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 Is human thought systematic? How can we best explain it? The present 
volume aims to explore a variety of conceptual and empirical strategies for 
responding to these two questions. Twenty-five years after Jerry Fodor and 
Zenon Pylyshyn originally challenged connectionist theorists to explain 
the systematicity of cognition, our task in this volume is to reassess and 
rethink systematicity in the post-connectionist era. 

 In their seminal  “ Connectionism and Cognitive Architecture: A Critical 
Analysis ”  ( Cognition  28: 3 – 71, 1988), Fodor and Pylyshyn argued that the 
only way for connectionist theory to explain the systematicity of thought 
is by implementing a classical combinatorial architecture. Connectionist 
explanations, they claimed, are destined to fail, managing at best to inform 
us with respect to details of the neural substrate. Explanations at the cogni-
tive level, they argue, simply must be classical insofar as adult human 
cognition is essentially systematic. It is difficult to overstate the importance 
of Fodor and Pylyshyn ’ s argument in cognitive science. In fact, it is not 
easy task to find an introductory text that does not give a central role to 
the  “ systematicity challenge. ”  

 However, a quarter of a century later, we inhabit a post-connectionist 
world, where the disagreement is not between classical and connectionist 
models, but rather between cognitivism writ large and a range of method-
ologies such as behavior-based AI, ecological psychology, embodied and 
distributed cognition, dynamical systems theory, and nonclassical forms 
of connectionism, among others. Thus, it is worth revisiting the initial 
challenge to connectionist theory, as originally formulated, in order to 
understand how the debate looks in this new context. 

 The twenty-fifth anniversary of the publication of Fodor and Pylyshyn ’ s 
critical analysis provides a suitable occasion to revisit the challenge. To 
this end, we organized a workshop entitled  “ Systematicity and the Post-
connectionist Era: Taking Stock of the Architecture of Cognition ”  in the 
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tiny village of San Jos é  in a beautiful corner of Almer í a, Spain. We are very 
grateful to the co-organizers,  Á ngel Garc í a, Toni Gomila, and Aarre Laakso, 
and to the participants for several days of highly productive discussion. 

 Participants in the workshop were asked to focus on systematicity 
from the perspective of nonclassical approaches in cognitive science. We 
addressed the following questions: Can we identify novel lines of response 
from, say, ecological psychology, embodied and distributed cognition, or 
neurobiologically plausible neural network theory? Would such strategies 
face the same conceptual challenges as previous connectionist responses? 
In what way might an implementation-level orientation in embodied 
cognitive science serve to inform psychological explanation? Is there 
reason to rethink the claim that thought is systematic? What is the empiri-
cal evidence for or against the systematicity of thought? How does the 
systematicity of human thought relate to human and nonhuman system-
atic behaviors? What areas of research, other than language, can throw 
light on the systematicity argument? A number of contributors to this 
volume (Ken Aizawa, Anthony Chemero, Alicia Coram, Fernando Martí   nez-
Manrique, Brian McLaughlin, Steven Phillips, Michael Silberstein, and 
David Travieso) presented preliminary versions of their chapters at the 
workshop. The topics addressed cut across the cluster of disciplines that 
constitute contemporary cognitive science. 

 Ensuing discussion and informal interaction continued well beyond the 
workshop itself, forming the basis for the present volume. To improve the 
diversity of reactions to the systematicity challenge, we subsequently 
invited an additional set of essays from a number of researchers who had 
not been at the workshop (Gideon Borensztajn, Willem Zuidema, and 
William Bechtel; Jeff Elman; Stefan Frank; Edouard Machery, Gary Marcus; 
Randall O ’ Reilly, Alex Petrov, Jonathan Cohen, Christian Lebiere, Seth 
Herd, and Seth Kriete; Bill Ramsey). The present volume is the finished 
product of this joint effort. We are confident that it provides a representa-
tive sample and an overview of some of the most important developments 
in the scientific literature on the systematicity of cognition. 

 We are thankful to many people for their work on this three-year 
project. First of all, we are very grateful to the contributors. They have 
worked in a highly collaborative spirit, reviewing each other ’ s work and 
responding to one another in a way that has helped to unify and consoli-
date the volume. The sharp focus of this volume has meant that in many 
of the papers there is some degree of overlap with respect to introductory 
discussions of systematicity. As editors, we encouraged contributors to set 
the stage as they wished. In our view, their divergent emphases with respect 
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to the history of the debate and the conceptual landscape of the problem 
inform their respective responses to the systematicity challenge. While the 
essays can profitably be read by themselves, or in whatever order the reader 
chooses, the careful reader will appreciate the organizational principle that 
underlies this collection of essays into unlabeled blocks, as they appear in 
parts I through IV in the table of contents. The thematic arrangement is 
not accidental and the reader may wish to read through from beginning 
to end in order to find the system for herself. 

 This project was made possible thanks to the financial support of a 
number of agencies. We gratefully acknowledge the support of Fundaci ó n 
S é neca (Agencia de Ciencia y Tecnolog í a de la Regi ó n de Murcia), who 
funded us through project 11944/PHCS/09, and to the Ministry of Eco-
nomic Affairs and Competitiveness of Spain, for its support through Project 
FFI2009-13416-C02-01. We also thank the European Network for the 
Advancement of Artificial Cognitive Systems, Interaction and Robotics for 
additional support. 

 We are grateful to Philip Laughlin at MIT Press for his patient and 
encouraging support throughout this process. On a personal note, we wish 
to thank the generous people of San Jos é  for warmly welcoming our motley 
crew of scholars and scientists. The staff at Hotel Do ñ a Pakyta and Hotel 
El Sotillo, and especially Oti, the  “ commander-in-chief, ”  provided the 
coziest of atmospheres for our workshop. We cannot forget Paco and Pipe, 
at Bar El Duende, and Amada, at Bar M ó nsul, where many participants at 
the workshop came to understand what philosophers mean by perennial 
questions. 

 San Jos é , Almer í a 
 Lawrence, Kansas 
 Easter, 2013 
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 Introduction 

 In 1988, Jerry Fodor and Zenon Pylyshyn published  “ Connectionism and 
Cognitive Architecture: A Critical Analysis. ”  Their article presented a force-
ful and highly influential criticism of the explanatory relevance of neural 
network models of cognition. At the time, connectionism was reemerging 
as a popular and exciting new field of research, but according to Fodor 
and Pylyshyn, the approach rested on a flawed model of the human mind. 
Connectionism is the view that the mind can be understood in terms of 
an interconnected network of simple mechanisms. Its proponents contend 
that cognitive and behavioral properties can be modeled and explained 
in terms of their emergence from the collective behavior of simple 
interacting and adaptive mechanisms. According to Fodor and Pylyshyn, 
connectionist approaches neglect an essential feature of thought — its sys-
tematic nature. On their view, the basic psychological fact that thoughts 
are intrinsically related to other thoughts in systematic ways becomes 
inexplicable if one denies that representations are structured in a syntacti-
cally and semantically classical combinatorial manner.  1   Connectionism, 
they argued, inevitably fails to provide a meaningful explanation of 
cognition insofar as it confuses the intrinsically systematic nature of 
thought with a system of associations.  2   Connectionism might shed some 
light on the way that cognitive architectures happen to be implemented 
in brains, but the explanation of cognition does not take place at the 
level of biology or hardware. A cognitive architecture must be systematic 
to the core in order to shed light on the intrinsically systematic character 
of cognition. 

 One prominent message of their article, that a cognitive architecture 
must explain systematicity in order to explain human cognition, came to 
be called  the systematicity challenge.  The meaning and implications of 
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the challenge can be interpreted in more than one way, and it quickly 
generated a vigorous response in philosophy and cognitive science. The 
ensuing debate resulted in an enormous literature from a variety of per-
spectives.  3   Philosophers and scientists on all sides of the issue generally 
agree that the paper helped to sharpen central questions concerning the 
nature of explanation in cognitive science and that Fodor and Pylyshyn 
have encouraged the scientific community to think carefully about what 
the goals of cognitive science should be. Nevertheless, in cognitive science 
and philosophy, opinion is sharply divided concerning the role of syste-
maticity in a mature science of mind. 

 The criticism of connectionism in the 1988 paper harks back to Fodor ’ s 
earlier arguments for the idea that cognition should be understood by 
analogy with classical computational architectures as a system of rules and 
representations. In the 1970s, Fodor had argued that the language of 
thought hypothesis explained the systematic features of thought. On his 
view, all thoughts that have propositional content are representational in 
nature, and these representations have syntactical and semantic features 
that are organized in a way that is similar to the transformational rules of 
natural languages. Insofar as tokens of mental representation figure in 
thoughts and insofar as we can judge those thoughts to be true or false, 
they must be organized in a language-like way ( Fodor 1975 ). Fodor presents 
the language of thought hypothesis as the best way to account for a range 
of features of our psychology. The three basic explananda that Fodor high-
lights in his work are: 

 (a)   The productivity of thought: we have an ability to think and under-
stand new thoughts and previously unheard sentences. 
 (b)   The systematicity of thought: to genuinely understand a thought is to 
understand other related thoughts. 
 (c)   The principle of compositionality: the meaning of sentences results 
from the meanings of their lexical parts. 

 Fodor and Pylyshyn ’ s criticism of connectionism is shaped by Fodor ’ s early 
articulation of the language of thought hypothesis and by their view that 
competing explanatory strategies miss what is distinctively cognitive about 
cognition. Their 1988 article applied a challenging philosophical argument 
to a lively and ongoing scientific controversy. By any measure, their paper 
has served as a focal point for one of the most active debates in the phi-
losophy of cognitive science over the past twenty-five years. 

 In our view, the scientific landscape has changed in ways that call 
for a fresh look at this influential set of arguments. Most obviously, the 
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quarter-century since Fodor and Pylyshyn ’ s paper has seen the develop-
ment of new approaches to connectionism that depart in a number of 
important respects from the modeling strategies that were the direct target 
of their criticism in the 1980s. More generally, the broader scientific 
context has changed in ways that are relevant to the kinds of explana-
tions that are available to cognitive science. Fodor and Pylyshyn presented 
an argument about what should count as the right kind of explanation 
of cognition. In the intervening years, a range of scientific and philosophi-
cal developments have supported alternative approaches to explanation 
in the study of cognition. Dynamical, embodied, situated, ecological, and 
other methodologies are no longer exotic or marginal options for cogni-
tive scientists. At the other end of the spectrum, the majority of research-
ers in neuroscience adopt highly reductionist approaches to the brain, 
focusing increasingly, and very fruitfully, on the cellular and subcellular 
details.  4   

 Systematicity tends to be conflated with classical computational kinds 
of cognitive architecture and traditional research in artificial intelligence. 
However, the contemporary landscape with respect to artificial intelligence 
has also shifted in important ways. Researchers can choose from a range 
of classical, hybrid, and nonclassical architectures, along with a growing 
set of noncognitive architectures inspired by developments in robotics. 
Much has changed since Fodor and Pylyshyn published their article, and 
this volume is intended as a way of taking stock of one of the most impor-
tant debates in the history of cognitive science from a contemporary 
perspective. The question of what counts as a good explanation of cogni-
tion clearly has not been settled decisively. 

 Setting the Stage for the Systematicity Challenge 

 It is helpful to locate the systematicity challenge in the context of the 
development of cognitive science in the second half of the twentieth 
century. To begin with, it is important to note that Fodor and Pylyshyn 
were not the first to challenge the explanatory status of nonclassical 
approaches, including network models, for the study of cognition. They 
were well aware of the historical context and pointed back to what they 
saw as the decisive defeat suffered by advocates of perceptrons, behavior-
ism, and the like. They claimed that the discussion of what the correct 
architecture of cognition looks like  “ is a matter that was substantially put 
to rest about thirty years ago; and the arguments that then appeared to 
militate decisively in favor of the Classical view appear to us to do so still ”  
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(Fodor and Pylyshyn 1988, 3). Indeed, many of the central conceptual 
questions were already coming into focus in the early 1960s. 

 Regarding the big-picture philosophical concerns, the relative status of 
associationism and rationalism, for example, were in play in throughout 
the early history of cognitive science. These concerns came into focus, for 
example, in debates over the explanatory status of perceptron models. The 
inability of single-layered perceptrons to learn how to approximate non-
linearly separable functions was one of the reasons that popular scientific 
opinion had turned against neural networks two decades earlier. The com-
bination of Chomsky ’ s (1959) review of Skinner ’ s  Verbal Behavior  and 
 Minsky and Papert ’ s (1969)  critique of Rosenblatt ’ s (1958) perceptrons 
encouraged Fodor and Pylyshyn to see the fight against network models 
and behaviorism as having been settled decisively in favor of classicism 
and rationalism. 

 The neural network approach was delayed but not derailed. In addition 
to the development of well-known parallel distributed processing strate-
gies that culminated in the two volumes of Rumelhart and McClelland ’ s 
(1986)  Parallel Distributed Processing: Explorations in the Microstructure of 
Cognition , developments in the 1970s and early 1980s include Stephen 
Grossberg ’ s (1982) adaptive resonance theory and self-organizing maps 
and Kunihiko Fukushima ’ s (1980) neocognitron, among others. Although 
neural network approaches may not have been as prominent during this 
period, Grossberg and others were developing increasingly sophisticated 
formal techniques that allowed researchers to sidestep many of the objec-
tions from the 1960s. 

 Several well-known milestones marked the revival of popular interest 
in connectionism during the late 1970s and early  ’ 80s.  5   The most promi-
nently cited is the development of the backpropagation learning algorithm 
for multilayered perceptrons (Rumelhart, Hinton, and Williams 1986) 
that permitted researchers to address problems that had previously been 
regarded as intractably difficult challenges for network modelers. The 
debate over the acquisition of the past tense in English played a historically 
important role in this regard. Heated discussion as to how much of the 
developmental psycholinguistic data could be accounted for by statistical 
means alone continued throughout the 1980s and  ’ 90s. The phenomenon 
to be explained takes the following form. As they learn the past tense of 
English, children develop their abilities in a familiar  “ U-shaped develop-
mental profile ”  ( Berko 1958 ;  Ervin, 1964 ). Initially, they correctly produce 
the past tense forms of regular and irregular verbs. However, they soon go 
through a period where they make predictable errors in the inflection of 
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verbs, for example,  “ goed ”  and  “ falled ”  instead of  “ went ”  and  “ fell. ”  Errors 
of this kind, at this stage in the developmental process, are widely under-
stood as being the result of the overgeneralization of rules. After this 
decline in their performance, children begin to correct these overgeneral-
ization errors and their performance improves. 

 According to connectionists, explanations of the characteristic U-shaped 
pattern of acquisition can be provided by network models that mimic the 
pattern of acquisition with a reasonable level of accuracy. (See, e.g.,  Plun-
kett and Juola 1999. ) Against the connectionists,  Pinker and Prince (1988)  
maintained that researchers would need to resort to more abstract symbol-
and-rule mechanisms if they were ever to model the phenomenon ade-
quately. At this point, the trade-offs were becoming clear. The kind of 
approach championed by Pinker, Prince, and others offered a simple and 
precise solution to the narrow challenge of explaining the U-shaped devel-
opmental profile. Connectionist models performed in less precise ways, 
but had the virtue of being applicable to a broad range of cases rather than 
being a tailor-made system of symbols and rules that applied narrowly to 
the specific problem of learning the English past tense. In addition to being 
more general, connectionists claimed that their models provided the 
required level of generalization and productivity, without the unparsimo-
nius proliferation of modules that came with symbol-based approaches. It 
was in this atmosphere of excitement about the prospects of connectionist 
theory that Fodor and Pylyshyn published their article. As for the debate 
over the English past tense, we continue to see a lack of consensus as to 
whether statistical mechanisms embedded in artificial neural networks are 
genuinely explanatory ( Ramscar 2002 ;  Pinker and Ullman 2002 ). 

 The terms of this disagreement echo Fodor and Pylyshyn ’ s discussion 
of what it means to give an explanation of a cognitive phenomenon. 
Research on language acquisition in infants (Marcus, Vijayan, Bandi Rao, 
and Vishton 1999; Seidenberg and Elman 1999) and speech processing in 
adults ( Pe ñ a et al. 2002 ; Endress and Bonatti 2007; Laakso and Calvo 2011) 
are areas where many of the central themes of the original debate continue 
to be explored.  6   The set of considerations that were raised in debates over 
the past tense have spread throughout the field of psycholinguistics 
and the rest of the cognitive sciences, with contemporary versions of 
the dispute being held between  “ probabilistic ”  ( Griffiths, Chater, Kemp, 
Perfors, and Tenenbaum 2010 ) and  “ emergentist ”  ( McClelland, Botvinick, 
Noelle, Plaut, Rogers, Seidenberg, and Smith 2010 ) models of thought. 

 While the so-called great past tense debate was affected directly by Fodor 
and Pylyshyn ’ s criticisms, their argument was aimed at a very general set 
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of questions rather than at the specifics of a particular debate in science. 
They were unmoved by the fact that this or that area of cognition could 
actually be modeled statistically. On their view, a simulation that mimics 
some feature of human cognition is not an explanation of that feature. 
Their criticism applied equally, for example, to single-layered and multi-
layered perceptrons; they were relatively unconcerned with the intricacies 
of particular battle lines in particular cases. Their criticisms were funda-
mentally philosophical, targeting the underlying associative character of 
neural network processing per se. In their view, the  “ parallel distributed 
processing ”  of the 1980s was basically equivalent to the kind of associa-
tionism that philosophers would associate with Locke or Hume. Insofar as 
it claims to be a theory of cognition, connectionism is simply association-
ism dressed up in the jargon of vectorial patterns of activation, matrices 
of weighted connections, and gradient descent learning. Any claim to 
being neurobiologically plausible was also irrelevant to their criticisms of 
connectionism. Fodor and Pylyshyn ’ s chief concern was the very nature 
of human cognition, rather than the details of how cognition happened 
to be implemented in the nervous system. Insofar as connectionist theory 
echoed British empiricist philosophy of mind, the inferential treatment of 
classical cognitive science took the side of the rationalists. Thus, while they 
sided with  Pinker and Prince (1988)  against Rumelhart and McClelland 
(1986) in the dispute over the English past tense, Fodor and Pylyshyn had 
their eye on traditional philosophical questions. They famously conclude 
their essay by acknowledging that these debates have a venerable heritage 
in the history of philosophy as well as the more recent history of psychol-
ogy:  “ We seem to remember having been through this argument before. 
We find ourselves with a gnawing sense of d é j à  vu ”  (Fodor and Pylyshyn 
1988, 70). 

 By acknowledging the historical precedents for the debate, Fodor and 
Pylyshyn certainly did not mean to imply that the situation is a stalemate 
or that this debate exemplifies perennial problems in philosophy that will 
never be resolved. In their view, there is a clear winner: when it comes to 
cognition, rationalism is, as Fodor (1975) had earlier claimed of the lan-
guage of thought hypothesis,  the only game in town.  

 The Systematicity of Thought 

 At the heart of the systematicity debate is a basic disagreement concerning 
what, precisely, needs to be explained in the science of mind. For example, 
in the case of language, is it the actual linguistic parsing and production 
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performed by cognitive agents or their competence-level characterization 
in generative linguistic terms ( Chomsky 1965 )? What is the correct level 
of description that captures the distinctively cognitive core of the phenom-
enon? Another basic difference between the classicists and the connection-
ists was their attitude toward the autonomy of psychology relative to the 
details of implementation ( Fodor 1974 ). Fodor and Pylyshyn ’ s strategy was 
to focus on what they took to be a clear-cut and pervasive set of phenom-
ena that they regarded as uncontrovertibly cognitive and to downplay 
questions of implementation and performance. 

 Fodor and Pylyshyn focused on the productive and systematic features 
of thought along with its inferential coherence. Notwithstanding con-
straints on human hardware capacities, the productivity of thought refers 
to our capacity to entertain or grasp an indefinitely large number of 
thoughts. Thought processes, on the other hand, are systematic to the 
extent that our capacity to entertain or grasp a thought appears to be 
intrinsically connected with our capacity to entertain or grasp a number 
of other semantically related thoughts. Likewise, thought exhibits inferen-
tial coherence. Our capacity to follow a pattern of inference appears intrin-
sically connected to our capacity to draw certain other inferences. The 
productivity, systematicity, and inferential coherence of thought strongly 
suggest that mental representations possess a constituent structure without 
which it is difficult to come to terms with the interconnections among 
thought-related capacities.  7   

 According to Fodor and Pylyshyn, an inference to the best explanation 
should lead us to regard these explananda as involving operations per-
formed on a stock of representations that can be combined and recom-
bined in accordance with a set of rules. On their view, unless we postulate 
syntactic and semantic combinatorial relations and unless thought is com-
positional, the way we are endowed with these abilities remains a mystery. 
Unstructured connectionist networks would, at first sight, lack the resources 
to explain the productivity, systematicity, or inferential coherence of 
thought. 

 Fodor and Pylyshyn developed a number of parallel lines of argument 
in support of the superiority of a symbol-and-rule-based approach. In the 
case of productivity, as Fodor and Pylyshyn observe, the existence of 
structured representational schemata is inferred from the fact that our 
competence does not seem to be finite; we appear to be able to entertain 
an indefinitely large number of thoughts. Arguments from productivity 
invite a number of responses. Calling the very existence of a competence –
 performance divide into question was one common line of response. A less 
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direct approach that was favored by some scientists was to simply consider 
performance and competence separately, approaching one side of the 
divide and not the other on methodological grounds (see Elman, this 
volume; Frank, this volume). Although productivity has been a central 
topic that figured in responses to the 1988 paper, it strikes us that the core 
of Fodor and Pylyshyn ’ s argument is the notion that our capacity to think 
is not  punctate ; once we have entertained a thought, we have the resources 
to deal with others that are semantically related. This is the critical datum 
that compels us, on their view, to see thought as requiring structured rep-
resentational schemata. 

 The simplicity of the argument ’ s starting point is powerful and compel-
ling. It is intuitively obvious that a speaker ’ s capacity to understand native 
sentences of her language is related to her understanding of a number of 
other semantically related sentences. Pathologies aside, it is difficult to 
imagine that someone could understand the sentence  “ John loves Mary ”  
without having  ipso facto  the resources to produce or understand  “ Mary 
loves John. ”   8   

 Imagine attempting to learn a language using only a phrase book. Punc-
tate understanding is what one gets when a phrase book is one ’ s only access 
to a foreign language. What you can say and understand depends on the 
particular phrases you happen to look up. This contrasts sharply with the 
way competent speakers of a language understand sentences. The question 
is whether this intuitive starting point is sufficient to license Fodor and 
Pylyshyn ’ s claim that plausible models of human thought must have a 
classical combinatorial structure. 

 According to Fodor and Pylyshyn, the systematicity of thought argu-
ment against connectionism as an architectural hypothesis of cognition 
runs as follows: 

 (i)   It is a fact of psychology that thought is systematic insofar as our 
thoughts are intrinsically related to one another in such a way that having 
one thought means having the capacity to access an indefinitely large set 
of other thoughts. So, to take the canonical illustration, someone who can 
think JOHN LOVES MARY must have the capacity to think MARY LOVES 
JOHN. 
 (ii)   An explanation of systematicity requires syntactic and semantic con-
stituency relations among mental representations and a set of processes 
that are sensitive to such internal structure such as those provided by the 
language of thought (LOT) hypothesis. 
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 (iii)   Connectionist theory posits neither syntactic and semantic constitu-
ency relations among mental representations, nor any set of processes that 
are sensitive to the internal structure of mental representations. 
 (iv)   Therefore, connectionism is unable to account for the systematicity 
of thought. 

 It should be noted that the fact that LOT provides the explanatory 
framework required is meant to imply that it  guarantees  the phenomenon 
and not merely that it is compatible with its occurrence. The explanatory 
framework is meant to satisfy the sense that the cognitive architecture and 
cognition itself share a common core. On Fodor and Pylyshyn ’ s view, a 
genuine explanation involves a robust constraint on acceptable architec-
tures: the demand is that the model accords with systematicity in a way 
that is not merely the product of an exercise in data-fitting (see  Aizawa 
2003 ). Instead, Fodor and Pylyshyn are eager to emphasize that systematic-
ity follows from classical architecture as a matter of nomological necessity 
and is not simply a contingent fit between the architecture and the 
explanandum. Of course, this does not mean that it is conceptually impos-
sible that other architectures might play the same explanatory role or even 
that some other architecture might also have a necessary connection with 
the explanandum. Indeed, there may be psychological theories that play 
an equivalent role, but in order to satisfy the Fodorian demand it is not 
enough to show that the framework is compatible with the explanandum. 
Insofar as the systematicity of thought is understood to be a basic psycho-
logical fact, or even a psychological law (McLaughlin 2009), it would not 
suffice for a neural modeler to hit upon a configuration of weights that 
 happens to  allow a connectionist network to mimic the cognitive explanan-
dum.  9   It would need to be shown how it follows of necessity from that 
architecture, as is supposedly the case for LOT (but see Phillips, this 
volume). Fodor and Pylyshyn ’ s empirical bet is that we will not be able to 
find successful explanations of the systematicity of thought that do not 
involve full-fledged compositional semantics. 

 Cognitive Architecture 

 For Fodor and Pylyshyn, the issue is whether connectionism can be under-
stood to serve as an explanatory  cognitive  theory, rather than as a high-level 
description of the underlying neural substrate of cognition. But this raises 
some core issues with regard to the very notion of  “ cognitive architecture. ”  
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A cognitive architecture provides the theoretical framework that constrains 
and aims at explaining the putative mental capacities of a physical system. 
However, fixing precisely what is meant by a  “ cognitive architecture ”  is a 
basic conceptual problem in itself. Fodor and Pylyshyn adopted  Newell ’ s 
(1980 ,  1982 ) distinction between a knowledge level and a physical-symbol-
system level in their treatment of neural networks. Newell noted that 
 “ given a symbol level, the architecture is the description of the system in 
whatever system-description scheme exists immediately next below the 
symbol level ”  (1990, 81). Appealing in a physical symbol system to the 
level  immediately below  the symbol level implies a clear division of labor 
in a cognitive architecture. Clearly, this division of labor is congenial with 
the autonomy of psychology as championed by  Fodor (1974) . According 
to Fodor and Pylyshyn: 

 The architecture of the cognitive system consists of the set of basic operations, re-

sources, functions, principles, etc. (generally the sorts of properties that would be de-

scribed in a  “ user ’ s manual ”  for that architecture if it were available on a computer), 

whose domain and range are the  representational states  of the organism. (1988, 5) 

 Although they make no reference to David Marr in their essay, the latter 
promoted a particular account of explanation and a distinction of levels 
that was common currency in the 1980s, and which has helped to frame 
the discussion of the architecture of cognition ever since. What Fodor and 
Pylyshyn (and Newell) are after is exemplified by Marr ’ s (1982) well-known 
tripartite approach to the description of cognitive systems in terms of the 
computational, the algorithmic, and the implementational. We may thus 
read them as endorsing a Marrian view of the appropriate analysis of levels. 
Their aim is to explain the systematicity of thought  algorithmically , once 
the phenomenon has been defined at the computational level, and with 
details of substrate implementation being entirely left aside. 

 Fodor and Pylyshyn ’ s critical analysis targets neural network modeling 
only insofar as it presumes to address the cognitive level of explanation. 
It is in this  top-down  spirit that their challenge is to be read. Fodor and 
Pylyshyn argue that accounting for the systematicity of thought is only 
achieved to the extent that connectionist models import the structural 
features of classical combinatorial processes. However, insofar as this is the 
case, no alternative algorithm or explanatory framework is actually being 
provided. On this view, s tructured  neural networks are relegated to the 
status of  “ implementational connectionism ”  ( Pinker and Prince 1988 ). 
Thus, classicists will happily concede that connectionism may well be able 
to unearth details of the neural substrate that allow for the physical imple-
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mentation of structured sets of mental representations. Clearly, having the 
right story about the neural hardware would be a welcome supplement to 
psychological theorizing. The target for the classicist is possession of an 
algebraic, symbolic, and rule-based explanation of systematicity, on the 
one hand, and a neurological understanding of how the capacity to remain 
structurally sensitive to compositional processes is implemented in the 
brain and nervous system, on the other. 

 Let ’ s consider the trade-off between neural structure and cognitive func-
tion. Traditionally, the discussion has taken the form of determining what 
the correct level of description or explanation is ( Broadbent 1985 ). The 
tendency of both the  “ eliminative connectionists ”  and the classicists 
( Pinker and Prince 1988 ) has been to focus exclusively on either neural 
structure or cognitive function. On the cognitive side, the mission has been 
to explain systematicity in terms of the set of  “ operations, resources, func-
tions and principles ”  that Fodor and Pylyshyn regard as governing the 
representational states of a physical system. By contrast, the eliminative 
connectionist tendency has been to focus on the structure and processes 
of the brain and nervous system rather than on cognition. 

 The idea that there are cognitive mechanisms that explain the systema-
ticity of the human mind, and that any empirically adequate theory should 
incorporate them, is not at issue. Instead, disagreements center on the 
question of the relationship between the cognitive and the biological levels 
of analysis. Although Marr ’ s understanding of the methodological relation-
ship between computational, algorithmic, and implementational levels 
was highly influential for cognitive science, many philosophers and scien-
tists have argued for a reevaluation of his tripartite methodological frame-
work ( Symons 2007 ). Nowadays, most cognitive scientists find it difficult 
to accept, without significant qualification, the top-down recommenda-
tion that understanding the goal of computations should take priority over 
the investigation of the implementational level. Marr understood investi-
gations of the computational level to involve the determination of the 
problem that a system was forced to solve. However, the classical hierarchy 
of (autonomous) computational, algorithmic, and implementational levels 
of analysis is not uncontroversially assumed by contemporary cognitive 
scientists. Neurobiological constraints have become centrally important to 
the characterization of the computational level. In general, there is a 
growing tendency to merge top-down and bottom-up considerations in 
the determination of the architecture of cognition.  10   In this way, contem-
porary treatments of the correct architecture of cognition concern the 
relationship between implementation structure and cognitive function. 
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 Another important feature of these debates is the central place given to 
representation in classicist arguments against connectionism. This topic is 
far too subtle and complex for an introductory overview, but it is important 
to note that Fodor and Pylyshyn presented their challenge to connection-
ism in representationalist terms: 

 If you want to have an argument about  cognitive  architecture, you have to specify 

the level of analysis that ’ s supposed to be at issue. If you ’ re  not  a Representationalist, 

this is quite tricky since it is then not obvious what makes a phenomenon cognitive. 

(1988, 5) 

 It is not at all clear to us how one ought to read this appeal to represen-
tationalism in the contemporary context. The connectionist of the 1980s 
would not see this as particularly problematic insofar as neural network 
modeling was generally speaking committed to some sort of representa-
tional realism, typically in the form of context-dependent subsymbols. But 
it is no longer the case that contemporary connectionists would accept the 
kind of representationalist view of the mind that Fodor and Pylyshyn 
assumed. At the very least, the classicist would need to provide a more 
developed argument that the denial of standard representationalism is 
equivalent to some form of noncognitivist behaviorism.  11   While the chal-
lenge is not directly aimed at nonrepresentational connectionists, this does 
not prevent nonrepresentational connectionism from having something 
to say about systematicity. 

 Of course, Fodor and Pylyshyn assume that the etiology of intentional 
behavior must be mediated by representational states. As far as explanation 
is concerned, this assumption should not be understood as placing an 
extra, asymmetrical burden of proof on someone wishing to provide non-
representationalist accounts of the phenomenon in question. Calvo, 
Mart í n, and Symons (this volume) and Travieso, Gomila, and Lobo (this 
volume) propose neo-Gibsonian approaches to systematicity. While Fodor 
and Pylyshyn were committed representationalists, neo-Gibsonians can 
take the systematicity of thought or the systematicity of behavior as an 
explanandum for cognitive and noncognitive architectural hypotheses 
alike, irrespective of whether those hypotheses include representations. 

 Twenty-Five Years Later: Taking Stock of the Architecture of Cognition 

 Systematicity arguments have figured prominently in discussions of cogni-
tive architecture from the heyday of connectionism in the 1980s and  ’ 90s 
to the advent of a  “ post-connectionist ”  era in the last decade. Many of the 
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aforementioned concerns are either explored or cast in a new light in the 
chapters of this volume. 

 The present volume represents a collective effort to rethink the question 
of systematicity twenty-five years after Fodor and Pylyshyn ’ s seminal 
article in light of the wide variety of approaches in addition to connection-
ist theory that are currently available. As more implementational details 
are being honored, artificial neural networks have started to pay closer 
attention to the neurobiology (Borensztajn et al., this volume; O ’ Reilly 
et al., this volume). Overall, what we find is a greater sensitivity in the 
scientific literature to the aforementioned trade-off between structure and 
function. Memory, for instance, is not understood as the general configura-
tion of a weight matrix, but instead is modeled by means of specific, 
neurobiologically plausible attractor networks in which components and 
their activities are organized with great precision and with considerable 
effort to maintain biological plausibility. 

 We may then consider whether networks of these kinds either meet the 
systematicity challenge or change the terms of the debate in significant 
ways. In what sense does Fodor and Pylyshyn ’ s critical analysis extend to 
nonclassical forms of connectionism? When they objected to the possibil-
ity of having  “ punctate minds, ”  they were thinking of models like those 
one finds in the work of Hebb, Osgood, or Hull; connectionism, according 
to Fodor and Pylyshyn, was  nothing but old wine in new bottles . Whether or 
not they are correct in their judgment that nothing of substance had 
changed in the period between the precursors of connectionism and the 
1980s,  12   superficially at least, there seem to be many reasons to reassess the 
debate today in light of the widespread use of  “ nonclassical connectionist ”  
approaches. Fodor and Pylyshyn would acknowledge that connectionist 
networks have grown in sophistication, but that the basic principles remain 
the same. Had they written their paper in 2013, the argument would have 
probably been that at the cognitive level, the architecture of the mind is 
not a  “ nonclassical connectionist parser ”  ( Calvo Garz ó n 2004 ), and that 
nonclassical connectionism may at best provide an implementational 
account of thought. The basic lines of the argument still apply, in spite of 
impressive scientific developments. This, in itself, is an interesting feature 
of the debate. Fodor and Pylyshyn are presenting an argument for a par-
ticular conception of explanation. Connectionists, no matter how sophis-
ticated, have simply missed what is most important and interesting about 
cognition. The fact that connectionists are likely to have grown very weary 
of responses of this kind does not mean that Fodor and Pylyshyn are 
simply wrong. 
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 In addition to connectionism, a constellation of methodologies and 
architectures have entered the field, many of which explicitly tackle basic 
questions concerning the nature of explanation in cognitive science. 
Modern post-connectionist viewpoints include dynamical, embodied, and 
situated cognitive science, the enactive approach, and neo-Gibsonian 
approaches. By focusing their criticism on connectionism, Fodor and Pyly-
shyn limited the range of hypotheses under consideration in their original 
article. Throughout his career, Fodor has engaged directly with alternative 
conceptions of psychological explanation.  13   However, it is fair to say that 
the Fodorian side of the systematicity debate has maintained (rightly or 
wrongly) a very fixed picture of what counts as a genuinely cognitive 
explanation. 

 The present volume represents the state of play in 2013. Aizawa (chapter 
3, this volume) argues that, if one is to pay close attention to what ecologi-
cal psychology, enactivism, adaptive behavior, or extended cognition actu-
ally say, it is unclear what the dividing line between cognition and behavior 
is — either because these methodologies are behaviorally inclined in them-
selves, downplaying their relevance to questions concerning cognition, or 
(even worse) because they identify or conflate cognition itself with behav-
ior. These constitute new challenges to the systematicity arguments in the 
post-connectionist era. Of course, if that is the case, the rules of the game 
may no longer be clear. One way or another, Aizawa concludes, the post-
connectionist era brings about  “ tough times to be talking systematicity. ”  

 In the immediate aftermath of Fodor and Pylyshyn ’ s article, classicists 
and connectionists focused primarily on the dichotomy between context-
free versus context-dependent constituency relations. Context-dependent 
constituents that appear in different thoughts as syntactically idiosyncratic 
tokens were first discussed by Smolensky (1987) and  Chalmers (1990) . This 
idea is revisited by Brian McLaughlin (chapter 2, this volume), who takes 
issue with Smolensky and Legendre ’ s most recent views as presented in  The 
Harmonic Mind . According to McLaughlin, Smolensky and Legendre ’ s inte-
grated connectionist symbolic architecture is only able to explain systema-
ticity and productivity, despite its hybridity, by collapsing into a full-fledged 
LOT model. 

 Gary Marcus (chapter 4, this volume) defends the idea that the mind 
has a neurally realized way of representing symbols, variables, and opera-
tions over variables. He defends the view that the mind is a symbol system 
against eliminativist varieties of connectionism. On Marcus ’ s view, minds 
have the resources to distinguish types from tokens and to represent 
ordered pairs and structured units, and have a variety of other capacities 
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that make the conclusion that minds are symbol systems unavoidable. In 
his view, connectionist architectures have proved unable to exhibit this set 
of capacities. Connectionism therefore continues to be subject to the same 
sorts of considerations that Fodor and Pylyshyn raised twenty-five years 
ago. Marcus, however, identifies one particular capacity where classicism 
has not been able to succeed, namely, in the representation of arbitrary 
trees, such as those found in the treatment of syntax in linguistics. Unlike 
computers, humans do not seem to be able to use tree structures very well 
in mental representation. While we can manipulate tree structures in the 
abstract, our actual performance on tasks requiring manipulation of tree-
like structures is consistently weak. 

 Marcus appeals for an integrative approach to problems of this kind, 
arguing that the symbolic and statistical features of mind should be 
modeled together. Nevertheless, on Marcus ’ s view, the human mind is an 
information-processing system that is essentially symbolic, and none of 
the developments in the years since Fodor and Pylyshyn ’ s paper should 
shake that conviction. 

 Fodor and Pylyshyn focused on rules as a source of systematicity in 
language. In chapter 5, Jeff Elman points out that the intervening years 
have seen an increased interest in the contribution of lexical representa-
tions to the productivity of language. The lexicon was initially thought to 
be a relatively stable set of entities with relatively little consequence for 
cognition. Elman notes that the lexicon is now seen as a source of linguistic 
productivity. He considers ways in which systematicity might be a feature 
of the lexicon itself, and not of a system of rules. He proceeds to provide 
a model of lexical knowledge in terms of performance and distributed 
processing without positing a mental lexicon that is independently stored 
in memory. 

 Frank (chapter 6, this volume) considers that neural network success 
in accounting for systematicity cannot rely on the design of toy linguistic 
environments, and he scales up simple recurrent networks (SRNs; Elman 
1990) by using more realistic data from computational linguistics. In his 
chapter, he sets out to compare empirically a connectionist recurrent 
neural network with a probabilistic phrase-structure grammar model of 
sentence processing in their systematic performance under more or less 
realistic conditions. As Frank reports, the performance of both models is 
strikingly similar, although the symbolic model displays slightly stronger 
systematicity. In his view, nevertheless, real-world constraints are such that 
in practice performance does not differ susbtantially across models. As a 
result, the very issue of systematicity becomes much less relevant, with the 
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litmus test residing in the learning and processing efficiency of the models 
in dispute, in their flexibility to perform under adverse conditions, or in 
the explanation of neuropsychological disorders. This range of phenom-
ena, among others, is what in Frank ’ s view  “ getting real about systematic-
ity ”  boils down to. Interestingly enough, systematicity, as presented by 
Fodor and Pylyshyn, may not be that relevant after all. 

 Overall, what this type of neural modeling hints at, regardless of the 
level of realism involved, is that it is the nonlinear dynamics that result 
from a word ’ s effect on processing that counts. Constituency may be 
understood in terms of dynamical basins of attraction, where convergence 
toward stability is compatible with dynamic states involved in combinato-
rial behavior being transient. It is then a step forward that falls between 
SRNs and other connectionist networks, and dynamical systems theory.  14   
In this way, if SRNs exploit grammatical variations as dynamical devia-
tions through state space, the explanatory framework and formal tools of 
dynamic systems theory ( Port and van Gelder 1995 ) provides yet a more 
solid avenue of research. The working hypothesis is that there is no need 
to invoke information-processing concepts and operations, with combi-
natorial behavior grounded in sensorimotor activity and the parameter 
of time. However, although there is a trend to replace the symbols and 
rules of classical models with quantities, different types of attractors and 
their basins may furnish different dynamical means of implementing com-
binatorial structure. Thus, monostable attactors (globally stable controllers 
inspired in cortical circuitry and which hold single basins of attraction; 
 Buckley et al. 2008 ), for instance, may hint toward different sets of solu-
tions than those in terms of the trajectories that get  “ induced by sequences 
of bifurcations ( ‘ attractor chaining ’ ) ”  (van Gelder 1998). Either way, the 
dynamical setting of monostable attractors, attractor basins, or attractor 
chaining points toward alternative ways to understand cognition and its 
temporal basis. Other connectionist proposals that have exploited some 
of the toolkit of dynamic systems theory use articulated attractors ( Noelle 
and Cottrell 1996 ), including the deployment of wide enough basins of 
attraction to capture noisy patterns, and stable enough attractors to 
remember input indefinitely. But humans do not implement arbitrarily 
long sequential behavior. If compositionality is to be modeled, it seems 
it have to depend on other sort of resources, than memory resources 
per se.  15   

 Of course, connectionist  “ structure-in-time ”  models are incomplete in 
a number of respects, most notably in being disembodied and in the fact 
that the vectorial representations they make use of cannot be taken as 
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theoretical primitives. If we pay attention to ontogenesis in the develop-
mental psychology experimental literature, we find that models point 
toward the decentralization of cognition ( Thelen et al. 2001 ). It is then a 
step forward to move from SRNs and dynamical systems theory to an 
embodied and situated cognitive science (Calvo and Gomila 2008;  Robbins 
and Aydede 2008 ).  Hotton and Yoshimi (2011) , for instance, exploit  “ open ”  
(agent- cum -environment) dynamical systems to model embodied cogni-
tion with dynamic-based explanations of perceptual ambiguity and other 
phenomena. According to embodied cognitive science, we should be 
phrasing  cognitively  the following question: what is it that adults  represent  
from the world that allows them to behave systematically and produc-
tively? This rendering of the situation presupposes an answer where a 
connectionist or dynamical phase space obtains stable representational 
states (regardless of whether they are context-dependent or collapse into 
context-free states). But embodied constituents are not hidden manipula-
ble states, but rather states that change continuously in their coupling with 
the environment. A system converges to stable states from nearby points 
in phase space as a result of external conditions of embodiment of the 
system and endogenous neurally generated and feedback-driven activity. 
The appropriate question may then be what sensory-to-neural continuous 
transformations permit adults to exhibit a combinatorial behavior. 

 In contrast with connectionist, more or less traditional lines of response, 
Coram (chapter 11, this volume) focuses on the extended theory of cogni-
tion, a framework that has proved valuable in informing dynamic systems 
models of the mind. Putative explanations of systematicity reside in the 
wider cognitive system, something that includes language and other struc-
tures of public representational schemes. Coram compares this extended 
shift to a strategy that Pylyshyn has tried out in his research on imagistic 
phenomenon, and argues that embodied and embedded cognitive science 
need not redefine the phenomenon of systematicity itself, but rather can 
account for it in its classical clothes with some revisions to the concept of 
representation at play. Her proposed explanation combines extended 
explanatory structures with internal mechanisms. 

 The systematic features of visual perception appear to be an example of 
a non-linguistic forms of systematicity (Cummins 1996). Following this 
thread, in chapter 16, Calvo, Mart í n, and Symons show how systematicity 
may also emerge in the context of simple agents, taking a neo-Gibsonian 
perspective to the explanation of this form of systematicity. The objective 
of this chapter is to provide an explanation of the emergence of systematic 
intelligence per se rather than providing a defense of a particular cognitive 
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architecture. To this end, Calvo, Mart í n, and Symons examine marginal 
cases of behavioral systematicity in the behavior of minimally cognitive 
agents like plants and insects, rather than beginning with the linguistically 
mediated cognition of adult human beings, with the intention to provide 
a basis for understanding systematicity in more sophisticated kinds of 
cognition. 

 Other authors such as Travieso, Gomila, and Lobo (chapter 15, this 
volume) favor a dynamical, interactive perspective and discuss the alleged 
systematicity of perception as illustrated by the phenomenon of amodal 
completion (see Aizawa, this volume). According to Travieso et al., amodal 
completion emerges globally out of context-dependent interactions and 
cannot be explained compositionally. They further discuss systematicity in 
the domain of spatial perception, and argue that although systematic 
dependencies are not found in perception in general, a Gibsonian ecologi-
cal approach to perception that recurs to higher-order informational 
invariants in sensorimotor loops has the potential to explain a series of 
regularities that are central to perception, despite remaining unsystematic. 
Research on sensory substitution and direct learning serves to make their 
case. One way or another, it seems that the fact that extracranial features 
(bodily or environmental) play a constitutive role for the sake of cognitive 
processing is compatible both with cognition being extended and with 
cognition reducing to behavior while the latter is accounted for directly in 
neo-Gibsonian terms. 

 As we ’ ve already mentioned, probably every single aspect of Fodor and 
Pylyshyn ’ s argument has been questioned. If from the connectionist 
corner, rejoinders included buying into constituent structure with an eye 
to unearthing implementational details of an otherwise LOT cognitive 
architecture or developing an alternative form of context-dependent 
constituent structure, more recent post-connectionist responses include 
variations such as the development of spiking neural network and plastic-
ity implementational models ( Fernando 2011 ) or realistic linguistic settings 
to feed SRNs without resorting to constituency internalization. It might 
be possible to bypass classical compositionality by individuating neural 
network internal clusters in a hierarchical manner ( Shea 2007 ). Work with 
a SINBAD (set of interacting backpropagating dendrites;  Ryder 2004 ) neural 
model that exploits cortical hierarchies for the purpose of allowing for 
increasing generalization capabilities by scaffolding variables as we move 
cortically away from the periphery of the system may be read in this 
light. The Hierarchical Prediction Network (HPN) of Borensztajn, Zuidema, 
and Bechtel (chapter 7, this volume) points in this direction, contributing 
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a notable combination of functional abstraction with substrate-level 
precision. 

 In particular, Borensztajn et al., inspired by Hawkins ’ s Memory Predic-
tion Framework, and departing from the emergentist view of unstructured 
connectionist modeling, explore dynamic binding ( Hummel and Bieder-
man 1992 ) among processing units, and develop a neurobiologically plau-
sible version that is structured and can thus account for systematicity. 
Encapsulated representations that result from the hierarchical organization 
of the cortex enable categories to play causal roles. In their chapter, they 
elaborate on how encapsulated representations can be manipulated and 
bound into complex representations, producing rulelike, systematic behav-
ior. This, Borensztajn et al. argue, does not make their proposal implemen-
tational, because despite the fact that encapsulated units can act as 
placeholders, the value of encapsulated representations only gets set in the 
system ’ s interaction with an external environment. As to how to combine 
encapsulated representations into complex representations, Borensztajn 
et al. show how temporary linkages between representations of the sort 
allowed by dynamic binding ( Hummel and Biederman 1992 ) may deliver 
the goods. 

 If a hierarchical category structure can play causal roles and account for 
systematicity by treating constituents as  “ substitution classes, ”  with an eye 
to exploiting encapsulated representations for the purpose of respecting 
compositionality but without retaining classical constituents, Phillips and 
Wilson (chapter 9, this volume) rely on  “ universal constructions ”  for the 
same purpose. According to them, neither classicism, nor connectionism, 
nor dynamicism, among other methodologies, for that matter, has managed 
thus far to fully explain the systematicity of human thought in a way that 
is not ad hoc. They propose instead a  categorial  cognitive architecture: a 
category theoretic ( Mac Lane 2000 ) explanation based on the concept of 
a  “ universal construction ”  that may constitute the right level of descrip-
tion to inform empirical sciences. Whereas substitution classes do the trick 
in hierarchical prediction networks, their model, relying on a formal theory 
of structure, relates systematically maps of cognitive processes that are 
structurally preserved, allegedly meeting Fodor and Pylyshyn ’ s challenge. 

 On the other hand, the SAL framework of O ’ Reilly, Petrov, Cohen, 
Lebiere, Herd, and Kriete (chapter 8, this volume) provides a synthesis of 
ACT-R (Adaptive Control of Thought — Rational;  Anderson and Lebiere 
1998 ) and the Leabra model of cortical learning ( O ’ Reilly and Munakata, 
2000 ) and is a plea for pluralism in the cognitive sciences in the form of a 
biologically based hybrid architecture, where context-sensitive processing 
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takes place first, on the ground of evolutionary and online-processing 
considerations. Their systems neuroscience approach is then aimed at 
illuminating how partially symbolic processing, to the extent that human 
performance happens to approximate a degree if systematicity, is the result 
of complex interactions, mainly in the prefrontal cortex/basal ganglia 
(PFC/BG) system. 

 Although Fodor and Pylyshyn presuppose architectural monism to be 
the default stance, a commitment to some form of pluralism is shared by 
a number of authors in this volume. In fact, strategies inspired by  “ dual-
process ”  theories have gained increasing support in recent years ( Evans 
and Frankish 2009 ). The dual-process working hypothesis is that the archi-
tecture of cognition is split into two processing subsystems, one older than 
the other, evolutionary speaking. Whereas the former puts us in close rela-
tion to our fellow nonhuman animals (e.g., pattern-recognition), the latter 
system is in charge of abstract reasoning, decision making, and other com-
petencies of their ilk.  Gomila et al. (2012) , for instance, adopt a dual-
process framework to argue that systematicity only emerges in the restricted 
arena of the newer subsystem. In their view, thought ’ s systematicity is due 
to the fact that human animals are  verbal  ( Gomila 2012 ). Language, in the 
external medium, underlies our ability to think systematically (see also 
Coram, this volume; Travieso et al., this volume). Mart í nez-Manrique 
(chapter 12, this volume), in turn, argues that connectionist rejoinders to 
Fodor and Pylyshyn ’ s challenge have never been satisfactory. Systematicity, 
nevertheless, need not be a general property of cognition, and in that sense 
there is some room to maneuver. Mart í nez-Manrique motivates a variety 
of conceptual pluralism according to which there are two kinds of concepts 
that differ in their compositional properties. Relying in part on the dual-
process approach, he suggests a scenario of two processing systems that 
work on different kinds of concepts. His proposal boils down to an archi-
tecture that supports at least two distinct subkinds of concepts with differ-
ent kinds of systematicity, neither of which is assimilable to each other.  16   

 Architectural pluralism retains, in this way, at least partially, a commit-
ment to representations, but there are other options. In his contribution, 
Ramsey (chapter 10, this volume) contends that the fact that systematicity 
is a real aspect of cognition should not be seen as bad news for connection-
ism. Failure to explain it does not undermine its credibility since the mind 
need not have only one cognitive architecture. Ramsey is again calling for 
some form of architectural pluralism via dual-process theories that would 
allow connectionist theory to shed its distinctive light on those aspects 
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of cognition that remain unsystematic. However, his proposal is radical 
enough to allow for the vindication of connectionism despite not just their 
inability to account for systematicity, but also their not constituting a 
representational proposal.  17   

 In chapter 13, Edouard Machery applies Fodor and Pylyshyn ’ s early 
criticism of connectionist models to neo-empiricist theories in philosophy 
and psychology. After reviewing the central tenets of neo-empiricism, 
especially as presented in the work of Jesse Prinz and Lawrence Barsalou, 
Machery focuses on its characterization of occurrent and non-occurrent 
thoughts, he argues that amodal symbols are necessary conditions for non-
occurrent thoughts. On Machery ’ s view, if occurrent thoughts are individu-
ated by their origins then some feature of the architecture of cognition 
other than the contingent history of the learning process is needed to 
account for thought ’ s inferential coherence. Machery ’ s chapter reflects the 
continuing influence that systematicity arguments have in contemporary 
philosophy of psychology. 

 Still more radical departures come from systems neuroscience, a field 
that, by integrating the scales of specific neural subsystems with con-
straints of embodiment for cognition and action ( Sporns 2011 ), provides 
a further twist in the tale. In fact, from the higher point of view of vastly 
interconnected subnetworks, the brain as a complex system appears to 
some authors to defy a part-whole componential reading. With the focus 
placed in the brain-body-environment as a complex system, Chemero 
(chapter 14, this volume) calls our attention to a  radical embodied cognitive 
science  (2009) that suggests that cognitive systems are interaction domi-
nant to some extent, and that this requires that we fully revisit Fodor and 
Pylyshyn ’ s notion of systematicity. He describes a number of examples and 
argues that interaction dominance is inconsistent with the compositional-
ity of the vehicles of cognition. Since compositionality underlies the phe-
nomenon of systematicity, cognition happens not to be systematic at least 
to the extent that cognitive systems are interaction dominant. In addition, 
Silberstein (chapter 17, this volume) combines systems neuroscience and 
psychopathology to shed light on theories of standard cognitive function-
ing. In particular, he proposes to make some empirical progress by studying 
the effects on cognition and behavior when inferential coherence fails to 
obtain in patients with schizophrenia. According to Silberstein, the fact 
that the absence of dynamical subsymbolic properties of biological neural 
networks correlates with the breakdown in systematic inferential perfor-
mance tells against a symbol-and-rule approach. 
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 One can imagine a variety of approaches to the evaluation of theories 
of mind in addition to the systematicity criterion. So, for example, behav-
ioral flexibility, faithfulness to developmental considerations, or perfor-
mance in real time could all constitute plausible functional constraints on 
the architecture of cognition.  18   It goes without saying that there are many 
more approaches that could potentially shed light on these questions than 
those presented in the pages of this book. Our purpose here has been to 
consider a sample of nonclassical connectionist empirical and theoretical 
contestants in light of the conceptual challenge that Fodor and Pylyshyn 
articulated. The central question for readers is whether the symbol-and-
rule stance is required for genuine explanations in cognitive science. In 
the late 1980s, it was clear to Fodor and Pylyshyn what the answer should 
be. It may be the case twenty-five years later that their verdict would 
remain the same, but assessing whether their original arguments continue 
to have the same force for the range of approaches included in this volume 
is something we leave to the reader to judge. 
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 Notes 

 1.   The most thorough examination of the arguments associated with the systematic-

ity challenge is Kenneth Aizawa ’ s 2003 book,  The Systematicity Arguments.  

 2.   As David Chalmers wrote, their trenchant critique  “ threw a scare into the field 

of connectionism, at least for a moment. Two distinguished figures, from the 

right side of the tracks, were bringing the full force of their experience with 

the computational approach to cognition to bear on this young, innocent field ”  

(1990, 340). 

 3.   At the time of this writing,  “ Connectionism and Cognitive Architecture: A 

Critical Analysis ”  has been cited over 2,600 times, according to Google Scholar. 

 4.   See, e.g., John  Bickle ’ s (2003)  defense of the philosophical significance of devel-

opments in cellular and subcellular neuroscience. 

 5.   For an account of the history of connectionism, see Boden 2006, ch. 12. 
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 6.   See Marcus 2001 for a critical appraisal from the classicist perspective. 

 7.   According to Fodor ( 1987) , constituents appear in different thoughts as syntacti-

cally identical tokens.  “ The constituent  ‘ P ’  in the formula  ‘ P ’  is a token of the same 

representational type as the  ‘ P ’  in the formula  ‘ P & Q ’ , if  ‘ P ’  is to be a consequence 

of  ‘ P & Q ’  ”  ( Calvo Garz ó n 2000 , 472). 

 8.   On pathological cases, see Silberstein, this volume. 

 9.   After all, neural networks are universal function approximators (Hornik, Stinch-

combe, and White 1989). Thus, since they are Turing equivalent ( Schwarz 1992 ), 

the worry is not whether they can compute, but rather whether they can compute 

 “ systematicity functions ”  without implementing a classical model in doing so. 

 10.   Clark (2013) and  Eliasmith (2013)  are recent illustrations. 

 11.    Ramsey (2007) , for example, has recently argued that only classical cognitive 

science is able to show that a certain structure or process serves a representational 

role at the algorithmic level. Connectionist models, Ramsey argues, are not genu-

inely representational insofar as they exploit notions of representation that fail to 

meet these standards (but see  Calvo Garz ó n and Garc í a Rodr í guez 2009 ). 

 12.   One could argue that already in the 1980s they were working with an incom-

plete picture of the state of network theory. They make no reference to Stephen 

Grossberg ’ s adaptive resonance approach to networks, for example. 

 13.   See, e.g., Fodor and Pylyshyn ’ s (1981) response to Gibson. 

 14.   As a matter of fact, the line between connectionist and dynamicist models of 

cognition is anything but easy to draw (see  Spencer and Thelen 2003 ). 

 15.   In the case of some  “ structure-in-time ”  models, such as  “ long short-term 

memory ”  models (LSTM; Schmidhuber Gers and Eck 2002), the implementational 

outcome is more clearly visible. Long short-term memories are clusters of nonlinear 

units arranged so that an additional linear recurrent unit is places in the middle of 

the cluster, summing up incoming signals from the rest. The linear unit allows the 

system to maintain a memory of any arbitrary number of time steps, which appar-

ently would make the model collapse into our original context-free versus context-

dependent dichotomy. In addition, the linear units that LSTM models employ are 

unbiological. 

 16.   Interestingly, as Mart í nez-Manrique discusses, if cognitive processes happen not 

to be systematic in Fodor and Pylyshyn ’ s sense, a nonclassical systematicity argu-

ment may be run by analogy to their systematicity argument. 

 17.   This is something Ramsey has argued for elsewhere (Ramsey 2007): that cogni-

tive science has taken a U-turn in recent years away from representationalism and 

back to a form of neobehaviorism (see  Calvo Garz ó n and Garc í a Rodr í guez 2009  for 

a critical analysis). 
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 18.   For other constraints and further discussion, see  Newell 1980  and Anderson and 

Lebiere 2003.      

 References 

   Aizawa ,  K.   2003 .   The Systematicity Arguments  .  Dordrecht :  Kluwer Academic .  

   Anderson ,  J. R. , and  C.   Lebiere .  1998 .   The Atomic Components of Thought  .  Mahwah, 

NJ :  Erlbaum .  

   Anderson ,  J. R. , and  C.   Lebiere .  2003 .  The Newell test for a theory of cognition . 

  Behavioral and Brain Science    26 : 587  –  637 .  

   Berko ,  J.   1958 .  The child ’ s learning of English morphology.    Word    14 : 150  –  177 .  

   Bickle ,  J.   2003 .   Philosophy and Neuroscience: A Ruthlessly Reductive Account  .  Dordrecht : 

 Springer .  

   Boden ,  M. A.   2006 .   Mind as Machine: A History of Cognitive Science  .  Oxford :  Oxford 

University Press .  

   Broadbent ,  D.   1985 .  A question of levels: Comment on McClelland and Rumelhart.  

  Journal of Experimental Psychology: General    114 : 189  –  192 .  

   Buckley ,  C. ,  P.   Fine,   S.   Bullock , and  E. A.   Di Paolo .  2008 . Monostable controllers for 

adaptive behaviour. In  From Animals to Animats 10: The Tenth International Conference 

on the Simulation of Adaptive Behavior.  Berlin: Springer.  

   Calvo Garz ó n ,  F.   2000 .  A connectionist defence of the inscrutability thesis .   Mind and 

Language    15 : 465  –  480 .  

   Calvo Garz ó n ,  F.   2004 . Context-free versus context-dependent constituency rela-

tions: A false dichotomy. In  Compositional Connectionism in Cognitive Science: Proceed-

ings of the American Association for Artificial Intelligence Tech. Report FS-04-03 , ed. 

S. Levy and R. Gayler, 12 – 16. Menlo Park, CA: AAAI Press.  

   Calvo Garz ó n ,  F. , and  A.   Garc í a Rodr í guez .  2009 .  Where is cognitive science heading?  

  Minds and Machines    19 : 301  –  318 .  

   Calvo ,  P. , and  A.   Gomila , eds.  2008 .   Handbook of Cognitive Science: An Embodied 

Approach  .  Amsterdam :  Elsevier .  

   Chalmers ,  D.   1990 . Why Fodor and Pylyshyn were wrong: The simplest refutation. 

In  Proceedings of the 12th Annual Conference of the Cognitive Science Society , 340 – 347. 

Hillsdale, NJ: Erlbaum.   

   Chemero ,  A.   2009 .   Radical Embodied Cognitive Science  .  Cambridge, MA :  MIT Press .  

   Chomsky ,  N.   1959 .  Review of B. F. Skinner ’ s  Verbal Behavior .    Language    35 : 26  –  58 .  



Systematicity: An Overview 27

   Chomsky ,  N.   1965 .   Aspects of the Theory of Syntax  .  Cambridge, MA :  MIT Press .  

   Clark ,  A.   2013 .  Whatever next? Predictive brains, situated agents, and the future of 

cognitive science.    Behavioral and Brain Sciences    36  ( 3 ): 1  –  73 .  

   Cummins ,  R.   1996 .  Systematicity .   Journal of Philosophy    93 : 591  –  614 .  

   Eliasmith ,  C.   2013 .   How to Build a Brain: A Neural Architecture for Biological Cognition  . 

 New York :  Oxford University Press .  

   Elman ,  J. L.   1990 .  Finding structure in time.    Cognitive Science    14 : 179  –  211 .  

   Endress ,  A. D. , and  L. L.   Bonatti .  2007 .  Rapid learning of syllable classes from a 

perceptually continuous speech stream .   Cognition    105  ( 2 ): 247  –  299 .  

   Ervin ,  S. M.   1964 .  Imitation and structural change in children ’ s language . In   New 

Directions in the Study of Language  , ed.  E. H.   Lenneberg ,  163  –  189 .  Cambridge, MA : 

 MIT Press .  

   Evans ,  J. S. B. T. , and  K.   Frankish , eds.  2009 .   In Two Minds: Dual Processes and Beyond  . 

 Oxford :  Oxford University Press .  

   Fernando ,  C.   2011 .  Symbol manipulation and rule learning in spiking neuronal 

networks.    Journal of Theoretical Biology    275 : 29  –  41 .  

   Fodor ,  J.   1974 .  Special science, or the disunity of science as a working hypothesis.  

  Synthese    28 : 97  –  115 .  

   Fodor ,  J.   1975 .   The Language of Thought  .  Cambridge, MA :  Harvard University Press .  

   Fodor ,  J.   1987 .   Psychosemantics  .  Cambridge, MA :  MIT Press .  

   Fodor ,  J. , and  Z. W.   Pylyshyn .  1981 .  How direct is visual perception? Some reflections 

on Gibson ’ s  “ Ecological Approach. ”     Cognition    9 : 139  –  196 .  

   Fodor ,  J. , and  Z. W.   Pylyshyn .  1988 .  Connectionism and cognitive architecture: A 

critical analysis.    Cognition    28 : 3  –  71 .  

   Fukushima ,  K.   1980 .  Neocognitron: A self-organizing neural network model for a 

mechanism of pattern recognition unaffected by shift in position.    Biological Cyber-

netics    36  ( 4 ): 193  –  202 .  

   Gomila ,  A.   2012 .   Verbal Minds: Language and the Architecture of Cognition  .  Amsterdam : 

 Elsevier .  

   Gomila ,  A. ,  D.   Travieso , and  L.   Lobo .  2012 .  Wherein is human cognition systematic?  

  Minds and Machines    22  ( 2 ): 101  –  115 .  

   Griffiths ,  T. L. ,  N.   Chater ,  C.   Kemp ,  A.   Perfors , and  J. B.   Tenenbaum .  2010 .  Proba-

bilistic models of cognition: Exploring the laws of thought.    Trends in Cognitive 

Sciences    14 : 357  –  364 .  



28 John Symons and Paco Calvo

   Grossberg ,  S.   1982 .   Studies of Mind and Brain: Neural Principles of Learning, Perception, 

Development, Cognition, and Motor Control  .  Dordrecht :  Kluwer Academic .  

   Hornik ,  K. ,  M.   Stinchcombe , and  H.   White .  1989 .  Multilayer feedforward networks 

are universal approximators.    Neural Networks    2 : 359  –  366 .  

   Hotton ,  S. , and  J.   Yoshimi .  2011 .  Extending dynamical systems theory to model 

embodied cognition.    Cognitive Science    35 : 444  –  479 .  

   Hummel ,  J. E. , and  I.   Biederman .  1992 .  Dynamic binding in a neural network for 

shape recognition.    Psychological Review    99 : 480  –  517 .  

   Laakso ,  A. , and  P.   Calvo .  2011 .  How many mechanisms are needed to analyze 

speech? A connectionist simulation of structural rule learning in artificial language 

acquisition .   Cognitive Science    35 : 1243  –  1281 .  

   Mac Lane ,  S.   2000 .   Categories for the Working Mathematician  ,  2nd ed.   New York : 

 Springer .  

   Marcus ,  G. F.   2001 .   The Algebraic Mind: Integrating Connectionism and Cognitive Science  . 

 Cambridge, MA :  MIT Press .  

   Marcus ,  G. F. ,  S.   Vijayan ,  S.   Bandi Rao , and  P. M.   Vishton .  1999 .  Rule learning by 

seven-month-old infants.    Science    283 : 77  –  80 .  

   Marr ,  D.   1982 .   Vision: A Computational Investigation into the Human Representation 

and Processing of Visual Information  .  New York :  Freeman .  

   McClelland ,  J. L. ,  M. M.   Botvinick ,  D. C.   Noelle ,  D. C.   Plaut ,  T. T.   Rogers ,  M. S.  

 Seidenberg , and  L. B.   Smith .  2010 .  Letting structure emerge: Connectionist and 

dynamical systems approaches to cognition.    Trends in Cognitive Sciences    14 :

 348  –  356 .  

   McLaughlin ,  Brian P.   2009 .  Systematicity redux.    Synthese    170 : 251  –  274 .  

   Minsky ,  M. L. , and  S. A.   Papert .  1969 .   Perceptrons  .  Cambridge, MA :  MIT Press .  

   Newell ,  A.   1980 .  Physical symbol systems.    Cognitive Science    4 : 135  –  183 .  

   Newell ,  A.   1982 .  The knowledge level.    Artificial Intelligence    18 : 87  –  127 .  

   Newell ,  A .  1990 .   Unified Theories of Cognition  .  Cambridge, MA :  Harvard University 

Press .  

   Noelle ,  D. , and  G. W.   Cottrell .  1996 . In search of articulated attractors. In  Proceedings 

of the 18th Annual Conference of the Cognitive Science Society . Mahwah, NJ: Erlbaum.  

   O ’ Reilly ,  R. C. , and  Y.   Munakata .  2000 .   Computational Explorations in Cognitive Neu-

roscience: Understanding the Mind by Simulating the Brain  .  Cambridge, MA :  MIT Press .  

   Pe ñ a ,  M. ,  L.   Bonatti ,  M.   Nespor , and  J.   Mehler .  2002 .  Signal-driven computations in 

speech processing.    Science    298 : 604  –  607 .  



Systematicity: An Overview 29

   Pinker ,  S. , and  M. T.   Ullman .  2002 .  The past and future of the past tense.    Trends in 

Cognitive Sciences    6  ( 11 ): 456  –  463 .  

   Pinker ,  S. , and  A.   Prince .  1988 .  On language and connectionism: Analysis of a paral-

lel distributed processing model of language acquisition.    Cognition    28 : 73  –  193 .  

   Plunkett ,  K. , and  P.   Juola .  1999 .  A connectionist model of English past tense and 

plural morphology.    Cognitive Science    23  ( 4 ): 463  –  490 .  

   Port ,  R. , and  T.   van Gelder .  1995 .   Mind as Motion  .  Cambridge, Mass. :  MIT Press .  

   Ramscar ,  M.   2002 .  The role of meaning in inflection: Why the past tense does not 

require a rule.    Cognitive Psychology    45  ( 1 ): 45  –  94 .  

   Ramsey ,  W.   2007 .   Representation Reconsidered  .  New York :  Cambridge University Press .  

   Robbins ,  P. , and  M.   Aydede .  2008 .   The Cambridge Handbook of Situated Cognition  . 

 Cambridge :  Cambridge University Press .  

   Rosenblatt ,  F.   1958 .  The perceptron: A probabilistic model for information storage 

and organization in the brain.    Psychological Review    65  ( 6 ): 386  –  408 .  

   Rumelhart ,  D. E. ,  G. E.   Hinton , and  R. J.   Williams .  1986 .  Learning internal repre-

sentations by error propagation . In   Parallel Distributed Processing: Explorations in the 

Microstructure of Cognition  ,  vol. 1 :   Foundations  ,  D. E.   Rumelhart ,  J. L .  McClelland , and 

the  PDP Research Group , 318 – 362.  Cambridge, MA :  MIT Press .  

   Rumelhart ,  D. E. , and  J. L.   McClelland .  1986 .  On learning the past tenses of English 

verbs . In   Parallel Distributed Processing: Explorations in the Microstructure of Cognition  , 

 vol. 1 :   Foundations  ,  D. E.   Rumelhart ,  J. L .  McClelland , and the  PDP Research Group . 

 Cambridge, MA :  MIT Press .  

   Rumelhart ,  D. E. , and  J. L.   McClelland , and the  PDP Research Group .  1986 .   Parallel 

Distributed Processing: Explorations in the Microstructure of Cognition  ,  vol. 1 :   Founda-

tions  .  Cambridge, MA :  MIT Press .  

   Ryder ,  D.   2004 .  SINBAD neurosemantics: A theory of mental representation.    Mind 

 &  Language    19  ( 2 ): 211  –  240 .  

   Schmidhuber ,  J. ,  F.   Gers , and  D.   Eck .  2002 .  Learning nonregular languages: A com-

parison of simple recurrent networks and LSTM.    Neural Computation    14  ( 9 ):

 2039  –  2041 .  

   Schwarz ,  G.   1992 .  Connectionism, processing, memory .   Connection Science    4 :

 207  –  225 .  

   Seidenberg ,  M. S. , and  J. L.   Elman .  1999 .  Do infants learn grammar with algebra or 

statistics?    Science    284 : 435  –  436 .  

   Shea ,  N.   2007 .  Content and its vehicles in connectionist systems.    Mind and Language   

 22 : 246  –  269 .  



30 John Symons and Paco Calvo

   Smolensky ,  P.   1987 .  The constituent structure of connectionist mental states: A reply 

to Fodor and Pylyshyn.    Southern Journal of Philosophy    26 : 137  –  163 .  

   Spencer ,  J. P. , and  E.   Thelen  eds.  2003 .  Connectionist and dynamic systems 

approaches to development.    Developmental Science   (Special Issue)  6 : 375  –  447 .  

   Sporns ,  O.   2011 .   Networks of the Brain  .  Cambridge, MA :  MIT Press .  

   Symons ,  J.   2007 .  Understanding the complexity of information processing tasks 

in vision . In   Philosophy and Complexity: Essays on Epistemology, Evolution, and Emer-

gence  , ed.  C.   Gershenson ,  D.   Aerts , and  B.   Edmonds , 300 – 314.  Singapore :  World 

Scientific .  

   Thelen ,  E. ,  G.   Sch ö ner ,  C.   Scheier , and  L.   Smith .  2001 .  The dynamics of embodi-

ment: A field theory of infant perseverative reaching.    Behavioral and Brain Sciences   

 24 : 1  –  86 .  

   van Gelder ,  T.   1998 .  The dynamical hypothesis in cognitive science.    Behavioral and 

Brain Sciences    21 : 615  –  665 .  



 It has been a quarter of a century since the publication of Jerry Fodor and 
Zenon Pylyshyn ’ s  “ Connectionism and Cognitive Architecture: A Critical 
Analysis. ”  Their seminal paper presents several related challenges to the 
hypothesis that the cognitive architecture of beings with the ability to 
think is a connectionist architecture.  1   None concern computational power. 
There are kinds of multilayered connectionist networks that are Turing 
equivalent — that can compute all and only the same functions as a uni-
versal Turing machine. The challenges are explanatory challenges: chal-
lenges to explain certain facts about the abilities of thinkers  2   by appeal to 
a connectionist architecture that is not implementation architecture for a 
language of thought (LOT) architecture.  3   The challenges pose the following 
dilemma for the view that the computational architecture underlying the 
ability to think is connectionist. If connectionism cannot adequately 
explain the facts in question, then it fails to offer an adequate theory of 
the computational architecture of thinkers; and if it explains them by 
appeal to a connectionist architecture that implements a LOT architecture,  4   
then it fails to offer an alternative to the hypothesis that the computational 
architecture of thinkers is a LOT architecture. 

 The literature on the challenges is vast, and the reactions to them have 
been many and varied. I will make no attempt to canvass them here. 
Moreover, I will be concerned only with the most fundamental challenges 
posed by Fodor and Pylyshyn: the challenges to explain the systematicity 
and productivity of thought by appeal to a connectionist architecture that 
is not an implementation architecture for a LOT architecture. I believe 
that connectionism can offer an adequate alternative to the LOT hypoth-
esis only if it can meet these challenges. And I believe they have not 
been met. 

 After some preliminary discussion, I will examine an attempt by Paul 
Smolensky and G é raldine Legendre (2006) to meet them. Their attempt is, 

 2   Can an ICS Architecture Meet the Systematicity and 

Productivity Challenges? 

 Brian P. McLaughlin 
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without question, the best to date. In fact, it is the only attempt to meet 
the systematicity challenge that Fodor and Pylyshyn actually intended to 
pose, a challenge that has been badly misunderstood in the literature.  5   I 
will argue that they do not succeed. 

 1   The Systematicity and Productivity Challenges 

  Fodor and Pylyshyn (1988)  claim that our thought abilities are productive. 
By that they mean we can, in principle, think an unbounded number of 
thoughts. That claim is of course an idealization since our limited life 
spans, to note just one factor, prevents that. Because some connectionists 
(e.g.,  Rumelhart and McClelland 1986 , 191) reject idealizations to 
unbounded cognitive abilities, Fodor and Pylyshyn appeal to the systema-
ticity of thought, which involves no such idealization, to pose a related 
challenge to connectionism. The idea that thought is systematic is that 
any being able to have a certain thought would be able to have a family 
of related thoughts. Abilities to have thoughts are never punctate; they 
come in clusters. That idea can be captured by saying that they come in 
pairs, where it is understood that a given thought ability can be a member 
of more than one pair. The idea that they come in pairs is that it will be 
true (at least  ceteris paribus ) and counterfactual supporting that a thinker 
has one member of a pair if and only if the thinker has the other. A para-
digm example from the literature of two systematically related thought 
abilities is the ability to think the thought that  Sandy loves Kim  and the 
ability to think the thought that  Kim loves Sandy . One can of course 
think that  Sandy loves Kim  without thinking that  Kim loves Sandy . But the 
claim is that any being able to think the one thought would be able to 
think the other. By  “ think the thought that, ”  Fodor and Pylyshyn do 
not mean  “ believe that ”  or  “ think that. ”  They sometimes mean  “ entertain 
the thought that, ”  but, more generally, they mean  “ mentally represent in 
thought that. ”  The systematicity claim is thus that a thinker has the ability 
to mentally represent in thought that  Sandy loves Kim  if and only if the 
thinker has the ability to mentally represent in thought that  Kim loves 
Sandy . 

  Fodor and Pylyshyn (1988)  claim that thought abilities come in clusters 
 because  members of the clusters are intrinsically connected. What it is for 
thought abilities to be intrinsically connected is for them to be complex 
abilities that are constituted by at least some of the same abilities. The 
ability to mentally represent that  Sandy loves Kim  and the ability to men-
tally represent that  Kim loves Sandy  both involve the ability to mentally 
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represent Kim, the ability to mentally represent Sandy, and the ability to 
mentally represent one individual as loving another. These are conceptual 
abilities. The intrinsic connectedness idea thus seems to be that systemati-
cally related thought abilities are  constituted  by the same conceptual abili-
ties.  6   Let us call the thesis that abilities to mentally represent in thought 
that something is the case are constituted by conceptual abilities  “ the 
conceptual constitution thesis. ”   7   The systematicity challenge might be 
formulated as follows: to explain, by appeal to a connectionist architecture 
that does not implement a LOT, counterfactual-supporting generalizations 
asserting the copossession of mental representational abilities that are 
constituted by the same conceptual abilities. 

