) = (1 —3x)° 4. f(x) = (5x2 — 3x)°
5 f(x) =/x%2+3 6. f(x)=,2x+7
7. f(x)=3—x3 8. f(x) =./5x + 3x*
1 2
9. f(x) = m 10. f(x) = m
. f) = 3x —1 - ()_(1—2x2)3
W= T =Gy
V2x —1 xr—=1
13. =— 14. R A —
To0= Gy T = et
15. f(s)=+/s + /s 16. g(t) = /2 + /1 +1
Y 252 \*
B 23 —s5)?
19. f(r):(rz—r)3(r+3r3) 4 20. h(S):m
21. h(x) = I3 — x* 22. h(x) = JT—2x
23, f(x)=x2—2x+1 24, f(x) =2 —4x2
25. g(s) = (3s7 — 7s)3? 26. h(t) = (t* — 51)°2
3\2/5 4\ /4
27. h(t) = (31‘ + ;) 28. h(t) = (41‘4 + t_4>

29. Differentiate
[ = (ax +1)°
with respect to x. Assume that a is a positive constant.

30. Differentiate
f(x) =+ax? -2

with respect to x. Assume that a is a positive constant.
31. Differentiate
bN

= G we

with respect to N. Assume that b and k are positive constants.

32. Differentiate
N

N (Y

with respect to N. Assume that b and k are positive constants.

33. Differentiate
g =a(ly—T) —b

with respect to 7. Assume that a, b, and Tj are positive constants.
34. Suppose that f’(x) = 2x + 1. Find the following:

d d
(a) —f(x?)atx =—1 (b) —f(J/x)atx =4
dx dx
35. Suppose that f'(x) = i Find the following:
d ) d
— 3 b) — -1
(a) dxf(x +3) (b) dxf(\/x )
In Problems 36-39, assume that f(x) and g(x) are differentiable.

o d d (oY
36. Find E«/f(x) + g(x). 37. Find — ( + 1> .

dx \ g(x)
. d 1 . od [P
38. Find Ef [@] 39. Find Em

In Problems 40-46, find Z—i by applying the chain rule repeatedly.

40. y = (/T—22 4172 a1y = (/23— 3x +30)°
2. y=(1+20x +3?%’ 43,y = (1+@x2—1)3)’
2 3
X 2x +1
M y=\-5—5— 45 y=———-—+—
Y <2(x2—1)2—1> Y <3(x3—1)3—1>

2 2
oy= (B0

(Bx34+1)3 —x
m4.42
In Problems 47-54, find % by implicit differentiation.
47. x> +y?> =4 48. y = x?> +3yx
49. Xy =1 50. xy -y’ =1
1
51 Sy =x2+1 52, — —y3=
Xy =x"+ 2y y
53 12 54, — 1 —2yy
y X xy+1

In Problems 55-57, find the lines that are (a) tangential and (b)
normal to each curve at the given point.

55. x2 4 y? =25, (4, —3) (circle)

x2 y2
56. &+ 5 =10, 2/3) (ellipse)

2
s7. 2
25 9

[S]

=1, (?, 4) (hyperbola)



58. Lemniscate

(a) The curve with equation y> = x? — x* is shaped like the
numeral eight. Find :{% at (%, %\/5).

(b) Use a graphing calculator to graph the curve in (a). If the
calculator cannot graph implicit functions, graph the upper and
the lower halves of the curve separately; that is, graph

y=vxr—xt

2 =—vx?—x*

Choose the viewing rectangle —2 <x <2, -1 <y < 1.
59. Astroid
(a) Consider the curve with equation x*? + y*? = 4. Find % at

(—1,3/3).

(b) Use a graphing calculator to graph the curve in (a). If the
calculator cannot graph implicit functions, graph the upper and
the lower halves of the curve separately. To get the left half of
the graph, make sure that your calculator evaluates x*? in the
order (x?)!/3. Choose the viewing rectangle —10 < x < 10,
—10 <y < 10.

60. Kampyle of Eudoxus

(a) Consider the curve with equation y?> = 10x* — x2. Find Z—; at
1,3).

(b) Use a graphing calculator to graph the curve in (a). If the
calculator cannot graph implicit functions, graph the upper and
the lower halves of the curve separately. Choose the viewing
rectangle —3 < x <3,—-10 <y < 10.

m 443

61. Assume that x and y are differentiable functions of 7. Find %

dx

1
o =2forx = 3,and y > 0.

when x2 + y? = 1,

62. Assume that x and y are differentiable functions of 7. Find %

1
when y? = x? —x* & =1forx = j,and y > 0.

63. Assume that x and y are differentiable functions of 7. Find %
when x>y = 1and % =3 forx =2.

64. Assume that # and v are differentiable functions of 7. Find %
when u? + v* = 12, Z,—f =2forv=2,andu > 0.

65. Assume that the side length x and the volume V = x* of a
cube are differentiable functions of ¢. Express dV /dt in terms of
dx/dt.

66. Assume that the radius r and the area A = 772 of a circle are
differentiable functions of 7. Express d A/dt in terms of dr/dt.

67. Assume that the radius 7 and the surface area S = 47r* of a
sphere are differentiable functions of t. Express d.S/dt in terms of
dr/dt.

68. Assume that the radius » and the volume V = %nr3 of a

sphere are differentiable functions of 7. Express dV /dt in terms
of dr/dt.

69. Suppose that water is stored in a cylindrical tank of radius 5
m. If the height of the water in the tank is 4, then the volume of
the water is V = mr’h = (25m*)mwh = 257h m?. If we drain the
water at a rate of 250 liters per minute, what is the rate at which
the water level inside the tank drops? (Note that 1 cubic meter
contains 1000 liters.)

70. Suppose that we pump water into an inverted right circular
conical tank at the rate of 5 cubic feet per minute (i.e., the tank
stands with its point facing downward). The tank has a height of 6
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ft and the radius on top is 3 ft. What is the rate at which the water
level is rising when the water is 2 ft deep? (Note that the volume
of a right circular cone of radius r and height his V = %rrrzh.)
71. Two people start biking from the same point. One bikes east
at 15 mph, the other south at 18 mph. What is the rate at which
the distance between the two people is changing after 20 minutes
and after 40 minutes?

72. Allometric equations describe the scaling relationship be-
tween two measurements, such as skull length versus body length.
In vertebrates, we typically find that

[skull length] o [body length]”

for 0 < a < 1. Express the growth rate of the skull length in terms
of the growth rate of the body length.

m 4.4.4

In Problems 73-82, find the first and the second derivatives of each
function.

B f)=x>=3x24+1 T4 f(x)=2x*+4)°

75, g(x) = 76. h(s) = —
. X) = . s) =
& x+1 242
1
77. g(t) = /33 + 2t 78. f(x)= ;+x—x3
2
79. F(s) = /577 —1 80. f(x):%
X
1
8L g(t) =12 — 112 82. f(x)=x"— —
X

83. Find the first 10 derivatives of y = x°.

84. Find f™(x) and f™*V(x) of f(x) = x".

85. Find a second-degree polynomial p(x) = ax® + bx + ¢ with
p(0) =3, p'(0) =2, and p"(0) = 6.

86. The position at time ¢ of a particle that moves along a straight
line is given by the function s(¢). The first derivative of s(¢) is
called the velocity, denoted by v(#); that is, the velocity is the rate
of change of the position. The rate of change of the velocity is
called acceleration, denoted by a(?); that is,

d J—
(0 = a)

Given that v(t) = s'(¢), it follows that

d2
ﬁs(l‘) = a([)
Find the velocity and the acceleration at time ¢+ = 1 for the

following position functions:
(@) s(t) =t>—3t M) s@t)=Jt2+1 (¢) s@t) =1t*—2t
87. Neglecting air resistance, the height / (in meters) of an object

thrown vertically from the ground with initial velocity vy is given
by

h(t) t ! 2
= V) —_ =
0 28

where ¢ = 9.81 m/s? is the earth’s gravitational constant and ¢ is
the time (in seconds) elapsed since the object was released.

(a) Find the velocity and the acceleration of the object.

(b) Find the time when the velocity is equal to 0. In which
direction is the object traveling right before this time? in which
direction right after this time?
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M 4.5 Derivatives of Trigonometric Functions

We will need the trigonometric limits from Section 3.4 to compute the derivatives of
the sine and cosine functions. Note that all angles are measured in radians.

Theorem The functions sin x and cos x are differentiable for all x, and

— sinx = cos x and — Ccosx = —sinx
dx dx

Graphs of the derivatives of each of the trigonometric functions, based on the
geometric interpretation of a derivative as the slope of the tangent line, confirm these
rules. (See Figures 4.27 and 4.28.) Pay particular attention to the points on the graph
of f(x) with horizontal tangent lines. These correspond to the points of intersection
of the graph of f’(x) with the x-axis.

Cos x

~

"(x)

y
y 1 f(x) = cosx
f(x) = sinx /7 |\
/N ! . A \ : : /
menNG o NS S ENS
| T | , |
| ! | ! |
! I ! I ! I
I L I | I ,
T o
I ' I ' I
! ! I ! I
I ! |

/
N
Y
N

N

f'(x) = —sinx

|
N‘;"’
I
<
I
SIE]
ﬂ -
=
<
B
.
SIE}
NEE S
3

Figure 4.27 The function f(x) = sin x and its
derivative f’(x) = cosx. The derivative f'(x) =0

Figure 4.28 The function f(x) = cosx and its
derivative f’(x) = —sin x. The derivative

where f(x) has a horizontal tangent line. f'(x) = 0where f(x) has a horizontal tangent line.

Proof We prove the first formula; a similar proof of the second formula is discussed
in Problem 61. We need the trigonometric identity

sin(a + ) = sina cos 8 + cos & sin 8
Using the formal definition of derivatives, we find that

sin(x + h) —sinx

—sinx = lim
d

X h—0 h
sinx cosh + cosx sinh — sin x
= lim
h—0 h
) |: . cosh—1 sin h]
= lim |sinx——— + cosx——
h—0 h h
In Section 3.4, we showed that
h—1 inh
im 872 0 and lim 222 g
h—0 h h—0 h
We can therefore apply the basic rules for limits to obtain
d . . . cosh—1 . sinh
—sinx = sinx lim ——— 4+ cosx lim ——
dx o0 h h—0

= (sinx)(0) 4+ (cosx)(1) = cosx n
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Solution

EXAMPLE 2

Solution

EXAMPLE 3

Solution

4.5 M Derivatives of Trigonometric Functions 175

Find the derivative of f(x) = —4sinx + cos %.

£ = L (“asinx +cos )
X) = —(—4S8s1Inx COS —
dx 6

. d T
= —4—sinx + — cos —
dx dx 6

The first term is a trigonometric function and the second term is a constant (namely,

%\/3) Differentiating each term, we find that

f'(x) = —4(cosx) + 0 = —4cosx -

Find the derivative of y = cos(x? + 1).

We setu = g(x) = x>+ 1and f(u) = cosu; then y = f[g(x)]. Using the chain rule,
we then obtain

df d d d
y = éﬁ = E(COS u)a(x2 +1) = (—sinu)(2x)

= —[sin(x*> + D]2x = —2x sin(x> + 1) n

Find the derivative of y = x?sin(3x) — cos(5x).

We will use the product rule for the first term; in addition, we will need the chain rule
for both sin(3x) and cos(5x):

d
y = —[x?sin(3x) — cos(5x)]

dx
9 [ sin(G0)] — L cos(sn)

= —|x"sm — —cos
dx X . dx X

— d 2 : 2 d . d

= (dxx )sm(Sx) +x I sin(3x) e cos(5x)

= 2x sin(3x) + x%3 cos(3x) — 5(— sin(5x))
= 2x sin(3x) + 3x2 cos(3x) + 5sin(5x) [

The derivatives of the other trigonometric functions can be found using the
following identities:

sin x cos x
tanx = cotx = —
cosx sin x
1 1
secx = CcsCx = ——
cos x sin x

For instance, to find the derivative of the tangent, we use the quotient rule:

d d sinx
—tanx = —
dx dx cosx

d o : d
_ (45 sinx) cosx — sinx(;; cosx)

COS2 X

_ (cosx)(cosx) — (sinx)(—sinx)

0052 X

cos” x + sin” x 1 5
= 5 = ——>5— =sec'x
cos” X cOs™ X

In the penultimate step, we used the identity cos® x + sin’ x = 1.
The other derivatives can be found in a similar fashion, as explained in Problems
62-64.
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We summarize the derivatives of the six fundamental trigonometric functions in
the following box:

—sinx = coSx — COSX = —sinx

dx dx

d 2 d 2
—tanx = sec” x —Ccotx = —csc™ x

dx dx

— secx = secxtanx — CSCX = —CSCXx cotx
dx dx

EXAMPLE 4 Compare the derivatives of

(a) tanx? (b) tan®x

Solution (a) If y = tan x> = tan(x?), then, using the chain rule, we find that

d_y = i tan(x?) = (sec?(x?))(2x) = 2x sec*(x?)
dx dx

(b) If y = tan’ x = (tan x)?, then, using the chain rule, we obtain

dy d 2 d 2
— = —(tanx)” = 2(tanx)d—tanx = 2tanx sec” x
X

dx dx
The two derivatives are clearly different, and you should look again at tan x>

and tan” x to make sure that you understand which is the inner and which the outer
function. ]

EXAMPLE 5 Repeated Application of the Chain Rule Find the derivative of f(x) = sec/x2 + 1.

Solution  This is a composite function; the inner function is /x2 + 1 and the outer function is
secx. Applying the chain rule once, we find that

d d d
é = Esec\/)TH: sec,/xz—l—ltan\/xz—l—la\/xz—l-l

To evaluate %\/ x2 + 1, we need to apply the chain rule a second time:

d
—/x2+1

1 X
= 2 =
dx Wl e+l

Combining the two steps, we obtain

df . 5 5 X
E_(sec,/x —I—l) (tan,/x +1>x2—+1

The function f(x) can be thought of as a composition of three functions. The
innermost function is # = g(x) = x? + 1, the middle function is v = h(u) = /u,
and the outermost function is f(v) = secv. When we computed the derivative, we
applied the chain rule twice in the form

df _ df dvdu

dx  dvdudx
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Section 4.5 Problems

In Problems 1-58, find the derivative with respect to the
independent variable.

1. f(x) =2sinx —cosx 2. f(x) =3cosx —2sinx
3. f(x) =3sinx +5cosx —2secx

4. f(x) = —sinx +cosx —3cscx

5. f(x) =tanx — cotx 6. f(x) =secx —cscx

7. f(x) =sin(3x) 8. f(x) = cos(—5x)

9. f(x) =2sin(3x + 1) 10. f(x) = —3cos(l —2x)
11. f(x) = tan(4x) 12. f(x) = cot(2 — 3x)

13. f(x) = 2sec(l + 2x) 14. f(x) = —3csc(3 — 5x)
15. f(x) = 3sin(x?) 16. f(x) = 2cos(x® — 3x)
17. f(x) =sin’(x? — 3) 18. f(x) = cos’(x> —1)
19. f(x) = 3sin®x? 20. f(x) = —sin*(2x> — 1)

21. f(x) =4cosx? —2cos’x

22. f(x) = —5c0s8(2 — x3) + 2cos’(x — 4)

23. f(x) =4cos’x +2cosx? 24, f(x) = —3cos’(3x% —4)
25. f(x) =2tan(l — x?) 26. f(x) = —cot(3x> — 4x)
27. f(x)=-2 tan®(3x — 1) 28. f(x) = /sinx + sin/x
29. f(x) = ,/sin(2x2 — 1) 30. g(s) = (cos’*s — 35%)?

in(3¢
31. g(s) = \/coss — cos /X 32. g(t) = Z)T(St))
sin(2t) + 1 cot(2x)
3. gt) = ——— 34. =
80 = s6n =1 F&) = o
35, fo = D 36. f(6) =si
)= — . f(x) = sinx cosx
csc(x2+1)
37. f(x) =sin(2x — 1) cos(Bx + 1)
38. f(x) =tanxcotx
39. f(x) =tan(3x?> — 1) cot(3x> + 1)
40. f(x) =secxcosx
1
41. f(x) =sinxsecx 2 fx)=—F—"———
Sin” x + cos” x
1
43, fx) = ———— 44. o(x) =
Fe tan” x — sec’ x §(x) sin(3x)
1
45, g(x) = ——— 46. o(x) = ————
8= = 1) 80 = F6n
1
47. =0 48. h = cot(3x) csc(3
g(x) (50 (x) (3x) csc(3x)
3 1 \*2
49, h(x) = —— 50. g(t) =
) tan(2x) — x 8@ (sin tz)
51. h(s) =sin’s + cos’ s 52. f(x) = 2x3 —x)cos(1 — x?)
sin(2x) 1+ cos(3x)
53. = 54. -
o= Fo) =5
1 1
55. = tan — 56. = P—
f(x) an E f(x) =sec e
sec x? csc(3 — x?)
57. f(x) = —— 58. f(x)=——7—
sec” x 1—x
59. Find the points on the curve y = sin(3x) that have a

horizontal tangent.
60. Find the points on the curve y = cos’ x that have a horizontal
tangent.
61. Use the identity
cos(a + B) = cosa cos B — sina sin
and the definition of the derivative to show that

— CcOSXx = —sinx

dx

62. Use the quotient rule to show that

— cotx = —csc?x

dx

(Hint: Write cot x = %))

sinx *

63. Use the quotient rule to show that

— secx = secxtanx
dx

[Hint: Write secx = (cosx) ']

64. Use the quotient rule to show that

— CSCX = — CcSCx cotx
dx

[Hint: Write cscx = (sinx) 1]
65. Find the derivative of

f(x) =sin /)T—i—l
66. Find the derivative of
f(x) =cosy/x2+1
67. Find the derivative of
f(x) = sin/3x3 + 3x
68. Find the derivative of
f(x) =cos m
69. Find the derivative of
f(x) =sin*(x* = 1)
70. Find the derivative of
F(x) = cos’(2x% + 3)
71. Find the derivative of
f(x) =tan’(3x> — 3)
72. Find the derivative of
f(x) =sec’(2x? —2)

73. Suppose that the concentration of nitrogen in a lake exhibits
periodic behavior. That is, if we denote the concentration of
nitrogen at time ¢ by ¢(#), then we assume that

c(t) =2 +sin (%r)

(a) Find

dc

dt
(b) Use a graphing calculator to graph both c¢(¢) and % in the
same coordinate system.
(¢) Byinspecting the graph in (b), answer the following questions:
(i) When c(¢) reaches a maximum, what is the value of dc/dt?
(ii) When dc/dt is positive, is ¢(t) increasing or decreasing?
(iii) What can you say about c(t) when dc/dt = 0?
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S

Tangent
(x,y)

A

p

[T S

Subtangent

Figure 4.29 The subtangent
problem.

y=a‘for 0<a<]——
y=a*for a>1——

-2

Figure 4.30 The function y = a*.

