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• IN BIOLOGY SUCCESS IS MEASURED BY PERFORMANCE (SURVIVAL)

• THIS REQUIRES MECHANISMS FOR ADAPTATION TO ENVIRONMENT 
AND ENVIRONMENTAL CHANGES

• INTERACTIONS BETWEEN EXTERNAL INPUTS AND BIOLOGICAL 
PROCESSES ARE THE KEY TO MATERIALS-STRUCTURE 
INTEGRATION FOR FUNCTIONAL DESIGNS

ENERGY CAPTURE 
COLOUR GENERATION 
HEAT TRANFER
MASS TRANFER
DRAG REDUCTION
SURFACE ADHESION / SURFACE REPULSION
STRUCTURAL OPTIMISATION
SENSING
ACTUATION
…………..
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Insect compound eye

ENERGY CAPTURE

CfAM-Reading University, 2008
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COLOUR GENERATION

Scales of butterfly wings 
(physical colour, photonics)
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HEAT TRANFER

Penguin feathers (3D Velcro)
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DRAG REDUCTION

Shark skin
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MASS TRANFER

Pores in insect 
exoskeleton

Stomata cells in 
plants leaves

D. Attenborough, 1995

Gunderson et al., 1995
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Collagen fibres in the cornea
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All fibrous structures !!!!!!
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Fibres represent physical line elements providing paths for 
transmitting, transferring and diffusing information 
(mechanical, chemical, etc.) into structures

Groups of fibres can be organised in 1D, 2D and 3D to 
create physical equivalents of lines, surfaces and solids 
such as those obtainable from textile technologies (which 
preserve fibre mobility) or composite technologies (where 
the fibrous networks are “rigidified” by bonding the fibres)
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USING FIBRES LEADS TO THREE  IMPORTANT 
EXPLOITABLE CONSEQUENCES

ANISOTROPY
Directionality of physical and mechanical properties

HETEROGENEITY
Position- dependent properties

HIERARCHICAL STRUCTURES
Bottom-Up assembly of structures + Interfaces
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Biological systems are dominated by fibrous 
composite structures which are used to:

CREATE  FUNCTIONAL  ARCHITECTURES  AND  SHAPES

INTRODUCE AND EXPLOIT HETEROGENEITY AND ANISOTROPY

(locally, globally)

MODULATE PHYSICAL PROPERTIES 

(functionally-graded materials / structures)
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Range of fibre geometries & architectures found in nature

A.C. Neville, 1993
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Hygro- or thermal expansivity
of angle-ply structures

Individual plies with non-zero 
coefficients of thermal expansion
can create a laminate structure with 
zero thermal expansion coefficient

Emergent behaviour from 
fibrous composites

Halpin, J.C. and Pagano, N.J., 1978
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Twisting seed pod

Differences in fibre orientation + layering Passive response

Integrated sensing

ITKE-BIOMIMETICS AND ARCHITECTURE – Stuttgart 27 November 2009THE UNIVERSITY OF READING – CENTRE FOR BIOMIMETICS



Differences in fibre orientation
+ layering 

Dawson et al., 1998

Passive response

Integrated sensing
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Smart adaptive fabrics

Dawson et al., 1998

Differences in fibre orientation = Shape change
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Shape adaptation in fibrous systems 

Gravitropism in trees

Reaction wood

Adaptation of an individual
(phenotype rather than genotype)

Optimisation can only be 
relative and not absolute, in 
space and time

Capacity to adapt is essential 
when knowledge of the 
environment, current and future, 
is imperfect
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Stimulus
Signalling
RegulationTransduction Response

Morpho-mechanical 
computation

Statoliths
Starch grains
inside cell
touching the 
cytoskeleton

????

Offset angle from 
vertical
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Reorientation of young poplar trunk as a function of time

Coutand et al., 2004
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Normal wood Tension wood

Distribution of tension wood in 
young poplar (+ mild eccentricity)

Local level = cell wall

Regional level = tissue

Global level = trunk

Coutand et al., 2004
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Fibre fabrication, deposition, orientation (geometrical control)

cell interior
Normal wood

Tension wood

extra-cellular

Clair, 2001

Clair, 2001
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Clair, 2001

Tension wood shrinks more than 
normal wood during “maturation”

Normal wood

Tension wood
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Non-symmetric laminate

De-hydration

Shape change (curvature)

Basic mechanism for shape change in plants

Fibre Orientation 2

Fibre Orientation 1

Differentiation at the “local” level converted into effect on the “global” level

CREATE THE DIFFERENCE CREATE THE DIFFERENCE –– EXPLOIT THE DIFFERENCEEXPLOIT THE DIFFERENCE
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Fibres for functionally-graded materials & structures
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Strain field in vertical direction
Muller et al., 2006

Non-optimised joint (shape) - polymer Optimised joint (shape) - polymer

Optimised joint (shape and 
fibre orientation) trunk-
branch
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A.C. Neville, 1993Gunderson et al.,1995

Local modulation in fibre orientation = Minimisation of stress concentrations
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Jeronimidis, 1998

(b)

Bordered pits in wood cell walls
Fracture in wood cell bordered pit with 
conforming fibres

Bolton and Petty, 1975

Local modulation in fibre orientation = Minimisation of stress concentrations
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Skordos et al.,2001

220 90

450 200

Local modulation in fibre orientation = Minimisation of stress concentrations

Differences in strain energy near circular and elliptical holes for “cut” and 
“conforming” fibres

cut

cut

conforming

conforming
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DIFFERENTIATION AT THE “MATERIAL” LEVEL

(Anisotropy, Heterogeneity, Hierarchies)

FUNCTIONAL INTEGRATION AT THE “SYSTEM” LEVEL

(Emergent behaviour / Adaptation)

+
DIFFERENTIATION AT THE “STRUCTURE” LEVEL

(Shape, Dimensions, Geometry)
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IN SUMMARY, FIBROUS COMPOSITES PROVIDE:

• an almost unlimited ‘design space’ in terms of geometry and topology

• high levels of functional integration (functionally - graded properties)

• continuous load paths

• possibility of adaptive response

• optimisation strategies

• robustness

• easy integration of sensing functions (fibre optics)

• bottom up assembly of functional hierarchies
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BIOLOGY WITHOUT FIBRES WOULD BE FORM WITHOUT

SMARTNESS,  GEOMETRY WITHOUT SUBSTANCE……. 

SUCH LIFE MAY NOT HAVE BEEN ABLE TO EVOLVE
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