 Appeal to the conceptual constitution thesis is not question begging in 
the current dialectical context, for the conceptual constitution thesis does 
not imply that there is a LOT.  8   Of course, if the challenge is formulated in 
this way, then connectionists that reject the conceptual constitution thesis 
will reject the challenge. They would, then, face a different challenge. They 
would have to explain abilities to mentally represent in thought without 
appeal to the hypothesis that such abilities are constituted by conceptual 
abilities. 

 The systematicity challenge can be formulated without appeal to the 
conceptual constitution thesis and, indeed, even without appeal to con-
ceptual abilities. Counterfactual-supporting generalizations correlating the 
relevant pairs of representational abilities — low-level psychological laws  9   —
 can be identified by appeal to sentence schemata. That is, we can specify 
schemata such that the English sentences that are instances of them are 
such laws (or express such laws) — systematicity laws. In the effort to char-
acterize the systematicity of thought in the least contentious way, this has 
been the most common practice in the literature that followed Fodor and 
Pylyshyn 1988.  10   

 The grammar of predicate logic is completely understood. Although the 
grammar of English is not, enough is known about it that it is uncontro-
versial that predicate logic schemata have instances in English. Consider, 
then, this sentence schema: 

 (S1)   A thinker is able to mentally represent in thought that aRb if and 
only if the thinker is able to mentally represent in thought that bRa.  11   

 Our earlier paradigm example is an instance of this sentence schema, as 
are no end of other counterfactual supporting generalizations in English. 
If we avoid using the horseshoe (using instead  “ if  …  then, ”  which is not 
captured by the horseshoe), we can appeal to the following sentence 
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schema to identify an unbounded number of other systematicity laws 
expressible in English, without making any assumptions about the grammar 
of English beyond that there are English sentences with no truth-func-
tional structure (ones that can be substitution instances of  “ P ”  and  “ Q ” ): 

 (S2)   A thinker is able mentally represent in thought that  if   P then Q  if and 
only if the thinker is able to mentally represent in thought that  if   Q then P . 

 Many other sentence schemata can be formulated to identify further sys-
tematicity laws. But the two schemata in question serve to illustrate the 
strategy for identifying systematicity laws. In what follows, we will only 
have occasion to appeal to our paradigm example of systematicity. 

 As proponents of the  representational  theory of mind, LOT theorists 
maintain that mental abilities to represent (nomologically) require posses-
sion of mental representations. That is a nontrivial thesis to maintain, 
because from the fact that we mentally represent things, it does not logi-
cally follow that we have mental representations. As proponents of the 
 computational  theory of mind, LOT theorists maintain that mental abilities 
consist in subpersonal-level abilities to compute cognitive functions. As 
proponents of  LOT , they maintain that the ability to compute cognitive 
functions consists in possession of a certain kind of mental symbol system 
and algorithms for constructing and manipulating the symbols. This last 
thesis is, of course, one that non-implementational computational con-
nectionists dispute. 

 We will focus here exclusively on the cognitive architecture of human 
beings (as do  Smolensky and Legendre [2006] ). A human LOT architecture 
will include a finite base of atomic mental symbols, and algorithms that 
can construct molecular symbols from them. The grammar of LOT will be 
such that it will generate a mental symbol that means that  ψ , for all and 
only the  ψ s such that a normal human being has the capacity  12   to mentally 
represent in thought that  ψ .  13   On this view, conceptual representations 
with complete contents (propositional contents) are sentences in LOT. 

 The LOT explanation of productivity is that the algorithms for generat-
ing molecular mental symbols from atomic ones involve recursive proce-
dures by means of which an unbounded number of mental symbols 
with propositional content could be constructed. As we noted, the claim 
that thought is systematic, unlike the productivity claim, does not 
imply that we have an unbounded competence. In a nutshell, the LOT 
explanation of the systematic relations among pairs of mental representa-
tional abilities is that the abilities in such pairs will share a computational 
architectural basis; that is, there will be an architectural basis that is a basis 
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for both abilities. That basis will consist in the architectures including 
certain atomic mental symbols and an algorithm for constructing mental 
sentences with either of the contents in question from those atomic 
symbols. Since both abilities share such an architectural basis, anyone who 
has the one ability would  ipso facto  have the other. 

 2   Can Distributed Connectionist Representations Have Symbolic 
Structure? 

 The hypothesis that there are mental representations with syntactic struc-
tures thus figures essentially in how LOT theorists explain the systematicity 
and productivity of thought. Connectionists that aim to meet the systema-
ticity and productivity challenges must either show us how to explain 
systematicity and productivity without appeal to representations that 
have syntactic structures or else show us how a connectionist architecture 
can include such representations without implementing a LOT. Connec-
tionists have not told us how to explain either systematicity or produc-
tivity without appeal to representations with syntactic structure. So, the 
question arises whether connectionist representations can have syntactic 
structure. 

 Tim van Gelder tells us 

 the best answer to the received question about Connectionist representations [Are 

they syntactically structured?] is that they are  neither  syntactically structured  nor  not 

syntactically structured. Neither answer characterizes them acceptably. We need to 

set aside that particular vocabulary, which is embedded in and effectively limited to 

the Classical framework [the LOT framework], and develop a new set of conceptual 

tools which will be sufficient to comprehend the emerging connectionist alterna-

tive. (1991, 372; emphasis in the original) 

 That cannot be the best answer. The reason is that that answer is equivalent 
to a contradiction: connectionist representations are not syntactically 
structured and are not not syntactically structured. I take it that van Gelder 
did not intend to make an assertion that flouted the principle of noncon-
tradiction, but meant instead to deny an instance of the law of the excluded 
middle, in particular,  “ Either connectionist representations have syntactic 
structure or they do not. ”  Classical logic embraces the law of excluded 
middle, and so requires us to accept that claim. So do some nonclassical 
logics, for example, quantum logic. But nonclassical logics typically do not 
embrace the law of excluded middle. So perhaps in addition to rejecting 
classical computationalism van Gelder means also to reject classical logic, 
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and indeed any logic that embraces the law of excluded middle. Classical 
logic and Zermelo – Fraenkel set theory provide the foundations of classical 
mathematics, the mathematics deployed throughout the sciences. But 
perhaps the revolution that van Gelder envisions is supposed to extend to 
classical mathematics as well, and so to all of applied mathematics in 
science. 

 In any case, a problem remains for van Gelder even if he eschews logics 
that include the law of excluded middle. The problem is that in virtually 
every nonclassical logic, one cannot deny an instance of the law of 
excluded middle on pain of contradiction. Not only in classical logic and 
quantum logic, but also in intuitionistic logic, weak three-valued logic, 
strong three-valued logic, and relevance logics, one cannot deny, on pain 
of contradiction, that connectionist representations either have or do not 
have syntactic structure. The pain of contradiction is that a contradiction 
entails every claim, and, so, entails, for instance, that the Moon is made 
of green cheese. 

 Paraconsistent logics are logics in which a contradiction does not entail 
every claim. Perhaps van Gelder meant after all to make a claim that 
flouted the principle of noncontradiction, but would try to escape the pain 
of contradiction by embracing a paraconsistent logic. Paraconsistent logics 
mainly differ just in their treatment of conditionals, and van Gelder is not 
making a conditional claim. So, let ’ s consider the logic of paradox, the 
leading paraconsistent logic ( Priest 2006 ). If the logic of paradox is the 
correct logic, then it would not be the case that in denying that connec-
tionist representations either have or do not have syntactic structure, van 
Gelder is committed to the claim that the Moon is made of green cheese. 
But although he would not be committed to that claim, he will still have 
to say that connectionist representations have syntactic structure. And he 
will also have to say that connectionist representations do not have syn-
tactic structure. Let it suffice to note that anyone who says both of those 
things has said too much. 

 So, we can return in good conscience to our question: Can connectionist 
representations have syntactic structure? 

 Connectionist architectures can have either of two kinds of representa-
tions: local or distributed.  14   A local connectionist representation is an 
individual unit that is activated or that has a certain level of activation 
(if units have levels of activation).  15   As  Fodor and Pylyshyn (1988)  point 
out, although in diagrams of connectionist networks individual units are 
sometimes labeled using symbols with syntactic structures, a local con-
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nectionist representation does not have a syntactic structure. It can, at 
best, only represent a syntactic structure. (In the toy network models in 
which they are labeled by symbols with syntactic structures, they repre-
sent syntactic structures by the modeler ’ s stipulations.) Local connection-
ist representations are atomic representations: they do not contain other 
representations as constituents, as proper parts, and so they lack constitu-
ent structures.  16   A distributed connectionist representation is an  n -tuple 
of units exemplifying a certain  n -adic pattern of individual unit activation 
(at a time or throughout an interval of time).  17    Fodor and Pylyshyn (1988)  
claim that distributed representations too lack syntactic structure, and 
so are atomic. They maintain that although distributed representations 
can represent syntactic structures, they cannot themselves have syntactic 
structure. 

 It is generally acknowledged that local connectionist representations 
cannot have syntactic structure. But the claim that distributed connection-
ist representations cannot have syntactic structure remains vigorously 
disputed. 

 In a series of articles and technical reports, some single authored, some 
coauthored, starting in the mid-1980 and continuing through the 1990s,  18   
Smolensky and various coauthors have championed the view that distrib-
uted representations can have syntactic structure. This work culminated 
in 2006 in Smolensky ’ s massive two-volume book, coauthored with Leg-
endre, entitled  The Harmonic Mind: From Neural Computation to Optimality-
Theoretic Grammar ; the two volumes total 1,174 pages. The centerpiece of 
the book is Smolensky ’ s Integrated Connectionist/Symbolic architecture 
(ICS), for which he was awarded in 2005 the David E. Rumelhart Prize for 
Contributions to the Theoretical Foundations of Human Cognition. In 
what follows, I will focus on the discussions in these two volumes, which 
present the most mature formulation of Smolensky ’ s views about cognitive 
architecture.  19   

 Smolensky and Legendre (2006, vols. 1 and 2) embrace a computational 
theory of mind and acknowledge that certain mental representations are 
systematically related, that our system of mental representation is produc-
tive, and that the explanation of systematicity and productivity must 
appeal to syntactically structured representations. But they maintain that 
systematicity and productivity can be explained by appeal to a connection-
ist architecture that has distributed representations with syntactic structure 
yet does not implement a LOT architecture. Indeed, they maintain that all 
of the challenges that Fodor and Pylyshyn pose for connectionism can be 
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met by appeal to such an architecture (2006, vol. 1, 101). Our focus will 
remain on systematicity and productivity. 

 3   The Promise of an ICS Architecture 

 I will now present, mainly in their own words, Smolensky and Legendre ’ s 
overall position on human cognitive architecture. They state: 

 The search for a coherent computational architecture for the mind/brain has led 

cognitive science into a major crisis.  …  The computational architecture of the  brain  

seems to be connectionist, while the most successful explanation of the  mind  has de-

pended on a very different architecture, symbolic computation. (2006, vol. 1, 101)  20   

 And they say that  “ the fundamental tension that frames the research 
presented in this book ”  (2006, vol. 1, 31) is raised by the following 
questions: 

 What type of computation is cognition? Connectionist  “ brain ”  computation —

 massively parallel numerical processing? Or symbolic  “ mind ”  computation — rule 

governed manipulation of combinatorially complex, discrete, abstract symbol struc-

tures? (ibid.) 

 On their view, 

 The answer is this: it is both. What makes a mind/brain, what gives rise to human 

cognition, is a complex dynamical system that is a massively parallel numerical com-

puter at a lower level of formal description — a level closer to the biophysical — and, at 

the same time, a rule-governed processor of discrete symbolic structures at a higher 

level of description — a level considerably more abstract than the biophysical, but 

nonetheless governed by formal laws, and related to the lower level description by 

precisely defined mathematical mappings. (ibid.) 

 They say, moreover: 

 The connectionist computer is a description of the mind/brain at a lower level, while 

the symbolic computer is a description  of one and the same system  at a higher, more 

abstract level. (ibid.; Italics theirs)  21   

 They thus appear here to posit a cognitive symbolic computer in  “ the 
mind/brain. ”  

 Smolensky posits not only mental symbols with syntactic structure, but 
a mental symbol system with a compositional semantics (2006, vol. 2, 
544 – 545).  22   Further, he tells us: 

 To address the problem of cognitive productivity [and systematicity], ICS adopts the 

combinatory strategy.  …  Elements of a cognitive domain — for example, scenes or 
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sentences — are mentally represented using complex symbol structures. New inputs 

are represented as novel combinations of familiar input constituents; their outputs 

are generated by creating a corresponding novel combination of familiar output 

constituents. (2006, vol. 2, 556) 

 He thus states:  “ the combinatorial strategy explains the productivity of 
cognition, both in PSA [Purely Symbolic Architectures] and ICS ”  (ibid. 
543). And he maintains the same for systematicity. He justifies this appeal 
to the combinatorial strategy in the same way that LOT theorists do. Speak-
ing for all of the authors, Smolensky says: 

 The authors of this book have adopted this solution because we believe it has led to 

tremendous progress, and that no other comparably promising alternative currently 

exists. (ibid., 556) 

 Given the presentation thus far, it may very well appear that an ICS 
architecture is an implementation architecture for a symbolic (LOT) archi-
tecture.  23   If it is, then appeal to it will not answer any of Fodor and Pyly-
shyn ’ s challenges. The reason, of course, is that their challenges are to 
explain certain features of cognitive abilities by appeal to a connectionist 
architecture that does not implement a symbolic architecture. 

 Smolensky and Legendre, however, are very explicit that an ICS archi-
tecture is not an implementation architecture for a symbolic architecture. 
They say: 

 ICS does not represent either an eliminativist or an implementationalist position 

on the relation between connectionist and symbolic computation  … , but a novel 

intermediate position. (2006, vol. 1, 33) 

 They thus tell us: 

 The ICS theory developed in this book aims to break the deadlock between the elim-

inativists — who claim that symbols have no place in a science of cognition — and the 

implementationalists — who maintain that symbolic computation provides all we 

need for a cognitive theory, with neural networks  “ merely implementing ”  symbolic 

theories. ICS theory, we argue, takes us closer to a satisfactory computational charac-

terization of a mind/brain, assigning both symbolic and connectionist computation 

essential roles that preserve the strength of the former for mental explanation, and 

the advantages of the latter for reducing cognition to neurally plausible elementary 

computations. (ibid., 101) 

 4   Symbols and Cognitive Processes 

 Given that an ICS architecture includes a symbol system with a grammar 
and a compositional semantics and, moreover, the combinatorial strategy 
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is deployed in explaining cognitive phenomena such as systematicity and 
productivity, why is not an ICS architecture (at best) a connectionist archi-
tecture that implements a symbolic (LOT) architecture? 

 A hint at the answer is given in the following passage: 

 In the work presented in this book, ideas and techniques developed in mathematical 

physics and in computer science are brought together to construct a formal charac-

terization of a mind/brain as a computational system that is parallel and numerical 

when described at the lower level, but, when described at the higher level, is sym-

bolic in crucial respects.  …  The  “ psychological reality ”  of the rules and symbols 

in the new computational architecture is somewhat reduced relative to traditional 

symbolic theories of mind. Yet the role of symbols and rules in explaining the crucial 

properties of higher cognition is an essential one. For this reason, the new archi-

tecture we develop here is called the Integrated Connectionist/Symbolic Cognitive 

Architecture (ICS): in this architecture, connectionist and symbolic computation-

al descriptions each play an essential role in overall cognitive explanation. (2006, 

vol. 1, 33) 

 Despite playing an essential role in explaining  “ the crucial properties of 
higher cognition ”  — which, by their own lights, includes the systematicity 
and productivity of thought — an ICS architecture is supposed not to be an 
implementation architecture for a symbolic architecture because  “ the psy-
chological reality ”  of the rules and symbols is  “ somewhat reduced relative 
to traditional symbolic theories of mind. ”  It is the reduced psychological 
reality of symbols and rules for manipulating them that prevents an ICS 
architecture from being an implementation architecture. 

 But what is meant by saying that their psychological reality is  “ some-
what reduced ” ? Are there degrees of psychological reality? Attempting to 
answer the last question in the affirmative is not a promising way to go. 
But a few pages after the passage last quoted, Smolensky and Legendre 
offer an explanation of why an ICS architecture is not an implementation 
architecture that makes no appeal to the idea of reduced psychological 
reality. They say that an ICS architecture is not such an implementation 
architecture 

 because only symbolic  representations , and not symbolic  algorithms  for manipulating 

them, are claimed to be cognitively relevant. (2006, vol. 1, 36) 

 The key idea is that although an ICS architecture includes mental symbols 
(indeed syntactically structured mental symbols), it does not include sym-
bolic algorithms. All of its algorithms are connectionist. Smolensky some-
times puts this by saying:  “ symbols are computationally relevant, but not 
symbolic algorithms ”  (2006, vol. 2, 519). Symbols are computationally 
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relevant in that our cognitive systems represent the arguments and values 
of the functions it computes. But the algorithms by which it computes 
cognitive functions are not symbolic algorithms. 

 An implementation architecture for a symbolic architecture must 
include symbolic algorithms, not as fundamental algorithms, of course, 
but as algorithms derivative from the fundamental nonsymbolic algo-
rithms of the architecture. (By fundamental algorithms, I mean basic 
algorithms, algorithms that are not executed by means of executing other 
algorithms.) If ICS architectures contain no symbolic algorithms at all, not 
even as derivative algorithms, then it is indeed the case that no ICS archi-
tecture is an implementation architecture for a symbolic one. 

 Of course, then, ICS will not yield at least one of its promises. Smolensky 
and Legendre say, you will recall:  “ The connectionist computer is a descrip-
tion of the mind/brain at a lower level, while the symbolic computer is a 
description  of one and the same system  at a higher, more abstract level ”  
(2006, vol. 1, 31). If our cognitive system is an ICS system, then it will not 
be a connectionist computer at a lower level of description and a symbolic 
computer at a higher level of description. The reason is that it will not be 
a symbolic computer at any level of description, since it will not include 
symbolic algorithms at any level of description. There can be no symbolic 
computer without symbolic algorithms. 

 It is one question whether an ICS architecture includes symbolic algo-
rithms among its basic or fundamental algorithms. It is another question 
whether it includes symbolic algorithms as derivative algorithms — algo-
rithms whose steps are executed by executing nonsymbolic algorithms. 
Why does an ICS architecture not include symbolic algorithms as deriva-
tive algorithms? Smolensky and Legendre do not draw the distinction in 
question. What they do is insist that symbols are not  “ process relevant ”  
(2006, vol. 2, 518). Indeed, it is the process irrelevance of symbols that 
Smolensky and Legendre have in mind when they say:  “ The  ‘ psychological 
reality ’  of the rules and symbols in the new computational architecture 
[ICS architecture] is somewhat reduced relative to traditional symbolic 
theories of mind ”  (2006, vol. 1, 33). In a symbolic architecture, symbols 
are process relevant; in an ICS architecture, they are not. 

 By saying that symbols are  “ not process relevant, ”  they mean that 
symbols are not cognitive process relevant. They do not mean to maintain 
that symbols do not participate in any causal processes whatsoever, and 
so are epiphenomena — devoid of any causal effects. Were that the case, 
one wonders what reason there would be for positing them. What they 
mean by saying that symbols are cognitive process irrelevant in an ICS 
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architecture is that the algorithmic processes that can occur in an ICS 
architecture never consist in the manipulation of symbols. The algorithms 
such processes execute are thus not symbolic algorithms. In fact, they are 
connectionist algorithms. If it is indeed the case that an ICS architecture 
includes no symbolic algorithms even as derivative or nonbasic algorithms, 
then an ICS architecture is indeed not an implementation architecture 
for a symbolic architecture. It is not a symbolic computer at any level of 
description. 

 If, however, an ICS architecture includes no symbolic algorithms even 
as derivative or nonbasic algorithms, then, in what sense is the combinato-
rial strategy deployed in explanations of cognitive phenomena? In deploy-
ing the combinatorial strategy, LOT theorists appeal to algorithms that 
manipulate and construct symbols. How can the combinatorial strategy be 
deployed without such algorithms? To address that question properly, we 
will have to examine Smolensky and Legendre ’ s discussions of ICS archi-
tectures and computational explanations of cognitive abilities in consider-
able detail. 

 5   Principle 1 of ICS Architectures 

 Smolensky and Legendre characterize ICS architectures by appeal to four 
principles. They tell us:  “ The first two principles concern how connection-
ist computation realizes symbolic computation ”  (2006, vol. 1, 74). Only 
these two principles need concern us here, since only they bear on why 
an ICS architecture is supposed to not be an implementation architecture 
for a symbolic architecture.  24   

 Smolensky and Legendre tell us:  “ In integrating connectionist and sym-
bolic computation, the most fundamental issue is the relation between the 
different types of representations they employ ”  (2006, vol. 1, 65). The dif-
ferent types of representations in question are atomic symbols and symbol 
structures, on the one hand, and distributed representations on the other. 
The issue is how they are related. 

 The first principle is supposed to address that issue. Smolensky and 
Legendre say: 

 The ICS hypothesis concerning this relation is our first principle, P 1 , informally stat-

ed in (1). 

 (1)    P1.   Rep ics  : Cognitive representation in ICS 

 Information is represented in the mind/brain by widely distributed activity pat-

terns — activation vectors — that, for central aspects of higher cognition, possess 
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global structure describable through the discrete structures of symbolic cognitive 

theory. (2006, vol. 1, 65) 

 There is much to discuss here. 
 By  “ the discrete structures of symbolic cognitive theory, ”  they mean of 

course the atomic symbols and the symbolic structures that symbolic cog-
nitive theory (LOT theory) posits. It is, however, important not to conflate 
being distinct with being discrete. Let us first address distinctness, then 
discreteness. LOT theory posits a system of distinct mental symbols, and 
so of distinct mental representations. But representational connectionism 
posits distinct representations too, either local or distributed. ICS (by stipu-
lation) contains only distributed connectionist representations, and so 
contains no local representations. So, let us consider distributed connec-
tionist representations. Given that types of distributed connectionist rep-
resentations are identical to certain types of patterns of activation over 
groups of units, if two different types of patterns of activation over even 
exactly the same units are both types of distributed representations, then 
they are distinct (i.e., non-identical). Thus, ICS too posits a system of dis-
tinct representations. 

 What, though, about discreteness? There is a sense in which symbolic 
theory is committed to denying that all symbols are discrete. It posits 
molecular symbols. Molecular symbols are in a sense not discrete, since 
two molecular symbols can both share a symbol as a proper part. Symbolic 
structures are molecular symbols, and so distinct symbolic structures need 
not be discrete. Perhaps Smolensky and Legendre have in mind that dis-
tinct atomic symbols are discrete. Atomic symbols do not have other 
symbols as parts, and so do not share symbols as parts. That, Smolensky 
and Legendre might maintain, makes them discrete. It is, however, a sub-
stantive issue whether distributed representations are discrete in that sense. 
 Fodor and Pylyshyn (1988)  maintain that distributed representations are 
discrete in that sense, and so cannot have syntactic structure. Smolensky 
and Legendre may hold that distributed representations are not discrete 
since distinct ones can share subsymbolic (subrepresentational) parts, for 
example, a certain individual unit at a certain level of activation. An indi-
vidual unit at a certain level of activation will not be a symbol or repre-
sentation in an ICS architecture, because such an architecture contains no 
local representations. Distributed representations are indeed not discrete 
in that sense. But atomic symbols in a symbolic architecture need not be 
discrete in that sense either. Smolensky says at one point that symbolic 
architectures use  “ symbols all the way down ”  (2006, vol. 2, 506). But, given 
that symbols are representations, that is not in general the case. (Like 
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Smolensky and Legendre, I am using  “ symbols ”  in such a way that every 
symbol is a representation.) Two distinct atomic symbols can share sub-
symbols (subrepresentations) as parts. I have in mind here the familiar 
distinction in symbolic theory between bits and bytes, and the fact that 
the individual bits need not be representations, and so need not be symbols. 
Atomic symbols can be thus distributed over constituents that are not 
symbols, but rather subsymbols. It should be noted, moreover, that it is 
compatible with the LOT hypothesis that atomic symbols are, or are con-
stituted by, or are realized by  25   distributed connectionist representations. 
Indeed, one of those disjuncts will be the case in a LOT architecture that 
is implemented by a connectionist architecture. 

 Smolensky and Legendre say that distributed activity patterns  “ possess 
global structure describable through the discrete structures of symbolic 
cognitive theory ”  (2006, vol. 1, 65). The locution  “ describable through ”  is 
awkward. Presumably, it means  “ describable by means of ”  or  “ describable 
through the use of. ”  But if our concepts are classical cognitive symbols, 
then Smolensky and Legendre ’ s claim is trivial, since anything whatsoever 
that is in principle describable by us is in principle describable by (describ-
able through the use of) a symbol in our cognitive system. As their subse-
quent discussion makes clear, however, what they mean is that the global 
structure is describable by means of the terms of a symbolic cognitive 
theory in the sense that it is describable  as  a symbol system. Thus, they 
say, more perspicaciously: 

 A major contribution of the research program presented in this book is the demon-

stration that a collection of numerical activity vectors can possess a kind of global 

structure that is describable as a symbol system. (2006, vol. 1, 66) 

 If a collection of numerical activity vectors possesses a kind of global struc-
ture that is describable as a symbol system, then that kind of global struc-
ture is a symbol system. (This is just an instance of the general principle 
that if anything is describable as F, then it is F.  26  ) Thus, they seem to hold 
that a collection of numerical activity vectors can be a symbol system. 

 I noted earlier that Smolensky and Legendre take mental representations 
to be distributed representations. I also noted that a distributed connec-
tionist representation is a group of (an  n -tuple of) units exemplifying a 
certain ordered pattern of individual unit activation. That is a complex 
state of certain units within a network. But in the remark quoted above 
(from 2006, vol. 1, 66), they seem to take a collection of activity vectors 
to be a symbol system. Activity vectors are  n -tuples of numbers, each 
number indexing the activation value of an individual unit in an  n -tuple 
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of units.  27   But, then, is a mental representation (symbol or symbol struc-
ture) in a cognitive ICS architecture supposed to be a pattern of activity 
over an  n -tuple of units, or is it supposed to be an activity vector? 

 It is important to distinguish three kinds of things. First, there are  “ the 
structures of symbolic cognitive theory. ”  They are mental symbols with 
syntactic structures and their symbolic constituents, including their ulti-
mate symbolic constituents, atomic symbols. Second, there are distributed 
representations: groups of  n  units exhibiting an  n -adic pattern of activation 
levels. A group of  n  units having a certain  n -adic pattern of activation levels 
is, as I noted, a kind of state. Let us call such states  “ distributed activation 
states. ”  (This is my term, not theirs.) Smolensky and Legendre maintain 
that the distributed activation states of the ICS architecture that is our 
cognitive architecture will be biophysical states of our brain. More specifi-
cally, they take it that the units will be neurons and the activation levels 
might be, for example, the firing rates of the neurons. (They do not, 
however, commit to the activation levels being firing rates; they are non-
committal about such details of the neural implementation.) They thus 
take it that a distributed activation state in the ICS architecture that is our 
cognitive architecture will be a complex state of a group or population of 
neurons. Third, there are activation vectors. Vectors are mathematical enti-
ties. An activity (or activation) vector is an  n -tuple of numbers, where the 
individual numbers, the components or elements of the  n -tuple, give a 
coordinate in a certain dimension of an  n -dimensional vector space and 
the  n -tuple as a whole gives the coordinates of a point in an  n -dimensional 
vector space (2006, vol. 1, 161). The vector (1.0,  – 1.0., 0.8), for instance, 
gives the coordinates of a point in a three-dimensional vector space. What 
makes a numerical vector an activity vector is that the individual numbers 
of the  n -tuple represent (index) the activation values of the corresponding 
individual units in the  n -tuple of units that, at those respective levels of 
activation, comprise the distributed activation state. We represent points 
in activation space by the use of numerical vectors. Activity vectors repre-
sent distributed activation states by a point in a vector space.  28   So, then, 
three kinds of things are invoked in the characterization of an ICS archi-
tecture: (1) the structures of symbolic cognitive theory; (2) distributed 
activation states; and (3) activation vectors. The question I asked at the 
end of the preceding paragraph is essentially just whether, in a cognitive 
ICS architecture, mental symbols and symbol structures are supposed to 
be certain distributed activation states or instead certain activation vectors. 
They cannot be both, since activation vectors are not distributed activation 
states. The latter are represented by the former, not identical with them. 
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 In answer to my question, Smolensky and Legendre maintain that 
mental representations are distributed activation states, certain kinds of 
biophysical states of the brain. Mental representations are not identical 
with points in a vector space. Rather, they are distributed activation states 
that can be represented by points in a vector space. They maintain that a 
system of distributed activation states can be a symbol system, because of 
its global structure. Activation vectors come into their picture in this way: 
they appeal to activation vectors to explain how such a system can be a 
symbol system. 

 As the foregoing discussion illustrates, Smolensky and Legendre have a 
tendency to run together talk of activation vectors with the activation 
states that they represent. This is encouraged by their use of  “ activity 
pattern, ”  an expression they sometimes use to mean (what I have called) 
a distributed activation state and sometimes use to mean an activity vector 
that represents such a state. In their defense, it should be noted that it is 
common even in the literature in physics, the branch of science from 
which they draw their mathematics, to run together talk of vectors and 
the states they represent. To illustrate, it is common even in the physics 
literature to talk of superimposing states. But superposition is in the first 
instance a mathematical operator on vectors ( Byrne and Hall 1999 ). Any 
state that can be represented by a vector can be represented by the super-
position of two vectors. Confusing vectors with the states they represent 
is analogous to a use-mention confusion. It is like confusing  “ oil ”  with oil. 
Such confusions can of course lead to other mistakes; indeed, the history 
of philosophy is rife with use-mention mistakes. But the slide from talk of 
vectors and to talk of states that one finds in the physics literature is typi-
cally harmless, leading physicists to no confusions. The slide is sometimes 
harmless in Smolensky and Legendre ’ s discussions. But it is not always 
harmless. 

 To cite an example of harm, Smolensky raises the following problem 
about fully distributed representations, which he says Jerome Feldman 
posed to him in personal communication in 1983: 

 (3)   The two-horse problem 

 If the representation of  one  horse fills up an entire network, how is it possible to 

represent  two  horses? (2006, vol. 1, 160) 

 That is a superb question, and a telling one, since  “ fully distributed ”  rep-
resentations are supposed to involve all of the units in a network (or in 
some portion of a network, a portion over which they are fully distributed). 
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Of course, one pattern of activation over the units of a network might 
represent a horse, while a different pattern of activation over those very 
same units represents a different horse (or even represents two horses or 
something else entirely). The units in the network may exhibit the first 
activation pattern at one time  t , and thereby represent one horse; and those 
same units may exhibit the second activation pattern at another time  t *, 
and thereby represent another horse. But I take it that Feldman ’ s question 
is this: if a representation of something fills up an entire network, then 
how is it possible for the network to also represent something else at the 
same time? 

 Smolensky immediately reframes the question this way: 

 More prosaically: if the representation of a symbol  A  is distributed throughout a 

certain portion of a network, how can the representation of a second symbol  B  also 

be distributed thought that same portion of the network — as is necessary for the 

distributed representation of even an extremely simple symbol structure like the set 

{ A ,  B }? (2006, vol. 1, 160) 

 Here there is a shift from horses to symbols, but Feldman ’ s question 
concerns the representation of anything by a fully distributed representa-
tion in a network. The telling shift is when Smolensky says, immediately 
following that remark, as he begins his answer:  “ Given that the represen-
tational medium we are working in is a space of activation vectors …  ”  His 
full answer need not concern us at the moment since it would lead us 
into a discussion of a matter to be addressed later (the role of superposi-
tion in the mapping of symbol structures to vectors) after some back-
ground has been provided. It suffices to note for now that the full answer 
concerns vectors in a vector space. But Feldman ’ s question is not about 
vectors in a vector space as a representational medium. His question is 
about network units with activation values as a representational medium.  29   
A distributed representation is supposed to be a group of units exhibiting 
a pattern of activation values. If distributed representations are fully dis-
tributed, and so distributed over every unit in a network, then the network 
can be in only one such state at time. The reason is simple: a unit can 
have only one activation value at a time. For a group of units to have 
more than one activation pattern at a time, it would have to be the case 
that at least one unit in the group has more than one activation value 
at that time. But that is impossible. Smolensky misunderstands Feldman ’ s 
question, and as a result misses its very telling point about fully distributed 
representations. 
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 6   Smolensky and Legendre ’ s Explication of Principle P 1  

 Smolensky and Legendre explicate principle P 1  in a series of steps, which 
they label a – d. I shall now discuss them in turn. 

 a.   In all cognitive domains, when analyzed at a lower level, mental representations 

are defined by the activation values of connectionist units. When analyzed at a high-

er level, these representations are distributed patterns of activity — activation vectors. 

For central aspects of higher cognition domains, these vectors realize symbolic struc-

tures. (2006, vol. 1, 66) 

 I will say no more here about shifts from talk of distributed activation 
states to talk of activation vectors. I want to focus now on the last claim, 
the claim that vectors realize symbolic structures. 

 It is important to note that in subprinciple (a), Smolensky and Legendre 
are not using  “ realize ”  in its familiar sense from the functional theory of 
mind. In the functional theory of mind, a realizer is a realizer of a func-
tional role. A functional role includes causal role, a role as a cause and a 
role as an effect. A realizer of a functional role is just an occupant of that 
role, that is, a state or event that plays the role. If there is more than one 
occupant of the functional role, then there is multiple realization. It is 
quite natural to think that a distributed activation state would realize a 
symbol by occupying a certain functional role within the cognizer (and 
perhaps also in relation to the cognizer ’ s environment — so that the causal 
role is a  “ wide ”  role, rather than one narrowly limited to causal transac-
tions within the cognizer). Indeed, if we want a naturalistic account of 
how a distributed activation state could be a representation, the functional-
ist view is the only view now available; there are no other extant views to 
which to appeal. On the functionalist view, a distributed activation state 
can be a representation in a system by occupying a certain functional role 
within that system (a role perhaps extending to include portions of the 
environment). This is a filler-functionalist (or realization-functionalist) 
account of what makes a distributed activation state a representation. I will 
return to this later. For now, the point to note is just that Smolensky and 
Legendre are not using the functionalist notion of realization in (a). And 
in the last sentence of (a), they indeed mean that vectors realize symbol 
structures. 

 When in (a), they say vectors realize symbol structures, they are using 
 “ realize ”  in the mathematical sense of there being a mapping, a function 
from symbolic structures to vectors in a vector space. Here is the definition 
of a connectionist realization of symbol structures: 
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 Definition. A  connectionist realization  (or  representation ) of the symbolic struc-

tures in a set S is a mapping  ψ  from S to a vector space V: 

  Ψ : S  →  V. (2006 v.1, 277) 

 The term  “ representation ”  appears in parentheses in the above definition, 
because symbolic structures are represented by vectors in a vector space. 
The vectors that realize them (in the mapping sense) represent them. 

 To see how the mapping from symbolic structures to vectors is done, 
we need to look in turn at (b) and (c) of their explication of P 1 . Claim (b) 
characterizes symbolic structures in terms of structural roles and fillers of 
those roles, and so in terms of variable binding. 

 b.   Such a symbolic structure  s  is defined by a collection of  structural roles  [r i ] each 

of which may be occupied by a  filler f i  ,  s  is a set of constituents, each a  filler/role 

binding f i  /r i . (2006, vol. 1, 66) 

 They thus say:  “ A structure is a set of  bindings  of various structural  roles  
to their  fillers  ”  (2006, vol. 1, 168). 

 Smolensky tells us:  “ At highest level of abstraction, the sentence genera-
tor can be functionally described by ”  binary tree structures (2006, vol. 2, 
507). A binary tree is a symbolic structure that includes  “ a left child ”  and 
 “ a right child. ”  A binary tree can have another binary tree as a left child 
or as a right child. And a binary tree can have a leaf as a left child or as a 
right child. Leaves are childless. Figure 2.1 shows a diagram of binary tree 
structure.    

 Smolensky and Legendre characterize binary trees in terms of two roles 
and their fillers (the symbols that occupy the roles). The two roles are, 

 Figure 2.1 
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respectively, the roles of being the left child of and being the right child 
of. The leaves of a tree are atomic symbols. The binary tree structure above 
would have a leaf as its left child and a binary tree as its right child, one 
with a leaf as its left child and a leaf as its right child. Fillers of roles can 
thus be atomic symbols or be binary trees. One tree can be embedded in 
another. A tree can be a constituent of another tree. This feature of binary 
trees makes for recursion. 

 Smolensky and Legendre maintain that symbolic structures — binary 
trees — are realized by activity-vectors, by which they mean that binary 
trees can be mapped into activity-vectors. Clause (c) presents a mathemati-
cal formula for the mapping, where  “  ∑  ”  represents the mathematical oper-
ation of superposition and  “  ⊗  ”  represents the tensor product operation: 

 c.   The connectionist realization of  s  [a symbolic structure] is an activity vector 

  s  =  ∑  i   f  i   ⊗   r  i  

 which is the sum of the vectors realizing the filler/role bindings. In these  tensor 

product representations , the patterns realizing the structure as a whole is the su-

perposition of patterns realizing all of its constituents. And the patterns realizing a 

constituent is the tensor product of a pattern realizing the filler and a pattern real-

izing the structural role it occupies. (2006, vol. 1, 66) 

 These filler/role bindings are called  “ tensor product bindings, ”  because 
 “ the binding   f  / r  of a filler  f  to a role  r  is realized as a vector  f / r  that is the 
tensor product of a vector  f  realizing   f   with a vector  r  realizing  r :  f / r  =  f   ⊗  
 r  ”  (2006, vol. 1, 169). 

 Smolensky tells us: 

 In a connectionist realization of symbolic computation, the activation vectors real-

izing the atomic symbols, and those realizing the role vectors, are (linearly) indepen-

dent. (2006, vol. 1, 173) 

 And he says: 

 Here, it is understood that the patterns realizing the atomic symbols lie in one vec-

tor space and must be independent within that space, while the patterns realizing 

the roles lie in a different vector space and must be independent within that space. 

(2006, vol. 1, 174) 

 As he notes:  “ for n linearly independent patterns to exist, there must be 
at least n nodes in the network ”  (2006, vol. 1, 280). 

 Here is (d), the final part of Smolensky and Legendre ’ s explication of P 1 : 

 d.   In higher cognitive domains such as language and reasoning, mental representa-

tions are recursive: the fillers or roles of  s  have themselves the same type of internal 



Can an ICS Architecture Meet the Challenges? 51

structure as  s . And these structured fillers  f  or roles r in turn have the same type of 

tensor product realization as  s . (2006, vol. 1, 67)  30   

 So, then, Smolensky and Legendre claim that binary trees can be mapped 
into vectors in a vector space in the way described in (a) – (d).  31   Binary trees 
are realized by activity-vectors in the mathematical sense that there is such 
a mapping from binary trees to vectors. 

 Let us look at how the mapping procedure is supposed to work in a 
simple case. Consider the two roles: r 0  (the role of being the left child of) 
and r 1  (the role of being the right child of). As Smolensky points out, the 
roles can be  “ realized by the vectors (1 0) and (0 1), respectively: in their 
own two-dimensional vector space (the  role space ), these vectors are 
indeed independent ”  (2006, vol. 1, 174). The vectors (1 2) and (3 5) are 
also in the two-dimensional vector space and are also linearly independent. 
We could instead map r 0  to (1 2) and r 1  to (3 5). That mapping would be 
mathematically equivalent to his mapping. But the vectors (1 0) and (0 1) 
are the standard or normal bases of a two-dimensional vector space, which 
can be preferable for explanatory purposes along the epistemic dimension 
of explanation. (The normal or standard bases of a three-dimensional 
vector space are the vectors: (1 0 0), (0 1 0), and (0 0 1). For a four-dimen-
sional space, they are: (1 0 0 0), (0 1 0 0), (0 0 1 0), and (0 0 0 1). It should 
be clear how to generalize to find the standard bases of any  n -dimensional 
vector space.) He also points out that if there are, say, five atomic symbols, 
 A ,  B ,  C ,  D ,  E , they can be realized by (mapped to) linearly independent 
vectors in a five-dimensional vector space, the atomic symbol filler space. 
(If there are six atomic symbols, the atomic symbol filler space would have 
to be at least a six-dimensional vector space, and so on.) And, for illustra-
tive purposes, he maps these five atomic symbols, respectively, to the 
standard bases of five-dimensional vector space. He maps atomic symbol 
 A  to (1 0 0 0 0),  B  to (0 1 0 0 0),  C  to (0 0 1 0 0),  D  to (0 0 0 1 0), and  E  
to (0 0 0 0 1) (2006 v.1, 174). 

 Consider now a simple binary tree. Suppose that atomic symbol  A  fills 
the role of being the left child of the binary tree, and so fills role r o ; and 
that atomic symbol  B  fills the role of being the right child of the tree, 
and so fills r 1.  Then,  A  in that role is mapped to the tensor product of 
 A  and r 0 , namely,  A   ⊗  r 0 . Given the above role and atomic symbol vector 
assignments,  A   ⊗  r 0  is the vector (or tensor): (1 0 0 0 0 0 0 0 0 0).  B  in the 
role of the right child of the binary tree is mapped to  B   ⊗  r 1 . Given the 
above assignments,  B   ⊗  r 1  is the vector (or tensor): (0 0 0 0 0 0 1 0 0 0). 
( A   ⊗  r 0 ) + ( B   ⊗  r 1 ) is the superposition of those two tensors. It is the vector 
(1 0 0 0 0 0 1 0 0 0). A binary tree with  A  as its left child and  B  as its right 
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child is thus mapped to that vector, which represents a point in a ten-
dimensional vector space. 

 7   A Problem Flagged 

 Smolensky calls this mapping procedure  “ the crucial innovation ”  used in 
response to Fodor and Pylyshyn ’ s dilemma (2006, vol. 2, 514). We have 
just seen how the mapping works for a simple binary tree that includes no 
other tree as a constituent. But a binary tree can contain another tree as a 
constituent, which makes for recursion; and that is essential for explaining 
productivity. It is also essential for explaining typical cases of systematicity. 
Thus, consider, again, that anyone who is able to represent that  Kim loves 
Sandy  is able to represent that  Sandy loves Kim . Or, as Smolensky states his 
example of systematicity, 

 if a cognitive system can entertain the thought expressed by  Sandy loves Kim , then it 

can entertain the thought expressed by  Kim loves Sandy . (2006, vol. 2, 513) 

 The binary tree for  Kim loves Sandy  and the binary tree for  Sandy loves Kim  
both have binary trees as their right child; they thus each contain an 
embedded tree. Using bracket notation, rather than an equivalent binary 
tree diagram, if  “ S ”  stands for Sandy,  “ K ”  stands for Kim, and  “ L ”  stands 
for loves, then the structure for  Sandy loves Kim  is [L, [S,K]]. The structure 
for  Kim loves Sandy  is [L, [K,S]]. 

 Binary trees with binary trees as constituents pose a problem for the 
mapping procedure. Smolensky and Legendre ’ s (c) tells us that the sum 
of the fillers in roles in any binary tree is supposed to be arrived at by 
superposition. Given the tensor product idea and the fact that a binary 
tree can contain another binary tree as a constituent, an alarm will go 
off for readers familiar with linear algebra. (No doubt that alarm has 
already gone off for such readers.) Superposition is defined only for tensors 
of the same rank, and vectors in the same vector space (vectors with the 
same number of components). Applying the formula for mapping trees 
to vectors, namely,  s  =  ∑  i   f  i   ⊗   r  i , where  “  ∑  ”  is supposed to represent 
superposition, would require us, in the case of trees that contain trees as 
constituents, to superimpose tensors of different ranks. That is impossible. 
Thus, the would-be mapping procedure fails since it fails for trees with 
trees as constituents. 

 Unsurprisingly, Smolensky is aware of the problem, though it receives 
little attention in the volumes. He suggests two possible solutions that I 
will discuss in section 10 below. For now, let us simply spot Smolensky 
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that there is a mapping procedure from binary trees to vectors using some 
sort of addition and the tensor product operation. 

 8   Principle P 2  of ICS Architectures 

 Smolensky and Legendre state P 2  as follows: 

  P 2  .  Proc ics  : Cognitive processing in ICS 

 Information is processed in the mind/brain by widely distributed connection pat-

terns — weight matrices — which, for central aspects of higher cognition, possess glob-

al structure describable through symbolic expressions for recursive functions of the 

type employed in symbolic cognitive theory. (2006, vol. 1, 71) 

 They spell this out as follows: 

  Alg ics   ( HC,W ): Recursive processing 

 Central aspects of many higher cognitive domains, including language, are realized 

by weight matrices with recursive structure. That is, feed-forward networks, and re-

current networks realizing cognitive functions have weight matrices with these re-

spective forms: 

 Feed-forward:  W  =  I   ⊗    W   Recurrent:  W  =   W    ⊗   R  

 In either case,   W   is a finite matrix of weights that specifies the particular cognitive 

function.  I  and  R  are recursive matrices for feed-forward and recurrent networks, 

these are simply-defined unbounded matrices that are fixed — the same for all cogni-

tive functions. (2006, vol. 1, 71 – 72) 

 As Smolensky notes, the primitive operations of Lisp, a programming lan-
guage that he calls  “ the quintessential programming language for symbol 
manipulation ”  (2006, vol. 1, 182),  “ include the operations of extracting 
the left or right child of a pair (ex  0  ,  ex 1  ; traditionally  ‘  car  ’  and  ‘  cdr  ’ ), 
attaching a left or right child ( sef ), testing pairs of equality ( equal? ), assign-
ing definitions to function names ( define ) ”  (2006, vol. 2, 509). Binary Lisp 
trees, he maintains, can be mapped into vectors. And the functions com-
puted by these Lisp operations, he says, can be computed by matrix mul-
tiplication operations. 

 For present purposes, we need not examine P 2  in detail.  32   The key point 
of the principle that concerns us is just this: The algorithms in ICS are 
supposed to be, one and all, connectionist algorithms. Taken out of context, 
the claim that algorithms in an ICS architecture compute matrix multipli-
cation operations might well suggest that the architecture includes matrix 
multiplication operations involving the manipulation of numerals (symbols 
for numbers). But an ICS architecture is supposed to include no symbolic 
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algorithms, and so no numeral manipulation algorithms, not even ones 
that involve parallel computing in the sense of more than one numeral-
multiplication operation being performed at the same time. The reason is 
that  that  sort of parallel processing is not ruled out by LOT theory. LOT 
theory does not imply that our cognitive system, or indeed even a given 
module within our cognitive system, can execute only one symbolic algo-
rithm at a time. (It should go without saying that LOT is not Lisp, as I 
have now said twice. Indeed, we have yet to determine what the algorithms 
of our LOT architecture are. That is one of the major research projects in 
LOT theory.) In an ICS architecture, there are no local representations, only 
distributed representations. A unit with a certain activation value thus 
never represents a number since it never represents anything. Matrix mul-
tiplication functions are computed in ICS. But they are computed by con-
nectionist algorithms involving the spread of activation through the 
network, not by numeral-manipulation algorithms, run serially or in paral-
lel, since such algorithms are symbolic algorithms. To repeat: the algo-
rithms of an ICS architecture are supposed to be, one and all, connectionist 
algorithms. 

 9   Why Symbols in ICS Are Supposed to Be Process Irrelevant 

 ICS is supposed to include no symbolic algorithms, because symbols are 
not cognitive process relevant. Why not? To answer that question, we must 
first consider Smolensky ’ s distinction between three levels of description 
of a computational system, since his notion of process-relevance is defined 
by appeal to the three levels. 

 The levels are the functional level (the f-level), the computational level 
(the c-level), and the neural level (the n-level). Smolensky tells us: 

 a.   The f-level: describes the  functions  computed 

 b.   The c-level: describes the  algorithms  that compute this function  [33]   

 c.   The n-level: describes the  neural  (or other physical) processes that realize the algo-

rithm. (2006, vol. 2, 516) 

 (In [c] above,  “ realize ”  is again used in the mathematical sense, not in the 
functionalist sense.) Smolensky notes that his three levels were inspired by 
David Marr ’ s (1982) well-known three levels of analysis: what Marr called 
 “ the computational, ”   “ the algorithmic, ”  and  “ the implementational ”  
levels. But he also notes that his tripartite distinction is different from 
Marr ’ s tripartite distinction. 
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 Although there are indeed differences, it is nevertheless useful by way 
of explicating Smolensky ’ s levels to compare them with Marr ’ s. Smolensky 
notes:  “ It is the job of the f-description to specify a  function  ”  (2006, vol. 2, 
537). His f-level, the functional level, is essentially Marr ’ s (1982) compu-
tational level. At that level, we specify the cognitive functions that the 
architecture can compute. Smolensky says that 

  “ computational level ”  refers to the highest level in Marr 1982 but to the middle 

level here. I will in fact generally avoid  “ computational level ”  in favor of  c-level , 

which emphasizes the technical nature of the level terminology developed here; the 

label  “ computational ”  for the c-level should be construed as a rough gloss, intend-

ed more as a mnemonic than as a meaningful label. The glosses  “ functional level ”  

and  “ neural level ”  for  f-level  and  n-level  should be taken in the same spirit. (2006, 

vol. 2, 519) 

 Still, he says,  “ it is the job of the c-level description to specify an  algo-
rithm  ”  (2006, vol. 2, 537). So, the c-level is related to Marr ’ s algorithmic 
level. But, as we will see shortly, the comparison is complicated by the 
fact that Smolensky splits the c-level into two levels: a  “ higher c-level ”  
and a  “ lower c-level. ”   34   The lower c-level is the level at which the algo-
rithms by which functions are computed are specified. The lower c-level, 
rather than the c-level itself, is essentially Marr ’ s algorithmic level. The 
n-level is essentially Marr ’ s implementational level. Smolensky says:  “ It 
will be called the n-level, in anticipation of the cognitive case in which 
it is the neural level ”  (2006, vol. 2, 520). Although he remarks at times 
that ICS is neurally plausible (see, e.g., 2006, vol. 1, 101, and 2006, vol. 
2, 514), he is purposefully noncommittal about the details of the n-level, 
with the exception that he ventures the very substantive claim that units 
(or nodes) in the ICS architecture that is our cognitive architecture will 
be neurons. ICS is thus supposed to have a neural instantiation. As I 
emphasized earlier, the distributed representations of that ICS architecture 
are supposed to be biophysical states, specifically states of populations of 
neurons. 

 In ICS, the c-level is split 

 into two sublevels, providing two different ways of decomposing a state of the 

mind/brain. At the higher sublevel, a state is decomposed into superimposed pat-

terns, corresponding to the decomposition of a symbol structure into its constitu-

ents. At the lower sublevel, a state is decomposed into individual unit activations, 

corresponding to the physical decomposition of a brain state at the neural level. 

(2006, vol. 2, 503) 
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 The decomposition at the higher c-level is  “ decomposition of vectors using 
filler vectors and role vectors, their binding into constituents, via tensor 
product, and their combination via superposition (summation) ”  (2006, 
vol. 2, 566). The decomposition at the lower c-level is decomposition into 
individual units at levels of activation and weighted patterns of connectiv-
ity in which those units participate. 

 So, there are, in effect, four levels to consider: the f-level, the higher 
c-level, the lower c-level, and the n-level. Smolensky says that there is a 
realization (a mapping) from the f-level to the higher c-level, a realization 
from the higher c-level to the lower c-level, and a realization from the 
lower c-level to the n-level. There is thus a realization from the f-level to 
the n-level. 

 But a realization can fail to be an isomorphism. As Smolensky notes: 
 “ An isomorphism maps each part of one system to a part of another system 
in such a way as to preserve the relationships among the parts with each 
system ”  (2006, vol. 2, 514). Smolensky tells us the f-level is isomorphic to 
the higher c-level. The mapping procedure from symbols and symbol 
structures (binary trees and their constituents) to activity vectors described 
earlier is supposed to yield that isomorphic mapping. Thus, for instance, 
a binary tree with atomic symbol  A  as its left child and atomic symbol  B  
as its right child is mapped to  A  ⊗ r 0  +  B  ⊗ r 1 . That vectorial description is 
what Smolensky has in mind as the higher c-level decomposition. Thus, 
he tells us: 

  s  =  A  ⊗ r 0  +  B  ⊗ r 1  expresses a decomposition of  s  into  A - and  B -constituents. This de-

composition is isomorphic to the decomposition of a symbol structure  s  =  [A B]  into 

its  A - and  B -constituents. (2006, vol. 2, 515) 

 Given our earlier assignments,  A  ⊗ r 0  +  B  ⊗ r 1  is the vector (1 0 0 0 0 0 1 0 
0 0). At the lower c-level, that vector is decomposed into activation values 
of each of the components of (in this case) a 10-tuple of units, as well as 
the patterns of connectivity of each of those units with other units in the 
network. The lower c-level is supposed to be isomorphic to n-level. So, the 
higher c-level is isomorphic to the f-level, and the lower c-level is isomor-
phic to the n-level. There is a realization from the higher c-level to the 
lower c-level, but it is not an isomorphism; the higher c-level is not iso-
morphic to the lower c-level. 

 Let us look at a detailed statement of why he says the higher and lower 
c-levels are not isomorphic: 

  Because of distributed representations, however, the higher and lower orders are not isomor-

phic with each other : the two modes of decomposition cannot be put in one-to-one 



Can an ICS Architecture Meet the Challenges? 57

correspondence.  …  A higher-level part like  A   ⊗   r  o  corresponds to many lower-level 

parts; the activation values of the individual units in the pattern of activity  A   ⊗   r  o . 

A lower-level part, the activation of unit k, corresponds to many higher-level parts, 

since it is part of the pattern defining many constituent vectors (e.g., both  A   ⊗   r  o  and 

 B   ⊗   r  1 ). The higher- and lower-level decompositions crosscut one another. (2006, 

vol. 2, 515) 

 Given that the higher c-level is isomorphic to the f-level but not isomor-
phic to the lower c-level, it follows that the f-level is not isomorphic to 
the lower c-level. Given that the lower c-level is isomorphic to the n-level, 
the f-level is not isomorphic to the n-level. 

 According to Smolensky, it is because the f-level is not isomorphic with 
the n-level that symbols in an ICS architecture — distributed representa-
tions — are not cognitive process relevant. He tell us that for cognitive 
process relevance, there must be an 

 isomorphism with the n-level, for that is the level at which the theory makes con-

tact with such observable quantities as reaction times and capacity limitations. For 

example, in order for the number of steps in an algorithm to necessarily predict the 

actual time required to perform a computation, the step-by-step structure of the 

algorithm must be isomorphic to the moment-by-moment structure of the physical 

system realizing that algorithm. (2006, vol. 2, 516) 

 He says more generally: 

 A main point of the preceding sections is that algorithms can only meet the de-

mands of models of mental processes if they are coupled with hypotheses about how 

the structure internal to the algorithm maps onto the physical device implementing 

the algorithm. (2006, vol. 2, 563) 

 He tells us, 

 The internal causal structure, described by the connectionist network description, 

has no corresponding description at the higher,  “ symbolic ”  level. ICS employs sym-

bolic explanations for cognitive  functions , but connectionist explanation for cogni-

tive processes. (2006, vol. 2, 516) 

 According to Smolensky, 

 The general notion of  process-relevance  can be characterized as in (3). 

 (3)   Process-relevance of a computational description  …  

 In order for a computational description to account for the time, space, or other 

resource requirements of a process in a physical system, that description must be 

isomorphic to the n-level description of the system, with respect to the structural 

decomposition relevant to a given resource. (2006, vol. 2, 516) 
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 Symbols and symbol structures are not process-relevant since there is 
no isomorphic structural decomposition to the relevant sources, namely, 
n-level processes. 

 The following passage nicely summarizes his position: 

 The higher sublevel of the ICS c-level is isomorphic to the symbolic f-level account: 

symbols are computationally relevant. But only the lower c-sublevel is process-rel-

evant, and at this level there are connectionist but not symbolic algorithms. The 

reduction from the higher to the lower c-sublevel is accomplished by a realization 

mapping that is  not  an isomorphism; this mapping  does  allow a reduction from sym-

bolic structures to connectionist units — but, because representations are distributed 

[i.e., distributed activation states], it is a holistic, not a part-by-part, reduction. This 

mapping is formal, as required for a fully computational reduction, but the lack 

of part-by-part correspondence means symbolic decompositions do not map onto 

process-relevant decompositions. (2006, vol. 2, 519) 

 To minimize suspense, I hereby note that I will not challenge Smolensky ’ s 
claim that the f-level and higher c-level fail to be isomorphic to the n-level 
in an ICS architecture. But the issue of whether an ICS architecture can 
include symbolic algorithms as derivative (nonbasic) algorithms remains. 
I will address it in section 11. First, however, in section 10, I will discuss 
the problem mentioned earlier with the procedure for mapping binary 
trees with embedded trees to vectors, since that will provide useful back-
ground for the discussion in 11. In section 12, I will conclude by putting 
in a plug for implementation connectionism. 

 10   The Mapping of Binary Trees into Vectors Reexamined 

 In the final chapter of volume 2, Smolensky tells us: 

 In this chapter, I argue that ICS furnishes a unified cognitive architecture  …  [that] 

resolves the alleged dilemma posed by  Fodor and Pylyshyn (1988) . The crucial in-

novation is tensor networks, or  tensorial computation.   …  Tensorial computation 

furnishes the bridge that allows ICS to cross the chasm separating the high ground 

of symbolic theories of mind from the low ground of connectionist theories of brain. 

On the higher side [i.e., the higher c-level], tensorial computation mirrors — is  iso-

morphic  to — key aspects of symbolic computation. On the lower side [i.e., the lower 

c-level], tensorial computation is simply parallel, distributed connectionist computa-

tion, which is plausibly isomorphic to neural computation. (2006, vol. 2, 514) 

 The bridge that allows ICS to cross the chasm is just the procedure for 
mapping binary trees to vectors, where symbols in roles are represented by 
tensor products. He takes that procedure to be his crucial innovation. 
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 As I noted earlier, the procedure in question fails if  “  ∑  ”  in the formula 
for the mapping (namely,  s  =  ∑  i   f  i   ⊗   r  i ) means superposition. This is the 
problem that Smolensky has in mind when he cryptically alludes to  “ a 
technical difficulty in the definition of recursive representations ”  on page 
156 of volume 1. The technical difficulty is addressed in a section of 
volume 1 entitled  “ Recursive role vectors for binary trees. ”  I will quote the 
relevant passages at length. 

 After a discussion of how to use the two role vectors  r  0  and  r  1  in char-
acterizing trees that contain trees as constituents, Smolensky says: 

 A final question we will take up here is the meaning of  ‘ + ’  in such equations as  …  

 (44)    A   ⊗   r  o  + ( B   ⊗  [ r  o   ⊗   r  1 ] +  C   ⊗  [ r  1   ⊗   r  1 ]). 

 In what vector space is this addition performed? This question arises because, under 

the simplest interpretation, the first term  A   ⊗   r  o  and the second term  B   ⊗  [ r  o   ⊗   r  1 ] 

are in different vector spaces. Because the latter vector involves on additional tensor 

product with a fundamental role vector ( r  1 ), the number of numerical components 

in the vector is greater, by a factor equal to the number of numerical components 

of the fundamental role vectors (which must be at least two, so that  r  o  and  r  1  may 

be independent). In connectionist terms, the number of activation values (units) 

needed to realize the  B -binding is greater than the number needed to realize the 

 A -binding, because the former involves a deeper tree position. Indeed, just like the 

total number of roles, the number of units over which bindings are realized increases 

geometrically with tree depth; it equals AR d , where A is the number of units used to 

realize atomic symbols, and R is the number used to realize the fundamental vectors 

 r  o  and  r  1 . (2006, vol. 1, 185) 

 Smolensky goes on to say: 

 From the perspective of vector space theory, the natural interpretation of (44) in-

volves the  direct sum  of vector spaces. To set up this sum, let V (1)  be the vector space 

including the first term in (44),  A   ⊗   r  o ; the vectors composing V (1)  are all the linear 

combinations of the vectors of the form  a   ⊗   r  i , where  a  is the vector realizing an 

atomic symbol and  r  i  is  r  0  or  r  1 . These vectors have AR numerical components and 

realize symbols at depth 1 in tree. Similarly, let V (2)  be the vector space including the 

second (and third) term of (44),  B   ⊗  [ r  o   ⊗   r  1 ]. These are all linear combinations of 

vectors of the form  a   ⊗   r  i   ⊗   r  j , with AR 2  components, realizing symbols at depth 2. 

In general, let V (d)  be the AR d -dimensional vector space formed from vectors of the 

form  a   ⊗   r  i   ⊗   r  j   ⊗   …   r  k  with  d  role vectors; these realize symbols at depth  d . V (0)  is 

just the vector space of linear combinations of the vectors  a  realizing symbols (or, 

equivalently, symbols located at depth 0, the tree root). 

 A vector space containing all the vectors V (d)  for all d is the direct sum in (45); 

 (45)   V*  ≡  V (0)   ⊗  V (1)   ⊗  V (2)   ⊗ .  …  
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 A vector  s  in this space is a sequence of vectors ( s  (0) ;  s  (1) ;  s  (2) ;  … ) where each  s  (d)  is a 

vector in V (d) .  s  is also written  s  (0)  ⊗  s (2)   ⊗ .  …  So (44) can be interpreted as 

 (46)    s  = ( A   ⊗   r  0 )  ⊗  ( B   ⊗  [ r  0   ⊗   r  1 ]  ⊗   C  [ r  1   ⊗   r  1 ]). (2006, vol. 1, 185 – 86) 

 So, we are to use direct sum rather than superposition. 
 Smolensky notes:  “ If tree depth is unbounded, then the number of units 

in the network realizing them, or the number of components in the 
vectors, must be unbounded as well. Algebraically, this is no problem; 
nothing in our mathematical analysis will depend on the vectors being of 
finite length ”  (2006, vol. 1, 187). He reminds us, moreover, that 

 it is standard to adopt the idealization of no resource limitations in the symbolic 

case, it is appropriate to do the same in the connectionist case. In place of an un-

bounded or infinite Turing machine tape or von Neumann machine stack  …  we 

have an unbounded or infinite set of units. (2006, vol. 1, 187) 

 On that point, suffice it to note that connections should be allowed their 
idealizations just as LOT theorists are. 

 Turn to the interpretation of (44). The interpretation of (44) as (46), 
which uses the direct sum operation, may seem complicated. But actually 
it is very simple. As Smolensky mentions in a tutorial on linear algebra, 
the direct sum of two vector spaces, V  ⊗  U, is the set of ordered pairs 
of vectors from V and U; that is, it is the Cartesian product V  ×  U (2006, 
vol. 1, 156). So far as combining (adding in the sense of direct sum) trees 
at different depths is concerned, all that is going on is the formation of 
ordered pairs.  35   

 As Smolensky goes on to note: 

 In terms of connectionist networks, the direct sum approach amounts to the as-

sumption that the network has a group of units for realizing symbols at depth 0 in 

the tree (simple atoms), a distinct and larger group of units for realizing symbols 

at depth 1, and so on down to deeper depths. The patterns of activity realizing the 

symbols at a given depth are all superimposed upon one another, but different tree 

depths are separately localized; this the  stratified realization  of binary trees. (2006, 

vol. 1, 187) 

 The stratified realization captures trees with trees as constituents. 
 If we use direct sum in the mapping from trees to vectors, then we lose 

a disanalogy with LOT representations and their constituents that Smolen-
sky stresses as part of the reason symbols are not process relevant. Using 
 “ PSA ”  to stand for  “ Purely Symbolic Architecture, ”  he says: 

 In PSA, symbolic constituent structure is process-relevant; in ICS, it is not. This is 

in part because in ICS constituents are combined via  superposition  of overlapping 
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distributed patterns of activity, while in PSA, they are combined via some sort of 

nonoverlapping  concatenation . (2006, vol. 2, 575) 

 But, as we just saw, in ICS, trees of different depths are combined not via 
superposition, but rather via direct sum. And as he himself acknowledges 
at one point (in 2006, vol. 1): 

 The recursive realization of binary trees described in Section 4.1 has been called a 

 stratified  representation: different levels of the tree are realized separately (over dif-

ferent connectionist units) — they are essentially  concatenated  by the direct sum in 

the construction of the vector space V, rather than truly superimposed, as in fully 

distributed representations. (2006, vol. 1, 341) 

 Given the use of direct sum in the mapping, ICS, like PSA, will con-
tain molecular representations whose constituents are combined by 
concatenation. 

 It remains, though, that symbols at a given depth in a tree will be com-
bined by superposition. In some places, Smolensky seems to take that to 
be relevant to the issue of whether symbols are cognitive process relevant. 
In arguing that the higher c-level is not isomorphic to the lower c-level, 
he says: 

 By definition, in a distributed representation, a single unit  β  will participate in the 

realization of multiple symbols — say,  B  and  C . Then the mapping p c  will not re-

spect the decomposition  ∑  cf  as an isomorphism must. At the higher sublevel [i.e., 

the higher c-level],  B  and  C  are separate constituents, but at the lower sublevel [i.e., 

the lower c-level], the decomposition into individual unit activations mixes  B  and 

 C  together: for example, the activation of unit  β , s  β    …  is a single number combining 

contributions from both  B  and  C . (2006, vol. 2, 567 – 568) 

 To see what he has in mind by  “ mixing, ”  let us consider one of his 
examples of superposition that I briefly alluded to in section 5 in my dis-
cussion of Feldman ’ s telling question about fully distributed representa-
tions. Smolensky asks to consider  “ an extremely simple symbol structure, ”  
a set that has two atomic symbols as members, { A ,  B }. And he says: 

 In symbolic computation, this structure is the set { A ,  B }. Its connectionist realiza-

tion, according to the Superpositional Principle  …  is the vector sum of  A  and  B , that 

 A  +  B .    …  To add the activation lists  A  = (1.0,  – 1.0, 0.8) and  B  = (0.0., 0.5, 0.3), we 

just add corresponding components, getting  A  +  B  = (1.0 + 0.0,  – 1.0 + 0.5, 0.8 + 0.3) 

= (1.0,  – 0.5, 1.1). (2006, vol. 1, 162) 

 Notice that in this example almost all of the components of the superim-
posed vectors get  “ mixed, ”  and so do not appear in the superposition. 
Thus, consider the second and third components of  A  (viz.,  – 1.0 and 0.8), 
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and all three components of  B  (viz., 0.0, 0.5, and 0.3). None of those 
components is a component of the vector  A  +  B , that is, the vector (1.0, 
 – 0.5, 1.1). This is the sort of thing that Smolensky has in mind when he 
says in the passage quoted in the previous paragraph (from 2006, vol. 2, 
567 – 568) that the separate constituents  B  and  C  get  “ mixed ”  together. 
When  B  and  C  are superimposed, the components of  B  and components 
of  C  will not be components of the superposition vector.  36   

 It might thus seem that even though distributed representations of trees 
at different depths will be concatenated, constituents at a given level in a 
tree will not be. They will be superimposed, and thus  “ mixed. ”  

 First, however, if we already use direct sum to combine trees at different 
depths, which just involves forming ordered pairs, we could as well simply 
form ordered pairs of the two constituents at a given depth, rather than 
using superposition. Then, molecular symbols would always be formed by 
concatenation. That is compatible with the architecture being an ICS 
architecture since, as we saw, such an architecture can contain concate-
nated representations. Thus, an ICS architecture can be such that all of its 
molecular symbols are formed by concatenation. One clear advantage of 
this is that Feldman ’ s worry about fully distributed representations would 
be avoided. A given unit in a network, you will recall, can have only one 
activation level at a time; thus, a group of n-units in a network can have 
only one pattern of activation over those units at a time. Smolensky does 
not succeed in answering Feldman ’ s question when he points out that an 
activity vector (1.0,  – 0.5, 1.1) is the vector sum of the activity vectors to 
which  A  and  B  are mapped, respectively, namely (1.0,  – 1.0, 0.8) and (0.0, 
0.5, 0.3). If we have real value activation levels, there will be infinitely 
many pairs of activation vectors that sum to (1.0,  – 0.5, 1.1). 

 Second, a set of symbols is not a symbol structure in the sense of a 
syntactic structure. Binary trees are syntactic structures. Let us consider, 
then, the simplest sort of binary tree, one with an atomic symbol  A  as its 
left child and an atomic symbol  B  as its right child. And let  A  and  B  be 
the same vectors described above. Let us follow Smolensky in assigning  r  0  
and  r  1  the standard or normal bases for a two-dimensional space, (1 0) and 
(0 1), respectively.  A  and  B  are at the same depth in the tree, namely, depth 
1. Thus, we can superimpose  A   ⊗   r  o  and  B   ⊗   r  1 .  A   ⊗   r  o  = (1.0,  – 1.0, 0.8, 0, 
0, 0).  37    B   ⊗   r  1  = (0, 0, 0, 0.0, 0.5, 0.3). ( A   ⊗   r  o ) + ( B   ⊗   r  1 ) = (1.0,  – 1.0, 0.8, 
0.0, 0.5, 0.3). That vector will represent a certain six-tuple of units with 
the corresponding activation values in question. Here the symbols at a 
given depth (depth 1) are combined using superposition. Notice that both 
the components of the vector assigned to  A  and the components of the 
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vector assigned to  B  are components of this vector and appear in the same 
order, and that the components of the vector assigned to  A  are followed 
by the components of the vector assigned to  B . The components do not 
disappear in a  “ mix. ”  That is because we used the normal bases for the role 
space.  A  and  B  look to be concatenated. This completely generalizes. For 
any tree depth  d , no matter what linearly independent vectors are assigned 
to atomic symbols, and no matter what vector space distinct from the 
atomic symbol space the role space is, so long as we use the normal base 
vectors for the role space, we will get the same kind of result when we 
superimpose symbols at depth  d . 

 Vectors (1 0) and (0 1) are, of course, by no means the only two linearly 
independent vectors in a two-dimensional vector space. As I noted earlier, 
the vectors (1 2) and (3 5) are also in the two-dimensional vector space 
and are also linearly independent. We could instead map r 0  to (1 2) and r 1  
to (3 5), rather than mapping them to the normal bases for a two-dimen-
sional vector space. With these roles ’  assignments, none of the compo-
nents of either  A  or  B  will appear in the vector ( A   ⊗   r  o ) + ( B   ⊗   r  1 ). This 
different mapping of the binary tree to a vector is mathematically equiva-
lent to the one above. From a mathematical point of view, it makes no 
difference which linearly independent base vectors we use. 

 But it can make a difference from an explanatory point of view along 
the epistemic dimension of explanation. Suppose, to use one of Smolen-
sky ’ s examples, the activity pattern (1.0,  – 1.0, 0.8) over a three-tuple of 
units is an atomic symbol,  A . Then, that must be so in virtue of something 
about a three-tuple of units having that activation pattern.  38   The distrib-
uted activation state must function in the network in a way that makes 
it an atomic representation. It must realize an appropriate function in 
the functionalist sense of  “ realize. ”  It must play an appropriate role in the 
network. Similarly for any distributed state that is an atomic symbol. The 
roles vectors represent not distributed activation states in the network, but 
rather roles that distributed representations that are atomic symbols in the 
network can fill. There is an explanatory value (along the epistemic dimen-
sion of explanation) to using normal base vectors for the role vectors since, 
then, the vectors to which trees are mapped will display the activation 
values of the units in the distributed activation states that are the atomic 
symbols in the tree. This is not, of course, to deny that we could use non-
standard bases from the role vector space to represent the very same dis-
tributed activation states. But if an ICS architecture contains concatenated 
constituents, it does so whatever linearly independent vectors we assign 
to the role vectors. If we do not use the base vectors for the role space, all 
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that follows is that the vectors that represent trees will not display the 
atomic symbols that are constituents of the trees, though they will of 
course represent them. 

 Smolensky makes one other proposal for how to map binary trees to 
vectors, a proposal that uses superposition rather than direct sum, while 
capturing recursion. He makes the proposal because he would like fully 
distributed representations, representations that involve all of the units in 
a network or in a certain portion of a network, on the grounds that it is 
then easier to get graceful degradation. Unfortunately, he does not address 
the issue of whether that has any neural plausibility. Surely, not every 
neuron is involved in every representation. Further, there is Feldman ’ s 
problem. But, in any case, Smolensky says: 

 The crux of the idea is to add to the fundamental role vectors { r  0 ,  r  1 } of the stratified 

representation a third vector v that serves basically as a placeholder, like the digit 0 

in numerals. Instead of representing an atom B at a position  r  01 , by  B   ⊗   r  0   ⊗   r  1 , we use 

 B   ⊗   v   ⊗   v   ⊗   …   ⊗   v   ⊗   r  0   ⊗   r  1 , using as many  v s as necessary to pad the total tensor 

product to produce a tensor of some selected rank D + 1. Now, atoms at all depths 

are realized by tensors of the same rank; the new vector space of representations of 

binary trees is just a space V ′  of tensors of rank D + 1, and the realization of all atoms 

can fully superimpose: this representation is  fully distributed . (341) 

 The padding idea, which indeed assures tensors of the same desired rank, 
is quite simple. To ensure that we have tensors of the same desired rank, 
and so tensors that can be superimposed, we introduce a  “ dummy vector ”  
such that tensor multiplications using this dummy vector, however many 
times is necessary, ensures that we get tensors of the rank in question. 
Given that they are of the same rank, they can be superimposed. 

 Smolensky notes: 

 The stratified realization of Section 4.1 can be straightforwardly embedded as a spe-

cial case of this new fully distributed representation by mapping  r  o  →  ( r  o , 0),  r  1  → ( r  1 , 

0) and by setting  v   ≡  ( O ,1), where 0 is the zero vector with the same dimensionality 

as  r  o  and  r  1 . (2006, vol. 1, 341) 

 If  r  0  is (1 0) and  r  1  is (0 1), then  v  is (0 0 1). He further tells us that  “ in the 
 general  case, { r  o ,  r  1 ,  v } are three linearly independent vectors, each with 
nonzero components along all coordinate axes; in this case, every unit will 
take part in the realization of every atom, regardless of its depth in the 
tree ”  (2006, vol. 1, 341). So, the distributed representations will be fully 
distributed. 

 The dummy vector is of course just to be a mathematical device for 
getting tensors of some desired rank, so they can be superimposed. The 
zeros padded in by, for example,  B   ⊗   v   ⊗   v   ⊗   …   ⊗   v  act, as Smolensky 
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notes, as place holders to ensure that the tensor has as many components 
as desired. The zeros that get padded in do not function to represent acti-
vation values of units. As Smolensky notes, the stratified realization, which 
involves concatenation, is a special case of the above strategy. With this 
dummy vector proposal, as with the direct sum proposal, so long as we 
use the normal vectors for the role space, the components of the vectors 
assigned to atomic symbols will appear in order, and in the order of the 
atomic symbols in a bracket notation for the tree, in the vector to which 
the tree is mapped. Thus, consider the following symbol structure: [L,[S,K]]. 
The vector to which this is mapped using the dummy vector strategy will 
have as its components the components of the vector assigned to L, fol-
lowed by the components of the vector assigned to S, followed by the 
components of the vector assigned to K. To use Smolensky ’ s mixing meta-
phor, none of those components will disappear in a mix. They will be on 
display in the vector to which [L,[S,K]] is mapped. 