Pierre de Fermat (1601-1665) devised a method of finding the tangent line at a given
point (x, y) on a curve by constructing the subtangent, defined as the line segment
between the point where the tangent line intersects the x-axis and the point (x, 0).
(See Figure 4.29.)

Fermat’s procedure essentially amounted to finding the slope of the tangent line
by considering the secant line through two points: (x, y) and a nearby point of the
graph of y = f(x). After computing the slope of the secant line, he set the two
points he used to compute the slope equal to each other, thus obtaining the slope
of the tangent line. This sounds very much like the definition of the derivative that
we use today, and, in fact, it is the same idea. Fermat did not, however, develop and
formalize a general framework for the differential calculus; that was done by Leibniz
and Newton.

Using the definition of derivatives, we can relate the subtangent to the slope of
the tangent at the corresponding point of the graph of y = f(x). Suppose the tangent
line at (x, y), where y = f(x), intersects the x-axis at (p(x), 0); the location of p(x)
depends on x. We set c(x) = x — p(x). This is the equation of the subtangent. We see
from Figure 4.29 that the slope of the tangent line at (x, y) is given by y/c(x). Since
the slope of the tangent line at (x, y) is the derivative of the function of the curve,
evaluated at x [i.e., f/(x)], we find that

dy _ ¥
dx c(x)

A natural problem (which was posed to Descartes by Debaune in 1639) is to find
a curve whose subtangent is a given constant. That is, we wish to find the function
y = f(x) that satisfies

dy _y

dx ¢
where c is a constant other than 0. (This problem was solved by Leibniz in 1684, when
he published his differential calculus for the first time.) In words, we are looking for
a function y = f(x) whose derivative is proportional to the function itself. As we
will see next, exponential functions are the solutions to this problem.

Recall from Section 1.2 that the function f is an exponential function with base
aif
fx)=a", xeR

where a is a positive constant other than 1. (See Figure 4.30.) We can use the formal
definition of the derivative to compute f”(x):

fath—f@ _ @t —a

d
f(x) = Eax = lim

h—0 h h—0

. ax(a"—l) . a"—1
=lim —— =a' lim

h—0 h h—0

In the final step, we were able to write the term a” in front of the limit because a*
does not depend on 4. Thus, we are left with investigating

a"—1

lim

h—0

We first note that this limit does not depend on x. If we assume that the limit exists,

then it follows that it is equal to f’(0). To see why, use the formal definition of the

derivative to compute f’(0). (It can be formally shown that the limit exists, but doing
so is beyond the scope of this course.)

It follows from the preceding calculation that if f/(0) exists, then f’(x) exists and

fix) = a* f0)
fx)
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Figure 4.31 The function y = e*.
The slope of the tangent line at

x=0ism=1.
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This equation shows that the exponential function is a function whose derivative
is proportional to the function itself, provided that that f’(0) exists. [The constant
of proportionality is f’(0).] That is, exponential functions solve the subtangent
problems just mentioned. We single out the case where the value of the base a is
such that

a" -1

lim
h—0

is equal to 1. We denote this base by e. The number e is thus defined by

h
-1
lim & =1 (4.7)
h—0
We find, for the derivative of f(x) = e*, that
d
—e' =¢" 4.8
5 =€ (4.8)

A graph of f(x) = e* is shown in Figure 4.31. The domain of this function is
R and its range is the open interval (0, c0). (In particular, ¢* > 0 for all x € R.)
Denoting by e the base of the exponential function for which (4.7) and (4.8) hold is
no accident; it is indeed the natural exponential base that we introduced in Section
1.2. Although we cannot prove this here, a table should convince you: With ¢ =
2.71828 ..., we find that

h 0.1 0.01 0.001 0.0001

ehh_ ! 1.0517 1.0050 1.00050 1.000050

Now recall that there is an alternative notation for ¢*, namely, exp[x]. Using the
identity

a® = exp[lna”]
and the fact that Ina® = x Ina, we can find the derivative of a* with the help of the
chain rule:

d 4 [Ina*] d [xIna]
_ = — X n = — €X n
dxa dx ptina dx plrina

=exp[xInallna = (Ina)a*

That is, we have

d
—a* = (Ina)a”* (4.9)
dx

which allows us to obtain the following identity:
h
-1
lim
h—0

=Ina (4.10)

Find the derivative of f(x) = e /2,

We use the chain rule:

Flx)=e 7 (——) = —xe P ]
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EXAMPLE 2

Solution

EXAMPLE 3

Solution

EXAMPLE 4

Solution

EXAMPLE 5

Find the derivative of f(x) = 3V,
We can use (4.9) and the chain rule to get

d 1
2 3vE — (In3)3VF ——
dx (n3) 2./x

However, since every exponential function can be written in terms of the base e, and
the differentiation rule for ¢* is particularly simple (%ex = ¢%), it is often easier to
rewrite the exponential function in terms of e and then differentiate. That is, we write

3V¥ = exp[In3V¥] = exp[+/x In 3]
Then, using the chain rule, we obtain

d In3 In3
I exp[v/xIn3] = znﬁ exp[v/xIn3] = %3‘/’7 n

Since we must frequently differentiate functions of the form y = €8, we state
this differentiation in a separate rule. Using the chain rule, we have

d
d—eg(x) = g/(x)es™ (4.11)
x

Find the derivative of f(x) = exp[sin \/x].

We set g(x) = sin 4/x. To differentiate g(x), we must apply the chain rule:
1

2/x

Using Equation (4.11), we can now differentiate f(x):

d
7 8(x) = (cos V)
X

1

NG exp[sin v/x] m

d
d—f(x) = (cos v/x)
x

Here is an example that shows how (4.10) is used:

Find
32 —1
lim

h—0

We make the substitution / = 2/ and note that/ — 0 as &7 — 0. Then

o331 31
lim = lim
o h 1—o0 /2
3 —
=2Ilim =2In3 |
1—0

The exponential function with base e appears in many scientific problems; the
next example involves radioactive decay.

Radioactive Decay Find the derivative of the radioactive decay function, which
describes the amount of material left after ¢ units of time. (See Example 10 in
Subsection 1.2.5.) The function is

W)= Wee™, >0
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where W is the amount of material at time 0 and A is called the radioactive decay
rate. Show that W (¢) satisfies the differential equation

aw
— =AW
o (t)
‘We use the chain rule to find the derivative of W (¢):
d —it
— W) = Woe "' (=))
dt ——
W)
That is,
aw _ AW (1)
dr

In words, the rate of decay is proportional to the amount of material left. This
equation should remind you of the subtangent problem; there, we wanted to find
a function whose derivative is proportional to the function itself. That is exactly the
situation we have in this example: The derivative of W (¢) is proportional to W(¢). m

Exponential Growth Find the per capita growth rate of a population whose size N (¢)
at time ¢ follows the exponential growth function

N(t) = N(0)e""

where N (0) is the population size at time 0 and r is a constant.

We first find the derivative of N (¢):

dN
PR — N O rt
o O)re
Since N (0)e’" = N(t), we can write
dN NG)
—=r
dt

Thus, the per capita growth rate of an exponentially growing population is constant;
that is,
1 dN

—— =7 | |
N dt

Section 4.6 Problems

Differentiate the functions in Problems 1-52 with respect to the 23.

independent variable.

F(x) = cos(3x — ¥ 1)
f(x) = exp[x? — 2cos x]

f(x) = sin(e* + x) 24.
25. f(x) = exp[x — sinx] 26.

1. f(x)=e* 2. f(x)=e % 27. g(s) = exp[secs?] 28. g(s) = exp[tans?]
3. f(x) =de'™ 4. f(x) =3e>> 29. f(x) = e*sin® 30. f(x) = el ¥
5. f(x) — e—2x2+3x—1 6. f(x) — e4x2—2x+1 31 f(x) _ _3ex2+lanx 3. f(x) — Dpmrsec(3y)
7. f(x) =0+ 8. f(x) = e 3D 3. fx)=2" 4. fx)=3"

9. f(x) =xe 10. f(x) =2xe™™ 35. f(x) =21 36. f(x) =3""

1. f(x) = 2 12. f(x) = Bx2 — D! 3. fx) =5V>! 38. f(x) =3V
13, f(x) =15 W fx) =2 39. f(x) = 2;2“ 4. f(x) = 3134

15, f@) = G5 16, f() = . hn =2 42. hir) = 4"

17. f(x) = ™3 18. f(x) = e 3. f(x)=2" a4, f(x) =3V
19. f(x) = e D 20. f(x) = e 45. f(x) =21 46. () =aV12"
21. f(x) =sin(e") 22. f(x) = cos(e) 47. h(t) = 34 48. h(t) = 6*/m



182 Chapter 4 m Differentiation

49. g(x) = 2%cosx 50. g(r) =273
51 g(r) =3" 52. g(r) =4"
Compute the limits in Problems 53-56.

2h 1 Sh __ 1
53. 1im & 54, 1im &
h—0 h—0
e —1 h_
55. lim —— 56. lim

w0 h h—0

57. Find the length of the subtangent to the curve y = 2* at the
point (1, 2).
58. Find the length of the subtangent to the curve y = exp[x?] at
the point (2, e*) .
59. Population Growth Suppose that the population size at time
tis

N(@r) = é¥,
(a) What is the population size at time 0?
(b) Show that

t>0

dN
— =2N
dt
60. Population Growth Suppose that the population size at time
tis
N(t) = Nye'', t>0

where N, is a positive constant and r is a real number.
(a) What is the population size at time 0?

(b) Show that

dN
— =rN
dt

61. Bacterial Growth Suppose that a bacterial colony grows in
such a way that at time ¢ the population size is

N(t) = N(0)2'

where N (0) is the population size at time 0. Find the rate of growth
dN/dt. Express your solution in terms of N(¢). Show that the
growth rate of the population is proportional to the population
size.

62. Bacterial Growth Suppose that a bacterial colony grows in
such a way that at time ¢ the population size is

N(t) = N0)2

where N (0) is the population size at time 0. Find the per capita
growth rate.

63. Logistic Growth
(a) Find the derivative of the logistic growth curve (see Example
3in Section 3.3)

K
K —r
1+(m—1>€ !

where r and K are positive constants and N (0) is the population
size at time 0.

(b) Show that N () satisfies the equation
dN

N
=rN|(1—-—
dt ( K)

[Hint: Use the function N (z) given in (a) for the right-hand side,
and simplify until you obtain the derivative of N(¢) that you
computed in (a).]

N(t) =

(c) Plot the per capita rate of growth % %’ as a function of N, and

note that it decreases with increasing population size.

64. Fish Recruitment Model The following model is used in the
fisheries literature to describe the recruitment of fish as a function
of the size of the parent stock: If we denote the number of recruits
by R and the size of the parent stock by P, then

R(P)=aPe ™, P>0
where o and B are positive constants.
(a) Sketch the graph of the function R(P) when 8 = land o = 2.

(b) Differentiate R(P) with respect to P.
(¢) Find all the points on the curve that have a horizontal tangent.

65. Von Bertalanffy Growth Model The growth of fish can be
described by the von Bertalanffy growth function

L(x) = Log = (Log — Lo)e™

where x denotes the age of the fish and k, L, and L are positive
constants.
(a) SetLy =1and L. = 10. Graph L(x) fork = 1.0andk = 0.1.

(b) Interpret Lo, and L,.

(¢) Compare the graphs for k = 0.1 and k = 1.0. According to
which graph do fish reach L = 5 more quickly?

(d) Show that
4L 0) = k(Lo — L))
dx

That is, dL/dx o« L — L. What does this proportionality say
about how the rate of growth changes with age?

(e) The constant k is the proportionality constant in (d). What
does the value of & tell you about how quickly a fish grows?

66. Radioactive Decay Suppose W (¢) denotes the amount of a
radioactive material left after time # (measured in days). Assume
that the radioactive decay rate of the material is 0.2/day. Find the
differential equation for the radioactive decay function W (7).

67. Radioactive Decay Suppose W (¢) denotes the amount of a
radioactive material left after time 7 (measured in days). Assume
that the radioactive decay rate of the material is 4/day. Find the
differential equation for the radioactive decay function W (¢).

68. Radioactive Decay Suppose W(¢) denotes the amount of a
radioactive material left after time ¢ (measured in days). Assume
that the half-life of the material is 3 days. Find the differential
equation for the radioactive decay function W (7).

69. Radioactive Decay Suppose W(¢) denotes the amount of a
radioactive material left after time 7 (measured in days). Assume
that the half-life of the material is 5 days. Find the differential
equation for the radioactive decay function W (z).

70. Radioactive Decay Suppose W(¢) denotes the amount of a
radioactive material left after time 7. Assume that W(0) = 15 and
that

dw

(a) How much material is left at time t = 2?

(b) What is the half-life of this material?

71. Radioactive Decay Suppose W (¢) denotes the amount of a
radioactive material left after time . Assume that W(0) = 6 and

that

aw
= 3w
7 ()

(a) How much material is left at time ¢ = 4?
(b) What is the half-life of the material?



72. Radioactive Decay Suppose W(¢) denotes the amount of a
radioactive material left after time 7. Assume that W(0) = 10 and
W) =8.

(a) Find the differential equation that describes this situation.
(b) How much material is left at time ¢ = 5?

(¢) What is the half-life of the material?
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73. Radioactive Decay Suppose W(¢) denotes the amount of a
radioactive material left after time 7. Assume that W(0) = 5 and
w1 =2.

(a) Find the differential equation that describes this situation.
(b) How much material is left at time ¢ = 3?

(¢) What is the half-life of the material?

B 4.7 Derivatives of Inverse Functions, Logarithmic Functions, and the Inverse

Tangent Function

Recall that the logarithmic function is the inverse of the exponential function. To find
the derivative of the logarithmic function, we must therefore learn how to compute
the derivative of an inverse function.

B 4.7.1 Derivatives of Inverse Functions

We begin with an example (Figure 4.32). Let f(x) = x?, x > 0. We computed the
inverse function of f in Subsection 1.2.6. First note that f(x) = x?, x > 0, is one
to one (use the horizontal line test from Subsection 1.2.6); hence, we can define its
inverse. We repeat the steps from Subsection 1.2.6 to find an inverse function. [Recall
that we obtain the graph of the inverse function by reflecting y = f(x) about the line

y=x]
1. Write y = f(x):

2. Solve for x:

x=\5
3. Interchange x and y:

y=~x

Since the range of f(x), which is the interval [0, 00), becomes the domain for the
inverse function, it follows that

flx)=+x forx>0

We already know the derivative of 4/x, namely, 1/(2./x). But we will try to find the
derivative in a different way that we can generalize to get a formula for finding the
derivative of any inverse function. Let g(x) = f~'(x). Then

(f o)) = flg)] = (Vx)* = x,

x>0

N
35 N 7

25+ e N
15 ’

05+,

Figure 4.32 The function y = x2, x > 0, and its inverse
function y = 4/x, x > 0.
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Therefore, the derivatives of (1/x)? and x must be equal. Applying the chain rule, we
find that

L W
dx dx

Since %x = 1, we obtain

d
2J/x—A/x =1
dx

or, for x > 0,
d 1
JE— X = ——
dx v 2%

To prepare for how the derivatives of a function and its inverse function are
related geometrically, look at Figure 4.32, where the slope at the point (2,4) of
f(x) = x?is m = 4 and the slope at the point (4,2) of f~'(x) = J/xism = 1/4.
We will also find this reciprocal relationship of slopes at related points in the general
case.

The steps that led us to the derivative of 4/x can be used to find a general formula
for the derivatives of inverse functions. We assume that f(x) is one to one in its
domain. If g(x) is the inverse function of f(x), then f[g(x)] = x. Applying the
chain rule, we find that

d
d—f[g(X)] = f'lg()]1g'(x)
X

Since %x = 1, we obtain

flg(0)lg'(x) =1
If f'[g(x)] # 0, we can divide by f'[g(x)] to get

1
g = ———=
SIg(x)]
Because g(x) = f!(x) and g'(x) = Lg(x) = & f~!(x), we obtain the following

rule:

Derivative of an Inverse Function If f(x) is one to one and differentiable with
inverse function f~'(x) and f'[f~'(x)] # 0, then f~'(x) is differentiable and

d 1
- e 412
o’ T T $50

This reciprocal relationship is illustrated in Figure 4.33.

Y Slope f'(a)

S

X o= — -

VE))

Sl A (F 1 "(b) = _ = !
ope (f 71'(b) e

0 X

Figure 4.33 The graphs of y = f(x) and its inverse function
y = f1(x) have reciprocal slopes at the points (a, b) and
(b, a).
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We return to the example of f(x) = x%, x > 0, where f i x) =%, x >0,to
illustrate how to use (4.12). Now, f’(x) = 2x and we need to evaluate

ff Wl = fIvx) =2V
To apply the formula, we assume that f'[ f ~'(x)] # 0. Then
d

1
T x_2\/)_c forx >0
Looking at the graphs of y = x? and y = /x, x > 0, we easily see why f~!(x) is not
differentiable at x = 0. [Recall that we obtain the graph of the inverse function by
reflecting y = f(x) about the line y = x.] If we draw the tangent line to the curve
y = x? at x = 0, we find that the tangent line is horizontal; that is, its slope is 0.
Reflecting a horizontal line about y = x results in a vertical line, for which the slope
is not defined (Figure 4.32).