 An ICS architecture can contain concatenated representations. But it is 
clear that Smolensky would not claim that an ICS architecture is an imple-
mentation architecture for a symbolic one if direct sum is used in the 
mapping from binary trees to vectors, so that trees at different depths are 
concatenated. That is in fact one of his two proposals (the other being the 
dummy vector proposal), and he emphatically denies that an ICS architec-
ture is such an implementation architecture. Indeed, he would claim that 
an ICS architecture is not such an implementation architecture even if all 
molecular symbols in the architecture are formed by concatenation. He 
maintains that no ICS architecture is such an implementation architecture, 
because it will include no symbolic algorithms. And he maintains that an 
ICS architecture will include no symbolic algorithms because symbols are 
not cognitive process relevant in such an architecture. They will not be 
cognitive process relevant, he holds, because the f-level and the higher 
c-level are not isomorphic to the n-level. 

 That the f-level and higher c-level are not isomorphic to the n-level is 
something I have already acknowledged. But let us turn at long last to the 
issue of whether an ICS architecture can include symbolic algorithms as 
derivative algorithms, as in an implementation architecture. 

 11   The Combinatorial Strategy and Process Relevance 

 Smolensky and Legendre state: 

 The mental representations characterized by our first principle Rep ics  [i.e., P 1 ] are of 

course only useful if they can be appropriately manipulated to support cognition. 
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These  mental processes  are the subject of the second ICS principle, P 2 . (2006, 

vol. 1, 71) 

 They are certainly right that it will be useful to posit mental representations 
only if  “ they can be appropriately manipulated to support cognition. ”  Rep-
resentations in an ICS architecture are distributed representations, and thus 
they are kinds of distributed representational states. The state types in ques-
tion must combine and recombine in ways that support cognition; they must 
recombine into different types of complex distributed activation states that 
are themselves distributed connectionist representations, ones whose con-
tents are a function of the contents of the constituent representations and 
their mode of combination. (Smolensky holds, you will recall, that the system 
of distributed representations in an ICS architecture will have a composi-
tional semantics [2006, vol. 2, 544 – 545].) Indeed, the combinatorial strategy 
would be unavailable to ICS theorists to explain systematicity and productiv-
ity unless distributed representations in an ICS architecture get manipulated 
in that sense. And, as Smolensky and Legendre are happy to acknowledge, 
they must appeal to the combinatory strategy to explain systematicity and 
productivity. In the final chapter of volume 2, Smolensky states: 

 The combinatorial strategy must explain not just  what  the mind achieves, but, to 

some extent,  how  the mind achieves it. Cognition is productive because at some 

level the mechanisms that actually generate it have parts that recombine in accord 

with the combinatorial description  ∑  f . That is, at some sublevel of  C  [i.e., at some 

c-level of description] there must be a computational structure — call it  “  ∑  cf  ”  — that is 

isomorphic to  ∑  f . (2006, vol. 2, 557) 

 We have, however, already seen why Smolensky nevertheless maintains 
that symbols fail to be cognitive process relevant. At the lower c-level there 
is an isomorphism with the n-level. There is an isomorphism between the 
f-level and higher c-level; but there is only a realization from the f-level 
and higher c-level to the lower c-level — the mapping is not an isomor-
phism. So, there is no isomorphism between the f-level and the higher 
c-level, only a realization. Given Smolensky ’ s technical definition of cogni-
tive process relevance, it follows that symbols are not cognitive process 
relevant in an ICS architecture. 

 The symbols in an ICS architecture are distributed representations, and 
so distributed activation states, states involving  n -tuples of units having 
an  n -adic activation patterns. The connectionist processes of an ICS archi-
tecture do not consist in the manipulation of symbols, that is, the manipu-
lation of such distributed representations. Such processes are defined over 
individual unit activations and patterns of connectivity. 
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 But how, then, do distributed representations get manipulated in the 
ways that they must be manipulated to explain systematicity and produc-
tivity? The answer is that distributed representations get so manipulated 
(or are so manipulable) in an ICS architecture by means of algorithmic 
connectionist processes. The algorithmic connectionist processes do not 
consist in the manipulation of symbols (distributed representations). So, 
they are, in that sense, not symbol manipulation algorithms. But symbols 
are manipulated by means of them. There is thus a straightforward sense 
in which symbols, distributed representations, do not participate in the 
connectionist algorithmic processes in an ICS architecture, yet nevertheless 
get manipulated. 

 If, however, distributed representation manipulations go as Smolensky 
and Legendre maintain they will, then there will be macro-level (relative 
to the micro-level of individual units) patterns of manipulation of distrib-
uted representations that can explain systematicity and productivity. 
Indeed, it is essential that there be such macro-level processes if the com-
binatorial strategy is to be deployed in explaining systematicity and pro-
ductivity. Without that, there will be no recombining of representational 
parts in accord with combinatorial descriptions. 

 There will thus be macro-patterns of transitions between distributed 
activation states that are representations that count as symbol manipula-
tions. Those patterns will be patterns of causal dependency, macro-causal 
processes within the architecture. The macro-causal processes would be 
determined by the micro-causal connectionist processes. Such processes 
will thus not be fundamental processes within the connectionist network. 
They will be wholly implemented by micro-processes defined over indi-
vidual units and their patterns of connectivity.  39   But that is exactly what 
would have to be the case for a connectionist architecture to implement 
a LOT architecture. 

 Smolensky ’ s own term for what I have been calling  “ fundamental pro-
cesses ”  is  “ primitive operations ”  (2006, vol. 2, 521). The primitive opera-
tions of an ICS architecture will not be symbolic operations. But a necessary 
condition on an architecture ’ s being an implementation architecture for 
another architecture is that its primitive operations not be the primitive 
operations of the architecture being implemented. The issue is not whether 
an ICS architecture is a symbolic architecture. It is whether it would have 
to implement one to explain systematicity and productivity. 

 There seems no reason to deny that the nonfundamental algorithmic 
processes are cognitive processes. They are cognitive processes because 
distributed representations participate in them. The f-level and the higher 
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c-level will be isomorphic to the macro-level in the architecture at which 
such processes occur. Smolensky ’ s stipulative notion of cognitive process 
relevance in terms of isomorphism to the n-level is too strong to capture 
an appropriate notion of cognitive process relevance. The fact that there 
is no isomorphism between chemical elements and the subatomic struc-
tures that participate in quantum mechanical processes is no reason to 
think that chemical elements as wholes are not chemical process relevant. 
Indeed, an analogous point can be made about neurons and their molecu-
lar structures. J. J. Thomson, the discoverer of the electron, was mistaken 
when he said that all there is is physics and stamp collecting. There are 
higher-level patterns of causal dependence. And they are largely the busi-
ness of the various special sciences. 

 My main claim is that if symbols in an ICS architecture get manipulated, 
and are manipulable, in the ways that they must be if systematicity and 
productivity are to be explained, then the symbols are cognitive process 
relevant in such an ICS architecture. To repeat, they are so because they 
will participate in macro-causal processes in the architecture. To be a dis-
tributed representation, a distributed activation state would have to play 
an appropriate functional and, so, causal role within the architecture. 
Moreover, the roles vectors r 1  and r 2  would have to represent certain types 
of functional roles, ones constitutive of syntactic roles, that distributed 
connectionist representations that are atomic symbols can in fact play in 
the architecture. To repeat, the macro-processes in which distributed rep-
resentations participate will be wholly implemented by connectionist 
micro-processes in which units with patterns of connectivity participate. 
The macro-processes will thus be derivative processes, not fundamental 
ones in the ICS architecture. So, the symbols will not be fundamental 
process relevant. But that is exactly what is required of an implementation 
architecture for a symbolic architecture. If an ICS architecture includes 
such nonprimitive symbolic operations, then it would be an implementa-
tion architecture for a symbolic (LOT) architecture. 

 I thus do not think that Smolensky has shown how to explain systema-
ticity and productivity in a connectionist architecture that does not imple-
ment a LOT architecture. 

 12   A Plug for Implementational Connectionism 

 Smolensky characterizes Fodor and Pylyshyn ’ s general challenge to con-
nectionism as follows: 
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 Connectionism, they assert, faces a serious dilemma. On one horn, connectionist 

computation could be used to  eliminate  symbols from cognitive theory; but then 

connectionist couldn ’ t explain central aspects of higher cognition, for which sym-

bols seem necessary. On the other horn, connectionist computational could be used 

to literally  implement  symbolic computation; but then connectionism can teach us 

nothing new about cognition proper, only (at best) something about the neurosci-

ence underlying the  “ classical ”  symbolic theory of cognition that we already have. 

(2006, vol. 2, 506) 

 He has misunderstood the dilemma. The misunderstanding begins with the 
 “ but then ”  statement. The second horn is not that  “ connectionism can 
teach us nothing new about cognition proper. ”  It is that if connectionism 
cannot offer an adequate explanation of the aspects of higher cognition in 
question without implementing a symbolic (LOT) architecture, then it 
cannot offer an adequate alternative to the LOT hypothesis — the hypoth-
esis that our cognitive architecture is a LOT architecture. It does not follow 
from that claim that connectionism can teach us nothing new about cogni-
tion proper. If two computer architectures include all and only the same 
algorithms, then they will be able to compute all and only the same func-
tions. But two architectures can be Turing equivalent, and so compute all 
and only the same functions, yet include different algorithms. Given that 
a symbolic cognitive architecture must be realized in the brain, cognitive 
algorithms must be executable within the brain, in particular, in the brain 
structures that realize (in the functionalists sense) the cognitive architec-
ture. The relevant brains structures will thus place lower-level constraints 
on what symbolic algorithms are psychologically plausible: they must be 
ones that could be implemented by such structures in the brain. If our cog-
nitive architecture must be implemented by neural networks, because the 
relevant brain structures are neural networks, then that places constraints 
on what symbolic algorithms are psychologically plausible. Psychologically 
plausible algorithms must be implementable by neural processes. Imple-
mentational considerations are thus highly relevant to cognition proper. 

 Smolensky thinks Fodor and Pylyshyn hold that  “ a  ‘ mere ’  implementa-
tion of a classical [i.e., symbolic] architecture would add nothing to its 
status as a cognitive architecture ”  (2006, vol. 2, 513). That is true in one 
sense, patently false in another. It is true that Fodor and Pylyshyn hold 
that it is the symbolic architecture that is a cognitive architecture, and so 
that the implementation architecture is not itself a cognitive architecture, 
but rather an architecture that explains how the cognitive architecture is 
implemented in the brain. But, as I just emphasized, facts about the brain, 
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the organ in which that architecture is realized (in the functionalist ’ s sense) 
and implemented, are of course highly relevant to whether a would-be 
symbolic architecture is in fact our cognitive architecture. 

 Smolensky writes as if he thinks that the implementational connection-
ism option is that the connectionist will be handed a symbolic architecture 
and told to implement it using a connectionist architecture. But that is 
not at all the idea. We do not yet know what the grammar of our LOT is 
or what the algorithms of our LOT are. Top-down considerations will play 
an essential role in answering those questions. But bottom-up consider-
ations will play an essential role too. LOT is implemented in our brains. 
Thus, to repeat, the algorithms must be such that they can be implemented 
in our brains. 

 In discussing the relationship between a symbolic architecture and an 
ICS architecture, Smolensky draws an analogy between classical mechanics 
and quantum mechanics, with the symbolic architecture in the role of 
classical mechanics, and connectionism in the role of quantum mechanics. 
I think that a more apt analogy —  if  some connectionist architecture 
(perhaps an ICS architecture) proves to be a neural architecture that under-
lies our cognition (a big  “ if ” ) — is the relationship quantum mechanics 
bears to chemistry. On this analogy, connectionism still gets to be quantum 
mechanics. But the symbolic approach to cognition plays the role of chem-
istry to its quantum mechanics. Quantum mechanics attributes structure 
to atoms and describes causal processes that implement bonding relation-
ships between atoms. But chemistry remains a science in its own right with 
its own laws; and chemists can certainly describe chemical processes 
without appeal to quantum mechanics. Even in a large chemistry depart-
ment, there will typically be only one quantum chemist. 

 In the early twentieth century, chemists were engaged in top-down 
work on atoms and quantum theorists were engaged in bottom-up work 
on atoms. In 1926, Schr ö dinger stated his famous equation. Several years 
later, it was shown that quantum mechanics can, in principle, explain 
chemical bonding. Quantum mechanics revolutionized chemistry. But it 
is also the case that the aim of explaining chemical phenomena led to 
quantum mechanics, which revolutionized physics. Work on mental rep-
resentations should try to be like early twentieth-century work on the 
atom, proceeding by examining both top-down and bottom-up consider-
ations. Hopefully, top-down work in the symbolic theory will someday 
be integrated with bottom-up work on neural networks to yield an 
account of our computational cognitive architecture. But that remains to 
be seen. 
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 Smolensky and Legendre have, I claim, not shown us how to explain 
systematicity and productivity without implementing a LOT architecture. 
But they deserve praise for their truly impressive pioneering work on 
the relationship between symbolic computation and artificial neural 
networks.       

 Notes 

 1.   A connectionist architecture consists of a network of units (or nodes) such that 

the units have activation values; there are weighted patterns of positive (excitatory) 

and negative (inhibitory) connectivity among units; and there are algorithms that 

govern the propagation of activation throughout the network (see  Rumelhart and 

McClelland 1986 ). 

 2.   Some the challenges concerns wider areas of cognition than just thought. But I 

will here focus exclusively on thought — more specifically, on the thought abilities 

of normal human beings. 

 3.   LOT architecture includes a system of symbols. The symbols are either atomic or 

molecular. Molecular symbols contain other symbols as constituents, while atomic 

symbols do not. The system has a finite base of atomic symbols and a compositional 

semantics, so that the semantic value of a molecular symbol is a function of the 

semantic values of the atomic symbols that are its constituents together with the 

molecular symbol ’ s constituent structure — a kind of syntactic structure. (The symbol 

system is in that sense language-like.) A LOT architecture includes, in addition, 

symbol construction and symbol manipulation algorithms. (LOT has further impor-

tant features, including being innate, but the ones mentioned above are the only 

ones that will concern us here.) The grammar of LOT and its symbolic algorithms 

are as yet unknown. There are, however, computer architectures that share some of 

the features in question. For example, programming languages that are members of 

the family of languages, Lisp, which was developed by John  McCarthy (1958)  and 

based on Alonzo  Church ’ s (1941)  lambda calculus, are Turing-equivalent symbolic 

architectures that include atomic symbols (atoms) and molecular symbols (lists), 

and symbol manipulation algorithms. 

 4.   There are connectionist implementations of Turing machines and of production 

systems. (Production systems are Turing-equivalent classical systems.) But a LOT 

architecture is not a Turing machine architecture. Nor is it a von Neumann archi-

tecture. As I say in note 3, the grammar and algorithms of a LOT architecture are 

not yet known. 

 5.   I discuss the main misunderstandings in detail in  McLaughlin 2009 . 

 6.   I hasten to note, though, that  Fodor and Pylyshyn (1988)  never state that thought 

abilities are constituted by conceptual abilities; in fact, they do not even use the 
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term  “ conceptual abilities ”  or the term  “ constitution. ”  But this is a natural interpre-

tation of their  “ intrinsic connections ”  idea. Moreover, it is, I believe, clear that LOT 

theorists are committed to the view that thought abilities are constituted by con-

ceptual abilities ( McLaughlin 2009 ). 

 7.   Gareth  Evans (1982)  defends essentially this thesis, under the name  “ the Gener-

ality Constraint. ”  See also  Davies 1991 . 

 8.   This point was made by  Evans (1982) . 

 9.   I think that  “ A thinker has the ability to mentally represent in thought that  Sandy 

loves Kim  if and only if the thinker has the ability to mentally represent in thought 

that  Kim loves Sandy  ”  is a generic claim, and so not exceptionless, yet a law. I think 

special science laws are typically generics. But that is a topic for another occasion. 

 10.   See, e.g.,  McLaughlin 1987 ; Fodor and McLaughlin 1990;  Fodor and Lepore 

1992 ;  McLaughlin 1993a , b ,  1997 ; and  Aizawa 2003 . 

 11.   Appeal to this sentence schema has led to misunderstandings that none of us 

who have used it ever anticipated. I respond to them in  McLaughlin 2009 . 

 12.   Capacities are abilities to acquire abilities. 

 13.    Aizawa (2003) , whose examination of the systematicity debate is otherwise 

excellent, misses this point. He is certainly right that some Turing machine, for 

instance, might have a symbol that represents aRb, but no symbol that represents 

bRa. But that is irrelevant to the debate.  By hypothesis , the grammar of LOT will be 

such that it will generate a mental symbol that means that  ψ , for all and only the 

 ψ s such that a normal human being has the capacity to mentally represent in 

thought that  ψ . 

 14.   Connectionists also talk about implicit representations, maintaining that certain 

matters can be implicitly represented in patterns of connectivity of units. I have no 

quarrel with that notion of implicit representation. The distinction between local 

and distributed representations is between explicit representations. 

 15.   In some networks, units have only two activation values: on and off. But in 

some networks, they can have a range of activation values; indeed in some they 

have real value levels of activation. 

 16.   Van Gelder points out that one representation may contain another without 

containing it as a proper part. He points out that holograms are such representa-

tions. A hologram of a face will in some sense contain a representation of a nose, 

but that representation will not be a proper part of the hologram. It is physically 

impossible to delete the representation of the nose from the hologram of the face. 

One can at best only degrade the entire hologram. This would be relevant to thought 

if there were evidence that the representations involved in thought are like holo-

graphic representations. But, on the contrary, there is compelling evidence that they 
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are not. To cite one piece of evidence, one can, for instance, forget what day Lincoln 

was born while pretty much not forgetting anything else one knows about him. 

 17.   Hereafter, I will suppress reference to times. 

 18.   See, e.g.,  Smolensky 1987 ,  1995 , and  Smolensky, Legendre, and Miyata 1992 . 

 19.   Some of the chapters in the volumes are coauthored and some are single 

authored by Smolensky. Several different authors figure as coauthors of one or more 

chapters. The chapters I will discuss are either single authored by Smolensky or 

coauthored by Smolensky and Legendre. I will either attribute claims to Smolensky 

or claims to Smolensky and Legendre, depending on which chapter the passage I 

am discussing appears in. This will require some awkward shifts from  “ Smolensky 

says ”  to  “ Smolensky and Legendre say, ”  but it is the only fair way to proceed so as 

to give proper credit. 

 20.   A discussion of whether ICS architecture is neurally plausible is well beyond the 

scope of this essay. 

 21.   Smolensky and Legendre make frequent use of italics and bold font. In all of 

the quotes from Smolensky and Legendre 2006 in what follows, whenever either 

bold font or italics are used, the bold font and italics are theirs. Any insertions by 

me will appear in brackets. 

 22.   Smolensky and Legendre do not address the issue of how primitive symbols get 

their meanings. Nor will I. Psychosemantics is far afield of our main concerns here. 

 23.   I will hereafter use  “ symbolic architecture ”  and  “ LOT architecture ”  interchange-

ably. In a broader use of  “ symbolic architecture, ”  Lisp is a symbolic architecture. (It 

should go without saying that Lisp is not LOT.) To avoid confusion, I will refer 

explicitly to Lisp whenever Lisp comes up. 

 24.   The last two principles concern, respectively, harmonic grammar and optimality 

theory. As concerns harmony theory, nothing I say here casts any doubt on the 

interest and importance of the idea that it may play a central role in an implemen-

tational theory of a computational grammar. Also, nothing I say here casts any 

suspicion on optimality theory. As Smolensky notes,  “ the constraints defining opti-

mality can be stated using symbolic devices, as can their mode of interaction ”  (2006, 

vol. 2, 564). Indeed, in actual practice, optimality modeling is done in symbolic 

terms. LOT theory can take optimality theory on board. Given that the LOT – 

connectionism debate about cognitive architecture has faded from the limelight, 

most of the interest generated by Smolensky and Legendre ’ s two volumes has been 

on their discussion of optimality theory. From my conversations with Rutgers lin-

guists, I have come to have a warm place in my heart for optimality theory. It is 

not in question here. 

 25.   I use  “ realized by ”  here in the functional sense. See the discussion of the 

functionalist sense of realization below. 
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 26.   I assume that  “ describable as ”  here means  “ correctly describable as. ”  

 27.   I use  “ index ”  here in its representational sense. I am not using  “ index ”  in its 

technical sense from computer science. 

 28.   This is a more accurate way of putting it than saying that a distributed activation 

state is represented  as  a point in vector space. It cannot be correctly represented as 

a point in vector space unless it is identical with a point in vector space. But a 

distributed activation state, a kind of biophysical state, is not identical with a point 

in vector space. Rather, it is represented by a point in vector space. 

 29.   Similarly,  Fodor and Pylyshyn (1988)  raise no issues about vectors in a vector 

space as a medium of representation. Their concern is with a connectionist network 

as a medium of representation. 

 30.   I believe that  “ or ”  in the first sentence should be  “ of ”  and that  “ or ”  in the 

second sentence should also be  “ of. ”  

 31.   The mapping, they point out, will not be a bijection. There will be vectors in 

the vector space to which no symbolic structure (no binary tree structure) will be 

mapped. The members of the set of binary trees will be mapped into a vector space, 

but not onto that vector space. 

 32.   Although Smolensky does not demonstrate that all Lisp operations can be 

computed by matrix multiplication operations, I will not challenge that claim here. 

 33.    Sic . The text should read,  “ those functions. ”  

 34.   Indeed, he says in one place:  “ The c-level generally consists of multiple sublev-

els; this is illustrated by the higher and lower-sublevel descriptions of tensorial nets 

discussed above ”  (2006, vol. 2, 516). But only the distinction between higher and 

lower-sublevels need concern us here. 

 35.   I should mention that the number of units required to represent trees quickly 

becomes astronomical. But I will not press that issue here. 

 36.   If units are neurons, what property of a neuron is  “ 0.0, ”  for instance, supposed 

to represent? At a time, a neuron is either firing or not.  “ 0 ”  could represent that the 

neuron is not spiking. There is, however, no good reason to think that cognitive 

information encoding is done just by neural firings, and so for taking activation 

values of units in ICS to be either 1 or 0. As I noted earlier, Smolensky mentions 

the possibility that activation values may be firing rates. A neuron, however, has a 

base firing rate, so it is uncertain what  “ 0.0 ”  would represent. Perhaps it could be 

used to represent that the neuron has its base firing rate (at the time in question). 

But a neuron ’ s being at its base firing rate is normally taken to indicate that it is 

not at that time playing a role in information processing. Temporal encoding is 

naturally represented using sequences of 1s and 0s, where 1 means  “ spike ”  and 0 

means  “ no spike. ”  But the sequence of 1s and 0s represents the temporal encoding 
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of information by a single neuron over time, not a pattern over a group of neurons 

( Theunissen and Miller 1995 ). I cannot examine the controversial issue of neural 

plausibility here. 

 37.   Here I have followed Smolensky in inserting commas between the components 

of the vector. That is not standardly done, except when the  “  <   >  ”  notation is used. 

 38.   That fact can slip one ’ s mind when one always operates by simply stipulating 

what distributed activation states in a network are distributed representations. 

 39.   I am assuming that the macro-level causal patterns will be strongly supervenient 

on the connectionist processes in the network, so that it will be impossible for two 

networks to have all and only the same connectionist processes without having all 

and only the same macro-level causal patterns.      
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 During the 1980s and 1990s, Jerry Fodor, Brian McLaughlin, and Zenon 
Pylyshyn argued that thought is in various respects systematic. Further, 
they argued that a so-called classical syntactically and semantically com-
binatorial system of mental representations provides a better explanation 
of the systematicity of thought than do nonclassical alternatives.  1   During 
the 1990s, part of what made the systematicity arguments problematic 
was the subtlety of the idea of providing a better explanation. In what 
sense is the classical account better than its rivals? During what we might 
call the post-connectionist era of roughly the last ten years, however, theo-
retical shifts have made it even more difficult to bring considerations of 
systematicity to bear on the nature of cognition. 

 This chapter will have a very simple structure. The first section,  “ The 
Systematicity Arguments Then, ”  will describe one type of systematicity 
and provide some reason to think that human vision displays this type. 
In this section, the principal concern will be to draw attention to the 
challenge of explicating the notion of better explanation that was in play 
during the 1990s. The second section,  “ The Systematicity Arguments 
Now, ”  will describe one of the new challenges facing the systematicity 
arguments. Part of this challenge stems from a shift in research emphasis 
away from cognition and on to behavior. Insofar as one is interested 
in behavior rather than cognition, one is certainly going to be less inter-
ested in putative properties of cognition, such as its systematicity. More 
dramatically, post-connectionist cognitive science often displays a break-
down in the earlier consensus regarding the relationship between cogni-
tion and behavior. Insofar as one denies the existence of cognition or 
simply equates it with behavior, one is all the more likely to reject puta-
tive properties of cognition and cognitive architecture, properties such as 
systematicity. 

 3   Tough Times to Be Talking Systematicity 

 Ken Aizawa 
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 1   The Systematicity Arguments Then 

 In their seminal paper, Fodor and Pylyshyn provide a simple empirical 
argument that thought is systematic.  2   They note that language is system-
atic — that there are patterns among the set of grammatical sentences of 
natural language. Indeed, discovering and explaining these patterns is 
essentially the raison d ’  ê tre of syntacticians, and they have traditionally 
explained these patterns by appeal to properties of a grammar and a 
lexicon. Consulting the linguistics literature will bear this out. If one adds 
to this observation the assumption that understanding a sentence of one ’ s 
natural language involves having the thought expressed by that sentence, 
then the existence of patterns in the sentences of one ’ s natural language 
implies that there will be corresponding patterns in the thoughts that one 
can entertain. It is these patterns in thought that Fodor and Pylyshyn 
contend deserve an explanation, and indeed an explanation in terms of a 
classical system of mental representation.  3   

 Fodor and Pylyshyn provide one path to understanding and accepting 
systematicity, but McLaughlin suggests another. In  “ Systematicity, Concep-
tual Truth, and Evolution, ”  McLaughlin invites us to consider the follow-
ing cognitive capacities: 

 1.   the capacity to believe that the dog is chasing the cat and the capacity to believe 

that the cat is chasing the dog, 

 2.   the capacity to think that if the cat runs, then the dog will and the capacity to 

think that if the dog runs, then the cat will, 

 3.   the capacity to see a visual stimulus as a square above a triangle and the capacity 

to see a visual stimulus as a triangle above a square, and 

 4.   the capacity to prefer a green triangular object to a red square object and the 

capacity to prefer a red triangular object to a green square object. (McLaughlin 1993, 

219) 

 Of these capacities, he notes that they are capacities to have intentional 
states in the same intentional mode (e.g., preference, belief, seeing as). 
Moreover, the paired capacities are semantically related. This is indicated 
in a rough-and-ready way by the fact that we use the same English words 
to describe each of the capacities in a pair. 

 McLaughlin ’ s third pair of capacities, namely, the capacity to see a visual 
stimulus as a square above a triangle and the capacity to see a visual stimu-
lus as a triangle above a square, provides an alternative, nonlinguistic 
source of evidence for systematicity. One can detect some systematicity of 
perception by visual inspection of images. More importantly for some, the 
systematicity of perception is well attested in the vision science literature, 
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such as the literature on amodal completion.  4   Seeing is not thinking, 
but the case will nevertheless enable us to move beyond questions regard-
ing the existence of, and evidence for, systematicity and on to the matter 
of the structure of the systematicity arguments. 

 What is amodal completion? In normal human environments, some 
objects often occlude other objects. Indeed, objects typically occlude parts 
of themselves. Nevertheless, in pedestrian contexts, we do not notice the 
lack of information from the occluded parts of objects. We, instead, per-
ceptually complete the occluded objects. We perceive occluded objects as 
wholes. In an extremely simple case, consider a black square abutting a 
gray Pac-Man-shaped figure. This figure is not (on sustained viewing) 
perceived as a black square abutting a gray Pac-Man figure; it is instead 
perceived (on sustained viewing) as a black square occluding a gray circle. 
(See   figure 3.1 .) The Pac-Man example is useful, since it is clear and 
simple, it is (relatively) phenomenologically salient, and its existence is 
supported by a sizeable body of  “ objective ”  psychophysical evidence. In 
addition, the entire phenomenon of amodal completion is theoretically 
interesting, because it is such a pervasive feature of lived human experi-
ence. So, for example, one arguably perceives a whole tomato, even 
though one only detects the light coming from the front face of the 
tomato. One arguably perceives a cat behind a white picket fence, even 
though one only detects light that comes from the cat through the gaps 
in the fence. The phenomenon is not an artifact of contrived laboratory 
conditions.    

 So, consider now the systematicity of amodal completion on the model 
described by McLaughlin. Consider the following fourfold combination of 
capacities: 

 Figure 3.1 
 A simple example of amodal completion. 
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 i.   The capacity to see a black square occluding a gray circle 
 ii.   The capacity to see a gray square occluding a black circle 
 iii.   The capacity to see a black circle occluding a gray square 
 iv.   The capacity to see a gray circle occluding a black square 

 (See   figure 3.2 .) These capacities are systematic in McLaughlin ’ s sense of 
being semantically related capacities in a single intentional mode. Further, 
this example meets McLaughlin ’ s rough-and-ready test for systematicity, 
namely, that we use the same English words to describe paired capacities. 
So, if we let a =  “ black square, ”  b =  “ gray circle, ”  and R =  “ occludes, ”  then 
we get an instance of the idea that an agent who can see aRb can also see 
bRa. These are cases (i) and (iv). Moreover, if we let a =  “ black circle, ”  b = 
 “ gray square, ”  and R =  “ occludes, ”  then again we get an instance of the 
idea that an agent who can see aRb can also see bRa. These are cases (ii) 
and (iii). The extent of this kind of systematicity becomes clearer when 
one inspects shapes with various colors and patterns.  5      

 Figure 3.2 
 Systematicity in simple amodal completion. 
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 So, it appears that we have a well-attested psychological phenomenon. 
Normal human observers who can perceptually experience that a occludes 
b can also perceptually experience that b occludes a.  6   This does not exhaust 
everything that has been included under the rubric of systematicity, but it 
does provide one path to a relevant explanandum. This, in turn, will be 
enough to help illustrate the challenge of articulating the concept of 
 “ better explanation ”  that is implicit in the Fodor-McLaughlin-Pylyshyn 
argument for classicism. 

 Consider two accounts that might be given of the systematicity of 
amodal completion: a classical account and a representational atomist 
account. The point of this comparison is not to attribute representational 
atomism to any particular psychologist or philosopher. Instead, the com-
parison is meant to put two simple, relatively clear accounts on the table 
in order to focus attention on what is supposed to make for better 
explanations in these sorts of arguments. So, a typical classical sort of 
explanation of the systematicity of amodal completion will postulate 
that, in coming to perceive an instance of amodal completion, the visual 
system will (after about 250 msec of viewing) partition the visual field 
into two objects, such as a square and a circle, forming a representation 
of each. It will also combine these two mental representations with a 
third mental representation, a representation of the occlusion relation, 
ultimately forming a mental representation having the syntactic form 
OBJECT 1  OCCLUDES OBJECT 2 . So, when viewing a black square occluding 
a gray circle, the classicist proposes that the visual system constructs a 
representation like BLACK SQUARE OCCLUDING GRAY SQUARE. Amodal 
completion is, then, systematic, because there is a grammar to mental 
representations that enables the formation of a collection of mental rep-
resentations, such as: 

 BLACK SQUARE OCCLUDING GRAY CIRCLE 
 GRAY SQUARE OCCLUDING BLACK CIRCLE 
 BLACK CIRCLE OCCLUDING GRAY SQUARE 
 GRAY CIRCLE OCCLUDING BLACK SQUARE. 

 By contrast, the representational atomist will maintain that, while the visual 
system does traffic in mental representations, it does not traffic in mental 
representations that have a classical combinatorial syntax and semantics. 
Instead, according to the representational atomist, mental representations 
are one and all syntactically and semantically atomic. So, the representa-
tional atomist who is coming to grips with the systematicity of amodal 
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completion might propose that, when viewing the stimuli for amodal 
completion, the visual system produces mental representations with the 
syntactic forms   ,   ,   , and   . On this scheme,    might mean black square 
occluding a gray circle,    might mean gray square occluding a black circle, 
   might mean black circle occluding a gray square, and    might mean gray 
circle occluding a black square. 

 Notice that the systematicity argument is not set up in such a way as 
to propose that the representational atomist has absolutely nothing to say 
about how systematicity comes about. It is not as if the representational 
atomist has no story to tell. The problem, instead, is that the represen-
tational atomist account is not as good as the classical account. This is 
just as the situation was for connectionism and classicism. The problem 
was not (always) that the connectionists had nothing at all to say about 
systematicity. Instead, the problem was that the classical account was 
supposed to provide a better explanation of systematicity than did the 
representational atomist (or connectionist) account. Some such idea was 
in play in Fodor ’ s early discussion of systematicity in the appendix to 
 Psychosemantics : 

 For, of course, the systematicity of thought does not follow from  …  [representational 

atomism]. If having the thought that John loves Mary is just being in one Unknown 

But Semantically Evaluable Neurological Condition, and having the thought that 

Mary loves John is just being in another Unknown But Semantically Evaluable 

Neurological Condition, then it is — to put it mildly — not obviously [ sic ] why God 

couldn ’ t have made a creature that ’ s capable of being in one of these Semantically 

Evaluable Neurological conditions but not in the other, hence a creature that ’ s 

capable of thinking one of these thoughts but not the other. But if it ’ s compatible 

with [representational atomism] that God could have made such a creature, then 

[representational atomism] doesn ’ t explain the systematicity of thought. ( Fodor 

1987 , 151) 

 Some such idea was also apparently in play in the closing pages of Fodor 
and McLaughlin 1990: 

 But this misses the point of the problem that systematicity poses for connection-

ists, which is not to show that systematic cognitive capacities are possible given the 

assumptions of a connectionist architecture, but to explain how systematicity could 

be necessary — how it could be a law that cognitive capacities are systematic — given 

those assumptions. 

 No doubt it is possible for Smolensky to wire a network so that it supports a 

vector that represents aRb if and only if it supports a vector that represents bRa.  …  

The trouble is that, although the architecture permits this, it equally permits Smo-

lensky to wire a network so that it supports a vector that represents aRb if and only if 
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it supports a vector that represents zSq; or, for that matter, if and only if it supports 

a vector that represents The Last of The Mohicans. The architecture would appear to 

be absolutely indifferent as among these options. 

 Whereas, as we keep saying, in the Classical architecture, if you meet the condi-

tions for being able to represent aRb, YOU CANNOT BUT MEET THE CONDITIONS 

FOR BEING ABLE TO REPRESENT bRa; the architecture won ’ t let you do so because 

(i) the representation of a, R and b are constituents of the representation of aRb, and 

(ii) you have to token the constituents of the representations.  …  So then: it is built 

into the Classical picture that you can ’ t think aRb unless you are able to think bRa, 

but the Connectionist picture is neutral on whether you can think aRb even if you 

can ’ t think bRa. But it is a law of nature that you can ’ t think aRb if you can ’ t think 

bRa. So, the Classical picture explains systematicity and the Connectionist picture 

doesn ’ t. So the Classical picture wins. ( Fodor and McLaughlin 1990 , 202 – 203) 

 In these passages, Fodor and McLaughlin are not challenging the idea that 
nonclassical theories of cognition, such as connectionism, can put forward 
some story about systematicity.  7   Classicism ’ s rivals, such as representa-
tional atomism, or connectionism, or Paul Smolensky ’ s tensor product 
theory ( Smolensky 1987 ,  1988 ,  1990 ), are (ultimately) not completely 
silent on how to get a model to display systematicity. Instead, explaining 
the systematicity of thought is more than just having some story to tell. 
One of the difficulties in pressing the systematicity arguments back in the 
1990s was the relatively delicate matter of developing a theory of explana-
tion that explicates the explanatory principle or principles to which Fodor, 
and Fodor and McLaughlin, were appealing. 

 There is more than one way to make out the idea that merely having a 
story to tell about systematicity is not enough. One way is to recognize 
that hypothetico-deductive accounts of explanation do not work. In order 
to explain some phenomenon, it is not enough that one have some theory 
and set of background conditions that enable one to deduce the explanan-
dum. Much of the story of the failure of hypothetico-deductivism is the 
vast array of counterexamples to the deductive-nomological (D-N) model 
of explanation. So, according to Carl Hempel and Paul Oppenheim, one 
might explain some phenomenon by constructing a proof of a sentence E 
that describes the phenomenon.  8   This proof would involve a set of laws, 
L 1 , L 2 ,  … , L n , and a set of initial and boundary conditions, C 1 , C 2 ,  …  C m . 
Among the familiar problems with this sort of account is that it is just as 
easy to provide a proof of the length of the shadow of a flagpole given the 
height of the flagpole, the position of the sun, the laws of trigonometry, 
and the rectilinear propagation of light as it is to provide a proof of the 
height of a flagpole given the length of the shadow, the position of the 
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sun, the laws of trigonometry, and the rectilinear propagation of light. Yet, 
where one might think that one can explain the length of a flagpole ’ s 
shadow using this sort of deduction, no one apparently thinks that one 
can explain the height of the flagpole this way. As another example, con-
sider the law of the pendulum (in a vacuum with massless support) that 
works for small amplitudes: 

  
P

g R
=

/
2π

   

 where  P  is the period,  g  is the force of gravity at the surface of the earth, 
and  R  is the length of the pendulum. It is just as easy to deduce the value 
of  P , given 2 π , the value of  g , and the value of  R , as it is to deduce the 
value of  R , given 2 π , the value of  g , and the value of  P . Yet, while one might 
explain the period of a pendulum using such a deduction, one cannot 
explain the length of the pendulum using this sort of deduction. 

 Another way to try to make out the idea that merely having a story to 
tell is not enough to make for a good explanation is to examine some 
examples drawn from the history of science. One might argue that the 
representational atomist ’ s account of systematicity is inadequate for essen-
tially the same reason as the Ptolemaic account of the limited elongation 
of Mercury and Venus is inadequate. There are other examples that might 
be taken from the history of science, but the Copernican/Ptolemaic 
example of limited elongation is probably the simplest. To see the analogy, 
consider the phenomenon. The ancient Greek astronomers had observed 
that Mercury was always to be found within about 28 °  of the Sun, while 
Venus was always to be found within about 45 °  of the Sun. Both Coperni-
can heliocentric astronomy and Ptolemaic geocentric astronomy had 
stories to tell about why this regularity occurred. According to the Coper-
nican account, Mercury, Venus, and the Earth orbit the Sun in increasingly 
larger orbits. (See   figure 3.3 .) Because of this, it must be the case that 
Mercury and Venus display only limited elongations from the Sun. Given 
the physics of the Copernican theory, the appearances must be as they are. 
Ptolemy, too, had an account. He maintained that the Sun, Mercury, and 
Venus each orbit the Earth on deferents. These orbits were further compli-
cated by rotations on epicycles at the ends of the deferents. (See   figure 3.4 .) 
Because of the collinearity of the deferents of the Sun, Mercury, and Venus 
and the additional movements of Mercury and Venus on their epicycles, 
it must have been the case that, from the terrestrial perspective, Mercury 
and Venus never appear very far from the Sun. Given the hypotheses of 
Ptolemaic astronomy, the appearances must be as they are.       
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 Figure 3.3 
 Copernican heliocentric theory. 

 Perhaps this analogy taps in to the explanatory standard implicitly in 
play in the systematicity arguments; perhaps not. Supposing, for the time 
being, that it does, it is nevertheless a subtle matter to articulate explicitly 
and precisely why the Copernican and classical explanations are superior 
to the Ptolemaic and nonclassical explanations. They are the kinds of 
subtleties that arise in making theories of explanation explicit. This is not 
the occasion to delve into many of the options; only a few will be pre-
sented, in order to draw attention to the nature of the challenge. 

 Recall Fodor and McLaughlin ’ s claim that  “ it is built into the Classical 
picture that you can ’ t think aRb unless you are able to think bRa, but the 
Connectionist picture is neutral on whether you can think aRb even if you 
can ’ t think bRa. ”  In response to this, one might wonder why it is built 
into the classical picture that you cannot think aRb unless you can think 



86 Ken Aizawa

bRa, but it is not built into the connectionist (or representational atomist) 
picture. If you grant both theories their respective hypotheses, both end 
up postulating cognitive architectures that display systematicity. It deduc-
tively follows from the assumptions of both theories that thought is sys-
tematic, or that one can see a black square occluding a gray circle just in 
case one can see a gray circle occluding a black square. Similarly, if you 
grant both Copernicus and Ptolemy their respective assumptions, both 
deductively entail that Mercury and Venus will display only limited elonga-
tion from the Sun. So, what sense is there in Fodor and McLaughlin ’ s claim 
that  “ it is built into the Classical picture that you can ’ t think aRb unless 
you are able to think bRa, but the Connectionist picture is neutral on 
whether you can think aRb even if you can ’ t think bRa ” ? How do we for-
mulate literally the  “ built into ”  metaphor? 

 Maybe the idea is this. The classical picture does not need to rely on 
auxiliary hypotheses to secure the view that you can ’ t think aRb unless you 
are able to think bRa, but the connectionist does need to rely on auxiliary 
hypotheses. Unfortunately, further reflection reveals two reasons that this 
cannot be right. First, classicism postulates a system of syntactically and 
semantically combinatorial representations, but must also invoke some 
auxiliary hypotheses about the grammar of this system of representations. 
For example, classicism must assume that the grammar is not just syntacti-
cally and semantically combinatorial, but also that it generates both BLACK 

Earth

Mercury

Venus

Sun

 Figure 3.4 
 Ptolemaic geocentric system. 
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SQUARE OCCLUDING GRAY CIRCLE and GRAY CIRCLE OCCLUDING 
BLACK SQUARE. This assumption constitutes an auxiliary hypothesis. 
Second, rejecting explanations that invoke auxiliary hypotheses would 
undermine the standard view of the Copernican and Ptolemaic cases, 
according to which the Copernican account is superior to the Ptolemaic 
account. Both Copernican and Ptolemaic astronomy explain the appear-
ances in the motions of Mercury and Venus by relying on the assumption 
that light propagates in straight lines. For both theories, the rectilinear 
propagation of light is a crucial auxiliary assumption. 

 Perhaps the foregoing hypothesis can be made to work through a refine-
ment. Perhaps we should say that a classical system of representation does 
not rely on ad hoc auxiliary hypotheses to explain systematicity, whereas 
representational atomism does rely on ad hoc auxiliary hypotheses. Notice 
that ad hoc hypotheses enable one to give a superficially correct account 
of why something occurs. The problem with them stems from the fact that, 
roughly and intuitively speaking, they are introduced only to get a theory 
to work out correctly. They are hypotheses that are not independently 
motivated. This is just the kind of analysis that has often been applied to 
the Copernican and Ptolemaic case. Given the order of the planets and the 
rectilinear propagation of light — auxiliary hypotheses that can be indepen-
dently checked — the Copernican theory guarantees that the phenomena 
be as they are. By contrast, Ptolemaic astronomy relies on what has long 
been regarded as the dubious, ad hoc assumption that the deferents of the 
Sun, Mercury, and Venus are collinear. This collinearity appears to be 
unmotivated outside of the need to explain the limited elongation of 
Mercury and Venus. To put the matter in a way reminiscent of what Fodor 
and McLaughlin wrote, no doubt it is possible for the Ptolemaic astrono-
mer to arrange epicycles and deferents in such a way as to secure the 
limited elongation of Mercury and Venus. The trouble is that, although 
the theory permits this, it equally permits the Ptolemaic astronomer to 
arrange epicycles and deferents in such a way as to secure the limited 
elongation of Mercury and Venus from Jupiter, rather than the Sun. 

 An analysis of the superiority of the classical and Copernican accounts 
over the nonclassical and Ptolemaic accounts in terms of ad hoc auxiliary 
hypotheses holds considerable promise. Yet, there remains the question of 
whether, in fact, nonclassical theories of mental representation rely on ad 
hoc auxiliary hypotheses, where classicism does not. That, too, is a com-
plicated issue that will not be pursued here.  9   The goal here is simply to 
draw attention to one reason it was so difficult for classicists to make the 
systematicity arguments thoroughly compelling during the 1990s, namely, 
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the difficulty in articulating the implicit standards of good explanation. 
Unfortunately, the task of making the systematicity arguments compelling 
has only gotten more difficult since then. 

 2   The Systematicity Arguments Now 

 Twenty years ago, a distinction between cognition and behavior was widely 
embraced and relatively well understood. That was during the  “ connec-
tionist era, ”  but now things are much murkier. Strange to say, but cognition 
and cognitive architecture are not as central to cognitive science as they 
used to be. Accordingly, systematicity arguments for cognitive architecture 
receive less attention than they used to. It is this shift in the focus of cog-
nitive science research away from cognition that, to a significant degree, 
makes it so much more difficult to make headway with the systematicity 
arguments. More significantly, however, many of the postconnectionist 
accounts that one finds of the very distinction between cognition, cogni-
tive mechanisms, and cognitive architecture, on the one hand, and behav-
ior, on the other, make matters much less clear than they used to be. This 
confusion makes it all the more difficult to make the case for any cognitive 
architecture, much less a syntactically and semantically combinatorial 
cognitive architecture. 

 During the 1980s and into the 1990s, cognitive scientists regularly drew 
a distinction between cognition and behavior. Recall that, in  Verbal Behav-
ior , B. F. Skinner held that behavior is a matter of physically moving about 
the world and manipulating it.  10   This physical bodily movement was 
methodologically important to many behaviorists, since it made for observ-
able, hence  “ objective, ”  scientific psychological facts. Skinner contrasted 
the scientifically acceptable study of behavior with the scientifically 
dubious study of  “ mental ”  or  “ cognitive ”  processes. Mentalism is dubious, 
according to Skinner, in part because it provides only vacuous pseudo-
explanations of verbal behavior. 

 A significant component of the cognitive revolution involved a repudia-
tion of the limited Skinnerian ontology. Noam Chomsky, for example, 
argued that overt, observable behavior was, in fact, the product of many 
distinct cognitive factors such as attention, memory, and set.  11   Most 
famously, he also argued that verbal behavior is also the product of what 
one knows about one ’ s language. Verbal behavior depends on one ’ s lin-
guistic competence. 

 The distinction between cognitive processes and behavior was presup-
posed in the formulation of the systematicity arguments some twenty years 
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ago. The very statement of some of the systematicity phenomena alludes 
to the idea of competence, rather than performance. The idea was not that 
anyone who thinks that John loves Mary also thinks that Mary loves John. 
It was that any who  can  think that John loves Mary  can  think that Mary 
loves John. Recall that McLaughlin describes systematicity in terms of 
capacities such as the capacity to see a visual stimulus as a square above a 
triangle and the capacity to see a visual stimulus as a triangle above a 
square. Moreover, in the text leading up to his introduction of the system-
atic capacities, McLaughlin writes,  “ To begin, cognitive capacities are not 
fundamental capacities: possession of a cognitive capacity consists in pos-
session of other capacities. Cognitive capacities thus have what we will call 
 ‘ constitutive bases ’ : there are other capacities possession of which consti-
tutes possession of the capacities in question. A theory of cognition should 
explain what possession of cognitive capacities consists in: it should 
describe constitutive bases for such capacities ”  (McLaughlin 1993, 219). 
So, the advocates of the systematicity arguments maintained a distinction 
between behavior and cognition. Additionally, those connectionists, such 
as Paul Smolensky and Robert Hadley, who accepted the challenge to 
explain the systematicity of thought implicitly accepted a distinction 
between behavior and the cognitive mechanisms that give rise to behav-
ior.  12   Steven Phillips and William Wilson also seem to recognize the cog-
nition – behavior distinction when they postulate a cognitive architecture 
based in category theory.  13   Like classicists, they invoked information-pro-
cessing capacities that they supposed would generate systematic sets of 
cognitive capacities. 

 This long-standing consensus notwithstanding, there are important 
threads of post-connectionist cognitive science that wish to deemphasize 
cognition and, in fact, obliterate the former distinction between cognition 
and behavior. This shift in interest and emphasis takes many forms, not 
always explicitly recognized, but it emerges clearly in numerous passages 
from the literature on ecological psychology, enactivism, adaptive behav-
ior, and extended cognition. 

 2.1   Ecological Psychology 

 One important source of inspiration for certain strains of post-connection-
ist cognitive science is the ecological psychology of J. J. Gibson, which is 
typically hostile to classical approaches to vision of the sort favored by 
Fodor, Pylyshyn, and McLaughlin. As just a brief sample, Gibson himself 
wrote 
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 Not even the current theory that the inputs of the sensory channels are subject 

to  “ cognitive processing ”  will do. The inputs are described in terms of informa-

tion theory, but the processes are described in terms of old-fashioned mental acts: 

recognition, interpretation, inference, concepts, ideas, and storage and retrieval of 

ideas. These are still the operations of the mind upon the deliverances of the senses, 

and there are too many perplexities entailed in this theory. It will not do, and the 

approach should be abandoned. (Gibson 1980, 238) 

 In this section of his book, Gibson dismisses all previous theories of the 
mechanisms of visual processing. Rather than hypothesizing brain mecha-
nisms that might realize a cognitive architecture for cognitive processes, 
Gibson famously proposed that we ask not what ’ s inside your head, but 
what your head ’ s inside of.  14   Gibson would, thus, dismiss attempts to 
explain amodal completion by appeal to such things as mechanisms for 
computing the relatability of edges. If, like Gibson, one is uninterested in 
cognitive mechanisms, one will not be interested in the putative properties 
of cognitive mechanisms, properties such as systematicity. 

 2.2   Enactivism 

 Like many terms in contemporary cognitive science,  “ enactivism ”  means 
different things to different cognitive scientists, but a common thread 
appears to be either the diminution or even erasure of a distinction 
between behavior and cognition. To see this, consider first a well-known 
passage from Humberto Maturana and Francisco Varela ’ s  Autopoesis and 
Cognition :  “ A cognitive system is a system whose organization defines a 
domain of interactions in which it can act with relevance to the main-
tenance of itself, and the process of cognition is the actual (inductive) 
acting or behaving in this domain. Living systems are cognitive systems, 
and living as a process is a process of cognition. This statement is valid 
for all organisms, with and without a nervous system ”  ( Maturana and 
Varela 1980 , 13). The most striking feature of this passage, for a classicist 
at least, is that thinking is supposed to be a property of all organisms. 
Trees cognize, mushrooms cognize, slime molds cognize. A classicist 
might well be tempted to claim that trees, mushrooms, and slime molds 
are obvious counterexamples to Maturana and Varela ’ s theory of cogni-
tion. For the classicist, it is something like a home truth that trees, 
mushrooms, and slime molds do not cognize; they don ’ t think. A more 
generous interpretation, perhaps, is that Maturana and Varela are simply 
not trying to characterize the same thing as are classicists. Maturana and 
Varela are not theorizing about the same targets as are classicists; they 
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do not mean by a  “ cognitive system ”  what classicists mean by a  “ cogni-
tive system. ”  Set this issue aside. What might escape notice is Maturana 
and Varela ’ s equation of cognition and behavior: the process of cognition 
is behaving in a domain. If one equates cognition and behavior, there 
is hardly room for cognitive mechanisms as a causal factor underlying 
behavior.  15   

 Evan Thompson embraces a similar approach to cognition. In the 
preface to his 2007 book,  Mind in Life , he writes,  “ Where there is life there 
is mind. ”  This appears to embrace the Maturana and Varela view, yet in 
the very next sentence, we get a different view:  “ Life and mind share a 
core set of formal or organizational properties, and the formal or organi-
zational properties distinctive of mind are an enriched version of those 
fundamental to life ”  ( Thompson 2007 , ix). Indeed, not only does Thomp-
son ’ s second sentence offer a different view than does the first, the second 
apparently contradicts the first. If the properties distinctive of mind are an 
enriched version of those fundamental to life, this strongly suggests that 
minds have properties that not all forms of life share. So, it would not be 
the case that where there is life there is mind. That aside, if living and 
cognizing are the same thing, how does cognizing differ from behaving, if 
at all? 

 Chemero (2009) offers another similar account of cognition. He writes, 
 “ I take it that cognition is the ongoing, active maintenance of a robust 
animal-environment system, achieved by closely coordinated perception 
and action ”  ( Chemero 2009,  212, n. 8). Notice that this commits Chemero 
to a more restrictive conception of cognition than Maturana and Varela ’ s. 
Chemero ’ s theory limits cognition to animals (for no evident reason). 
Moreover, it is similarly more restrictive than is Thompson ’ s contention 
that  “ where there is life there is mind. ”  So, for Chemero, sponges might 
be cognitive agents, but not trees, mushrooms, or slime molds. Neverthe-
less, Chemero ’ s account also seems to conflate cognition and behavior. 
Cognition is proposed to be the ongoing, active maintenance of a robust 
animal-environment system, but then where does that leave behavior? The 
same issue arises when Chemero writes about  “ how radical embodied 
cognitive science can explain cognition as the unfolding of a brain-body-
environment system, and not as mental gymnastics ”  ( Chemero 2009 , 43). 
If cognition is the unfolding of a brain-body-world system, then what is 
behavior? Are behavior and cognition to be taken to be the same?  16   

 Notice that while Chemero proposes that cognition is a feature of 
animals only, Paco Calvo and Fred Keijzer, who also draw on enactivism, 
argue for plant cognition: 
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  Embodied Cognition  takes perception-action as its major focus, and within this 

embodied perspective, most animal and even bacterial behavior can be considered 

cognitive in a limited form.  Embodied Cognition  stresses the fact that free-moving 

creatures are not simple, hardwired reflex automatons but incorporate flexible and 

adaptive means to organize their behavior in coherent ways. Even when it may go 

too far to ascribe a mind to such systems, they deserve an acknowledgement of the 

intelligence involved in the things they do, and for this reason, the notion of cog-

nition seems appropriate. So far, the notion of cognition has not been extended to 

plants. One reason is simply that most cognitive scientists, even those involved in 

 Embodied Cognition , are simply unaware of what plants can do. (Calvo and Keijzer 

2008, 248; see also  Calvo and Keijzer 2011 ) 

 Calvo and Keijzer also apparently disagree with Chemero ’ s apparent view 
that  all  animals can be considered cognitive agents, proposing instead that 
 most  animal behavior can be considered cognitive in at least a limited form. 
Despite these differences, Calvo, Keijzer, and Chemero agree in effacing 
the difference between cognition and behavior.  17   Notice that while it is 
true that plants incorporate flexible and adaptive means to organize their 
behavior, one might well maintain that there is more to cognition than 
mere adaptive and flexible behavior. Cognition and behavior are different 
things. For classicists, for example, plants and single-celled organisms 
might be flexible and adapt to their environment by moving along con-
centration gradients for food, but that is not necessarily the same thing as 
being flexible and adapting to their environment by, say, thinking about 
how to find food. 

 2.3   Adaptive Behavior 

 The foregoing examples suggest that the study of behavior should not 
necessarily be equated with the study of cognition. Yet, in an influential 
2003 paper,  “ The Dynamics of Active Categorical Perception in an Evolved 
Model Agent, ”  Randall Beer offers the following perspective: 

 For a situated, embodied agent, taking action appropriate to both its immediate cir-

cumstances and its long-term goals is the primary concern, and cognition becomes 

only one resource among many in service of this objective. An agent ’ s physical body, 

the structure of its environment, and its social context can play as important a role 

in the generation of its behavior as its brain. Indeed, in a very real sense, cognition 

can no longer be seen as limited to an agent ’ s head, but can be distributed across a 

group of agents and artifacts. ( Beer 2003 , 209) 

 Notice, in the first sentence, that Beer hints that work with situated agents 
involves a shift in research emphasis. He implicitly proposes that cognitive 
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scientists should pay greater attention to action or behavior rather than 
cognition. Here, the traditional distinction between cognition and behav-
ior is preserved. Moreover, we have the view, consonant with cognitivism, 
that an agent ’ s physical body, the structure of the environment, and its 
social context can play an important role in the determination of behavior. 
(How one measures the relative importance of these factors is another 
matter.) The final sentence, by contrast, proposes something contrary to 
what has gone before. In the last sentence, cognition is apparently  not  one 
factor among many shaping behavior. Instead, the cognitive is apparently 
equated with the behavioral. At the very least, a lot more of what goes on 
in the world counts as cognitive processing; cognitive processing is spread 
over a group of agents and artifacts. 

 Why is there such a dramatic shift in Beer ’ s perspective? What underlies 
the shift from the first part of the quoted text to the last? One conjecture 
is that this has to do with an implicit commitment to some form of opera-
tionism. The operationist method is to consider some task that is taken to 
constitute a cognitive task or a cognitive behavior. That is, assume that 
anything that can accomplish a specific task or behavior must be doing 
cognitive processing. Consider the task Beer proposes in his 2003 paper, 
namely, classifying simulated diamond-shaped and circular-shaped objects 
in an environment. Beer apparently supposes that any device that can 
accomplish this task is performing  “ categorical perception. ”  When Beer 
then develops a device that can perform this task, he concludes that he 
has a device that performs categorical perception. But, then, since the 
cognitive is whatever contributes to the accomplishment of this task, the 
artifacts in the external world will count as part of the cognitive system. 
This sort of operationism is quite familiar. Consider the putative cognitive 
task of playing chess. One might suppose that any device that can play 
chess is thinking or cognizing, so that if one produces a device that can 
do this, then that device is thinking. So, one ’ s computer running a chess-
playing program is thinking. Or, consider the putative cognitive task of 
carrying on a conversation. It turns out that, in online chat rooms, chat-
bots can do a reasonably good job of fooling humans into thinking that 
they are communicating with another human. So, one might think that 
chatbots can carry on a conversation. 

 2.4   Extended Cognition 

 The kind of operationism one finds in Beer ’ s work also seems to color the 
thinking of some advocates of extended cognition, at least at times. In a 
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recent paper, Clark writes,  “ What makes a process cognitive, it seems to 
me, is that it supports genuinely intelligent behavior.  …  To identify cogni-
tive processes as those processes, however many and varied, that support 
intelligent behavior may be the best we can do ”  ( Clark 2010 , 292 – 293). 
Classicism provides one way of understanding the idea that cognitive 
processes support intelligent behavior, namely, that they are one factor 
that shapes behavior. Operationism provides another. This is the idea Clark 
articulates in the second sentence — that whatever processes support intel-
ligent behavior are cognitive processes. Relying on such an assumption 
would make sense of many of his proposals to treat various activities as 
instances of extended cognition. One example is his analysis of writing a 
philosophy paper. Perhaps Clark assumes that writing a philosophy paper 
is a cognitive task and that whatever supports this task counts as cognitive 
processing. Given this assumption, Clark ’ s observation that environmental 
props causally contribute to the writing of a paper naturally leads to the 
conclusion that the use of these environmental props is cognitive process-
ing. That is, it is natural to suppose that one has extended cognitive pro-
cessing. This is how Clark might arrive at the conclusion that, in writing 
a paper,  “ the intelligent process just  is  the spatially and temporally extended 
one which zig-zags between brain, body, and world ”  ( Clark 2001 , 132). 
Here again, the traditional distinction between cognition and behavior 
threatens to break down. 

 This kind of equation of cognition and behavior might be the proper 
way to read Mark Rowlands ’ s manipulation thesis, according to which 
 “ cognitive processes are not located exclusively in the skin of cognising 
organisms because such processes are, in part, made up of physical or 
bodily manipulation of structures in the environments of such organisms ”  
( Rowlands 1999 , 23). Maybe this is Rowlands ’ s way of saying that cognition 
is behavior. Richard Menary, at times, also appears to equate behavior and 
cognition:  “ The real disagreement between internalists [like Adams and 
Aizawa] and integrationists [like Menary] is whether the manipulation of 
external vehicles  constitutes  a cognitive process. Integrationists think that 
they do, typically for reasons to do with the close coordination and causal 
interplay between internal and external processes ”  ( Menary 2006 , 331). 
Clearly, identifying cognition and behavior provides an easy path to 
extended cognition. Behavior is clearly extended into brain, body, and 
world. Returning to the topic of systematicity, anyone who identifies cog-
nition with behavior will not be looking for internal mechanisms, such as 
brain mechanisms, that realize cognitive mechanisms. Moreover, anyone 
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who identifies cognition with behavior will not be looking for cognitive 
mechanisms, such as the manipulation of mental representations, that 
would underlie behavior. Nor would one be looking for systematic proper-
ties of such mechanisms. So, many of those working in the post-connec-
tionist era will simply not be theoretically oriented to the project of 
explaining the systematicity of thought. 

 3   Conclusion 

 It has always been difficult for classicists to make the systematicity argu-
ments stick. A significant contributor to this difficulty has been the back-
ground assumptions regarding what makes one explanation better than 
another. In the absence of clearly and explicitly stated and well-defended 
principles regarding what makes for superior explanations, it is easy to 
simply stand by classicism and maintain that it offers a better explanation 
of systematicity than does connectionism or to simply stand by connec-
tionism and maintain that it offers just as good an explanation of systema-
ticity as classicism. In this context, historical cases provide a useful resource 
in the development of well-motivated principles of good explanation. That 
said, even if one is willing to try to understand good scientific explanation 
in terms of a multiplicity of episodes in the history of science, there 
remains the familiar challenge of correctly explicating what is involved in 
actual scientific explanatory practice. Scientists make claims about particu-
lar instances of explanatory superiority, but it is often difficult to articulate 
these views in a way that is simultaneously precise and true. Philosophy 
of science has its challenges. 

 Unfortunately, much of the post-connectionist reorientation of the last 
twenty years has made it even more difficult for many cognitive scientists to 
see the relevance of the systematicity arguments. Part of this reorientation 
has been to focus more attention on behavior than on cognition. For those 
interested in behavior, the systematicity of cognition will be, at best, a topic 
of secondary interest. A more radical shift in post-connectionist thinking, 
however, has gone farther and apparently identified cognition and behavior. 
One can see intimations of this view in comments by Gibson, Maturana 
and Varela, Thompson, Chemero, Calvo and Keijzer, Beer, Clark, Rowlands, 
Menary, and many others. If cognition just is behavior, then there is no need 
to search for putative cognitive mechanisms underlying behavior that 
might, or might not, be systematic. Either type of post-connectionist theo-
rizing, thus, makes for tough times to be talking systematicity. 
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 Notes 

 1.   There are some nuances regarding what counts as a  “ classical ”  versus a  “ nonclas-

sical ”  system of syntactically and semantically combinatorial representations (see, 

e.g.,  Aizawa 2003 ), but those nuances will be set aside here. 

 2.   See Fodor and Pylyshyn 1988, 37 – 39. 

 3.    Chemero (2009 , 8 – 9) discusses the systematicity arguments but ignores the 

empirical argument for the systematicity of thought given above. Instead, he 

observes that Fodor and Pylyshyn do not provide references to the literature, from 

which he concludes that no prior empirical study provides evidence for systematic-

ity. To turn the tables on Chemero, one might observe that Chemero provides little 

evidence that no prior empirical study supported the systematicity of thought. That 

little bit of evidence is the lack of references in Fodor and Pylyshyn ’ s article. 

 4.   There is a vast vision science literature and an extensive literature dedicated to 

amodal completion. Kellman and Shipley (1991) provide a useful point from which 

to begin to explore amodal completion. 

 5.   The cases of white on white, gray on gray, and black on black have an additional 

twist to them insofar as sustained viewing leads them to switch between being 

perceived as a square occluding a circle to a circle occluding a square. So, it could 

turn out that the systematic pattern is that a normal human who can see shape A 

occlude shape B can also see shape B occlude shape A. 

 6.    Travieso, Gomila, and Lobo (this volume)  draw attention to the oversimplifica-

tion in this claim. These comments mirror arguments they give in Gomila, Travieso, 

and Lobo 2012. (Fodor and Pylyshyn [1988], 40f, noted the oversimplification.) See, 

e.g., Fodor and Pylyshyn 1988, 42:  “ It ’ s uncertain exactly how compositional natural 

languages actually are (just as it ’ s uncertain exactly how systematic they are). ”  To 

be more explicit, one might say that what is to be explained in the systematicity 

arguments is why amodal completion (or thought) is as systematic as it is. 

 7.   There are, of course, other points at which they do object that, for example, 

Smolensky is not actually providing any account of systematicity:  “ So then, after 
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all this, what  is  Smolensky ’ s solution to the systematicity problem? Remarkably 

enough,  Smolensky doesn ’ t  say ”  ( Fodor and McLaughlin 1990 , 201). 

 8.    Hempel and Oppenheim 1948 . 

 9.   Again, further discussion is available in  Aizawa 2003 . 

 10.    Skinner 1957 . 

 11.   See  Chomsky 1959 . 

 12.   See  Smolensky 1987 ,  1988 ,  1990;   Hadley 1994;   Hadley and Hayward 1997 . 

 13.   See  Phillips and Wilson 2010 ,  2011, 2012 . 

 14.   See  Mace 1977 . 

 15.   Incidentally, enactivism might also support skepticism of the view that cogni-

tion is in fact systematic. If one thinks that mushrooms are cognitive systems, one 

might think that they are such simple cognitive systems that they do not display 

systematicity. So, maybe not all cognition is systematic. 

 16.   In discussion at the  “ Systematicity and the Post-Connectionist Era ”  workshop, 

Chemero indicated that he does believe that cognition and behavior are the same. 

 17.   Although, in correspondence, Calvo has suggested he embraces the elimination 

of a cognition – behavior distinction,  Calvo and Keijzer (2011)  repeatedly write as if 

cognition and behavior were distinct.      
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 II 





 Nobody could doubt that the brain is made up of neurons and connections 
between them. But how are they organized? 

 In cognitive science, much of the excitement of mid-1980s connection-
ism came from a specific hypothesis: that the mind did its work without 
relying on the traditional machinery of symbol manipulation. Rumelhart 
and McClelland (1986, 119), for instance, clearly distanced themselves 
from those that would explore connectionist implementations of symbol-
manipulation when they wrote, 

 We have not dwelt on PDP implementations of Turing machines and recursive pro-

cessing engines [canonical machines for symbol-manipulation] because we do not 

agree with those who would argue that such capabilities are of the essence of human 

computation. 

 Up until that point, most (though not certainly all) cognitive scientists 
took it for granted that symbols were the primary currency of mental 
computation. Newell and Simon (1975), for example, wrote about the 
human mind as a  “ physical symbol system, ”  in which much of cognition 
was built on the storage, comparison, and manipulation of symbols. 

  Rumelhart and McClelland (1986)  challenged this widespread presump-
tion by showing that a system that ostensibly lacked rules could apparently 
capture a phenomenon — children ’ s overregularization errors — that hereto-
fore had been the signal example of rule learning in language develop-
ment. On traditional accounts, overregularizations (e.g.,  singed  rather  sang ) 
were seen as the product of mentally represented rule (e.g., past tense = 
stem + -ed). 

 In Rumelhart and McClelland ’ s model, overregularizations emerged 
not through the application of an explicit rule, but through the collabora-
tive efforts of hundreds of individual units that represented individual 

 4   PDP and Symbol Manipulation: What ’ s Been Learned 

Since 1986? 

 Gary Marcus 
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sequences of phonetic features that were distributed across a large network, 
with a structure akin to that in figure 4.1.    

 A flurry of critiques soon followed ( Fodor and Pylyshyn 1988 ;  Lachter 
and Bever 1988 ;  Pinker and Prince 1988 ), and the subsequent years were 
characterized by literally dozens of papers on the development of the 
English past tense, both empirical (e.g.,  Kim, Marcus, Pinker, Hollander, 
and Coppola 1994 ;  Kim, Pinker, Prince, and Prasada 1991 ;  Marcus, Brink-
mann, Clahsen, Wiese, and Pinker 1995 ;  Marcus et al. 1992 ;  Pinker 1991 ; 
 Prasada and Pinker 1993 ) and computational (e.g.,  Ling and Marinov 
1993 ;  Plunkett and Marchman 1991 ,  1993 ;  Taatgen and Anderson 
2002 ) 

 In the late 1990s, I began to take a step back from the empirical details 
of particular models — which were highly malleable — to try to understand 
something general about how the models worked, and what their strengths 
and limitations were ( Marcus 1998a , b ,  2001 ). In rough outline, the argu-
ment was that the connectionist models that were then popular were 
inadequate, and that without significant modification they would never 
be able to capture a broad range of empirical phenomena. 

 In 2001, in a full-length monograph on the topic ( Marcus 2001 ), I 
defended the view that the mind did indeed have very much the same 
symbolic capacities as the pioneering computer programming language 
Lisp, articulated in terms of the following seven claims. 

 1.   The mind has a neurally realized way of representing  symbols . 
 2.   The mind has a neurally realized way of representing  variables . 

 Figure 4.1 
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 3.   The mind has a neurally realized way of representing  operations over vari-
ables , to form the progressive form of a verb, take the stem and add - ing . 
 4.   The mind has a neurally realized way of representing  distinguishing 
types from tokens , such as one particular coffee mug as opposed to mugs in 
general. 
 5.   The mind has a neurally realized way of representing  ordered pairs   (AB 
 ≠  BA) ;  man bites dog  is not equivalent to  dog   bites   man . 
 6.   The mind has a neurally realized way of representing  structured units  
(element C is composed of elements A and B, and distinct from A and B 
on their own). 
 7.   The mind has a neurally realized way of representing  arbitrary trees , such 
as the syntactic trees commonly found in linguistics. 

 A decade later, I see no reason to doubt any of the first six claims; PDP 
efforts at modeling higher-level cognition have become far less common 
than they once were, no major new architecture for modeling cognition 
has been proposed (though see below for discussion of Hinton ’ s approach 
to deep learning and its application to AI), no serious critique of  The Alge-
braic Mind  (Marcus 2001) was ever published, and to my knowledge there 
has been no serious PDP attempt in recent years to capture the phenomena 
highlighted therein (e.g., the human facility with distinguishing types 
from tokens). Instead, recent theoretical works such as  Rogers and McClel-
land (2004)  continue to rely on architectures that were introduced over a 
decade ago, such as the PDP model of Rumelhart and Todd ( 1993 ) and 
remain vulnerable to the same criticisms as their predecessors ( Marcus and 
Keil 2008 ). 

 Yet if I remain confident in the accuracy of the first six conjectures, I 
now believe I was quite wrong about the seventh claim — in a way that may 
cast considerable light on the whole debate. 

 The problem with the seventh claim is, to put it bluntly, people don ’ t 
behave as if they really  can  represent full trees ( Marcus 2013 ). We humans 
have trouble remembering sentences verbatim ( Jarvella 1971 ;  Lombardi 
and Potter 1992 ); we have enormous difficulty in properly parsing center-
embedded sentences ( the cat the rat the mouse chased bit died ) ( Miller and 
Chomsky 1963 ) and we can easily be seduced by sentences that are glob-
ally incoherent ( Tabor, Galantucci, and Richardson 2004 ), provided that 
individual chunks of the sentence seem sufficiently coherent at a local 
level (e.g.,  More people have been to Russia than I have ). Although tree 
representations are feasible in principle — computers use them routinely —
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 there is no direct evidence that  humans  can actually use them as a form 
of mental representation. Although humans may have the abstract com-
petence to use (or at least discuss) trees, actual performance seems to 
consistently fall short. 

 In a proximal sense, the rate-limiting step may be the human mind ’ s 
difficulties with rapidly creating large numbers of bindings. For example, 
by rough count, the sentence  the man bit the dog  demands the stable encod-
ing of at least a dozen bindings, on the reasonable assumption that each 
connection between a node and its daughters (e.g., S  &  NP) requires at 
least one distinct binding; on some accounts, that sentence alone might 
require as many as 42 (if each node bore three pointers, one for its own 
identity, and one for each of two daughters). 

 Although numbers of between 12 and 42 (more in more complex sen-
tences) might at first blush seem feasible, they far exceed the amount of 
short-term information-binding bandwidth seen in other domains of cog-
nition ( Treisman and Gelade 1980 ). George Miller famously put the number 
of elements a person could remember at 7 +/ –  2 ( Miller 1956 ), but more 
recent work suggested that Miller significantly overestimated; realistic esti-
mates are closer to 4 or even fewer ( Cowan 2001 ;  McElree 2001 ). Similarly 
low limits on binding seem to hold in the domain of visual object tracking 
( Pylyshyn and Storm 1988 ). Although it is certainly possible that language 
affords a far greater degree of binding than in other domains, the general 
facts about human memory capacity clearly raise questions. 

 In a more distal sense, the rate-limiting step may have been the con-
servative nature evolution, and in particular the very mechanism of 
context-dependent memory that was brought up earlier. As mentioned, 
computers succeed in readily representing trees because their underlying 
memory structures are organized by location ( “ or address ” ); someone ’ s cell 
phone number might be stored in location 43,212, their work number in 
location 43,213, and so forth. Human memory, in contrast — and indeed 
probably all of biological memory — appears to be organized around a dif-
ferent principle, known as content-addressability, meaning that memories 
are retrieved by content or context, rather than location ( Anderson 1983 ). 
Given the short evolutionary history of language ( Marcus 2008 ), and the 
fundamentally conservative nature of evolution ( Darwin 1859 ;  Marcus 
2008 ), context-dependent memory seems likely to be the  only  memory 
substrate that is available to the neural systems that support language. 
Although content-addressability affords rapid retrieval, by itself it does not 
suffice to yield tree-geometric traversability. With content-addressability, 
one can retrieve elements from memory based on their properties (e.g., 
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animate, nominative, plural, etc.), but not (absent location-addressable 
memory) their location. 

 Constrained in this way, we may thus be forced to rely on a sort of 
cobbled-together substitute for trees, in which linguistic structure can only 
be represented in approximate fashion, by means of sets of subtrees ( “ tree-
lets ” ) that are bound together in transitory and incomplete ways ( Marcus 
2013 ). Our brains may thus be able to afford some sort of approximate 
reconstruction but not with the degree of reliability and precision that 
veridically represented trees would demand. 

 As a rough sketch, imagine that a binding-limited human listener hears 
a sentence that begins  It was the dancer   …  As the sentence proceeds, the 
listener might place a set of small chunks in working memory, which we 
might suppose consist of elements like those in figure 4.2. The trick, of 
course, is to figure out the relations between those elements, presumably 
by drawing bindings between them, as in figure 4.3.     

 The trouble is that binding is an expensive operation; eventually the 
human parser appears not to be able to keep track of all the bindings. Even 
if each individual treelet (e.g., a noun phrase consisting of determiner,  the , 
preceding a noun,  dancer ) were relatively automatized or chunked such 
that it is individually memorable, the parser soon runs out of room when 
trying to bind the treelets to one another. In a more complex sentence 
such as  It was the dancer that the fireman liked , the binding capacity is 

S VP

VP

NP

NP NP NAux Det

it was the dancer

 Figure 4.2 
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it was the dancer

 Figure 4.3 
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exceeded, and the system can no longer keep veridical track of all the 
elements and the relations between them. Instead, one might wind up 
with the sort of chaos depicted in figure 4.4.    