The formula for finding derivatives of inverse functions takes on a particularly
easy to remember form when we use Leibniz notation. To see this, note that (without
interchanging x and y)

y=fx) < x=f"'0)

and hence

dx

1
dy_%

This formula again emphasizes the reciprocal relationship. We illustrate the formula

with the example

y=x> &= x=.py

for x > 0. Since % = 2x, we have

dx

1
dy _ dy
dy o 2x 2y

That is,

d 1

_— y e —

dy 2y
The answer is now in terms of y, because we did not interchange x and y when we
computed the inverse function. If we now do so, we again find that

d 1
5ﬁ_2ﬁ

Let
X
=—— f >0
S x) 5 orx=

Find 2 f 71 (0] _1-

To show that f~!(x) exists, we use the horizontal line test and conclude that f(x) is
one to one on its domain, since each horizontal line intersects the graph of f(x) at
most once. (See Figure 4.34.)

We can actually compute the inverse of f(x). This will give us two different
ways to compute the derivative of the inverse of f(x): We can compute the inverse
function explicitly and then differentiate the result, or we can use the formula for
finding derivatives of inverse functions. We begin with the latter way.
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y
1k

0.8
0.6
0.4
0.2

0
0 2 4 6 8

10 12 14 x

Figure 4.34 The graph of
fx) = xL-l—l for x > 0.

EXAMPLE 2

Solution

1. To use the formula (4.12), we need to find f _1(%); this means that we need to

find x so that f(x) = 1/3. Now,

X
1+x

= implies that 2x =1, or X =

N[ =

Therefore, f ‘l(é) = % Formula (4.12) thus becomes

d 1 1
d—f (x) = — = —
* =5 U G

We use the quotient rule to find the derivative of f(x):

O +x) —x@) 1

= 1 +x)? T U+x)2

Atx =1/2,f'(3) = @W = 5. Therefore,

i*l() — _2
dxf xxz— 4

W =
ol =

X

. We can compute the inverse function: Set y = = Then, solving for x yields

+x°

Since the domain of f(x) is [0, c0), the range of f is [0, 1). Now, the range of
f becomes the domain of the inverse; therefore, the inverse function is

] X
f (x)——1 for0<x <1
—Xx

We use the quotient rule to find % £ x):

d _ DA —x) — )= 1
— ) = ; = ;
dx (1I—-x) (1—x)
Therefore,
L i) L2
R X _——_— = =
dx x=} 1-1/3% 4
which agrees with the answer in part (1). ]

The inverse cannot always be computed explicitly, as the next example shows.

f(x) =2x+¢" forx eR

Find £ f~'(x)| _,.

In this case, it is not possible to solve y = 2x + e* for x. Therefore, we must use
(4.12) if we wish to compute the derivative of the inverse function at a particular
point. Equation (4.12) becomes

d o
R I Ty =TeTy



EXAMPLE 3

Solution
y tan x
4 4
2 4
} } }
05 1 15 x

Figure 4.35 The function
f(x) =tanx, (=%, 7),is one to one
on its domain.

EXAMPLE 4

Solution
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We need to find f'(x):
flx)y=2+e"
Since f(0) = 1, it follows that f~!(1) = 0, and, hence,

1 1 1 1
= |

] 0 2+1 3

The next example, in which we again need to use (4.12), involves finding the
derivative of the inverse of a trigonometric function.

. d p—
Let f(x) =tanx, —% <x < 5. Find 5~ f l(x)|x:1.

Since f(7) = tan 7 = 1, it follows that 1) = 7- Recall that f"(x) = sec? x. We
therefore have

o1
R T T C T I sec*(%)

2

(T 1 1
=cos |[—)=(=vV2]) == [

(3)-() -3
If we define f(x) = tanx on the domain (-7, 7), then f(x) is one to one, as
can be seen from Figure 4.35. (Use the horizontal line test.) The range of f(x) is
(—o00, 00). We cannot use algebra to solve y = tan x for x; instead, the inverse of the
tangent function gets its own name. It is called y = arctanx (or y = tan~! x) and its

domain is (—00, 00). In the next example, we will find the derivative of y = arctan x,
which will turn out to have a surprisingly simple form.

d .4
Ef (x)

Let f(x) =tanx, -7 < x < 7. Find %ffl(x)'

Asmentioned previously, f~!(x) exists, since f(x) is one to one on its domain. Recall

that
d

— tanx = sec’ x
dx

The inverse of the tangent function is denoted by tan~!' x or arctan x. (Note that
tan~! x is different from ﬁ The superscript “—1” refers to the function being an
inverse function.) We set y = arctan x (and hence x = tan y). Then

dy d 1 1 1 1
—— = ——arctanx = — = — =—5— = 5
dx X d_; Etany sec”y 1+ tan”y

where we used the trigonometric identity sec’ y = 1+ tan’ y to get the denominator
in the rightmost term. Since x = tan y, it follows that x? = tan? v, and, hence,

11
l1+tan’y 1+x2

Therefore,
d 1

— arctanx =
dx 14 x2

The result in the preceding example is important, and we summarize it in the
following box:

d d 1 1
—arctanx = —tan x =
X 1+ x2
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The derivative of the inverse sine function, y = arcsin x, is discussed in Problem
22 of this section. We list it here:

: N 1
— arcsinx = —sin~ ' x =

dx dx /1 — 52

The derivatives of the remaining inverse trigonometric functions are listed in the
table of derivatives on the inside back cover of the book.

W 4.7.2 The Derivative of the Logarithmic Function

We introduced the logarithmic function to the base a, log, x, as the inverse function
of the exponential function a¢* (Figures 4.36 and 4.37). We can therefore use the
formula for derivatives of inverse functions to find the derivative of y = log, x. Since
1 In x
0g,x = —
Sa Ina
and Ina is a constant, it is enough to find the derivative of In x (Figure 4.38). We set
f(x) = e;then f'(x) =e* and f~'(x) = In x. Therefore,

d d 1 1 1

—Inx = — -1 x)| = = = —
dx dx L @] FIfYx)]  expllnx] x
G
X ===
log, x
-3 5 6 x
Figure 4.36 The function y = log, x as the inverse Figure 4.37 The function y = log, , x as the inverse

function of y = 2*.

function of y = (%) .

In x

Figure 4.38 The natural logarithm y = In x as the
inverse function of the natural exponential function
y=e".
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Solution

EXAMPLE 6

Solution

EXAMPLE 7

Solution

EXAMPLE 8

Solution
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‘We summarize this differentiation rule in the following box:

189

—Inx = —
dx X

1

- (Ina)x

—1
dx 08y X

Find the derivative of y = In(3x).

We use the chain rule with u = g(x) = 3x and f(u) = Inu:
dy _dydw 1, 3 _1
dx dudx u 3x x
If you are surprised that the factor 3 disappeared, note that
y=In(Bx) =In3+Inx

Since In 3 is a constant, its derivative is 0. Hence,
d(l3+1 ) dl3+dl 0+1 !
—(In nx)=—In —Inx = —=—
dx dx dx X X

Find the derivative of y = In(x*> + 1).

We can use the chain rule with u = g(x) = x> + 1 and f(«) = In u. We obtain

_dfdu 1 1 2x

!

_ = —2x = 2x =
Y dudx u x2 41 x24+1

The preceding example is of the form y = In f(x). We will frequently encounter
such functions; to find their derivatives, we need to use the chain rule, as shown in

the following box:

J'(x)
)

dl _
T Sl =

Differentiate y = In(sin x).

This function is also of the form y = In f(x), with f(x) = sin x. Since

d .
—sinx = coSx
dx
it follows that
dy cosx
—_ = — = cotx
dx sin x

Differentiate
y = In(tanx + x)

This function is of the form y = In f(x) with f(x) = tanx + x. Thus,

, sec’x +1

tanx 4+ x
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EXAMPLE 9

Solution

EXAMPLE 10

Solution

EXAMPLE 11

Solution

Differentiate
y = log(2x® — 1)
This function is of the form y = log f(x) with f(x) = 2x3 — 1. The logarithm is to

base 10. Hence,
1 6x2

T 10233 —1

!

y

B 4.7.3 Logarithmic Differentiation

In 1695, Leibniz introduced logarithmic differentiation, following Johann Bernoulli’s
suggestion to find derivatives of functions of the form y = [f(x)]*. Bernoulli
generalized this method and published his results two years later. The basic idea is
to take logarithms on both sides and then to use implicit differentiation.

Find % when y = x*.
We take logarithms on both sides of the equation y = x*:
Iny =Inx*
Applying properties of the logarithm, we can simplify the right-hand side to In x* =
x In x. We can now differentiate both sides with respect to x. Since y is a function of

x, we need to use the chain rule to differentiate In y (as we learned in the section on
implicit differentiation):

4 [Iny] = % [xInx]

dx

1d 1

A P +x—

ydx X
d
a = y[llnx 4+ 1]
dx
d
2 (nx 4+ Dx* -
dx

If the function y = x* looks strange, write it as
y =x" = exp[Inx*] = exp[x Inx]

That is, y = e*™*. We can differentiate this function without using logarithmic
differentiation; that is,

d d
o e (xInx)
dx dx

1
= ¢*lnx (1 -Inx —{-x—)

X
=" (Inx +1)

Either approach will give you the correct answer.

Find the derivative of y = (sinx)*.

We take logarithms on both sides of the equation and simplify:

Iny = x In(sin x)
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Differentiating with respect to x yields

;ix [Iny] = ;ix [x In(sin x)]

1dy . d .
—— =1"-In(sinx) + x—[In(sin x)]
ydx dx

COS X

= In(sinx) + x —
sin x

= In(sinx) + x cotx
Hence, after multiplying by y and substituting (sin x)* for y, we obtain

d
& [In(sin x) + x cot x] (sin x)* ]

dx

The next example should convince you that logarithmic differentiation can
simplify finding the derivatives of complicated expressions.

EXAMPLE 12 Differentiate
exx3/2 /1 +x

T (2 +3)%(3x —2)

Solution  Without logarithmic differentiation, differentiating y would be rather difficult.
Taking logarithms on both sides, however, we can simplify the right-hand side.
Note that it is very important that we apply the properties of the logarithm before
differentiating, as this will simplify the expressions that we must differentiate. We
have

y

X3 M+ x

(x2+3)*Bx —2)3
=Ine* +Inx*? +Iny/1+x — In(x? 4+ 3)* — In(3x —2)°

Iny =1In

3 1
:x—{—zlnx—l-Eln(1+x)—4ln(x2+3)—31n(3x—2)

This no longer looks so daunting, and we can differentiate both sides:

dx dx 2
1d 31
Yy

d d 3 1
—[Iny]= — [x + >Inx + E1n(1 +x) —4In(x* +3) — 3In(3x —2)}

4 +1 1 4 2x 3 3
ydx 2x  21+x x2+3 3x —2

Finally, solving for dy/dx yields

dy <1+ 3 1 8x 9 ) e x32 /1 +x

dx 2x (x2 +3)*Bx — 2)3

2x+2(1+x)_x2+3_3x—2

We can also use this method to prove the general power rule (as promised in
Section 4.3).

Power Rule (General Form) Let f(x) = x", where r is any real number. Then

") — r—1
dx(x) rx
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Proof We set y = x" and use logarithmic differentiation to obtain

Solving for dy/dx yields

d d
[Iny] = — [Inx"]

dx X

1d d
o —[rinx]

ydx dx

1dy 1

ydx  x

d 1 1

_yzr_yzr—xrzrxr_l |
dx X X

Section 4.7 Problems

m4.71

In Problems 1-6, find the inverse of each function and differentiate
each inverse in two ways: (i) Differentiate the inverse function
directly, and (ii) use (4.12) to find the derivative of the inverse.

L f@=y2x+Lx>—1 2 f)=/r—Lx>1

3. f)=2x2—-1,x>0 4. f(x)=3x24+2,x>0
22— 1

5. f)=3-2%x>0 6. fx) == S 1
o

In Problems 7-22, use (4.12) to find the derivative of the inverse at
the indicated point.

7. Let

fx)y=2x>=2, x>0
Find L f~!(x)| _,. [Note that f(1) = 0.]
8. Let

fx)=—x>4+7, x>0
Find & f~'(x)| __,.[Note that f(2) = —1.]
9. Let

fx)y=y/x+1, x>0

Find 7o f~'(x)[ _,- [Note that f(3) = 2.]

10. Let

fx)=+/2+x% x>0
Find £ 1(x)y . [Note that f(1) = ,/3.]
11. Let

fx)=x+e", xeR
Find £ f~'(x)| _,. [Note that f(0) = 1]
12. Let

f)=x+mnx+1), x>-1

Find %f”(x)tczo. [Note that f(0) = 0.]
13. Let

f(x)=x —sinx, xe€R

Find 4 f~1(x)| __.[Note that f(7) = 7.]

14. Let

f(x)=x —cosx, xeR
Find £ f~'(x)| __,.[Note that f(0) = —1.]
15. Let

= 2 t s S _z!z
f(x)=x"+tanx, «x >3

Find <& f~'(x)| _,. [Note that f(0) = 0.]

16. Let

3

f(x) =x*+tanx, xe (—

SR
SR

)

Find %f‘l(x)h:%ﬂ. [Note that f(Z) = = + 1]

17. Let f(x) =
x =—In2.

18. Let f(x) = In(tanx),0 < x < /2. Flnd wf Ix)atx = M
19. Let f(x) =x"+x+1, -1 <x < 1. Fmd—f lx)atx = 1.
20. Let f(x) = e 4 x. Fmd o f Lx)atx =1.

21. Let f(x) =e* 22 4 0x. F1nd d—xf (x)atx =1.

22. Denote the inverse of y = sinx, —% < x < %, by y =

arcsinx, —1 < x < 1. Show that

In(sinx), 0 < x < 7/2. Find £t f~'(x) at

-1<x<1

— arcsinx = s
d 1—x

m 4.7.2

In Problems 23-60, differentiate the functions with respect to the
independent variable. (Note that log denotes the logarithm to base
10.)

23, f(x)=1In(x+1) 24, f(x) =InGx + 4)

25. f(x) = In(1 — 2x) 26. f(x) = In(4 — 3x)

27. f(x) =Inx? 28. f(x) =In(1 — x?)

29. f(x) =In(2x® —x) 30. f(x) =In(1 —x%)

3. f(x) = (Inx)? 32. f(x) = (Inx)?

33. f(x) = (Inx?)? 34. f(x) = (In(1 — x?%))?

35. f(x) =Inyx2+1 36. f(x) =In/2x% —x

2x

37. f(x) :lnx—i-l 38. f(x) :ln1+x2
—X x*—1

39. f(x)=ln1+2x 40. f()c):lnx3_1

41. f(x) = exp[x —Inx] 42. g(s) = exp[s® +Ins]
43. f(x) = In(sinx) 44. f(x) =In(cos(l —x))
45. f(x) = In(tan x?) 46. g(s) = In(sin®(3s))
47. f(x) =xInx 48. f(x) =x%Inx?
4. f(r) = 0F 50. h(t) = 0L

X 1+12
51. h(r) = sin(In(37)) 52. h(s) = In(Ins)



53. f(x) =1In|x? 3|
55. f(x) =log(1 — x?)

54. f(x) =log(2x* —1)
56. f(x) =log(3x> —x +2)

57. f(x) = log(x® — 3x) 58. f(x) = log(y/tan x2)
59. f(u) = 10g3(3 + u4) 60. g(S) — ]Og5(3'v _ 2)

61. Let f(x) = Inx. We know that f'(x) = )17 We will use this
fact and the definition of derivatives to show that

) 1 n
lim (1 + 7> =e
n—o0o n

(a) Use the definition of the derivative to show that

/(1) = lim M

h—0
(b) Show that (a) implies that

In[lim(1 + A" =1

h—0

(c) Seth = % in (b) and let n — oo. Show that this implies that

) 1 n
lim (1 + 7> =e
n—oo n
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62. Assume that f(x) is differentiable with respect to x. Show

that
d ) |:f(x):| flx) 1
“In - _

dx T f) x

X

m4.7.3

In Problems 63-74, use logarithmic differentiation to find the first
derivative of the given functions.

63. f(x) =2x" 64. f(x) = (2x)*
65. f(x) = (Inx)* 66. f(x) = (Inx)*
67. f(x) =x"* 68. f(x)=x2M*
69. f(x)=x* 70. f(x) =x3*
71y =x* 72. y = (x%)*

73, y = xeos 4. y = (cosx)*

75. Differentiate

e (9x —2)°

JE24+ D@ =7)

76. Differentiate
x—1

e sin® x

y= (X2 + 5>

M 4.8 Linear Approximation and Error Propagation

Suppose we want to find an approximation to In(1.05) without using a calculator.
The method for solving this problem will be useful in many other applications. Let’s
look at the graph of f(x) = Inx (Figure 4.39). We know that In1 = 0, and we
see that 1.05 is quite close to 1—so close, in fact, that the curve connecting (1, 0) to
(1.05,In1.05) is close to a straight line. This suggests that we should approximate the
curve by a straight line—but not just any straight line: We choose the tangent line
to the graph of f(x) = Inx at x = 1 (Figure 4.39). We can find the equation of the
tangent line without a calculator. We note that the slope of f(x) = Inx atx = 1is
') = )1—C|x:1 = 1. This, together with the point (1, 0), allows us to find the tangent

line at x = 1:

L)=f+fMOHx-1)=0+MDx-1)=x—1

Figure 4.39 The tangent line approximation for In x at
x =1 to approximate In(1.05). When x is close to 1, the
tangent line and the graph of y = Inx are close (see inset).
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We call L(x) the tangent line approximation, or the linearization, of f(x) atx = 1.
If we evaluate L(x) at x = 1.05, we find that L(1.05) = 1.05 — 1 = 0.05, which is a
good approximation to In 1.05 = 0.048790. ... (Here, we used the calculator to see
how close the approximation is to the exact value.)

The Tangent Line Approximation

Assume that y = f(x) is differentiable at x = a; then

L(x) = f(a) + f'(a)(x — a)

is the tangent line approximation, or the linearization, of f at x = a.

Geometrically, the linearization of f at x = a, L(x) = f(a) + f'(a)(x — a),
is the equation of the tangent line to the graph of f(x) at the point (a, f(a)). (See
Figure 4.40.)

If |x — a] is sufficiently small, then f(x) can be linearly approximated by L (x);
that is,

f) =~ fla)+ fa)x —a)

This approximation is illustrated in Figure 4.41.

y y
f)
L(x)
i }f'(a)(x —a)
| L | fx)
| y=ft | @
} L(x) = f(a) + f'(@)(x — a) } }
| | |
a X a X X
Figure 4.40 The tangent line approximation of y = f(x) at Figure 4.41 The linearization of f at x = a can be used to
X =a. approximate f(x) for x close to a.

EXAMPLE 1

Solution

(a) Find the linear approximation of f(x) = 4/x at x = a, and

(b) use your answer in (a) to find an approximate value of ,/50.

(a) Since f(x) = 4/, it follows that f’(x) = ﬁ;, and the linear approximation
atx =ais

L(x) = f(a) + f'(a)(x —a)

=\/E+$(x—a)

(See Figure 4.42.)

(b) To find the approximate value of f(50) = /50, we need to choose a value
for a close to 50 and for which we know +/a exactly. Our choice is a = 49. We thus
approximate f(50) by L(50) with a = 49 and find that

ﬁz\/@quso_ 7+ ~70714

49
2,/49 14
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Y Vi
L(x)

49 50 X

Figure 4.42 The linear approximation of f(x) = /x at
x =49 is the line y = L(x).

Using a calculator to compute /50 = 7.0711 ..., we see that the error in the linear
approximation is quite small. ]

EXAMPLE 2 Find the linear approximation of f(x) = sinx atx = 0.

Solution  Since f’(x) = cos x, it follows that

L(x) = f(0) + f'(0)(x —0)

=sin0+ (cos0)x = x

(Figure 4.43). That is, for small values of x, we can approximate sinx by x. This
approximation is often used in physics. (Note that x is measured in radians.) ]

—-1.5 + sin x
X

Figure 4.43 The linear approximation of y = sinx is
the line y = x.

EXAMPLE 3 Let N (1) be the size of a population at time ¢, and assume that the growth rate d N /dt
of the population is given by
dN

E=f(N)

where f(N) is a differentiable function with f(0) = 0. Find the linearization of the
growth rate at N = 0.

Solution We need to find the tangent line approximation of f(N) at N = 0. If we denote the
linearization of f(N) by L(N), we obtain

L(N) = f(0) + f'(OON
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EXAMPLE 4

Solution

Now, f(0) = 0. If we set r = f/(0), we find that, for N close to 0,
dN

a7 rN
The preceding formula shows that the population changes approximately exponen-
tially when its size is small. This behavior is observed, for instance, when bacteria are
grown in a nutrient-rich environment at a low population density.
We choose f(0) = 0 for biological reasons: When the population size is 0, the
growth rate should be 0; otherwise, we would have spontaneous creation if f(0) > 0,
or the population size would become negative if f(0) < 0. ]

Let N(¢) (measured in millions) be the size of a bacterial population at time ¢, and
assume that the per capita growth rate is equal to 2%. We can express this statement
in a differential equation, namely,

1 dN

—— =0.02

N dt
Suppose we know that at time ¢+ = 10 the size of the population is 250,000,000; that
is, N(10) = 250 (since we measure the population size in millions). Use a linear
approximation to predict the approximate population size at time ¢t = 10.1.

To predict the population size at time 10.1, we use the following linearization of N (¢)
att = 10:
L(t) = N(10) + N'(10)(t — 10)

To evaluate L(¢) at r = 10.1, we need to find N'(10).
Using the differential equation, we find that

N'() = (0.02)N (1)
When ¢t = 10, we obtain
N'(10) = (0.02) N (10) = (0.02)(250) =5
Hence,

L(10.1) = N(10) + N'(10)(10.1 — 10)
=250 + (5)(0.1) = 250.5

Thus, we predict that the population size at time 10.1 is approximately 250,500,000.
Note that this approximation is good only if the time at which we want to predict the
population size is very close to the time at which we know the population size. ]

Error Propagation Linear approximations are used in problems of error propaga-
tion. Suppose that you wish to determine the surface area of a spherical cell. Since
the surface area S of a sphere with radius r is given by

S = 4xr?

it suffices to measure the radius r of the cell. If your measurement of the radius is
accurate within 3%, how does this affect the accuracy of the surface area?

First we must discuss what it means for a measurement to be accurate within
a certain percentage. Suppose that xy is the true value of an observation and x is
the measured value. Then |Ax| = |x — x| is the absolute error, or tolerance, in
measurement. The relative error is defined as |Ax/xy| and the percentage error as
100]| Ax /x|

Returning to our example, let’s find the error that arises in computing the surface
area. We start with the absolute error of the surface area,

[AS] = |S(ro + Ar) — S(ro)|



EXAMPLE 5

Solution

EXAMPLE 6

Solution
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where r is the true radius and |Ar| is the absolute error in the measurement of the
radius. We approximate S(ro+ Ar)— S(rg) by its linear approximation S’(ry) Ar; that
s,

AS ~ S (rg)Ar

Since §'(r) = 8xr, the percentage error in the measurement of the surface area is

100‘ AS | S’ (ro)Ar Ar || S (ro)ro
S(ro) S(ro) ro || S(ro)
2
Ar| |87y
—100| 2| |—3| =
To | |4mr,
——

=3 —

because 100|Ar/ry| = 3. In other words, the surface area is (approximately) accurate
within 6% if the radius is accurate within 3%. Where the doubling of the percentage
error comes from can be seen in the next example.

Suppose that you wish to determine f(x) from a measurement of x. If f(x) is given
by a power function, namely, f(x) = cx’, how does an error in the measurement of
X propagate?

Since f/(x) = csx*~!, we have

Af &~ f'(x)Ax = csx* T Ax

The percentage error 100 ‘%‘ is therefore related to the percentage error 100 |%|

as follows:
100 'A_f ~ 100 —f/(x)Ax = ﬁ f1x)x
f S ) x || fx)
Ax||csx?® Ax
=100 | — . =(100‘—D |s]
X cx X

In our previous example, s = 2; hence, the percentage error in the surface area
measurement is twice the percentage error in the radius measurement. ]

Allometric Growth Suppose that you wish to estimate the total leaf area of a tree
in a certain plot. Experimental data obtained from the plot you are studying (Niklas,
1994) indicate that

[leaf area] o [stem diameter]'®*

Instead of trying to measure the total leaf area directly, you measure the stem
diameter and then use the scaling relationship to estimate the total leaf area. How
accurately must you measure the stem diameter if you want to estimate the leaf area
within an error of 10%?

We denote the leaf area by A and stem diameter by d. Then
A (d) — Cd1‘84

where c¢ is the constant of proportionality. An error in measurement of d is
propagated as
AA~ A(d)Ad = c(1.84)d"¥ Ad

The percentage error 100 |ATA| is related to the percentage error 100 |A7d\ as

AA A(d)Ad Ad||A'(d)d
100 | =2 | ~ 100 | ——=2 | = 100 | = | | 22—
A A(d) d || A@)

Ad

=100 | —
d

c(1.84)d"%*d Ad
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EXAMPLE 7

Solution

We require that 100 |%| = 10. Hence,

Ad
10 = (1.84) (100 ‘TD

or

Ad| 10
100 == — =54
d | 184

That is, we must measure the stem diameter to within an error of 5.4%.
Using the result of Example 5, we could have found the same error immediately.
Since
Ad) = cd"®

we get s = 1.84, where s is the exponent defined in Example 5. Using
AA Ad
100 |— | =|s] { 100 | —
A d
we obtain
Ad 1 AA 10
100 | —|=— (100 |—| )| = — =
d s A 1.84
as before. ]
Suppose that you wish to determine the percentage error of f(x) from a

measurement of x, where f(x) = Inx, x = 10, and the percentage error for x is
equal to 2%. Find the percentage error of f(x).

The function f(x) is not a power function, so there is no simple rule. We find that

Af 100l WAx
f S )

|, we multiply and divide the right-hand side by x and

100

Since we know 100 |%
rearrange terms to get

oS @Ax A ()

10 =
fx) x  f(x)
Since f'(x) = 1/x, at x = 10 we obtain
A ! 10)(1/10 2
100 |22 X = 2( )(1/10) = ~ 0.869
X FO) |0 In10 In10
Thus, the percentage error of f is approximately 0.9%. [ ]

Section 4.8 Problems

In Problems 1-10, use the formula 7. sin <£ +0 02) 8. cos (l —0 01)
5 . . 2 .
f@)~ fla)+ fl@)(x —a) 9. In(1.01) 10. !
to approximate the value of the given function. Then compare your In Problems 11-30, approximate f(x) at a by the linear approxi-
result with the value you get from a calculator. mation
1. /65;let f(x) = /X,a = 64,and x = 65 ! L) = fl@)+ fa)x —a) :
2. /35 let f(x) = /x,a = 36,and x = 35 11. f(x)=1+ ata =0 12. f(x):1 ata =0
X —x
3. J124 4. (7.9)° 2 1
5. (0.99)% 6. tan(0.01) 13. f(x) = T x ata=1 14. f(x) = 3 ox ata =2



15. f(x):(l_:ix)zata:O 16. f(x):(l_lix)zata:O

17. f(x) =In(l14+x)ata=0 18. f(x) =In(1+2x)ata=0
19. f(x) =logxata=1 20. f(x) =log(l+x*)ata=0
2. f(x) =e*ata=0 22. f(x)=e*ata=0

23. fx)=eFata=0 24. fx)=eata=0

25. f(x)=e"lata=1 26. f(x)=e*ata=—1/2

27. f(x) = (1 +x)™" ata = 0. (Assume that n is a positive
integer.)

28. f(x) = (1 —x)™" ata = 0. (Assume that n is a positive
integer.)

29. f(x)=4/1+x*ata=0

1\ 74
30. f(x):(l—i—;) ata =1

31. Population Growth Suppose that the per capita growth rate
of a population is 3%; that is, if N(¢) denotes the population size
at time ¢, then

Suppose also that the population size at time ¢ = 4 is equal to
100. Use a linear approximation to compute the population size
attime t = 4.1.

32. Population Growth Suppose that the per capita growth rate
of a population is 2% that is, if N(#) denotes the population size
at time ¢, then

Suppose also that the population size at time t = 2 is equal to
50. Use a linear approximation to compute the population size at
time r = 2.1.

33. Plant Biomass Suppose that the specific growth rate of a
plant is 1%; that is, if B(¢) denotes the biomass at time ¢, then

1 dB
——— =10.01
B(t) dt
Suppose that the biomass at time ¢t = 1 is equal to 5 grams. Use a
linear approximation to compute the biomass at time t = 1.1.
34. Plant Biomass Suppose that a certain plant is grown along
a gradient ranging from nitrogen-poor to nitrogen-rich soil.
Experimental data show that the average mass per plant grown in
a soil with a total nitrogen content of 1000 mg nitrogen per kg of
soil is 2.7 g and the rate of change of the average mass per plant at
this nitrogen level is 1.05 x 1073 g per mg change in total nitrogen
per kg soil. Use a linear approximation to predict the average mass
per plant grown in a soil with a total nitrogen content of 1100 mg
nitrogen per kg of soil.

In Problems 35-40, a measurement error in x affects the accuracy
of the value f(x). In each case, determine an interval of the form

Lf(x) = Af, f(x) + Af]

that reflects the measurement error Ax. In each problem, the
quantities given are f(x) and x = true value of x £ |Ax|.

35. f(x) =2x,x=1=£0.1
36. f(x)=1—-3x,x=-2403
37. f(x)=3x%,x=2+0.1
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38, f(x) =4/x,x=104+0.5

39. f(x) =e*,x=24+02

40. f(x) =sinx,x =—-1£0.05

In Problems 41-44, assume that the measurement of x is accurate
within 2%. In each case, determine the error Af in the calculation
of f and find the percentage error 1OOA7.f. The quantities f(x) and
the true value of x are given.

41, f(x)=4x>,x =15 4. f(x)=x"*x=10

1
44. f(.x) = m,x =4

45. The volume V of a spherical cell of radius r is given by

43. f(x) =Inx,x =20

V(r) e
ry=—-mr
3

If you can determine the radius to within an accuracy of 3%, how
accurate is your calculation of the volume?

46. Poiseuille’s Law The speed v of blood flowing along the
central axis of an artery of radius R is given by Poiseuille’s law,

v(R) = cR?

where c is a constant. If you can determine the radius of the artery
to within an accuracy of 5%, how accurate is your calculation of
the speed?

47. Allometric Growth Suppose that you are studying reproduc-
tion in moss. The scaling relation

N L2A11

has been found (Niklas, 1994) between the number of moss spores
(N) and the capsule length (L). This relation is not very accurate,
but it turns out that it suffices for your purpose. To estimate the
number of moss spores, you measure the capsule length. If you
wish to estimate the number of moss spores within an error of
5%, how accurately must you measure the capsule length?

48. Tilman’s Resource Model Suppose that the rate of growth
of a plant in a certain habitat depends on a single resource —for
instance, nitrogen. Assume that the growth rate f(R) depends on
the resource level R in accordance with the formula

f(R)=a

k+ R

where a and k are constants. Express the percentage error of the
growth rate, 1OOA7f, as a function of the percentage error of the

resource level, 10048,
49. Chemical Reaction The reaction rate R(x) of the irreversible

reaction
A+B— AB

is a function of the concentration x of the product AB and is given
by
R(x) =k(a —x)(b —x)

where k is a constant, a is the concentration of A at the beginning
of the reaction, and b is the concentration of B at the beginning
of the reaction. Express the percentage error of the reaction rate,
IOOA—RR, as a function of the percentage error of the concentration
X, 100%.
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Chapter 4 Key Terms

Discuss the following definitions and

9. Basic rules of differentiation

18. Derivatives of exponential functions

concep ts ) . 10. ProdL.wt rule 19. Derivatives of inverse and

1. Derivative, formal definition 11. Quotient rule logarithmic functions

2. Difference quotient 12. Chain rule

3. Secant line and tangent line 13. Implicit function 20. Logarithmic differentiation

4. Instantaneous rate of change 14. Implicit differentiation 21. Tangent line approximation
5. Average rate of change 15. Related rates .

6. Differential equation 16. Higher derivatives 22. Error propagation

7. Differentiability and continuity 17. Derivatives of trigonometric 23. Absolute error, relative error,
8. Power rule functions percentage error

Chapter 4 Review Problems

In Problems 1-8, differentiate with respect to the independent
variable.

1. f(x)=—3x4+i+1 2. g(x) =
X

x

1
Jx3i+4

1—1\'""?
3. h(t) = (1_-1-t> 4, f(x) = (@>+ e
o (T _ sin(3s + 1)
5. f(x) = e sin ( 2x> 6. g(s) = —cos(3s)
7 fy =2t D 8. () = e~ In(x + 1)

In Problems 9-12, find the first and second derivatives of the given
functions.

9. f(x)=e ¥/ 10. g(x) = tan(x2 + 1)

e—)(
12. =
F& e +1

1L h(x) = XLH

In Problems 13-16, find dy/dx.

13. x%y — y*x =sinx 14. 0" =2x

15. In(x — y) =2x 16. tan(x — y) = x?

In Problems 17-19, find dy/dx and d*y /dx>.

17. x> +y?> =16 19. ¢’ =Inx

20. Assume that x is a function of . Find Z—f when y = cos x and
‘;—’t‘ = \/gforx = Z.

21. Velocity A flock of birds passes directly overhead, flying
horizontally at an altitude of 100 feet and a speed of 6 feet per
second. How quickly is the distance between you and the birds
increasing when the distance is 320 feet? (You are on the ground
and are not moving.)

22. Find the derivative of

18. x =tany

y =1In|cosx|

23. Suppose that f(x) is differentiable. Find an expression for the
derivative of each of the following functions:

(@) y=e/™ (b) y=Injf(x) © y=[fr
24. Find the tangent line and the normal line to y = In(x + 1) at
x =1

25. Suppose that

(a) Use a graphing calculator to graph f(x) for x > 0. Note that
the graph is S shaped.

(b) Find a line through the origin that touches the graph of f(x)
at some point (¢, f(c)) with ¢ > 0. This is the tangent line at
(c, f(c)) that goes through the origin. Graph the tangent line in
the same coordinate system that you used in (a).

In Problems 26-29, find an equation for the tangent line to the curve
at the specified point.

m b4
26. y = (sinx)** atx = > 27. y= e~ cosx at x = 3

28. >+ y=e'atx=,/e—1
29. xIny=ylhxatx =1

30. In Review Problem 17 of Chapter 2, we introduced the
following hyperbolic functions:

et —e™
sinhx:T, x eR
et +e*
coshx:T, xeR
et —e™
tanhx = —, xeR
e +e*

(a) Show that
d
— sinh x = cosh x
dx
and
d h inh
— cosh x = sin
7 X X

(b) Use the facts that

and
cosh®x —sinh?*x =1
together with your results in (a) to show that
d 1
——tanhx = ———
dx cosh” x

31. Find a second-degree polynomial
px) = ax>*+bx +¢
with p(—=1) =6, p’(1) = 8, and p”(0) = 4.
32. Use the geometric interpretation of the derivative to find the
equations of the tangent lines to the curve
Ppyi=1
at the following points:

(a (1,0) ®) (3, 3v3)



© (—3v2.-3V2) (@ (0, -1

33. Distance and Velocity Geradedorf® and Straightville are
connected by a very straight, but rather hilly, road. Biking from
Geradedorf to Straightville, your position at time ¢ (measured in
hours) is given by the function

s(t) =3t + 3(1 — cos(mt))

for 0 <t < 5.5, where s(t) is measured in miles.

(a) Use a graphing calculator to convince yourself that you
didn't backtrack during your trip. How can you check this?
Assuming that your trip takes 5.5 hours, find the distance between
Geradedorf and Straightville.

(b) Find the velocity v(#) and the acceleration a(t).

(¢) Use a graphing calculator to graph s(¢), v(¢), and a(z). In (a),
you used the function s(#) to conclude that you didn't backtrack
during your trip. Can you use any of the other two functions to
answer the question of backtracking? Explain your answer.

(d) Assuming that youslow down going uphill and speed up going
downhill, how many peaks and valleys does this road have?

34. Distance and Velocity Suppose your position at time ¢ on a
straight road is given by

s(t) = cos(mt)

for 0 <t <2, where ¢ is measured in hours.
(a) What is your position at the beginning and end of your trip?

(b) Use a graphing calculator to help describe your trip in words.
(¢) What is the total distance you have traveled?