 At this point we would expect confusion. Who liked whom? Empirical 
data suggest that clefted sentences like this are quite difficult to parse, with 
substantial interference between elements (e.g., Gordon, Hendrick, and 
Johnson 2001). The resulting confusion fits naturally with a system in 
which the representation of trees is fragmentary rather than complete, but 
would make little sense in a system in which trees were veridically repre-
sented. Clefted sentences pose no special problem for machine parsers with 
robustly implemented binary trees, but they are challenging for people. 
Likewise, a set of imperfectly bound treelets could give a natural explana-
tion for why people often infer from the garden-path sentence  While Anna 
dressed the baby slept  both something that  is  consistent with a proper parse 
(that the baby slept) and something that is consistent only with the initial 
parse, but  inconsistent  with the final parse (that Anna dressed the baby; 
example from experiments of  Christianson et al. 2001 ). Likewise, the 
treelet account helps make sense of why we are vulnerable to linguistic 
illusions, such as the incorrect sense that  More people have been to Russia 
than I have  is a well-formed sentence. An account in which syntactic rep-
resentations are fragmentary helps makes sense of a host of other facts as 
well, ranging from the human difficulty with parsing center-embedding 
sentences to our difficulties in remembering verbatim syntactic structures. 
(See  Marcus 2013  for further discussion.) 

 While most of the particular details (e.g., of how many treelets can be 
represented and what their precise nature might be) are up for grabs, 
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overall this sort of approach seems more consistent with the empirically 
observed facts of psycholinguistics than any framework that presumes that 
sentences are robustly represented on full-scale trees. 

 Should this conjecture that sentences are represented imperfectly (via a 
weakly bound sound of treelets, rather than full trees) prove correct, the 
upshot would be that human beings possess most — but critically,  not 
all  — of the symbol-manipulating apparatus that we associate with digital 
computers, namely, the first six elements listed above, but not the seventh, 
leaving us with vastly more symbolic power than simple neural networks, 
but still notably less than machines. 

 This seems, in hindsight, to be quite plausible: we are not nearly as good 
as machines at representing arbitrary taxonomies (what normal human, 
for example, can instantaneously acquire the complete family tree of the 
British monarchy?), yet we are fully capable of symbolic, rule-based gen-
eralizations, and still far outstrip PDP networks in our capacity to think 
about individuals versus kinds ( Marcus 2001 ;  Marcus and Keil 2008 ). The 
conjecture that humans possess most but not quite all of the classic tools 
of symbol manipulation would capture some of the spirit (though not the 
letter) of  Smolensky ’ s (1988)  suggestion that human representations might 
be approximations to their digital counterparts. In retrospect, advocates of 
PDP probably underestimated our symbolic capacities, but may have been 
right that humans lack the full complement of symbol-manipulating facul-
ties seen in machines. Connectionism ’ s common denial of symbols still 
seems excessive and undermotivated, but there may well be plenty of 
important work to be done in finding instances in which human capacities 
deviate from full-scale symbol-manipulators. 

 Epilogue 

 A popular myth (which the author recently heard recounted at a public 
lecture by a prominent advocate of Bayesian models of cognition) is that 
AI in the old days was mostly symbolic, and mostly ineffective. In recent 
years, statistics (according to the myth, which was presented as if it were 
truth) had replaced symbols, and in that transition AI had finally begun 
to work. Watson won at Jeopardy, and Siri could kind of, sort of, under-
stand speech. Little attention was paid to the obvious confound — machines 
have gotten millions of times more powerful since the early days of AI — but 
the more serious problem with the myth is that it is not true: statistics 
haven ’ t replaced symbols, they have supplemented them. If one inspects 
the details of how Watson actually works, one finds a huge array of 
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symbolic systems (e.g., temporal reasoners), working right alongside statis-
tical systems ( Ferrucci et al. 2010 ). Likewise, most of the leading machine 
parsers make heavy use of statistical information (typically in the form of 
Bayesian inference), but the categories that those parsers work over (e.g., 
probability context free grammars) are all symbolic representations, filled 
with variables, categories, rules, and so forth. 

 Champions of statistics are right to claim that statistics have revolution-
ized AI, but those who would eschew symbols would find no solace if they 
looked carefully at the mechanics of how the best AI systems work. Effec-
tive AI systems, like the human mind, use symbolic representations as part 
of their fundamental currency.  1   

 Eliminative connectionism was a fascinating idea, but a quarter-century 
later, it still seems unlikely to work. A more profitable endeavor might be 
to figure out how to use networks of neurons in systems that unify symbols 
and statistics, rather than needlessly treating them as antithetical. 
     
 This chapter is adapted and expanded from an earlier article by the author 
that appeared in  Topics in Cognitive Sciences , volume 1, 2009.      

 Note 

 1.   A notable exception might be Google ’ s recent  “ cat detector ”  system for recogniz-

ing images ( Le et al. 2011 ), inspired in part by Hinton ’ s work on deep learning 

( Hinton, Osindero, and Teh 2006 ), a 16,000-processor computer system that far 

exceeds its predecessors in the unsupervised learning of images — but still achieves 

an overall correct performance of just 15.8 percent, enough to qualify as an advance 

over neural networks, but not enough to qualify as a bona fide solution to the prob-

lem of vision.      
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 1   Introduction 

 Fodor and Pylyshyn ’ s (1988, henceforth F & P) seminal work marked an 
important step forward in the debate about what kind of architecture is 
required for human cognition. By focusing on core concepts of  “ systema-
ticity, ”   “ symbolic, ”  and  “ compositionality, ”  F & P suggested new ways to 
consider the competing claims about connectionist versus symbolic systems 
in an explicit and precise way. Whether or not one agrees with their defini-
tions (and there has been considerable debate both about the correctness 
as well as clarity and coherence of these definitions), the narrowing of the 
debate has led to stimulating discussion. 

 Absent such discussion, for example, terms such as  ‘ systematic ’  may be 
taken to refer to significantly different things. The equation  y ( t )  = f ( x ,  y t    – 1

 ), 
for example, describes a dynamical system that is, in general terms, sys-
tematic. The problem is that such equations can be used to characterize 
both connectionist and (with some stretching) symbolic systems. F & P use-
fully narrow the definition of systematic in a way that allows us to ask 
important questions: Are connectionist models capable of systematicity? 
Are only symbolic models systematic? Is human cognition itself system-
atic? The main point of F & P, of course, is that a cognitive architecture must 
be capable of systematicity in order to explain human cognition. A related 
formulation, which captures much of what F & P argued for, is that human 
cognition is algebraic, where that algebra requires symbols that are abstract 
and context free (see  Marcus 2001 ). 

 Although F & P ’ s definitions characterize both representations as well as 
rules, much of the ensuing debate has tended to focus on their claims 
regarding systematicity of rules. Representations, and in particular, lexical 
representations, have not figured prominently in the debate. This empha-
sis on rules is not surprising, given the zeitgeist of the time in which the 
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paper was written. In that period, rules were seen as the major source of 
linguistic generativity. Because the lexicon was understood as involving a 
relatively stable inventory of entities with fixed meanings, pronunciations, 
and so on, the contribution of the lexicon to productive language use was 
felt to not be particularly interesting. 

 In intervening years, however, the lexicon has come into its own. 
Lexical knowledge is now acknowledged to be quite rich. Given proposals 
that the lexicon includes abstract patterns (e.g.,  Goldberg 2003 ), it is now 
seen as a source of linguistic productivity. One consequence of this is that 
boundary between the lexicon and rule systems has become somewhat 
blurred. 

 In this chapter, I consider ways in which systematicity, as F & P have 
defined it, might apply to the lexicon. Their treatment of the lexicon is 
light, which requires me to make some assumptions about how systematic-
ity might apply to the lexicon. Whether or not these assumptions are 
reasonable is for the reader (and, presumably, F & P) to judge. 

 A number of chapters in this book challenge the claims made by F & P 
with regard to rule systems. I will argue that similar problems arise in 
considering the lexicon. So I begin by discussing empirical data that are 
problematic for the view of the lexicon as an enumerative database of the 
sort that would be required by an F & P approach. That is, the option of 
significantly enlarging the format of lexical entries to accommodate these 
data — the obvious move — not only leads to an unwieldy combinatoric 
explosion of information, but more seriously compromises the theoretical 
assumptions that motivated placing some, but not all, information in the 
lexicon. I then go on to argue that a very different mechanism than the 
lexicon is required in order to capture the richness of lexical knowledge. 
To lend some concreteness to this conclusion, I conclude with a prelimi-
nary model that I believe possesses some of the characteristics that are 
desirable in such a mechanism. This model eliminates the lexicon,  qua  
lexicon, while providing an alternative way for lexical knowledge to play 
a role in language comprehension. 

 2   The Lexicon as Dictionary 

 The metaphor of the mental lexicon as a dictionary is pervasive and com-
pelling. However, metaphors bring a lot of baggage with them, sometimes 
hidden from view. If the lexicon is to do real work for us, we need to go 
beyond metaphor and specify what the properties of the lexicon are. 
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 There is considerable and important divergence on this issue, although 
commonalities exist across many theories. These are well captured in  Jack-
endoff ’ s (2002)  description of the lexicon: 

 For a first approximation, the lexicon is the store of words in long-term memory 

from which the grammar constructs phrases and sentences. (130) 

 [A lexical entry] lists a small chunk of phonology, a small chunk of syntax, and a 

small chunk of semantics. (131) 

 A number of important questions immediately arise: (1) Just how small is 
 “ small ” ? (2) Why is there a limit on the quantity of this information? (3) 
What tests do we use to determine what information is included in the 
lexical representation, and what information resides elsewhere? There is 
no agreement on the answers to these questions. Indeed, these questions 
are rarely posed in an explicit form. However, there seems to be some 
implicit consensus that the limit on information is driven by notions of 
parsimony, and that only core information is included in lexical entries. 
 “ Core ”  may be defined operationally as information that is reliable and 
stable across context and is minimally sufficient to distinguish otherwise 
similar lexical entries. 

 Some awkwardness arises when dealing with polysemy. Many lexical 
items have multiple senses. In some cases, these senses share a common 
underlying meaning. The verb  admit , for instance, can mean  “ to let in ”  as 
well as  “ to acknowledge. ”  Because these meanings are highly associated 
with different syntactic frames (the first prefers a direct object, the second 
a sentential complement), but because there is overlap in their meaning, 
they might appear as distinct senses in the same lexical entry. The very 
different meanings of the verb  “ bank, ”  on the other hand, suggest separate 
lexical entries that share the same phonological form. However, there are 
also many cases in which the distinctions in meaning may be quite subtle 
(cf.  The journalist checked the facts  vs.  The mechanic checked the brakes ; see 
 Hare, Elman, and McRae 2000 , for a fuller discussion of such facts and 
their effects on processing). The different uses of this same verb are associ-
ated with different preferences as to fillers of the patient role, but the senses 
are quite similar. Thus, although it is easy to come up with clear examples 
of clear polysemy versus homophony, there are many cases for which the 
vague notion of core provides no clear guide as to when two lexemes are 
polysemes or homophones. 

 In the psycholinguistics literature, an important additional processing 
assumption has emerged, often implicit but nonetheless important because 
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it suggests a test for what information might be included or excluded from 
a lexical representation: access to lexical information is faster and precedes 
the access of supralexical (e.g., syntactic, pragmatic) information. For 
example, it has been argued that 

 lexical access is an autonomous subsystem of the sentence comprehension routine 

in which all meanings of a word are momentarily accessed, regardless of the factors 

of contextual bias or bias associated with frequency of use. ( Onifer and Swinney 

1981 , 225) 

 Under this hypothesis, disambiguation occurs subsequent to the initial 
retrieval of all meanings, and extralexical information is allowed to deter-
mine the contextually appropriate meaning at a later stage in processing. 
Despite the fact that subsequent work has challenged this claim (e.g.,  Van 
Petten and Kutas 1987,  among many others), it remains a common assump-
tion for many in the field that lexical information is privileged by rapid 
access. An important corollary of this is that early access to information is 
a good test of whether or not that information is contained in the lexicon. 
Factors that affect processing later are assumed to be extralexical. 

 A final important assumption is that the lexicon is the bottom line as 
far as meaning is concerned. This is consistent with F & P ’ s definition of 
compositionality of meaning as being the molecular composition of atomic 
meanings that are indexed in the lexicon. Although the mapping between 
concepts and lexical semantics is not one to one, the relationship is in 
practice fairly tight. 

 3   Problems for This View of the Lexicon 

 I have already noted some challenges that are problematic for the lexicon 
as dictionary. These include the lack of specific tests for deciding what 
information is contained in lexical entries, the vagueness of the definition 
of  “ core, ”  and the gradations in meanings that often make it difficult to 
distinguish polysemy from homophony. I turn now to a broader set of facts 
that stretches the notion of what information should be contained in the 
lexicon, assuming that processing facts can be used to infer lexical versus 
extralexical information. Because this information is often lexically idio-
syncratic, it creates tension between information that is general and abstract 
and information that is lexically specific. I then move to a second set of 
facts that creates more significant challenges for the traditional lexicon (see 
 Elman 2009  for a more extensive presentation), and which leads to my final 
proposal for an alternative way to encode lexical knowledge. 
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 Although many theories of the lexicon begin with nouns, I will focus 
on verbs. Verbs are critical for binding other elements in a sentence 
together, and most of us have the intuition that, absent verbs, language is 
little more than a primitive indexical communication system. 

 3.1   Lexically Specific Knowledge 

 3.1.1   The Relationship between Meaning and Complement Structure 
Preferences 
 One workhorse of the psycholinguistic literature has been the study of how 
comprehenders process sentences that contain a temporary ambiguity. In 
cases where competing theories predict how comprehenders will resolve 
this ambiguity, the comprehenders ’  response when the ambiguity is first 
encountered, or subsequently disambiguated, provide useful clues as to 
what information was available and what processing strategy was used. 

 A much-studied structural ambiguity is that which arises at the postver-
bal noun phrase (NP) in sentences such as  The boy heard  the story  was 
interesting.  At the point where  the story  is encountered, it could either be 
the direct object (DO) of  heard , or it could be the subject noun of a sen-
tential complement (SC, as it ends up being in this example). An early 
influential theory of syntactic processing (the  “ two-stage model ” ;  Frazier 
and Rayner 1982 ) predicts that the DO interpretation will be favored ini-
tially. Early data supported this claim. An alternative possibility (following 
constraint-based approaches) is that that result might arise for other 
reasons: (1) the relative frequency that a given verb occurs with either a 
DO or SC might favor the DO bias in this case ( Garnsey et al. 1997;   Holmes 
1987;   Mitchell and Holmes 1985 ); (2) the relative frequency that a given 
verb takes an SC with or without the disambiguating but optional comple-
mentizer  that  could lead to the DO bias ( Trueswell, Tanenhaus, and Kello 
1993 ); and (3) the plausibility of the postverbal NP as a DO for that par-
ticular verb ( Garnsey et al. 1997;   Pickering and Traxler 1998;   Schmauder 
and Egan 1998 ). 

 The first of these factors — the statistical likelihood that a verb appears 
with either a DO or SC structure — has been particularly perplexing. The 
prediction is that if comprehenders are sensitive to the usage statistics of 
different verbs, then, when confronted with a DO/SC ambiguity, compre-
henders will prefer the interpretation that is consistent with that verb ’ s 
bias. Some studies report either late or no effects of verb bias (e.g.,  Mitchell 
1987 ;  Ferreira and Henderson 1990 ). More recent studies, on the other 
hand, have shown that verb bias does affect comprehenders ’  interpretation 
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of such temporarily ambiguous sequences ( Garnsey et al. 1997 ;  Trueswell 
et al. 1993 ; but see  Kennison 1999 ). Whether or not such information is 
used at early stages of processing is important not only because of its pro-
cessing implications but because, if it is, this implies that the detailed 
statistical patterns of subcategorization usage will need to be part of a verb ’ s 
lexical representation. 

 One possible explanation for the discrepant experimental data is that 
many of the verbs that show such DO/SC alternations have multiple 
senses, and these senses may have different subcategorization preferences 
( Roland and Jurafsky 1998 ,  2002 ). This raises the possibility that a com-
prehender might disambiguate the same temporarily ambiguous sentence 
fragment in different ways, depending on the inferred meaning of the verb. 
That meaning might in turn be implied by the context that precedes the 
sentence. A context that primes the sense of the verb that more frequently 
occurs with DOs should generate a different expectation than a context 
that primes a sense that has an SC bias. 

 Hare, McRae, and Elman (2003, 2004) tested this possibility. Several large 
text corpora were analyzed to establish the statistical patterns of usage that 
were associated with verbs (DO vs. SC) and in which different preferences 
were found for different verb senses. The corpus analyses were used to 
construct pairs of two sentence stories. In each pair, the second target 
sentence contained the same verb in a sequence that was temporarily (up 
to the postverbal NP) ambiguous between a DO or SC reading. The first 
sentence provided a meaning-biasing context. In one case, the context 
suggested a meaning for the verb in the target sentence that was highly 
correlated with a DO structure. In the other case, the context primed 
another meaning of the verb that occurred more frequently with an SC 
structure. Both target sentences were in fact identical until nearly the end. 
Thus, sometimes the ambiguity was resolved in a way that did not match 
participants ’  predicted expectations. The data (reviewed in more detail in 
 Hare et al. 2009 ) suggest that comprehenders ’  expectancies regarding the 
subcategorization frame in which a verb occurs is indeed sensitive to sta-
tistical patterns of usage that are associated not with the verb in general, 
but with the sense-specific usage of the verb. A computational model of 
these effects is described by Elman, Hare, and McRae (2005). 

 A similar demonstration of the use of meaning to predict structure is 
reported by Hare, Elman, Tabaczynski, and McRae (2009). That study 
examined expectancies that arise during incremental processing of sen-
tences that involve verbs such as  collect , which can occur in either a transi-
tive construction (e.g.,  The children collected dead leaves,  in which the verb 
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has a causative meaning) or an intransitive construction (e.g.,  The rainwater 
collected in the damp playground , in which the verb is inchoative ).  Here 
again, at the point where the syntactic frame is ambiguous (at the verb, 
 The children collected …   or  The dead leaves collected …  ), comprehenders 
appeared to expect the construction that was appropriate given the likely 
meaning of the verb (causative vs. inchoative). In this case, the meaning 
was biased by having subjects that were either good causal agents (e.g., 
 children  in the first example above) or good themes ( rainwater  in the second 
example). 

 These experiments suggest that the lexical representation of verbs must 
include not just information regarding the verb ’ s overall structural usage 
patterns, but that this information regarding the syntactic structures asso-
ciated with a verb is sense-specific, and a comprehender ’ s structural expec-
tations are modulated by the meaning of the verb that is inferred from the 
context. This implies a richer lexical representation for verbs than might 
have been assumed, though this can be easily accommodated within the 
traditional lexicon. 

 3.1.2   Verb-Specific Thematic Role Filler Preferences 
 Another well-studied ambiguity arises with verbs such as  arrest.  These are 
verbs that can occur in both the active voice (as in  The man arrested the 
burglar ) and in the passive (as in  The man was arrested by the policeman ). 
The potential for ambiguity arises because relative clauses in English ( The 
man who was arrested …  ) may occur in a reduced form in which  who was  is 
omitted. This gives rise to  The man arrested …  , which is ambiguous at the 
verb. Until the remainder of the sentence is provided, it is temporarily 
unclear whether the verb is in the active voice (and the sentence might 
continue as in the first example) or whether this is the start of a reduced 
relative construction, in which the verb is in the passive (as in  The man 
arrested by the policeman was innocent ). 

 In an earlier study,  Taraban and McClelland (1988)  found that when 
participants read sentences involving ambiguous prepositional attach-
ments, for example,  The janitor cleaned the storage area with the broom …   or 
 The janitor cleaned the storage area with the solvent …  , reading times were 
faster in sentences involving more typical fillers of the instrument role (in 
these examples,  broom  rather than  solvent ).  McRae, Spivey-Knowlton, and 
Tanenhaus (1998)  noted that in many cases, similar preferences appear to 
exist for verbs that can appear in either the active or passive voice. For 
many verbs, there are nominals that are better fillers of the agent role than 
the passive role, and vice versa. 
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 This led  McRae et al. (1998)  to hypothesize that when confronted with 
a sentence fragment that is ambiguous between a main verb and reduced 
relative reading, comprehenders might be influenced by the initial subject 
NP and whether it is a more likely agent or patient. In the first case, this 
should encourage a main verb interpretation; in the latter case, a reduced 
relative should be favored. This is precisely what McRae et al. found to be 
the case.  The cop arrested …   promoted a main verb reading over a reduced 
relative interpretation, whereas  The criminal arrested …   increased the likeli-
hood of the reduced relative reading. McRae et al. concluded that the 
thematic role specifications for verbs must go beyond simple categorical 
information, such as  agent ,  patient ,  instrument ,  beneficiary , and so on. The 
experimental data suggest that the roles contain very detailed information 
about the preferred fillers of these roles, and that the preferences are verb 
specific. The preferences are expressed not only over the nominal fillers of 
roles, but their attributes as well. Thus, a  shrewd, heartless gambler  is a better 
agent of  manipulate  than a  young, naive gambler ; conversely, the latter is a 
better filler of the same verb ’ s patient role ( McRae, Ferretti, and Amyote 
1997 ). 

 This account of thematic roles resembles that of  Dowty (1991)  in that 
both accounts suggest that thematic roles have internal structure. But the 
McRae et al. (1997;  McRae, Spivey-Knowlton, and Tanenhaus 1998 ) results 
further suggest a level of information that goes considerably beyond the 
limited set of proto-role features envisioned by Dowty. McRae et al. inter-
preted these role-filler preferences as reflecting comprehenders ’  specific 
knowledge of the event structure associated with different verbs. This 
appeal to event structure, as we shall see below, will figure significantly in 
phenomena that are not as easily accommodated by the lexicon. 

 We have seen that verb-specific preferences for their thematic role fillers 
arise in the course of sentence processing. Might such preferences also be 
revealed in word-word priming? The question is important because this 
sort of priming has often been assumed to occur at the lexical level, that 
is, to reflect the ability of one word to activate another word, and thus to 
be a test of the context of a word ’ s lexical entry. 

 The answer is yes, such priming does occur.  Ferretti, McRae, and Hather-
ell (2001)  found that verbs primed nouns that were good fillers for their 
agent, patient, or instrument roles. The priming also goes in the opposite 
direction, such that when a comprehender encounters a noun, the noun 
serves as a cue for the event in which it typically participates, thereby 
priming verbs that describe that event activity ( McRae et al. 2005 ). 
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 The above results are among a much larger empirical literature that 
significantly extend the nature of the information that must be encoded 
in a verb ’ s lexical representation. In addition to sense-specific structural 
usage patterns, the verb ’ s lexical entry must also encode verb-specific 
information regarding the characteristics of the nominals that best fit that 
verb ’ s thematic roles. The lexical representation for verbs must include 
subentries about all the verb ’ s senses. For each sense, all possible subcatego-
rization frames would be shown. For each verb-sense-subcategorization 
combination, additional information would be indicating the probability 
of each combination. Finally, similar information would be needed for 
every verb-sense-thematic role possibility. The experimental evidence indi-
cates that in many cases, this latter information will be detailed, highly 
idiosyncratic of the verb, and represented at the featural level (e.g.,  Ferretti, 
McRae, and Hatherell 2001 ;  McRae, Ferretti, and Amyote 1997 ). 

 3.2   Flies in the Ointment 
 These findings, among many others in recent years, expand the contents of 
the verb ’ s lexical representation. But even though these data suggest very 
detailed and often idiosyncratic lexical representations, they could still be 
accommodated by an enumerative data structure of the sort implemented 
by the lexicon. We now turn to additional phenomena that are problematic 
for the traditional view of the mental lexicon  qua  dictionary. 

 3.2.1   Aspect and Event Knowledge 
 As noted above,  Ferretti et al. (2001)  found that verbs were able to prime 
their preferred agents, patients, and instruments. However, no priming was 
found from verbs to the locations in which their associated actions take 
place. Why might this be?  Ferretti, Kutas, and McRae (2007)  noted that in 
that experiment the verb primes for locations were in the past tense (e.g., 
 skated — arena ), and possibly interpreted by participants as having perfec-
tive aspect. Because the perfective signals that the event has concluded, it 
is often used to provide background information prefatory to the time 
period under focus (as in  Dorothy had skated for many years and was now 
looking forward to her retirement ). Imperfective aspect, on the other hand, is 
used to describe events that are either habitual or ongoing; this is particu-
larly true of the progressive. Ferretti et al. hypothesized that although a 
past perfect verb did not prime its associated location, the same verb in 
the progressive might do so because of the location ’ s greater salience to 
the unfolding event. 
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 This prediction was borne out. The two-word prime  had skated  failed to 
yield significant priming for  arena  in a short SOA naming task, relative to 
an unrelated prime; but the two-word prime  was skating  did significantly 
facilitate naming. In an ERP version of the experiment, the typicality of 
the location was found to affect expectations. Sentences such as  The diver 
was snorkeling in the ocean  (typical location) elicited lower amplitude N400 
responses at  ocean , compared to  The diver was snorkeling in the pond  at  pond . 
The N400 is interpreted as an index of semantic expectancy, and the fact 
that typicality of agent-verb-location combinations affected processing at 
the location indicates that this information must be available early in 
processing. 

 The ability of verbal aspect to manipulate sentence processing by chang-
ing the focus on an event description, with implications for processing, 
has been noted elsewhere (e.g.,  Kehler 2002;   Kehler et al. 2008 ). The results 
in this case, however, present a specific challenge for how to represent verb 
argument preferences. Critically, the effect seems to occur on the same 
time scale as other information that affects verb argument expectations 
(this was demonstrated by Experiment 3 in  Ferretti et al. 2007 , in which 
ERP data indicated aspectual differences within 400 ms of the expected 
word ’ s presentation). This is a time frame that has often been seen as 
indicating that intralexical information is operant, and prior to adjust-
ments that depend on extralexical (e.g., semantic, discourse, pragmatic) 
factors. But logically, it is difficult to see how one would encode the 
dynamic and context-specificity contingency on thematic role require-
ments that arises when aspect is manipulated. That is, although the pat-
terns of ambiguity resolution described in earlier sections, along with 
parallel findings using priming ( Ferretti, McRae, and Hatherell 2001;   McRae 
et al. 2005 ), might be accommodated by enriching the information in the 
lexical representations of verbs, the very similar effects of aspect do not 
seem amenable to such an account. 

 Setting this important question aside for the moment (we return to it 
later), we might ask, If verb aspect can alter the expected arguments for a 
verb, what else might do so? The concept of event representation has 
emerged as a useful way to understand other results in which aspect plays 
a role ( Kehler 2002;   Kehler et al. 2008;   Kertz, Kehler, and Elman 2006;  
 Moens and Steedman 1988;   Rohde, Kehler, and Elman 2006 ). If we con-
sider the question from the perspective of event representation, viewing 
the verb as providing merely some of the cues (albeit very potent ones) 
that tap into event knowledge, then several other candidates suggest 
themselves. 
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 3.2.2   Dynamic Alterations in Verb Argument Expectations 
 If we think in terms of verbs as cues and events as the knowledge they 
target, then it should be clear that although the verb is obviously a very 
powerful cue, and its aspect may alter the way the event is construed, 
there are other cues that change the nature of the event or activity associ-
ated with the verb. For example, the choice of agent of the verb may 
signal different activities. A sentence-initial noun phrase such as  The 
surgeon …   is enough to generate expectancies that constrain the range of 
likely events. In isolation, this cue is typically fairly weak and unreliable, 
but different agents may combine with the same verb to describe quite 
different events. 

 Consider the verb  cut.  Our expectations regarding what will be cut, 
given a sentence that begins  The surgeon cuts …   are quite different than for 
the fragment  The lumberjack cuts … .  These differences in expectation clearly 
reflect our knowledge of the world. This is not remarkable. The critical 
questions are: What is the status of such knowledge, and where does it 
reside? No one doubts that a comprehender ’ s knowledge of how and what 
a surgeon cuts, versus what a lumberjack cuts, plays an important role in 
comprehension at some point. 

 The crucial issue, for the purposes of deciding what information is 
included in a lexical entry and what information arises from other knowl-
edge sources, is when this knowledge enters into the unfolding process of 
comprehension. This is because, as pointed out above, timing has been an 
important adjudicator for models of processing and representation. If the 
knowledge is available very early — perhaps even immediately on encoun-
tering the relevant cues — then it is a candidate for being present in the 
lexical representation. 

  Bicknell, Elman, Hare, McRae, and Kutas (2010)  hypothesized that if 
different agent-verb combinations imply different types of events, this 
might lead comprehenders to expect different patients for the different 
events. This prediction follows from a study by  Kamide, Altmann, and 
Haywood (2003) . Kamide et al. employed a paradigm in which partici-
pants ’  eye movements toward various pictures were monitored as they 
heard sentences such as  The man will ride the motorbike  or  The girl will ride 
the carousel  (all combinations of agent and patient were crossed) while 
viewing a visual scene containing a man, a girl, a motorbike, a carousel, 
and candy. At the point when participants heard  The man will ride …  , 
Kamide et al. found that there were more looks toward the motorbike than 
to the carousel, and the converse was true for  The girl will ride … .  The Bick-
nell et al. study was designed to look specifically at agent-verb interactions 
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to see whether such effects also occurred during self-paced reading, and if 
so, how early in processing. 

 A set of verbs such as  cut ,  save , and  check  were first identified as poten-
tially describing different events depending on the agent of the activity, 
and in which the event described by the agent-verb combination would 
entail different patients. These verbs were then placed in sentences in 
which the agent-verb combination was followed either by the congruent 
patient, as in  The  journalist  checked the  spelling  of his latest report  or in which 
the agent-verb was followed by an incongruent patient, as in  The  mechanic  
checked the  spelling  of his latest report  (all agents of the same verb appeared 
with all patients, and a continuation sentence followed that increased the 
plausibility of the incongruent events). Participants read the sentences a 
word at a time, using a self-paced moving-window paradigm. 

 As predicted, reading times increased for sentences in which an agent-
verb combination was followed by an incongruent (though plausible) 
patient. The slowdown occurred at one word following the patient, leaving 
open the possibility that the expectation reflected delayed use of world 
knowledge. Bicknell et al. therefore carried out a second experiment using 
the same materials, but recording ERPs as participants read the sentences. 
The rationale for this was that ERPs provide a more precise and sensitive 
index of processing than reading times. Of particular interest was the N400 
component, since this provides a good measure of the degree to which a 
given word is expected and/or integrated into the prior context. As pre-
dicted, an elevated N400 was found for incongruent patients. 

 The fact that what patient is expected may vary as a function of specific 
particular agent-verb combinations is not in itself surprising. What is sig-
nificant is that the effect occurs at the earliest possible moment, at the 
patient that immediately follows the verb. The timing of such effects has 
in the past often been taken as indicative of an effect ’ s source. A common 
assumption has been that immediate effects reflect lexical or  “ first-pass ”  
processing, and later effects reflect the use of semantic or pragmatic infor-
mation. In this study, the agent-verb combinations draw on compre-
henders ’  world knowledge. The immediacy of the effect would seem to 
require either that this information must be embedded in the lexicon or 
that world knowledge must be able to interact with lexical knowledge more 
quickly than has often typically been assumed. 

 Can other elements in a sentence affect the event type that is implied 
by the verb? Consider again the verb  cut.  The  Oxford English Dictionary  
shows the transitive form of this verb as having a single sense.  WordNet  
gives 41 senses. The difference is that  WordNet  ’ s senses more closely cor-
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respond to what one might call event types, whereas the  OED  adheres to 
a more traditional notion of sense that is defined by an abstract core 
meaning that does not depend on context. Yet cutting activities in differ-
ent contexts may involve quite different sets of agents, patients, instru-
ments, and even locations. The instrument is likely to be a particularly 
potent constraint on the event type. 

  Matsuki, Chow, Hare, Elman, Scheepers, and McRae (2011)  tested the 
possibility that the instrument used with a verb would cue different event 
schemas, leading to different expectations regarding the most likely patient. 
Using eye-tracking to monitor processing during reading, participants were 
presented with sentences such as  Susan used the scissors to cut the expensive 
paper that she needed for her project , or  Susan used the saw to cut the expensive 
wood … .  Performance on these sentences was contrasted with that on the 
less expected  Susan used the scissors to cut the expensive wood …   or  Susan used 
the saw to cut the expensive paper … .  As in the Bicknell et al. study, materials 
were normalized to ensure that there were no direct lexical associations 
between instrument and patient. An additional priming study was carried 
out in which instruments and patients served as prime-target pairs; no 
significant priming was found between typical instruments and patients 
(e.g.,  scissors-paper ) versus atypical instruments and patients (e.g.,  saw-
paper ; but priming did occur for a set of additional items that were included 
as a comparison set). As predicted, readers showed increased reading times 
for the atypical patient relative to the typical patient. In this study, 
the effect occurred right at the patient, demonstrating that the filler of the 
instrument role for a specific verb alters the restrictions on the filler of 
the patient role. 

 4   Lexical Knowledge without a Lexicon 

 4.1   Where Does Lexical Knowledge Reside? 
 The findings reviewed in section 3.1 strongly support the position that 
lexical knowledge is quite detailed, often idiosyncratic and verb specific, 
and brought to bear at the earliest possible stage in incremental sentence 
processing. The examples above focused on verbs and the need to encode 
restrictions (or preferences) over the various arguments with which they 
may occur. Taken alone, those results might be accommodated by simply 
providing greater detail in lexical entries in the mental lexicon, as stan-
dardly conceived. 

 Where things get tricky is when one also considers what seems to be 
the ability of dynamic factors to significantly modulate such expectations 
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(section 3.2). These include the verb ’ s grammatical aspect, the agent and 
instrument that are involved in the activity, and the overall discourse 
context. To be clear: that these factors play a role in sentence processing 
is not itself surprising. However, the common assumption has been that 
such dynamic factors lie outside the lexicon. This is, for example, essen-
tially the position outlined by J. D.  Fodor (1995) :  “ We may assume that 
there is a syntactic processing module, which feeds into, but is not fed by, 
the semantic and pragmatic processing routines  …  syntactic analysis is 
serial, with back-up and revision if the processor ’ s first hypothesis about 
the structure turns out later to have been wrong ”  (435). 

 More pithily, the data do not accord with the  “ syntax proposes, seman-
tics disposes ”  hypothesis ( Crain and Steedman 1985 ). Thus, what is signifi-
cant about the findings above is that the influence of aspect, agent, 
instrument, and discourse all occur within the same time frame that has 
been used operationally to identify information that resides in the lexicon. 
This is important if we are to have some empirical basis for deciding what 
goes in the lexicon and what does not. 

 All of this places us in the uncomfortable position of having to make 
some difficult decisions. 

 One option would be to abandon any hope of finding any empirical 
basis for determining the contents of the mental lexicon. One might 
simply stipulate that some classes of information reside in the lexicon and 
others do not. This is not a desirable solution. Note that even within the 
domain of theoretical linguistics, considerable controversy has emerged 
regarding what sort of information belongs in the lexicon, with different 
theories taking different and often mutually incompatible positions (cf., 
among many other examples,  Haiman 1980;   Lakoff 1971;   Weinreich 1962;  
 Jackendoff 1983 ,  2002;   Katz and Fodor 1963;   Langacker 1987;   Chomsky 
1965;   Levin and Hovav 2005;   Fodor 2002 ). If we insist that the form of 
the mental lexicon has no consequences for processing, and exclude data 
of this type, then we have no behavioral way to evaluate different propos-
als. This essentially accepts that performance tells us little about compe-
tence ( Chomsky 1965 ). 

 A second option would be to significantly enlarge the format of lexical 
entries so that they accommodate all the above information. This would 
be a logical conclusion to the trend that has appeared not only in the 
processing literature (e.g., in addition to the studies cited above, van 
Berkum et al. 2003; van Berkum et al. 2005;  Kamide, Altmann, and 
Haywood 2003;   Kamide, Scheepers, and Altmann 2003;   Altmann and 
Kamide 2007 ) but also many recent linguistic theories (e.g.,  Bresnan 2006;  
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 Fauconnier and Turner 2002;   Goldberg 2003;   Lakoff 1987;   Langacker 1987 ; 
though many or perhaps all of these authors might not agree with such a 
conclusion). The lexicon has become increasingly rich and detailed in 
recent years. Why impose arbitrary limits on its contents? 

 One problem is that the combinatoric explosion this entails, especially 
given the unbounded nature of discourse contexts, may render the pro-
posal infeasible. But it also presents us with a logical conundrum: if all this 
information resides in the lexicon, is there then any meaningful distinc-
tion between the lexicon and other linguistic modules? 

 The third option is the most radical: is it possible that lexical knowledge 
of the sort discussed here might be instantiated in a very different way 
than through an enumerative dictionary? 

 4.2   An Alternative to the Mental Lexicon as Dictionary 
 The common factor in the studies described above was the ability of sen-
tential elements to interact in real time to produce an incremental inter-
pretation that guided expectancies about upcoming elements. These can 
be thought of as very powerful context effects that modulate the meaning 
that words have. 

 But suppose that one views words not as elements in a data structure 
that must be retrieved from memory, but rather as stimuli that alter mental 
states (which arise from processing prior words) in lawful ways. In this 
view, words are not mental objects that reside in a mental lexicon. They 
are operators on mental states. From this perspective, words do not  have  
meaning; rather, they are  cues  to meaning ( Elman 2009;   Rumelhart 1979 ). 

 This scheme of things can be captured by a model that instantiates a 
dynamical system. The system receives inputs (words, in this case) over 
time. The words perturb the internal state of the system (we can call it the 
 “ mental state ” ) as they are processed, with each new word altering the 
mental state in some way. 

 Over the years, a number of connectionist models have been developed 
that illustrate ways in which context can influence processing in compli-
cated but significant ways (e.g., among many others,  McClelland and 
Rumelhart 1981 ;  McRae, Spivey-Knowlton, and Tanenhaus 1998;   Rumel-
hart et al. 1988;   Taraban and McClelland 1988 ). There is also a rich litera-
ture in the use of dynamical systems to model cognitive phenomena (e.g., 
 Smith and Thelen 1993;   Spencer and Sch ö ner 2003;   Tabor and Tanenhaus 
2001;   Thelen and Smith 1994 ). 

 A particularly fruitful architecture has been one that involves recurrence 
between processing units (e.g.,  Botvinick and Plaut 2004;   Elman 1990;  
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 Rogers et al. 2004;   St. John and McClelland 1990 ). In recurrent networks, 
information flow is multidirectional, and feedback loops allow the current 
state of the system to be affected by prior states. Learning in such systems 
can be thought of as encoding the grammar over sequences. The grammar 
constrains the lawful effects that inputs have on moving the system 
through the network ’ s  “ mental state space. ”  If those inputs are words, then 
what we think of as lexical knowledge is the knowledge encoded in the 
connections between processing units that allows each word to have the 
appropriate effect on processing. We have not removed the need for lexical 
knowledge, but rather moved it from an enumerative and declarative data-
base (the lexicon) into the elements of the system (the weights) that are 
responsible for processing. It should be noted that recurrent networks are 
not finite state automata, but have computational properties similar — but 
not identical — to stack-based automata ( Boden and Wiles 2000;   Boden and 
Blair 2003;   Peters and Ritchie 1973;   Rodriguez, Wiles, and Elman 1999;  
 Rodriguez and Elman 1999;   Rodriguez 2001;   Siegelmann and Sontag 1995 ). 

  Elman (2009)  presented a simple model that demonstrates some of the 
properties required to capture the kinds of lexical effects noted here. A 
somewhat fuller model, under development in collaboration with Ken 
McRae and Mary Hare, is shown in   figure 5.1 .    

 The model is inspired by and incorporates elements of a number of 
important prior models that have related properties. These include models 
of language processing ( McClelland, St. John, and Taraban 1989 ;  St. John 
and McClelland 1990 ;  St. John 1992 ), schemas and sequential thought 
processes ( Rumelhart et al. 1988 ), semantic cognition ( Rogers et al. 2004 ), 
and action planning ( Botvinick and Plaut 2004 ). One way of thinking of 
this model is as an attempt to take the important insights regarding 
schemas, scripts, frames, and stories ( Abelson 1981;   Minsky 1974;   Norman 
and Rumelhart 1981;   Schank and Abelson 1977 ) and instantiate those 
insights in a computational architecture that allows for richer processing 
than was possible using the earlier tools from the AI toolbox. 

 The goal of the model is to learn the contingent relationships between 
activities and participants that are involved in events that unfold over 
time. The model has a view of the world (i.e., inputs) that allows it to 
identify the relevant entities (including, in this simplified version, agents, 
patients, instruments, and locations) and actions that participate in 
momentary  activities  (e.g.,  John enters the restaurant ). These activities are 
connected in sequence to form  events  (e.g.,  John enters the restaurant; He sits 
down at a table; He orders food; He cuts the food with a knife; He eats the 
food; …    ; He leaves ). At any given point in time, the task given to the model 
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 Figure 5.1 
 An activity consists of a collection of entities, actions, and context, all presented 

simultaneously as input from the world. The  “ current activity ”  portion of the 

network learns the patterns of co-occurrence that are typical of given activities (e.g., 

 Jill cuts her steak with a knife and fork in the restaurant ). The recurrent connections 

between the entity-action-context units and the hidden units allow the network to 

complete input patterns in which not all information is explicitly specified. Thus, 

 Jill cuts her steak  would lead to the activation of  knife  and  restaurant . An event consists 

of a sequence of activities, presented in temporal order and duration appropriate to 

the event. The  “ predicted next activity ”  portion of the network learns the temporal 

relations between activities that are part of an event. This part of the network also 

learns to do pattern completion in the temporal domain. Thus, if the current activity 

is  Jill enters the restaurant , the predicted next activity layer would anticipate subse-

quent activities, and would activate, in sequence,  Jill orders a steak , then  Jill cuts her 

steak with a knife and fork , then  Jill eats her steak , and so on. 
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is to learn the mutual constraints between co-occurring entities and actions 
(this is accomplished by the model ’ s reproducing on its output layer the 
details of the current activity), and also to generate expectancies regarding 
subsequent activities that together compose this event (accomplished by 
the model ’ s predictions of future activities). 

 During learning, the model may see only a subset of possible entities 
and actions that make up an activity, or a subset of the sequence of activi-
ties that make up an event. Over time, however, accumulated experience 
allows the network to learn about the overarching generalizations that 
exist between and across events, and to fill in missing information as 
required. This leads to the following characteristics: 

 1.   Pattern completion within activities and within events 
 2.   Typicality and prototype effects 
 3.   Soft and graded constraints on roles, participants, activities, locations, 
and so on 
 4.   Ability to flexibly combine and merge novel combinations of events 
 5.   Ability to support inferences — under the right conditions 
 6.   Ability to capture effects of perspective on event representation 

 The details of the model and simulations of its behavior are described 
elsewhere (Elman, McRae, and Hare, in preparation), and given the scope 
of this chapter, I present two simulations to illustrate these properties. 
Central to all of these is the fact that the model implements a constraint-
satisfaction network. The constraints operate both at a given point in time, 
reflecting patterns of co-occurrence of actions and activity participants, 
and across time, reflecting the succession of activities that arise over time 
as an event unfolds.    

 In   figure 5.2 , we see the activation of various entities and actions that 
result from the model ’ s being presented with  John does something with his 
food.  This activity occurs in a sequence shortly after John has entered a 
restaurant. The activation levels are indicated by the height of curves on 
the ordinate, and their change over time is indicated along the abscissa. 
The model infers that food is involved throughout the activity, that John 
begins by cutting the food (so  cut  and  knife  are active), and that, as time 
goes along, the cutting action diminishes and the eating action increases. 
The model has thus not only filled in the implied elements but has cap-
tured the ordered temporal relationships between activities that make up 
the overall event.    

 These properties provide a straightforward account of the findings 
reported in Metusalem et al. (2012), in which words that were unexpected 



Systematicity in the Lexicon  133

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

John does something with his food

John  

cuts  

eats  

knife  

food   

restaurant   

A
ct

iv
at

io
n

 Figure 5.2 
 Activations of participants and actions that result when the network is presented 

with the ambiguous input  John does something with his food . Drawing on prior experi-

ence, the network assumes that John first cuts his food (units for  cut  and  knife  are 

activated); the network has also learned that cutting is followed by eating (activation 

for  cut  decreases and  eat  increases). 

but consistent with the larger event being described elicited smaller ampli-
tude N400s than words that were both unexpected and unrelated to the event. 
In   figure 5.3 , we see the time-varying activation of various elements as an 
event is being described. At the end, the activation of  medal , which is event 
relevant even though it is locally unexpected given the linguistic context, 
is higher than  bleach , which is both unexpected and event unrelated. 

 In other simulations, we find that the model is able to use its knowledge 
of events, with the resulting activation of event-relevant participants that 
may not be named, to make inferences that affect subsequent ambiguous 
statements. For example, compare the following two sequences:   

 1.  John cut wood in the forest.  
   Suddenly, he cut himself by mistake.  
   What happened to John?       

 2.  John cut food in the restaurant.  
   Suddenly, he cut himself by mistake.  
   What happened to John?  
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 Figure 5.3 
 Time-varying activation of three entities ( medal ,  podium ,  bleach ) as the network 

processes four activities associated with the event  “ getting a medal at the Olympics. ”  

In the final activity, none of the three entities is mentioned. However,  podium  is 

reactivated (following a drop during the crowd applauding activity), because that 

location has previously been associated with the awarding of medals.  Medal  is also 

activated, even though it is contextually unexpected given the linguistic context, 

because it is consistent with the event. In contrast,  bleach , which is equally unex-

pected in this linguistic context, is completely inactive because it is inappropriate 

to the event. These patterns replicate the findings of Metusalem et al. (2012). 

 In the context of cutting wood in the forest, the model has learned that 
axes are typically used. It also knows, independently (from other event 
knowledge), that cutting oneself with an axe can be fatal. Cutting food in 
a restaurant, on the other hand, involves knives; and cutting oneself with 
a knife is less lethal. When confronted with the final (identical) query, the 
model activates  John died  in the first scenario and  John bled  in the second 
case. The bridging inference is made possible by the model ’ s ability not 
only to fill in the missing pieces (cutting wood in the forest probably 
involves an axe, etc.), but then to use the inferred but unmentioned infor-
mation to resolve a subsequent ambiguity ( What happened? ). 
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 5   Discussion 

 Although the possibility of lexical knowledge without a lexicon might 
seem odd, the core ideas that motivate this proposal are not new. Many 
elements appear elsewhere in the literature. These include the following. 

 (1)   The meaning of a word is rooted in our knowledge of both the material 
and the social world. The material world includes the world around us 
as we experience it (i.e., it is embodied), possibly indirectly. The social 
world includes cultural habits and artifacts; in many cases, these habits 
and artifacts have significance only by agreement (i.e., they are conven-
tionalized). Similar points have been made by many others, notably  Witt-
genstein (1966) ,  Hutchins (1994)  and Fauconnier (1997), and  Fauconnier 
and Turner (2002 ). 
 (2)   Context is always with us. The meaning of a word is never  “ out of 
context, ”  although we might not always know what the context is (par-
ticularly if we fail to provide one). This point has been made by many, 
including  Kintsch (1988) ,  Langacker (1987) ,  McClelland et al. (1989) , and 
van Berkum and colleagues (van Berkum, Brown, Zwiterselood, Kooijman, 
and Hagoort 2005; van Berkum, Zwitserlood, Hagoort, and Brown 2003). 
This insight is also found in computational models of meaning that 
emphasize multiple co-occurrence constraints between words in order to 
represent them as points in a high dimensional space, such as LSA (Latent 
Semantic Analysis) ( Landauer and Dumais 1997 ), HAL ( Burgess and Lund 
1997 ), or probabilistic models ( Griffiths and Steyvers 2004 ). The dynamical 
approach here also emphasizes the time course of processing that results 
from the incremental nature of language input. 
 (3)   Events play a major role in organizing our experience. Event knowledge 
is used to drive inference and access memory, and it affects the categories 
we construct. An event may be defined as a set of participants, activities, 
and outcomes that are bound together by causal interrelatedness. An 
extensive literature argues for this, aside from the studies described here, 
including work by  Minsky (1974) ,  Schank and Abelson (1977) , and Zacks 
and Tversky (2001); see also  Shipley and Zacks ’ s (2008)  book for a compre-
hensive collection on the role of event knowledge in perception, action, 
and cognition. 
 (4)   Dynamical systems provide a powerful framework for understanding 
biologically based behavior. The nonlinear and continuous valued nature 
of dynamical systems allows them to respond in a graded manner under 
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some circumstances, while in other cases their responses may seem more 
binary. Dynamical analyses figure prominently in the recent literature in 
cognitive science, including work by Smith and Thelen (1993, 2003;  Thelen 
and Smith 1994 ),  Spencer and Sch ö ner (2003) , Spivey ( 2007 ; Spivey and 
Dale 2004), and Tabor ( 2004 ; Tabor and Tanenhaus 2001; Tabor et al. 1997). 

 The model presented here is a first step in trying to offer an alternative 
mechanism for representing lexical knowledge. Rather than assuming that 
knowledge is enumerated in a database, the model moves the knowledge 
into the dynamics that result from a word ’ s effect on processing. These 
dynamics are lawful and predictable. They might even be called systematic, 
although probably not under the definition offered by F & P. Under the 
model ’ s version of systematicity, such things as context effects, graded 
polysemy, and lexically idiosyncratic behavior are not seen as exceptions 
that require ad hoc explanation. Rather, these properties are predicted by 
the model. At the same time, the model is able to generalize and abstract 
across commonalities of behavior. This is  “ having your cake and eating 
it too. ”  

 The model is incomplete in important ways. It is disembodied and so 
lacks the conceptual knowledge about events that comes from direct expe-
rience (of course, this deficiency is equally true of F & P symbolic models). 
The model assumes a prior identification of some entities as agents, and 
others as patients, instruments, and so on. Proposals have in fact been 
put forward about how this might be done (e.g.,  Chang, Dell, and Bock 
2006;   Chang 2012;   Gao, Newman, and Scholl 2009;   Gao and Scholl 2011 ). 
An interesting future direction will be to extend the model in similar 
ways. 

 How does this view affect the way we do business (or at least, study 
words)? Although I have argued that many of the behavioral phenomena 
described above are not easily incorporated into a mental lexicon as tradi-
tionally conceived, it is possible that solutions exist. A parallel architecture 
of the sort described by  Jackendoff (2002) , for example, if it permitted 
direct and immediate interactions among the syntactic, semantic, and 
pragmatic components of the grammar, might be able to account for the 
data described earlier. The important question would then be how to devise 
tests to distinguish between these proposals. This remains an open ques-
tion for the moment, at least until such counterproposals are advanced. 

 However, theories are also evaluated for their ability to offer new ways 
of thinking about old problems, and to provoke new questions that would 
not be otherwise asked. Let me suggest two positive consequences to the 
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sort of words-as-cues dynamical model I am outlining (see also  Elman 
2009 , for a fuller discussion). 

 The assumption that only certain information goes in the lexicon, and 
that the lexicon and other knowledge sources respect modular boundaries 
with limited and late occurring interactions, drives a research program that 
discourages looking for evidence of richer and more immediate interac-
tions. For example, that selectional restrictions might be dynamic and 
context sensitive is fundamentally not an option within the Katz and 
Fodor (1963) framework. The words-as-cues approach, in contrast, suggests 
that such interdependencies should be expected. Indeed, there should be 
many such interactions among lexical knowledge, context, and nonlin-
guistic factors, and these might occur early in processing. Many researchers 
in the field have already come to this point of view. It is a conclusion that, 
despite considerable empirical evidence, has taken longer to arrive than it 
might have, given a different theoretical perspective. 

 A second consequence of this perspective is that it encourages a more 
unified view of phenomena that are often treated (de facto, if not in prin-
ciple) as unrelated. Syntactic ambiguity resolution, lexical ambiguity reso-
lution, pronoun interpretation, text inference, and semantic memory (to 
choose but a small subset of domains) are studied by communities that do 
not always communicate well, and researchers in these areas are not always 
aware of findings from other areas. Yet these domains have considerable 
potential for informing each other. That is because, although they ulti-
mately draw on a common conceptual knowledge base, that knowledge 
base can be accessed in different ways, and this in turn affects what is 
accessed. Consider how our knowledge of events might be tapped in a 
priming paradigm, compared with a sentence-processing paradigm. Because 
prime-target pairs are typically presented with no discourse context, one 
might expect that a transitive verb prime might evoke a situation in which 
the fillers of both its agent and patient roles are equally salient. Thus, 
 arresting  should prime  cop  (typical arrestor) and also  crook  (typical arrestee). 
Indeed, this is what happens ( Ferretti, McRae, and Hatherell 2001 ). Yet this 
same study also demonstrated that when verb primes were embedded in 
sentence fragments, the priming of good agents or patients was contingent 
on the syntactic frame within which the verb occurred. Primes of the form 
 She arrested the …   facilitated naming of  crook , but not  cop . Conversely, the 
prime  She was arrested by the …   facilitated naming of  cop  rather than  crook.  

 These two results demonstrate that although words in isolation can 
serve as cues to event knowledge, they are only one such cue. The gram-
matical construction within which they occur provides independent 
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evidence regarding the roles played by different event participants ( Gold-
berg 2003 ). And, of course, the discourse context may provide further 
constraints on how an event is construed. Thus, as Race et al. (2008) 
found, although  shoppers  might typically save money and  lifeguards  save 
children, in the context of a disaster, both agents will be expected to save 
children. 

 Eliminating the lexicon is indeed radical surgery, and it is an operation 
that at this point many will not agree to. At the very least, however, I hope 
that by demonstrating that lexical knowledge without a lexicon is possible, 
others will be encouraged to seek out additional evidence for ways in which 
the many things that language users know are brought to bear on the way 
language is processed. 
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 1   Introduction 

 1.1   Systematicity and Reality 
 In the twenty-five years since its inception, the systematicity debate has 
suffered from remarkably weak empirical grounding. For a large part, the 
debate has relied on purely theoretical arguments, mostly from the clas-
sicists ’  side (e.g.,  Aizawa 1997a ;  Fodor and Pylyshyn 1988 ;  Phillips 2000 ), 
but occasionally from the connectionist camp as well ( Bechtel 1993 ;  Van 
Gelder 1990 ). And although there have been many attempts to empirically 
demonstrate (lack of) systematicity in connectionist models, it remains 
doubtful how these demonstrations bear upon reality, considering that 
they are always restricted to hand-crafted, miniature domains. This is the 
case irrespective of whether they are presented by supporters of connec-
tionist systematicity  1   ( Bod é n 2004 ;  Brakel and Frank 2009 ;  Chang 2002 ; 
 Christiansen and Chater 1994 ;  Elman 1991 ;  Farka š  and Crocker 2008 ;  Fitz 
and Chang 2009 ;  Frank 2006a , b ;  Frank and  Č er ň ansk ý  2008 ;  Frank, Hase-
lager, and van Rooij 2009 ;  Hadley, Rotaru-Varga, Arnold, and Cardei 2001 ; 
 Jansen and Watter 2012 ;  McClelland, St. John, and Taraban 1989 ;  Miik-
kulainen 1996 ;  Monner and Reggia 2011 ;  Niklasson and Van Gelder 1994 ; 
 Voegtlin and Dominey 2005 ;  Wong and Wang, 2007 ) or by those who are 
more skeptical ( Marcus 2001 ;  Phillips 1998 ;  Van der Velde, Van der Voort 
van der Kleij, and De Kamps 2004 ). 

 My goal in this chapter is to approach the systematicity problem in 
a fully empirical manner, by directly comparing a connectionist and a 
symbolic sentence-processing model in a (more or less) realistic setting.  2   
As far as this chapter is concerned, getting real about systematicity means 
three things. First, connectionists can no longer get away with presenting 
models that function only within some unrealistic toy domain. To the 
extent that the systematicity issue is relevant to real-life cognitive systems, 
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connectionists should be able to demonstrate that (alleged) instances 
of systematicity do not depend crucially on the artificial nature of the 
simulation. 

 Second, I also aim to raise the bar for classicists, who need to back up 
their claim empirically that symbol systems are necessarily systematic. 
 Aizawa (1997b)  argues that compositionality is not a sufficient condition 
for systematicity, and, indeed, to the best of my knowledge it has never 
been empirically demonstrated that symbol systems are any more system-
atic than neural networks. Nevertheless, even many connectionists accept 
the premise that symbol systems explain systematicity. 

 Third, rather than defining particular levels of systematic behavior 
based on the specifics of training input and novel examples (as in, e.g., 
 Hadley 1994a , b ), the question of how systematic cognition really is will 
be avoided altogether. People learn language from what is  “ out there ”  and, 
subsequently, comprehend and produce more language  “ out there. ”  Hence, 
the generalization abilities of the models presented here are investigated 
by training and testing both models on a large sample of sentences from 
natural sources. There is no invented, miniature language, and no assump-
tions are made about which specific syntactic construction in the training 
data should result in which specific systematic generalizations. 

 1.2   Statistical Modeling of Language 
 While the systematicity debate in philosophy and cognitive science 
revolved around theoretical arguments and unrealistic examples, actual 
progress was being made in the field of computational linguistics. The 
development of statistical methods for learning and processing natural 
language resulted in many successful algorithms for tasks such as sentence 
parsing, translation, and information retrieval. Recently, there has been a 
growing interest in applying such models to explain psychological phe-
nomena in human language comprehension (e.g.,  Boston, Hale, Patil, 
Kliegl, and Vasishth 2008 ;  Brouwer, Fitz, and Hoeks 2010 ;  Levy 2008 ), 
production (e.g.,  Levy and Jaeger 2007 ), and acquisition (e.g.,  Bod and 
Smets 2012 ;  Borensztajn, Zuidema, and Bod 2009b ). The systematicity 
controversy tends not to arise here; for one because computational lin-
guists are often concerned more with practical than with theoretical issues. 
Also, and perhaps more importantly, these models are typically symbolic 
and thereby dodge the systematicity critique. 

 What recent models from computational linguistics share with con-
nectionist ones is their statistical nature: they are concerned with the 
problem of extracting useful statistics from training data in order to yield 
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optimal performance on novel input. As  Hadley (1994a)  pointed out, this 
issue of correct generalization to previously unseen examples is exactly 
what systematicity is all about. Hence, one might expect statistical com-
putational linguistics to be vulnerable to the same systematicity critique 
as connectionism. On the other hand, these statistical models for natural 
language processing are symbol systems in the sense of  Fodor and Pylyshyn 
(1988),  so, according to some, their systematic abilities are beyond any 
doubt. 

 1.3   Overview 
 In what follows, I will directly compare the systematic abilities of two 
sentence-processing models. The two models are of fundamentally differ-
ent types: one is a thoroughly connectionist recurrent neural network 
(RNN); the other is a truly symbolic probabilistic phrase-structure grammar 
(PSG). Both are trained on a large number of naturally occurring English 
sentences, after which their performance is evaluated on a (much smaller) 
set of novel sentences. In addition, I investigate how they handle ungram-
matical word strings. The ideally systematic model would have no problem 
at all with correct sentences but would immediately  “ collapse ”  when it 
encounters ungrammaticality. As it turns out, neither model is perfectly 
systematic in this sense. In fact, the two models behave quite similarly, 
although the symbolic model displays slightly stronger systematicity. As 
will be discussed, these results suggest that, when dealing with real-world 
data, generalization or systematicity may not be relevant to assess a model ’ s 
cognitive adequacy. 

 2   Simulations 

 2.1   Model Training Data 
 As discussed in the introduction, connectionist models are typically trained 
on an artificial miniature language, whereas models from computational 
linguistics are broad-coverage, being able to deal with sentences from 
natural sources. Although the latter approach was used here for both types 
of models, the task was made more manageable for the neural network by 
reducing the size of the language: the vocabulary was restricted to 7,754 
word types (including the comma and the sentence-final period, which are 
treated as regular words) that occur with high frequency in the written-text 
part of the British National Corpus (BNC). The training data consisted of 
all 702,412 sentences from the BNC (comprising 7.6 million word tokens) 
that contain only words from the vocabulary. This is the same data set as 



150 Stefan L. Frank

used by  Fernandez Monsalve, Frank, and Vigliocco (2012) , Frank (2013), 
and  Frank and Thompson (2012 ). 

 The connectionist model was trained on just these sentences. In con-
trast, the symbolic model, being a probabilistic grammar, needs to be 
induced from a so-called treebank: a collection of sentences with syntactic 
tree structures assigned. To obtain these, the selected BNC sentences were 
parsed by the Stanford parser ( Klein and Manning 2003 ). The resulting 
treebank served as the training data for the grammar. 

 2.2.   Models 

 2.2.1   Recurrent neural network 
 RNNs have formed the standard connectionist model of sentence process-
ing ever since the seminal paper by  Elman (1990) . However, such models 
are difficult to scale up and were therefore always limited to unrealistic, 
miniature languages. In order to train the current model on the 7.6-million-
word data set, we separated the training process into three distinct stages, 
as illustrated in   figure 6.1 .    

 First, each word type was represented by a high-dimensional vector, 
based on the frequencies with which the words occur adjacently in the 
training data. More specifically, word co-occurrence frequencies were col-
lected in a matrix with 7,754 rows (one per word type) and 2  ×  7,754 
columns (corresponding to the directly preceding and following word 
types). These frequencies were transformed into pointwise mutual informa-
tion values, after which the 400 columns with the highest variance were 
selected, yielding a 400-element vector per word type. These representa-
tions encode some of the paradigmatic, distributional relations between 
the words. For example, words from the same syntactic category tend to 
be represented by more similar vectors than words from different categories 
(cf. Frank 2013). 

 Second, the selected BNC sentences (in the form of sequences of word 
vector representations) served as training input and target output for the 
recurrent part of the network. As is common in simulations using Simple 
Recurrent Networks (e.g.,  Elman 1990 ,  1991 ;  Frank 2006a , among many 
others), it was trained to predict, at each point in each sentence, what 
the next input will be. More specifically, for each sentence-so-far  w  1 ,  … , 
 w t  , the input sequence consisted of the words ’  vector representations, and 
the target output was the vector representing the sentence ’ s next word 
 w t   +1 . The training data set was presented to this part of the network five 
times and standard backpropagation was used to update the connection 
weights. 
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 After this second training stage, the outputs of the recurrent part of the 
network form a mix of distributed, 400-element word vectors, somehow 
representing the possible continuations  w t   +1  (and their probabilities) of the 
input sequence so far. In order to interpret this mix of word vectors, a 
two-layer feedforward  “ decoder ”  network was applied in the third stage of 
model training. After each sequence  w  1 ,  … ,  w t  , the decoder network took 
the outputs of the trained recurrent part of the network as its input, and 
learned to activate only one of 7,754 units, corresponding to the upcoming 
word  w t   +1 . In practice, of course, the network will never actually activate 
just a single output unit because many different continuations are possible 
at each point in a sentence. 

7,754 word types 

Probability distribution 
over 7,754 word types 

400 

400 

500 

200 

Stage 1: distributed word
representations from 
co-occurrence counts

Stage 2: SRN learns
next word
representation

Stage 3:
feedforward
“decoder network”

 Figure 6.1 
 Architecture and training stages of the RNN model (reproduced from  Fernandez 

Monsalve et al. 2012 ). 
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 The training data were presented two times to this decoder network and 
standard backpropagation was used for training. An important difference 
with Stage-2 training is that the decoder network ’ s output units have 
softmax activation functions, ensuring that output activations are always 
nonnegative and sum to one. That is, they form a probability distribution. 
To be precise, if  w  1 ,  … ,  w t   represents the first  t  words of a sentence, then 
the network ’ s output activation pattern forms the model ’ s estimated prob-
ability distribution  P ( w t   +1 | w  1 ,  … ,  w t  ) over all word types. So, for each word 
type, the model estimates a probability that it will be the next word given 
the sentence so far. These estimates are accurate to the extent that the 
model was trained successfully. 

 As should be clear from the exposition above, the RNN model uses only 
nonsymbolic, distributed, numerical representations and processes. Cru-
cially, the model is noncompositional in the sense that the representation of 
a word sequence does not contain representations of the individual words. 
There are no symbolic components at all. Thus, according to  Fodor and 
Pylyshyn (1988) , the model should be unable to display any systematicity. 

 2.2.2   Phrase-structure grammar 
 The PSG, needless to say, operates very differently from the RNN. To begin 
with, it is based on linguistic assumptions about hierarchical constituent 
structure: a sentence consists of phrases, which consists of smaller phrases, 
and so on, until we get down to individual words. 

 The grammar operationalizes this idea by means of context-free produc-
tion rules. These rules are induced from a treebank, which in this case is 
formed by the sentences selected from the BNC together with their syn-
tactic tree structures.   Figure 6.2  shows one of the 702,412 training items. 
From this single example, we can observe that a noun phrase (NP) can 
consist of either a singular noun (NN) or a determiner (DT) followed by a 
singular noun. Hence, the two production rules  “ NP  →  NN ”  and  “ NP  →  

DT NN ”  appear in the grammar.    
 The leaves of the tree are formed by words. Each word token belongs 

to one of a number of syntactic categories (also known as parts-of-speech) 
which forms its direct  “ parent ”  node in the tree. So, for example, the tree 
of   figure 6.2  provides evidence that the word  at  can be a preposition (i.e., 
there is a production rule  “ IN  →   at  ” ). 

 In a probabilistic grammar like the one used here, each rule is assigned 
a probability conditioned upon the rule ’ s left-hand side. Based on just the 
single example from   figure 6.2 , each of the two NP-rules receives a prob-
ability of 0.5, indicating that, when faced with an NP, it becomes either 
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NN or DT NN with equal probability. Needless to say, the 702,412 tree 
structures in the training data set give rise to much more fine-grained and 
accurate probabilities. 

 In practice, more advanced statistical techniques are applied to induce 
the PSG used here. First, the probability of a rule is conditional not only 
on its left-hand side but also on larger parts of the tree (see  Frank and Bod 
2011  for details). This is to say that the probability of producing  “ DT NN ”  
depends not only on the identity of their parent node (NP) but also on 
their (great)grandparents (PP and VP in the example above). This makes 
the grammar more sensitive to structure and greatly improves its perfor-
mance ( Fernandez Monsalve et al. 2012 ). Second, probabilities are not 
purely based on frequencies in the treebank: to improve the probability 
estimates of very low-frequency events, additional smoothing of probabili-
ties is applied. 

 The grammar was induced by  Roark ’ s (2001)  algorithm, and implemen-
tation thereof, using his default settings. Next, Roark ’ s incremental parser 
was used to estimate conditional word probabilities  P ( w t   +1 | w  1 ,  … ,  w t  ), just 
like the RNN did. These follow from the probabilities of sentence-initial 
word sequences because: 
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 Figure 6.2 
 The syntactic tree structure assigned by the Stanford parser to the BNC sentence 

 Andrew appears at the door.  Syntactic category labels: NN (singular noun), VBZ (third-

person singular present-tense verb), IN (proposition), DT (determiner). Phrasal 

labels: S (sentence), NP (noun phrase), VP (verb phrase), PP (propositional phrase). 
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 Here,  P ( w  1 ,  … ,  w t  ) is the probability of a sentence-so-far, which equals the 
sum of probabilities of all complete sentences that begin with  w  1 ,  … ,  w t  . 
The probability of a complete sentence equals the sum of probabilities of 
all its possible syntactic tree structures. The probability of a tree structure, 
in turn, is the product of probabilities of the rules used in its construc-
tion. In this manner, a PSG can be used to estimate the probability of a 
word given the sentence so far. As will be discussed in the next section, 
these conditional probability estimates are central to model evaluation. 

 In contrast to the RNN, the PSG is very much a symbol system. It 
applies symbolic operations over discrete units (words, syntactic category 
labels, and phrasal labels) and has compositional representations: a sen-
tence ’ s tree structure consists of representations of subtrees, of syntactic 
and phrasal categories, and of the sentence ’ s words. Because of the model ’ s 
probabilistic nature, numerical processing is also involved to compute the 
probabilities, but this does not diminish the system ’ s symbolic character. 
Hence,  Fodor and Pylyshyn (1988)  would claim that the PSG necessarily 
displays systematicity. 

 2.3.   Model Evaluation 

 2.3.1   Evaluation sentences 
 To evaluate the models ’  ability to generalize to realistic input, 361 sen-
tences were selected from three novels (for details, see Frank, Fernandez 
Monsalve, Thompson, and Vigliocco in press). These novel sentences con-
tained a total of 5,405 word tokens (including commas and periods), all of 
which are present in the vocabulary of 7,754 high-frequency words. 

 A properly systematic model should not only be able to deal with new 
sentences, but also be able to reject ungrammatical input. To test how the 
models handle ungrammatical word strings, scrambled versions of the 
original 361 sentences were created. This was done by choosing, from each 
sentence, two words at random and swapping their positions. This is done 
 n  times, for  n  = 0 (i.e., the grammatical sentence) up to  n  = 9, creating ten 
different sets of test data. Table 6.1 shows an example of one sentence and 
its nine scrambled versions. Note that every sentence ends with a period, 
which remains in its sentence-final location.   

 The probability of the word string being grammatical decreases with 
larger  n , and most often even  n  = 1 already yields an ungrammatical string.  3   
A very rigid language model would estimate zero probability for an ungram-
matical string, but such an estimate would necessarily be incorrect. After 
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  Table 6.1 
 Example of an evaluation sentence and its nine increasingly scrambled versions.  

 Scrambling level  Sentence 

 0  andrew closed the office door on the way out . 

 1  andrew closed the office door on the out way . 

 2  andrew on the office door closed the out way . 

 3  andrew on the office door the closed out way . 

 4  closed on the office door the andrew out way . 

 5  closed on the out door the andrew office way . 

 6  closed the the out door on andrew office way . 

 7  closed the andrew out door on the office way . 

 8  the the andrew out door on closed office way . 

 9  the the andrew way door on closed office out . 

all, impossible things by definition do not happen, so any input that actu-
ally occurs must have had a nonzero probability. 

 2.3.2   Evaluation measure 
 The question remains how to quantify the models ’  ability to generalize. 
Earlier evaluation measures, such as those proposed by  Frank (2006a)  and 
 Christiansen and Chater (1999) , require knowledge of all grammatical 
next-word predictions, so these measures can only be used if the true 
grammar is known, as is the case when using artificial languages. For 
natural language, the true grammar is (arguably) unknowable  4   or possibly 
even non-existent. Therefore, the evaluation measure applied here uses 
only the model-estimated next-word probabilities,  P ( w t   +1 | w  1 ,  … ,  w t  ), for the 
 actual  next word  w t   +1 . The larger these probabilities, the more accurate were 
the model ’ s expectations and, therefore, the better the model captured the 
statistics of the language. 

 Rather than using the conditional probability itself, it is transformed by 
the (natural) logarithm, that is, we take log( P ( w t   +1 | w  1 ,  … ,  w t  )), which ranges 
from negative infinity (when  P ( w t   +1 | w  1 ,  … ,  w t  ) = 0) to zero (when  P ( w t   +1 | w  1 , 
 … ,  w t  ) = 1). The negative of this value is an information-theoretic measure 
known as  surprisal , which expresses the amount of information conveyed 
by word  w t   +1 . A word ’ s surprisal is also of cognitive interest because it is 
believed to be indicative of the amount of  “ mental effort ”  required to 
understand the word in sentence context ( Hale 2001 ;  Levy 2008 ). Indeed, 
surprisal values have been shown to correlate positively with word-reading 
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times (e.g.,  Boston et al. 2008 ;  Demberg and Keller 2008 ;  Fernandez Mon-
salve et al. 2012 ;  Frank and Bod 2011 ; Frank and Thompson 2012; Smith 
and Levy 2013; among many others). 

 Note that surprisal (i.e., mental effort and amount of information) is 
infinitely large if a word appears that was estimated to have zero probabil-
ity. A more appropriate way to put this is that a model is infinitely wrong 
if something happens that it considers impossible. In practice, however, 
both models always estimate strictly positive probability for each word 
type at any point in the sentence. In the PSG, this is because of the smooth-
ing of probabilities. In the RNN, this is because the connection weights 
have finite values. 

 3   Results 

 The left-most panel of   figure 6.3  shows how the next-word probabilities 
that are estimated by the models decrease as the RNN and PSG are made 
to process increasingly scrambled sentences.  5   For correct sentences (i.e.,  n  
= 0), the PSG performs slightly better than the RNN. As expected, both 
models make worse predictions as the input contains an increasing number 
of grammatical errors. This effect is stronger for the PSG than for the RNN. 
Although the difference between the two models is small for lower levels 
of scrambling, all differences were statistically significant (all  t  5341   >  3.19; 
 p   <  0.002, in paired  t -tests) because of the large number of data points. 

   Figure 6.3  also presents the coefficient of correlation between the RNN ’ s 
and PSG ’ s estimates of log( P ( w t   +1 | w  1 ,  … ,  w t  )), as a function of scrambling 
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level. This correlation is clearly very strong, and although it weakens as 
sentences are scrambled more, it seems to stabilize at around  r  = 0.9.    

 4   Discussion 

 Compared to the connectionist RNN model, the symbolic PSG generalizes 
better to grammatical sentences and (correctly) estimates lower next-word 
probabilities for scrambled sentences. Both these results suggest that the 
symbolic model is indeed more systematic than the connectionist one. 
However, the difference between the two models ’  performance is one of 
degree rather than kind. Both models show a fairly slow decrease (instead 
of a sudden drop) in prediction accuracy as scrambling level increases. 
Crucially, the correlation between the two models ’  next-word probability 
estimates is very strong, which means that the models behave similarly. 

 Why would models that are so different in their underlying assumptions 
nevertheless show such remarkably similar behavior? Note that they are 
faced with the same complex computational problem: to extract linguistic 
patterns from 7.6 million word tokens and to apply the discovered statistics 
when processing novel sentences. In terms of  Marr ’ s (1982)  famous levels 
of description, the models differ strongly at the algorithmic level but they 
are similar at the computational level, which specifies the task to be per-
formed. As Marr argued, task requirements, rather than representations 
and algorithms, often form the most important factor in shaping behavior. 
Since the models need to perform the same task, they display similar 
observed behavior. 

 Interestingly, to the (small) extent that the models do differ, the RNN 
seems to be closer to cognitively reality: a comparison between the two 
models ’  surprisal estimates and human word-reading times (over the same 
test sentences) revealed that the RNN ’ s surprisals explained significantly 
more variance in reading time, whether these were collected by self-paced 
reading ( Fernandez Monsalve et al. 2012 ) or by eye-tracking ( Frank and 
Thompson 2012 ). This is in line with earlier findings using different models 
and sentences ( Frank and Bod 2011 ). A similar result emerged from a sen-
tence-reading experiment in which participants ’  brain activity was recorded 
by EEG. Although both RNN- and PSG-based surprisal values predicted the 
size of the N400 event-related potential component, the RNN model yielded 
more accurate predictions (Frank, Otten, Galli, and Vigliocco 2013). In fact, 
the PSG did not account for any unique variance in N400 size over and 
above the RNN ’ s predictions. This strongly suggests that, despite being 
slightly less systematic, the RNN is the more accurate cognitive model. 
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 Compared to earlier demonstrations of models ’  (lack of) systematicity, 
the simulations presented here were based on a much more complex and 
realistic task. Nevertheless, it was still far from what people face in the real 
world. For example, the amount of training data was far smaller than what 
children learn language from, and the input stream was noise-free and 
presegmented into words. Also, the models  “ merely ”  needed to learn 
syntax; they could ignore phonology, prosody, co-speech gesture, prag-
matic constraints, the discourse setting, and any extralinguistic context. If 
noisy and ambiguous information from all these different sources must be 
integrated in real time, this puts further pressure on the system by narrow-
ing the gap between how well it  needs to  perform and how well it  can  
perform. It is only within this narrow gap that any difference in systematic 
abilities can occur. 

 So, to what extent do the models display systematicity? In absence of 
any gold standard of systematicity to compare with the models ’  perfor-
mance, this question cannot be answered. All we know is that the RNN 
and PSG are similarly (un)systematic. If symbol systems are indeed neces-
sarily systematic ( Fodor and McLaughlin 1990 ), then the PSG must be 
systematic and, therefore, so is the RNN (or, at least, it is  “ almost ”  system-
atic, if some arbitrary cutoff point is introduced just below the PSG ’ s level 
of performance). Conversely, if systematicity is indeed beyond the reach 
of connectionist models ( Fodor and Pylyshyn 1988 ), then the RNN cannot 
be systematic and, therefore, neither is the PSG (or, at best, it is minimally 
systematic). 