(d) Determine your velocity and your acceleration during the
trip. When is your velocity equal to 0? Relate this velocity to your
position, and explain what it means.

35. Population Growth In one very simple population model, the
growth rate at time ¢ depends on the number of individuals at
time t+ — T, where T is a positive constant. (That is, the model
incorporates a time delay into the birthrate.) This assumption is
useful, for instance, if one wishes to take into account the fact that
individuals must mature before reproducing.

(3) Those who are curious may look up the words gerade and Dorf in a
German-English dictionary.
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Denote the size of the population at time ¢ by N(t), and

assume that
N _ Tk _NG—T)
dt 2T

where K and T are positive constants.

(a) Show that

(4.13)

N() = K + Acos 2
= COS —
2T

is a solution of (4.13).

(b) Graph N(¢) for K =100, A =50,and T = 1.

(¢) Explain in words how the size of the population changes over
time.

36. Radoactive Decay We denote by W () the amount of a
radioactive material left at time 7 if the initial amount present was
W(0) = W,.

(a) Show that

W(t) = Woe™
solves the differential equation

dw

— = —AW(t

T )

(b) Show that if you graph W (#) on semilog paper, then the result
is a straight line.

(¢) Use your result in (b) to explain why

dInW(t)
dt

= constant

Determine the constant, and relate it to the graph in (b).
(d) Show that

dln W(r)
—— = constant
dt
implies that
aw
— x W(t)
dt

37. Allometric Growth In Example 17 of Subsection 4.4.3, we
introduced an allometric relationship between skull length (in cm)
and backbone length (in cm) of ichthyosaurs, a group of extinct
marine reptiles. The relationship is

S = (1.162) B*9*

where § and B denote skull length and backbone length,
respectively. Suppose that you found only the skull of an
individual and that, on the basis of the skull length, you wish to
estimate the backbone length of this specimen. How accurately
must you measure skull length if you want to estimate backbone
length to within an error of 10%?



Applications of
Differentiation

LEARNING OBJECTIVES

Differentiation is an important tool for understanding the behavior of functions. In this chapter,
we will learn how to

« deduce the behavior of functions by using differentiation;

« sketch the graphs of functions on the basis of their behavior;

« apply differentiation for optimization;

« Use differentiation to investigate the long-term behavior of difference equations; and
« find antiderivatives.

M 5.1 Extrema and the Mean-Value Theorem

The primary focus of this chapter is how calculus can help us to understand the behav-
ior of functions. Points where a function is smallest or largest, called extrema, are of
particular importance. This section defines extrema, gives conditions that guarantee
extrema (via the extreme-value theorem), and provides a characterization of extrema
(Fermat’s theorem). Fermat’s theorem will be crucial in establishing the mean-value
theorem, a result that can be understood graphically. The mean-value theorem has
far-reaching consequences that arise in later sections, where we learn methods for
characterizing the behavior of functions.

W 5.1.1 The Extreme-Value Theorem

Suppose that you measure the depth of a creek along a transect between two points
A and B (see Figure 5.1). Looking at the profile

of the creek, you see that there is a location of e °
maximum depth and a location of minimum depth. I\/\/\,\/\/\/—I
The existence of such locations is the content of the B

extreme-value theorem. To formalize the theorem, Figure 5.1 A transect of a creek
we must introduce some terminology. between the points A and B.

Definition Let f be a function defined on the set D that contains the number
c. Then

f has a global (or absolute) maximum at x = c if
f() > f(x) forallx € D

and

f has a global (or absolute) minimum at x = c if
f(c) < f(x) forallx € D




EXAMPLE 1

Solution
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The following result gives conditions under which global maxima and global
minima, collectively called global (or absolute) extrema, exist:

The Extreme-Value Theorem If f is continuous on a closed interval [a, b],
—00 < a < b < oo, then f has a global maximum and a global minimum on
la, b].

The proof of the extreme-value theorem is beyond the scope of this text and
will be omitted. However, the result is quite intuitive, and we illustrate it in Figures
5.2 and 5.3. Figure 5.2 shows that a function may attain its extreme values at the
endpoints of the interval [a, b], whereas in Figure 5.3 the extreme values are attained
in the interior of the interval [a, b]. The function must be continuous and defined on
a closed interval in order for it to have global maxima and global minima. But note
that the extreme-value theorem tells us only that global extrema exist, not where
they are. Furthermore, they need not be unique, meaning that a function can have
more than one global maximum or global minimum.

y y

I

I

I

I

I I

| |

| |

I

| : :

| | I !

| | ! |

| | ! |

| | | I

a b X a b X
Figure 5.2 Extreme values at Figure 5.3 Extreme values in
the endpoint. the interior.

Optimal Strategy Suppose a plant has two reproductive strategies, one asexual by
clonal reproduction and the other sexual by seed production. The plant’s fitness de-
pends on how it allocates its resources to the two strategies. Suppose that the plant
allocates a fixed amount of resources to reproduction, a fraction p of which is allo-
cated to clonal reproduction (0 < p < 1) and a fraction 1 — p to sexual reproduction.
Denote by f(p) the plant’s fitness as a function of p. Assuming that f(p) is a con-
tinuous function, why is there a strategy of resource allocation (called an optimal
strategy) that maximizes the plant’s fitness?

According to the extreme-value theorem, since f(p) is continuous on the closed
interval [0, 1], f(p) has a global maximum (and a global minimum) on [0, 1]. The
global maximum represents the optimal strategy. Note that the theorem guarantees
only the existence of an optimal strategy; it does not tell us which strategy is optimal.
Furthermore, there could be more than one global maximum, meaning that there
could be more than one optimal strategy of resource allocation. ]

Figure 5.2 illustrates the importance of one of the assumptions in the extreme-
value theorem, namely, that the interval is closed. If the interval from a to b in Figure
5.2 did not include the endpoints, we would have neither a global maximum nor a
global minimum.

The next two examples illustrate that the theorem cannot be used if either f is
discontinuous or the interval is not closed.
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EXAMPLE 2

y
4 +
3_
2_
1+ \
! ! o
0 1 2 3 x

Figure 5.4 The graph of f(x) in
Example 2.

EXAMPLE 3

1 X

Figure 5.5 The graph of f(x) in
Example 3.

Let

2x fo0<x<?2
=3¢ ita<x<3
Note that f(x) is defined on a closed interval, namely, [0, 3]. However, f is discon-
tinuous at x = 2, as can be seen in Figure 5.4. The graph of f(x) shows that there
is no value ¢ € [0, 3] where f(c) attains a global maximum. Do not be tempted to
say that there should be a global maximum close to x = 2: For any candidate for a
global maximum that you might come up with, you will be able to find a point whose
y-coordinate exceeds the y-coordinate of your previous candidate. Try it! The reason
for this is that

lim f(x)=4

x—2"

but the function f takes on the value 1 at x = 2. We conclude that the function does
not have a global maximum. It does, however, have global minima, at x = 0 and
x = 3, where f(x) takes on the value 0. (This is a function that has more than one
global minimum.) u

Let
fx)=x for0<x <1

Note that f(x) is continuous on its domain, (0, 1), but is not defined on a closed
interval (Figure 5.5). The function f(x) attains neither a global maximum nor a
global minimum. Although

Iim f(x) =0 and Iim f(x)=1

x—>0t x—>1-

and 0 < f(x) < 1forall x € (0, 1), there is no number c in the open interval (0, 1)
where f(c) =0or f(c) =1. [ ]

B 5.1.2 Local Extrema

We will now discuss local (or relative) extrema, which are points where a graph is
higher or lower than all nearby points. This discussion will allow us to identify the
peaks and the valleys of the graph of a function. (See Figure 5.6.) The graph of the
function in Figure 5.6 has three peaks—atx = a, ¢, and e—and two valleys—atx = b
and d. A peak (or local maximum) has the property that the graph is lower nearby;
a valley (or local minimum) has the property that the graph is higher nearby.

Y fx)

|
|
|
|
|
|
|
|
|
|
|
|
1
e

A b

Figure 5.6 The function y = f(x) has valleys at x = b
and d and peaks at x = a, ¢, and e.
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Figure 5.7 The function y = f(x)
has a local maximum at x = c.

Local
minimum

B
c—8 cc+3d X

Figure 5.8 The function y = f(x)
has a local minimum at x = c.
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The formal definitions follow (see Figures 5.7 and 5.8):

A function f defined on a set D has a local (or relative) maximum at a point
c if there exists a § > 0 such that

f©) = fx)

A function f defined on a set D has a local (or relative) minimum at a point ¢
if there exists a § > 0 such that

flo) < fx)

forallx e (c—68,c+8)ND

forallx € (c—6§,c+38)ND

Local maxima and local minima are collectively called local (or relative) ex-
trema. If D is an interval and c is in the interior of D (i.e., not a boundary point),
then the definitions simplify: The function f has a local maximum at c if there exists
an open interval [ such that f(c) > f(x) for all x € I; likewise, the function f has
a local minimum at c if there exists an open interval / such that f(c) < f(x) for all
x € I.In the definitions in the preceding box, we wrote (¢ — §, ¢ 4+ §) N D. If cis an
interior point of D, § can be chosen small enough so that (¢ — §, ¢ 4 §) is contained
in D and we can set I = (¢ — §, ¢ + §). Intersecting the interval (¢ — §, ¢ + §) with
D becomes important when c is a boundary point, as we will see in Example 4.

We examine local and global extrema in the next two examples; the discussion
is based on looking at the graphs of functions. In the first example, we consider a
function that is defined on a closed interval; this allows us to compute the value of
the function at both endpoints of its domain. In the second example, we consider a
function that is defined on a half-open interval; thus, the value of the function can be
computed at one endpoint of its domain, but not at the other endpoint.

Let
fX)=@—-1%(x+2) for —2<x<3
(a) Use the graph of f(x) to find all local extrema.
(b) Find the global extrema.

Solution (a) The graph of f(x) is illustrated in Figure 5.9. The function f is defined on the
closed interval [—2, 3]. We begin with local extrema that occur at interior points of
the domain D = [—2, 3]; looking at the figure, we see that a local maximum occurs
at x = —1, as there are no greater values of f nearby. That is, we can find a small
interval I about x = —1 so that f(—1) > f(x) for all x € I. For instance, we can
choose § = 0.1 in the preceding definition and obtain I = (—1.1, —0.9) (Figure 5.10).

y y
2 1 x— DXx +2) — fx) J41
20 mall;?rcr?lllm 1403
3,200 / LYy 1,
15 + |
[ [ [ —13.95
| | |
Local 10 + ‘ ‘ ‘
~L(-)C2ﬂ maxczfr?um ’ } } } 39
minimum (—l 4) Local } } }
(=2,0) . ST minimum [ [ [ —-3.85
| (1,0 | | |
& I o I ! I I t I I I 3 I 38
-2 -1 0 2 3 X X—-12 —-115 —-1.1 —1.05 -1 -095 —09 —0.85 —0.8

Figure 5.9 The graph of f(x) = (x — 1)®(x + 2) for

—2 < x < 3in Example 4.

Figure 5.10 The graph of f(x) = (x — 1)?(x + 2) near
x = —1. The point (—1, 4) is a local maximum: f(—1) > f(x)
for all nearby x in the domain of f.
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Jfx)

I I I
X-21 =205 -2 —-195 -19

Figure 5.11 The graph of

f(x) = (x —1)?*(x +2) near x = —2.
The point (—2, 0) is a local
minimum: f(—2) < f(x) for all
nearby x in the domain of f.

EXAMPLE 5

Solution

There is a local minimum at x = 1, since there are no smaller values of f nearby.
This time, we need to find a small interval about x = 1 so that f(1) < f(x) for all
x € I; for example, I = (0.9, 1.1).

A local minimum also occurs at x = —2, one of the endpoints of the domain of
f. As discussed in the definition of a local minimum, we require an interval / about
c such that f(c) < f(x) forall x € I N D, where D is the domain of the function.
If ¢ is an interior point, we can always choose / small enough so that / C D and,
therefore, I N D = I, but this is not possible at an endpoint. To show that there is
a local minimum at x = —2, we must find § > 0 such that f(—2) < f(x) for all
x€(-2—-48,-2+4+06)ND =[-2, -2+ 35). We can again choose § = 0.1 and see that
f(=2) < f(x) for all x € [-2, —1.9) (Figure 5.11).

Similarly, we see that there is a local maximum at x = 3, since f(3) > f(x) for
all x € (2.9, 3]; that is, there is no larger value of f nearby.

(b) Global extrema are points at which a function is either largest or smallest.
Since f is defined on a closed interval, it follows from the extreme-value theorem
that both a global maximum and a global minimum exist. These global extrema may
occur either in the interior or at the endpoints of the domain D = [-2, 3].

To find the global minimum, we compare the local minima. Since f(—2) = 0 and
f (1) = 0, it follows that the global minima occur at x = —2 and x = 1 (Figure 5.9).
To find the global maximum, we compare the local maxima. Since f(3) = 20 and
f(—=1) = 4, it follows that f(3) > f(—1); therefore, the global maximum occurs at
the endpoint x = 3 (Figure 5.9). |

Let
f(x)=|x>*—4 for —25<x<3

Find all local and global extrema.

The graph of f(x), illustrated in Figure 5.12, reveals that local minima occur at x =
—2 and x = 2 and local maxima occur at x = —2.5 and x = 0. Note that f(x) is not
defined at x = 3; thus, x = 3 cannot be a local maximum. To find the global extrema,
we need to look at the function values close to the boundary x = 3. Candidates for
global extrema are all the local extrema, which must be compared against the value
of the function near the boundary x = 3. We discuss the global maximum first. Since

f(=25)=225  f(0)=4 lim f(x) =5

x—3"

the function is largest near the point x = 3. But because f(x) is not defined at x = 3,
the function has no global maximum. (This does not contradict the extreme-value
theorem, as the function is not defined on a closed interval, which is an assumption
of the theorem.) To find the global minimum, we need only compare f(—2) and f(2).

61 2 — 4] —

Local
maximum
(—2.5,2.25)

Local
minimum 1 minimum
(=2,0) (2,0)

-2 -1 0 1 2 3 X

Figure 5.12 The graph of f(x) = |x* — 4| for —2.5 < x < 3
in Example 5.
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Figure 5.13 Fermat’s theorem.

5.1 ® Extrema and the Mean-Value Theorem 207

We find that f(—2) = 0 and f(2) = 0; therefore, global minima occur at x = —2
and x = 2. [

Looking at Figures 5.9 and 5.12, we see that if the function f is differentiable at
an interior point where f has a local extremum, then there is a horizontal tangent
line at that point. This statement is known as Fermat’s theorem (see Figure 5.13).

Fermat’s Theorem If f has a local extremum at an interior point ¢ and
f’(c) exists, then f'(c) = 0.

Proof We prove Fermat’s theorem for the case where the local extremum is a max-
imum; the proof where the local extremum is a minimum is similar. We need to show
that f'(c¢) = 0. To do so, we use the formal definition of the derivative to compute
f'(o):
x)— f(c
f'(c) = lim f® = flo)

x—c —C

To compute the limit, we will separately compute the left-hand limit (x — ¢7)
and the right-hand limit (x — ¢™). We begin with the following observation (Figure
5.14): Suppose that f has a local maximum at an interior point c. Then there exists a
6 > 0 such that

fx) < f(c) forallx € (c —38,c+9)

Since f(x) — f(c) <0and x — ¢ < 0if x < ¢, we find that the left-hand limit is

lim f(JC)—f(C)ZO

X—C

(5.1)

- X —c
and since f(x) — f(c) <0and x —c > 0if x > ¢, we find that the right-hand limit is

lim f(x)—f(C)SO

)(—)C+

(5.2)

X —C

Now, because f is differentiable at c, it follows that

. x) — f(c . xX)—Jc
£ = tim OO o f0 = F©
x—>c~ x—c x—ct r=c
Y Positive J@)
Negative slope
slope
__________ Horizontal
: tangent
l
I I !
I I !
I I !
I I !
I I !
I
| | : : !
[ | !
I | | I !
: | | ! :
L ! Lo
c—8 x 4 x ctd !

Figure 5.14 An illustration of the proof of Fermat’s
theorem: For x < ¢, the slope of the secant line is positive;
for x > c, the slope of the secant line is negative. In the
limit x — ¢, the secant lines converge to the horizontal
tangent line.
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75 -+

Figure 5.15 The graph of y = x* has
a horizontal tangent at x = 0, but
(0, 0) is not an extremum.

This, together with Equation (5.1), shows that f'(c) > 0 and, together with Equation
(5.2), that f'(c) < 0. Now, if you have a number that is simultaneously nonnegative
and nonpositive, the number must be 0. Therefore, f'(c¢) = 0. [

Explain why y = tan x does not have a local extremum at x = 0.

y = tan x is differentiable at x = 0, with

—tanx = SeC2 X

dx
Hence, the derivative of y = tanx at x = 0 is equal to 1. Since the derivative is
not equal to 0, Fermat’s theorem (or, more precisely, its contrapositive) implies that
x = 0is not a local extremum. ]

1. The condition that f’(c¢) = 0 is a necessary, but not sufficient, condition for the
existence of local extrema at interior points where f’(c) exists. In particular, the fact
that f is differentiable at ¢ with f'(c) = 0 tells us nothing about whether f has a
local extremum at x = c. For instance, f(x) = x3, x € R, is differentiable at x = 0
and f'(0) = 0, but there is no local extremum at x = 0. The graph of y = x% is
shown in Figure 5.15. Although there is a horizontal tangent at x = 0, there is no
local extremum at x = 0. Fermat’s theorem does tell you, however, that if x = c is
an interior point with f’(c) # 0, then x = ¢ cannot be a local extremum (Example
6). Interior points with horizontal tangents are candidates for local extrema.

2. The function f may not be differentiable at a local extremum. For instance, in
Example 5, the function f(x) is not differentiable at x = —2 and x = 2, but both
points turned out to be local extrema. This means that, in order to identify candidates
for local extrema, it will not be enough simply to look at points with horizontal
tangents; you also must look at points where the function f(x) is not differentiable.

3. Local extrema may occur at endpoints of the domain. Since Fermat’s theorem
says nothing about what happens at endpoints, you will have to look at endpoints
separately.

To summarize our discussion, here are some guidelines for finding local extrema:

1. Don't assume that points where f’(x) = 0 give you local extrema; these are
just candidates.

2. Check points where the derivative is not defined.
3. Check endpoints of the domain.

We will return to local extrema in Section 5.3, where we will learn methods for
deciding whether candidates for local extrema are indeed local extrema.

B 5.1.3 The Mean-Value Theorem

The mean-value theorem (MVT) is a very important, yet easily understood, result in
calculus. Its consequences are far reaching, and we will use it in every section in this
chapter to derive important results that will help us to analyze functions.

Here is an example that explains the MVT: Consider the function

f(x)=x> for0<x<1
The secant line connecting the endpoints (0, 0) and (1, 1) of the graph of f(x) has
slope
L _ )= fO _1-0
- 1-0 1-0

The graph of f(x) and the secant line are shown in Figure 5.16. Note that f(x) is
differentiable in (0, 1); that is, you can draw a tangent line at every point of the graph

=1
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y
'r (1.1)
”~
P
~
”~
L Tangent
05 line
%2
X o= o -
0,0) -~ x— 025 —
_ ~
0 1
0 0.5 1 X

Figure 5.16 The graphs of f(x) = x2, the secant line
through (0, 0) and (1, 1), and the tangent line parallel to the
secant line.

in the open interval (0, 1). If you look at the graph of f(x), you see that there exists
anumber ¢ € (0, 1) such that the slope of the tangent line at (c, f(c)) is the same as
the slope of the secant line through the points (0, 0) and (1, 1). That is, we claim that
there exists a number ¢ € (0, 1) such that

S = f0

o =@

Proving that there exists such a value c is the thrust of the mean-value theorem.
We can compute the value of ¢ in this example. Since f’(x) = 2x and the slope
of the secant line is m = 1, we must solve
1 =2c, or c= %
Using the point-slope form [y — yy = m(x — x¢)], we can find the equation of the
tangent line at (%, f(%)) = (%, %), namely,
1 1 1
y—Z=1<x—§>, or y=x—3

(This tangent line is shown in Figure 5.16.)

The Mean-Value Theorem (MVT) If f is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b), then there exists at least
one number ¢ € (a, b) such that

f(b) — f(a)

=

The fraction on the left-hand side of the equation in the theorem is the slope of
the secant line connecting the points (a, f(a)) and (b, f (b)), and the quantity on the
right-hand side is the slope of the tangent line at (c, f(c)) (see Figure 5.17).

Geometrically, the MVT is indeed easily understood: It states that there exists
a point on the graph between (a, f(a)) and (b, f (b)) where the tangent line at this
point is parallel to the secant line through (a, f(a)) and (b, f(b)). [We denoted the
point in question by (¢, f(c)).] The MVT is an “existence” result: It tells us neither
how many such points there are nor where they are in the interval (a, b).

Going back to the example f(x) = x2,0 < x < 1, we see that f(x) satisfies
the assumptions of the MVT, namely, that f(x) is continuous on the closed interval
[0, 1] and differentiable on the open interval (0, 1). The MVT then guarantees the
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Figure 5.18 An illustration of
Rolle’s theorem.
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Figure 5.17 The mean value guarantees the existence of a
number ¢ € (a, b) such that the tangent line at (¢, f(c)) has
the same slope as the secant line through (a, f(a)) and

(b, f(b)).

existence of at least one number ¢ € (0, 1) such that the slope of the secant line
through the points (0, 0) and (1, 1) is equal to the slope of the tangent line at (¢, f(c)).

At this point, you might be wondering how such a seemingly simple theorem can
be so important. In the sections that follow, you will encounter the theorem mostly
in proofs of other important results that will enable us to understand properties of
functions by using calculus. The next example, however, is an application that gives
physical meaning to the theorem.

Velocity A car moves in a straight line. At time ¢ (measured in seconds), its position
(measured in meters) is
L5
s(t)==—1t",0<t<10
(1) = <t=
Show that there is a time ¢ € (0, 10) when the velocity is equal to the average velocity
between t = 0 and t = 10.

The average velocity betweent = Q0 and ¢ = 10 is

1
5(10) —s(0) - 1000m

10-0 10s s

This is the slope of the secant line connecting the points (0, 0) and (10, 40). Since
s(t) is continuous on [0, 10] and differentiable on (0, 10), the MVT tells us that there
must exist anumber ¢ € (0, 10) such that s'(c) = 4?. Now, s’(¢) is the (instantaneous)

velocity. So, at some point during this short trip, the speedometer must have read 4%.
|

The rest of this section is devoted to the proof of the MVT, which is typically
proved by first showing a special case of the theorem called Rolle’s theorem.

Rolle’s Theorem If f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), and if f(a) = f(b), then there exists
a number ¢ € (a, b) such that f'(c) = 0.

Figure 5.18 illustrates Rolle’s theorem. The function in the graph is defined on
the closed interval [a, b] and takes on the same values at the two endpoints of [a, b]
[namely, f(a) = f(b)]. Thus, the secant line connecting the two endpoints is a hori-
zontal line. We see, then, that there is a point in (a, b) with a horizontal tangent line.



5.1 W Extrema and the Mean-Value Theorem 211

Before we prove Rolle’s theorem, we check why it is a special case of the MVT.
If we compare the assumptions in the two theorems, we find that Rolle’s theorem has
an additional requirement, f(a) = f(b); that is, the function values must agree at
the endpoints of the interval on which f is defined. If we apply the MVT to such a
function, it says that there exists a number ¢ € (a, b) such that
PO
—a

But since f(b) = f(a), it follows that the expression on the right-hand side is equal
to 0; that is, f/(c¢) = 0, which is the conclusion of Rolle’s theorem.

Proof of Rolle’s Theorem 1If f is the constant function, then f’'(x) = Oforall x €
(a, b) and the theorem is true in this particular case. For the more general case, we
assume that f is not constant. Since f(x) is continuous on the closed interval [a, b],
it follows from the extreme-value theorem that the function has a global maximum
and a global minimum in that interval. To see that the function must have a global
extremum inside the open interval (a, b), we observe that if f is not constant, then
there exists an xy € (a, b) such that either f(xg) > f(a) = f(b) or f(xg) <
f(a) = f(b). This global extremum is also a local extremum. Suppose that the local
extremum is at ¢ € (a, b); then it follows from Fermat’s theorem that f'(c¢) = 0. (In
Figure 5.18, the global minima occur at the endpoints of the interval [a, b], but the
global maximum occurs in the open interval (a, b), and that’s where the horizontal
tangent is.) |

The MVT follows from Rolle’s theorem and can be thought of as a “tilted”
version of that theorem. (The secant and tangent lines in the MVT are no longer nec-
essarily horizontal [Figure 5.17], as in Rolle’s theorem [Figure 5.18], but are “tilted”;
they are still parallel, though.)

Proof of the MVT We define the following function:

fb) — f(a)
—a

Fe) = f() -

—a)

The function F is continuous on [a, b] and differentiable on (a, b). Furthermore,

b) —

F(a) = f(a) - %(a —a) = f(a)
b) —

Fb) = f(b) - %(z} —a) = f(a)

Therefore, F(a) = F(b). We can apply Rolle’s theorem to the function F'(x): There
exists a ¢ € (a, b) with F'(c) = 0. Since

b) —
Flo = fio - 1010
it follows that, for this value of c,
0=Fo) = o - TOLO
—a

and hence

F(e) = f(b; — f(a) .
—da
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Figure 5.19 An illustration of

Corollary 2.

‘We next discuss two consequences of the MVT.

Corollary 1 If f is continuous on the closed interval [a, b] and differentiable
on the open interval (a, b) such that

m< f'x) <M forallx € (a, b)

then
mb—a) < f(b)— f(a) <MD —a)

This corollary is useful in obtaining information about a function on the basis of
its derivative.

Population Growth Denote the population size at time ¢ by N(¢), and assume that
N (t) is continuous on the interval [0, 10] and differentiable on the interval (0, 10)
with N(0) = 100 and |dN /dt| < 3forallt € (0, 10). What can you say about N (10)?

Since |d N /dt| < 3 implies that —3 < dN/dt <3,wecansetm = —3and M = 3in
Corollary 1. With a = 0 and b = 10, Corollary 1 yields the following estimate:

(=3)(10—-0) = N(10) = N(0) = (3)(10 = 0)
Simplifying and solving for N (10) gives
—30+4+ N(0) < N(10) <304 N(0)

Since N (0) = 100, we have
70 < N(10) < 130

That is, the population size at time ¢+ = 10 is bounded between 70 and 130. ]

Show that
|sinb —sina| < |b — a

If a = b, then, trivially, |sina — sina| < |a — a|. We therefore assume that a < b.

(The case a > b is similar.) Let f(x) = sinx,a < x < b. Then f(x) is continuous

on [a, b] and differentiable on (a, b). Since f’(x) = cos x, it follows that
-1=<f(x) =1

for all x € (a, b). Applying Corollary 1, withm = —1and M = 1, to f(x) = sinx,
a < x < b, we find that

—(b —a) <sinb —sina < (b —a)

which is the same as
|sinb —sina| < |b — a| [

The next corollary is important, and we will see it again in Section 5.8.

Corollary 2 If f is continuous on the closed interval [a, b] and differentiable
on the open interval (a, b), with f'(x) = Ofor all x € (a, b), then f is constant
on [a, b].

Figure 5.19 explains why Corollary 2 is true: Each point on the graph has a
horizontal tangent, so the function must be constant.
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Assume that f is continuous on [—1, 1] and differentiable on (—1, 1), with f(0) =2
and f'(x) = 0forall x € (—1, 1). Find f(x).

Corollary 2 tells us that f(x) is a constant. Since we know that f(0) = 2, we have
f(x)=2forallx € [—1,1]. [

Proof of Corollary 2 Letx;, x; € (a,b),x; < x,. Then f satisfies the assumptions
of the MVT on the closed interval [x1, x2]. Therefore, there exists a number ¢ €
(x1, x») such that

fx2) — fxr)

X2 — X1

= f'(0)

Since f'(c) = 0, it follows that f(x;) = f(x1). Finally, because x, x, are arbitrary
numbers from the interval (a, b), we conclude that f is constant. [

Show that
sinx +cos’x =1 forall x € [0, 27]
This identity can be shown without calculus, but let’s see what we get if we use

Corollary 2. We define f(x) = sin® x 4+ cos’x, 0 < x < 2. Then f(x) is continuous
on [0, 27r] and differentiable on (0, 277), with

f'(x) =2sinxcosx —2cosxsinx =0

Using Corollary 2 now, we conclude that f(x) is equal to a constant on [0, 2r7]. To
find the constant, we need only evaluate f(x) at one point in the interval, say, x = 0.
We find that

£(0) =sin’ 0+ cos’0 =1

This proves the identity. |

Section 5.1 Problems

m5.1.1

In Problems 1-8, each function is continuous and defined on a
closed interval. It therefore satisfies the assumptions of the extreme-
value theorem. With the help of a graphing calculator, graph each
function and locate its global extrema. (Note that a function may
assume a global extremum at more than one point.)

1. f)=2x—-1,0<x <1

f)=—x*+1,-1<x<1

. f(x) =sin(2x),0<x <m

B w0

) f(x):cos%,0§x§27r

S =Ixl,-1<x=1

SO =x =17« +2),-2<x<2
f)=eM —1<x<1

. f(x)=In(x+1),0<x <2

. Sketch the graph of a function that is continuous on the closed
mterval [0, 3] and has a global maximum at the left endpoint and
a global minimum at the right endpoint.

IR - N

10. Sketch the graph of a function that is continuous on the closed
interval [—2, 1] and has a global maximum and a global minimum
in the interior of the domain of the function.

11. Sketch the graph of a function that is continuous on the open
interval (0,2) and has neither a global maximum nor a global
minimum in its domain.

12. Sketch the graph of a function that is continuous on the closed
interval [1, 4], except at x = 2, and has neither a global maximum
nor a global minimum in its domain.

m 5.1.2

In Problems 13-18, use a graphing calculator to determine all local
and global extrema of the functions on their respective domains.
13. f(x)=3—x,x€[-1,3)

14. f(x) =5+2x,x€(-2,1)

15. f(x) =x*—-2,x € [-1,1]

16. f(x) = (x —2)%,x €[0,3]

17. f(x) = —x>+1,x € [-2,1]

18. f(x) =x>—x,x €[0,1]

In Problems 19-26, find c¢ such that f'(c) =
whether f(x) has a local extremum at x = c.

0 and determine

19. f(x) = x? 20. f(x) = (x —4)?
21. f(x) = —x? 22, f(x) = —(x +3)?
23, f(x)=x3 24, f(x)=x>

25. f(x)=(x+1)3 26. f(x) =—(x —3)°

27. Show that f(x) = |x| has a local minimum at x = 0 but f(x)
is not differentiable at x = 0.

28. Show that f(x) = |x — 1] has a local minimum at x = 1 but
f(x) is not differentiable at x = 1.

29. Show that f(x) = |x?> — 1| has local minima at x = 1 and
x = —1 but f(x) is not differentiable at x = 1 or x = —1.
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30. Show that f(x) = —|x> — 4| has local maxima at x = 2 and
x = —2 but f(x) is not differentiable at x =2 or x = —2.

31. Graph

f)=1—1x]|
and determine all local and global extrema on [—1, 2].
32. Graph

, —1l<x<2

f) =—llx[=2],

and determine all local and global extrema on [—3, 3].

—3<x<3

33. Suppose the size of a population at time ¢ is N(¢) and its
growth rate is given by the logistic growth function

where r and K are positive constants.

(a) Graph the growth rate % as a function of N for r = 2 and
K = 100, and find the population size for which the growth rate
is maximal.

(b) Show that f(N) = rN(1 — N/K), N > 0, is differentiable
for N > 0, and compute f'(N).

(¢) Show that f'(N) = 0 for the value of N that you determined
in (a) when r =2 and K = 100.

34. Suppose that the size of a population at time ¢ is N (¢) and its
growth rate is given by the logistic growth function

where r and K are positive constants. The per capita growth rate
is defined by
1 dN

N dr

N)y=r|(1 N
8( )_r( _E)

(b) Graph g(N) as a function of N for N > 0 when r = 2 and
K = 100, and find the population size for which the per capita
growth rate is maximal.

m 513

35. Suppose f(x) = x%,x € [0, 2].

(a) Find the slope of the secant line connecting the points (0, 0)
and (2, 4).

(b) Find a number ¢ € (0, 2) such that f’(c) is equal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (0, 2).

36. Suppose f(x) =1/x,x € [1,2].

(a) Find the slope of the secant line connecting the points (1, 1)
and (2,1/2).

(b) Find a number ¢ € (1, 2) such that f'(c) is equal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (1, 2).

37. Suppose that f(x) = x%,x € [—1,1].

(a) Find the slope of the secant line connecting the points (—1, 1)
and (1, 1).

(b) Findanumberc € (—1, 1) such that f’(c) is equal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (—1, 1).

38. Suppose that f(x) = x> —x —2,x € [-1,2].

(a) Find the slope of the secant line connecting the points (—1, 0)
and (2, 0).

g(N) =
(a) Show that

(b) Find anumber ¢ € (—1, 2) such that f’(c) is equal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (—1, 2).

39. Let f(x) = x(1 — x). Use the MVT to find an interval that
contains a number c such that f'(c) = 0.

40. Let f(x) = 1/(1 4+ x?). Use the MVT to find an interval that
contains a number ¢ such that f'(c) = 0.

41. Suppose that f(x) = —x? + 2. Explain why there exists a
point ¢ in the interval (—1, 2) such that f'(c) = —1.

42. Suppose that f(x) = x>. Explain why there exists a point ¢ in
the interval (—1, 1) such that f'(c) = 1.

43. Sketch the graph of a function f(x) that is continuous on the
closed interval [0, 1] and differentiable on the open interval (0, 1)
such that there exists exactly one point (¢, f(c)) on the graph at
which the slope of the tangent line is equal to the slope of the
secant line connecting the points (0, £(0)) and (1, f(1)). Why can
you be sure that there is such a point?

44. Sketch the graph of a function f(x) that is continuous on the
closed interval [0, 1] and differentiable on the open interval (0, 1)
such that there exist exactly two points (¢1, f(c1)) and (¢z, f(c2))
on the graph at which the slope of the tangent lines is equal to
the slope of the secant line connecting the points (0, f(0)) and
(1, f(1)). Why can you be sure that there is at least one such
point?

45. Suppose that f(x) = x%, x € [a, b].

(a) Compute the slope of the secant line through the points
(a, f(a)) and (b, f(D)).

(b) Find the point ¢ € (a, b) such that the slope of the tangent
line to the graph of f at (¢, f(c)) is equal to the slope of the secant
line determined in (a). How do you know that such a point exists?
Show that c is the midpoint of the interval (a, b); that is, show that
c=(a+b)/2.

46. Assume that f is continuous on [a, b] and differentiable on
(a, b). Show that if f(a) < f(b), then f’ is positive at some point
between a and b.

47. Assume that f is continuous on [a, b] and differentiable on
(a, b). Assume further that f(a) = f(b) = Obut f is not constant
on [a, b]. Explain why there must be a point ¢; € (a, b) with
f'(c1) > 0and a point ¢, € (a, b) with f'(c;) < 0.

48. A car moves in a straight line. At time ¢ (measured in
seconds), its position (measured in meters) is

L,
s(ty=—1-,0<t<10
10
(a) Find its average velocity between ¢t = 0 and ¢ = 10.
(b) Find its instantaneous velocity for ¢ € (0, 10).

(¢) At what time is the instantaneous velocity of the car equal to
its average velocity?

49. A car moves in a straight line. At time ¢ (measured in
seconds), its position (measured in meters) is

L3
s(t)=—1,0<t<5
100
(a) Find its average velocity between = 0 and t = 5.
(b) Find its instantaneous velocity for ¢ € (0, 5).
(¢) At what time is the instantaneous velocity of the car equal to
its average velocity?
50. Denote the population size at time ¢ by N (¢), and assume that
N(0) = 50 and |dN/dt| < 2 for all ¢t € [0, 5]. What can you say
about N (5)?



51. Denote the biomass at time ¢ by B(¢), and assume that B(0) =
3and |dB/dt| < 1forallt € [0, 3]. What can you say about B(3)?
52. Suppose that f is differentiable for all x € R and,
furthermore, that f satisfies f(0) = Oand 1 < f'(x) < 2 for
all x > 0.