 It may seem unlikely that a PSG could fail to be systematic. After all, 
provided that  Mary  and  John  belong to the same syntactic category (which 
is the case in the PSG used here), a grammar trained on  John loves Mary  
necessarily generalizes to  Mary loves John , thereby realizing  Fodor and 
Pylyshyn ’ s (1988)  standard example of systematic behavior. Moreover, 
grammars as specified by production rules have traditionally been viewed 
as typical examples of symbol systems, with full-fledged systematic abilities 
against which generalization by connectionist models is evaluated (e.g., 
 Christiansen and Chater 1994 ;  Frank 2006a ;  Van der Velde et al. 2004 ). As 
argued by  Aizawa (1997b) , however, even classical symbols systems are 
systematic only when combined with a proper mechanism for manipulat-
ing the symbols. Perhaps our PSG lacks such a systematic algorithm, but 
this does raise the question of why that would be so.  Roark ’ s (2001)  algo-
rithms, which were used here for inducing the grammar and obtaining 
surprisal estimates, certainly do not intend to reduce the grammar ’ s ability 
to generalize to new input (i.e., to display systematicity). 



Getting Real about Systematicity 159

 Possibly, then, the PSG ’ s statistical nature somehow reduces its system-
atic abilities to that of a connectionist model. Although this may indeed 
be the case, it is likely that there is no viable alternative. Arguably, only a 
statistical system can learn to generalize appropriately from very complex 
natural data, without failing when faced with a highly unexpected event, 
in a noisy, ambiguous, widely varying real-world environment that pro-
vides a massive number of potentially inconsistent cues. As a case in point, 
it is only since the advent of statistical methods that computational lin-
guistics has made significant progress in automatic natural language pro-
cessing (see  Manning and Sch ü tze 1999 ). And indeed, the probabilistic 
nature of human cognition is increasingly recognized in cognitive science 
(see  Oaksford and Chater 2007 ). So, if we do need to choose between a 
statistical model and a systematic model, the safest bet may well be against 
systematicity. 

 5   Conclusion 

 As far as systematicity is concerned, there may not be any important dif-
ference between connectionist and statistical symbolic models, as long as 
the models are powerful enough to perform real-world tasks. This is not 
to say that the difference between model types is not of interest. On the 
contrary, it is quite relevant to cognitive science which representations 
and algorithms best describe the language-processing system. There will 
certainly be significant differences among models regarding, for example, 
their learning and processing efficiency, their ability to connect to non-
linguistic cognitive modalities, their performance under adverse condi-
tions, and the ability to explain (psycho)linguistic phenomena and 
neuropsychological disorders. It is those kind of issues, rather than sys-
tematicity, on which the discussion about the value of connectionism 
should focus. When facing reality, systematicity is not something worth 
worrying about. 
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 Notes 

 1.   As a possible exception, the model by  Borensztajn, Zuidema, and Bod (2009a)  

does learn from real-world data (2,000 utterances produced by a single child). 

However, it can be argued that the model forms a neural implementation of a 

symbolic parser, in which case it does not constitute a demonstration of eliminative 

connectionism (in the sense of  Pinker and Prince 1988 ). 

 2.   This chapter is only about language processing, arguably the main battleground 

for the systematicity debate, but I believe most of the same conclusions hold for 

human cognition in general. 

 3.   Here, grammaticality is a subjective notion. There is no (known)  “ true ”  grammar 

to objectively decide whether a word string is grammatical. 

 4.   Although there is a sense in which speakers of a language know its grammar, this 

knowledge is mostly procedural in nature (see  Bybee 2003 ). That is, people know 

how to  use  their language but have little or no conscious access to its grammar. 

 5.   For a fair comparison between models, clitics were excluded because the two 

models treat these differently: a word like  isn ’ t  is considered a single word by the 

RNN, whereas the PSG parser splits it into  is  and  n ’ t . After removing such cases, 

there are 5,344 probability estimates for each model and level of scrambling.      
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 Debates about systematicity originated with  Fodor and Pylyshyn ’ s (1988)  
challenge to connectionist models of cognition in the 1980s ( Hinton and 
Anderson 1981 ;  Rumelhart and McClelland 1986 ;  McClelland and Rumel-
hart 1986 ). They identified systematicity as a feature not just of language 
but also of thought in general, and argued that connectionist networks 
lacked the resources to account for it unless they implemented more tra-
ditional symbolic architectures. In the ensuing twenty-five years, connec-
tionist or neural network models (as they are more commonly referred to 
today) have developed in a host of ways. Many of the most interesting 
models of cognitive capacities are ones that abandon the supervised frame-
work of the backpropagation learning algorithm that figured centrally in 
the 1980s and employ units that more closely resemble actual neurons 
( Maass, Natschl ä ger, and Markram 2003 ;  Eliasmith et al. 2012 ). The debates 
between connectionists and symbolic theorists have largely disappeared 
from cognitive science itself. The main contemporary debate is between 
Bayesian optimality models ( Griffiths et al. 2010 ) and connectionists who 
adopt an emergentist approach ( McClelland et al. 2010 ). 

 Systematicity has thus been left as an issue for philosophers. In part, 
this is because much of contemporary cognitive science has focused on 
phenomena (sensory processing and categorization, working memory, 
motor control, decision making) for which systematicity has appeared to 
be less central. It is further the result of an implicit assumption among 
neural network modelers that where systematicity is an issue, they can 
invoke the same emergentist perspective they adopt toward Bayesian 
models: systematicity too can be accounted for as an emergent property 
of underlying simpler neural network processes. We contend that this is a 
mistake on both counts. Systematicity applies to cognition beyond lan-
guage processing; we will discuss it in the context of sensory processing 
and related processes of categorization. We will begin, however, with 

 7   Systematicity and the Need for Encapsulated 

Representations 
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language processing, arguing that the emergentist perspective seriously 
impoverishes the neural network approach. By neglecting the role of rep-
resentations that encapsulate information and can be operated on while 
remaining invariant to contextual factors, the emergentist thread in neural 
network approaches denies itself the resources needed to capture system-
atic components of cognition. 

 Although there have been important neural network models that do 
not eschew encapsulated representations ( Grossberg 1982 ;  Miikkulainen 
1993 ), for many proponents and opponents of neural networks the fun-
damental commitment seems to be to associationist processing in which 
associations between all units are learned through the gradual strengthen-
ing or weakening of their weights. We argue, however, that this should not 
be the core commitment of the neural network approach and, in many 
contexts, should be abandoned. Rather, the fundamental commitment 
should be a constraint imposed on modeling cognitive behavior, restricting 
what interpretations are permitted of the primitive units of the system. 
Such interpretations must depend exclusively on internal, autonomously 
executed processes, and not imposed externally or globally. In other words, 
all interactions must be local, and all meanings must eventually be 
grounded in the external input to the network. This constraint rules out 
symbolic rules with variables, but does not prohibit operations over  encap-
sulated  representations (representations not directly affected by processing 
elsewhere in the system). 

 Encapsulated units share with variables that they can act as placeholders 
and bind to appropriate units on their inputs. They are different in that 
the extensional scope of a variable is globally specified in advance, whereas 
the extensional scope and meaning of an encapsulated representation is 
learnable from experience through interaction with the external environ-
ment. Neural network models that allow learning encapsulated representa-
tions can thus acknowledge that a linguistic category like  “ noun phrase ”  
is cognitively real and that representations of categories can play causal 
roles in linguistic behavior. In symbolic models, in contrast, the category 
must be stipulated to exist prior to experience (and, indeed, linguistic 
categories are often claimed to be innate; see  Thornton and Wexler 1999 ), 
whereas in emergentist connectionist models category membership is rec-
ognized only by an external observer and plays no causal role. We will 
offer an example of a neural network that implements encapsulated rep-
resentations toward the end of the chapter. 

 Since debates about systematicity have been hampered by the lack of a 
clear statement of the phenomenon, we begin by offering a distinctive 
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account of how it should be understood. We then demonstrate the limita-
tions of one of the most influential attempts to account for systematicity 
with a relatively unstructured connectionist network — Elman ’ s recurrent 
neural networks. Our goal, however, is not to reject neural networks 
but to argue for an approach that takes insights from neurobiology seri-
ously and at the same time accounts for real empirical phenomena that 
have been widely (though wrongly in our view) seen as necessitating sym-
bolic models. To do this we will introduce Hawkins ’ s Memory Prediction 
Framework, at the core of which is a hierarchical system of encapsulated 
representations. 

 Of course, encapsulated representations are only part of the story; 
equally important is accounting for how they are temporarily combined 
into structurally complex representations. This is especially important 
when dealing with the productivity and systematicity of language. We 
argue that this requires a more flexible kind of connectivity than is offered 
by pair-wise associative connections. In the literature this is known as 
dynamic binding (Hummel and Biederman 1992). In the last section of 
the chapter, we sketch how this can be implemented between encapsulated 
representations. 

 1   The Appropriate Concept of Systematicity: A Causal Role for 
Categories 

 Fodor and Pylyshyn introduce systematicity largely by means of an 
example: any cognitive system capable of representing  John loves Mary  must 
also be able to represent  Mary loves John  and other related thoughts. The 
question is: what makes thoughts related? The intuitive idea seems to be 
that related thoughts are those that organize different representations into 
the same syntactic structure. Treating systematicity as if it provided a clear 
standard, Fodor and Pylyshyn quickly move on to the shortcomings of 
neural networks — arguing that by relying merely on associations between 
representations, they are incapable of respecting systematicity.  1   Their diag-
nosis of this failure is that neural network models fail to employ a com-
positional syntax that combines simpler representations into more 
complex, structured representations. This is what traditional symbolic 
models in cognitive science achieved by treating representations as symbols 
that are operated on by rules such as those of logic or formal grammars. 
What is crucial about rules is that they contain variables that can be instan-
tiated by different symbols. Thus Fodor and Pylyshyn contend that, by 
eschewing rules and relying only on associations, neural network modelers 
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have ignored the lessons of the cognitive revolution and have returned to 
behaviorism. 

 As we will discuss in the next section, neural network theorists have 
tried to show that their models can exhibit systematicity. Part of the 
problem in evaluating these proposals is that the criterion of systematicity 
has not been articulated in a sufficiently precise way that it can be invoked 
operationally to evaluate candidate models.  Hadley (1994)  offered one of 
the most influential attempts to operationalize systematicity, capturing the 
important insight that the ability to generalize is fundamental to system-
atic behavior. Accordingly, he focused on the degree of generalization 
required to handle novel test items after a network has been trained, while 
distinguished  weak  from  strong  systematicity. A system is weakly systematic 
if it can generalize to novel sentences in which a word appears in a gram-
matical position it did not occupy in a training sentence but which it 
occupied in other training sentences. A system exhibits strong systematic-
ity if, in addition,  “ it can correctly process a variety of novel simple and 
novel embedded sentences containing previously learned words in posi-
tions where they  do not appear  in the training corpus (i.e., the word within 
the novel sentence does  not appear in that same syntactic position  within any 
 simple  or  embedded  sentence in the training corpus) ”  (250 – 251). 

 Hadley ’ s criteria have been invoked in evaluations of the type of network 
that we will discuss in the next section ( Hadley 1994 ;  Christiansen and 
Chater 1994 ). However, they fall short of what should be required for 
systematicity in two respects. First, they overlook the fact that systematic-
ity presupposes the existence of classes of linguistic expressions that can 
be substituted for each other. The requirement for strong systematicity is 
not that a system should handle any expression in which a word is placed 
in a new syntactic position (e.g.,  John Mary Mary ) but only ones in which 
it is placed in an appropriate syntactic position. When working with arti-
ficial languages, as do many neural network studies of systematicity, these 
 “ appropriate ”  positions are defined by the formal grammar used. However, 
if the account of systematicity is to be applied to natural language (and 
natural thinking), then the substitution classes must be identified explic-
itly in characterizing systematicity. Second, by focusing on lexical catego-
ries exclusively and not larger units, Hadley ’ s account is too restricted. 
Systematicity in natural language also involves the class membership of 
phrases of multiple words (e.g., anyone who understands  The brother of 
John loves Mary  can also understand  John loves the brother of Mary ), and 
accounting for this fact requires postulating constituents of a particular 
category (e.g., the noun phrase  The brother of John ) to contain constituents 
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of potentially the same category (e.g.,  John ). We suggest that this ability to 
generalize over constituents (rather than over words) is evidence for inter-
nal hierarchical representations of language in humans. 

 What these considerations reveal is that systematicity needs to be 
characterized as the property of cognition that allows categories (treated 
as substitution classes), category membership, and hierarchical category 
structure to play causal roles. With respect to syntax in language, then, we 
propose to define systematicity as the property that, given the constituents 
of part of a sentence, their substitution class membership alone predicts 
the class membership of possible subsequent constituents. To the degree 
that natural language is systematic, it possesses sets of constituents (words 
or phrases) that behave as substitution classes. (The qualification  “ to the 
degree that ”  recognizes that categories are often not sharply defined but 
graded.) This characterization allows for compound constituents to be 
composed from simpler ones (e.g., by recursively nesting relative clauses) 
while keeping membership in the same substitution class. 

 The crucial feature of our characterization of systematicity is its appeal 
to substitution classes. These are classes whose members can all be treated 
alike. When it comes to substituting one for another, context is not taken 
into account — membership in the class is context invariant. This is the key 
component that symbolic accounts provide through rules with variables 
and which, we will argue, can be achieved in neural networks that allow 
for encapsulated representations. But before doing so, we will show that 
neural networks that maintain a mistaken commitment to purely associa-
tionist principles lack encapsulation, and therefore, we suggest, fail to 
account for systematicity. 

 2   The Limitations of Recurrent Neural Networks as Models of 
Systematicity 

  Bechtel and Abrahamsen (2002)  differentiated three responses neural 
network theorists have offered to the systematicity challenge: (1) imple-
menting in networks rules operating on variables ( Shastri and Ajjanagadde 
1993 ), (2) constructing representations that compress compositional struc-
ture ( Pollack 1990 ) that can be operated on by other networks ( Chalmers 
1990 ), and (3) employing procedural knowledge to process external 
symbols ( Elman 1990 ,  1991 ,  1993 ). We focus on the last as it represents 
the most radical attempt to apply associationist neural network approaches 
to the systematicity challenge. (For a discussion of the limitations of the 
compressed representation approach, see  Borensztajn 2011 .) 
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 To accommodate the fact that processing language requires a memory 
of the words that came before, Elman developed the simple recurrent 
network (SRN). Each successive word is presented on one set of input units, 
and the previous activation on the hidden units is copied onto other input 
units (  figure 7.1 ). This design provided sufficient memory of the network ’ s 
response to previous words that it was able to predict with high accuracy 
the next word when trained on a corpus of sentences constructed from a 
phrase-structure grammar. Since the grammar allowed for both multiple 
words within each grammatical category and for multiple sentence types, 
the network could not be expected to predict correctly the actual next word 
in a sentence. Rather, it was evaluated by whether the output units acti-
vated corresponded to the range of possible continuations given the 
grammar. For example, the network correctly predicted that after being 
presented sequentially with  boy  and  lives , the next input would be a period, 
whereas after  boy  and  sees  it could be a period, a singular or plural noun, 
or a proper name.    

 To explain how the network is able to achieve the level of performance 
it does, Elman argues that it  implicitly  represents the syntactic information 
needed to perform the task and offers strategies to reveal how this informa-
tion is encoded in the activation pattern distributed over the hidden units. 
 Elman (1990)  employed hierarchical cluster analysis (HCA) to show that 

Input at t  Context 

Output 

(hidden layer activation at t–1) 

(copy) 

 Figure 7.1 
 Simple recurrent network developed by  Elman (1990)  in which the activations on 

the hidden units during the previous cycle of processing are copied onto a set of 

input units to be sent forward on the next cycle of processing. 
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words originating from the same grammatical category, as specified by the 
grammar (e.g.,  human  or  transitive verb ), produced similar activation pat-
terns on hidden units. 

 We focus on Elman ’ s early studies since they engendered the prevalent 
view among connectionists that  explicit  representations of categories are 
not necessary; rather,  implicit  knowledge of grammatical categories ( Elman 
1990 ) and constituent structure ( Elman 1991 ) suffice to explain systematic 
behavior. This view explicitly rejects our contention that systematic behav-
ior (if properly defined) necessitates a causal, hence  explicit , role for catego-
ries. More recent studies with the SRN go beyond Elman ’ s initial studies 
and emphasize correlations between certain aspects of behavior of SRN 
models and human linguistic behavior, for instance in the processing of 
different types of relative clauses (e.g.,  Christiansen and Chater 1999 ; 
 MacDonald and Christiansen 2002 ). We do not discuss these here because 
they do not offer fundamentally different insights on the question of how 
grammatical knowledge is encoded in the SRN, which is central to our 
claims about systematicity (but see  Borensztajn 2011  for a critical discus-
sion of the  “ leaky recursion ”  argument). 

 Our concern about  Elman ’ s (1990)  strategy is that he extracts the 
implicit knowledge of the SRN by averaging over all sentence contexts in 
which a given word occurs and performing the HCA analysis on the result-
ing average. This means that the regions in the state space corresponding 
to particular grammatical (word) categories are categories only in the eyes 
of the observer: they are never actually  “ consumed ”  by the SRN. Network 
operations are performed on the actual activations produced by individual 
category members, corresponding to different contexts of the same word, 
and not on some computed average activation; activation of any individual 
item may actually lie outside the computed region for the  “ implicit cate-
gory. ”  Implicit representations, thus constructed, can play no causal role 
in the dynamics of the network; hence they lack explanatory power. In 
contrast, a representation functions causally only if the representational 
vehicle figures in a mechanism that uses it ( Bechtel 2009 ). In a similar 
vein,  Kirsh (1991)  argues that what counts as a representation is deter-
mined by the processing system that is accessing its content, and not by 
any external agency. Since the SRN has no way of using the representations 
that are constructed in the HCA, it would be a mistake to attribute the 
grammatical knowledge that can be inferred from the HCA (by an external 
observer) to the SRN.  2   

 Similar considerations apply to  Elman ’ s (1991)  claims with regard to the 
SRN ’ s implicit knowledge of constituent structure. To analyze how an SRN 
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deals with the hierarchical structure of a sentence, he examined the trajec-
tory through the space of possible activation patterns as each successive 
word was provided. Since in his network architecture this space has seventy 
dimensions, Elman turned to principal component analysis to provide a 
reduced dimensional analysis of the network ’ s performance.   Figure 7.2  
presents an example of such an analysis, showing in two dimensions the 
changing activation over hidden units as the network processes four sen-
tences using the same vocabulary with differently constructed relative 
clauses. Elman focused on how the representation of a given word was 
displaced in state space when it appears in a different grammatical con-
struction (compare the different locations of activation for  boy  when it is 
the object of different levels of embedding in figures 7.2b and 7.2c). He 

A D

B C

Principal component 1

Pr
in

ci
p

al
 c

o
m

p
o

n
en

t 
11

–2 20
0

–2 20

0.5

1.0

0

0.5

1.0

 Figure 7.2 
 In terms of principal components developed from an analysis of activations in 

hidden units, Elman shows how the SRN processes related sentences. He argues that 

the displacement of the activation value generated by a given word in different 

contexts accounts for the network ’ s ability to predict subsequent words correctly. 
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concluded:  “ displacement provides a systematic way for the network to 
encode the depth of embedding ”  (1991, 111).    

 Although this analysis suggests that the SRN represents hierarchical 
structure, there is no account of how the network could use this repre-
sentation. To make use of displacement information, the network would 
have to be able to perform a meta-analysis by comparing the state of the 
hidden units at different time steps. Perhaps, it would be possible to build 
into the network a mechanism designed to extract differential informa-
tion, for instance by adding units that act as  “ difference detectors ”  
between hidden states at different times. But for the network to use such 
information in order to determine long-term dependencies, it would need 
to be provided with information about the level of embedding (i.e., a 
 stack ), and this would require implementing a grammar that uses category 
representations. Of course, this would violate the spirit of Elman ’ s project, 
which was to show that a network could exhibit appropriate performance 
without these representations. A similar objection applies to more recent 
attempts to model human language processing without relying on hier-
archical structure, such as  Frank, Bod, and Christiansen ’ s (2012)  proposal 
of a switching mechanism between parallel sequential streams. For a 
network to be able to use such a mechanism, it requires a means to keep 
track of which stream the processing is in and how to switch between 
them. 

 Our objection to this point is not that the network has failed to perform 
appropriately but that claims that connectionist networks implicitly rep-
resent linguistic categories or constituency do not suffice for demonstrat-
ing systematicity as we characterized it in the previous section. That 
requires representations of substitution classes all of whose members are 
treated alike. The hidden unit representations formed in Elman ’ s SRNs are 
different for each instance, and there is no representation of the class that 
the system is able to use to make the same inference about each. 

 One could possibly object that SRNs are able to achieve human level 
performance without requiring systematicity as we have characterized it, 
and without explicit representations of substitution classes. There is evi-
dence, however, that in some contexts humans do rely on representations 
of substitution classes. We briefly note two examples. First, humans acquire 
new words or phrases and new grammatical constructions from just one 
encounter and generalize them to a wide range of additional uses. SRNs, 
on the other hand, generalize over words that occur in similar sentence 
contexts, but not to different usages of a new word.  Elman (1990)  offers 
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an example in which he shows that if a new word,  “ ZOG, ”  replaces the 
word  “ man ”  in every position it occurs and the new set of sentences is 
presented to the network, the HCA analysis of the resulting activations 
assigns  “ ZOG ”  a similar location as  “ man. ”  Elman ’ s gloss on this is illumi-
nating:  “ The network expects man, or something very much like it, ”  and 
relates the result to context effects in word recognition. This suggests that, 
rather than learning the new word (learning was disabled), the network 
ignored the input and determined its response from context.  3   Generaliza-
tion from a single encounter requires a procedure to assign the new word 
or phrase to a substitution class or to apply a new construction to all 
instances of the substitution class. We know of no demonstration that SRN 
networks can do this. 

 Second, one can show that humans are sensitive to constituent classes 
in the processing of garden path sentences such as  The horse raced past the 
barn fell . The initial phrase  The horse raced  can be parsed in two ways, treat-
ing  raced  as the main verb or as part of a relative clause. The temptation 
to treat  raced  as the main verb is so powerful that most hearers do not even 
consider the alternative possibility until they hit  fell . Then they must 
backtrack and construct the alternative. This indicates that humans are 
sensitive to the two possible syntactic categories and treat them as separate. 
Although to our knowledge the SRN has not been tested with a grammar 
that allows such constructions, given its mode of operation we expect that 
it would generate a single activation pattern for the first four words and 
predict both continuations, each in accordance with its frequency in the 
training corpus. It has no procedure to back up, reconsider the category 
assignment of  “ raced, ”  and develop a new parse. 

 Elman ’ s strategy was to show that procedural knowledge would enable 
neural networks to exhibit the behavior associated with systematicity. Our 
suggestion in the last two paragraphs is that this may not be possible in 
some cases without employing explicitly represented substitution classes. 
We might be wrong about this — clever network design might achieve suf-
ficient levels of performance that it is indistinguishable from human per-
formance. But, as we will argue in subsequent sections, to pursue this 
strategy is to unnecessarily limit the neural network approach, since sys-
tematicity as we have characterized it can be realized in the types of neural 
networks actually found in our brain. Our goal in highlighting the short-
comings of the SRN approach is not, as was Fodor and Pylyshyn ’ s, to 
advance an objection to neural networks tout court. We are not arguing 
for rules operating over variables. Rather, we are arguing for employing 
networks capable of generating encapsulated representations. To illustrate 
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such networks, we introduce Hawkins ’ s Memory Prediction Framework 
( Hawkins and Blakeslee 2004 ). 

 3   Encapsulated Representations in Hawkins ’ s Memory Prediction 
Framework (MPF) 

 In developing his theoretical framework, Hawkins drew on what we 
learned about the architecture of the mammalian neocortex during the 
second half of the twentieth century, largely from studies recording the 
electrical activity of neurons in different cortical regions in various 
mammals while responding to stimuli. Starting from  Hubel and Wiesel ’ s 
(1962 ,  1968 ) studies of cats and monkeys that identified neurons in the 
rear of the brain (primary visual cortex or V1) that responded to bars of 
light or edges with particular orientations at specific locations, researchers 
proceeded forward in the brain to identify higher regions that responded 
to more complex features such as illusory contours (V2), shapes (V4), and 
ultimately the identity of objects (anterior inferotemporal cortex or AIT) 
(for a historical review of this research, see  Bechtel 2008 , ch. 3). Drawing 
together information about the specific pattern of neural projections 
between thirty-three areas known to be involved in visual processing, 
 Felleman and van Essen (1991)  developed a hierarchical account in which 
lower areas such as V1 send projections forward to areas at the next level 
(V2) while receiving much more numerous backward projections from 
those areas (  figure 7.3 ). We will refer to the resulting hierarchy as the 
hierarchy of brain regions.    

 As shown on the right in   figure 7.3 , individual neurons in successively 
higher levels have larger receptive fields (regions in the sensory field to 
which they respond when appropriate stimuli are presented). Whereas a 
neuron in V1 responds to an edge only in a specific small region of the 
visual field, a neuron in the anterior inferotemporal cortex (AIT) responds 
to a given object irrespective of where it appears. Moreover, as one moves 
up in the hierarchy, neurons respond to increasingly complex stimuli and 
respond invariantly regardless of the particulars of the current presentation 
of the stimulus. Cells in AIT have been reported that respond to any image 
of Bill Clinton, whether it is a line drawing or a photograph ( Kreiman, 
Fried, and Koch 2002 ). 

 Beyond the hierarchy of brain regions, each region of the neocortex is 
organized into six anatomically distinctive layers parallel to its surface. 
Crosscutting these are columns of neurons like those shown in   figure 7.4 . 
Many neural network accounts of brain function jump directly from 
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TuningClassical RF
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V2

V1

 Figure 7.3 
 The feedforward and recurrent processing through three visual areas is shown on 

the left. The receptive field of individual neurons and the types of stimuli to which 

they are responsive is shown on the right. (From  Roelfsema 2006.)  
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 Figure 7.4 
 Three minicolumns in two connected brain regions. Upward-pointing arrows rep-

resent the forward flow from earlier cortical areas, whereas downward-pointing 

arrows represent recurrent projections back from higher areas. 
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individual neurons to the brain areas in which they are located, skipping 
the level of cortical columns. Yet since they were first noted by Lorente de 
 N ó  (1938) , columns have been the focus of much research. In his study of 
the cat ’ s somatosensory cortex,  Mountcastle (1957)  postulated that columns 
are the basic computational units of the brain.  Hubel and Wiesel (1962)  
found that if they inserted an electrode perpendicular into the cell surface, 
all neurons within a column responded to edges with the same orientation 
and processed by the same eye, whereas neurons in neighboring columns 
either responded to edges at progressively different angles or switched from 
inputs to one eye to inputs to the other. 

 Hubel and Wiesel (1962) furthermore recognized that columns con-
sist of a cluster of  “ minicolumns. ”  They interpreted the cells that all 
responded to a stimulus at a given orientation as constituting a minicol-
umn. Minicolumns contain on the order of 100 neurons, whereas approxi-
mately 70 minicolumns that respond to a given part of the visual field 
irrespective of orientation constitute a macro- or hypercolumn. Later work 
further clarified that throughout the cortex the minicolumns are orga-
nized into topological maps, such that adjoining minicolumns respond 
to similar stimuli. Inhibitory interneurons between these minicolumns 
support winner-take-all competitions, so that only the minicolumn with 
the greatest input remains active and sends action potentials to other 
brain areas.    

 Hawkins ’ s principal focus is on how columns connect to one another, 
but before turning to that we look briefly at the information processing 
made possible by the architecture within minicolumns and their organiza-
tion into macrocolumns. Minicolumns are best understood as organized 
collections of neurons that collaborate in processing information taken in 
from a variety of sources. About 90 percent of the axons within a column 
connect to neurons in other columns, either at the same or at higher or 
lower levels. Within each minicolumn, layers 2, 3, 5, and 6 contain many 
pyramidal cells. Pyramidal neurons are the primary cells that generate 
excitatory action potentials when sufficient input is received on their 
dendrites. These layers also contain many inhibitory interneurons, which 
typically receive input from other minicolumns in a given macrocolumn 
and inhibit the activity of the pyramidal cells. Layer 1 contains few cells 
but instead contains many axons running parallel to the cortical surface, 
including those originating in cells in layers 2 and 3 of the column. Layer 
4 contains a distinctive cell type, stellate cells. As shown in   figure 7.4 , this 
layer is where inputs arrive from lower regions of the hierarchy of brain 
regions. Axons from cells in layer 4 project to neurons in layer 3, whose 
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axons then project to those in layer 2, and from there to a higher region. 
While the upward flow of information stays mostly within a single column, 
with multiple columns converging on one at a higher level, the downward 
flow diverges more. When a given column receives projections back from 
higher regions, these arrive at layer 1 and project downward in many 
columns to layers 2 and 3, eventually reaching layers 5 and 6 ( Mountcastle 
1997 ;  Buxhoeveden and Casanova 2002 ). Layers 5 and 6 send projections 
to the thalamus and lower brain regions as well as cortical regions lower 
in the hierarchy. Layer 1 also receives delayed feedback connections from 
the thalamus, originating from columns that were previously active, result-
ing in a complex pattern of activation in lower areas. 

 Hawkins ’ s account is distinctive in that it emphasizes how the columnar 
organization of the cortex serves to accomplish two major feats: (1) learn-
ing and storing temporal sequences of patterns that can then be used for 
prediction and (2) encapsulating the output of these sequences, so that 
they can be used as an  ‘ alphabet ’  in higher regions. Hawkins proposes that 
a sequence,  “ a set of patterns that generally accompany each other but not 
always in a fixed order ”  (Hawkins and Blakeslee 2004, 86), can be learned 
by a Hebbian process of strengthening synaptic weights between currently 
active and recently active minicolumns (via the thalamic feedback loop). 
This results in stored associations between sets of features from different 
macrocolumns that frequently go together over time (e.g., edges in one 
part of the visual field that extend those in another). With these connec-
tions in place, activity in one of these minicolumns can elicit or inhibit 
activity in others, regenerating the sequence of coherent patterns at one 
level. These patterns provide input to minicolumns at the next level, with 
Hebbian learning leading to specific minicolumns responding to a given 
sequence. Hawkins hypothesizes that the fact that both the spatial and 
temporal extents of inputs that drive responses increase as one moves up 
the hierarchy of brain regions allows higher brain areas to respond to 
longer enduring stimuli or to stimuli composed of multiple temporal com-
ponents that might be processed sequentially in lower areas in the hierar-
chy. Recently, imaging studies have provided some empirical support for 
this hypothesis ( Hasson et al. 2008 ). 

 The second feat concerns the encapsulation of the details of a sequence 
that is formed in a lower region from processes at hierarchically higher 
levels. Hawkins hypothesizes that lower regions pass on category labels or 
 “ names ”  for the sequences they have recognized. Such a name —  “ a group 
of cells whose collective firing represents the set of objects in the sequence ”  
(Hawkins and Blakeslee 2004, 129) — represents a constant pattern for the 
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inputs of minicolumns in higher regions. He suggests a plausible mecha-
nism for how the cortex generates constant names that stay  “ on ”  for the 
entire duration of a sequence (152). This involves simultaneously activat-
ing layer 2 cells of multiple columns that are members of a sequence, 
driven by connections from a hierarchically higher region of cortex that 
provides it a name. At the same time, an inhibitory mechanism, involving 
certain layer 3 cells, suppresses the throughput of the time-varying details 
of the stimulus to the higher region when the sequence is predicted suc-
cessfully, so that subsequent brain areas have access only to the names 
activated at the previous level in the hierarchy. The columns at each level 
in the hierarchy of brain regions generate names for the patterns received 
on their input units, which are then encapsulated: further processing draws 
on them, not on the patterns that generated them. 

 We can now show how the organization we have described realizes what 
Hawkins characterizes as a Memory Prediction Framework. He construes 
projections from sequences stored in columns at higher levels back to 
lower levels as serving to predict subsequent input, as the sequence unfolds 
in time to the lower level. Hawkins is not alone in emphasizing the role 
of recurrent projections in prediction ( Dayan et al. 1995 ;  Rao and Ballard 
1999 ;  Llin á s 2001 ;  Hohwy, Roepstorff, and Friston 2008 ;  Huang and Rao 
2011 ; Clark in press). What is distinctive is his characterization of the 
organization of cortex that facilitates encapsulated representations which 
then figure in this process. As we have noted, he construes the output of 
a lower region as a name for the sequence of patterns received on the input 
level. Because of the fan-in relation between levels, the name is necessarily 
more abstract than the sequence it names — it names a number of specific 
sequences. For example, a square as recognized in V4 can have its edges at 
different points in the visual field; accordingly, the name  square  generated 
in V4 will project back to columns in V1 other than those from which it 
received input on a given occasion. Since the V4 name is encapsulated, it 
has no sensitivity to these differences; when it is activated, it sends projec-
tions back to all columns that feed into it. This feedback enters the lower-
level column in layers 3 and 2, and serves to increase the activity of the 
pyramidal cells therein. Since the minicolumns at a given level often 
compete with each other, this can serve to alter the competition at the 
lower level. The result of this top-down activity can bias processing in favor 
of interpretation of an ambiguous input or even generate activity seriously 
at odds with the input being received from still lower areas and ultimately 
from the senses. 
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 4   Structured Cognition with Encapsulated Representations 

 In the previous section, we showed how the hierarchical, columnar orga-
nization of the cortex provides a basis for encapsulated representations 
that are invariant. Our contention is that this provides a crucial resource 
for explaining the systematicity of thought. Encapsulated representations 
are structures that can be further composed but have a distinct identity 
from the varying instances that elicit them. In more traditional computer 
science vocabulary, they are pointers to their various instantiations. As 
processing moves down the hierarchy, encapsulated representations are 
unpacked into sequences of patterns. But they can also be targets of opera-
tions specific to them. 

 To illustrate the advantages of encapsulated representations, consider 
the representations developed in response to a linguistic corpus. The same 
hierarchical columnar organization can be deployed both for visual repre-
sentations and the construction of encapsulated representations of tempo-
ral patterns that correspond to the syntactic units of a language. Categories 
such as  noun phrase  and  relative clause  become available to the processing 
system as encapsulated units while preserving the ability to generate 
instances of linguistic sequences that unfold in time (e.g.,  det adj noun ) 
when processing downward through the columnar structure of cortex. Our 
contention is that encapsulated representations provide the means for 
addressing systematicity since the relations between encapsulated repre-
sentations are distinct from the relations between lower-level inputs and 
are available to be used in information-processing operations. 

 What we haven ’ t shown yet is how primitive encapsulated representa-
tions can give rise to the complex and structured representations that are 
used in parsing sentences. This seems to require a combinatorial mecha-
nism that can flexibly group representations into complex structures. 
 “ Structured cognition ”  is perceived by some as orthogonal to the spirit of 
connectionism (e.g.,  McClelland et al. 2010 ;  Marcus et al. 1999 ). Indeed, 
activation spreading through the pair-wise associative connections in tra-
ditional neural networks is inherently context sensitive and so cannot 
provide the aforementioned mechanism. Encapsulated representations, 
however, allow for operations that are directed specifically toward them, 
although the challenge in deploying the right operations is not simple. 
Given that constituents of a particular category can contain constituents 
of the same category (as occur, for example, in embedded clauses), the 
mechanism must allow recursive groupings between representations that 
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are possibly stored at the same level in the hierarchy of brain regions. 
Moreover, it must do so in the face of changing representations — a conse-
quence of the fact that these representations are not innate and symbolic, 
but are learned from experience. Thus, operations on encapsulated repre-
sentations must involve a flexible and indirect means of communication 
that allows for transmitting variable representations (the  “ names ” ) through 
fixed lines of communication. 

 To motivate the type of operations required, consider the phenomenon 
of productivity — the ability of language users to produce arbitrarily many 
novel sentences based on only a limited number of stored words and pro-
cedures for combining them. Several theorists have proposed that the 
productivity of language is supported by some form of  dynamic binding  of 
network units (e.g.,  Hummel and Holyoak 1997 ;  van der Velde, van der 
Voort van der Kleij, and de Kamps 2004 ). The general idea behind dynamic 
binding is that units can be flexibly grouped in novel configurations 
without requiring preexisting, dedicated binding neurons. To this end, 
most models of dynamic binding employ  “ tags, ”  with different proposals 
reserving this role for the  “ oscillation phase ”  (i.e., in synchronous binding; 
 von der Malsburg 1982 ), or  “ enhanced activity, ”  corresponding to atten-
tion (in serial binding;  Roelfsema 2006 ). We cannot explore in any detail 
how dynamic binding might be realized for the language domain, but the 
Hierarchical Prediction Network proposed by  Borensztajn (2011)  offers a 
suggestion. The network employs complex primitive units (shown as  “ tree-
lets ”  in   figure 7.5 ) that should be seen as encapsulated sequences (repre-
senting, for example, graded syntactic categories), which can dynamically 
bind to other sequences or to word units. At the core of the network, as 
shown in   figure 7.5 , is a  “ switchboard, ”  a neural hub that routes the encap-
sulated representations to specific subunits, using an address that is stored 
in the root of the unit. In this model, the names of the sequences are 
interpreted as addresses in a high-dimensional vector space and forwarded 
through the switchboard as a spike pattern to a subunit of another sequence 
with the appropriate address, allowing for pointers to the sequences to be 
used as building blocks in higher-order sequences. 

 The high-dimensional vector space constitutes a  “ name space, ”  and can 
be viewed as the equivalent of the topological maps observed in the visual 
and auditory cortex. However, it is proposed that in the syntactic domain 
the topology is realized in a reverse hierarchy ( Hochstein and Ahissar 
2002 ). In this view, relations between syntactic categories (the  “ names ” ) 
are expressed as relative distances in a topological space, and grammar 
acquisition amounts to self-organization of the topology: when the network 
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is trained with sentences from an artificial language, regions gradually 
emerge in the topology that correspond to conventional syntactic catego-
ries, such as nouns and verbs ( Borensztajn, Zuidema, and Bod 2009 ).    

 A version of Borensztajn ’ s Hierarchical Prediction Network has been 
implemented in a computational model, but it is important to consider 
how it might be implemented in the brain. One possibility draws on a 
feature that is widely recognized in neural systems — that brains exhibit 
oscillations at a wide range of frequencies, from  < 0.1 Hz, observed in 
fMRI, to  > 100 Hz, observed in EEG. These are the product not of action 
potentials but of electrical potentials across neural membranes that oscil-
late between being hypo- and hyperpolarized states. The oscillations in 
different brain regions synchronize, typically in a metastable manner in 
which patterns of synchronized activity emerge, but soon disintegrate as 

Switchboard
(self–organizing map)

Boy Feeds The

Serial transmission
of stored address

Lexical units

Complex units 
(‘treelets’) 

Subunits 

Buffer

WhoWalks

 Figure 7.5 
 The switchboard, as used in the Hierarchical Prediction Network (HPN) ( Borensztajn 

2011 ). Circles indicate lexical units; the  “ treelets ”  indicate complex primitive units, 

representing sequences of patterns that can learn to assume the role of context-free 

rules. 
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a result of endogenous processes. The function of these bouts of synchrony 
is not entirely clear, but it has been proposed that they represent channels 
of communication between brain regions — when two neurons are simul-
taneously hypopolarized, an action potential generated by one is more 
likely to elicit an action potential in the other ( Buzs á ki 2006 ;  Abrahamsen 
and Bechtel 2011 ; Bechtel in press).  Saalmann, Pinsk, Wang, Li, and Kastner 
(2012)  have recently provided evidence that the pulvinar (a part of the 
thalamus) regulates such synchrony and thereby helps coordinate the 
opening and closing of transient communication channels required for 
dynamic binding. 

 Although our discussion of HPN has been necessarily sketchy, it serves 
to indicate that encapsulated representations, once generated, could be 
operated on in ways that produce systematic behavior. As required by our 
definition of systematicity, prediction of subsequent words (and constitu-
ents) in the sentence depends on the categorical representation at the root 
of a treelet alone, and not on preceding context coming from units that 
bind to the treelet ’ s subunits. As the primitive representations range over 
sequences, they allow for generalization over constituents (which is one 
aspect of systematicity that has often been ignored) and thereby automati-
cally generate hierarchical representations. Note, however, that the process 
subserving hierarchical representations is sequential (i.e., it is dynamic 
binding), in line with evidence from many imaging and psycholinguistic 
studies (as reviewed, e.g., by  Frank, Bod, and Christiansen, 2012 ). 

 5   Conclusions 

 One of the shortcomings in the debates about systematicity initiated by 
Fodor and Pylyshyn has been the failure to articulate adequate accounts 
of systematicity. The most developed operational criterion, by Hadley, 
appeals to the unarticulated idea of substitution classes of constituent 
representations. Symbolic accounts provide these through the use of vari-
ables within rules, but these could only be accommodated in neural 
network accounts that attempt to explicitly implement global symbols and 
rules. We argue for a strategy that involves encapsulated representations 
consistent with the local control that is fundamental to neural network 
models. Our characterization of systematicity, like that of Hadley, still 
defines the explanandum — systematicity in human cognition and behav-
ior — in terms of components of the explanans — the formal models that 
explicitly involve categories. We do not claim, therefore, to be able to prove 
that only models with encapsulated categories can account for that body 
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of empirical data; we do claim, however, that none of the existing emer-
gentist models that we are aware of accounts for the data satisfactorily. The 
associationist perspective realized in these networks results in all represen-
tations being context sensitive, and the degree of success these networks 
achieve in domains that seem to require systematicity is in fact due to this 
context sensitivity. Accordingly, they do not generate encapsulated catego-
ries and cannot generalize over such categories. 

 The architecture of the mammalian cortex, however, provides a way to 
generate encapsulated representations. The trick, as employed in Hawkins ’ s 
Memory Prediction Framework, is to take advantage of the different types 
of processing available within and between cortical minicolumns. Mini-
columns occur at each level of the hierarchy of brain regions and produce 
outputs that are encapsulated from the variation at lower levels that pro-
vides their input. Once generated, these representations can be operated 
on in ways appropriate to them that still involve only local processes. Once 
these operations are applied, the process of unpacking representations at 
higher levels in the hierarchy onto sequences of patterns at lower levels 
assures their application to any members of the category. This, we claim, 
is what Fodor and Pylyshyn should have had in mind in arguing for the 
systematicity of thought, and this is what can be provided by neural net-
works appropriately inspired by what is known about the mammalian 
neocortex.           

 Notes 

 1.   As  Fodor and McLaughlin (1990)  make clear in a subsequent paper, the issue is 

not whether a neural network might happen to exhibit systematicity because of the 

happenstance of its training, but whether it is required to do so as a result of its 

fundamental design. 

 2.   To demonstrate this point,  Borensztajn (2011)  applied the same cluster analysis 

to the data on which  Elman ’ s (1990)  model was trained, and obtained a nearly 

identical hierarchy of categories. This reveals that the hidden unit activations merely 

provide a redescription of the temporal sequence of inputs, but do not, contrary to 

what Elman suggested, add a category structure to it. 

 3.   More recently,  Christiansen and MacDonald (2009)  have compared the insertion 

of a novel word and a learned word from a different category into a test corpus for 

an SRN and claimed that the network correctly generalized to the novel word but 

not the word from another category. But in this case as well, there is no evidence 

that the network really learned the properties of the novel word rather than simply 

ignoring it and thus treating it as essentially a random input.      
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 1   Introduction 

 In this chapter, we address the claims made by  Fodor and Pylyshyn (1988)  
(FP88 hereafter). We strike a middle ground between classic symbolic and 
connectionist perspectives, arguing that cognition is less systematic than 
classicists claim, but that connectionist, neural-processing-based theories 
have yet to explain the extent to which cognition is systematic. We offer 
a sketch of an emerging understanding of the basis of human systematicity 
in terms of interactions between specialized brain systems, leveraging the 
computational principles identified and empirical work done in the quar-
ter-century since the target work was published. We identify a full spectrum 
of processing mechanisms, arrayed along the continuum between context-
sensitivity and combinatorial, systematic processing, each associated with 
different parts of the human brain. We find that attempting to understand 
the role of these different brain areas through the lens of systematicity 
results in a rich picture of human cognitive abilities. 

 FP88 make two central claims about what a classical symbol processing 
system must be capable of, which define a classical model: 

 1.    Mental representations have combinatorial syntax and semantics.    Complex 
representations ( “ molecules ” ) can be composed of other complex represen-
tations (compositionality) or simpler  “ atomic ”  ones, and these combina-
tions behave sensibly in terms of the constituents. 
 2.    Structure sensitivity of processes.    There is a separation between form and 
content, exemplified in the distinction between syntax and semantics, and 
processes can operate on the form (syntax) while ignoring the semantic 
content. 

 Taken together, these abilities enable a system to be fully  systematic  and 
 compositional . Systematicity comes directly from the ability to process the 
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form or structure of something, independent of its specific contents: if you 
can process sentences with a given syntax (e.g., Noun Verb Object) then 
you can process any constituent words in such sentences — you do not have 
to relearn the syntax all over again for each new word. In Chomsky ’ s 
famous example, you can tell that  “ Colorless green ideas sleep furiously ”  
is grammatically correct because you can encode its structural form, inde-
pendent of the (lack of) meaning, while  “ Furiously sleep ideas green color-
less ”  is not grammatically correct. FP88 made the point that connectionist 
models of that time failed to exhibit these features, and thus were insuf-
ficient models of the full power of human cognition ( Fodor and Pylyshyn 
1988 ;  Fodor and McLaughlin 1990 ;  McLaughlin 1993 ). This debate remains 
active to this day, with various critical commentaries ( Aizawa 1997 ; 
 Cummins 1996 ;  Hadley 1994 ;  Horgan and Tienson 1996 ;  Matthews 1997 ; 
 van Gelder 1990 ), anthologies ( Macdonald and Macdonald 1995 ), and a 
book-length treatment ( Aizawa 2003 ). Recently, Bayesian symbolic model-
ers have raised similar critiques of neural network models ( Kemp and 
Tenenbaum 2008 ;  Griffiths, Chater, Kemp, Perfors, and Tenenbaum 2010 ), 
which are defended in return ( McClelland, Botvinick, Noelle, Plaut, Rogers, 
Seidenberg, and Smith 2010 ). 

 Qualitatively, there are two opposing poles in the space of approaches 
one can take in attempting to reconcile FP88 and subsequent critiques 
with the fact that the human brain is, in fact, made of networks of 
neurons. One could argue that this systematic, compositional behavior 
is a defining feature of human cognition, and figure out some way that 
networks of neurons can implement it (the  “ mere implementation ”  
approach). Alternatively, one could argue that the kind of systematicity 
championed by FP88 is actually not an accurate characterization of 
human cognition, and that a closer examination of actual human behav-
ior shows that people behave more as would be expected from networks 
of neurons, and not as would be expected from a classical symbol pro-
cessing system (the  “ dismissive ”  approach). Few connectionist researchers 
have shown much enthusiasm for the project of merely implementing 
a symbolic system, although proof-of-concept demonstrations do exist 
( Touretzky 1990 ). Instead, there have been numerous attempts to dem-
onstrate systematic generalization with neural networks (Bod é n and Nik-
lasson 2000;  Chalmers 1990 ;  Christiansen and Chater 1994 ;  Hadley 1997 ; 
Hadley and Hayward 1997; Niklasson and van Gelder 1994; Smolensky 
1988, 1990b; Smolensky and Legendre 2006). Also, careful examinations 
of language ( Johnson 2004 ) and various aspects of human behavior have 
questioned whether human language, thought, and behavior really are 
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as systematic as it is commonly assumed ( van Gelder and Niklasson 
1994 ). 

 An intermediate approach is to attempt to implement a symbolic system 
using neural networks with the intent of finding out which symbolic 
aspects of systematicity are plausible from a neural perspective and which 
are not ( Lebiere and Anderson 1993 ). This attempt to implement the Adap-
tive Control of Thought — Rational (ACT-R) cognitive architecture using 
standard neural network constructs such as Hopfield networks and feed-
forward networks resulted in a considerable simplification of the architec-
ture. This included both the outright removal of some of its most luxuriant 
symbolic features as neurally implausible, such as chunks of information 
in declarative memory that could contain lists of items and production 
rules that could perform arbitrarily complex pattern-matching over those 
chunks. More fundamentally, neural constraints on the architecture led to 
a modular organization that combines massive parallelism within each 
component (procedural control, declarative memory, visual processing, 
etc.) with serial synchronization of information transfers between compo-
nents. That organization in turn has been validated by localization of 
architectural modules using neural imaging techniques ( Anderson 2007 ). 
In general, this hybrid approach has resulted in an architecture that largely 
preserves the systematicity of the original one while greatly improving its 
neural plausibility. It should be pointed out, though, that systematicity in 
ACT-R is limited by both the skills and knowledge needed to perform any 
of the tasks in which it is demonstrated, and more fundamentally by the 
combination of the symbolic level with a subsymbolic level that controls 
every aspect of its operations (procedural action selection, information 
retrieval from memory, etc.). 

 The reason the systematicity debate has persisted for so long is that both 
positions have merit. In this chapter, we take a  “ middle way ”  approach, 
arguing that purely systematic symbol-processing systems do not provide 
a good description of much of human cognition, but that nevertheless 
there are some clear examples of people approximating the systematicity 
of symbol-processing systems, and we need to understand how the human 
brain can achieve this feat. Going further, we argue that a careful consid-
eration of all the ways in which the human brain can support systematicity 
actually deals with important limitations of the pure symbol-processing 
approach, while providing a useful window into the nature of human 
cognition. From a neural mechanisms perspective, we emphasize the role 
that interactions between brain systems — including the more  “ advanced ”  
brain areas, and specifically the prefrontal cortex/basal ganglia (PFC/BG) 
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system — play in enabling the systematic aspects of human cognition. In 
so doing, we move beyond the limitations of traditional  “ connectionist ”  
neural network models, while remaining committed to only considering 
neural mechanisms that have strong biological support. 

 Although the overall space of issues relevant to this systematicity debate 
is quite high-dimensional and complex, one very important principal 
component can be boiled down to a trade-off between  context-sensitivity 
and combinatoriality.  At the extreme context-sensitivity end of the spec-
trum, the system maintains a lookup table that simply memorizes each 
instance or exemplar, and the appropriate interpretation or response to it. 
Such a system is highly context sensitive, and thus can deal with each situ-
ation on a case-by-case basis, but is unable to generalize to novel situations. 
At the other end, the system is purely combinatorial and processes each 
separable feature in the input independently, without regard for the 
content in other feature channels. Such a purely combinatorial system will 
readily generalize to novel inputs (as new combinations of existing fea-
tures), but is unable to deal with special cases, exceptions, or any kind of 
nonlinear interactions between features. It seems clear that either extreme 
is problematic and that we need a more balanced approach. This balance 
can be accomplished in two ways. First, one could envisage representations 
and information-processing mechanisms with intermediate degrees of 
context-sensitivity. Second, one could envisage a combination of process-
ing systems that specialize on each of these distinct ends of the spectrum. 
These two strategies are not incompatible and can be combined. In this 
chapter, we argue that the brain incorporates functional subsystems that 
fall along various points of the spectrum, with evolutionarily older areas 
being strongly context sensitive and newer areas, notably the prefrontal 
cortex, being more combinatorial (though still not completely combinato-
rial). This limited combinatoriality is expected to produce limited systema-
ticity in behavior. We argue that human cognition exhibits precisely this 
kind of limited systematicity.    

 The limits of human systematicity have been pointed out before 
( Johnson 2004 ;  van Gelder and Niklasson 1994 ). Here we limit ourselves 
to three well-known examples from vision, language, and reasoning. Our 
first example is shown in   figure 8.1 . The context surrounding the middle 
letter of each word is critical for disambiguating this otherwise completely 
ambiguous input. A purely combinatorial system would be unable to 
achieve this level of context-sensitivity. Our second example is from the 
domain of language and illustrates the interplay between syntax and 
semantics. Consider the sentences: 
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 (1a)   Time flies like an arrow. 
 (1b)   Fruit flies like a banana. 

 Again, people automatically take the context into account and interpret 
ambiguous words such as  “ like ”  and  “ flies ”  appropriately based on this 
context. Our final example is from the domain of logical reasoning. Formal 
logic is designed to be completely context invariant and content free. Yet, 
psychological studies with the so-called Wason card selection task have 
shown that human reasoning is strongly sensitive to concrete experience. 
People can easily decide who to card at a bar given a rule such as  “ You can 
only drink if you are over 21, ”  but when given the same logical task in 
abstract terms, their performance drops dramatically ( Griggs and Cox 
1982 ;  Wason and Johnson-Laird 1972 ). Even trained scientists exhibit 
strong content effects on simple conditional inferences ( Kern, Mirels, and 
Hinshaw 1983 ). More examples from other domains (e.g., the underwater 
memory experiments of Godden and Baddeley  1975 ) can easily be added 
to the list, but the above three suffice to illustrate the point. Human cogni-
tion is strongly context sensitive. 

 The standard classicist response to such empirical challenges is to refer 
to the competence – performance distinction ( Aizawa 2003 ) — the idea that 
people are clearly capable of systematicity even if they sometimes fail to 
demonstrate it in particular circumstances. However, commercial symbolic 
AI systems are explicitly designed to have as few performance-related limi-
tations as possible, and yet they face well-known difficulties in dealing 
with commonsense knowledge and practical reasoning tasks that people 
perform effortlessly. Arguably, these difficulties stem from the fact that a 
purely syntactic, formal representational system bottoms out in a sea of 
meaningless  “ atoms ”  and is undermined by the symbol grounding problem 
( Harnad 1990 ). 

 Figure 8.1 
 Example of the need for at least some level of context-sensitivity, to disambiguate 

ambiguous input in middle of each word. This disambiguation happens automati-

cally and effortlessly in people. 
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 On the other hand, the classicist position also has merit. In some cir-
cumstances, it is desirable to be as context  insensitive  as possible. Perhaps 
the strongest examples come from the domain of deductive inference. 
Changing the meaning of a term halfway through a logical proof leads to 
the fallacy of equivocation. Consider the following fallacious argument: 

 (2a)   A feather is light. 
 (2b)   What is light cannot be dark. 
 (2c)   *Therefore, a feather cannot be dark. 

 Here the word  “ light ”  appears in two different (context-dependent) senses 
in the two premises, which breaks the inferential chain. All tokens of a 
symbol in logic must have identical meaning throughout the proof or else 
the proof is not valid. Despite their natural tendency for context specificity, 
we can appreciate Aristotle ’ s basic insight that the validity of deductive 
inference depends solely on its form and not on its content. We can learn 
to do logic, algebra, theoretical linguistics, and other highly abstract and 
formal disciplines. This fact requires explanation, just as the pervasive 
tendency for context-sensitivity requires explanation. Classical connec-
tionist theories explain context-sensitivity well, but have yet to provide 
a fully satisfying explanation of the limited systematicity that people 
demonstrate. 

 We see the trade-off between context-sensitivity and combinatoriality 
as emblematic of the systematicity debate more generally. The literature 
is dominated by attempts to defend positions close to the extremes of 
the continuum. Our position, by contrast, recognizes that human cogni-
tion seems better characterized as a combination of systems operating at 
different points along this continuum, and for good reason: it works better 
that way. Thus, FP88 are extreme in advocating that human cognition 
should be characterized as purely combinatorial. Taken literally, the pure 
symbol-processing approach fails to take into account the considerable 
context-sensitivity that people leverage all the time that makes us truly 
smart, giving us that elusive common sense that such models have failed 
to capture all these years (and indeed Fodor himself has more recently 
noted that context-sensitivity of most aspects of human cognition is 
among the clearest and most notable findings of cognitive psychology; 
 Fodor 2001 ). In other words, FP88 focus on the sharp, pristine  “ compe-
tence ”  tip of the cognitive iceberg, ignoring all the rich contextual com-
plexity and knowledge embedded below the surface, which can be revealed 
in examining people ’ s actual real-world performance. On the other side, 
basic 1980s-style connectionist networks are strongly weighted toward 
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the context-sensitivity side of the spectrum, and fail to capture the 
considerable systematicity that people can actually exhibit, for example, 
when confronting novel situations or systematic domains such as 
syntactic processing or mathematics. For example, while McClelland and 
colleagues have shown that such networks can capture many aspects of 
the regularities and context-sensitivities of English word pronunciation 
( Plaut, McClelland, Seidenberg, and Patterson 1996 ), they also had to 
build into their network a precisely hand-tuned set of input features that 
balanced context-sensitivity and combinatoriality — in other words, the 
modelers, not the network, solved important aspects of this trade-off. 
Furthermore, such models are nowhere near capable of exhibiting the 
systematicity demonstrated in many other aspects of human cognition 
(e.g., in making grammaticality judgments on nonsense sentences, as in 
Chomsky ’ s example). 

 As an example of the need to integrate multiple aspects of human cog-
nition, Anderson and Lebiere (2003) proposed a test for theories of cogni-
tion called the Newell test. It consisted of a dozen criteria spanning the 
full range from pure combinatoriality (e.g.,  “ behave as an almost arbitrary 
function of the environment ” ) to high context-sensitivity (e.g.,  “ behave 
robustly in the face of error, the unexpected, and the unknown ” ). They 
evaluated two candidate theories, ACT-R and classical connectionism, and 
found them both scoring well against some criteria and poorly against 
others. Strengths and weaknesses of the two theories were mostly comple-
mentary, indicating that human cognition falls at some intermediate point 
on the combinatorial – context-sensitive spectrum. 

 Just as we find extremism on the context-sensitivity versus combina-
toriality dimension to be misguided, we similarly reject extremist argu-
ments narrowly focused on one level of Marr ’ s famous three-level 
hierarchy of computation, algorithm, and implementation. Advocates of 
symbol-processing models like to argue that they capture the computa-
tional level behavior of the cognitive architecture and that everything 
else is  “ mere implementation. ”  From the other side, many neuroscientists 
and detailed neural modelers ignore the strong constraints that can be 
obtained by considering the computational and algorithmic competencies 
that people exhibit, which can guide top-down searches for relevant 
neural-processing mechanisms. We argue for a balanced view that does 
not single out any privileged level of analysis. Instead, we strive to inte-
grate multiple constraints across levels to obtain a convergent understand-
ing of human cognitive function ( Jilk, Lebiere, O ’ Reilly, and Anderson 
2008 ). 
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 This convergent, multilevel approach is particularly important given 
our central claim that different brain areas lie at different points on the 
context-sensitivity versus combinatoriality continuum (and differ in other 
important ways as well) — the biological data (at the implementational 
level) provide strong constraints on the nature of the computations in 
these different brain areas. In contrast, a purely computational-level 
account of this nature would likely be underconstrained in selecting the 
specific properties of a larger set of specialized processing systems. Thus, 
most purely computational-level accounts, such as that of FP88, tend to 
argue strongly for a single monolithic computational-level system as cap-
turing the essence of human cognition, whereas we argue above that such 
an approach necessarily fails to capture the full spectrum of human cogni-
tive functionality. 

 In the following, we present a comprehensive overview of a variety of 
ways in which neural networks in different parts of the brain can overcome 
a strong bias toward context-sensitive, embedded processing that comes 
from the basic nature of neural processing. From both an evolutionary and 
online processing perspective (processing recapitulates phylogeny?), we 
argue that more strongly context-sensitive processing systems tend to be 
engaged first, and if they fail to provide a match, then progressively more 
combinatorial systems are engaged, with complex sequential information 
processing supported by the PFC/BG system providing a  “ controlled pro-
cessing ”  system of last resort. 

 This is similar to the roles of the symbolic and subsymbolic levels in 
hybrid architectures such as ACT-R. The subsymbolic level is meant to 
replicate many of the adaptive characteristics of neural frameworks. For 
instance, the activation calculus governing declarative memory includes 
mechanisms supporting associative retrieval such as spreading activation, 
as well as context-sensitive pattern matching such as partial matching 
based on semantic similarities corresponding directly to distributed repre-
sentations in neural networks. A mechanism called blending ( Lebiere 1999 ) 
aggregates together individual chunks of information in a way similar to 
how neural networks blend together the individual training instances that 
they were given during learning. Together with others that similarly control 
procedural flow, these mechanisms constitute the highly context-sensitive, 
massively parallel substrate that controls every step of cognition. If they 
are successful in retrieving the right information and selecting the correct 
action, processing just flows with little awareness or difficulty (for instance, 
when the right answer to a problem just pops into one ’ s head). But if they 
fail, then the mostly symbolic, sequential level takes over, deploying pains-
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taking backup procedures at considerable effort to maintain the proper 
context information and select the right processing step at each moment. 

 Our most systematic, combinatorial computational model of this PFC/
BG system demonstrates how an approximate, limited form of indirect 
variable binding can be supported through observed patterns of intercon-
nectivity among two different PFC/BG areas ( Kriete, Noelle, Cohen, and 
O ’ Reilly submitted ). We have shown that this model can process items in 
roles they have never been seen in before, a capability that most other 
neural architectures entirely fail to exhibit. We then argue how this basic 
indirection dynamic can be extended to handle limited levels of embed-
ding and recursion, capabilities that appear to depend strongly on the most 
anterior part of the PFC (APFC or frontopolar PFC, BA10;  Christoff, Prab-
hakaran, Dorfman, Zhao, Kroger, Holyoak, and Gabrieli 2001 ;  Bunge, 
Helskog, and Wendelken 2009 ;  Koechlin, Ody, and Kouneiher 2003 ;  Stocco, 
Lebiere, O ’ Reilly, and Anderson 2012 ). Thus, overall, we identify a full 
spectrum of processing mechanisms, arrayed along the continuum between 
context-sensitivity and combinatorial, systematic processing, and associ-
ated with different parts of the human brain. We find that attempting to 
understand the role of these different brain areas through the lens of sys-
tematicity results in a rich picture of human cognitive abilities. 

 2   Biological Neural Network Processing Constraints 

 Neuroscience has come a very long way in the intervening years since 
 Fodor and Pylyshyn ’ s (1988)  seminal article. Yet, fundamentally, it has not 
moved an inch from the core processing constraints that were understood 
at that time and captured in the first generation of neural network models. 
What has changed is the level of detail and certainty with which we can 
assert that these constraints hold. Fundamentally, information processing 
in the neocortex takes place through weighted synaptic connections 
among neurons that adapt through local activity-dependent plasticity 
mechanisms. Individual pyramidal neurons in the neocortex integrate 
roughly 10,000 different synaptic inputs, generate discrete action potential 
spikes, and send these along to a similar number of downstream recipients, 
to whom these hard-won spikes are just a tiny drop in a large bucket of 
other incoming spikes. And the process continues, with information 
flowing bidirectionally and being regulated through local inhibitory inter-
neurons, helping to ensure things do not light up in an epileptic fit. 

 Somehow, human information processing emerges from this very basic 
form of neural computation. Through amazing interventions like the ZIP 
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molecule ( Shema, Haramati, Ron, Hazvi, Chen, Sacktor, and Dudai 2011 ), 
which resets the learned arrangement of excitatory synaptic channels (and 
many other convergent experiments), we know with high confidence that 
learning and memory really do boil down to these simple local synaptic 
changes. Just as the early neural network models captured, processing and 
memory are truly integrated into the same neural substrate. Indeed, every-
thing is distributed across billions of neurons and trillions of such syn-
apses, all operating in parallel. These basic constraints are not in dispute 
by any serious neuroscientist working today. 

 The implications of this computational substrate favor context-sensi-
tive, embedded processing, in contrast to the pure combinatoriality of the 
symbol processing paradigm. First, neurons do not communicate using 
symbols, despite the inevitable urge to think of them in this way ( O ’ Reilly 
2010 ). Spikes are completely anonymous, unlabeled, and nearly insignifi-
cant at an individual level. Thus, the meaning of any given spike is purely 
a function of its relationship to other spikes from other neurons, in the 
moment and over the long course of learning that has established the 
pattern of synaptic weights. In effect, neurons live in a big social network, 
learning slowly who they can trust to give them reliable patterns of activa-
tion. They are completely blind to the outside world, living inside a dark 
sea, relying completely on hearsay and murmurs to try to piece together 
some tiny fragment of  “ meaning ”  from a barrage of seemingly random 
spikes. That this network can do anything at all is miraculous, and the 
prime mover in this miracle is the learning mechanism, which slowly 
organizes all these neurons into an effective team of information-process-
ing drones. Armed with many successful learning models and a clear con-
nection between known detailed features of synaptic plasticity mechanisms 
and effective computational learning algorithms (O ’ Reilly, Munakata, 
Frank, Hazy, et al. 2012), we can accept that all this somehow manages to 
work. 

 The primary constraints on neural information processing are that each 
neuron is effectively dedicated to a finite pattern-detection role, where it 
sifts through the set of spikes it receives, looking for specific patterns and 
firing off spikes when it finds them. Because neurons do not communicate 
in symbols, they cannot simply pass a symbol across long distances among 
many other neurons, telling everyone what they have found. Instead, each 
step of processing has to rediscover meaning, slavishly, from the ground 
up, over time, through learning. Thus, information processing in the brain 
is fully embedded in dedicated systems. There is no such thing as  “ trans-
parency ” ; it is the worst kind of cronyism and payola network, an immense 
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bureaucracy. Everything is who you know — who you are connected to. We 
(at least those of us who love freedom and independence) would absolutely 
hate living inside our own brains. 

 This kind of network is fantastic for rapidly processing specific informa-
tion, dealing with known situations and quickly channeling things down 
well-greased pathways — in other words, context-sensitive processing. 
However, as has been demonstrated by many neural network models ( Plaut 
et al. 1996 ), exceptions, regularities, interactions, main effects — all manner 
of patterns can be recognized and processed in such a system, with suffi-
cient learning. 

 From an evolutionary perspective, it is not hard to see why this is 
a favored form of information processing for simpler animals. We argue 
that the three more evolutionarily ancient brain structures — the basal 
ganglia, cerebellum, and hippocampus — all employ a  “ separator ”  process-
ing dynamic, which serves to maximize context-sensitivity and minimize 
possible interference from other possibly unrelated learning experiences. 
In each of these areas, the primary neurons are very sparsely active, and 
thus tend to fire only in particular contexts. However, the most evolution-
arily recent brain area, the neocortex, has relatively higher levels of neural 
activity, and serves to integrate across experiences and extract statistical 
regularities that can be combinatorially recombined to process novel situ-
ations. In prior work, the extreme context-sensitivity of the sparse repre-
sentations in the hippocampus has been contrasted with the overlapping, 
more systematic combinatorial representations in the neocortex ( McClel-
land, McNaughton, and O ’ Reilly 1995 ), yielding the conclusion that both 
of these systems are necessary and work together to support the full range 
of human cognition and memory functionality. 

 Next, we show how, against this overall backdrop of context-sensitive, 
embedded neural processing, information can be systematically trans-
formed through cascades of pattern detectors, which can extract and 
emphasize some features, while collapsing across others. This constitutes 
the first of several steps toward recovering approximate symbol-processing 
systematicity out of the neural substrate. 

 3   The Systematicity Toolkit Afforded by Different Neural Systems 

 Here we enumerate the various cognitive-level capabilities that contribute 
to human systematicity and discuss how we think they are deployed to 
enable people to sometimes approximate combinatorial symbol process-
ing. The crux of FP88 ’ s argument rests on the observation that people 



202 Randall C. O’Reilly et al.

exhibit a level of systematicity that is compatible with the symbol process-
ing model, and not with traditional connectionist models. Technically, 
systematicity is a relation among entities that are internal to the cognitive 
system. The  systematicity of representation  is a relation among certain rep-
resentations, the  systematicity of inference  is a relation among the capacities 
to perform certain inferences, and so forth ( Aizawa 2003 ;  Johnson 2004 ). 
As these internal relations cannot be observed directly, the systematicity 
hypothesis can be tested only indirectly. Researchers have reached a broad 
consensus that  generalization  — the ability to apply existing knowledge to 
some kind of novel case — is the primary evidence for systematicity. As the 
structural overlap between the existing knowledge and the novel case can 
vary along a continuum, generalization comes in degrees. By implication, 
systematicity also comes in degrees ( Hadley 1994 ;  Niklasson and van 
Gelder 1994 ). Thus, it is counterproductive to view the systematicity debate 
as a dichotomous choice between two irreconcilable opposites. A more 
balanced view seems much more appropriate. In support of this view, the 
remainder of this chapter enumerates the sources of graded generalization 
that exist in neural networks and articulates how they contribute to the 
increasingly systematic patterns of generalization demonstrated by people. 

 3.1   Categorical Abstraction (Neocortex) 
 Networks of neurons, typically in the context of a hierarchical organization 
of representations, can learn to be sensitive to some distinctions in their 
inputs while ignoring others. The result is the formation of a categorical 
representation that abstracts over some irrelevant information while focus-
ing on other relevant dimensions of variation. When processing operates 
on top of such categorical abstractions, it can be highly systematic, in that 
novel inputs with appropriate features that drive these categorical repre-
sentations can be processed appropriately. Examples include commonsense 
categories ( “ dog, ”   “ cat, ”   “ chair, ”  etc.), and also less obvious but important 
categories such as  “ up, ”   “ down, ”  and so on. We know, for example, that 
the ventral visual stream, likely common to most mammals, systematically 
throws away spatial information and focuses contrasts on semantically 
relevant visual categorization (Ungerleider and Mishkin 1982; Goodale and 
Milner 1992). The abstract  “ symbolic ”  categories of small integer numbers 
have been demonstrated to exist in at least some form in monkeys and 
other animals, including in PFC recordings ( Nieder, Freedman, and Miller 
2002 ). In all of these cases, abstraction only works if an input has certain 
features that drive learned synaptic pathways that lead to the activation 
of a given abstract category representation. Thus, this form of generaliza-
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tion or systematicity implies a certain scope or basin of feature space over 
which it operates. But this can nevertheless be rather broad;  “ thing ”  and 
 “ one ”  are both rather severe abstractions that encompass a very broad 
scope of inputs. Categorical abstraction thus yields representations that 
can be used more systematically, since they are effectively stripped of 
context. Furthermore, it is possible to use top-down attentional processes 
to emphasize (or even create) certain feature activations in order to influ-
ence the categorization process and make it considerably more general —
 this is an important  “ hook ”  that the PFC can access, as we describe later. 

 One key limitation of abstraction is that, by definition, it requires 
throwing away specific information. This can then lead to confusion and 
 “ binding errors ”  when multiple entities are being processed, because it can 
be difficult to keep track of which abstraction goes with which concrete 
entity. For example, perhaps you know someone who tends to use very 
general terms like  “ thing ”  and  “ this ”  and  “ that ”  in conversations — it is 
easy to lose track of what such people are actually saying. 

 3.2   Relational Abstraction (Neocortex) 
 This is really a subtype of categorical abstraction, but one which abstracts 
out the relationship between two or more items. For example,  “ left of ”  or 
 “ above, ”  or  “ heavier ”  are all relational abstractions that can be easily learned 
in neural networks, through the same process of enhancing some distinc-
tions while collapsing across others ( O ’ Reilly and Busby 2002 ;  Hinton 
1986 ). Interestingly, there is often an ambiguity between which way the 
relationship works (e.g., for  “ left of, ”  which object is to the left and which 
is to the right?), which must be resolved in some way. One simple way is 
to have a dynamic focus of attention, which defines the  “ subject ”  or 
 “ agent ”  of the relationship. In any case, this relational ability is likely 
present in parietal spatial representations, and rats routinely learn  “ rules ”  
such as  “ turn right ”  in mazes of various complexity. Indeed, it may be that 
motor actions, which often need to be sensitive to this kind of relational 
information and relatively insensitive to semantic  “ what ”  pathway informa-
tion, provide an important driver for learning these relational abstractions 
( Regier and Carlson 2001 ). Once learned, these relational representations 
provide crucial generalizable ingredients for structure-sensitive processing: 
they are abstract representations of structure that can drive further abstract 
inferences about the structural implications of some situation, irrespective 
of the specific  “ contents. ”  For example, a relational representation of physi-
cal support, such as  “ the glass is on the table ”  can lead to appropriate 
inferences for what might happen if the glass gets pushed off the table. 
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These inferences will automatically apply to any entity on a tablelike surface 
(even though it may seem that babies learn this fact purely through exhaus-
tive, redundant enumeration at their high chairs). 

 We think these relational and inferential reasoning processes are present 
in a wide range of animals and can readily be inferred from their behavior. 
However, there are strong limits to how many steps of such reasoning can 
be chained together, without the benefits of an advanced PFC. Further-
more, the binding errors and tracking problems associated with abstract 
representations, described above, apply here as well. Thus, these relational 
abstractions support making abstract inferences about the implications of 
structural relationships, all at an abstract level, but it requires quite a bit 
of extra machinery to keep track of all the specific items entering into these 
relationships, and requires dereferencing the abstract inference back out 
to the concrete level again. Again, we see the PFC and its capacity for 
maintaining and updating temporary variable bindings as key for this latter 
ability. 

 3.3   Combinatorial Generalization (Neocortex) 
 Despite a bias toward context-sensitivity, it is possible for simple neural 
networks to learn a basic form of combinatoriality — to simply learn to 
process a composite input pattern in terms of separable, independent parts 
( Brousse 1993 ;  O ’ Reilly 2001 ). These models develop  “ slot-based ”  process-
ing pathways that learn to treat each separable element separately and can 
thus generalize directly to novel combinations of elements. However, they 
are strongly constrained in that each processing slot must learn indepen-
dently to process each of the separable elements, because as described 
above, neurons cannot communicate symbolically, and each set of syn-
apses must learn everything on its own from the ground up. Thus, such 
systems must have experienced each item in each  “ slot ”  at least a few times 
to be able to process a novel combination of items. Furthermore, these 
dedicated processing slots become fixed architectural features of the 
network and cannot be replicated ad hoc — they are only applicable to 
well-learned forms of combinatorial processing with finite numbers of 
independent slots. In short, there are strong constraints on this form of 
combinatorial systematicity, which we can partially overcome through the 
PFC-based indirection mechanism described below. Nevertheless, even 
within these constraints, combinatorial generalization captures a core 
aspect of the kind of systematicity envisioned by FP88, which manifests 
in many aspects of human behavior. For example, when we prepare our 
participants for a novel experimental task, we tell them what to do using 
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words that describe core cognitive processing operations with which they 
are already familiar (e.g., push the right button when you see an A followed 
by an X, left otherwise); it is only the particular combination of the opera-
tions and stimuli that is novel. In many cases, a simple slot-based combi-
natorial network can capture this level of generalization (Huang, Hazy, 
Herd, and O ’ Reilly, in press). 