(a) Use Corollary 1 of the MVT to show that

x < f(x) <2x

for all x > 0.

(b) Use your result in (a) to explain why f (1) cannot be equal to
3.

(¢) Find an upper and a lower bound for the value of f(1).

53. Suppose that f is differentiable for all x € R with f(2) =3
and f’(x) = 0for all x € R. Find f(x).

54. Suppose that f(x) = e ™, x € [-2,2].

(a) Show that f(—2) = f(2).

(b) Compute f’(x), where defined.

(¢) Show that there is no number ¢ € (—2, 2) such that f'(c) = 0.

(d) Explain why your results in (a) and (c) do not contradict
Rolle’s theorem.

(e) Use a graphing calculator to sketch the graph of f(x).
55. Use Corollary 2 of the MVT to show that if f(x) is
differentiable for all x € R and satisfies

|f ) = fDI < lx =yl (5:3)

for all x,y € R, then f(x) is constant. [Hint: Show that (5.3)
implies that
. f@) = f)
im —— =
x—y X =y
and use the definition of the derivative to interpret the left-hand
side of (5.4).]

0 (5.4)

B 5.2 Monotonicity and Concavity

5.2 M Monotonicity and Concavity 215

56. We have seen that

f&x) = foe™
satisfies the differential equation

af

e rf(x)

with f(0) = f,. This exercise will show that f(x) is in fact the
only solution. Suppose that r is a constant and f is a differentiable
function,

af

2 =™ (5:5)

for all x € R, and f(0) = f;. The following steps will show that
f(x) = foe™, x € R, is the only solution of (5.5).
(a) Define the function

F(x)=f(x)e™, xeR
Use the product rule to show that
F'(x)=e " [f'(x) —rf(x)]

(b) Use (a) and (5.5) to show that F'(x) = 0 for all x € R.

(¢) Use Corollary 2 to show that F(x) is a constant and, hence,
F(x) = F(0) = fo.
(d) Show that (c) implies that

Jo=fx)e™

and therefore,

f(x) = foe™

Fish are indeterminate growers; they increase in body size throughout their life. How-
ever, as they become older, they grow proportionately more slowly. Their growth is
often described mathematically by the von Bertalanffy equation, which fits a large
number of both freshwater and marine fishes. This equation is given by

L(x) = Loo — (Lo — Lo)e **

where L(x) denotes the length of the fish at age x, L, the length at age 0, and L
the asymptotic maximum attainable length. We assume that L, > L¢. K is related
to how quickly the fish grows. Figure 5.20 shows examples for two different values of
K; Lo and L are the same in both cases. We see from the graphs that for larger K,
the asymptotic length L, is approached more quickly.

The fact that fish increase their body size throughout their life can be expressed
mathematically by the first derivative of the function L(x). Looking at the graph, we
see that L(x) is an increasing function of x: The tangent line at any point of the graph
has a positive slope, or, equivalently, L’(x) > 0. We can compute

L'(x) = K(Lo — Lg)e %*

Since Lo, > Lg (by assumption) and e~ X* > 0 (this holds for all x, regardless of K),
we see that, indeed, L'(x) > 0. The graph of L’(x) is shown in Figure 5.21.

The graph of L'(x) shows that L’(x) is a decreasing function of x: Although fish
increase their body size throughout their life, they do so at a rate that decreases with
age. Mathematically, this relationship can be expressed with the second derivative of
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L(x)
14

12
10

L'(x)

(o]

(= S )

0 2 4 6

8 10 x 0 2 4 6 8 10 x

Figure 5.20 The function L(x) for Ly = 1 and L, = 10 with Figure 5.21 The graph of L'(x) with Ly, = 1, Lo, = 10, and

K =0.5and K =2.

fx)

X

Figure 5.22 An increasing function.

Jfx)

X

Figure 5.23 A decreasing function.

K =0.5.

L (x)—the derivative of the first derivative. The tangent line at any point on the graph
of L'(x) has a negative slope; that is, the derivative of L’(x) is negative: L"(x) < 0.
The fact that the rate of growth decreases with age can also be seen directly from
the graph of L(x): It bends downward. The second derivative thus tells us something
about which way the graph of L(x) bends.

This section discusses the important concepts of monotonicity —whether a func-
tion is decreasing or increasing—and concavity —whether a function bends upward
or downward.

W 5.2.1 Monotonicity

We saw in the motivating example that the first derivative tells us something about
whether a function increases or decreases. Not every function is differentiable, how-
ever, so we phrase the definitions of increasing and decreasing in terms of the function
f alone. (See Figures 5.22 and 5.23.)

Definition A function f defined on an interval 7 is called (strictly) increasing
on [ if
fx1) < f(x) whenever x; < xpin [

and is called (strictly) decreasing on / if

f(x1) > f(x2) whenever x; < xpin [

An increasing or decreasing function is called monotonic. The word strictly in
the preceding definition refers to having a strict inequality (f(x;) < f(x2) and
f(x1) > f(x2)). We will frequently drop strictly. If, instead of the strict inequality
f(x1) < f(xz), we have the inequality f(x;) < f(xy), whenever x; < x; in [, we
call f nondecreasing. If f(x1) > f(x;) whenever x; < x, in I, then f is called
nonincreasing. (See Figures 5.24 and 5.25.)

When the function f is differentiable, there is a useful test to determine whether
f is increasing or decreasing. This criterion is a consequence of the MVT.

First-Derivative Test for Monotonicity Suppose f is continuous on [a, b] and
differentiable on (a, b).

(a) If f'(x) > Oforall x € (a, b), then f is increasing on [a, b].
(b) If f'(x) < Oforall x € (a, b), then f is decreasing on [a, b].




f&)

Figure 5.24 A nondecreasing
function may have regions where the

function is constant.

S

Figure 5.25 A nonincreasing
function may have regions where the

function is constant.

EXAMPLE 1

Solution

EXAMPLE 2
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Proof (See Figure 5.26.) We choose two numbers x; and x; in [a, b], x; < x». Then
f is continuous on [x1, x;] and differentiable on (x1, x;). We can therefore apply the
MVT to f defined on [x1, x;]: There exists a number ¢ € (x1, x) such that

fx2) — f(xr)

X2 — X1

= f'(c)

In part (a) of the theorem, we assume that f'(x) > 0 for all x € (a, b). Since ¢ €
(x1,x2) C (a, b), it follows that f’(c¢) > 0. Since, in addition, x, > x1, it follows that

f) — f(x) = fl(©)(x2—x1) >0

which implies that f(x,) > f(x1). Because x and x, are arbitrary numbers in [a, b]
satisfying x; < x;, it follows that f is increasing. The proof of part (b) is similar and
relegated to Problem 24. ]

y=fx)

Slope f'(¢) > 0,

[

|

|

|

— 1 |

| | |

| | |
a X c X X

Figure 5.26 An illustration of the proof of “ f'(x) > 0
for all x € (a, b) implies that f(x) is increasing on
[a, b].”

Determine where the function
)
fx)=x —Ex —6x+3, xeR

is increasing and where it is decreasing.

Since f(x) is continuous and differentiable for all x € R, we can use the first-
derivative test for monotonic functions. We differentiate f(x) and obtain

f’(x)=3x2—3x—6=3(x—2)(x+1), xeR

The graphs of f(x) and f’(x) are shown in Figure 5.27. The graph of f’(x) is a
parabola that intersects the x-axis at x = 2 and x = —1. The function f’(x) therefore
changes sign at x = —1 and x = 2. We find that

, >0 ifx <—lorx>2
J ()
<0

f—-1l<x<?2

Thus, f(x) is increasing for x < —1 or x > 2 and decreasing for —1 < x < 2. A look
at the graph of f(x) in Figure 5.27 confirms this conclusion. ]

Host—Parasitoid Interactions Parasitoids are insects whose larvae develop inside
other, host insects. The larvae eventually kill the host. An example is the parasitoid
Macrocentrus grandii, a wasp, which parasitizes Ostrinia nubilis, the European corn
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Solution

35 + f'
S

Figure 5.27 The graph of f(x) = x> — 3x> — 6x + 3 and
f'(x) =3x> —3x —6.

borer. To understand host—parasitoid interactions, a large number of models have
been developed. The function

_ aBP -k
f(N>_(1+—k(ﬂ+aN))

is one example that describes the likelihood of a host escaping parasitism as a
function of host density N, where a, 8, and k are positive parameters and P is the
density of the parasitoid. On the basis of f(N), what is the effect of an increase in
host density on the likelihood of escaping parasitism?

To find the effect of an increase in host density, we compute the derivative of f(N):

—k—1 2
df P [1+ apP } a’BP
dN k(B +aN) k(B +aN)?
[ aBP ]"1 a’BP
=1+
k(B+aN) (B+aN)?

Both factors in the final expression are positive; hence, df/dN > 0. In words, if the
density of the parasitoid is fixed and the host density increases, a host is more likely
to escape parasitism in cases where the interaction is described by f (V). ]

W 5.2.2 Concavity

We saw in the motivating example at the beginning of this section that the second
derivative tells us something about whether a function bends upward or downward.
We arrived at this conclusion by checking whether the first derivative was increasing
or decreasing.

A function is called concave up if it bends upward, and concave down if it
bends downward. Before stating a precise definition of concavity for differentiable
functions, we give two examples, in Figure 5.28.

First, look at the graph of the differentiable function y = x?: It bends upward,
so we call it concave up. Bending upward means that the slopes of the tangent lines
are increasing as x increases. We can check this hypothesis by computing the slope
of the tangent line at x, which is given by the first derivative, y’ = 2x. Since y' = 2x
is an increasing function, the slopes of the tangent lines are increasing as x increases.

Looking at the graph of the differentiable function y = —x? + 4, we see that
it bends downward, so we call it concave down. Bending downward means that the
slopes of the tangent lines are decreasing as x increases. We can check this hypothesis
by computing the first derivative of y, which is y’ = —2x, a decreasing function.

The following definition pertaining to differentiable functions is based on the
preceding discussion (see Figures 5.29 and 5.30):
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y=x?
Concave up

Figure 5.28 The graphs of f(x) = x?> and g(x) = —x? + 4.

y=fx Slope f'(x,)

y=f(x

Slope f"(x
pe.f'(x:) Decreasing slope

Increasing slope

Slope '(x,)
X X2 X X Xy X
Figure 5.29 A function is concave up if its derivative is Figure 5.30 A function is concave down if its derivative is
increasing. decreasing.

Definition A differentiable function f (x) is concave up on an interval [ if the
first derivative f’(x) is an increasing function on /. f(x) is concave down on
an interval [ if the first derivative f’(x) is a decreasing function on /.

Note that the definition assumes that f(x) is differentiable. There is a more
general definition that does not require differentiability. (After all, not all functions
are differentiable.) The more general definition is more difficult to use, however. The
definition given here suffices for our purposes and has the added advantage that it
provides the following criterion, which we can use to determine whether a twice-
differentiable function is concave up or concave down:

Second-Derivative Test for Concavity Suppose that f is twice differentiable
on an open interval /.

(a) If f”(x) > Oforall x € I, then f is concave up on I.
(b) If f”(x) < Oforall x € I, then f is concave down on /.

Proof Since f is twice differentiable, we can apply the first-derivative criterion to
the function f’(x). The proof of part (a) proceeds, then, as follows: If f"(x) > 0
on I, then f’(x) is an increasing function on /. From the definition of concave up, it
follows that f is concave up on /. The proof of part (b) is similar and relegated to
Problem 25. ]
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EXAMPLE 3

Solution

EXAMPLE 4

Y(N)

max

~

max

0
0K N

Figure 5.32 The graph of Y(N) in
Example 4.

You can use the function y = x? to remember which functions are concave up:
The “u” in “concave up” should remind you of the U-shaped form of the graph of
y = x2. You can also use the function y = x? to remember the second-derivative
criterion. You already know that the graph of y = x2 is concave up, and you can
easily compute the second derivative of y = x2, namely, y” =2 > 0.

Determine where the function
)
fx)=x —Ex —6x+3, xeR

is concave up and where it is concave down.

This is the same function as in Example 1 (redrawn in Figure 5.31). Since f(x) is a
polynomial, it is twice differentiable. In Example 1, we found that f’(x) = 3x% —
3x — 6; differentiating f”(x), we get the second derivative of f:

f(x) =6x -3
We find that
£ >0 ifx>%
X
<0 ifx<%

Thus, f(x) is concave up for x > 1/2 and concave down for x < 1/2. A look at
Figure 5.31 confirms this result. |

y
20 + Sfx)

15 +

10 +
Concave down

f f f f

NJ 2 2 3 74"
s 1 2 2 2 2
Concave up

—10 +

I

N 4

I
w|w

I

—_ 1

I
Rl

Figure 5.31 The graph of f(x) = x* — 3x% — 6x + 3.

A very common mistake is to associate monotonicity and concavity. One has
nothing to do with the other. For instance, an increasing function can bend downward
or upward. (This possibility will be discussed in Problem 21.)

There are many biological examples of increasing functions that have a
decreasing derivative and are therefore concave down.

Crop Yield The response of crop yield Y to soil nitrogen level N can often be
described by a function of the form

N
where Y,y is the maximum attainable yield and K is a positive constant. The graph
of Y(N) is shown in Figure 5.32. We see from the graph that Y (N) is an increasing
function of N. The graph bends downward and hence is concave down. Before
continuing, we will check this conclusion against the results we obtained in this
section. Using the quotient rule, we obtain

K+N-N K

Y'(N) = Yimax = Yomax
M) =Yoo=y = g 2
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and using the chain rule, we get

4 d -2
Y'(N) = W(YmaxK(K‘f‘N) )

2K

— _ =3 —
- YmaxK( 2)(K + N) (1) - YmaX (K + N)3

Since Yp.x and K are positive constants and N > 0, it follows that
Y'(N) >0

which implies that Y (V) is an increasing function. Furthermore,
Y'(N) <0

which implies that Y (N) is concave down. That is, Y (N) is an increasing function,
but the rate of increase is decreasing. We say that Y is increasing at a decelerating
rate. What does this mean? It means that as we increase fertilizer levels, the yield will
increase, but at a proportionally lesser rate. This type of curve is called a diminishing
return. To be concrete, we choose values for Y.« and K:

Y(N):SOL, N=>0
S+N
The graph of this function is shown in Figure 5.33.

Suppose that initially N = 5. If we increase N by 5 (i.e., from 5 to 10), then
Y (N) changes from Y (5) = 25 to Y (10) = 33.3, an increase of 8.3. If we increase
N by double the original amount, namely 10 (i.e., from 5 to 15), then Y (15) = 37.5
and the increase in yield is only 12.5, less than twice 8.3. Diminishing return can
also be understood by comparing successive increments. If we start with N = 5 and
increase by 5 to N = 10, then the change in Y (the Y-increment) is 8.3. Increasing
N by the same amount, but starting at 10, we see that the Y-increment changes by
Y (15) — Y (10) = 4.2. In general, changing N by equal increments has less of an effect
for larger values of N; thus, we say that the return is diminishing.

You should compare a function representing a diminishing return with a linear
function, say, f(x) = 2x, which is neither concave up nor concave down. (See Figure
5.34.) With a linear function, if we increase x from 5 to 10, f(x) changes from 10 to
20. That is, f(x) increases by 10. Then, if we increase x from 10 to 15, f(x) changes
from 20 to 30, again an increase of 10. That is, for linear functions, the increase is

proportional. ]
y
Y(N) )} D SR
|
' 10
|
ol R N T ) :
’ | : 8.3 12.5 WrF—-————=—==—f—-———~— T-—-——--
L ! | :
B S [T . | | 10
| | | | |
| : | I |
! ! ! 10F----> e R e R
I : | | | :
! | | 1
| N
| ! | 05y | | | 2x
0 : ! : ! | 0 | | |
0 5 10 15 20 25 N 0 5 10 15 X

Figure 5.33 The graph of Y (N) in Example 4 for Y,y = 50

and K = 5.

Figure 5.34 The graph of a linear function: Increases are
proportional.
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Section 5.2 Problems

m 5.2.1 and 5.2.2

In Problems 1-20, determine where each function is increasing,
decreasing, concave up, and concave down. With the help of a
graphing calculator, sketch the graph of each function and label the
intervals where it is increasing, decreasing, concave up, and concave
down. Make sure that your graphs and your calculations agree.

1. y=3x—x*xeR 2. y=x>+5x,x €eR
3.y=x>+x—-4,xeR 4. y=x>-x+3,x€R
2 7
5. y=—3x"+35x*-3x+4x€eR
6. y=(x—-2%+3,xeR
7. y=/x+1,x>-1 8. y=0Bx—-1"3 xeR
1 _
9. = - 0 10, = —
y=_x# V=513
1. 2+ D3, xeR 12. y= 5% #*2
Y —
13 ! £-1 14 i
Y= ———— X #F — Y= x >
YT A+ YT et

15. y =sinx,0 < x <27
16. y =cos[mr(x> —1)],2 <x <3
17. y=e¢",x €R 18. y=Inx,x >0

1
20. y =

19. y=e "2, xR = ,
y e X 1—|—e_x

xeR

21. Sketch the graph of

(a) a function that is increasing at an accelerating rate; and

(b) afunction that is increasing at a decelerating rate.

(¢) Assume that your functions in (a) and (b) are twice differen-
tiable. Explain in each case how you could check the respective
properties by using the first and the second derivatives. Which of
the functions is concave up, and which is concave down?

22. Show that if f(x) is the linear function y = mx + b, then
increases in f(x) are proportional to increases in x. That is, if we
increase x by Ax, then f(x) increases by the same amount Ay,
regardless of the value of x. Compute Ay as a function of Ax.
23. We frequently must solve equations of the form f(x) = 0.
When f is a continuous function on [a, b] and f(a) and f(b)
have opposite signs, the intermediate-value theorem guarantees
that there exists at least one solution of the equation f(x) = 0in
la, b].

(a) Explain in words why there exists exactly one solution in
(a, b) if, in addition, f is differentiable in (a, b) and f’(x) is either
strictly positive or strictly negative throughout (a, b).

(b) Use the result in (a) to show that

X —dx+1=0

has exactly one solution in [—1, 1].