 3.4   Dynamic Gating (Basal Ganglia and PFC) 
    The basal ganglia (BG) are known to act as a dynamic gate on activations 
in frontal cortex, for example in the case of action selection, where the BG 
can  “ open up the gate ”  for a selected action among several that are being 
considered ( Mink 1996 ). Anatomically, this gating takes place through a 
seemingly over-complex chain of inhibitory connections, leading to a 
modulatory or multiplicative disinhibitory relationship with the frontal 
cortex. In the PFC, this dynamic operates in the context of updating 
working memory representations, where the BG gating signal determines 
when and where a given piece of information is updated and maintained 
( Frank, Loughry, and O ’ Reilly 2001 ;  O ’ Reilly and Frank 2006 ). In many 
ways, this is equivalent to a logic gate in a computer circuit, where a 
control channel gates the flow of information through another channel 
( O ’ Reilly 2006 ). It enables an important step of  content-independent  process-
ing, as in structure-sensitive processing. Specifically, the BG gate can decide 
where to route a given element of content information, based strictly on 
independent control signals, and not on the nature of that content infor-
mation. In the example shown in   figure 8.2 ,  “ syntactic ”  form information 
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 Figure 8.2 
 Illustration of how the basal ganglia gating dynamic with PFC can separately control 

the functional role assignment of other information in a content-independent 

fashion. 
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(passive vs. active verb, cued by presence or absence of keyword  “ was ” ) 
can determine whether the preceding word is routed into an  “ agent ”  slot 
versus a  “ patient ”  slot in working memory. As this example makes clear, 
dynamic gating also helps to resolve the problem of dedicated slots for 
combinatorial generalization: by being able to dynamically route informa-
tion into different functional slots, these slots can become more general-
ized, reducing the slot-explosion problem. However, it is essential to 
appreciate that all of this machinery must be trained up over time: the BG 
gating system learns through trial-and-error experience the gating strate-
gies that lead to reward ( O ’ Reilly and Frank 2006 ;  Hazy, Frank, and O ’ Reilly 
2006 ,  2007 ), and the PFC  “ slots ”  (anatomically referred to as  “ stripes ” ) 
must learn to encode any information that they might maintain, while 
any other brain area that uses this maintained information must also learn 
to decode it (such are the basic constraints of the neural substrate, as 
articulated above). Thus, whatever systematicity this gating system affords 
must develop slowly over extensive learning experience, consistent with 
what we know about human symbol-processing abilities. 

 3.5   Active Memory Juggling and Top-Down Control (PFC/BG) 
 The ability to  “ juggle ”  activation states in the PFC, through the dynamic 
BG-mediated gating mechanism, can lead to a form of computation that 
escapes some of the limitations of synaptic weights (while still operating 
within the general confines of learning). Specifically, active maintenance 
plays a role like random access memory (RAM) or registers in a traditional 
computer architecture: whatever is being actively maintained can be 
rapidly updated (in a matter of a few hundreds of milliseconds), instead 
of requiring slow repeated learning over time. Thus, I can tell you to  “ pay 
attention to the ink color ”  in the ubiquitous Stroop task, and you can 
dynamically gate in an active representation in PFC that will drive activa-
tion of color-processing areas in posterior cortex ( Herd, Banich, and 
O ’ Reilly 2006 ;  Cohen, Dunbar, and McClelland 1990 ). Then, on the very 
next trial, you can immediately alter your behavior by gating in a  “ word 
reading ”  PFC representation and paying attention to the letters in the word 
instead of the ink color. As noted above, these PFC representations them-
selves have to be learned slowly over time in order to have the appropriate 
impact on processing elsewhere in the brain, but dynamically they can be 
rapidly updated and deactivated, leading to a flexibility that is absent 
without this PFC/BG mechanism. In principle, this kind of activation-
based juggling can implement an abstract  “ state machine ”  where the active 
state at one point in time conditions what gets updated at the next, and 
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relatively arbitrary sequences of such state transitions can be flexibly trig-
gered. In the ACT-R architecture, production firing serves to update the 
active state of buffers, which we associate with the PFC active maintenance 
state ( Jilk et al. 2008 ), demonstrating the power of this activation-based 
state machine for arbitrary symbolic-like processing. However, relative to 
ACT-R, the biology of the BG and PFC place stronger constraints on the 
 “ matching conditions ”  and  “ right-hand side ”  buffer update operations 
that result from production firing, as we discuss in greater detail below. 
Exactly how strong these constraints are and their implications for overall 
processing abilities in practice largely remains to be seen, pending develop-
ment of increasingly sophisticated cognitive processing models based on 
this PFC/BG architecture and relevant learning mechanisms. 

 We have started making some progress in bridging that gap by imple-
menting a detailed neural model of how the basal ganglia can implement 
the ACT-R procedural module in routing information between cortical 
areas associated with other ACT-R modules ( Stocco, Lebiere, and Anderson 
2010 ). Because of prior factoring of neural constraints in the evolution of 
the ACT-R architecture, production conditions and actions had already 
become naturally parallelizable, leading to a straightforward neural imple-
mentation. However, the detailed neural model reflecting the specific 
topology and capacity of the basal ganglia has suggested new restrictions, 
such as on the amount of information transfer that can occur within a 
single production. At the symbolic level, this is accomplished by a process 
of variable binding that transfers information from the condition side of 
the production to its action side. In terms of the neural model, that vari-
able binding is simply realized by gating neural channels between cortical 
areas. 

 3.6   Episodic Variable Binding (Hippocampus) 
 The hippocampus is well known to be specialized for rapidly binding arbi-
trary information together in the form of a  conjunctive representation , which 
can later be recalled from a partial cue ( Marr 1971 ;  McClelland et al. 1995 ; 
 O ’ Reilly 1995 ;  O ’ Reilly and Rudy 2001 ). This is very handy for remember-
ing where specific objects are located (e.g., where you parked your car), the 
names of new people you meet, and a whole host of other random associa-
tions that need to be rapidly learned. For symbol processing, this rapid 
arbitrary binding and recall ability can obviously come in handy. If I tell 
you  “ John loves Mary, ”  you can rapidly bind the relational and abstract 
categorical representations that are activated, and then retrieve them later 
through various cues ( “ who loves Mary? ”   “ John loves who? ” ). If I go on 
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and tell you some other interesting information about Mary ( “ Mary was 
out last night with Richard ” ) then you can potentially start encoding and 
recalling these different pieces of information and drawing some infer-
ences, while not losing track of the original facts of the situation. However, 
hippocampal episodic memory also has limitations — it operates one 
memory at a time for both encoding and retrieval (which is a consequence 
of its voracious binding of all things at once), and it can take some work 
to avoid interference during encoding, and generate sufficiently distinct 
retrieval cues to get the information back out. But there is considerable 
evidence that people make extensive use of the hippocampus in complex 
symbolic reasoning tasks — undoubtedly an important learned skill that 
people develop is this ability to strategically control the use of episodic 
memory. Specific areas of PFC are implicated as these episodic control 
structures, including medial areas of the most anterior portion of PFC 
( Burgess, Dumontheil, and Gilbert 2007 ).    

 3.7   Indirection-Based Variable Binding (PFC/BG) 
 The final, somewhat more speculative specialization we describe has the 
greatest power for advancing the kind of systematicity envisioned by FP88. 
By extending the basic BG dynamic gating of PFC in a set of two intercon-
nected PFC areas, it is possible to achieve a form of  indirection  or represen-
tation by (neural) address, instead of representing content directly ( Kriete 
et al. submitted ) (  figure 8.3 ). Specifically, one set of PFC stripes (region A) 
can encode a pattern of activity that drives gating in the BG for a different 
set of PFC stripes (region B); region A can then act as a  “ puppet master, ”  
pulling the strings for when the information contained in region B is 
accessed and updated. This then allows region A to encode the structural 
form of some complex representation (e.g., Noun, Verb, and Object roles 
of a sentence), completely independent of the actual content information 
that fills these structural roles (which is encoded in the stripes in region 
B). Critically, Kriete et al. showed that such a system can generalize in a 
much more systematic fashion than even networks using PFC/BG gating 
dynamics (which in turn generalized better than those without gating) 
(  figure 8.4 ). Specifically, it was able to process a novel role filler item that 
had never been processed in that role before, because it had previously 
learned to encode the  BG address  where that content was stored. Thus, 
assuming that the PFC content stripes can encode a reasonable variety of 
information, learning only the addresses and not the contents can lead to 
a significant increase in the scope of generalization. Nevertheless, as in all 
the examples above, all of these representations must be learned slowly in 
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 Figure 8.3 
 The Kriete et al. (submitted) indirection model, performing the simple sentence 

encoding task, demonstrating indirection in the PFC/BG working memory system. 

Three-word sentences are encoded one word at time, with each word associated with 

a role ( “ Agent, ”   “ Verb, ”  or  “ Patient ” ). After encoding the sentence, the network is 

probed for each word using the associated roles (e.g.,  “ What was the  ‘ Agent ’  of the 

sentence? ” ). The shaded layers indicate currently active inputs. (A) One step of the 

encoding process for the sentence  “ Bob ate steak ”  in the PFC/BG working memory 

(PBWM) indirection model. The word  “ Ate ”  is presented to the network along with 

its current role ( “ Verb ” ) and the instruction  “ Store ”  to encode this information for 

later retrieval. In this example, the word  “ Ate ”  is stored in Stripe2 of PFC filler stripes 

(left side of figure). The identity/location of Stripe2 is subsequently stored in the 

Verb stripe of PFC role stripes (right side of figure). The same set of events occurs 

for each of the other two words in the sentence (filling the agent and patient roles). 

(B) One step of the recall process. A role ( “ Patient ”  in the example) and the instruc-

tion  “ Recall ”  are presented as input. This drives output gating of the address infor-

mation stored by that role stripe (highlighted by the dashed arrow), which in turn 

causes the BG units corresponding to that address to drive output gating of the 

corresponding filler stripe, thus outputting the contents of that stripe ( “ Steak ” ).  
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 Figure 8.4 
 Accuracy performance of the indirection-based network juxtaposed against compari-

son networks, for three increasingly challenging generalization tasks. The results are 

grouped by task: standard, anti-correlation, and generative. Bars correspond to the 

four networks (from left to right): SRN, basic PBWM network with maintenance 

only, PBWM output gating network, and PBWMindirection network. The indirec-

tion network is the only one capable of achieving high levels of performance across 

all the tasks. 
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the first place. Our model demonstrates that, with appropriate connectivity 
and the same learning mechanisms used for prior PFC/BG models ( O ’ Reilly 
and Frank 2006 ), this learning can happen naturally.    

 4   Putting It All Together 

 Having enumerated a range of different mechanisms, each of which pro-
motes systematicity in a specific way, we now attempt to spell out some 
particular examples for how a complex sequence of cognitive operations, 
which achieves a limited approximation of classical symbol processing, 
could unfold through the interactions of these systems. Note that these 
examples are based on informed speculation, not hard data, and we do not 
currently have well-validated biologically based models that capture the 
behavior we describe. Nevertheless, we consider it plausible that this is how 
it is actually solved in the human brain, based on a variety of sources too 
numerous to explicate here. Moreover, this speculation is informed by 
models of similar tasks (e.g., ( Lebiere 1999 ) in higher-level frameworks for 
which a correspondence to the neural architecture exists, such as ACT-R 
(see the section on the SAL framework below). Recently, this methodology 
of developing higher-level symbolic models to guide the structure and 
content of neural models has been applied to the complex task of sense-
making ( Lebiere, Pirolli, Thomson, Paik, Rutledge-Taylor, Staszewski, and 
Anderson submitted ). 

 First, consider the case of multidigit mental arithmetic, for example, 
multiplying 42  ×  17. This requires a systematic sequence of cognitive opera-
tions and keeping track of partial products, which most adults can apply 
to arbitrary numbers (i.e., in a fully systematic, content-independent 
manner). Before we consider how this happens in the general case, it is 
important to appreciate that if the problem was 10  ×  42, for example, one 
would use a much faster context sensitive special-case process to arrive at 
the answer — people automatically and effortlessly recognize and apply 
these special case solutions, demonstrating the primacy of context-sensi-
tivity as we argued above. Furthermore, in the well-studied domain of chess 
experts, much of the expertise is associated with this special-case pattern 
recognition ability and not with optimization of a fully general-purpose 
algorithm, whereas symbolic computer models of chess have the exact 
opposite profile, optimizing a general-purpose search algorithm instead of 
memorizing a bunch of special cases ( Chase and Simon 1973 ). 

 This fundamental distinction between cognitive and algorithmic 
solutions arises from the hardware available to those classes of solutions. 
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Traditional CPUs are able to flawlessly execute billions of operations per 
second, but the access to the largest memory store is considerably slower 
and sequential. Thus, algorithmic solutions evolved to emphasize compu-
tation over memory. Neural hardware, on the other hand, is the mirror 
image: an excruciatingly slow and error-prone central loop (on the order 
of 20Hz, about eight times slower than off-the-shelf CPUs), but an extremely 
powerful, context-sensitive, massively parallel access to long-term memory. 
Cognitive solutions, therefore, evolved to emphasize memory over com-
putation and, when computation is necessary, attempt to cache its results 
as efficiently and automatically as possible. 

 To begin on the general-case multidigit multiplication problem, people 
will almost certainly start by encoding the problem into hippocampal 
episodic memory, so they can retrieve it when interference overtakes the 
system and they lose track of the original problem. The next step is to 
recall an overall strategy for such problems, and the BG gates an abstract 
encoding of this strategy into an anterior portion of dorsal-lateral PFC 
(DLPFC). This  “ strategy plan ”  representation then activates the first step 
of the strategy, in a more posterior portion of DLPFC, which then drives 
top-down perceptual biasing in the parietal cortex to focus attention on 
the ones decimal place numbers (i.e., the right-most digits). Considerable 
categorical abstraction is required to even extract a numerical value from 
a particular pattern of light and dark on the retina, and abstract relational 
representations are required to focus on the appropriate portions of the 
digits, including things like top, bottom, right, and so on. 

 In any case, you end up activating the sub-problem of multiplying 7  ×  
2, which should activate the answer of 14 through well-learned parietal or 
perhaps temporal verbally mediated representations, perhaps even with 
support from the hippocampus depending on your educational status and 
level of recent practice. Having produced this answer, you cache away this 
partial product either by gating it into another available stripe in PFC 
(perhaps in verbal and/or numeric coding areas), or by encoding it episodi-
cally in the hippocampus (or likely both, as the hippocampus is automati-
cally encoding everything). Next, guided by the strategic plan, you move 
on to the tens position in the first number, multiplying 7  ×  4, encoding 
the 28, and so on. After each step, the partial products must be tagged and 
encoded in such a way that they can later be accessed for the final addition 
step, which in itself may require multiple substeps, with carry-overs and 
so on. An indirection-based variable-binding solution may be employed 
here, where each partial product is encoded in a different stripe, and 
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 “ tagged ”  with the functional role of an ordinal list of items to add. Of 
course, items may be added incrementally in an opportunistic, context-
sensitive manner, and various permutations on an overall strategy may be 
employed. But clearly, considerable  “ activation-based juggling ”  of informa-
tion is required, along with likely several strategic hippocampal episodic 
encoding and retrieval steps to maintain the partial products for subse-
quent processing. 

 At some level of description, this could be considered to be a kind of 
classical symbol-processing system, with the hippocampus playing the role 
of a  “ tapelike ”  memory system in the classical Turing model and DLPFC 
coordinating the execution of a mental program that sequences cognitive 
operations over time. We do not disagree that, at that level of description, 
the brain is approximating a symbol-processing system. However, it is 
essential to appreciate that each element in this processing system has 
strong neurally based constraints, such that the capacity to perform this 
task degrades significantly with increasing number size, in a way that is 
completely unlike a true symbol-processing system, which can churn along 
on its algorithm indefinitely, putting items on the stack and popping them 
off at will. In contrast, the human equivalent of the  “ stack ”  is severely 
limited in capacity, subject to all manner of interference, and likely dis-
tributed across multiple actual brain systems. Furthermore, as noted above, 
the human brain will very quickly recognize shortcuts and special cases 
(e.g., starting with 10  ×  42 as an easier problem and adjusting from there), 
in ways that no Turing machine would be able to. Thus, the bias toward 
context-sensitive processing results in very rapid and efficient processing 
of familiar cases — a perfectly sensible strategy for a world where environ-
ments and situations are likely to contain many of the same elements and 
patterns over time. 

 Indeed, a symbolic architecture such as ACT-R operates exactly in the 
way described above, with the hippocampus corresponding to declarative 
memory and the DLPFC corresponding to the retrieval buffer through 
which cognitive operations would flow for execution by the procedural 
system. Limitations arise through the subsymbolic level controlling the 
operations of the symbolic level. Chunks may exist perfectly crisp and 
precise at the symbolic level, but their activation ebbs and flows with the 
pattern of occurrence in the environment, and their retrieval is approxi-
mate, stochastic, and error-prone. Similarly, productions may implement 
a clocklike finite state machine, but the chaining of their individual steps 
into a complex processing stream is dependent on the stochastic, adaptive 
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calculus of utilities that makes flawless execution of long procedures 
increasingly difficult and unlikely. Other system bottlenecks at both the 
architectural and subsymbolic level include limited working memory, 
attentional bottlenecks, and limits on execution speed for every module. 
Thus, hybrid symbolic-subsymbolic architectures such as ACT-R provide us 
with an abstraction of the capacities and limitations of neural architectures 
that can guide their development. 

 5   Discussion 

 We conclude with a brief discussion of some additional points of relevance 
to our main arguments, including the importance of data on the time-
course of learning and development on understanding the nature of 
human systematicity, the importance of multilevel modeling and the spe-
cific case of relating the ACT-R and Leabra modeling frameworks, and how 
our models compare with other related models in the literature. 

 5.1   The Importance of Learning and Development of Systematicity 
 We put a lot of emphasis on the role of  “ learning from the ground up ”  as 
a strong constraint on the plausibility of a given cognitive framework. 
Empirically, one of the strongest arguments in favor of our overall approach 
comes from the developmental timecourse of symbolic processing abilities 
in people — only after years and years of learning do we develop symbolic 
processing abilities, and the more advanced examples of these abilities 
depend critically on explicit instruction (e.g., math, abstract logic). Only 
in the domain of language, which nevertheless certainly is dependent on 
a long timecourse of exposure to and learning from a rich social world of 
language producers, does systematicity happen in a relatively natural, 
automatic fashion. And as we discuss in greater detail in a moment, lan-
guage development provides many possible windows into how systematic-
ity develops over time; it is certainly not a hallmark of language behavior 
right from the start. 

 In short, we argue that learning processes, operating over years and 
often with the benefit of explicit instruction, enable the development of 
neural dynamics involving widely distributed interacting brain systems, 
which support these approximate symbol-processing abilities. It is not just 
a matter of  “ resource limitations ”  slapped on top of a core cognitive archi-
tecture that does fully general symbol processing, as argued by FP88; rather, 
the very abilities themselves emerge slowly and in a very graded way, with 
limitations at every turn. We think this perspective on the nature of human 
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symbolic processing argues strongly against systems that build in core 
symbol-processing abilities as an intrinsic part of the architecture. But 
unlike some of our colleagues (McClelland et al.), we nevertheless agree 
that these approximate symbol-processing abilities  do  develop, and that 
they represent an important feature that any neural network framework 
must account for. 

 One of the most famous debates between connectionists and symbol-
processing advocates took place in the context of the developmental data 
on the U-shaped curve of overregularization of past tense morphology in 
English. After correctly producing irregular verbs such as  “ went, ”  kids start 
saying things like  “ goed, ”  seemingly reflecting the discovery and applica-
tion of the regular  “ rule ”  ( “ add -ed ” ). First, this doesn ’ t happen until age 
three or four (after considerable exposure and productive success with the 
language), and it is a very stochastic, variable process across kids and across 
time. Rates of overregularization rarely exceed a few percent. Thus, it cer-
tainly is not the kind of data that one would uphold as a clear signature 
of systematicity. Instead, it seems to reflect some kind of wavering balance 
between different forces at work in the ever-adapting brain, which we argue 
is a clear reflection of the different balances between context-sensitivity 
and combinatoriality in different brain areas. Interestingly, single-process 
generic neural network models do not conclusively demonstrate this 
U-shaped curve dynamic, without various forms of potentially question-
able manipulations. Some of these manipulations were strong fodder for 
early critiques ( Rumelhart and McClelland 1986 ;  Pinker and Prince 1988 ), 
but even later models failed to produce this curve in a purely automatic 
fashion without strong external manipulations. For example, the  Plunkett 
and Marchman (1993)  model is widely regarded as a fully satisfactory 
account, but it depends critically on a manipulation of the training envi-
ronment that is similar to the one heavily criticized by  Rumelhart and 
McClelland (1986 ). 

 5.2   Convergent Multilevel Modeling: The SAL Framework 

     A valuable perspective on the nature of symbolic processing can be obtained 
by comparing different levels of description of the cognitive architecture. 
The ongoing SAL (Synthesis of ACT-R and Leabra) project provides impor-
tant insight here ( Jilk et al. 2008 ). ACT-R is a higher-level cognitive archi-
tecture that straddles the symbolic-subsymbolic divide ( Anderson and 
Lebiere 1998 ;  Anderson, Bothell, Byrne, Douglass, Lebiere, and Qin 2004 ), 
while Leabra is a fully neural architecture that embodies the various 
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mechanisms described above (O ’ Reilly et al. 2012). Remarkably, we have 
found that, through different sources of constraint and inspiration, these 
two architectures have converged on largely the same overall picture of 
the cognitive architecture (  figure 8.5 ). Specifically, both rely on the PFC/
BG mechanism as the fundamental engine of cognitive sequencing from 
one step to the next, and this system interacts extensively with semantic 
and episodic declarative memory to inform and constrain the next actions 
selected. In ACT-R, the PFC/BG system is modeled as a production system, 
where production-matching criteria interrogate the contents of active 
memory buffers (which we associate with the PFC in Leabra). When a 
production fires, it results in the updating of these buffers, just as the BG 
updates PFC working memory in Leabra. Productions are learned through 
a reinforcement-based learning mechanism, which is similar across both 
systems. 

 A detailed neural model of how the topology and physiology of the 
basal ganglia can enable computations analog to the ACT-R production 
system has been developed ( Stocco et al. 2010 ). As previously discussed, 
that model explains how the abstract symbolic concept of variable binding 
has a straightforward correspondence in terms of gating information flows 
between neural areas. Another major outstanding issue regarding symbolic 
representations is the ability to arbitrarily compose any values or struc-
tures, which in turn translates into the capacity to implement distal access 
to symbols ( Newell 1990 ). The original implementation of ACT-R into 
neural networks ( Lebiere and Anderson 1993 ) assumed a system of movable 
codes for complex chunks of information that could be decoded and 
their constituent parts extracted by returning to the original memory area 
where the composition was performed. Recent architectural developments 
( Anderson 2007 ) include the separation of the goal-related information 
into a goal buffer containing goal state information and an imaginal buffer 
containing the actual problem content. The former is associated with the 
working memory functionality of the prefrontal cortex whereas the latter 
is associated with the spatial representation and manipulation functions 
of the parietal cortex. This suggests that rather than using movable codes, 
distal access is implemented using a system of control connections that 
can remotely activate constructs in their original context. 

 5.3   Other Neural Network Approaches to Systematicity 
 A number of different approaches to introducing systematicity into neural 
network models have emerged over the years (Bod é n and Niklasson 2000; 
 Chalmers 1990 ;  Christiansen and Chater 1994 ;  Hadley 1997 ;  Hadley and 
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Hayward 1997 ;  Niklasson and van Gelder 1994 ;  Smolensky 1988 ,  1990b ; 
 Smolensky and Legendre 2006 ). Broadly speaking, our approach is distinct 
from these others in focusing on a systems neuroscience perspective to the 
problem, both in terms of differential specializations of different brain 
areas and in terms of how overall symbol processing functionality can 
emerge through the complex interactions, over distinct time steps, between 
these specialized areas, as sketched above in our multidigit arithmetic 
example. 

 In terms of specific points of comparison, one of the most important 
mechanisms for achieving any kind of symbol processing is arbitrary vari-
able binding, which we have argued above depends on episodic memory 
in the hippocampus and on the indirection-based dynamics in the PFC/
BG system ( Kriete et al. submitted ). A number of models adopt a tensor 
product approach to variable binding ( Plate 2008 ;  Smolensky 1990a ; 
 Pollack 1990 ), which is similar in some respects to the kind of conjunctive 
binding achieved by the hippocampal episodic memory system. Another 
solution is to assume a synchrony-based binding mechanism, but we are 
skeptical that such a mechanism would be able to interleave multiple bind-
ings across a phase cycle ( O ’ Reilly and Busby 2002 ;  O ’ Reilly, Busby, and 
Soto 2003 ). Furthermore, if such a mechanism were in place, it would 
predict a much more pervasive ability to perform arbitrary variable binding 
than people actually exhibit. In this respect, we think that the evidence 
for a long period of learning and development being required before people 
can even begin to demonstrate symbol-processing-like abilities is consis-
tent with our focus on variable binding being a learned skill that involves 
the coordinated contributions of multiple brain areas. 

 As was evident in our multidigit arithmetic example, just forming a 
binding is only part of the problem: you also need to be able to manipulate 
the bound information in systematic ways. Here, we are less clear about 
the strong claims made by these other models: it seems that they mostly 
engineer various mechanisms to achieve what look to us like implementa-
tions of symbol-processing mechanisms, without a strong consideration 
for how such mechanisms would operate plausibly in the brain. What is 
conspicuously lacking is an account of how all of the complex neural 
processing required for these systems can be learned through experience-
driven plasticity mechanisms. Our own work on this challenging problem 
is still in its infancy, so we certainly cannot claim to have shown how it 
can be learned from the ground up. Nevertheless, we remain optimistic 
that a learning-based approach fits best with the available human data. 
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 6   Conclusion 

 After twenty-five years of earnest debate, considerable progress has been 
made in advancing our understanding about the nature of human syste-
maticity. We hope that our biologically based systems neuroscience 
approach to these issues may provide some further insight into the nature 
of the human cognitive architecture and how a limited form of symbol 
processing can emerge through interactions between different specialized 
brain areas. We are excited about continuing to advance this program of 
research, to the point of one day showing convincingly how neural tissue 
can achieve such lofty cognitive functions as abstract mathematics and 
abstract logical reasoning. 
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 1   Introduction 

 When, in 1909, physicists Hans Geiger and Ernest Marsden fired charged 
particles into gold foil, they observed that the distribution of deflections 
followed an unexpected pattern. This pattern afforded an important insight 
into the nature of atomic structure. Analogously, when cognitive scientists 
probe mental ability, they note that the distribution of cognitive capacities 
is not arbitrary. Rather, the capacity for certain cognitive abilities correlates 
with the capacity for certain other abilities. This property of human cogni-
tion is called systematicity, and systematicity provides an important clue 
regarding the nature of cognitive architecture: the basic mental processes 
and modes of composition that underlie cognition — the structure of mind. 

 Systematicity is a property of cognition whereby the capacity for some 
cognitive abilities implies the capacity for certain others ( Fodor and Pyly-
shyn 1988 ). In schematic terms, systematicity is something ’ s having cogni-
tive capacity  c  1  if and only if it has cognitive capacity  c  2  ( McLaughlin 2009 ). 
An often-used example is one ’ s having the capacity to infer that John is 
the lover from  John loves Mary  if and only if one has the capacity to infer 
that Mary is the lover from  Mary loves John . 

 What makes systematicity interesting is that not all models of cognition 
possess it, and so not all theories (particularly, those theories deriving 
such models) explain it. An elementary theory of mind, atomism, is a case 
in point: on this theory, the possession of each cognitive capacity (e.g., 
the inferring of John as the lover from  John loves Mary ) is independent 
of the possession of every other cognitive capacity (e.g., the inferring 
of Mary as the lover from  Mary loves John ), which admits instances of 
having one capacity without the other. Contrary to the atomistic theory, 
you don ’ t find (English-speaking) people who can infer John as the lover 
(regarding the above example) without being able to infer Mary as the lover 
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( Fodor and Pylyshyn 1988 ). Thus, an atomistic theory does not explain 
systematicity. 

 An atomistic theory can be augmented with additional assumptions so 
that the possession of one capacity is linked to the possession of another. 
However, the problem with invoking such assumptions is that any pair of 
capacities can be associated in this way, including clearly unrelated capaci-
ties such as being able to infer John as the lover and being able to compute 
27 as the cube of 3. Contrary to the augmented atomistic theory, there are 
language-capable people who do not understand such aspects of number. 
In the absence of principles that determine which atomic capacities are 
connected, such assumptions are ad hoc —  “ free parameters, ”  whose sole 
justification is to take up the explanatory slack ( Aizawa 2003 ). 

 Compare this theory of cognitive capacity with a theory of molecules 
consisting of atoms (core assumptions) and free parameters (auxiliary 
assumptions) for arbitrarily combining atoms into molecules. Such auxil-
iary assumptions are ad hoc, because they are sufficiently flexible to 
account for any possible combination of atoms (as a data-fitting exercise) 
without explaining why some combinations of atoms are never observed 
(see  Aizawa 2003  for a detailed analysis). 

 To explain systematicity, a theory of cognitive architecture requires a 
(small) coherent collection of assumptions and principles that determine 
only those capacities that are systematically related and no others. The 
absence of such a collection, as an alternative to the classical theory 
(described below), has been the primary reason for rejecting connectionism 
as a theory of cognitive architecture ( Fodor and Pylyshyn 1988 ;  Fodor and 
McLaughlin 1990 ). 

 The classical explanation for systematicity posits a cognitive architec-
ture founded upon a combinatorial syntax and semantics. Informally, the 
common structure underlying a collection of systematically related cogni-
tive capacities is mirrored by the common syntactic structure underlying 
the corresponding collection of cognitive processes. The common semantic 
structure between the John and Mary examples (above) is the  loves  relation. 
Correspondingly, the common syntactic structure involves a process for 
tokening symbols for the constituents whenever the complex host is 
tokened. For example, in the  John loves Mary  collection of systematically 
related capacities, a common syntactic process may be  P   →   Agent loves 
Patient , where  Agent  and  Patient  subsequently expand to  John  and  Mary . 
Here, tokening refers to instantiating both terminal (no further processing) 
and nonterminal (further processing) symbols. The tokening principle 
seems to support a much needed account of systematicity, because all 
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capacities involve one and the same process; thus, having one capacity 
implies having the other, assuming basic capacities for representing con-
stituents  John  and  Mary . 

 Connectionists, too, can avail themselves of an analogous principle. In 
neural network terms, computational resources can be distributed between 
task-specific and task-general network components (e.g., weighted connec-
tions and activation units) by a priori specification and/or learning as a 
form of parameter optimization. For instance, an intermediate layer of 
weighted connections can be used to represent common components of a 
series of structurally related tasks instances, and the outer connections (the 
input – output interface) provide the task-specific components, so that the 
capacity for some cognitive function transfers to some other related func-
tion, even across completely different stimuli (see, e.g.,  Hinton 1990 ). 
Feedforward ( Rumelhart, Hinton, and Williams 1986 ), simple recurrent 
( Elman 1990 ), and many other types of neural network models embody a 
generalization principle (see, e.g.,  Wilson, Marcus, and Halford 2001 ). In 
connectionist terms, acquiring a capacity (from training examples) trans-
fers to other capacities (for testing examples). 

 Beyond the question of whether such demonstrations of systematicity, 
recast as generalization ( Hadley 1994 ), correspond to the systematicity of 
humans ( Marcus 1998;   Phillips 1998 ), there remains the question of articu-
lating the principle from which systematicity (as a kind of generalization) 
is a necessary, not just possible consequence. To paraphrase  Fodor and 
Pylyshyn (1988) , it is not sufficient to simply show existence — that there 
exists a suitably configured model realizing the requisite capacities; one 
also requires uniqueness — that there are no other models not realizing the 
systematicity property. For if there are other such configurations, then 
further (ad hoc) assumptions are required to exclude them. Existence/
uniqueness is a recurring theme in our explanation of systematicity. 

 Note that learning, generally, is not a principle that one can appeal to 
as an explanation of systematicity. Learning can afford the acquisition of 
many sorts of input – output relationships, but only some of these corre-
spond to the required systematic capacity relationships. For sure, one can 
construct a suitable set of training examples from which a network acquires 
one capacity if and only if it acquires another. But, in general, this principle 
begs the question of the necessity of that particular set of training exam-
ples. Connectionists have attempted to ameliorate this problem by showing 
how a network attains some level of generalization for a variety of training 
sets. However, such attempts are far from characteristic of what humans 
actually get exposed to. 
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 Some authors have claimed to offer  “ alternative ”  nonclassical compo-
sitionality methods to meet this challenge whereby complex entities are 
tokened without tokening their constituents. The tensor product network 
formalism ( Smolensky 1990 ) is one (connectionist) example. Another 
(nonconnectionist) example is G ö del numbering ( van Gelder 1990 ). 
However, it ’ s unclear what is gained by this notion of nontokened com-
positionality (see  Fodor and McLaughlin 1990 ). For example, any set of 
localized orthonormal vectors (a prima facie example of classical tokening) 
can be made nonlocal (i.e., nonclassical, in the above sense) with a 
change of basis vectors. Distributed representations are seen as more robust 
against degradation than local representations — the loss of a single unit 
does not result in the loss of an entire capacity. In any case, the local –
 distributive dimension is orthogonal to the classical – nonclassical tokening 
dimension — a classical system can also be implemented in a distributed 
manner simply by replicating representational resources. 

 Classicists explicitly distinguish between their symbols and their imple-
mentation via a  physical instantiation function  ( Fodor and Pylyshyn 1988 , 
n. 9). Though much has been made of the implementation issue, this 
distinction does not make a difference in providing a complete explanation 
for systematicity, as we shall see. Nonetheless, the implementation issue is 
important, because any explanation that reduces to a classical one suffers 
the same limitations. We mention it because we also need to show that 
our explanation (presented shortly) is not classical — nor connectionist (nor 
Bayesian, nor dynamicist), for that matter. 

 The twist in this tale of two theories is that classicism does not provide 
a complete explanation for systematicity, either, though classicism argu-
ably fares better than connectionism ( Aizawa 2003 ). That the classical 
explanation also falls short seems paradoxical. After all, the strength of 
symbol systems is that a small set of basic syntax-sensitive processes can 
be recombined in a semantically consistent manner to afford all sorts of 
systematically related computational capacities. Combinatorial efficacy 
notwithstanding, what the classical theory fails to address is the many-to-
many relationship between syntax and computational capacity: more than 
one syntactic structure gives rise to closely related though not necessarily 
identical groups of capacities. In these situations, the principle of syntactic 
compositionality is not sufficient to explain systematicity, because the 
theory leaves open the (common) possibility of constructing classical cog-
nitive models possessing some but not all members of a collection of 
systematically related cognitive capacities (for examples, see  Aizawa 2003;  
 Phillips and Wilson 2010, 2011, 2012 ). For instance, if we replace the 
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production  P   →   Agent loves Patient  with productions  P 1   →  Agent loves John  
and  P 2   →  John loves Patient , then this alternative classical system no longer 
generates the instance  Mary loves Mary . The essential challenge for classi-
cism echoes that for connectionism: explain systematicity without exclud-
ing models admitted by the theory just because they don ’ t support all 
systematically related capacities — why are those models not realized (cf.: 
why don ’ t some combinations of atoms form molecules)? 

 So far, none of the major theoretical frameworks in cognitive science —
 classicist, connectionist, Bayesian, nor dynamicist — has provided a theory 
that fully explains systematicity. This state of affairs places cognitive 
science in a precarious position — akin to physics without a theory of 
atomic structure: without a stable foundation on which to build a theory 
of cognitive representation and process, how can one hope to scale the 
heights of mathematical reasoning? In retrospect, the lack of progress on 
the systematicity problem has been because cognitive scientists were 
working with  “ models ”  of structure (i.e., particular concrete implementa-
tions), where systematicity is a  possible  consequence, rather than  “ theories ”  
of structure from which systematicity  necessarily  follows. This diagnosis led 
us ( Phillips and Wilson 2010 ,  2011 ,  2012 ) to  category theory  ( Eilenberg and 
Mac Lane 1945 ;  Mac Lane 2000 ), a theory of structure par excellence, as 
an alternative approach to explaining systematicity. 

 The rest of this chapter aims to be, as much as possible, an informal, 
intuitive discussion of our category theory explanation as a complement 
to the formal, technical details already provided ( Phillips and Wilson 2010 , 
 2011 ,  2012 ). To help ground the informal discussion, though, we also 
include some standard formal definitions (see  Mac Lane 2000  for more 
details) as stand-alone text, and associated  commutative diagrams , in which 
entities (often functions) indicated by paths with the same start point and 
the same end point are equal. An oft-cited characteristic feature of category 
theory is the focus on the directed relationships between entities (called 
 arrows ,  morphisms , or  maps ) instead of the entities themselves — in fact, 
categories can be defined in arrow-only terms ( Mac Lane 2000 ). This 
change in perspective is what gives category theory its great generality. Yet, 
category theory is not arbitrary — category theory constructs come with 
formally precise conditions (axioms) that must be satisfied for one to avail 
oneself of their computational properties. This unique combination of 
abstraction and precision is what gives category theory its great power. 
However, the cost of taking a category theory perspective is that it may 
not be obvious how category theory should be applied to the problem at 
hand, nor what benefits are afforded when doing so. Hence, our purpose 
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in this chapter is threefold: (1) to provide an intuitive understanding of 
our category theory explanation for systematicity; (2) to show how it 
differs from other approaches; and (3) to discuss the implications of this 
explanation for the broader interests of cognitive science. 

 2   What Is Category Theory? 

 Category theory was invented in the mid-1940s ( Eilenberg and Mac Lane 
1945 ) as a formal means for comparing mathematical structures. Originally 
it was regarded as a formal language for making precise the way in which 
two types of structures are to be compared. Subsequent technical develop-
ment throughout the twentieth century has seen it become a branch of 
mathematics in its own right, as well as placing it on a par with set theory 
as a foundation for mathematics (see  Marquis 2009  for a history and phi-
losophy of category theory). Major areas of application, outside of math-
ematics, have been computer science (see, e.g.,  Arbib and Manes 1975 ;  Barr 
and Wells 1990 ) and theoretical physics (see, e.g.,  Baez and Stay 2011;  
 Coecke 2006 ). Category theory has also been used as a general conceptual 
tool for describing biological ( Rosen 1958 ) and neural/cognitive systems 
( Ehresmann and Vanbremeersch 2007 ), yet applications in these fields are 
relatively less extensive. 

 Category theory can be different things in different contexts. In the 
abstract, a category is just a collection of  objects  (often labeled  A ,  B ,  … ), a 
collection of  arrows  (often labeled  f ,  g ,  … ) between pairs of objects (e.g., 
 f A B: →  , where  A  is called the  domain  and  B  the  codomain  of arrow  f  ), 
and a  composition operator  (denoted  � ) for composing pairs of arrows into 
new arrows (e.g.,  f g h� =  ), all in a way that satisfies certain basic rules 
(axioms). When the arrows are functions between sets, the composition is 
ordinary composition of functions, so that  ( )( ) ( ( ))f g x f g x� =  . To be a cat-
egory, every object in the collection must have an  identity arrow  (often 
denoted as  1A A A: →  ); every arrow must have a domain and a codomain 
in the collection of objects; for every pair of arrows with matching codo-
main and domain objects there must be a third arrow that is their composi-
tion (i.e., if  f A B: →   and  g B C: →  , then  g f A C� : →   must also be in the 
collection of arrows); and composition must satisfy  associativity , that is, 
 ( ) ( )h g f h g f� � � �=  , and  identity , that is,  1B f f� =    = f A�1  , laws for all arrows 
in the collection. Sets as objects and functions as arrows satisfy all of this: 
the resulting category of all ( “ small ” ) sets is usually called  Set . In this 
regard, category theory could be seen as an algebra of arrows ( Awodey 
2006 ). 
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 For a formal (abstract) category, the objects, arrows, and composition 
operator need no further specification. A simple example is a category 
whose collection of objects is the set { A , B } and collection of arrows is the 
set  { : , : , : , : }1 1A BA A B B f A B g B A→ → → →  . Since there are no other 
arrows in this category, compositions  f g A� = 1   and  g f B� = 1   necessarily 
hold. Perhaps surprisingly, many important results pertain to this level and 
hence apply to anything that satisfies the axioms of a category. 

 For particular examples of categories, some additional information is 
provided regarding the specific nature of the objects, arrows, and composi-
tion. Many familiar structures in mathematics are instances of categories. 
For example, a partially ordered set, also called a  poset , ( P , ≤ ) is a category 
whose objects are the elements of the set  P , and arrows are the order rela-
tionships  a   ≤   b , where  a ,  b   ∈   P . A poset is straightforwardly a category, 
since a partial order  ≤  is  reflexive  (i.e.,  a   ≤   a , hence identities) and  transitive  
(i.e.,  a   ≤   b  and  b   ≤   c  implies  a   ≤   c , hence composition is defined). Checking 
that identity and associativity laws hold is also straightforward. The objects 
in a poset considered as a category have no internal parts. In other catego-
ries, the objects may also have internal structure, in which case the arrows 
typically preserve that structure. For instance, the category  Pos  has posets 
now considered as objects and order-preserving functions for arrows, i.e., 
 a   ≤   b  implies  f ( a )  ≤   f ( b ). For historical reasons, the arrows in a category may 
also be called  morphisms ,  homomorphisms , or  maps  or functions when spe-
cifically involving sets. 

 Definition (Category). A  category   C  consists of a class of objects | C |={ A ,  B , 
 … }; and for each pair of object  A ,  B  in  C , a set  C ( A , B ) of morphisms (also 
called arrows, or maps) from  A  to  B  where each morphism  f A B: →   has  A  
as its  domain  and  B  as its  codomain , including the  identity  morphism 
 1A A A: →   for each object  A ; and a composition operation, denoted  �  , of 
morphisms  f A B: →   and  g B C: →  , written  g f A C� : →   that satisfies the 
laws of:   

  •     identity , where  f f fA B� �1 1= =  , for all  f A B: →  ; and 

  •     associativity , where  ( ) ( )h g f h g f� � � �=  , for all  f A B: →  ,  g B C: →   and 

 h C D: →  . 

 In the context of computation, a category may be a collection of types for 
objects and functions (sending values of one type to values of another, or 
possibly the same, type) for arrows, where composition is just composition 
of functions. In general, however, objects need not be sets, and arrows need 
not be functions, as shown by the first poset-as-a-category example. For 
our purposes, though, it will often be helpful to think of objects and arrows 
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as sets and functions between sets. Hence, for cognitive applications, one 
can think of a category as modeling some cognitive (sub)system, where an 
object is a set of cognitive states and an arrow is a cognitive process 
mapping cognitive states. 

 2.1    “ Natural ”  Transformations, Universal Constructions 

 To a significant extent, the motivations of category theorists and cognitive 
scientists overlap: both groups aim to establish the principles underlying 
particular structural relations, be they mathematical structures or cognitive 
structures. In this regard, one of the central concepts is a natural transfor-
mation between structures. Category theorists have provided a formal 
definition of  “ natural, ”  which we use here. This definition builds on the 
concepts of  functor  and, in turn, category. We have already introduced the 
concept of a category. Next we introduce functors before introducing 
natural transformations and universal constructions. 

 Functors are to categories as arrows (morphisms) are to objects. Arrows 
often preserve internal object structure; functors preserve category struc-
ture (i.e., identities and compositions). Functors have an object-mapping 
component and an arrow-mapping component. 

 Definition (Functor). A  functor   F : C D→   is a map from a category  C  to a 
category  D  that sends each object  A  in  C  to an object  F ( A ) in  D ; and each 
morphism  f A B: →   in  C  to a morphism  F f F A F B( ) : ( ) ( )→   in  D , and is 
structure-preserving in that  F A F A( ) ( )1 1=   for each object  A  in  C , and 
 F g f F g F f( ) ( ) ( )� �C D=   for all morphisms  f A B: →   and  g B C: →  , where  �C  
and  �D  are the composition operators in  C  and  D . 

 There is an intuitive sense in which some constructions are more natural 
than others. This distinction is also important for an explanation of sys-
tematicity, as we shall see. The concept of a  natural transformation  makes 
this intuition formally precise. 

 Natural transformations are to functors as functors are to categories. We 
have already seen that functors relate categories, and similarly, natural 
transformations relate functors. Informally, what distinguishes a natural 
transformation from some arbitrary transformation is that a natural trans-
formation does not depend on the nature of each object  A . This indepen-
dence is also important for systematicity: basically, the cognitive system 
does not need to know ahead of time all possible instances of a particular 
transformation. 
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 Definition (Natural transformation). A  natural transformation   η : F G→   
between a domain functor  F : C D→   and a codomain functor  G : C D→   
consists of  D -maps  ηA F A G A: ( ) ( )→   for each object  A  in  C  such that 
 G f F fA B( ) ( )� �η η=  . (See   figure 9.1 .)    

 For the purpose of explaining systematicity, we need something more than 
just that constructions are natural in this sense; constructions are also 
required to be  universal , in a technical sense to be introduced next. A uni-
versal construction is basically an arrow that is  “ part ”  of every arrow in 
the category that models the (cognitive) domain of interest. 

 Definition (Universal construction). Given an object  X   ∈  | C | and a functor 
 F : B C→  , a  couniversal morphism  from  X  to  F  is a pair ( B ,  Ψ ) where  B  is an 
object of  B , and  Ψ  is a morphism in  C , such that for every object  Y   ∈  | B | 
and every morphism  f X F Y: ( )→  , there exists a unique morphism  k B Y: →   
such that  F k f( ) �ψ =  . (See   figure 9.2 .) 

 A universal construction is either a couniversal morphism, or (its dual) a 
universal morphism (whose definition is obtained by reversing all the 
arrows in the definition of  “ couniversal ” ).    

 At first it may not seem obvious how universal constructions are related 
to natural transformations. Note that, given a category of interest  D  and 
an object  X  in  D ,  X  corresponds to a constant functor  X : C D→   from an 
arbitrary category  C  to the category of interest  D , where functor  X  sends 

 Figure 9.1 
 Commutative diagram for natural transformation. 

 Figure 9.2 
 Commutative diagram for universal construction. 
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every object and arrow in  C  to the object  X  and identity 1  X   in  D , thus 
yielding a natural transformation  η : X F→  . 

 3   Systematicity: A Category Theory Explanation 

 All major frameworks assume some form of compositionality as the basis 
of their explanation for systematicity. In the classical case, it ’ s syntactic; 
for the connectionist, it ’ s functional (as we have already noted in section 
1). In both cases, systematic capacity is achieved by combining basic pro-
cesses. However, the essential problem is that there is no additional con-
straint to circumscribe only the relevant combinations. Some combinations 
are possible that do not support all members of a specific collection of 
systematically related capacities. So, beyond simply stipulating the accept-
able models (i.e., those consistent with the systematicity property), addi-
tional principles are needed to further constrain the admissible models. 

 Our category theory explanation also relies on a form of compositional-
ity, but not just any form. The additional ingredient in our explanation is 
the formal category theory notion of a universal construction. The essen-
tial point of a universal construction is that each and every member of a 
collection of systematically related cognitive capacities is modeled as a 
morphism in a category that incorporates a common universal morphism 
in a unique way. From figure 9.2, having one capacity  f A F Y1 1: ( )→   implies 
having the common universal morphism  ψ : ( )X F B→  , since  f F k1 1= ( ) �ψ  . 
And, since the capacity-specific components  F ( k i  ) are uniquely given (con-
structed) by functor  F : B C→  , and the arrows  k i   in  B , one also has capacity 
 f A F Y2 2: ( )→  , since  f F k2 2= ( ) �ψ  . That is, all capacities (in the domain of 
interest) are systematically related via the couniversal morphism  ψ  . Our 
general claim is that each collection of systematically related capacities is 
an instance of a universal construction. The precise nature of this universal 
morphism will depend (of course) on the nature of the collection of sys-
tematically related capacities in question. In this section, we illustrate 
several important examples. 

 3.1   Relations: (Fibered) Products 
 We return to the  John loves Mary  example to illustrate our category theory 
explanation. This and other instances of relational systematicity are cap-
tured by a categorical product ( Phillips and Wilson 2010 ). A categorical 
product provides a universal means for composing two objects ( A  and  B ) 
as a third object ( P ) together with the two arrows ( p  1  and  p  2 ) for retrieving 
information pertaining to  A  and  B  from their composition  P . The require-
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ment that such a construction be universal is critical for explaining the 
systematicity property. 

 Definition (Product). A  product  of objects  A  and  B  in category  C  is an object 
 P  (also denoted  A × B ) together with two morphisms (sometimes called 
 projections )  p P A1 : →   and  p P B2 : →  , jointly expressed as ( P ,  p  1 ,  p  2 ) such 
that for every object  Z   ∈    | C | and pair of morphisms  z Z A1 : →   and  z Z B2 : →   
there exists a unique morphism  u Z P: →  , also denoted  〈 〉z z1 2,  , such that 
 z p u1 1= �   and  z p u2 2= �  . (See   figure 9.3) .    

 Suppose  A  and  B  correspond to the set of representations for the possible 
agents and patients that can partake in the  loves  relation, which includes 
instances such as  John loves Mary  and  Mary loves John , and the product 
object  P , which is the Cartesian product  A × B  (in the case of products of 
sets, as in this example), corresponds to the representations of those rela-
tional instances. Then any requirement to extract components  A  ( B ) from 
some input  Z  necessarily factors through  p  1 ( p  2 ) uniquely. 

 As a universal construction, products are constructed from the  product 
functor . Informally, the product functor sends pairs of objects ( A ,  B ) to the 
product object  A  ×  B  and pairs of arrows ( f ,  g ) to the product arrow  f  ×  g . In 
this way, all possible combinations must be realized. The universality 
requirement rules out partial constructions, such as a triple ( Q ,  q  1 ,  q  2 ) where 
the object  Q  contains just three of the four possible pair combinations of 
 John  and  Mary  (and  q  1  and  q  2  return the first and second item of each pair), 
because this triple does not make the associated diagram (see figure 9.3) 
commute. Thus, no further assumptions are needed to exclude such cases, 
in contrast with the classical (or connectionist) explanation, which admits 
such possibilities. 

 One can think of the product functor as a way of constructing new 
wholes (i.e.,  A × B ) from parts ( A ,  B ). The product functor is seen as the 
 “ conceptual inverse ”  to the  diagonal functor  which makes wholes into parts 

 Figure 9.3 
 Commutative diagram for product. 
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by making copies of each object and morphism: that is, object  A  and mor-
phism  f  are sent to pairs ( A ,  A ) and ( f ,  f  ). Together, diagonal and product 
functors constitute an  adjunction , a family of universal constructions ( Mac 
Lane 2000 ). Adjunctions are important to our explanation of systematicity 
because they link representation and access (inference) without relying on 
the assumption that such processes be compatible. A classical explanation 
simply assumes compatibility between syntactically compositional repre-
sentations and the processes that operate on them. Yet, as we ’ ve seen, there 
is more than one way of syntactic composition, and not all of them 
support systematicity. By contrast, in our category theory explanation, the 
commutativity property associated with an adjunction enforces compati-
bility ( Phillips and Wilson 2010 ,  2011 ). 

 We further contrast our explanation with a proposed alternative illus-
trated by G ö del numbering ( van Gelder 1990 ). This scheme depends on 
careful construction of a suitable transformation function that depends on 
the values of all possible elements (past, present, and future) that can 
partake in the relation. However, in general, a cognitive system cannot 
have knowledge of such things. At best, a cognitive system can update a 
set of representations to accommodate new instances to maintain correct 
transformation. But such allowances admit nonsystematicity: at the point 
prior to update, the cognizer is in a state of having some but not all sys-
tematically related capacities. Thus, such schemes do not account for 
systematicity. 

 Products address systematic capacity where there is no interaction 
between constituents  A  and  B . Another case addresses quasi systematicity, 
where capacity extends to some but not all possible combinations of con-
stituents. In this situation, the interaction between  A  and  B  is given by 
two arrows  f A C: →   and  g B C: →   to a common (constraint) object  C . The 
universal construction for this situation is called a  pullback  (or  fibered 
product , or  constrained product ). The explanation for systematicity in this 
case essentially parallels the one given for products: replace product with 
pullback (see  Phillips and Wilson 2011 ). 

 3.2   Recursion: F-(co)algebras 
 Our explanation for systematicity with regard to recursive domains also 
employs a universal construction, albeit with a different kind of functor, 
called an  endofunctor , where the domain and codomain are the same cat-
egory ( Phillips and Wilson 2012 ), hence its importance for recursion. A 
motivating example is that the capacity to find the smallest item in a list 
implies the capacity to find the largest item, assuming a basic capacity for 
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distinguishing the relative sizes of items. For example, you don ’ t find 
people who can select the lowest card from a deck without being able to 
select the highest card, assuming they understand the relative values of 
cards. Yet, classical theory admits recursive and nonrecursive composi-
tional methods, for realizing these two capacities, without there being any 
common component processes. If one capacity is realized by a recursive 
method and the other by a nonrecursive method, then the two capacities 
are not intrinsically connected in any way — the tokening principle on 
which classical theory depends is no longer in play. Thus, classical theory 
also fails to fully explain systematicity with regard to recursively definable 
capacities ( Phillips and Wilson 2012 ). 

 In recent decades, computer scientists have turned to category theory 
to develop a systematic treatment of recursive computation (see, e.g., Bird 
and Moor 1997). We have adapted this theory for an explanation of sys-
tematicity in regard to recursive cognitive capacities. Conceptually, recur-
sive capacities are decomposed into an invariant component, the recurrent 
part, and a variant component, with the capacity-specific computation 
taking place at each iterative step. The invariant component corresponds 
to the underlying recursive data structure (e.g., stepping through a deck of 
cards) underpinning the group of systematically related capacities. The 
variant component corresponds to the computation at each step (e.g., 
comparing cards for the smaller or larger card). In category theory terms, 
every recursive capacity is an algebra, called an  F-algebra , built using an 
endofunctor  F . Under very general conditions, a category of such  F -algebras 
has a universal construction called an initial  F -algebra, and hence provides 
an explanation for systematicity with regard to recursive capacities. 

 Definition ( F -algebra, initial algebra, catamorphism). For an endofunctor 
 F : C C→  , an  F-algebra  is a pair ( A ,  α  ), where  A  is an object and  α : ( )F A A→   
is a morphism in  C . 

 An  initial algebra  ( A ,  in ) is an  initial object  in the category of  F -algebras 
 Alg ( F ). That is,  in F A A: ( ) →   is a morphism in  C , and there exists a unique 
 F -algebra homomorphism from ( A ,  in ) to every  F -algebra in  Alg ( F ). 

 A  catamorphism   h A in B: ( , ) ( , )→ β   is the  unique   F -algebra homomorphism 
from initial  F -algebra ( A ,  in ) to  F -algebra ( B ,). That is,  h in F h� �= β ( )  and 
the uniquely specified  h  for each such is denoted  cata  (i.e.,  h  =  cata ). (See 
  figure 9.4 .)    

 The dual constructions:  F-coalgebra ,  final coalgebra , and  anamorphism  are 
also used to explain related instances of systematicity (see  Phillips and 
Wilson 2012  for details). 
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 In each case, the recursive capacity depends only on the common arrow 
 in F A A: ( ) →   and the unique arrow  cataβ : A B→   (see figure 9.4). In outline, 
searching for the smallest number in a list of numbers is given by  fold ( ∞ , 
 lower )  l , where  fold  is the common recursive part, ( ∞ ,  lower ) is the task-
specific component,  ∞  applies to empty lists,  lower  returns the lower of two 
numbers, and  l  is a list of numbers. For example,  fold (0,  lower )[3,2,5] = 
 lower (3,  lower (2,  lower (5,  ∞ ))) = 2. Searching for the largest number in a list 
is given by  fold (0,  higher )  l , where (0,  higher ) is the task-specific component, 
0 applies to empty lists, and  higher  returns the higher of two numbers. For 
example,  fold (0,  higher )[3,2,5] =  higher (3,  higher (2,  higher (5, 0))) = 5. 

 4   Category Theory in Context 

 The abstract and abstruse nature of category theory may make it difficult 
to see how our explanation relates to other theoretical approaches, and 
how it should make contact with a neural level of analysis. For all of the 
theoretical elegance of category theory, constructs must also be realizable 
by the underlying brain system. The relationship between our category 
theory explanation and a classical or connectionist one is analogous to the 
relationship between, say, an abstract and concrete specification of a group 
in mathematics: particular classical or connectionist architectures may be 
models of our theory. Here, we sketch some possibilities. 

 4.1   Classical Models 
 Our category theory explanation overlaps with the classical one in the 
sense that the common constituent of a collection of complex cognitive 
capacities is  “ tokened ”  (i.e., imparted or executed) whenever each complex 
cognitive capacity is. Notice, however, that tokening in the category theory 
sense is the tokening of arrows, not objects; analogously, tokening is of 
processes, not symbols. Classical systems also admit symbols as processes. 

 Figure 9.4 
 Commutative diagram for catamorphism. 
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Nonetheless, our explanation goes significantly beyond the classical one 
in that we require not just any arrow, but rather, an arrow derived from a 
universal construction. Thus, no further assumptions are required to guar-
antee that each and every capacity is uniquely constructed from it. More-
over, the virtue of this arrow-centric perspective is that, contra classicism, 
our explanation extends to nonsymbolic domains, such as visual cogni-
tion, without further adjustment to the theory. 

 Universal constructions such as adjunctions and  F -(co)algebras as the 
basis for a theory of cognitive architecture are unique to our theory, and 
go significantly beyond the widespread use of isomorphism (cf. analogy 
models, including  Suppes and Zinnes 1963 ;  Halford and Wilson 1980 ) in 
cognitive science generally. From a category theory perspective, two 
systems that are isomorphic are essentially the  “ same ”  up to a change of 
object and arrow labels. An adjunction is more general and potentially 
more useful: two systems (involving different sorts of processes) in an 
adjoint relationship need not be isomorphic, while still being in a system-
atic relationship with each other. 

 4.2   Nonclassical Models 
 For conciseness, we treat connectionist and Bayesian models in the same 
light, despite some significant advances in Bayesian modeling (see, e.g., 
 Kemp and Tenenbaum 2008 ). By regarding connectionist and Bayesian 
networks as graphs (with additional structure), one could consider a cat-
egory of such graphs as objects and their homomorphisms as morphisms. 
That additional structure could include  “ coloring ”  graph nodes to distin-
guish corresponding input, output and internal network activation units, 
and functions corresponding to propagation of network activity. The cat-
egory  Grph  of graphs and graph homomorphisms has products, suggesting 
that a suitable category of graphs with additional structure can be devised 
that also has products. In these cases, systematicity is realized as a functor 
from the product (as a category) into a category of connectionist/Bayesian 
networks, thus guaranteeing an implementation of the systematicity prop-
erty within a connectionist/Bayesian-style framework. 

 A similar approach also applies to dynamic systems models. In a simple 
(though not exhaustive) case, one class of dynamic systems can be treated 
as a finite state machine. A category of such machines and the structure-
preserving morphisms also has products (see  Arbib and Manes 1975 ). Thus, 
again, systematicity is implemented as a functor from the product (as a 
category) into this category of finite state machines. 
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 5   Testing the Theory 

 Our theory can be tested using a series of tasks, where each task instance 
is composed of an invariant component corresponding to the (co)universal 
arrow and a variant component corresponding to the unique arrow of the 
underlying universal construction (see  Phillips and Wilson 2012 , text S2). 
An example of this kind of design is familiar in the form of so-called  learn-
ing set  paradigms (see, e.g.,  Kendler 1995 ). 

 5.1   Nonrecursive Example 
 A series of simple classification tasks illustrates one kind of experimental 
design that can be used to test for systematicity in terms of universal con-
structions. For the first task, suppose participants are given stimuli to be 
classified into one of two classes. Let  S  be the set of stimuli, and  R  the set 
of (two) responses associated with each class. Hence, the morphism  t S R: →   
is the stimulus-response process for the first task instance. Next, suppose 
the task is modified (for the next task instance), say by changing the 
responses to each stimulus class from left and right to up and down. Let 
 R  ′  be the set of responses associated with the new task, and  t S R′ ′: →   the 
associated stimulus-response process. Since the responses are determined 
by the classes rather than directly by the stimuli, each task instance  t  
decomposes into the task-invariant classification component  c S C: →  , 
where  C  is the set of classes, and the task-variant response mapping com-
ponent  r C R: →   uniquely. That is,  c  corresponds to  Ψ , the couniversal 
arrow, in figure 9.2 for a universal construction. 

 A test of systematicity for this example is whether participants can cor-
rectly predict the stimulus response classification on new task trials after 
receiving sufficient trials to determine  r , the response mapping. In the 
general case that there are  n  possible responses, so  n  trials are needed to 
determine the correct mapping (one trial for each possible response), but 
no more. Thus, systematicity is evident on correct prediction for the 
remaining  m   –   n  stimulus-response trials, assuming there are more stimuli 
than responses (i.e.,  m   >   n ). (See  Phillips and Wilson 2010  for a further 
example.) 

 5.2   Recursive Example 
  Phillips and Wilson (2012)  provide an example of systematicity with 
respect to recursively definable concepts in the form of finding the small-
est/largest item in a list. Here, we illustrate how this kind of systematicity 
can be directly tested. Suppose participants are given pairs of stimuli (e.g., 
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shapes) from which they must predict the  “ preferred ”  (or rewarded) 
shape — essentially, a discrimination task. This preliminary task allows par-
ticipants to learn the total order associated with the set of stimuli. Upon 
completion of the discrimination task, participants are presented with a 
list of stimuli, selected from the set used in the preliminary task, and asked 
to find the most preferred stimulus in that list. Upon completion of this 
second task, participants are then required to identify the unpreferred 
stimulus from a pair of stimuli, and then the least preferred stimulus in a 
list. Evidence of systematicity in this example is correct determination of 
the least preferred stimulus without further feedback. This paradigm could 
be further extended by changing the set of stimuli between task instances. 
(See  Phillips and Wilson 2012  for another example.) 

 6   Beyond Systematicity 

 Beyond systematicity are other questions that a general (category) theory 
of cognitive architecture should address. We round out this chapter by 
considering how a categorial theory of cognitive architecture may address 
such issues. 

 6.1   Systematicity and Nonsystematicity: Integration 
 Not all cognitive capacities are systematic, as we mentioned in the first 
section. The classical proposal ( Fodor and Pylyshyn 1988 ), and so far ours 
too, speak only to the systematic aspects of cognition, while leaving non-
systematic aspects unaddressed.  Fodor and Pylyshyn (1988)  recognized the 
possibility of some kind of hybrid theory: say, a classical architecture fused 
with some nonclassical (e.g., connectionist) architecture to address cogni-
tive properties beyond the scope of (or unaccounted for by) classical theory. 
 Aizawa (2003)  warns, however, that hybrid theories require a higher 
explanatory standard: not only must each component theory account for 
their respective phenomena, but there must also be a principled account 
for why and when each component theory is invoked. Here, we sketch 
how our category theory approach could be extended to incorporate non-
systematic aspects of cognition. 

 As  Phillips and Wilson (2012)  suggest, if we regard a category as a model 
of a cognitive subsystem, then combining two categories by taking a fibered 
(co)product can be regarded as the integration of two subsystems into a 
larger combined system.  Clark, Coecke, and Sadrzadeh (2008)  provide an 
example of how subsystems can be combined categorically for modeling 
aspects of language. Their example is a hybrid symbolic-distributional 
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model of grammar as the fibered product of a symbolic and a distributed 
(vector-based) component. In our case, one category realizes systematicity, 
another realizes nonsystematicity, and the category derived from their 
fibered (co)product realizes both. 

 For our purposes, though, we must also consider the principle dictating 
which component is to be employed and under what circumstances. We 
have suggested ( Phillips and Wilson 2012 ) that a cost – benefit trade-off may 
be the basis of such a principle. For instance, there are at least two ways 
to add numbers such as 3 and 5. One can employ a systematic counting 
procedure by counting from the first number (3) the number of increments 
indicated by the second number (5). This procedure has the benefit of 
working for any two numbers (systematicity), but at the cost of being slow 
when the numbers are large. Alternatively, one can simply recall from 
memory the sum of the given numbers. This second procedure has the 
benefit of speed, but the cost of unreliability (unsystematic): the sums of 
some pairs may not have been memorized, and moreover, time and effort 
are required to memorize each pair. 

 To accommodate such possibilities, we further suggest here that our 
category theory approach can be extended by associating a cost with each 
morphism within the framework of  enriched category theory  ( Kelly 2005 ). 
Enriched category theory considers categories whose hom-sets (i.e., sets of 
arrows between pairs of objects) have additional structure. For example, by 
defining a partial-order over a set of arrows each hom-set becomes a poset 
(i.e., a set with the extra order structure) — the category is enriched over the 
category of posets,  Pos , the category of partially ordered sets and order-
preserving functions. In this way, a choice between arrows (alternative 
cognitive strategies) can be based on an order principle — choose the strat-
egy with the lower associated cost, when the alternatives are comparable. 

 Note, however, that we are not yet in a position to provide such prin-
ciples. One could, of course, simply fit data by assigning adjustable param-
eters to each morphism, akin to a connectionist network. However, this 
maneuver merely affords compatibility with the data. What we really 
require is a principle necessitating when a particular subsystem is employed, 
lest we also succumb to the kinds of ad hoc assumptions that have bedev-
iled other approaches to the systematicity problem ( Aizawa 2003 ). 

 6.2   Category Theory, Systematicity, and the Brain 
 Any theory of cognitive architecture must ultimately be reconcilable with 
the underlying neural architecture.  Ehresmann and Vanbremeersch (2007)  
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have provided a general description of how biological, neural, and cogni-
tive systems may be cast within a category theory framework, though their 
work was not intended to address the systematicity problem. 

 Our category theory approach to the systematicity problem suggests 
an intriguing connection between the implied components of a categorial 
cognitive architecture (universal constructions) and brain structure. Note 
that the universal constructions we have employed to address various 
instances of systematicity involve endofunctors. The composition of 
adjoint functors is necessarily an endofunctor, and  F -(co)algebras are based 
on endofunctors. An analogue of recurrency in the brain is the reciprocat-
ing neural connections within and between brain regions. Thus, one place 
to look for a correspondence between cognitive and neural architectures, 
at least in regard to the systematic aspects of cognition, are recurrent 
neurally connected brain regions. These kinds of connections are preva-
lent throughout the brain. Conversely, brain regions lacking such con-
nections suggest corresponding cognitive capacities lacking systematicity. 
Of course, reciprocal neural connections may have other functional roles, 
and the computational connection to adjunctions is only speculation at 
this point. 

 We have begun investigating the relationship between category theory 
constructs and the brain ( Phillips, Takeda, and Singh 2012 ). A pullback 
(fibered product), which featured as the kind of universal construction in 
our explanation of quasi systematicity ( Phillips and Wilson 2011 ), also 
corresponds to integration of stimulus feature information in visual atten-
tion. By varying the  “ arity ”  (unary, binary, ternary) of the fibered product 
matching the number of feature dimensions (color, frequency, orientation) 
needed to identify a target object, we observed significantly greater EEG 
synchrony (phase-locking) between frontal and parietal electrodes with 
increasing arity. These results also provide a category theory window into 
development, discussed next. 

 6.3   Development and Learning 
 Cognitive development, in some cases, can also be seen as instances 
of systematicity. The capacity for inferential abilities, such as  transitive 
inference  and  class inclusion  are consistently enabled around the age of 
five years (see  Halford, Wilson, and Phillips, 1998 ). Children who have 
the capacity to make transitive inferences typically also have the 
capacity to make inferences based on class inclusions. Conversely, chil-
dren who fail at class inclusion also fail at transitive inference. Thus, 
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we can see this equivalence as another instance of the systematicity 
schemata: capacity  c  1  if and only if capacity  c  2 , all else being equal 
( McLaughlin 2009 ). 

 We have given a category theory explanation for these data ( Phillips, 
Wilson, and Halford 2009 ) to overcome some difficulties with our earlier 
 relational complexity  approach ( Halford et al. 1998 ). This common inferen-
tial capacity was explained in terms of the arity of the underlying (co)
product. Older children (above age five years) have the capacity for binary 
(co)products, whereas younger children do not. Thus, as an instance of a 
universal construction, and a special case of our systematicity explanation, 
having the capacity for transitive inference implies class inclusion because 
the underlying categorical structures are dual to each other. In the dual 
case, the constructions are related by reversal of arrow directions via  con-
travariant  functors, where each object is mapped to itself, and each arrow 
to an arrow whose domain and codomain are respectively the codomain 
and domain of the source arrow. 

 Learning is also of central importance to cognitive science. A universal 
construction is a kind of optimal solution to a problem: a (co)universal 
morphism is an arrow that is a factor (in the sense of function composi-
tion) of all arrows to/from a particular construction (functor). To the 
extent that learning (and evolution) is a form of optimization, universal 
constructions may provide an alternative perspective on this aspect of 
cognition. 

 7   Conclusion 

 We began this chapter with the distribution of deflected charged particles 
affording an important insight into the structure of the atom as an 
analogy to the importance of the distribution of cognitive capacities to 
understanding the nature of cognitive architecture. We end this chapter 
with the insight that systematicity affords cognitive science: the atomic 
components of thought include universal constructions (not symbols, 
connections, probabilities, or dynamical equations, though these things 
may be part of an implementation) insofar as the systematicity property 
is evident. 
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 1   Introduction 

 In 1987, Jerry Fodor came to the University of California, San Diego to 
present his now-famous systematicity argument(s) against the connection-
ist outlook on cognitive processes that was just beginning to blossom there 
at the time. Somehow I wound up with the task of picking him up at the 
airport, although it was hardly a task I minded. Fodor had sent an earlier 
draft of the paper he had cowritten with Zenon Pylyshyn and because I 
was finishing a dissertation on the philosophical implications of connec-
tionism, I was happy to get a chance to discuss the argument with him 
before all the shouting began. Meeting him at the airport, Fodor seemed 
a little on edge, and I joked that he was sort of like a Christian walking 
into a den of lions. Fodor grinned and said,  “ Yeah  …  or maybe more like 
a lion walking into a den of Christians. ”  

 As it turned out, Fodor ’ s version was probably a little closer to the truth. 
He forcefully presented his and Pylyshyn ’ s main challenge ( Fodor and 
Pylyshyn 1988 ) — that connectionist models cannot capture systematicity 
among representational states without simply implementing a classical 
architecture — and offered detailed counter-replies to the various rebuttals 
the pro-connectionist crowd put forth. So began what has turned into one 
of the more extensive and valuable debates over cognitive architecture. 
Today, it is hard to find an introductory text or course on cognitive science 
that doesn ’ t include a segment on Fodor and Pylyshyn ’ s systematicity chal-
lenge to connectionism. Besides generating a broad range of responses and 
counter-responses, the challenge has forced both classicists and connec-
tionists to clarify the fundamental commitments and assumptions that 
help define their respective theories. 

 In this chapter, I am going to recommend a line of response that might 
initially seem odd because it accepts the idea that systematicity is a real 

 10   Systematicity and Architectural Pluralism 

 William Ramsey 



254 William Ramsey

aspect of cognition but rejects the idea that connectionists should be 
deeply worried about it. In fact, I am going to defend the conjunction of 
three seemingly incompatible propositions: 

 (1)   Systematicity is indeed a real aspect of human cognitive processing. 
 (2)   Connectionism, as such, does not provide a good explanatory frame-
work for understanding systematicity. 
 (3)   (1) and (2) are not necessarily major problems for connectionism. 

 In other words, I ’ ll suggest that Fodor and Pylyshyn are justified in claim-
ing that representational systematicity is an important aspect of cognitive 
activity, but they are wrong to suppose that a failure to explain it should 
substantially undermine a given architecture ’ s promise or credibility. Fodor 
and Pylyshyn ’ s argument assumes that the mind has a single basic cogni-
tive architecture and representational system; thus, if systematicity is real, 
it must be a  fundamental  feature of cognition. While this assumption has 
always been problematic, as various authors have noted, it has now been 
rejected by a growing crowd of investigators who have adopted different 
forms of architectural pluralism. With pluralism, there is no reason to think 
that explaining representational systematicity is necessary for a viable 
theory of cognitive processes. This is good news for connectionists, because 
there is reason to think that a full explanation of systematicity would 
require them to give up many elements of their theory that are distinctive 
and noteworthy. Indeed, I ’ ll suggest that when properly understood, some 
forms of connectionist processing should be treated as lacking not just 
representational states that are related systematically, but rather as lacking 
representational states altogether. 

 To show this, I ’ ll first review the systematicity argument as I understand 
it and consider a few of the related issues that have arisen in discussions 
of the argument. I will also briefly discuss a couple of responses to the 
challenge that have been pursued, and explain why I don ’ t find them 
promising. Then I will emphasize how the challenge depends on an 
assumption of architectural monism and note how that assumption has 
been abandoned by many cognitive researchers today. With various options 
available for some kind of architectural pluralism, such as dual process 
theories, connectionists now have a straightforward response to the syste-
maticity challenge that allows them to preserve what is distinctive about 
their outlook on cognition. I will finish by encouraging connectionists to 
consider moving even further away from the classical framework by 
embracing an account of cognitive operations that is not only nonsystem-
atic but also nonrepresentational. 
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 2   The Systematicity Challenge 

 Since a great deal has been written on what the systematicity challenge to 
connectionism actually is and isn ’ t, I won ’ t dwell on that question here. 
Instead, I will simply adopt what I take to be the most charitable reading 
of Fodor and Pylyshyn ’ s argument, as articulated by writers like Aizawa 
(2003) and  McLaughlin (2009) . According to this view, the challenge is 
based on the need to explain an alleged psychological law regarding our 
mental representational capacities. The psychological law is roughly this: 
the capacity of cognitive agents to mentally represent  1   certain states of 
affairs (or propositions) is significantly related to their capacity to mentally 
represent certain other states of affairs. The states of affairs in question 
whose representations appear to be related are ones that share key ele-
ments. For instance, the state of affairs of John loving Mary is related to 
the state of affairs of Mary loving John in that these different states involve 
the same people and the same relation of love. The alleged representational 
systematicity of cognitive agents is a claim about the mental representa-
tions of related states of affairs like these. The claim is that the ability to 
token or produce the representational vehicle for one of these states of 
affairs is related to the ability to token the representational vehicle for the 
other. In other words, the ability of agents to produce the cognitive repre-
sentation  John loves Mary  is significantly related to the ability to token the 
representation  Mary loves John . The challenge is to explain why this is so 
for all such representations of relevantly related states of affairs. 

 Just what is meant here by  “ significantly related to ”  has been the subject 
of considerable discussion. In their original article, Fodor and Pylyshyn 
claim that the ability to represent certain states of affairs is  “ intrinsically 
connected to ”  the ability to represent certain others. But that doesn ’ t 
provide much clarification, since we aren ’ t told in detail what  “ intrinsically 
connected to ”  means. More recently, it has been suggested that the signifi-
cant relation is a form of counterfactual dependency or capacity ( Aizawa 
2003 ). In particular, if you possess the capacity to represent the condition 
aRb (e.g., John loving Mary), you thereby must possess the capacity to 
represent the condition bRa (e.g., Mary loving John). Indeed, in a later 
paper, Fodor and McLaughlin put things exactly this way:  “ If you meet the 
conditions for being able to represent aRb,  you cannot but meet the conditions 
for being able to represent bRa  ”  ( Fodor and McLaughlin 1990 , 202, emphasis 
in original). For our purposes, we can simply stipulate that representational 
systematicity is  some  form of significant dependency involving the token-
ing of different representations of states of affairs that are themselves 
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related insofar as they share constituent elements. It is thus claimed to be 
a law of psychology that the representational capacities of cognitive agents 
exhibit this type of interrelatedness — where representational capacities 
come in clusters of this sort. 

 Of course, there is nothing for a  psychological  theory to explain regarding 
the interrelatedness of different states of affairs that are represented. If 
anything, that is a matter of metaphysics; presumably the relevant states 
of affairs are related insofar as they involve the same people, relations, 
properties, events, and so on. But while the targets of mental representa-
tions may be related in all sorts of ways, the representational vehicles 
themselves, it seems, need not be, at least not in principle. In other words, 
John ’ s loving Mary might well be represented by one sort of neural or 
computational state, while Mary loving John might be represented by an 
entirely different and independent neural or computational state. More to 
the point, our ability to generate a representation of John loving Mary 
could in principle have nothing at all to do with our ability to generate a 
representation of Mary loving John. The representation of John loving 
Mary could stand in the same relation to the representation of Mary loving 
John that it stands to the representation of dogs hating cats. But, goes the 
argument, as a fact of psychology, it clearly doesn ’ t. The capacity to rep-
resent the first two are mutually dependent in a way that the capacity to 
represent the first and third are not. And that difference cries out for an 
explanation. 

 Given that the alleged law is grounded in a psychological disposition 
or capacity, the trait in question would presumably be explained through 
a more basic feature of the representational system. What needs explaining 
is not a particular sort of representational performance or any particular 
set of tokenings; rather, it is a dispositional property of the underlying 
system. In effect, the question Fodor and Pylyshyn posed is this: what 
is it about the way representation happens in the brain that makes it the 
case that our ability to represent some things is dependent on our ability 
to represent other things, namely, new states of affairs with the same 
elements? 

 Classicists like Fodor and Pylyshyn insist that the classical account of 
representation — what is often called a  “ language of thought ”  account —
 successfully provides an answer to this question, whereas other accounts, 
such as the one provided by connectionists, does not. Classicists claim that 
mental representations of different states of affairs are molecular structures 
made up of atomic representations that are themselves representations 
of the state of affairs ’  elements. In other words, on the classical view, our 
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mental representation of John loving Mary has a molecular structure com-
posed of more atomic representations (i.e., concepts) representing John, 
loving, and Mary. Hence, our capacity to produce a mental representation 
of John loving Mary is related to our capacity to token a mental representa-
tion of Mary loving John because these distinct molecular representations 
share the same conceptual parts and the same basic syntactic form. Where 
they differ is with regard to which parts are playing which syntactic 
roles — a difference that is, of course, quite significant. This feature of clas-
sical representations is often referred to as a  “ compositional ”  or  “ combi-
natorial ”  syntax and semantics (sometimes abbreviated to  “ compositional 
semantics ” ). What is distinctive about a classical account is that the rep-
resentational vehicle — the representation itself — has a compositional struc-
ture that reflects the  “ structure ”  of the represented state of affairs. Putting 
it simply, the meaning of the molecular representation is a consequence 
of the meaning of the atomic parts and of their role in the molecule. 

 Thus, according to the classical view, the reason the representations of 
cognitive agents are systematically related is that, like the relevant states 
of affairs, they too share the same components. The relatedness of repre-
sentational capacities is explained mereologically: the underlying represen-
tational system provides the building blocks for different molecular 
representations. If you have the building blocks for constructing a repre-
sentation of John loving Mary, then you automatically also have the build-
ing blocks needed for constructing a representation of Mary loving John 
(but not for constructing a representation of dogs hating cats, or any other 
molecule that requires different parts). It is this more basic conceptual 
representational atomism, along with a compositional syntax and seman-
tics, that explains the systematicity laws. The systematicity of thought is, 
in the classical framework, explained in the same way we would explain 
the systematicity of language. The ability to produce the English sentence 
 “ John loves Mary ”  is related to our ability to produce the sentence  “ Mary 
loves John ”  because the two sentences share the same words — their 
demands on the speaker ’ s vocabulary are the same. 

 If the classical account can explain systematicity in this way, the next 
obvious question — the one at the heart of Fodor and Pylyshyn ’ s chal-
lenge — is how do connectionists explain it without simply implementing 
a classical architecture? In connectionism, representations are typically 
something like an activation pattern of network nodes ( Rumelhart, McClel-
land, and the PDP Research Group 1986 ). While these distributed repre-
sentations of states of affairs may have component parts, such as individual 
activated nodes, those parts do not represent elements of states of affairs. 
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Generally, connectionist representations do not employ a compositional 
semantics. Connectionist representations are, after all, supposed to be dif-
ferent from classical symbols in terms of structure and form. Consequently, 
connectionists must come up with some other way to explain the relevant 
relatedness of our representational capacity. If representational vehicles are 
distributed patterns of activation, or something similar, then what is it 
about the pattern representing John loving Mary that supports the ability 
to produce the pattern representing Mary loving John (and vice versa) 
but does not support the ability to produce a pattern representing dogs 
hating cats? This question is the crux of the systematicity challenge for 
connectionists. 

 Before looking at some possible responses to this challenge, a few points 
are in order. First, it should be noted that Fodor and Pylyshyn raise the 
representational systematicity challenge alongside a host of other chal-
lenges, such as explaining the productivity of thought (our ability to 
represent a practically infinite array of different states of affairs) and 
explaining the systematicity of inference (the fact that our ability to infer 
P from P     &     Q     &     R is also intrinsically connected to our ability to infer P 
from P     &     Q). While these further challenges are certainly deserving of 
attention, I am going to restrict my discussion to representational systema-
ticity. As I hope will become clear, much of what I have to say about 
representational systematicity also applies to these other matters as well. 

 Second, although the systematicity challenge is widely treated as an 
argument designed to refute connectionism, it is, as Fodor and Pylyshyn 
themselves note, based on a more fundamental argument actually designed 
to  support  one very specific account of mental representation structure 
against  all  competing accounts.  Fodor (1987) , for example, had presented 
a prior and more general argument about the systematic nature of repre-
sentations in support of the classical framework in the appendix of  Psy-
chosemantics . Here the target was anyone committed to representationalism 
(the term he uses is  “ intentional realism ” ) but who rejects a language of 
thought account, that is, anyone who embraced a view of representation 
structure lacking a compositional syntax and semantics.  2   In effect, Fodor 
and Pylyshyn took an inference-to-the-best/only-explanation argument 
designed to support an account of representation that includes a compo-
sitional semantics, and, seeing that connectionists appear to be offering 
an account of representation without a compositional semantics, simply 
reworked it to apply specifically to connectionism. This is worth pointing 
out because I have on occasion heard people express sympathy for Fodor 
and Pylyshyn ’ s argument  against  connectionism and, in a completely dif-
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ferent context, disagreement with a language of thought account of mental 
representation. Yet it is hard to see how you can have it both ways. Every-
thing Fodor and Pylyshyn say against connectionism regarding systematic-
ity can also be (and has been) said against  any  theory of mental 
representation that lacks a compositional semantics — that is, accounts that 
reject, for the most part, a language of thought framework. That would 
include accounts of representation that have been very popular among 
philosophers — like the account put forward by Fred Dretske (1988).  3   If the 
systematicity challenge is a problem for connectionists, then it is a problem 
for anyone who rejects classicism. 

 A further important point concerns the nature of the explanandum 
that is at the heart of the challenge. As a number of writers have noted, 
while connectionists may be able to program networks so that whenever 
they have the capacity to produce one sort of representation they can 
also produce the relevant other representations, this would not provide 
a solution to the systematicity challenge. As Fodor and McLaughlin put 
it, the challenge is  “ not to show that systematic cognitive capacities are 
 possible  given the assumptions of a connectionist architecture, but to 
explain how systematicity could be  necessary  — how it could be a  law  that 
cognitive capacities are systematic — given those assumptions ”  (1990, 202). 
This requires some clarification. Fodor and McLaughlin are not, of course, 
claiming that minds are necessarily systematic; in fact, one of their central 
claims is that representational systematicity is a contingent feature that 
demands an explanation. As we ’ ve defined it, representational systematic-
ity is the feature of representational capacities coming in clusters of a 
certain sort. The capacity to represent a given state of affairs comes with 
the capacity to represent other states of affairs that share the same ele-
ments. With this conception, the necessity is built into the nature of 
systematicity itself — creatures with representational systematicity are such 
that if they can represent aRb they can necessarily represent bRa. It is a 
mystery why this is so, and classicists want to claim it is a natural by-
product of the underlying architecture of cognition. In the case of classical 
architecture, it is indeed a by-product of its compositional semantics. The 
problem with simply wiring it directly into a connectionist network is 
not that the resulting network will fail to be necessarily systematic 
(perhaps it would be), but rather that the resulting capacities would  not  
be a natural by-product of the underlying architecture. After all, if we ask, 
 “ Why do minds have representational systematicity? ”  the answer can ’ t 
be anything like  “ Because someone or something must have wired them 
that way. ”  
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 3   Responses to the Systematicity Challenge 

 As might be expected, connectionists have offered a wide range of different 
responses to the challenge. Perhaps the most popular line of response 
involves various attempts to provide an account of representational syste-
maticity that involves something other than a compositional semantics —
 an account that explains systematicity in strictly connectionist terms. This 
rebuttal requires putting forth an account of connectionist processing that 
(a) provides a satisfactory explanation of real systematicity — of how the 
relevant representations are related in the relevant way, and (b) does not 
employ a compositional semantics.  Smolensky (1991a,b ), for example, has 
offered various accounts of distributed representations that he suggests 
provide something like the structure needed to answer the challenge. 
On one version, nodes representing micro-features combine to generate 
distributed representations of various combinations. The resulting dis-
tributed representations lack classical constituents but nevertheless are 
decomposable into representations of various elements. However, Fodor 
and Pylyshyn argue that this arrangement fails to capture representational 
systematicity because of the context-sensitivity of relevant contributing 
vectors. In short, the vector representing John in the distributed represen-
tation of John loving Mary is different from the vector representing John 
in the distributed representation of Mary loving John. Consequently, it is 
far from clear what explains why a capacity to represent the one is depen-
dent on a capacity to represent the other, since the two representations do 
not involve the same building blocks. 

 In another version,  Smolensky (1991a)  modifies his account by intro-
ducing superpositional representation structure, whereby a distributed 
representation includes retrievable  “ components ”  that can be recovered 
through mathematical analyses like tensor division. In this account, the 
vectors that contribute to the representation of a state of affairs avoid the 
context-sensitivity issue but are still different from classical symbols. With 
classical representation constituents, the atomic parts must be tokened 
whenever the molecular is generated. However, in Smolensky ’ s account, 
the activation vector representing something like John loving Mary does 
not strictly speaking have a representation of John as a constituent part. 
If anything, it is thought to be present tacitly insofar as it can be retrieved 
through tensor division. This feature prompts once again the classical 
rebuttal that such an arrangement fails to explain representational syste-
maticity ( Fodor and McLaughlin 1990 ). Since the representations of John 
loving Mary and Mary loving John do not share any constituent compo-
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nents, it is left a mystery why the capacity to represent one should guar-
antee a capacity to represent the other (any more than it guarantees the 
capacity to represent something with Fred as subject). Of course, there are 
various ways that vector representations could be made more like classical 
constituents of a larger distributed representation. But then the account 
starts to look like the implementation of a classical account with a com-
positional semantics. 

 There are perhaps further modifications that Smolensky could offer to 
deal with these concerns. And, of course, his is not the only attempt to 
provide a connectionist account of systematicity (see, e.g., Chalmers 1990; 
 Hadley and Hayward 1997 ). However, I ’ m inclined to think that this is not 
the most interesting line of response to Fodor and Pylyshyn ’ s argument. 
Anything sufficiently nonclassical in nature — that is, anything that truly 
lacks a compositional semantics — is open to being described as failing to 
account for  “ real ”  systematicity. And anything that does explain  “ real ”  
systematicity in an uncontroversial way is open to being described as 
merely an intriguing implementation of a classical architecture. As far as I 
know, no one has ever provided even a hypothetical mechanism that both 
provides an  uncontroversial  explanation of systematicity and yet does not 
employ a compositional semantics. In fact, I ’ m inclined to think that a 
compositional syntax and semantics is related to representational systema-
ticity in a way that is deeper than that of  an  instantiating mechanism. I ’ m 
inclined to think that, fundamentally, the relation is such you can ’ t have 
latter without the former. But then any attempt to explain systematicity 
without implementing a classical architecture, and by extension, a lan-
guage of thought, is a sucker ’ s game, ultimately doomed to failure.  4   

 Jonathan Waskan has pointed out that there is some reason to doubt 
this last suggestion (that anything with a combinatorial semantics that can 
handle systematicity would qualify as a language of thought architecture). 
As he has argued at some length ( Waskan 2006 ), a representational archi-
tecture based on scale models might involve the sort of compositional 
structure that could account for systematicity. Certain models of  “ the cat 
is on the mat ”  arguably have a representation of the cat and a representa-
tion of the mat as constituent parts in  some  sense, and the arrangement of 
the parts of the representation is certainly semantically salient. We can at 
least begin to see how such a representational system would give rise to 
representational capacities coming in clusters — why the capacity to con-
struct of model of  “ the cat is on the mat ”  would be linked to a capacity 
to construct a model of  “ the mat is on the cat. ”  Yet, as Waskan notes, scale 
models are hardly language-like or sentential in nature. 
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 In reply to this point, it should be recalled that Fodor and Pylyshyn ’ s 
argument was designed primarily to show that our cognitive architecture 
has a compositional semantics and syntax — that is how  “ classical architec-
ture ”  is more or less defined. Thus, insofar as it can be argued that scale 
models have a compositional semantics and syntax (or something close 
enough) that can explain systematicity, then such an architecture would 
qualify as classical in nature. On this interpretation, there are different 
sorts of classical representational systems, with a language of thought 
account and scale model account being subtypes. As someone who has 
argued that a model-based approach to representation is commonly found 
in various classical computational accounts of cognition ( Ramsey 2007 ), 
this strikes me as quite sensible (see also  Block 1995 ;  Braddon-Mitchell and 
Jackson 2007 ;  Rescorla 2009 ). A more extreme approach would be to loosen 
the notion of a language of thought to include nonsentential representa-
tional systems, including scale models, as long as the representational 
system has a combinatorial structure that can handle the various chal-
lenges of representing propositions. I will leave it to the reader to judge 
the plausibility of this approach and the degree to which it is consistent 
with Fodor ’ s own perspective. It should be noted, though, that the matter 
becomes much less interesting if it degrades into a question about nothing 
more than how we use labels like  “ language of thought. ”  

 If it is a mistake for connectionists to attempt to explain systematicity 
without implementing a compositional semantics, then what other rebut-
tals are possible? An alternative strategy is to deny the reality of systematic-
ity altogether — that is, to deny that systematicity is a feature of cognition 
that requires explanation. This rebuttal comes in both a strong and a weak 
form. The strong version would entail denying that any aspect of cognition 
is systematic in the way Fodor and Pylyshyn suggest — the appearance of 
representational systematicity in cognition is something of an illusion (see, 
e.g.,  Aizawa 1997 ;  Clark 1989 ;  Matthew 1994 ). The weak version admits 
that some form of cognitive processing may well be representationally 
systematic, but denies that it is a fundamental feature permeating all of 
cognition. 

 As Fodor and Pylyshyn point out, the strong version looks like a non-
starter, at least for language-using cognitive agents like ourselves. Under-
standing languages like English (that clearly involve a compositional 
syntax and semantics) entails understanding that they are made up of 
semantically evaluable parts (words) that can contribute to other sen-
tences. At some level, then, it seems our ability to understand the sentence 
 “ John loves Mary ”  is indeed linked to our ability to understand the sen-
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tence  “ Mary loves John, ”  so linguistic understanding appears to be system-
atic. If we adopt the highly plausible assumption that we possess mental 
representations of words like  “ John, ”   “ loves, ”  and  “ Mary, ”  then it becomes 
hard to doubt that these representations are involved in our representa-
tions of the sentences  “ John loves Mary ”  and  “ Mary loves John. ”  In any 
event, the question here is not whether the systematicity involved in lan-
guage processing can be explained with a compositional semantics, but 
only whether or not it reflects systematicity among the relevant mental 
representations. Since a very strong case can be made that it does, an 
across-the-board denial of representational systematicity seems like a 
mistake. 

 These are, of course, empirical matters that will depend on what the 
facts actually reveal about how we process language. At the same time, 
however, we should not pretend that our intuitive access to conscious 
thoughts does not provide considerable force to the claim that thought is 
systematic or that it has a compositional structure. Introspectively, it cer-
tainly  seems  like my ability to consciously think a thought about some-
thing like John loving Mary shares something with my ability to entertain 
a thought about Mary loving John — something that it doesn ’ t share with 
my ability to think that the cat is on the mat. Moreover, while most of us 
have become appropriately wary about the reliability of introspection 
regarding the workings of the mind, it is far from obvious that our con-
scious access to cognitive processes should count for  nothing  at all, or that 
it can ’ t serve as some sort of qualified data. What about something as 
innocuous as my ability to form a mental image of a square on top of a 
circle and then switch these around so I wind up with an image of the 
circle on top of the square? It is hard to see how the ability to form the 
former image isn ’ t closely tied to my ability to form the latter image, espe-
cially since I am just mentally rearranging the relevant parts. In fact, a 
good deal of consciously accessible cognition appears to exhibit a degree 
of representational systematicity that seems hard to deny. 

 The upshot is that it is reasonable to suppose that some degree of rep-
resentational systematicity is a feature of at least certain forms of linguistic 
processing and perhaps other sorts of very explicit or conscious cognition. 
The strong denial of systematicity looks like a dead end. However, as noted 
above, there is a weaker version of systematicity denial that is not so obvi-
ously wrong and, I ’ ll suggest, is actually quite plausible. The weaker version 
simply rejects the claim that all of cognition is fundamentally systematic 
or requires a representational system with compositional semantics. It 
embraces the view that there are different architectures and underlying 
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principles that govern different areas of cognition. It is this view to which 
I now turn. 

 4   The Appeal of Architectural Pluralism 

 As we have noted, the force of the systematicity challenge depends on the 
pervasiveness of representational systematicity in cognitive operations. 
Fodor and Pylyshyn write as if there is one basic cognitive competence 
that is to be explained by either a classical cognitive architecture or a con-
nectionist cognitive architecture or perhaps some other option — all of 
which are mutually exclusive. While cognitive subsystems might be func-
tionally diverse and perform different tasks and types of operations, they 
assume all of this is nevertheless driven by a single type of computational 
architecture and representational system. This is what leads them to 
conclusions like:  “ So,  the  architecture of the mind is not a Connectionist 
network ”  (1988, 27, emphasis added). I ’ ll call this assumption that cogni-
tion is driven by one basic underlying computational architecture with its 
own representational system and principles  “ architectural monism. ”   5   

 If we assume that the mind is made up of different systems and process-
ing architectures with very different representational capacities, then the 
systematicity argument against connectionism loses its force as a refutation 
of connectionism. We can call this alternative assumption  “ architectural 
pluralism. ”  According to architectural pluralism, Fodor and Pylyshyn are 
perhaps right to think that an important area of cognitive processing 
involves representational systematicity, but they are wrong to assume that 
it is a pervasive feature of all of cognition. 

 The closest Fodor and Pylyshyn come to considering architectural plu-
ralism is in their discussion of what they refer to as  “ infraverbal ”  cognitive 
agents, such as nonhuman animals. Here they briefly entertain the idea 
that connectionism ’ s failure to account for systematic language processing 
would not be devastating because connectionists could account for other 
areas of nonsystematic cognition: 

 A connectionist might then claim that he can do everything  “ up to language ”  on the 

assumption that mental representations lack a combinatorial syntax and semantic 

structure. Everything up to language may not be everything, but it ’ s a lot. (1988, 40) 

 The authors then go on to reject this option by insisting that it is simply 
not plausible that animal minds are not thoroughly systematic. As they 
note, this would imply that animal minds exhibit punctate capacities: 
 “ such animals would be able to respond selectively to  aRb  situations but 
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quite unable to learn to respond selectively to  bRa  situations  …  (though 
you could teach the creature to choose the picture with the square larger 
than the triangle, you couldn ’ t for the life of you teach it to choose the 
picture with the triangle larger than the square) ”  (1988, 41). While they 
admit that this is an empirical question, they think the evidence strongly 
favors ubiquitous representational systematicity. 

 But is the alternative — the denying of pervasive representational syste-
maticity in animal minds — so implausible? Their argument is not terribly 
convincing. It may indeed be true that we are not likely to find creatures 
who can learn to selectively respond to square-larger-than-triangle but who 
cannot learn to selectively respond to triangle-larger-than-square. But it is 
far from clear that we need to appeal to a compositional representational 
system to explain this. After all, it would be equally surprising to discover 
that there are creatures who can learn to selectively respond to square-
larger-than-triangle but could not selectively respond to circle-over-
diamond. For that matter, it would be equally surprising to learn that there 
are creatures who can learn to selectively respond to a circle but cannot 
learn to selectively respond to a square or a triangle or a wide array of other 
similarly simple yet unrelated figures. Of course, in these cases we can ’ t 
explain the agent ’ s broader representational capacities by appealing to a 
compositional representation system because, presumably, the representa-
tions of these figures do not share semantically evaluable parts. So it seems 
we already know that a nonsystematic representational capacity — the 
capacity to represent items and properties of similar complexity but that 
share no common elements — will need to be explained in animals without 
appealing to a compositional semantics. But then it might well turn out 
that a representational capacity involving representations of items that  do  
share elements will simply be an extension of this more basic capacity.  6   
Even on a classical account it must be conceded that some dimension of 
our representational capacity is not systematic.  7   

 The appeal of architectural pluralism as a response to the systematicity 
challenge has been noted by several authors (see, e.g.,  Clark 1989 ;  Sloman 
1996 ;  Waskan and Bechtel 1997 ;  Waskan 2006 ). Yet I believe the force of 
this rebuttal has not been fully appreciated, especially in light of various 
developments that have occurred in cognitive science over the last twenty-
five years. Certainly one of the more significant changes in cognitive 
science has been the growing popularity of different forms of architectural 
pluralism. These provide a good reason to reject the architectural monism 
that Fodor and Pylyshyn assume, and thus a reason for thinking that the 
systematicity argument yields at most the conclusion that connectionism 
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cannot account for  all  of cognition. While architectural pluralism has come 
about in a variety of forms, I will discuss just one version here: the dual 
process approach. First, however, it will help to reconsider the cognitive 
relevance of implementational architectures in light of current attitudes. 

 Fodor and Pylyshyn famously suggest that if connectionism cannot 
account for systematicity, then it could perhaps help provide a story about 
how the cognitive architecture is implemented in the neural wiring of the 
brain. While they regard such a role as important, they certainly do not 
believe it should be treated as an aspect of psychological or cognitive theo-
rizing. Psychology would be concerned with the mechanisms, relations, 
and capacities described at a higher level of analysis — at the level of rep-
resentations and symbol manipulation. Connectionism, by contrast, would 
help explain how the activity of networks of neurons brings about the 
classical computations and symbol manipulations that, as such, comprise 
the cognitive realm. 

 Today, the idea that implementation details are largely irrelevant to 
psychology will strike many as flat-out wrong. Relatively few writers now 
accept the notion that cognitive theorizing can ignore neurological facts, 
or even think that there are clean and tidy divisions between psychological 
operations and functions, on the one hand, and the ways they are imple-
mented, on the other (Bechtel and Abrahamsen 2002;  Standage and Trap-
penberg 2012 ). Moreover, we now have quite sophisticated accounts of 
how a connectionist architecture could implement something like a clas-
sical symbol system (see, e.g., Smolensky and Legendre 2011), and these 
reveal processes of cognitive significance at many levels below classical 
processes. Even if we assume that the mind has a uniform multitiered 
structure — that, say, all cognitive subsystems involve something like a con-
nectionist architecture implementing a classical architecture — we have 
compelling reasons for thinking that the lower implementing levels should 
absolutely belong as part of cognitive theorizing. 

 But the real problem for the systematicity challenge today, as I see it, is 
the growing group of architectural pluralists who do not think that the 
mind has the same basic cognitive architecture throughout. One popular 
version of this pluralism is what has come to be known as the  “ dual-
process ”  or  “ dual-system ”  picture of cognitive architecture ( Evans 2010 ; 
 Evans and Frankish 2009 ;  Evans and Over 1996 ;  Frankish 2004 ;  Osman 
2004 ;  Sloman 1996 ;  Stanovich and West 2000 ). As the label implies, these 
writers have developed the idea that the mind is composed of two types 
of systems that operate in fundamentally different ways. One system, S1, 
is generally thought to process information in a way that is fast, automatic, 
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and nonconscious. It is assumed to be evolutionarily older and underlies 
such capacities as pattern recognition and associative reasoning. A second 
system, S2, is assumed to process information in a way that is slower, more 
deliberate, and more rule-governed. It is thought to be much newer and 
supports our conscious thought processes.   Figure 10.1  presents a common 
sort of table contrasting the commonly assumed different properties of the 
two systems ( Evans and Frankish 2009 ).    

 There are now several different versions of the dual-system account (for 
a nice discussion, see  Evans and Frankish 2009 ). On some versions, distinct 
cognitive capacities like procedural knowledge or logical inference are 
thought to be housed in either S1 or S2, whereas in other accounts, both 
systems are thought to contribute something to basic cognitive processes 
like reasoning or memory. Space does not allow a detailed examination 
here, but one aspect of this picture bears directly upon our discussion. 
Given the kinds of features unique to the two systems, as presented in 
  figure 10.1 , the dual-system framework provides a natural opportunity for 
a kind of hybrid theory, with connectionist-type models explaining the 
processing in S1 and more classical accounts explaining the processing of 
S2. Many dual-system proponents have endorsed just such an outlook 
(see, e.g.,  Sloman 1996 ;  Sun 2002 ). Moreover, it is perfectly reasonable 
to suppose that the sort of consciously available, explicitly entertained 
thoughts that make the systematicity challenge so compelling (e.g., 
thoughts like  John loves Mary ), are largely the domain of one system, 
namely S2. And if systematicity is primarily a feature of S2, then we are 
provided with a fairly straightforward strategy for diffusing Fodor and 
Pylyshyn ’ s challenge. This type of architectural pluralism implies that, for 

System 2 (S2)

– Evolutionarily new

– Slow

– Sequential

– Controlled

– Conscious

– Syntactic 

– Explicit knowledge

System 1 (S1)

– Evolutionarily old

– Fast

– Parallel

– Automatic

– Unconscious

– Associative

– Implicit knowledge

 Figure 10.1 
 Typical feature listings for the two systems. 
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the most part, the sort of cognitive operations that connectionism best 
explains need not involve systematic processing. As Sloman puts it,  “ [Fodor 
and Pylyshyn ’ s] argument is only relevant to one form of reasoning ”  (1996, 
5). Given the division of labor suggested by the dual-architecture model, 
with a connectionist-style architecture explaining S1 and a classicist 
account explaining S2, then even if connectionist representations fail to 
accommodate representational systematicity, this doesn ’ t undermine the 
theory because representational systematicity need not be an aspect of 
cognition that connectionist architectures are required to explain. 

 For example, cognitive operations in S1 are often described as being 
heavily context-dependent. Often this is in reference to the ways in which 
situational factors influence the different operations and generate biases 
or specific outcomes. However, in some models, context is thought to 
influence the nature of the conceptual representations invoked as well (see, 
e.g.,  Smith and Conrey 2007 ). This is regarded as a virtue since it accom-
modates a large body of psychological literature on the way contextual 
factors influence the way we represent different items (Barsalou 1987). In 
such models, the way John is represented when an agent thinks about John 
loving Mary may very well differ in various ways from the way he is rep-
resented in S1 thoughts about Mary loving John. Indeed, the computa-
tional models of this are quite similar to the account of weak compositionality 
put forth by  Smolensky (1991b) . As we saw above, Fodor and Pylyshyn 
would insist that such a representational system would lack real represen-
tational systematicity. Yet many contemporary dual-system theorists would 
merely reply,  “ And the problem with that is  …     ? ”  In other words, the 
proper response to the claim that context-dependent conceptual represen-
tations can ’ t produce representational systematicity is not to fiddle with 
them so that they do. The proper response is to broaden our conception 
of how information is represented in the brain and to insist that, as the 
psychological literature suggests, significant areas of cognition almost cer-
tainly lack full-blown systematicity. 

 This is just one of the ways in which the dual-system outlook promotes 
the kind of architectural pluralism that substantially diminishes the syste-
maticity challenge. Of course, this approach brings with it its own issues. 
For example, some reject the idea that a connectionist architecture should 
explain S1 whereas a classical architecture accounts for S2. As Samuels puts 
it,  “ It is, to put it mildly, obscure why connectionist processes should 
exhibit the S1 cluster whilst classical ones exhibit the S2 cluster ”  (2009, 
142). Samuels ’ s point is perhaps true of some of the features, especially 
those for which we currently have no idea about how they might be imple-
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mented, such as conscious access. Yet some of the features associated with 
S1 line up exactly with the traditional properties normally ascribed to con-
nectionist modeling. For example, the processing of S1 has been tradition-
ally described as being largely associative in nature. Insofar as associative 
processing is thought to be a hallmark of connectionist networks ( Rumel-
hart, McClelland, and the PDP Research Group 1986 ), it is perfectly reason-
able to suppose that S1 is a natural home for connectionist frameworks. 
The same is true of a variety of other features, such as parallel processing 
and non-explicit knowledge storage. 

 However, it is important to recognize that the sort of architectural plu-
ralism needed for a connectionist answer to Fodor and Pylyshyn ’ s chal-
lenge does not require things to line up in neat and tidy ways. It does not 
require that S1 be exclusively the explanatory domain of connectionist 
modeling and S2 be exclusively the domain of classical modeling. Nor does 
it require that there be only two fundamental types of systems or pro-
cesses — another aspect of dual-system theory over which there has been 
considerable debate ( Evans and Frankish 2009 ). In fact, it does not even 
require that representational systematicity appear in only one of the two 
(or more) basic computational architectures. All it requires is the following 
very weak claim: there are significant areas of cognition in which the psy-
chological processes and mechanisms do not include a representational 
framework in which the representations are related systematically. Given 
the strength and the breadth of support that architectural pluralism is 
receiving from different areas of cognitive science, that claim is extremely 
plausible. But then a core assumption of the systematicity argument that 
was, at least initially, taken for granted is now something we have good 
reason to reject. 

 An important virtue of this way of responding to the systematicity chal-
lenge is that it allows connectionists to preserve much of what is distinctive 
about their theoretical framework. Fodor and Pylyshyn ’ s argument demands 
connectionists and others to abandon novel, nonclassical ways of thinking 
about the mind and instead explain cognition in traditional terms. This is 
analogous to Lamarck attacking Darwin because evolution does not explain 
certain basic features of Lamarckian theory, such as adaptive change within 
a given individual over its lifetime in response to environmental chal-
lenges. The proper Darwinian response was not to attempt to explain this 
aspect of organismic change, but instead to insist that although real, it was 
not something their theory treated as central to the explanation of how 
adaptive traits are passed along. Evolutionary theory went in a new direc-
tion and demanded a shift in the way we think about the inheritance of 
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adaptive traits. Similarly, instead of trying to mold their explanatory frame-
work to accommodate traditional aspects of the classical account of cogni-
tion, connectionists are better served by demanding a significant shift in 
the way we think about the mind. Rather than trying to accommodate 
representational systematicity without implementing a classical frame-
work, connectionists should instead insist on the sort architectural plural-
ism that significantly restricts representational systematicity to only certain 
processes. They can then go about the business of providing their own 
account of cognitive activity, with their own principles and theoretical 
posits. 

 I would like to close by encouraging connectionists to push things a 
little further in this direction. Connectionists widely and universally 
embrace the general assumption that cognitive processes require represen-
tations of  some  sort. As Fodor and Pylyshyn make clear, the systematicity 
debate is not over the existence of representations, but over whether or 
not connectionist-style representations are of the  right  sort.  8   In fact, the 
standard view is that if connectionist accounts failed to posit representa-
tions of some form in their descriptions of how networks perform various 
tasks, then they would cease to offer anything that could qualify as a  cogni-
tive  theory. As Fodor and Pylyshyn put it:  “ It ’ s the architecture of represen-
tational states and processes that discussions of  cognitive architecture  are 
about. Put differently, the architecture of the cognitive system consists 
of the set of basic operations, resources, functions, principles, etc.  …  
whose domain and range are the  representational states  of the organism ”  
(1988, 10).  9   

 This nearly universal outlook suggests that the  “ representational theory 
of mind ”  has lost its status as an empirical hypothesis and has instead 
become something like a conceptual truth. For any theory to qualify as a 
psychological theory or cognitive model, it is necessary that it invoke 
representational states of some form. If there aren ’ t representations, then 
by definition the processing isn ’ t cognitive. Think about that for a minute. 
It wasn ’ t that long ago that the majority of psychologists regarded the 
positing of inner representations in psychological theorizing as a deep 
conceptual mistake. Now, the opposite view is held — anyone who tries to 
explain cognitive processes without representations is conceptually con-
fused because the former is defined through the latter. Of course, the 
specifics of how all this is supposed to work are a bit unclear. Even in 
computational operations that are saturated in symbols, lots of other 
processes and supporting operations involve entities that are not represen-
tations. Are these thereby noncognitive? Is there a percentage of represen-
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tations required for an operation to count as cognitive? What if some 
subsystem takes representational structures as input and generates different 
representational structures as outputs, but nothing internal to its process-
ing is representational in nature. Is that a cognitive system or not? 

 My view is that all of this is fundamentally wrongheaded. It is wrong 
to treat representational posits as a necessary condition for cognitive theo-
rizing or to suggest that they serve as some sort of demarcating criterion 
for what counts as psychology. Instead, we should return to what I believe 
was the correct view all along: that representationalism is an empirical 
hypothesis about the inner workings of the mind. While there are very 
good reasons for thinking that much of what we want cognitive scientists 
to explain involves different sorts of representations, not all of it must. 
Thus, we should treat the relation between representation and cognition 
in much the same way we currently treat the relation between conscious-
ness and cognition. For many, it was once self-contradictory to speak of 
unconscious or nonconscious mentation. Descartes, for example, believed 
that all thought must be conscious.  10   Today, of course, very few people 
hold this view, as we have come to appreciate just how much of what we 
regard as psychologically salient occurs in the nonconscious realm. 
Acknowledging the realm of nonconscious cognition has marked an essen-
tial shift in our overall theorizing about the mind. We should do the same 
with regard to nonrepresentational cognition. 

 There are, I believe, a variety of ways in which this sort of shift away 
from representationalism would enhance (or at least broaden) our under-
stating of the sort of processing taking place in the faster, automatic, and 
nonconscious regions of the mind commonly ascribed to S1. Take, for 
example, the procedural memory associated with an acquired skill through 
practice. On many connectionist-style accounts, this know-how comes 
about through alterations in the connection weights as a consequence of 
repeated trials or some other type of extended learning process. Conse-
quently, the system ’ s know-how is generally regarded as residing within 
these connection weights. Information is claimed to be encoded superpo-
sitionally, with separate items of information superimposed on top of one 
another in the resulting weight configuration of the connections, and with 
no particular entity or structure encoding any specific content ( Rumelhart, 
McClelland, and the PDP Research Group 1986 ;  Smolensky 1988 ). This 
picture is thus an increasingly popular way of thinking about tacit or 
implicit representation, whereby information is stored holistically and 
there is no one-to-one mapping between discrete items and representa-
tional content. 
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 As I have argued at length elsewhere ( Ramsey 2007 , chap. 5), this 
popular way of thinking about tacit representation actually makes little 
sense and is completely devoid of any theoretical value. It seems to be 
based on a conflation of representations with dispositional properties of 
the acquired weight configuration. To qualify as a representation, some-
thing needs to play a certain functional role in the system ’ s processing — it 
needs to be doing something recognizably representational in nature. At 
the very least, it should have an identifiable content that in some way, at 
some level of analysis, is relevant to the job it performs. I do not see how 
the weight configuration of a network does any of this. It is true that the 
resulting weight configuration is crucial to the way the network transforms 
input patterns into specific outputs. However, the fact that a structure is 
merely  causally relevant  to the processing, or that it is the part of the system 
that is modified so that a cognitive task can be performed — these consid-
erations do not provide adequate justification for treating the connection 
weights as representations. 

 I do not regard this critique of this notion of connectionist representa-
tion as a reason for doubting that the modification of connection weights 
is a potentially valuable and plausible account of how cognitive skills are 
acquired and stored. The problem is not with equating cognitive skill 
acquisition with weight modification; the problem is with then describing 
that process as the development of representations. Connectionists should 
not only reject the idea that all cognitive operations are systematic; they 
should also reject the idea that  all  cognitive processes require inner 
representations. 

 So here is one area where I believe connectionists should go further 
in staking their independence from the classical framework and, in the 
process, expand our conception of cognitive processes. While S1 is often 
treated as lacking a classical, highly symbolic, rule-governed computa-
tional architecture, it is nevertheless thought to be a representational 
architecture, perhaps with distributed, tacit, or some other sort of nonsym-
bolic or subsymbolic representations. And yet, if our cognitive ability to, 
say, recognize faces comes about through something like a connectionist 
weight modification of a connectionist-style network situated in the cogni-
tive architecture of S1, and if that cognitive capacity resides in the dispo-
sitional properties of the network, then connectionists would be providing 
an account of an important  cognitive  skill that, at least in this regard, is not 
only unsystematic, but is also nonrepresentational. Fodor and Pylyshyn ’ s 
challenge was an extremely strong attempt to define cognition on classical 
terms, appealing to processes that are most naturally and easily explained 
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with the traditional computational framework. Connectionists should 
strive to avoid this framework, and in the process help us see things dif-
ferently with a new understanding of cognitive processes and the sort of 
entities and structures that are essential to them. 
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 Notes 

 1.   Mental representations are typically characterized in the form of propositional 

attitudes — e.g., beliefs, desires, hopes, fears. A common locution used in the litera-

ture to capture the relevant capacity is the ability to  “ think the thought, ”  though 

the argument is not simply about beliefs — systematicity includes the ability to, say, 

desire that John love Mary and how it is (allegedly) counterfactually dependent on 

the ability to desire that Mary love John. 

 2.   In other works, Fodor uses the term  “ monadic ”  to refer to one sort of account of 

representation structure that lacks a compositional semantics ( Fodor 1985 ). 

 3.    Dretske (1988)  explicitly rejects classical computationalism and strongly suggests 

that at least with regard to simple representations of states of affairs (like a fly 

currently buzzing in front of the cognitive agent), the representation lacks semanti-

cally evaluable components. 

 4.   Some writers have wondered if a close conceptual link between systematicity and 

a compositional semantics reveals that Fodor and Pylyshyn merely beg the question 

against connectionism by tacitly presupposing a compositional semantics in their 

stipulation of the systematicity explanandum ( Aizawa 2003 ). Yet even if X is neces-

sary for Y, it is not begging any questions to argue for X on the basis of Y. Even if 

it should turn out that the only way in which real systematicity could arise is if we 

have a representational system with a compositional semantics, it would not be 

begging the question to argue from systematicity to a compositional semantics. 

 5.   Given Fodor ’ s defense of a fairly strong modularity thesis involving several dif-

ferent encapsulated subsystems, this assumption might seem quite odd. Yet Fodor ’ s 

modularity thesis is completely compatible with the view that individual modules 

more or less process information in the same way, employing the same computa-

tional principles and representational capacities. For Fodor, while the specific com-

putational routines and information employed may differ greatly from one module 
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to the next, the underlying computational architecture is always assumed to be 

classical in nature. 

 6.   At one point, Fodor and Pylyshyn note that  “ it would be  very  surprising if being 

able to learn square/triangle facts implied being able to learn that quarks are made 

of gluons or that Washington was the first President of America ”  (1988, 44). Yes, 

that would be quite surprising, but not because gluon/quark facts fail to share ele-

ments with square/triangle facts. The surprise would be due to the very different 

levels of conceptual sophistication required for representing circles and triangles 

versus gluons and quarks. Note that it would not be all that surprising if the ability 

to learn square/triangle facts implied the ability to learn circle/diamond facts. 

 7.   After all, there is nothing systematic about our capacity to acquire and represent 

basic concepts that serve as representational atoms. 

 8.   It is far from clear who Fodor and Pylyshyn have in mind when they refer to 

nonrepresentational connectionists. Insofar as some supporters of connectionism, 

like the Churchlands, might be viewed as eliminativists, they are not antirepresen-

tationalists. Connectionist-style eliminativism of the sort endorsed by the Church-

lands (or in  Ramsey, Stich, and Garon 1990 ) is not the denial of mental 

representations but rather the denial of a certain  sort  of mental representation —

 namely, propositional attitudes like beliefs (see, e.g., P. S.  Churchland 1986 ;  P. M. 

Churchland 1989 ). 

 9.   Similarly, Aydede (2010) tells us that, for any or all non-representational accounts, 

 “ it is hard to see how they could be models of  cognitive  phenomena. ”  

 10.   The analogy is not perfect since consciousness belongs as part of the explanan-

dum of much of psychology, whereas representations are, to a greater degree, part 

of the explanation.      
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 The systematicity argument championed by Jerry Fodor, Zenon Pylyshyn, 
and Brian McLaughlin (Fodor and Pylyshyn 1998;  Fodor and McLaughlin 
1990 ) became a magnet for debates over the cognitive architecture, provid-
ing an empirically based challenge to those who did not accept classical 
computationalism. In general, the alternative explanations of systematic 
patterns that were proposed by connectionist models did not directly chal-
lenge the assumption that mental representations are both syntactically 
and semantically internal, focusing instead on alternative means of achiev-
ing compositionality without classical vehicles of content (see, e.g.,  Van 
Gelder 1990 ;  Chalmers 1993 ;  Smolensky 1995 ). However, some recent 
discussions locate the explanatory structures for such patterns outside the 
brain. While not always couched in terms of the extended mind theory, 
proposals by authors such as  Menary (2007)  and  Symons (2001)  reconsider 
the explanations for such patterns to encompass aspects of the linguistic 
environment. 

 In what follows, I will outline one variety of such an explanation as 
part of a more general review of the ways in which the extended mind 
theorist might address the systematicity challenge. The attempt here is to 
meet the systematicity challenge as directly as possible, accepting most of 
the definitions made in the original argument insofar as they can be 
accommodated in this framework while questioning some underlying 
assumptions about the nature of representation. The proposed explanation 
considers the relevant explanatory structures that determine the nature of 
instances of systematicity laws to be extended, though allowing that the 
mechanisms that directly support them may be internal to the cognitive 
agent. 

 This shift of the explanatory burden away from properties that are pos-
sessed intrinsically by intracranial mental states can be compared to a 
similar explanatory strategy employed by Pylyshyn in relation to imagistic 
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phenomenon, and his work provides a useful framework for both under-
standing and potentially empirically verifying this method of explaining 
evidence for the systematicity of thought. A brief review of some of the 
empirical evidence that exists for the systematicity of thought suggests that 
the patterns that do exist in such cognitive abilities can more easily be 
accommodated by this explanation. 

 1   The Systematicity Challenge and the Extended Mind 

 1.1   The Challenge 
 Fodor ’ s original construction of the systematicity argument begins with 
the observation of certain lawlike patterns in cognitive abilities that he 
claims have the status of psychological laws. His toy examples of the sys-
tematicity of thought are by now familiar — the ability to think thoughts 
such as  John loves Mary  coexists (ceteris paribus) with the ability to think 
thoughts such as  Mary loves John , and so on for any clusters of similar 
thoughts. This is captured in the general schema: 

 Ceteris paribus, a cognizer is able to think the thought that  aRb  if and only 
if he is able to think the thought that  bRa . 

 McLaughlin has clarified that  “ think the thought ”  is intended to mean 
 “ mentally represent, ”  and furthermore that mental representations have 
propositional contents, so the relevant schema can be restated as:  “ Ceteris 
paribus, a cognizer is able to mentally represent that  aRb  if and only if the 
cogniser is able to mentally represent that  bRa  ”  ( McLaughlin 2009 , 272). 
This claim is also extended to inferential abilities; however, the systematic-
ity of thought will be the focus of this chapter. 

 Several authors (see, e.g., Schiffer 1991;  Cummins 1996 ;  Johnson 2004 ) 
have argued that such definitions are uninformative and risk either begging 
the question regarding the nature and structure of mental states or biasing 
the identification of systematic patterns toward those most naturally 
explained by classical computational architectures. However, as McLaugh-
lin notes, the general schema does not commit the advocate of the syste-
maticity argument to anything beyond the claim that the relevant contents 
 “ will be related, albeit non-equivalent ”  ( McLaughlin 2009 , 254) mental 
contents. He also rejects the possibility of providing a list of necessary and 
sufficient conditions identifying the clusters of thoughts that are in fact 
related by systematicity laws, and he does not believe that such conditions 
are required to pose a challenge to nonclassicists ( ibid. , 253). In part, this 
is because of the controversial nature of theories about propositional 



Systematicity Laws and Explanatory Structures 279

content, which he argues means that it is  “ indeed best to identify the 
thought abilities in question other than by appeal to any hypothesis about 
what the similarities in propositional-content consist in, for just about any 
such hypothesis will be contentious ”  ( ibid. , 270). 

 While these are good reasons for being reticent about providing further 
detail, evaluating the empirical claims made in the service of the argument 
for classicism requires a clearer working definition of what they are taken 
to be, especially in the context of considering alternative means of iden-
tifying such laws where there might be disagreement about the contrast 
cases that patterns of systematicity stand out against. Any further specifica-
tion can be considered as a kind of prediction of what systematicity laws 
would look like, given a certain theoretical framework and cognitive 
architecture. A more generic statement of classical systematicity laws that 
incorporates the assumed relationship between thought and language in 
classicism can be stated in the following way: 

 Cognizers exhibit classical systematicity if, whenever they can mentally 
represent a proposition  p  they can also mentally represent propositions 
similar to  p  (ceteris paribus), where similarity is understood in terms of per-
muting semantic constitutents of the same semantic category within  p , or 
substituting any semantic constituents in  p  with others of the same seman-
tic category that they possess. As a first approximation, contents expressed 
using the same constituents in grammatical natural language sentences 
should be taken as indicative of this similarity, unless there is a principled 
reason for them to diverge. 

 This description is clearly not theory neutral; however, it allows that 
these patterns can be redescribed in terms that do not take mental repre-
sentational abilities to consist in the kind of internal, compositionally 
structured states advocated by this theory. It also leaves open the possibility 
that the thoughts that are actually related by systematicity laws (and so 
fulfill the general schema) are not all or only those that fulfill the defini-
tion of classical systematicity laws. The attempt to provide further specifi-
cation of the content of the relevant mental states is intended to provide 
more substance to the claim and a clearer burden of proof in relation to 
proposed exceptions to evidence marshaled in support of classicism. 

 The challenge presented in the original argument was for the proponent 
of connectionist systems to explain these patterns without invoking a 
language of thought architecture. Furthermore, Fodor and McLaughlin 
argued that this explanation must fulfill the criteria of explaining these 
patterns as psychological laws, and hence as nomologically assured by the 
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central tenets of the theory ( Fodor and McLaughlin 1990 ), and to do so 
by providing a mechanistic explanation. I will return to these explanatory 
conditions after a general overview of the different ways in which the 
proponent of the extended mind theory might take up the systematicity 
challenge and define patterns of systematicity. 

 1.2   Extended Cognition 
 The central claim of the extended theory of mind is that the cognitive 
system is not bounded by the skin or skull, but needs to be understood as 
a system that encompasses aspects of the world that have often been taken 
to be external to the mind (see  Clark and Chalmers 1998 ; Clark 2000, 2001, 
2003, 2010b). The extended mind theory can be understood as a form of 
active externalism whereby  “ some cognitive processing is constituted by 
active features of the environment ”  (Menary 2010, 2) — processes and vehi-
cles in the extracranial environment are coupled with internal resources 
to form the cognitive system. Sometimes this claim is motivated by con-
siderations of functional parsimony, whereby the similarity of the role 
played by  “ external ”  and internal resources in cognitive tasks is taken to 
give them equal claim to the cognitive mantle, as in the position most 
often adopted by Andy Clark and David Chalmers. However, such func-
tionalist considerations are not the only means of arriving at this position. 
For example,  Menary (2007)  argues that it is the high degree of coordina-
tion and integration exhibited by the extra- and intracranial aspects of the 
world in certain cognitive tasks that warrants their consideration as a 
whole system in some instances.  1   

 Within this broad framework, different commitments can be made on 
many points. For example: what conditions are required for some part of 
the extracranial world to count as part of the cognitive system (such as the 
conditions of  “ glue and trust ”  described by Clark and Chalmers); the 
extent to which the brain and nervous system are central to cognitive 
activities; how to divide the extended cognitive system into subsystems; 
whether properties like consciousness can be extended (No ë  2010); the 
symmetry of the causal relationships between intra- and extracranial states; 
and so on. However, all versions of the extended mind approach will allow 
that, at least to some degree, specifying the vehicles (and/or contents) of 
mental states as well as cognitive processes can involve looking beyond 
the brain of the cognitive agent. 

 In terms of cognitive modeling, this approach is particularly compatible 
with the explanatory framework of dynamic systems theory, which allows 
for intra- and extracranial aspects of cognitive processes to be easily 
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modeled as one system (see, e.g.,  van Gelder 1995 ;  Port and van Gelder 
1995 ). There are various kinds of dynamic models, including those that 
provide interpretations of connectionist systems (see  Zednik 2008  for dis-
cussion), and the manner in which the underlying cognitive architecture 
is conceived bears on questions concerning the role of mechanistic expla-
nation for psychological generalizations, as will be discussed further below. 

 The very possibility that lawlike psychological generalizations could be 
explained in an extended framework has been questioned by some authors 
such as  Adams and Aizawa (2001)  and Rupert (2004), who argue that the 
diversity of physical states and causal processes that can be involved in 
cognition from this perspective makes such explanations untenable. There 
is concern that the empirical generalizations found in an unextended 
understanding of mind will not be visible in an extended framework, and 
that other law-like generalizations will not emerge in this framework 
(Adams and Aizawa 2001, 61). However, as Clark (1997) has noted, lawlike 
generalizations can also be made in thoroughgoing dynamic systems mod-
els — for example, the lawlike regularities in finger oscillation patterns 
described by  Kelso (1995) .  2   While an extended cognitive science may not 
so readily highlight certain kinds of generalizations associated with intra-
cranial processing, it would appear question-begging to assume that these 
are the only, or even the most important, generalizations about cognition 
that can be made. 

 Within the general extended mind framework, the systematicity chal-
lenge could be taken up in several ways, in terms of both the definition 
and explanation of these patterns. These can be considered in regard to a 
related group of claims about cognitive states and explanation made by 
classicism: (1) the definition of cognitive abilities as representational; (2) 
the claim that mental representations are propositional; (3) the claim that 
mental representation is intracranial (both semantically and syntactically); 
(4) the corresponding identification of psychological resources as intracra-
nial; and (5) the claim that the best explanation of such patterns will be 
one that identifies a mechanism in virtue of which they exist. It is (3), (4), 
and to a lesser extent (5) that will be the focus of this chapter; however, 
before discussing these in further detail I will briefly discuss the possibilities 
raised by a consideration of (1) and (2). 

 Although there is no universally accepted position regarding the nature 
of cognitive states in the extended theory of mind, dynamic systems 
models of the cognitive architecture are sometimes touted as nonrepresen-
tational (see, e.g.,  van Gelder 1995 ;  Clark 1997 ). One means of addressing 
the systematicity challenge would be to reject the assumption that the 
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relevant cognitive abilities exhibiting these patterns are representational, 
and instead take up a modified challenge of explaining the behavioral, 
empirical evidence (as Clark [1990, 149] suggests:  “ What stands in need of 
empirical explanation is not the systematicity of thought but the systema-
ticity of behaviour, which grounds thought ascription ” ). If this approach 
were adopted, the kinds of patterns identified in classical systematicity laws 
could be made at least partially visible by stating them in terms of the 
semantic relations between the representational objects of nonrepresenta-
tional states — so, for instance, the ability to mentally represent  John loves 
Mary  could be reconstrued as the ability to be intentionally related to a 
public representation of  John loves Mary .  3   Although it is possible to under-
stand the explanation to be discussed in the following section in this way, 
I will retain the terminology of mental representation for two main reasons: 
first, because avoiding it risks amplifying the distinction between intra- 
and extracranial states in a way that does not reflect the central tenets 
of the extended mind theory; and second, because a suitably adapted, 
extended account of mental representation is available that takes on the 
systematicity challenge at face value and addresses some of the concerns 
of proponents of nonrepresentationalism. 

 In regard to (2), the claim that mental representation involves proposi-
tional content could also be challenged, especially if this is taken to entail 
a rejection of imagistic or other possible models of mental content. I will 
chiefly be concerned with explaining instances of systematicity laws that 
do fulfill this further specification, but it should be noted that rising to 
this challenge does not require a commitment to the claim that all cogni-
tive activity involves propositional representation. 

 From this perspective, patterns of classical and other propositional, 
representational systematicity may be part of a family of patterns in cogni-
tive processes. 

 1.3   Defining Extended Systematicity 
 Within the systematicity challenge as given, there is clearly no restriction 
to an internalist conception of mental representations of the kind advo-
cated by classicism, or to any particular structure of the vehicles of such 
representational states. It is here that the extended framework provides the 
most obvious point of challenge to the identification and explanation of 
these regularities. Although the empirical generalizations about mental 
representational abilities that Fodor, McLaughlin, and others have in mind 
may not yield a precise mapping from classicism to an extended frame-
work, the initial strategy will be to reconceive some of the central evidence 
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provided for classical systematicity. This is not intended to exhaust the 
intended scope of classical systematicity, and this point will be explored 
later. 

 The focus of Fodor and McLaughlin ’ s original challenge and many sub-
sequent discussions has been the systematicity of language comprehen-
sion, which is taken to be strongly indicative of patterns in underlying 
mental representational abilities due to the conception of these abilities 
as involving the translation of sentences into content-matching intracra-
nial mental representations. However, these abilities (along with other 
representational abilities) can instead be reconceived as representation-
using abilities that do not involve the tokening and manipulation of 
intracranial states that are possessed of certain intrinsic syntactic and 
semantic properties. 

 The act of mental representation understood in this way can involve 
extracranial representations and the norms governing their use in a number 
of different ways. In general terms, Clark and Chalmers have discussed the 
way in which manipulating physical symbols can aid in the restructuring 
of an agent ’ s epistemic environment — for example, shuffling Scrabble tiles 
to suggest new combinations or manipulating falling Tetris blocks ( Clark 
and Chalmers 1998 ). In his consideration of experiments that are sugges-
tive of how  “ material tokens ”  (written words, numerals, graphs, and so on) 
can aid cognitive aptitude,  Clark (2006)  focuses on three main uses of 
linguistic and other representational tokens: as a source of additional 
targets for attention and learning; as a resource for directing and maintain-
ing attention on complex conjoined cues; and as providing proper parts 
of hybrid thoughts. For example, in one experiment, primates were trained 
to apply tags to pairings of objects to indicate if they were same-object or 
different-object pairings. They were subsequently able to complete tasks 
involving higher-order sameness and difference that were beyond their 
non-tag-trained counterparts.  4   Clark suggests that such interaction with 
physical symbols creates new perceptual targets (either real or reimagined) 
that can serve to lessen the burden of cognitive tasks. In other cases, agents 
can exploit the  “ modality-transcending ”  properties of symbols to combine 
information from numerous perceptual sources. Finally, Clark considers 
cases where words in a public code can supplement more basic cognitive 
capacities as part of hybrid thoughts. For example, he considers the work 
of Dehaene and colleagues, who suggest that the use of number words 
results in a new capacity to think about an  “ unlimited set of exact quanti-
ties ”  that does not depend on a content-matching representation of those 
numbers:  “ Instead, the presence of actual number words in a public code 
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(and of shallow, imagistic, internal representations of those very public 
items) is itself part of the coordinated representational medley that con-
stitutes many kinds of arithmetical knowing ”  ( Clark 2006 , 9, discussing 
the work of Dehaene 1997; Dehaene, Spelke, Pinel, Stanescu, and Tviskin 
1999). 

 There are several (non-mutually exclusive) means of conceiving of the 
relationship between brains and representational symbols that shed light 
on these experiments. For example, Dennett sees a central role for linguis-
tic systems in particular as a kind of virtual machine, as  “ a temporary set 
of highly structured regularities imposed on the underlying hardware by 
a program ”  (Dennett 1991, 216). Clark suggests the relationship is one of 
 “ complementarity, ”  whereby languages and other symbol systems aid cog-
nition without being replicated by  “ the more basic modes of operation and 
representation endemic to the biological brain ”  ( Clark 2006 , 1). In his 
consideration of dynamic explanations, Symons presents the following 
 “ rough initial hypothesis ”  of the relationship between language and the 
brain:  “ I suggest that language-like structures, as well as patterns of intel-
ligent behavior can be understood as providing complex multi-dimen-
sional targets for the organism.  …  This approach can recognize the 
indispensability of the intentional or representational idiom in psychologi-
cal explanation, without locating representations in the brains of intelli-
gent agents ”  ( Symons 2001 , 522). 

 Menary proposes an  “ integrationist solution ”  involving both  “ internal, 
non-classical vehicles and processes and external classical vehicles and 
processes. ”  The solution he proposes is  “ to take two systems and put them 
together. The classical system of structured linguistic sentences is an exter-
nal and autonomous system. The connectionist system of learning algo-
rithms and pattern recognition techniques is coupled to the external 
linguistic system of spoken and written sentences. The external system 
provides the forms of grammatical structure and, thereby, the rules by 
which sentences are structured ”  (Menary 2010, 150). 

 For purposes of explaining the phenomenon of systematicity, I will offer 
a characterization of the relationship between the intra- and extracranial 
states found in representation-using activities in terms similar to those 
employed by  Pylyshyn (2003)  when he considers the relationship that 
holds between thought and imagery. In this understanding, the degree of 
interconnection between the intra- and extracranial aspects of the cogni-
tive system leads to a range of derivative structural effects on internal 
cognitive processing that should not be considered as resulting from intrin-
sic structural properties of intracranial states. This rests on distinguishing 
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between the properties that are intrinsically possessed by the intracranial 
states of the cognitive system, and those properties that may affect such 
processing but are intrinsically possessed by the extracranial vehicles 
or contents of cognitive activities. Of particular interest for the systematic-
ity argument will be those structural properties that are attributed to 
internal mental states by classicism — namely, semantic and syntactic 
compositionality. 

 Although intended as a defense of a classical architecture, Pylyshyn ’ s 
work on mental imagery here offers a model for not only understanding 
the role this distinction plays in explaining patterns in cognitive abilities, 
but potentially for empirically validating the claim that such properties are 
not intrinsic to internal states. The key point of difference between the 
account offered here and Pylyshyn ’ s position is that it is not unidirectional: 
language and other representational systems can affect intracranial states 
just as intracranial states can affect representational systems. This accom-
modates an understanding of the structural properties of such systems 
as mutually influencing parameters of an extended cognitive system, in a 
similar vein to Symons ’ s understanding of languages as  “ both sources of 
and subject to selective pressure ”  ( Symons 2001 , 522, in discussion of 
 Deacon 1997 ). 

 Representation using activities can then be understood as the ability to 
manipulate these predominantly extracranial representations according to 
certain norms of use. Menary sees the manipulation of external representa-
tions, the interpretation of symbols, and the structuring and correcting of 
the activities of cognizers in a problem-solving task as normative  “ in the 
sense that we learn or acquire a practice that is an established method of 
manipulating notations to produce an end ”  (Menary 2011, 143). This 
account can be applied to all of those uses of representations considered 
above. 

 From within this rough framework, we can generate a definition of pat-
terns of systematicity as the coexistence of abilities to use representational 
systems, as governed by cognitive norms, wherein relations between those 
abilities can be understood in terms of semantic relations in the extracra-
nial representational schemes. As noted earlier, it is not clear that repre-
sentation-using abilities will exhaust the kinds of propositional abilities 
that systematicity laws are intended to range over, although I will suggest 
in the final section that there are problems with extending systematicity 
laws beyond cognitive abilities that employ representations. It may also be 
possible to understand similarity here in terms other than relations between 
extracranial representations. 
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 It should also be noted that viewing the cognitive system as extended 
means that the formulation of ceteris paribus exceptions to such laws will 
differ from the classical model. The  “ all else ”  that is assumed to be held 
equal in the identification of such laws is intended to limit the claim that 
thought is systematic to those cases where the operant idealizations of 
psychology are realized, thus ruling out exceptions where there is some 
disruption at the implementational level of the system or influence from 
another cognitive mechanism at the psychological level (see, e.g.,  Fodor 
1991 ). Such ceteris paribus restrictions can be recast to encompass the 
idealizations of an extended psychological system, depending on the 
model that is used. 

 2   Explanation, Structure, and Psychological Resources 

 The general explanation to be offered here appeals to a principle of cogni-
tive efficiency coupled with the way that structural properties of extracra-
nial representational schemes can have derivative effects on cognitive 
processing. 

 Fodor and McLaughlin have claimed that both classicists and connec-
tionists accept the same general model of explanation for the systematicity 
of mind, citing four points of accord:  “ i) that cognitive capacities are gener-
ally systematic in this sense, both in humans and in many infrahuman 
organisms; ii) it is nomologically necessary (hence counterfactual support-
ing) that this is so; iii) that there must therefore be some psychological 
mechanism in virtue of the functioning of which cognitive capacities are 
systematic; iv) and that an adequate theory of the cognitive architecture 
should exhibit this mechanism ”  ( Fodor and McLaughlin 1990 , 185). 

 In regard to (iii), the psychological mechanisms that Fodor and McLaugh-
lin argue must be appealed to are the operations, functions, resources, 
principles, and so on specified in the theory of the cognitive architecture, 
as distinct from the folk psychological or implementational level of the 
system. Such mechanisms are taken to be defined over the microstructure 
of the things that satisfy the law in question — in this case, the microstruc-
ture of representational states. 

 In this regard, the principal difference from classicism for the extended 
mind theorist is the rejection of the supervenience of mind on brain in 
favor of a kind of restricted global supervenience. This means that extra-
cranial resources, and especially structural properties of extracranial repre-
sentational vehicles, can be among the psychological resources that are 
called upon to explain such patterns. Although this may incorporate a 
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variety of physical types and causal processes, as Clark has argued, even a 
radical diversity does not prevent them being considered part of a unified 
system:  “ It is part of the job of a special science to establish a framework 
in which superficially different phenomenon can be brought under a uni-
fying explanatory umbrella.  …  Moreover, it is by no means clear that 
acceptable forms of unification require that all the systematic elements 
behave according to the same laws. As long as there is an intelligible 
domain of convergence, there may be many subregularities of many dif-
ferent kinds involved ”  ( Clark 2010b , 51). 

 I will first consider the general nature of the explanatory strategy to be 
offered in the extended framework, before providing more detail of the 
role played by extracranial representational structure. 

 2.1   Explanation and Mechanism 
 It is clear that offering a mechanistic account of psychological phenome-
non is a generally accepted goal of cognitive science. Leaving aside for the 
moment the contentious claim that these lawlike regularities need to be 
explained as a matter of nomological necessity, providing such an account 
would establish systematicity laws as something more than accidental 
generalizations, illuminate them as explicable by common underlying 
causes, and provide a satisfying response to questions regarding how the 
cognitive system sustains such regularities. 

 However, some proponents of the dynamic models take them to provide 
nonmechanistic, covering law explanations for cognitive phenomenon 
whereby they are explained by deduction from a law together with state-
ments of the antecedent conditions of the system (see  Walmsley 2008 ), as 
exemplified in van Gelder and Port ’ s statement that  “ dynamical modeling 
 …  involves finding  …  a mathematical rule, such that the phenomena of 
interest unfold in exactly the way described by the rule ”  (van Gelder and 
Port 1995, 14). One option would be to offer a covering law explanation 
of patterns of systematicity. This would not necessarily be problematic; 
covering law explanations are perfectly acceptable for things like planetary 
motion, and such explanations can be counterfactual supporting (see 
 Walmsley 2008  for discussion). In this case, the structures of extracranial 
representations might be incorporated as constraints on the system. 

 However, as noted by  Wright and Bechtel (2007)  and  Zednik (2008) , 
there does not seem to be anything preventing a dynamical, extended 
framework from providing a mechanistic explanation. In general, mecha-
nistic explanations operate from the assumption that  “ many target phe-
nomena and their associated regularities are the functioning of composite 
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hierarchical systems  …  composed of component parts and their properties. 
Each component part performs some operation and interacts with other 
parts of the mechanism (often by acting on products of the operation of 
those parts or producing products that they will act on), such that the 
coordinated operations of parts is what constitutes or comprises the sys-
temic activity of the mechanism ”  ( Wright and Bechtel 2007 , 45). 

 As Wright and Bechtel have noted, this leaves open many questions, 
the last of which is directly relevant for the extended mind account:  “ What 
are the necessary and sufficient conditions for a given sequence of causal 
interactions to be constitutive of a mechanism? How important is endur-
ance, and when do gaps in temporal continuity cease being mere interrup-
tions? To what extent does repair or particulate change in organization 
involve the creation of a new mechanism? Are there determinate limits 
on how much spatial or structural disconnectedness a mechanism can 
exhibit? ”  ( Wright and Bechtel 2007 , 46). 

 A mechanistic account does not require that the relevant components 
are located intracranially, and Zednik describes the way that variables, 
parameters, differential equations, and  “ the representational currency of 
dynamical analysis ”  can serve to describe mechanistic parts, operations, 
and relations ( Zednik 2008 , 247). This seems to leave open the possibility 
of an extended mechanistic account, whereby phenomena like systematic-
ity (which I will argue in the final section only seem to arise in a wider 
symbolic environment) are only fully explained by considering mecha-
nisms that extend beyond the brain. 

 2.2   Derivative Structure and Explanation 
 The explanation given of systematicity from within a classical framework 
comes in two parts, both of which rely on the semantic and syntactic 
compositionality of mental states and the sensitivity of these architectures 
to them. Semantic compositionality here means that there are semantically 
simple and complex representations. The semantic value and mode of 
combination of the constituent simple representations determine the 
semantic value of complex representations, and the simple representations 
pass on all of their semantic value to the complex representations. (See, 
e.g.,  Fodor and Lepore 2002. ) By definition, those representations that 
contain the same semantic parts in classical architectures will contain the 
same syntactic parts. It is this, together with the fact that cognitive pro-
cesses are sensitive only to the formal and syntactic properties of mental 
representations, that is taken to explain systematicity as a psychological 
law.  5   
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 Unlike classicism, the principles of compositionality that are here taken 
to determine the nature of these patterns apply primarily to extracranial 
representations. It is the distinction between the intrinsic and derived 
properties of intracranial states that provides the basis for this alternative 
explanation. Pylyshyn proposes a litmus test for deciding whether some 
property is best understood as intrinsic to mental states themselves (that 
is, is a property of the vehicle of mental states) or the contents of those 
states. Echoing Fodor ’ s claim that  “ one cannot, in general, infer from what 
is represented to the nature of the vehicle of representation ”  (1975, 177), 
when considering imagistic phenomenon he claims that  “ it is the things 
we think about, not the patterns in our brain we think with ”  that possess 
imagistic properties ( Pylyshyn 2003 , 380). He claims that intrinsic proper-
ties of mental states are cognitively impenetrable — that is, they are not 
influenced by the cognizer ’ s other mental states, nor do they differ from 
cognizer to cogniser.  6   By contrast, properties that are intrinsic only to the 
contents of mental states but not their intracranial vehicles are cognitively 
penetrable. For instance, one can imagine any color one likes when asked 
what color results when light is shone through a red and a blue transparent 
gel, and evidence suggests that people ’ s beliefs about how colored light 
mixes informs their answers to such questions ( Pylyshyn 2003 , 298). That 
is,  “ colored ”  mental states do not literally obey the laws covering the 
mixing of colored things. Pylyshyn argues that all imagistic properties 
(such as spatial properties) are cognitively penetrable in this way, and that 
the kind of  “ functional ”  space we sometimes think in is a set of externally 
imposed restrictions on information and information processing that are 
not bound by the laws that restrict physical space. 

 For Pylyshyn, this argument is underpinned by an acceptance that there 
is an intrinsic, language-like structure to the mental states we think with. 
Properties like systematicity (along with other evidence regarding language 
learning and use, semantic coherence, and Principle P  7  ) are offered as 
support for this claim. However, some authors including Clark, Dennett, 
and Garfield have argued that this does not warrant the ascription of 
language-like properties to thought (see discussion in Clapin 2002). For 
example, Garfield argues that  “ the kernel of truth in the language of 
thought hypothesis is the intuition that representation must have deter-
minate, and indeed, compositional, content, and that only language can 
provide that. It does not follow, however, that thought is in language, only 
that it is of language ”  (Garfield 2005). 

 This suggests that phenomena such as systematicity could be consid-
ered as cognitively penetrable effects of our interactions with extracranial 
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representational vehicles. This way of framing the role of compositional 
structure is compatible with many of the interpretations of the relation 
between brain and symbols noted previously, and it presents the possibility 
that an explanation exploiting extracranial properties could be to some 
extent empirically examined.  8   

 Explaining systematicity does not require the commitment that such 
structures are intrinsically possessed by intracranial mental states: an expla-
nation of sufficient strength to provide an answer as to how and why 
cognitive systems exhibit the particular patterns of systematicity that they 
do can be provided by an account that does not view these structural 
properties as intrinsically intracranial. 

 This does not mean that there is no relation between intra- and extra-
cranial structures, or that intracranial structures and mechanisms are not 
vital to explaining phenomena such as systematicity. As Deacon notes, the 
selection pressures on languages and brains could be expected to go two 
ways ( Deacon 1997 , discussed in  Symons 2001 ). For example, Martin 
 Sereno (2005)  has proposed that linguistic systems developed to piggyback 
on nonsemantic features of the brain that were responsible for audio rec-
ognition and production in early  “ talking song. ”  The deeply ingrained 
nature of representation-using activities could be expected to influence our 
plastic brains in a myriad of ways, but there is reason to doubt that this 
involves the creation of entrenched classical structures and processes (see, 
e.g.,  Garson 1998 ). Furthermore, some connectionist models suggest that 
intracranial vehicles do not have to possess such a structure in order to 
exhibit a kind of compositionality (see, e.g.,  Smolensky 1995  and the dis-
cussion of functionally compositional systems in  van Gelder 1990 ). 

 The explanation proposed here is that patterns of systematicity be 
understood as a product of the extracranial linguistic environment, with 
these patterns supported in individual cognitive agents by intracranial 
mechanisms of the kind  “ endemic to the biological brain ”  ( Clark 2006 ). 
This can be appreciated by understanding how a similar explanation could 
apply to simple intentional states like perception. It seems unproblematic 
to claim that certain patterns in sensory capacities, such as vision or 
hearing, can be adequately accounted for by the structure found in the 
objects of perception (together with a general principle of cognitive effi-
ciency, to be discussed further below). The same basic perceptual resources 
(such as edge-detection neurons, color rods and cones, and so on) and any 
necessary mechanisms (for example, those that may be required for binding 
different perceptual elements from the same object together) would be 
used in both cases. The explanation of why it is these patterns rather than 
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other patterns that exist is given by the structure of the extracranial world. 
This explanation can be expanded to incorporate the skills necessary to 
employ cognitive norms and practices to effectively use representations. 
For the purposes of this explanation, these are not necessarily qualitatively 
different from sensorimotor states and processes. To illustrate a similar 
point, Margaret  Wilson (2002)  employs the analogy of using fingers to aid 
with counting. Someone might initially use very obvious physical actions, 
such as holding out each finger in turn and counting it off. Moving more 
 “ inward, ”  they might use imperceptible muscle twitches in the relevant 
fingers. They might then only imagine twitching their muscles or counting 
off their fingers, perhaps using the same kind of motor resources as 
those accompanying the actual action. Finally, this imagining of muscle-
twitching or finger-counting could become so much a part of their cogni-
tive routine that certain groups of neurons become dedicated to this task, 
until the kinds of cognitive resources that are used are far removed from 
those used in the original motor actions. 

 This general explanation inverts the claims about the source of compo-
sitionality in thought and language found in Fodor ’ s work. However,  Fodor 
(2001)  has argued that languages are not, as a matter of empirical fact, 
compositional, and he explicitly rules out the possibility that minds inherit 
their compositionality from natural languages. Aside from the controver-
sial nature of this claim, as  Robbins (2002)  has argued, languages need not 
be entirely compositional to play this explanatory role. The indefinite 
compositionality of natural languages is enough here. As Symons argues, 
we should take these patterns to be  “ the manifestations of a relatively 
stable social and cultural landscape that the organism must negotiate in 
something like the way our limbs and muscles negotiate geographical 
landscapes ”  ( Symons 2001 , 539). 

 There are stable enough patterns of compositionality in natural lan-
guages to account for this, and the lack of complete compositionality of 
language would go some way to explaining cases that seem problematic 
for the systematicity argument, as will be discussed in the following section. 

 3   Evaluating the Evidence 

 In the preceding discussion, the claim that mental capacities exhibit clas-
sical systematicity has been left unchallenged, and I have focused on 
representation-using abilities such as sentence comprehension without 
considering the range of other abilities that the original argument was 
intended to implicate. McLaughlin has explicitly resisted a discussion of 
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other empirical evidence. Although he states that  “ having propositional 
attitudes such as belief, desire, intention, and the like by no means requires 
the ability to use a natural language, ”  he also claims: 

 Since systematicity laws specify what the thought abilities they cite are abilities to 

think (rather than quantifying over things thought) and since we will state the laws 

in our language, a tangle of controversial issues arises for the view that non-language 

using cognizers can non-vacuously satisfy them. I think that pre-verbal children, 

deaf people that have never learned to sign, as well as primates, for instance, will 

non-vacuously satisfy various systematicity laws. But I cannot here even begin to try 

to untangle the controversies that claim raises. So, instead, I will follow  Fodor and 

Pylyshyn ’ s (1988)  lead and note that even if it were the case that all of the thought 

abilities cited in systematicity laws require the ability to use a natural language, the 

laws require explanation. ( McLaughlin 2009 , 259 – 260) 

 However, it is clear that patterns in the cognitive abilities of non-language-
users provide a better and less potentially biased arena for comparing the 
extended and classical explanations. While recognizing that the difficulties 
that attend their consideration make it impossible for us to make any defi-
nite claims about them, there are several apparent exceptions to classical 
systematicity laws in these areas that are illuminating for the current dis-
cussion: given that systematicity is used as evidence for a cognitively 
impenetrable, language-like structure of thought, a lack of classical syste-
maticity in these areas could be evidence for the cognitive penetrability of 
these structures. 

 3.1   Sentence Comprehension 
 The systematicity of language comprehension is claimed to provide evi-
dence for classical systematicity to the extent that natural language sen-
tences reflect the structure of the underlying thoughts in classical 
architectures. This was explicitly built into the definition of classical sys-
tematicity laws previously, suggesting some burden of proof on the clas-
sicist to give principled reasons for cases where these patterns diverge. Such 
reasons can clearly be offered in cases such as idiomatic expressions. 
However, there are other examples where the lack of systematicity in lan-
guage comprehension (often because of a lack of semantic compositional-
ity) is not so easily accounted for (for a full discussion of issues arising with 
compositionality, and possible replies, see  Szab ó  2000 ). For example, the 
meaning of complex nominals like  “ air guitar ”  are determined by their 
constituents, but not fully so (see  Braisby 1998  for a discussion of complex 
nominals and compositionality), and cases of  “ category mismatch ”  result-
ing in apparently nonsensical yet grammatical sentences (such as  “ three is 
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happy ” ) have been offered as counterexamples to the closely related gen-
erality constraint (see, e.g.,  Camp 2004 ). 

 There are several possible means by which to exclude these examples 
from classical systematicity laws. In relation to cases where the thoughts 
seem to be semantically underdetermined, it could either be claimed that 
there is ambiguity in a polysemous meaning, or that there is further seman-
tically irrelevant information (as Fodor claims in the case of adjectives — so, 
for example,  “ red watermelon ”  just means  “ red for a watermelon ”  [ Fodor 
1998 ]). However, these are not uncontroversial: the former relies on the 
existence of a mental lexicon that can accommodate such constituents 
without trivializing the claims of systematicity, and it is unclear whether 
the latter captures what it is to understand the relevant constituents (see, 
e.g.,  Siebel 2000 ). 