24. First-Derivative Test for Monotonicity Suppose that f is
continuous on [a, b] and differentiable on (a, b). Show that if
f'(x) < Oforall x € (a, b), then f is decreasing on [a, b].

25. Second-Derivative Test for Concavity Suppose that f is twice
differentiable on an open interval /. Show that if f”(x) < 0, then
f is concave down.

26. Suppose the size of a population at time ¢ is N(¢), and the
growth rate of the population is given by the logistic growth

function
d N
—N:rN 1——=), t>0
dt K

where r and K are positive constants.

(a) Graph the growth rate % as a function of N for r = 3 and
K =10.

(b) The function f(N) =rN(1—N/K), N > 0, is differentiable
for N > 0. Compute f'(N), and determine where the function
f(N) is increasing and where it is decreasing.

27. Logistic Growth Suppose that the size of a population at time
t is N(t) and the growth rate of the population is given by the
logistic growth function

t>0

where r and K are positive constants. The per capita growth rate

is defined by
1dN N
N)= —— = 1——
s =N r( K)

(a) Graph g(N) as a function of N for N > 0 when r = 3 and
K =10.

(b) The function g(N) =r(1—N/K), N > 0, is differentiable for
N > 0. Compute g'(N), and determine where the function g(N)
is increasing and where it is decreasing.

28. Resource-Dependent Growth The growth rate of a plant
depends on the amount of resources available. A simple and
frequently used model for resource-dependent growth is the
Monod model, according to which the growth rate is equal to

aR
——, R>0
k+ R
where R denotes the resource level and a and k are positive
constants. When is the growth rate increasing? When is it
decreasing?
29. Population Growth Suppose that the growth rate of a
population is given by

FN) =N (1 - @)9)

where N is the size of the population, K is a positive constant
denoting the carrying capacity, and 6 is a parameter greater than
1. Find f'(N), and determine where the growth rate is increasing
and where it is decreasing.

30. Predation Spruce budworms are a major pest that defoliates
balsam fir. They are preyed upon by birds. A model for the per
capita predation rate is given by

f(R) =

aN
k* + N2
where N denotes the density of spruce budworms and a and

k are positive constants. Find f'(N), and determine where the
predation rate is increasing and where it is decreasing.

J(N) =

31. Host-Parasitoid Interactions Parasitoids are insects that lay
their eggs in, on, or close to other (host) insects. Parasitoid larvae
then devour the host insect. The likelihood of escaping parasitism
may depend on parasitoid density. One model expressing this
dependence sets the probability of escaping parasitism equal to

fPy =

where P is the parasitoid density and a is a positive constant.
Determine whether the probability of escaping parasitism
increases or decreases with parasitoid density.



32. Host-Parasitoid Interactions As an alternative to the model
set forth in Problem 31, another model sets the probability of
escaping parasitism equal to

aP -k
F(P) = (1+ 7)

where P is the parasitoid density and a and k are positive con-
stants. Determine whether the probability of escaping parasitism
increases or decreases with parasitoid density.

33. Tree Growth Suppose that the height y in feet of a tree as a
function of the age x in years of the tree is given by

y=117¢7%, x>0

(a) Show that the height of the tree increases with age. What is
the maximum attainable height?

(b) Where is the graph of height versus age concave up, and
where is it concave down?

(¢) Use a graphing calculator to sketch the graph of height versus
age.

(d) Use a graphing calculator to verify that the rate of growth is
greatest at the point where the graph in (c) changes concavity.
34. Reproduction Plants employ two basic reproductive strate-
gies: polycarpy, in which reproduction occurs repeatedly during
the lifetime of the organism, and monocarpy, in which repro-
duction occurs only once during the lifetime of the organism.
(Bamboo, for instance, is a monocarpic plant.) The following
quote is taken from Iwasa et al. (1995):

The optimal strategy is polycarpy (repeated repro-
duction) if reproductive success increases with the
investment at a decreasing rate, [or] monocarpy (“big
bang” reproduction) or intermittent reproduction if the
reproductive success increases at an increasing rate.

(a) Sketch the graph of reproductive success as a function
of reproductive investment for the cases of (i) polycarpy and
(ii) monocarpy.

(b) Given that the second derivative describes whether a curve
bends upward or downward, explain the preceding quote in terms
of the second derivative of the reproductive success function.

35. Pollinator Visits Assume that the formula (Iwasa et al., 1995)

X(F)=cF”

where c is a positive constant, expresses the relationship between
the number of flowers on a plant, F', and the average number of
pollinator visits, X (F). Find the range of values for the parameter
y such that the average number of pollinator visits to a plant
increases with the number of flowers F' but the rate of increase
decreases with F. Explain your answer in terms of appropriate
derivatives of the function X (F).
36. Pollinator Visits Assume that the dependence of the average
number of pollinator visits to a plant, X, on the number of flowers,
F, is given by

X(F) = cF”
where y is a positive constant less than 1 and c is a positive
constant (Iwasa et al., 1995). How does the average number of
pollen grains exported per flower, E(F), change with the number
of flowers on the plant, F, if E(F) is proportional to

X(F)
1 —exp [—kT]

where k is a positive constant?
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37. Population Size Denote the size of a population by N (¢), and
assume that N (¢) satisfies

dN
—— = Ne N — N?
dt

where a is a positive constant.
(a) Show that the nontrivial equilibrium N* satisfies

—_aN*
eaN :N*

(b) Assume now that the nontrivial equilibrium N* is a function
of the parameter a. Use implicit differentiation to show that N* is
a decreasing function of a.

38. Population Size Denote the size of a population by N(¢), and
assume that N (¢) satisfies

dN N
— =N|(1——=)—NhN
dt K

where K is a positive constant.
(a) Show thatif K > 1, then there exists a nontrivial equilibrium
N* > 0 that satisfies

*

N
1—— =InN"
K

(b) Assume now that the nontrivial equilibrium N* is a function
of the parameter K. Use implicit differentiation to show that N*
is an increasing function of K.

39. Intraspecific Competition (Adapted from Bellows, 1981)
Suppose that a study plot contains N annual plants, each of which
produces S seeds that are sown within the same plot. The number
of surviving plants in the next year is given by

NS

AN =TGNy

(5.6)
for some positive constants @ and b. This mathematical model
incorporates density-dependent mortality: The greater the num-
ber of plants in the plot, the lower is the number of surviving
offspring per plant, which is given by A(N)/N and is called the
net reproductive rate.

(a) Use calculus to show that A(N)/N is a decreasing function of
N.

(b) The following quantity, called the k-value, can be used to
quantify the effects of intraspecific competition (i.e., competition
between individuals of the same species):

k = log [initial density] — log [final density]

Here, “log” denotes the logarithm to base 10. The initial density is
the product of the number of plants (V) and the number of seeds
each plant produces (S). The final density is given by (5.6). Use
the expression for k and (5.6) to show that

NS
=log[1+ (aN)"]

We typically plot k versus log N; the slope of the resulting curve is
then used to quantify the effects of competition.
(i) Show that
dlogN 1
dN ~ NInl0
where In denotes the natural logarithm.




224 Chapter 5 W Applications of Differentiation

(ii) Show that

(In10)N dk b
= n _—
dN 1+ (aN)="

dlog N
(iii) Find
. dk
lim
Nooo dlog N

(iv) Show that if
dk
dlog N
then A(N) is increasing, whereas if

dk
>
dlog N

then A(N) is decreasing. [Hint: Compute A’(N).] Explain in words
what the two inequalities mean with respect to varying the initial
density of seeds and observing the number of surviving plants the
next year. (Hint: The first case is called undercompensation and
the second case is called overcompensation.)

(v) The case

<1

1

dk 1

dlogN
is referred to as exact compensation. Suppose that you plot k
versus log N and observe that, over a certain range of values of
N, the slope of the resulting curve is equal to 1. Explain what this
means.
40. (Adapted from Reiss, 1989) Suppose that the rate at which
body weight W changes with age x is

aw o W¢ (5.7)

dx
where a is some species-specific positive constant.
(a) The relative growth rate (percentage weight gained per unit
of time) is defined as

1 daw

W dx
What is the relationship between the relative growth rate and
body weight? For which values of a is the relative growth rate
increasing, and for which values is it decreasing?
(b) As fish grow larger, their weight increases each day but the
relative growth rate decreases. If the rate of growth is described by
(5.7), what values of a can you exclude on the basis of your results
in (a)? Explain how the increase in percentage weight (relative to
the current body weight) differs for juvenile fish and for adult fish.

41. Allometric Growth Allometric equations describe the scal-
ing relationship between two measurements, such as tree height
versus tree diameter or skull length versus backbone length. These
equations are often of the form

Y = bX* (5.8)

where b is some positive constant and a is a constant that can be
positive, negative, or zero.

(a) Assume that X and Y are body measurements (and therefore
positive) and that their relationship is described by an allometric
equation of the form (5.8). For what values of a is Y an increasing
function of X, but one such that the ratio Y/ X decreases with
increasing X ? Is Y concave up or concave down in this case?

(b) In vertebrates, we typically find
[skull length] o [body length]”

for some a € (0,1). Use your answer in (a) to explain what
this means for skull length versus body length in juveniles versus
adults; that is, at which developmental stage do vertebrates have
larger skulls relative to their body length?

42. pH The pH value of a solution measures the concentration of
hydrogen ions, denoted by [H*], and is defined as

pH = —log[H™]

Use calculus to decide whether the pH value of a solution
increases or decreases as the concentration of HT increases.

43. Allometric Growth The differential equation

d

dy _ .y

dx X
describes allometric growth, where k is a positive constant.
Assume that x and y are both positive variables and that y = f(x)
is twice differentiable. Use implicit differentiation to determine
for which values of k the function y = f(x) is concave up.

44. Population Size Let N () denote the population size at time
t, and assume that N(¢) is twice differentiable and satisfies the

differential equation

dN N
v,
dt

where r is a real number. Differentiate the differential equation
with respect to ¢, and state whether N () is concave up or down.

M 5.3 Extrema, Inflection Points, and Graphing

B 5.3.1 Extrema

If f is a continuous function on the closed interval [a, b], then f has a global
maximum and a global minimum in [a, b]. This is the content of the extreme-value
theorem, which is an existence result: It tells us only that global extrema exist under
certain conditions, but it does not tell us how to find them.

Our strategy for finding global extrema in the case where f is a continuous
function defined on a closed interval will be, first, to identify all local extrema of
the function and, then, to select the global extrema from the set of local extrema.
If f is a continuous function defined on an open interval or half-open interval, the
existence of global extrema is no longer guaranteed, and we must compare the local
extrema with the behavior of the function near the open boundaries of the domain.
(See Example 5 in Section 5.1.) In particular, if f(x) is defined on R, we need to
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investigate the behavior of f(x) as x — Zo0. For if the function f(x) goes to +o00
(or —o0) as x — 400 or —o0, it cannot have a global maximum (global minimum).
We discuss this in Example 1 of this section.

Local extrema can be found in a systematic way, using a straightforward recipe
to identify candidates. We showed in Section 5.1 that if f has a local extremum at an
interior point ¢ and f’(c) exists, then f’(c) = 0 (Fermat’s theorem). That is, points
where f is differentiable and where the first derivative is equal to 0 are certainly
candidates for local extrema in the interior of the domain. Of course, these are only
candidates, as explained in Section 5.1. (Recall that y = x> has a horizontal tangent
at x = 0, but y = x> does not have a local extremum at x = 0.) In addition to points
where the first derivative is equal to 0, we must check all points where the function is
not differentiable. (For instance, y = |x| has a local minimum at x = 0, although it is
not differentiable at 0.) Points where the first derivative is equal to 0 or does not exist
are called critical points. In addition to checking the critical points, we must always
check the endpoints of the interval on which f is defined (provided that there are
such endpoints).

There are no other points where local extrema can occur. We are thus equipped
with a systematic way of searching for candidates for local extrema:

1. Find all numbers ¢ where f'(c) = 0.
2. Find all numbers ¢ where f'(c) does not exist.
3. Find the endpoints of the domain of f.

We illustrate this procedure in the following example: We wish to find all local
and global extrema of the function

fx)=x>—4|, -3<x<25

We know from Example 5 of Subsection 5.1.2 what the graph of the function looks
like (the domain is different here). We plot it again (Figure 5.35), which will make it
easier to understand the procedure for finding relative extrema. But note that very
often we do not know what a graph looks like, and we find relative extrema in order
to gain a better understanding of the graph!

6 + Sx)

e ,
1 2 3 X

Figure 5.35 The graph of f(x) = x> —4|for —3 < x < 2.5.

We will first rewrite f(x) as a piecewise-defined function in order to get rid of
the absolute-value sign:

x2—4 for-3<x<-2o0r2<x<25
f(X): 2
—x“+4 for-2<x<2

This piecewise-defined function is differentiable on the open intervals (-3, —2),
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Figure 5.36 The function y = f(x)
has a local minimum at x = c.

Figure 5.37 The function y = f(x)
has a local maximum at x = c.

(—2,2),and (2, 2.5). We find that

, 2x for 3<x<-2o0r2<x<25
fx) =
—2x for—2<x <2
Since f'(x) = 0forx = 0and 0 € (-2, 2), it follows that (0, f(0)) is a critical point
and is our first candidate for a local extremum. There are no other points where
f'(x)=0.

The second step is to identify interior points where the function is not
differentiable. Since the function is differentiable on the open intervals (—3, —2),
(—2,2),and (2, 2.5), we must look at the points where the function is pieced together,
namely at x = —2 and at x = 2. We obtain

lim f'(x) = —4 and lim f'(x) =4

x—>-2" x—-—2F
and
lim f'(x) = —4 and lim f'(x) =4
x—>27 x—27F
These limits show that the function is not differentiable at x = —2 and x = 2.
Therefore, there are critical points at x = —2 and x = 2, and those points are also

candidates for local extrema.

The third step is to identify endpoints of the domain. Since f is defined on
[—3, 2.5), there is an endpoint at x = —3. The fourth candidate is thus at x = —3. The
interval [—3, 2.5) is open at x = 2.5; hence, 2.5 is not in the domain of the function.
The point (2.5, f(2.5)) is therefore not a candidate for an extremum.

Our systematic procedure has provided us with four candidates for local extrema,
atx = —3, —2,0, and 2. In each case, we must decide whether the associated point
is in fact a local extremum and, if so, whether it is a local maximum or minimum.
The following observation, although rather obvious, is the key (see Figures 5.36 and
5.37):

A continuous function has a local minimum at c if the function is decreasing to
the left of ¢ and increasing to the right of c. A continuous function has a local
maximum at c if the function is increasing to the left of ¢ and decreasing to the
right of c.

If the function is differentiable, as in our example, we can use the first-derivative
test to identify regions where the function is increasing and regions where it is
decreasing.

Since f'(x) = 2x for =3 < x < —2and 2 < x < 2.5, it follows that f'(x) > 0
for2 < x < 25and f'(x) < 0for =3 < x < —2. Also, since f'(x) = —2x for
—2 < x < 2, it follows that f/(x) > 0 for x € (—2,0) and f'(x) < 0 for x € (0, 2).
We illustrate these regions on the following number line for x [the plus (minus) signs
show where f’(x) is positive (negative)]:

e s e e T
-3 =2 0 2 25
We start with the interior points. At x = —2, the function changes from decreas-
ing to increasing; that is, f(x) has a local minimum at x = —2. Atx = 0, the function

changes from increasing to decreasing; that is, f(x) has a local maximum at x = 0.
At x = 2, the function changes from decreasing to increasing; that is, f(x) has a local
minimum at x = 2.

We still need to analyze the endpoint at x = —3. We see that the function is
decreasing to the right of x = —3; thatis, f(x) has a local maximum at x = —3. You
should compare all of our findings with the graph of f(x).
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Figure 5.38 The function y = f(x)
has a local maximum at x = c.
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Figure 5.39 The function y = f(x)
has a local minimum at x = c.

EXAMPLE 1

Solution
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The last step is to select the global extrema from the local extrema, but since the
domain of f is not a closed interval, we must compare the values of the local extrema
against the value at the boundary x = 2.5. We have

f(=3)=5 f(-2)=0 fO0)=4 f@2) =0 lim f(x) =2.25

x—>2.57

Since 5 is the maximum value and O the minimum, the absolute maximum occurs at
x = —3 and the global minima (there are two) occur at x = —2 and x = 2.

When a function is twice differentiable at the point where the first derivative
is equal to 0, there is a shortcut for determining whether a local maximum or a
local minimum exists. (See Figure 5.38.) We assume that the function f(x) is twice
differentiable. The graph of f(x) in Figure 5.38 has a local maximum at x = ¢, since
the function is increasing to the left of x = ¢ and decreasing to the right of x = c.
If we look at how the slopes of the tangent lines change as we cross x = ¢ from the
left, we see that the slopes are decreasing; that is, f”(¢) < 0. In other words, the
function is concave down at x = ¢ (which is immediately apparent when you look
at the graph, but remember that typically you don’t have the graph in front of you).
There is an analogous result where f has a local minimum at x = c. (See Figure
5.39.) This discussion yields the following test:

The Second-Derivative Test for Local Extrema Suppose that f is twice
differentiable on an open interval containing c.

If f/(¢) =0and f”(c) < 0, then f has a local maximum at x = c.
If f'(¢c) =0and f”(c) > 0, then f has a local minimum at x = c.

Note that finding the point ¢ where f’(c) = 0 gives us a candidate for a local
extremum. If the second derivative f”(c) # 0, the local extremum is established:
Not only does this information tell us whether there is a local extremum, it identifies
it. The test is easy to apply, as we have only to check the sign of the second derivative
at x = ¢; we do not have to check the behavior of the function in a neighborhood of
x = c. Still, the second-derivative test will not always work. For instance, if f(x) =
x4, then f’(x) = 4x> and f”(x) = 12x2. On the basis of the graph of y = f(x), we
know that f(x) has a local minimum at x = 0. We find that f/(0) = 0 and f"(0) = 0.
Thus, the theorem cannot be used to draw any conclusions about y = f(x) atx = 0.

We next look at two examples in which the second-derivative test can be applied.

Find all local and global extrema of

34 3 2
f(x):zx —2x"—6x"+2, xeR

Figure 5.40 shows the graph of f(x). Since f(x) is twice 