 Many cases of category mismatch are intelligible in some sense — as 
 Camp (2004)  notes, we can often grasp the inferential roles that such 
sentences can figure in — and so might be included among potential propo-
sitional contents. McLaughlin also seems to support this in the case of 
another proposed counterexample:  “ One mentally represents that {Tom} 
is the sole member of Tom when one disbelieves that {Tom} is the sole 
member of Tom (perhaps taking it to be necessarily false that Tom even 
has members in the sense in question). Disbelief differs of course from 
non-belief. One disbelieves that p if and only if one believes that not-p ”  
( McLaughlin 2009 , 255). But it is not clear that this kind of comprehension 
will exhibit systematicity — it is at least controversial whether the way in 
which we understand such sentences uses the same psychological resources 
as  “ ordinary ”  sentences.  9   

 In general, although it may be possible to provide a principled reason 
for the lack of classical systematicity in these cases, and they leave 
untouched the indefinitely many cases of this pattern that the argument 
rests on, the systematicity of linguistic comprehension cannot be unques-
tionably accepted. An explanation based on the semantic properties of 
extracranial representations provides a much simpler reading of these pat-
terns. As Menary notes: 

 Classical formulations of linguistic systematicity are too simplistic because they focus 

on the syntactic properties of sentences and ignore their pragmatic and semantic 

features. These features are important because they place restrictions on the combi-

nation of linguistic constituents. These features are pre-eminently features of public 

language and not an internal language of thought. Therefore, linguistic systematic-

ity is enforced, through learning, by features of external public language and not 

syntactic properties of the language of thought. ( Menary 2007 , 157) 
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 If the explanatory structures are extracranial, then systematic patterns 
are predicted only to the extent that the cognitive norms governing the 
use of these schemes are compositional. Compositionality is a cognitively 
penetrable property — it depends on the beliefs and knowledge of the rep-
resentation-users for its causal role in generating systematic patterns. 

 3.2   Systematicity in Non-Language-Users 
 The explanation of systematicity as largely a derivative effect of the struc-
ture found in extracranial representations is further supported by the 
general pattern that cognitive abilities become more systematic as cogniz-
ers begin to use representations. This is, of course, an untidy causal story. 
However, in general, the minds of non-language-users appear to exhibit a 
restricted kind of systematicity that does not fulfill the definition of clas-
sical systematicity laws. Two examples that can be used to illustrate this 
are the cognitive abilities of preverbal infants before they possess the 
concept of object permanence and the context-sensitivity of animal 
thought. 

 As Ronald Chrisley (1993) has argued, infants at a particular stage of 
cognitive development will seemingly be able to entertain thoughts like 
 “ Mother is behind me and the ball is in front of me ”  (when their mother 
is audible or partially visible) but not  “ Mother is in front of me and the 
ball is behind me. ”  These infants have not reached the stage  Piaget (1972)  
refers to as object permanence, and so lack the ability to conceptualize the 
existence of objects when they are unperceived. It is difficult to rule out 
such states as noncognitive under many conceptions. For example, they 
reliably track the object in question when it is perceptible; demonstrate 
certain expectations associated with its behavior (such as expressing sur-
prise if the object suddenly changes shape); and the infant ’ s behavior in 
respect to the object is not rigid. 

 There are examples of animal cognition that pose similar problems for 
the classical explanation of systematicity, including the capacity to perform 
transitive inferences described by Susan  Hurley (2003) , and other cases of 
context sensitivity in animal thought. Camp (2009) has argued that animal 
thought is often recombinable only in principle. In practice, the expression 
of many cognitive abilities is tied to the presentation of the right kind of 
stimulus, or in some cases all but prohibited because the scenario suggested 
by the proposition is naturalistically untenable. A similar point is made by 
Dennett, who uses it to draw attention to the language-based intuitions 
that the systematicity argument rests on:  “ There are organisms of which 



Systematicity Laws and Explanatory Structures 295

one would say with little hesitation that they think a lion wants to eat 
them, but where there is no reason at all to think they could  ‘ frame the 
thought ’  that they want to eat the lion! The sort of systematicity that Fodor 
and McLaughlin draw our attention to is in fact a pre-eminently language 
based artefact, not anything one should expect to discover governing the 
operations in the machine room of cognition ”  ( Dennett 1991 , 27). 

 While these examples do not rest on any strong empirical basis, they 
do suggest a pattern of context-dependence that is difficult to accommo-
date within the methodological solipsism of classical architectures. 

 3.3   Capacities and Abilities 
 There are several means of accounting for these cases of limited systematic-
ity in infant and animal thought. One is to argue that the cognizers in 
question possess a representation with a propositional content that differs 
from the standard content attributed by our linguistic expression (e.g., 
 “ cup* ” ) in a way that explains its behavior in respect to systematicity laws. 
In this case, the representation  “ cup* ”  could be taken to refer to a cuplike 
object that ceases to exist when unperceived. While a mental sentence like 
 “ Mother is behind me and the cup* is in front of me ”  might be well 
formed, the mental sentence  “ The cup* is behind me and mother is in 
front of me ”  might not be. However, it is difficult to see how such indexi-
cally determined content sits within a classical architecture, and partially 
systematic patterns remain that still require explanation. 

 The classicist could also note that the claim that thought is systematic 
is a claim about the capacity to think thoughts with similar propositional 
content, rather than a claim about the expression of this ability. Further-
more, these capacities may be environmentally or context dependent in 
a way that can be part of the formal properties that the classical cognitive 
system is sensitive to. As  Aizawa (2003)  has noted, the fact that the clas-
sical cognitive architectures are insensitive to the content of cognitive 
states does not rule out the influence of other properties that are not part 
of the local syntax of representations — for example, the position of rep-
resentation on a search list may be related to how frequently it is tokened —
 and  Fodor (2000)  has also noted various relational but nonsemantic 
properties that classical architectures can be sensitive to. This leaves room 
for the claim that some capacities may require training to be expressed 
by appealing to a performance – competence distinction. Similarly,  Camp 
(2004)  argues that training chimps on a compositional symbol system 
(coupled with giving them some pragmatic reason for exercising particular 
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abilities) may provide the right kind of environmental support to recom-
bine existing thoughts in ways that would not otherwise be possible. 
However, she notes that it is difficult to adjudicate between the possibility 
that the relevant ability arises in conjunction with symbol use and the 
possibility that they have a latent ability or competence that is triggered 
by symbol use. 

 If these examples are cases where the performance of a latent ability 
requires some additional support, the apparent lack of systematicity might 
be accounted for by the ceteris paribus nature of these laws. In particular, 
if there is some aspect of the unrepresentationally mediated world that 
inhibits an existent ability by triggering a competing mechanism that is 
overcome by employing symbols (see Hurley and Nudds 2006 for discus-
sion), then it could be argued that the idealizations of psychology are not 
held equal in these cases. This interpretation can be illustrated by an 
experiment conducted by Sarah Boysen and colleagues (Boysen and Ber-
nston 1995, discussed in  Clark 2006 ) involving a primate, Sheba. In one 
experimental setup, Sheba was offered two plates with different quantities 
of candy and asked to indicate which plate she would share with the 
researcher. Sheba would then be given the plate that she did not point 
to, but she seemingly could not bring herself to point to the plate with 
less candy. However, when the quantities were instead represented by 
corresponding numerals written on cards (which Sheba had been trained 
to recognize), she quickly learned to point to the card with the smaller 
of the two numerals out of any given pair in order to receive the larger 
plate of food. In this case, it seems the symbol use was a means to over-
come distracting or competing cognitive mechanisms that inhibited 
performance. 

 However, it is not clear that this is always the case. For example, in 
considering the evidence that symbol comprehension in primates and 
dolphins indicates some form of systematicity, Prince and Berkely (2000) 
also note that recent work suggests that training on symbol systems alters 
the animal ’ s psychology (Tomasello, Savage-Rumbaugh, and Krueger, 
1993). 

 3.4   Propositional Thought and Stimulus Dependence 
 Another possible strategy would be to remove these examples from the 
domain of abilities that systematicity laws cover because they do not 
meet the criteria of being propositions. For example, Berm ú dez makes 
the following demand for stimulus independence in the context of ascrib-
ing propositional thought:  “ A  …  key element of propositional thinking 
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is that propositions should be independent of the particular context of 
thinking. That is to say, it should be possible to grasp a proposition both 
without knowing its truth value and without any contact with the state 
of affairs that proposition is about ”  (Bermudez 2003, 39, quoted in  Camp 
2009 ). 

 While adopting such a means of ruling out these cases of animal cogni-
tion runs counter to Fodor, Pylyshyn, and McLaughlin ’ s intended scope of 
systematicity laws, it could always be argued that they are simply mistaken 
on this point. 

 However, as  Camp (2009)  has argued, there are many instances in which 
animals capable of only  “ basic ”  cognition nonetheless engage in what 
looks like representation without direct contact with the state of affairs the 
mental state is about. Honeybees are a case in point: their  “ waggle-dance ”  
stands in for the location of nectar in distant locations, but we surely 
would not want to claim that they mentally represent whereas a preverbal 
infant or a chimp does not. 

 While such cases are far from providing a definitive argument against 
the classical explanation of systematicity, the explanation proposed in 
this chapter — that such patterns should be considered as cognitively pen-
etrable phenomena explained primarily by the structure of extracranial 
representations — does not encounter these difficulties. We would expect 
thought to become more classically systematic the more that such 
extended cognitive systems operated in an environment containing com-
positional representational schemes because it is the structure of these 
schemes that provides the explanation for why we see these particular 
patterns. Weaker patterns would be consistent with the mechanisms of 
more basic intracranial processes that such linguistic skills have evolved 
in tandem with. 

 4   Conclusion 

 The extended theory of mind challenges some of the most basic assump-
tions made in the classical framework by shifting the explanatory burden 
from the intrinsic structure of internal mental states to the semantic rules, 
structures, and mechanisms of extended mental states. While there are 
many possible means of addressing the systematicity challenge from this 
framework, one promising type of explanation casts these patterns as the 
derivative effect of this extended cognitive microstructure. In this light, 
the syntactic and semantic structural properties that underlie Fodor ’ s 
explanation of systematicity can be considered as cognitively penetrable 
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properties of intracranial states that can nonetheless figure in mechanistic 
or covering law explanations. 

 This strategy has some benefits over its classical counterpart when the 
actual patterns that exist in language comprehension and other cognitive 
abilities are considered. Although they are far from definitive, some general 
patterns in the empirical evidence suggest that an explanation that is 
contingent upon the semantic and syntactic structures of extracranial 
representational schemes provides a better fit for the patterns we witness 
in representational abilities. While there are good reasons for Fodor and 
McLaughlin to be wary of placing too much emphasis on evidence from 
nonlinguistic systematicity, it is this area that will prove one of the most 
fertile for investigating the nature of the architecture that underlies such 
patterns in mind. 

 I have offered here a loose approach to the definition and explanation 
of patterns of systematicity rather than a specification of a particular archi-
tecture or interpretation of the exact nature of the relation between brains 
and material symbols. The central question is whether compositional 
semantic and syntactic structures need to be considered as intrinsic to 
mental states in order to offer a satisfactory explanation of systematicity, 
or whether the derivative effect of structures in the linguistic environment 
are adequate. I have suggested that an acceptable explanation of why these 
patterns exist rather than others, and how the extended cognitive system 
generates and sustains them, is available without this step.      

 Notes 

 1.   It should be noted that Menary distinguishes his integrationist approach from 

the extended mind theory. However, this distinction is not directly relevant for the 

current argument. 

 2.   Both  “ in-phase ”  (left to right) and  “ anti-phase ”  (symmetrical mirroring) patterns 

of index-finger movement are stable at low frequencies, but only the in-phase 

pattern remains stable as the frequency is increased past a critical point. 

 3.   For instance, Jay Garfield (2005) has suggested eschewing representational termi-

nology in favor of the terminology of intentionality, as he argues that  only  public 

representational schemes can stand in a norm-governed relation with the world of 

the kind required to be considered representational. 

 4.   For instance, they may tag a pairing of a cup and a shoe with a blue circle, and 

a pairing of two shoes with a red triangle. The higher-order task would require them 
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to decide whether pairings-of-pairings such as  “ cup-shoe ”  and  “ cup-shoe ”  were 

instances of higher-order difference or higher-order sameness (as they are in this 

example, where both are pairs of different objects) (Thompson, Oden, and Boysen 

1997). 

 5.   McLaughlin adds that  “ the grammar of the symbol system generates all and only 

the mental sentences whose meanings are the contents of propositional attitudes 

that the cognizer has the ability to have ”  (2009, 258). 

 6.   An example of an impenetrable effect would be the kinds of things Fodor attri-

butes to modular processes — for example, in the case of perceptual illusions, knowing 

that there is an illusion does not change the way the illusion appears. 

 7.    “ Principle P ”  appears in an appendix to  Psychosemantics  ( Fodor 1987 ), and infers 

the structure of effects from the structure of behavior. Clapin interprets it in the 

following way:  “ If c1 events are implicated in the causal history of e1 events, then 

they are implicated in the causal history of complex e1 and e2 events ”  ( Clapin 

1997,  263). 

 8.   To my knowledge, there is no research specifically intended to investigate the 

cognitive penetrability of structural properties like compositionality. However, 

research such as that conducted by Johnson-Laird et al. indicates the kind of evi-

dence that might be bought to bear on the issue. Citing experiments on the kinds 

of mistakes people make in reasoning, Johnson-Laird et al. (2000) argue that patterns 

in the way that rules of inference are breached, and in particular subjects ’  suscepti-

bility to  “ illusions of consistency, ”  cannot be accommodated by a theory of classi-

cally structured mental states and structure-sensitive processing. Johnson-Laird uses 

this to argue that such processes cannot occur because of blindly applied syntactic 

rules over classically structured states; however, it also suggests that the states and 

processes underlying logical reasoning are influenced by the beliefs people have 

about how these rules are applied. 

 9.   An interesting study that is relevant to this question involves the use of  “ func-

tional shift ”  in Shakespeare that suggests different brain processes are used for 

syntactically anomolous but sensible sentences; grammatical but not sensible sen-

tences; and grammatical, sensible sentences (see Davis n.d.).      
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 1   Introduction 

 The systematicity argument (henceforth SA), offered by  Fodor and Pyly-
shyn (1988)  against the plausibility of connectionism as an alternative 
theory of cognition, can be characterized in terms of three claims — an 
empirical claim, an explanatory claim, and a definitional claim — from 
which a dilemma arises for connectionism. Let me present the four ele-
ments in outline before saying a little more about each of them: 

 SA 
 (i)   Empirical claim: Systematicity is a pervasive property of cognition. 
 (ii)   Explanatory claim: The only plausible explanation for systematicity is 
to posit a compositional system of representations. 
 (iii)   Definitional claim: Compositionality is a defining property of classical 
representational systems. 
 (iv)   Dilemma: If connectionism is not compositional, then it cannot 
account for systematicity and so it does not provide a full account of cog-
nition (from (i) and (ii)); if connectionism can account for systematicity, 
then it is actually implementing a classical system (from (ii) and iii)). 

 SA has been haunting connectionist approaches ever since, and main 
responses to it can be classified depending on whether they focus on (i), (ii), 
or (iii).  1   Much can be said about the relative success of each such response, 
yet one important common point is that Fodor and Pylyshyn ’ s argument 
would work as a global refutation of connectionist explanations only if 
systematicity were regarded as a property of cognition in general. However, 
SA per se does not include the latter commitment. Truly, Fodor and Pyly-
shyn stated that  “ there ’ s every reason to believe that systematicity is a 
thoroughly pervasive feature of human and infrahuman mentation ”  (1988, 
37). Yet, unless further arguments for the universality of systematicity are 
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provided, the statement can be read simply as claiming that it is an impor-
tant phenomenon that needs explanation, and practically everybody agrees 
that much. This leaves open the issue of whether some cognitive domains 
or processes are not systematic in the way intended by SA, and one may 
conjecture, as many connectionist authors do, that some nonclassicist 
model could just account for them. 

 Still, the fact that some cognitive processes were not systematic in the 
way intended by SA would not be enough for nonclassical models to carry 
the day. To this end, they not only must show that their models can deal 
with such cognitive processes but that they are in a better position than 
their classical competitors to do so. In other words, they need something 
like an SA for themselves — let me call it the nonclassical systematicity 
argument — that would run roughly as follows: 

 NSA 
 (i ′ )   Empirical claim: X is a pervasive property of cognition. 
 (ii ′ )   Explanatory claim: The only plausible explanation for X is property 
Y. 
 (iii ′ )   Definitional claim: Y is a defining property of such and such nonclas-
sical systems. 
 (iv ′ )   Dilemma: If classicism cannot account for property Y, then it does 
not provide a full account of cognition (from (i ′ ) and (ii ′ )); if classicism can 
account for Y, then it is actually implementing a nonclassical system (from 
(ii ′ ) and (iii ′ )). 

 My aim in this chapter is to provide a path to construct such an argu-
ment. I want to stress that my main focus is not NSA itself, but the ele-
ments that may allow us to get at NSA. First, I offer an overlook of the 
connectionist answers to SA, classified as focusing on (i), (ii), or (iii), fol-
lowed by a quick assessment of the debate. This assessment is negative for 
the connectionist side, in the sense that it never managed to substantiate 
an alternative explanation of the phenomenon pointed out by Fodor and 
Pylyshyn. Of course, I lack the space to go into details, so connectionist 
fans of this or that particular reply may think that I am being unfair to it. 
Yet, apart from the general considerations that I will provide to back my 
negative assessment, it seems to me that it is reinforced by the sheer fact 
that there is no agreement with respect to which reply to SA works best. 
My aim in this section, thus, is just to motivate the view that classical 
models still stand as the  most plausible  explanation for classical systematic-
ity. Second, I will deal with the question of whether systematicity is actu-
ally a general property of cognition. I will argue that the best chances to 
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support such a view come from regarding Evans ’ s well-known Generality 
Constraint as a constraint on the architecture of conceptual creatures — a 
constraint that only concepts that exhibit classical systematicity seem to 
satisfy. Then I will show a different way of understanding the constraint, 
in terms of  attributions of belief , that opens the door to architectures with 
concepts that do not exhibit classical systematicity. Third, I will present 
and motivate the thesis of conceptual pluralism, arguing that concepts 
split into subkinds that share two fundamental properties: they are central 
and they grant belief-attributions. I will draw on  Camp ’ s (2009)  analysis 
to make the case that there are actually two kinds of concepts. Finally, I 
will rely on dual systems theory and on  Penn et al. ’ s (2008)  recent review 
of differences between animal and human cognition to motivate a plau-
sible scenario of two different processing systems that work on different 
kinds of concepts with properties that give rise to two different sorts of 
systematicity. I will then sketch a way in which NSA could be filled, but 
my goal is not to endorse a particular nonclassical approach as a filler for 
the argument. To repeat, my aim is not to try to reply to SA for the ump-
teenth time, but simply to show that although nonclassical approaches 
lack the resources to meet SA, the elements for an alternative NSA argu-
ment can be provided. 

 2   The Elements of the Systematicity Argument 

 2.1   The Empirical Claim 
 Fodor and Pylyshyn plainly took their claim about the systematicity of 
cognition as an empirical one. Systematicity can be characterized as the 
property of having the ability to think systematically related thoughts. 
It is a matter of fact that creatures that have the ability to think  aRb  
have also the ability to think  bRa . Apparently, some critics failed to see 
this point. For instance, early in the debate  Clark (1989)  argued that the 
relation between the abilities to think  aRb  and  bRa  is not an empirical 
but a conceptual fact. It is not that we cannot find organisms with 
punctate thoughts but that the fact that they are punctate is enough to 
deny that they are thoughts. It is part of our concept of what it takes 
to have thoughts that they be systematically related.  McLaughlin (1993)  
replied that if systematicity is a conceptual property then the challenge 
posed by Fodor and Pylyshyn would be strengthened, given that we 
would get an a priori constraint for the constitutive basis of cognition. 
More recently,  Chemero (2009)  also complained (1) that SA is a concep-
tual argument (or, as he calls it, a Hegelian one) against an empirical 
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claim, and (2) that Fodor and Pylyshyn provide almost no empirical 
evidence to support premise (i). Actually, Chemero is wrong about both 
complaints. First, having poor empirical evidence for one ’ s argument does 
not make it a conceptual argument — it makes it a poor argument. Second, 
their empirical evidence is not so poor as Chemero intends us to believe. 
It is based on a parallelism with language understanding, the most 
famous example being that just as you do not find anyone who can 
understand  “ John loves Mary ”  but cannot understand  “ Mary loves John, ”  
you do not find anyone who can think that John loves Mary but cannot 
think that Mary loves John. Fodor and Pylyshyn think that examples 
like this come on the cheap, so it is no wonder that they do not feel 
the need to provide plenty of them. In other words, they assume that 
the extent of their empirical evidence is as large as the extent of language 
itself. 

 Other critics accepted the claim as an empirical one but rejected it as 
false. Some of them focused on the idea of systematicity as  “ a thoroughly 
pervasive feature of human and  infrahuman  mentation ”  ( Fodor and Pyly-
shyn 1988 , 37, emphasis added), and alleged that nonhuman animals do 
not exhibit the sort of systematicity exemplified by the  J loves M  case 
( Sterelny 1990 , 182 – 183;  Dennett 1991 ;  Kaye 1995 ). More recently,  Gomila 
et al. (2012)  reject the claim that systematicity is a general property of 
cognition. In their view, it is only related to those cognitive abilities that 
are possible by the acquisition of language, and it is derived precisely from 
the systematicity of linguistic structure. As I will argue later, I concur with 
Gomila et al. that there are grounds to deny that systematicity is a general 
property of cognition. Yet, this does not entail a rejection of the classical 
explanation. On the one hand, even if SA only applied to human cogni-
tion, or to language-related cognition, it would still be a  significant  prop-
erty. On the other hand, the best explanation of this property is still 
classical. For instance, even if the explanation of systematicity lay in the 
properties of language, as  Gomila et al. (2012)  contend, the way of fleshing 
out such an explanation is still by regarding language as a classical system 
itself — that is, systematicity is still explained in terms of language ’ s alleged 
compositional structures and processes that are sensitive to those struc-
tures.  2   So inasmuch as connectionism could not avail itself of this explana-
tion, it would be in trouble to account for cognition, and this is how many 
authors viewed the issue. In other words, connectionist attempts at reject-
ing systematicity as a  general  property of cognition would not entail, even 
if they were successful, rejecting classicism as the architecture of at least 
 part  of cognition. 
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 2.2   The Explanatory Claim 
 The second claim in SA is an instance of a  “ best explanation ”  argument. 
The idea is that a straightforward and plausible way of explaining system-
atic relations of the  J loves M  type is to posit a compositional semantics, 
that is, a system of context-free, recombinable semantic pieces in which 
the semantics of the composed whole depends in a systematic way on the 
semantic values of the pieces. Many critics focused on this explanatory 
relation. Some of them complained that the  explanandum  — that is, syste-
maticity — had been poorly characterized and consequently devoted their 
efforts to reformulate it in a way that could be explained by nonclassical 
systems. For instance,  Clark (1989 , 149) insisted that what has to be 
explained  “ is not the systematicity of thoughts but the systematicity of the 
behavior, which grants thought ascription ” ;  Goschke and Koppelberg 
(1991)  and  Bechtel (1994)  regarded systematicity not as a property of 
thoughts but of an external symbolic language;  Niklasson and van Gelder 
(1994)  and  Cummins (1996 ;  Cummins et al. 2001 ) examined forms of 
systematicity different from the language-based cases;  Johnson (2004) , on 
the other hand, addressed systematicity from the linguistic perspective and 
provided a definition of systematicity so as to contend that language is not 
systematic after all.  3   

 Other critics focused instead on the  explanans  — that is, compositional-
ity — and tried to offer distinctions that helped connectionism to meet the 
explanatory challenge. The most notable of them was due to  van Gelder 
(1990) , who made a distinction between concatenative and functional 
compositionality.  4   In concatenative composition, tokenings of constitu-
ents of an expression (and the sequential relation between them) are 
preserved in the expression itself. In functional compositionality, general, 
reliable processes decompose an expression in their constituents and 
produce it again from them, but it is not necessary that the expressions 
contain their constituents. Van Gelder argued that even if connectionist 
networks only exhibit the latter kind of compositionality, this is enough 
to account for systematicity. 

 The trouble with reformulations of compositionality is that they failed 
to provide a global alternative explanation of systematicity, for example, 
one that relied on functional compositionality as a fundamental property 
of nonclassical cognition, in the same sense as compositionality plays the 
central role in classical conceptions. Even though many people, myself 
included, acknowledge the relevance of the distinction, I know of no over-
arching connectionism conception in which it plays that pivotal role. So 
regarding van Gelder ’ s (1991) prediction that functional compositionality 



310 Fernando Martínez-Manrique

would be one of the central aspects for connectionism to become a truly 
alternative paradigm, one must say that it is a prediction yet to be fulfilled. 
Indeed, we will see later that recent approaches that dwell on van Gelder ’ s 
distinction use it to characterize the features of two different systems, so 
functional compositionality could be seen as playing an explanatory role 
only in part of cognition. 

 The trouble with reformulations of systematicity, on the other hand, is 
that they easily change the subject matter. The facts that behavior or lan-
guage are also systematic, or that there are nonlinguistic instances of sys-
tematicity, do not deny the systematicity of thought that is the basis for 
SA. It is good to say that there are other things to explain apart from the 
systematicity in SA, but unless one wants to say that the latter property is 
unreal, SA itself remains untouched. Indeed, the line that I am going to 
follow in this chapter is an instance of the  “ change subject matter ”  strat-
egy — but not to defeat SA. Instead, I will create a different argument that 
leaves room for nonclassical systems as an account of part of cognition. 

 2.3   The Definitional Claim 
 Having a combinatorial syntax and semantics for mental representations, 
and having processes that are sensitive to the structure of the representa-
tions so constructed are defining properties of classical models, according 
to  Fodor and Pylyshyn (1988 , 13). There are two sides to this claim: one 
is that given the principles of classical computationalism, explaining sys-
tematicity comes as a necessary consequence, that is, it is not possible to 
have a classical system that is not systematic in the demanded sense. The 
challenge can be thus reformulated as a demand that the opponent should 
provide models based on different principles, in which systematicity 
appears as a consequence of those principles ( Fodor and McLaughlin 1990 ). 
In terms of  Aizawa (1997 ,  2003 ), the challenge is not to exhibit systema-
ticity — that is, to show that it is possible to have a systematic connectionist 
model — but to explain it — that is, to show that systematicity follows neces-
sarily from the principles of the theory. It is the latter challenge that con-
nectionists fail to meet. My view is that even if systematicity is not strictly 
entailed by the principles of classical models, as Aizawa contends,  5   it is still 
the case that these models have a much more robust explanation of the 
phenomenon than their connectionist counterparts. 

 The second side of the definitional claim is that if compositionality and 
structure-sensitive processes are defining properties of classical systems, 
then any system that resorts to them will count ipso facto as a classical 
one. The early debate between  Smolensky (1988 ,  1991a ,b) and Fodor et al. 
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( Fodor and McLaughlin 1990 ;  Fodor 1997 ) can be understood in those 
terms, and the gist of the dilemma posed by Fodor et al. comes to this: if 
Smolensky is capable of showing that his models do have a constituent 
structure, then they are implementations of a classical system, given that 
they are based on the same relevant explanatory principles; if they do not 
have a constituent structure, then they cannot account for systematicity. 
The countless subsequent connectionist attempts of proving that this or 
that network has systematic capabilities — I will save space referring to 
 Hadley (1994)  for a review and criticism of early attempts, and to  Frank 
et al. (2009)  for later ones — are subject, despite their differences, to basi-
cally the same sort of objection. 

 2.4   Quick Assessment of the Debate 
 I think that connectionist attempts never provided a satisfactory answer 
to SA, and this applies both to those that tried to reformulate systematicity 
or compositionality and to those that tried to provide practical refutations 
of the classicist challenge. The problem with the former, as I said above, 
is that they easily changed the subject matter without really meeting the 
challenge. The problem with the latter is that they easily fell prey to the 
classicist dilemma. 

 Someone could object that this assessment is too quick and unfair to 
some of the connectionist contenders, and it is possible to point toward 
this or that particular model to argue that it offers better chances for 
dealing with the classical challenge.  6   I do not deny that some models work 
better than others and that the process of trying to cope with SA has unrav-
eled many interesting aspects of the properties of both classical and non-
classical systems. What I deny is that there is, as of today, an answer that 
satisfies most authors on the connectionist side, and this is enough to be 
at least suspicious that the challenge has been met. To put but one recent 
example,  Frank et al. (2009)  review previous connectionist attempts to 
provide a model with semantic systematicity ( Hadley 1994 ) without imple-
menting a classical system. They find all of them wanting only to propose 
their own model that, allegedly, succeeds in the task. One gets the impres-
sion that it is only a matter of time before someone comes up with a similar 
criticism of their model and makes a similar optimistic claim. 

 Indeed, I think that the problem with connectionist attempts can be 
put in different terms: what Fodor et al. were demanding was not a new 
family of computational models but a new family of explanatory princi-
ples. Even though connectionists claimed to be providing just this when 
they talked about vector representations, learning algorithms, activation 
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propagation, and the like, the thing is that they did not have an easy day 
when it came to explain how those principles connected with explaining 
the relation between the ability to think  J loves M  and  M loves J . It seemed 
that in order to do so it was necessary to appeal to how those relations 
emerged from the network ’ s behavior. Yet all the explanatory load seemed 
to remain  on what emerged  — the elements  J ,  M , and  love  and their rela-
tions — and not on the goings-on of the system from which it emerged. 
The latter was, to use the classical parlance, implementation detail. To put 
it bluntly, what connectionism had to provide, but failed to do so, is a new 
theory of mind. 

 3   How to View Systematicity as a General Property of Cognition 

 As I said, SA rests simply on the claim that a lot of cognition is systematic, 
not necessarily all of it. However, two claims, when taken jointly, may 
sustain the view that systematicity is a general property of cognition. These 
claims, which are part and parcel of Fodor ’ s view of mind, are: 

 (1)    Cognition as concept involving . As Fodor says (1998, vii),  “ The heart of a 
cognitive science is its theory of concepts. ”  What distinguishes cognition 
from, say, perception is that cognitive processes work on concepts. Hence 
processes that work on nonconceptual representations are of relatively 
little interest for the central claims about the nature of cognition. 
 (2)    Compositionality as a nonnegotiable property of concepts.   7   Whatever con-
cepts are, they are compositional, that is, they can be combined with other 
concepts to form larger conceptual structures in such a way that the 
content of the compound is a function of the contents of the concepts it 
contains and their mode of combination. 

 Taken together, (1) and (2) entail that the constitutive elements of cogni-
tion — concepts — have a fundamental property — compositionality — that is 
the source of systematicity — that is, a conceptual system is ipso facto a 
systematic system. In other words, systematicity is a general property of 
cognition that derives from the nature of the cognitive elements. 

 Do we have good grounds to maintain (1) and (2)? I am going to assume 
that (1) is right and I will take issue with (2). I am not going to provide 
an argument for (1), but let me say briefly that it is an assumption that, 
tacitly or explicitly, is widely endorsed in cognitive science. Even in those 
accounts that try to blur the distinction between cognition and perception, 
such as Prinz ’ s neo-empiricist theory of concepts ( Prinz 2002 ), there is 
something that distinguishes concepts from other mental representations 
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and, therefore, that distinguishes cognition from perception. For instance, 
in Prinz ’ s view, even if concepts are copies of percepts the former have the 
distinctive property of being under internal control. 

 Let me thus focus on (2). The question of compositionality has been on 
the agenda for years, especially due to Fodor ’ s insistence on using it against 
non-atomistic theories of concepts ( Fodor 1998 ;  Fodor and Lepore 2002 ). 
His argument, in a nutshell, goes like this: Concepts are the basic elements 
of thought; compositionality is a  “ nonnegotiable ”  property of concepts; 
but non-atomistic theories of concepts — that is, those that contend that 
concepts are structured representations such as prototypes — are incapable 
to meet compositionality demands; hence non-atomic concepts are ill 
suited to figure as the basic elements of thought.  8   The argument is also 
relevant for connectionist approaches because many of them endorse, in 
one way or another, the idea that concepts are structured entities. 

 There is a recent defense against the compositionality argument —
 endorsed by  Prinz (2002 ,  2012 ),  Robbins (2002) , and  Weiskopf (2009a)  —
 that is relevant for the issue of the nonnegotiability of compositional 
properties of concepts. The defense relies on the notion that composition-
ality is a modal property, that is, the idea is that concepts  can  combine 
compositionally but they do not necessarily do so all the time.  Prinz (2012)  
contends that this weaker requirement allows us to regard prototypes as 
compositional given that there are cases in which they behave composi-
tionally (i.e., the semantics of the compound is fully determined by the 
semantics of its parts), and there are others in which the compositional 
mechanism may not be used, or may be regularly supplemented with other 
combination mechanisms. The modal defense could then be easily extended 
to other cases of structured concepts. 

 I think that this defense is weak. First, notice that the  “ can ”  involved 
in it demands that there is something in the nature of concepts that allows 
them to be compositionally combined. So the defense assumes that com-
positionality is a general  constitutive  property of concepts, and it seems to 
demand that there are general compositional mechanisms that can work 
on concepts, even if sometimes they are not used. If this is the case, then 
it still follows that systematicity is a general property of cognition, even if 
sometimes it does not show up. Second, to show that prototypes are com-
positional, the relevant thing is to show that they are combined  as proto-
types . Yet it seems that instances of prototype combination are compositional 
inasmuch as their prototypical features are simply dropped away. 

 Although I do not wish to address the debate on compositionality in 
the limited space of this chapter, I dare to say that Fodor ’ s criticisms have 
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never been properly rebutted. Compositionality is still a problem for pro-
totypes and other structured concepts. However, the compositionality of 
concepts cannot be used to support the view that systematicity is a general 
property of cognition. The reason is that Fodor ’ s argument for the compo-
sitionality of concepts hinges precisely on the systematicity of cognition —
 that is, if cognition is systematic, the better explanation is a compositional 
system — so the extent to which concepts are compositional will be given 
by the extent to which cognition is systematic. But you still need an argu-
ment to show that cognition is  generally  systematic in the way classicism 
demands. Otherwise, one can hypothesize that a part of cognition is sys-
tematic in the required sense — hence works on compositional concepts, 
hence poses a problem for prototype-like explanations — and another is 
not — hence does not work on compositional concepts, hence might be 
accounted for by prototypes or other structured concepts. This hypothesis 
entails defending a version of conceptual pluralism, which I will provide 
in the next section. Before doing so, I want to consider a different (though 
related) argument that may offer independent reasons to hold that cogni-
tion is systematic and compositional. 

 The argument arises from Evans ’ s well-known Generality Constraint. 
The constraint can be succinctly put thus: 

 If a subject can be credited with the thought that  a  is  F , then he must have the con-

ceptual resources for entertaining the thought that  a  is  G , for every property of being 

 G  of which he has a conception. ( Evans 1982 , 104) 

  Weiskopf (2010)  argues that the constraint can be understood as an  archi-
tectural  constraint, that is,  “ as a constraint on the sorts of representation 
combining capacities a creature must have in order to possess concepts ”  
(2010, 109, n. 1). The constraint acts as a closure principle for the concep-
tual system so that  “ nothing could be a concept unless it was capable of 
entering into this kind of system of relations, and nothing could count as 
possessing a conceptual system unless it had a system of representations 
that were organized in such a way ”  (2010, 109). Notice that this is the sort 
of claim that turns systematicity into a non-empirical property, in the sense 
I referred to in section 2.1. In other words, systematicity would be a 
demand on mental architecture derived not from our theories on how 
concepts actually are but from deep intuitions on what concepts  have 
to be . 

 I agree that the Generality Constraint arises from deep intuitions about 
thought. However, I contend that it is possible to interpret it in a way that 
does not pose the strong architectural constraint that Weiskopf suggests. 
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If one looks closely to the formulation by Evans, the constraint can be seen 
primarily in terms of  how to credit  a subject with a thought. In other words, 
it is a constraint on how to attribute beliefs: it is not possible to attribute 
a creature the belief that  a is F  and the belief that  b is G  without allowing 
the  possibility  of attributing it the belief that  a is G  and the belief that  b is 
F . We need an extra assumption to turn the Generality Constraint into an 
architectural constraint that demands full combinability of concepts in the 
creature ’ s internal system of representation. This is the assumption that 
concepts are components of thoughts that have to be combinable in ways 
that mirror the structure of the beliefs attributable to the creature. Yet, as 
I am going to argue, there is room to resist this view as a general relation 
between beliefs and concepts. There will be cases in which concepts will 
combine in complexes whose structure mirrors the structure of the corre-
sponding beliefs but there will also be others in which there is no such 
mirroring. In the latter case, a creature can be credited with the belief, and 
the credit is grounded in its representational abilities, but the elements in 
its representations will not correspond part-to-part to the elements in the 
attributed belief. 

 In short, what I am going to defend is a version of  conceptual pluralism  
that allows us to resist the line of reasoning that leads from the intuitions 
of the Generality Constraint to the conclusion that systematicity is a 
general property of cognition. The point is that the conclusion is warranted 
only for concepts that have the property of being combinable in ways that 
mirror the structure of the beliefs. If there are other elements of cognition 
that can be still regarded as concepts but which do not have such a prop-
erty, then they will not be systematic in the way required by SA. Thus I 
must do two things to support this line of defense: the first is to show that 
conceptual pluralism is a cogent notion, that is, that it is possible to find 
elements in cognition that share fundamental properties that characterize 
them as concepts yet split into different subkinds; the second is to show 
that there are subkinds that differ precisely with respect to the property 
that is the source of systematicity, namely, compositionality.  9   

 4   Conceptual Pluralism and Compositionality 

 Conceptual pluralism is the thesis that concepts constitute a kind that 
splits into a number of different subkinds. The notion appeared in the 
context of the debate against Machery ’ s claim that concepts are not a 
genuine natural kind, and hence they are not fit to figure in psychological 
theories ( Machery 2009 ). The basis for this eliminativist claim is that what 
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psychologists call concept is served by an assorted collection of representa-
tions, such as prototypes, exemplars, or mini-theories, that have very little 
in common, either in terms of their structure or of the processes that 
operate on them. So Machery contends that there are not many useful 
generalizations that can be made about them. 

 In contrast, pluralistic approaches to concepts ( Weiskopf 2009ab ) hold 
that there are different kinds of mental representations that can be right-
fully regarded as concepts. Psychological literature shows, indeed, that 
prototypes, exemplars, or theorylike structures appear to have a role to 
play in dissimilar cognitive tasks.  10   Yet the conclusion to draw is that minds 
have the different kinds of representational structures at their disposal, and 
they make a selective use of each of them depending on the type of task 
in which they are engaged. Still, those different kinds of representations 
have enough in common to be regarded as subkinds of a more inclusive, 
superordinate kind — the kind of concepts. 

 What are those common properties that unify concepts as a kind? They 
have to be properties picked at a different level from those that unify each 
subkind of concepts. In other words, in order to show that concepts are a 
kind one cannot use criteria that split themselves, that is, criteria that are 
applied differently to the different hypothesized subkinds. What is needed 
is some middle point at which one can find common high-level properties 
that are robust enough to block the eliminativist conclusion but still 
permit a plurality of kinds that possess them. In other words, one needs 
to show, first, that there are properties that qualify concepts as a class and, 
second, that there are different subkinds that share those properties and 
yet differ in other significant properties. Among the properties of concepts 
suggested in the literature, there are two that stand out as the most promi-
nent ones: their  centrality  and their role in  attributions of belief . Conse-
quently, I contend that they pose the minimal common requirements that 
qualify concepts as a class. On the other hand, I will argue that a significant 
property in which subkinds of concepts differ is compositionality and, 
hence, systematicity. Let me elaborate a little on the common properties 
of concepts in the next subsection and leave the question of the differences 
in compositionality and systematicity for the following ones. 

 4.1   Common Properties of Concepts: Centrality and Belief-Attribution 
 Centrality is the idea that concepts are  central  mental representations, as 
opposed to  peripheral  ones. By  “ peripheral ”  I mean mental representations 
that are closer to the stimuli or input. This distinction has been used in 
different ways in theories of concepts. For instance, to point out a couple 
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of recent examples,  Camp (2009)  singles out stimulus independence as one 
of the crucial factors that mark conceptuality, whereas  Prinz (2002)  appeals 
to internal control as the distinctive property between concepts and per-
cepts — which in his view are undistinguishable with respect to its modal-
ity-specific constitution. The distinction between central and peripheral 
also plays a pivotal role in classical modularist views of mind ( Fodor 1983 ), 
where peripheral representations correspond to the proprietary bases of 
input modules, and central representations are typically the concepts 
handled by the central processor. Indeed, even massive modularist views 
of mind ( Carruthers 2006 ) make a distinction between conceptual and 
perceptual modules, which depends on architectural considerations regard-
ing the distance to the input. 

 The second prominent property of concepts is that they are the repre-
sentations whose possession allows the possibility of  attributing belieflike 
states  (as well as other kinds of propositional attitude states) to an indi-
vidual. I intend this property to be neutral between those theories that 
hold that beliefs must be actually composed of concepts ( Fodor 1998 ) and 
more instrumentally inclined theories that hold that beliefs can be ascribed 
to creatures with representational capabilities without necessarily holding 
that the tokened representational structures are literally composed of parts 
that correspond to those of the attributed belief ( Dennett 1987 ). The point 
I want to make is that it is possible to make compatible, on the one hand, 
the rejection of the notion of beliefs as actually composed of concepts as 
smaller pieces with, on the other, a representationalist stance on concepts. 
Concepts would be the sort of mental representations whose possession 
allows an organism the possibility of exhibiting behaviors that grant attri-
butions of belief. 

 Let me illustrate this with a toy example from the literature on animal 
cognition. Consider birds, such as jays ( Clayton et al. 2003 ), that are 
capable of remembering the location where they stored food some time 
ago. One can describe the bird ’ s performance by saying that the jay remem-
bered where it stored the food, which involves attributing it the belief  that 
there is food at location l . I think that there are two claims about this descrip-
tion that it is necessary to reconcile. One is the claim that it is a genuinely 
explanatory statement: it provides a description that allows one to make 
generalizations that are useful, perspicuous, and predictive. The other is 
the claim that it possibly strains the capability of birds (more on this later) 
to say that they are capable of combining concepts such as  FOOD  and  LOCA-
TION  so as to form beliefs like the one I mentioned. Following the first claim, 
someone would contend that the bird does literally possess the structured 
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belief that is composed of those concepts. Following the second claim, 
someone would contend that belief attribution is a wholly pragmatic affair 
that does not reflect the innards of the creature. However, there is a middle 
ground between both contentions: given the bird ’ s food-tracking abilities, 
it is possible that it deploys actual mental representations for the attributed 
concepts  FOOD  and  LOCATION,  without deploying anything like a structured 
representation for the attributed belief  there is food at location l . In other 
words, one can be (approximately) a  realist  about concepts and, at the same 
time, be (approximately) an  instrumentalist  about beliefs. Belief attributions 
like this would not be merely instrumental and observer-dependent but 
would be supported by certain representational abilities that some organ-
isms possess and others do not. Concepts would thus be  those mental rep-
resentations that it is necessary to possess so as to be the kind of organism to 
which one can attribute beliefs . 

 Nothing prohibits, however, that in certain cases the structure of the 
attributed belief could be actually mirrored by the structure of the repre-
sentational structure that grants the attribution. Yet this does not split the 
notion of belief into two different kinds — one for beliefs that are represen-
tationally mirrored and another for beliefs that are not so. Attributing 
beliefs has principally to do with the possibility of making predictions and 
generalizations regarding the organism ’ s behavior, and this possibility can 
be served whether the representational states that underlie the behavior 
mirror those beliefs or not. This opens the door to the possibility of having 
two kinds of concepts, managed by two kinds of mechanisms, that underlie 
attributions of belief. 

 The point to consider now is whether there are elements that can be 
rightfully regarded as concepts, inasmuch as they exhibit the properties of 
being central and being the representations that underlie attributions of 
belief, and yet which split into subkinds that differ with respect to proper-
ties that are the source of systematicity. The relevant property in this 
respect, of course, is compositionality. 

 4.2   Compositional and Noncompositional Concepts 
 Let me take stock: I said above that the systematicity argument works on 
the premise that systematicity is a significant property of cognition, yet SA 
does not contain itself the stronger notion that systematicity is a general 
property of cognition. To support this latter notion, one may appeal to the 
claim that concepts are nonnegotiably compositional and back this claim 
with intuitions from Evans ’ s Generality Constraint. I tried to debunk the 
idea that the constraint mandates a certain architecture, so as to show that 
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there may be different kinds of representations that possess the minimal 
requirements for concepthood and which satisfy the constraint. Now it is 
time to argue that those kinds of concepts differ in some respect that does 
not allow us to regard systematicity as one of their general properties. I 
want to claim that there are mental representations that qualify as con-
cepts, in terms of being central and involved in belief attributions, and yet 
are not compositional, and hence systematic, in the way SA contends. The 
upshot is that we would have two distinct kinds of concepts that differ in 
their compositional properties. 

 Let me back that claim by adapting some ideas from  Camp (2009) , who 
provides a careful analysis of the concept of  “ concept ”  that takes into 
account evidence from animal abilities. She begins by noting that notions 
of  “ concept ”  typically oscillate between two extremes:  concept minimalism , 
in which for a cognitive ability to be regarded as conceptual it simply has 
to be systematically recombinable; and  concept intellectualism , which links 
conceptuality to linguistic abilities, so that language, or some capacity that 
is only possible by means of language — for example, the capacity for think-
ing about one ’ s thoughts — becomes necessary for conceptual thought. 
Both extremes would delimit a continuum in which Camp thinks it is 
possible to distinguish three notions of concept: 

 a minimalist  “ concept 1 , ”  denoting cognitive, representational abilities that are 

causally counterfactually recombinable; a moderate  “ concept 2 , ”  denoting cogni-

tive, representational abilities that are systematically recombinable in an actively 

self-generated, stimulus-independent way; and an intellectualist  “ concept 3 , ”  denot-

ing concept 2 -type representational abilities whose epistemic status the thinker can 

reflect upon, where we assume that this latter ability is possible only in the context 

of language. (Camp 2009, 302) 

 Concept 1  is involved in activities that demand little more than passive 
triggering and marks the lower limit of the notion. Concept 2  is typically 
associated with cognitive abilities engaged in instrumental reasoning. This 
cognitive activity, which we find in a number of nonhuman animals, 
demands from the creature the capacity to represent states of affairs that 
are not directly provided by the environment, namely, the goal-states that 
the creature wants to achieve and the means-states that bring it closer to 
that goal in a number of stages. Finally, concept 3  marks the notion ’ s upper 
limit, and it is here, Camp contends, where Evans ’ s Generality Constraint 
can be met, because only concept 3  grants full recombinability, that is, the 
capacity to combine arbitrarily any  a  and  b  with any  F  or  G  of which the 
creature has a conception. Concept 2  cannot grant this capacity because, 
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even if its representational power is removed from the immediate environ-
mental stimulation, its deployment is still tied to the creature ’ s immediate 
needs. To put it in Camp ’ s terms, a chimpanzee would never entertain any 
of the potential thoughts that Evans ’ s constraint refers to  “ because they 
are utterly useless for solving any problems that it actually confronts ”  
(2009, 297). In contrast, creatures with language and the ability for epis-
temic reflection — the requirements for concept 3  — can find some use for the 
most arbitrary combinations once they have certain epistemic drives, such 
as curiosity and imagination. 

 Appealing as I find this analysis, there are two important points that I 
find unconvincing. First, Camp states that concept 1  is less theoretically 
useful to provide an account of conceptual thought. In fact, I think that 
it is doubtful that this notion even meets the minimal requirements 
for concepthood. Camp relies on some capacity for recombination as a 
minimal requirement to count as conceptual. However, the fact that this 
capacity can be found in systems that are directly triggered by perceptual 
stimulation ought to make one suspicious of the proposal. As I pointed 
out in section 3, one wants an account of cognition as concept-involving 
in a way that lets one distinguish it from perception. Centrality, I argued 
in section 4.1, is a way to mark such a distinction. Yet the notion of 
concept 1  is clearly tied to noncentral capacities, so it does not meet the 
minimal criteria for concepthood. Recombinability is a red herring because 
one can find it in nonconceptual structures. 

 The second unconvincing point is Camp ’ s treatment of the Generality 
Constraint. Camp endorses the view, which I resisted above, that it is an 
architectural constraint. At the same time, she contends that it works as 
an ideal rather than as a necessary constraint to grant conceptual thought. 
To meet the constraint one needs the fully systematic recombinability that 
permits arbitrary combinations to occur. Yet, in her view, even creatures 
with concept 3  capacities would often not meet the constraint given that 
many times they would be reluctant to form the arbitrary thoughts that, 
according to the constraint, they must be capable of forming.  11   This way, 
she makes room for a way to accept the Generality Constraint that, at the 
same time, allows one to regard conceptuality as a matter of degree. In 
other words, the constraint is OK, but it is too strong to be met in full for 
most practical concerns. Now, the reasoning behind this conclusion seems 
to me to be close to the reasoning behind the modal defense of composi-
tionality that I discussed in section 3, and thus it commits the same sort 
of mistake but in the opposite direction. Let me explain. 
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 Recall that the reasoning of the modal defense was that representations 
that can  sometimes  combine compositionally count as compositional, even 
if at other times they do not so combine. This was used to support the 
compositionality of representations such as prototypes. Camp ’ s reasoning 
is that creatures with concept 3  capacities  sometimes  are not capable of 
entertaining certain combinations for practical purposes. This is used to 
deny that they meet the Generality Constraint  “ in full. ”  The mistake in 
both cases is the same: both overlook the fact that what it takes for repre-
sentations to count as compositional, and to meet the Generality Con-
straint, is that they are capable of being arbitrarily recombined  as a matter 
of how they are constituted  (and given certain processes sensitive to this 
constitution). It is irrelevant whether as a matter of fact they sometimes 
do or do not combine. The upshot is that, despite what Camp contends, 
her notion of concept 3   does  meet the Generality Constraint. But if this is 
the case, and one still wants to maintain that the constraint restricts the 
suitable conceptual architecture, now one may object to her pluralist grad-
able analysis of the notion of concept. One could say that, as we have only 
a class of representations that meet the constraint — concept 3  — we ’ d better 
regard this class as the  genuine  notion of concept, and the other two 
notions as varieties of nonconceptual representations. 

 However, notice that in section 3 I offered an alternative reading of 
Evans ’ s constraint that poses much more lax restrictions on the representa-
tions that a creature must possess in order to satisfy it. So it does not matter 
much whether a class of concepts includes representations with limited 
compositionality. What is crucial is that they are central representations 
whose possession is required in order to grant systematic attributions of 
belief. In this respect, the notion of concept 2  appears to be a suitable can-
didate for concepthood, unlike the peripheral, perceptually bound repre-
sentations in concept 1 . 

 Where do these considerations leave us? I think that Camp ’ s analysis 
allows for the existence of just two kinds of concepts. One of them, roughly 
corresponding to her concept 2 , has the minimal common requirements to 
be regarded as conceptual but does not appear to be compositional in the 
classical sense;  12   hence, it is incapable of giving rise to the sort of systema-
ticity referred in SA. The other kind, roughly corresponding to concept 3 , 
is compositional and supports systematicity in SA. 

 There are two final related issues that I wish to address to finish paving 
the way to an alternative nonclassical SA. One is: even if it were possible 
to tell two notions of concept apart, systematicity could still be a general 
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property of cognition. The reason is that each notion could be applicable 
to a different type of creature. For instance, Camp ’ s analysis suggests a 
scenario in which concept 2  is simply the basis of nonhuman animal 
thought, while human thought is exclusively constituted by concept 3 . If 
this is the case, then one may contend that systematicity is a general 
property of  human  cognition, which is still a strong claim. To debunk this 
claim, one ought to show that both kinds of concepts have a place in 
human cognition. 

 The second issue is that even if humans possess both kinds of concept, 
it still may be the case that classical systems can account for them. In other 
words, one must show not only that SA applies just to a part of cognition —
 the one that deals with concept 3  — but that it does not apply to the other 
part — the one that deals with concept 2 . I address these two issues in the 
next and final section. 

 5   Two Kinds of Systematicity 

 The aim of this section, then, is to motivate the view that there are two 
kinds of systematicity in human minds, each of them related to a differ-
ent kind of concept. It is more than mere wordplay to say that a kind of 
systematicity involves a kind of system. It is because classical symbol 
systems have the defining properties that they have  as systems  that they 
exhibit the sort of systematicity of SA. So to argue for two kinds of sys-
tematicity, one must search for reasons that back the existence of two 
kinds of systems, each of them working on a conceptual kind. Dual 
systems theory (DST) is an obvious candidate to provide the backbone of 
such an approach. 

 DST is the view that human minds are constituted by two distinct kinds 
of cognitive processing systems ( Evans and Frankish 2009 ). Although their 
detailed characterizations and properties vary depending on the specific 
theory, in general terms one is typically characterized as fast, automatic, 
holistic, inflexible, difficult to verbalize, evolutionarily old, and noncon-
scious, and the other as slow, controlled, analytic, flexible, more easy to 
verbalize, evolutionarily recent, and conscious. Following standard usage, 
I will refer to those systems as S1 and S2, respectively. Even though there 
are different views about how to articulate this general approach ( Evans 
2009 ;  Stanovich 2009 ), I will not take them into account. DST has been 
mainly applied to explain reasoning and social cognition, but in its most 
ambitious forms it purports to provide a general vision of mental life, in 
which the basic distinction between two kinds of systems is the fundamen-
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tal architectural design of human cognition that helps to account for a 
range of mental phenomena ( Carruthers 2006 ;  Samuels 2009 ). 

 The first thing to note is that both S1 and S2 have to be conceptual 
systems: they are involved in paradigmatic central cognitive processes, 
such as reasoning, not in perception or other input-controlled processes; 
and the sorts of behaviors that any of them controls, such as decision 
taking, give rise to belief-attributions. The question now is whether each 
system can be conceived of as working on a different conceptual kind. In 
other words, the question is whether creatures with a dual system archi-
tecture are endowed with  both  concept 2  and concept 3  abilities. The scenario 
to be considered in terms of DST would be one in which the first kind of 
concept is handled by S1 and the second by S2. The reason is that the 
properties exhibited by S1 resemble those of the conceptual capabilities 
associated with instrumental reasoning that, as we saw above, are arguably 
present in some nonhuman animals. This also fits the idea the S1 is evo-
lutionarily older than S2, and that S2 is likely to be exclusive to humans. 
Both systems would be capable of performing typical conceptual functions, 
such as categorization, reasoning, and meaning extraction, yet in different 
ways and with different limits on the kinds of thoughts that they are 
capable of delivering. In particular, S2 would be capable of satisfying the 
Generality Constraint understood as an architectural constraint but S1 
would not.   13   

 Is this a plausible scenario? Support for a positive answer can be found 
in the recent extensive review by  Penn et al. (2008)  comparing human and 
animal cognition. Their aim is to show that there is a  “ profound functional 
discontinuity between human and nonhuman mind ”  (2008, 110). The 
discontinuity is revealed in a wide range of domains, such as the ability to 
cope with relational (as opposed to perceptual) similarity, to make analogi-
cal relations, to generalize novel rules, to make transitive inferences, to 
handle hierarchical or causal relations, or to develop a theory of mind. 
Penn et al. ’ s point is basically to show that the discontinuity between 
human and nonhuman minds can be cashed out in terms of the presence 
of a capacity for systematically reinterpreting first-order perceptual rela-
tions in terms of higher-order relational structures akin to those found in 
a physical symbol system (PSS) — the archetypal classical system.  14   This is 
the sort of capacity that, in Camp ’ s analysis, requires something like 
concept 3 . 

 Nonlinguistic creatures do not exhibit this kind of systematicity. Instead, 
they manifest a different kind of systematicity that  “ is limited to perceptu-
ally based relations in which the values that each argument can take on 
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in the relation are constrained only by observable features of the constitu-
ents in question ”  (Penn et al. 2008, 127). Borrowing  Berm ú dez ’ s (2008)  
term, I will call it  featural systematicity . Penn et al. think that this systema-
ticity would be accounted for by compositional properties  15   different from 
those that characterize a PSS. Penn et al. resort to  van Gelder ’ s (1990)  
notion of functional compositionality to account for the kind of compo-
sitionality present in animals. Unlike van Gelder, however, Penn et al. do 
not regard functional compositionality as capable of underlying the sort 
of systematicity exhibited by humans — that is, as capable of satisfying SA. 
Animal compositional capacities would be limited to  “ some generally reli-
able and productive mechanism for encoding the relation between particu-
lar constituents ”  that would account for  “ the well-documented ability of 
nonhuman animals to keep tracks of means-ends contingencies and predi-
cate argument relationships in a combinatorial fashion ”  (Penn et al. 2008, 
125). The animal abilities referred to are basically of the same kind as those 
that, according to Camp, grant the attribution of concept 2 . 

 As in DST — a theory that Penn et al. regard as related to their view — the 
thesis is that both kinds of systematicity appear in humans, so it is neces-
sary to explain how. Penn et al. propose that the representational system 
unique to humans  “ has been grafted onto the cognitive architecture we 
inherited from our nonhuman ancestors ”  (2008, 111). In search of an 
explanation of how such  “ grafting ”  might be possible, they resort to com-
putational models. Nonclassical connectionist models might explain the 
kind of systematicity that we find in animals, whereas recent connection-
ist-symbolic models might account for the grafting of new human repre-
sentational abilities to the preexisting representational machinery. Even 
though they back their proposal with computational models of their own 
(e.g.,  Hummel and Holyoak 1997 ,  2003 ) one might object that we still lack 
strong evidence for it. However, I want to consider a different kind of 
objection that is more relevant for the purposes of this essay: accepting 
that there are two different processing systems, why could not one resort 
to a classical explanation for  both  of them? In other words, one could insist 
on the possibility that animal systematic capabilities were brought about 
by a classical compositional symbolic system, perhaps limited with respect 
to the range of represented contents that it can deal with but still working 
on the same principles of concatenative recombination. If this were the 
case, one could contend that the difference between both systems — or 
between the concepts on which they operate, or between the systematicity 
they exhibit — is not one of  kind . Classical systems could then still consti-
tute the keystone of cognition in general, just as SA contends. 
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 I think that there are good grounds to reject this possibility. Its problem, 
in a nutshell, is that symbol systems are  too strong  for that. Recall that from 
the classicist perspective it is impossible to have a classical system that is 
not systematic in the sense posited by SA. So if animal minds included in 
some way a classical system,  then they would ipso facto be endowed with 
standard full systematicity . The extensive evidence reviewed by Penn et al. 
shows precisely that this is not the case. As they contend, if there were no 
differences in kind, then one could expect that the observed discontinui-
ties would be erased under appropriate conditions. For instance, animals 
under a  “ special training regime, ”  which let them access a larger range of 
contents and relations, would at least approximate human behavior. Yet 
the evidence shows that even those animals perform poorly. 

 It seems to me that we have finally reached the elements that would 
allow us to construct a nonclassical systematicity argument. Recall the 
general form that such an argument would have: 

 NSA 
 (i ′ )   Empirical claim: X is a pervasive property of cognition. 
 (ii ′ )   Explanatory claim: The only plausible explanation for X is property 
Y. 
 (iii ′ )   Definitional claim: Y is a defining property of such and such nonclas-
sical systems. 
 (iv ′ )   Dilemma: If classicism cannot account for property Y, then it does 
not provide a full account of cognition (from (i ′ ) and (ii ′ )); if classicism can 
account for Y, then it is actually implementing a nonclassical system (from 
(ii ′ ) and (iii ′ )) 

 Now we have ways of seeing how the different claims in the argument 
could be substantiated. First, the X that we have to explain is the kind of 
systematicity exhibited by nonhuman animals in terms of their limited 
recombination abilities — limited by their perceptual repertoire even if 
not bound to the immediate environment, and limited in the kinds of 
relations that they allow. Moreover, it is also a pervasive property of human 
cognition, given that it belongs to the inherited part of our cognitive 
machinery. 

 Second, the Y that constitutes the best explanation of this systematicity 
is some property of nonclassical systems. It cannot be a product of classical 
systems because, as I have just argued, this would endow animals with 
human systematic capabilities. A plausible candidate for Y comes from the 
set of properties characteristic of  distributed representations.  Perhaps, as Penn 
et al. observe, distributed systems as we currently envision them may need 



326 Fernando Martínez-Manrique

to be supplemented to account for animal minds. Yet it would suffice for 
NSA that distributed representations are essentially involved in the expla-
nation of featural systematicity, and that whatever supplement they require 
 cannot be  classical. 

 This would also satisfy the definitional claim, given that it simply says 
that whatever property Y is, it is constitutive and characteristic of some 
nonclassical system. In this respect, distribution is a defining property of 
distributed nonclassical systems, from which it follows that it is simply not 
possible to be such a system and not to have distributed representations. 
To conclude, the dilemma for the classicist position comes to this: if it 
cannot account for the sort of systematicity exhibited by animals and by 
part of human cognition, then it does not provide a full account of cogni-
tion; and if it offers a model that exhibits nonclassical property Y — for 
instance, distributed representation — then given that Y is definitive of 
nonclassical systems, the model would count immediately as an imple-
mentation of a nonclassical system. 

 6   Conclusion 

 After all these years the systematicity argument still poses a powerful 
challenge to any attempt at explaining cognition. Part of its force resides 
in its simplicity:  “ Here is this notorious property of cognition; here is a 
conspicuous explanation of this property; does anyone have an explana-
tion that does not collapse into ours? ”  In this chapter, I claimed that the 
answer to the latter question is negative. Despite the attempts, nobody 
has come up with an explanation for the sort of systematicity that the 
argument alludes to that is better than a compositional system of repre-
sentations. And nobody has a complete account of cognition unless one 
is able to explain properties of that sort.  16   However, I also contend that 
this is not the end of the story: there are other cognitive properties to 
explain, and classicism is not in a better position to do so. Just because 
one has a powerful explanation of an important mental property, it does 
not mean that one can transfer this explanation to every other mental 
property. If, as the evidence increasingly supports, the human mind 
includes two fundamentally different kinds of systems, and each system 
exhibits a different way of being systematic, then classical symbol systems 
cannot account for both of them. 

 The bottom line can be put thus: while nonclassical systems are  too weak  
to account for humanlike compositionality-based systematicity, classical 
systems are  too strong  to account for noncompositionality-based systema-
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ticity. The reason is precisely that any system that has a classical compu-
tational-representational architecture  necessarily  exhibits compositional 
systematicity as a consequence of its architectural design. Yet I have argued 
that the evidence suggests that, in both animals and humans, there are 
genuinely cognitive processes that fail to exhibit this kind of systematicity. 
They are genuinely cognitive because they are concept involving: they are 
not tied to immediate perceptual stimuli, and they control behaviors that 
are complex enough so as to merit attributions of belief. If nonclassical 
approaches are able to explain such processes — and not only, as their critics 
often complain, early perceptual processing — then they will have an 
account of part of our mental life, even if not of all of it. 

 To sum up, the picture of cognition that I tried to motivate in this 
chapter comes to this: an architecture that supports at least two distinct 
subkinds of concepts with different kinds of systematicity, neither of which 
is assimilable to the other. This picture sets a whole new agenda of prob-
lems to solve, particularly regarding the relation between both systems. In 
particular, one may wonder whether nonclassical systematicity is exactly 
the same in humans and in those animals that exhibit analogous proper-
ties, or whether perhaps it is affected by its coexistence with compositional 
systematicity; one may wonder whether it is possible to integrate both 
kinds of concepts in some respect, perhaps to form a sort of hybrid struc-
ture; one may wonder whether compositional systematicity is exclusively 
related to linguistic cognition. These are the sorts of questions that I think 
it will be interesting to address in future research. 
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 Notes 

 1.   See  McLaughlin 1993  for an earlier — and consequently less complete — classifica-

tion of connectionist replies to the argument. 
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 2.   On the other hand, there are reasons to doubt that language is fully composi-

tional in the required sense. (See  Vicente and Mart í nez-Manrique 2005  for a rejec-

tion of the claim that semantics can provide fully determined compositional 

thoughts and its consequences for the views that regard language as a cognitive 

vehicle). Language may be simply a combinatorial system, and thus the picture 

presented by Gomila et al. would be one of a classical compositional system getting 

installed thanks to the combinatorial properties of language. But notice that SA is 

neutral about how systematicity is acquired, given that its claim is about how it 

is explained, and its explanation in such an acquisition model is still a classical 

one. 

 3.   See  McLaughlin 2009  for an extensive analysis of Cummins ’ s and Johnson ’ s 

claims, in which he contends that they miss the point about what has to be 

accounted for — which, in his view, are the lawful psychological patterns revealed in 

systematic relations between thoughts. 

 4.    Van Gelder and Port (1994)  extended the analysis by proposing six parameters —

 properties of primitive tokens, and properties of modes of combination — in terms 

of which to distinguish varieties of compositionality. However, concatenative versus 

functional still seems to be the crucial dimension. 

 5.   Incidentally, Aizawa (1997) thinks that neither connectionist nor classical models 

can explain systematicity without the aid of further additional hypotheses. 

 6.   I owe this objection to a referee who wanted to know what was wrong with a 

specific model. Obviously, answering questions like this exceeds the limits and goals 

of this essay. 

 7.   See Fodor 1998, chap. 2. Fodor ’ s idea of a nonnegotiable condition for a theory 

of concepts is that the condition is fallible but abandoning it entails abandoning 

the representational theory of mind itself. 

 8.   The problem of compositionality was already detected by early proponents of 

prototype theory ( Osherson and Smith 1981 ), and some technical solutions have 

been attempted (e.g.,  Kamp and Partee 1995 ). 

 9.   A referee has complained that this looks like an unnecessarily circuitous route. 

Should it not be enough for the purposes of the essay to show the second, i.e., that 

there are elements in cognition that are not systematic in the way required by SA? 

I don ’ t think so. The point is that one has to motivate first the view that they are 

precisely elements  in cognition , that is, conceptual elements. Otherwise, one might 

brush aside the suggestion that there is a different kind of systematicity by saying 

that it has to do with perceptual or other less-than-cognitive elements. The point 

of the next section, thus, is to show that there is a general way of characterizing 

concepts so that they comply with the Generality Constraint, understood as a 
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constraint on belief-granting capabilities, while at the same time they split into 

subkinds that differ in important respects. 

 10.   Although I do not wish to enter the debate on conceptual atomism, I would 

like to point out that conceptual pluralism allows for the possibility of atomic 

concepts as one more among the subkinds of concepts.  Weiskopf (2009a)  seems to 

forget this possibility when he opposes atomism to pluralism. As I have pointed out 

( Mart í nez-Manrique 2010) , the relevant opposition is between pluralism and 

monism, and the former can admit atoms in the repertoire as long as they are not 

mistaken to be the whole class of concepts. 

 11.   To put it in Camp ’ s words:  “ We also fall short of full generality: precisely because 

certain potential thoughts are so absurd, it ’ s unlikely that anyone would ever think 

them or utter sentences expressing them in any practical context ”  (2009, 306). 

 12.   As we will see in the next section, there remains the question of whether they 

are compositional in a different sense. Now, I do not wish to fight for the term 

 “ compositional. ”  I am ready to leave it as the property that characterizes the class 

of concepts present in classical systems (concept 3 ) and accept that the other class of 

concepts is just noncompositional. What matters for this essay is that these concepts 

give rise to different systematic properties not accounted for by classical systems. 

 13.   The approach by  Gomila et al. (2012)  has elements that are congenial to the 

proposal I am making in this essay. For instance, they also resort to dual systems 

theory as the overarching architecture of mind. Yet I do not agree with their claim 

that  “ this duality also corresponds to the divide between non-systematic and sys-

tematic processes ”  (2012, 112). There is much systematicity in S1 and it is of a kind 

that demands conceptual processing, even if not the kind of concepts that are 

processed by S2. So I doubt that dynamic, embodied approaches, as the one they 

endorse for S1, provide a good account for this system either, at least if they are 

couched in nonrepresentational terms. 

 14.   To cope with critics of the PSS hypothesis, Penn et al. borrow a milder version 

from  Smolensky (1999) , the  “ symbolic approximation ”  hypothesis. The distinction 

is irrelevant for the purposes of this essay, given that the point is still that symbolic 

approximators require an architecture that is different from the one that supports 

animal capacities. 

 15.   As I said in note 12, it is irrelevant whether one does not want to call them 

 “ compositional, ”  preferring to reserve that term for classical compositionality. What 

matter is that there is a different kind of systematicity accounted for by different 

properties of the system. 

 16.   So, attempts at providing a whole alternative framework to computational-

representational cognitive science, such as the attempt by  Chemero (2009) , seem to 
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be flawed inasmuch as they simply ignore those properties. For instance, there is 

no single clue in his book about how radical embodied cognitive science would deal 

with language comprehension or with reasoning processes, just to mention two 

paradigmatic domains where resort to classical representations is more natural.      
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 Neo-empiricism is one of the most exciting theories of concepts developed 
in the last twenty years in philosophy and in psychology. According to 
this theory, the vehicles of tokened concepts are not different in kind from 
the vehicles of perceptual representations. Proponents of neo-empiricism 
have touted the virtues of their theory ( Barsalou 1999 ,  2010 ;  Prinz 2002 ; 
Gallese and Lakoff 2005), including its alleged empirical support, while 
critics have raised various concerns (e.g.,  Markman and Stilwell 2004 ; 
 Machery 2006 ,  2007 ;  Mahon and Caramazza 2008 ;  Dove 2009 ,  2011 ; 
 McCaffrey and Machery 2012 ). In this chapter, I will criticize neo-
empiricists ’  views about the nature of thoughts, that is, about those 
representations that express propositions. In substance, if neo-empiricism 
were right, our capacity to think — to move from thought to thought —
 would be either mysterious or a matter of a contingent history of learning. 
Fodor and Pylyshyn ’ s classic article against connectionism will be useful 
to develop this criticism, since neo-empiricists ’  views about the nature of 
thoughts suffer from problems similar to those Fodor and Pylyshyn diag-
nosed twenty-five years ago.  1   

 Here is how I will proceed. In section 1, I will review the central 
tenets of neo-empiricism. In section 2, I will review how neo-empiricists 
characterize occurrent and non-occurrent thoughts. In section 3, I will 
argue that amodal symbols seem to be needed to have thoughts in long-
term memory (i.e., non-occurrent thoughts). In section 4, I will argue that 
neo-empiricists ’  views about occurrent thoughts are unacceptable. 

 1   Neo-Empiricism 

 Neo-empiricism in contemporary philosophy and psychology is not a 
reductionist  semantic  theory: it does not state that the content of thoughts 
can be reduced to perceptual properties such as  red ,  square ,  loud , and so on. 

 13   Neo-Empiricism and the Structure of Thoughts 

 Edouard Machery 
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 Prinz (2002)  argues at length that the types of representations posited by 
neo-empiricists (in his terminology,  “ proxytypes, ”  or in Barsalou ’ s termi-
nology,  “ perceptual symbols ” ) can be about three-dimensional objects and 
their physical properties. Nor is neo-empiricism a  developmental  theory 
about concepts: it does not state that all concepts are learned.  Prinz (2002)  
clearly argues that neo-empiricism is consistent with the claim that some 
conceptual representations are innate, whereas  Barsalou (1999)  holds that 
some conceptual representations are in fact innate. 

 Instead, neo-empiricism is a theory about the  vehicles  of concepts 
( Prinz 2002 , 109;  Machery 2007 ;  McCaffrey and Machery 2012 ), that is, 
about the nonsemantic properties of the physical (presumably neural) 
states that realize concepts. Although neo-empiricists disagree about 
various points, all of them accept the following two theses about the 
vehicles of concepts: 

 (1)   The knowledge that is stored in a concept is encoded in several per-
ceptual representational systems. 
 (2)   Conceptual processing involves essentially reenacting some perceptual 
states and manipulating these perceptual states. 

 The first thesis describes what it is to token, or entertain, a concept: accord-
ing to Thesis 1, to entertain a concept is to entertain some perceptual 
representations. Thus, to think about dogs consists in entertaining some 
perceptual (visual, auditory, olfactory, proprioceptive, etc.) representations 
of dogs. These perceptual representations are of the same kind as the per-
ceptual representations one would entertain if one were to perceive dogs. 
Thus, thinking consists in reenacting, or simulating, the perception of the 
objects of one ’ s thoughts. The reenacted perceptual representations need 
not be conscious: in line with modern cognitive science, neo-empiricists 
hold that one can entertain a perceptual representation unconsciously. 
This first thesis denies the view held by amodal theorists that the vehicles 
of thoughts are distinct in kind from the vehicles of perceptual representa-
tions ( Fodor 1975 ,  2008 ;  Pylyshyn 1984 ). 

 Neo-empiricists have been crystal clear in their embrace of Thesis 1. 
Barsalou writes (1999, 577 – 578): 

 Once a perceptual state arises, a subset of it is extracted via selective attention 

and stored permanently in long-term memory. On later retrievals, this perceptual 

memory can function symbolically, standing for referents in the world, and enter-

ing into symbol manipulation. As collections of perceptual symbols develop, they 

constitute the representations that underlie cognition. 
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 Similarly, Prinz proposes that  “ concepts are couched in representational 
codes that are specific to our perceptual systems ”  (2002, 119), and that 
 “ tokening a proxytype is generally tantamount to entering a perceptual 
state of the kind one would be in if one were to experience the thing it 
represents ”  (2002, 150). 

 Neo-empiricists do not seem to agree about the nature of the representa-
tions stored in long-term memory. At the very least, they describe them 
differently.  Barsalou (1999)  postulates the existence of simulators, which 
are psychological structures or entities whose function is to create the 
perceptual representations that are the vehicles of occurrent thoughts. By 
contrast, Prinz (2002, 146) holds that the perceptual representations of an 
entity form a network in long-term memory, and that people retrieve dif-
ferent subsets of this network depending on the context in which concept 
retrieval takes place. 

 Thesis 1 does not specify the nature of perceptual representations: it 
does not explain what makes a representation perceptual. Unfortunately, 
there is no consensus about this issue in the neo-empiricist literature. 
Some, like  Barsalou (1999 , 578), hold that perceptual representations are 
analogical, while others, like  Prinz (2002 , chap. 5), hold that perceptual 
representations are simply the representations that occur in perceptual 
systems. Furthermore, none of the proposals put forward is fully satisfac-
tory. First, it is unclear why only perceptual representations would be 
analogical since critics of neo-empiricism have argued that analogical rep-
resentations of quantity are amodal, and they view the research on quan-
tity representation as a counterexample to neo-empiricism ( Machery 2007 ; 
 Dove 2009 ,  2011 ). Second, it is difficult to delineate perceptual systems. 
Where, in neurobiological terms, do perceptual systems stop? Are the tem-
poral poles part of the visual system? Does the frontal cortex belong to 
any perceptual system? 

 Because the nature of perceptual representations has not been specified 
to full satisfaction, it can be unclear whether empirical findings genuinely 
bear on the debate between neo-empiricism and amodal theories of con-
cepts. In particular, patterns of brain activation in tasks involving retriev-
ing and manipulating concepts can be ambiguous, since it may be unclear 
whether the brain areas that are activated belong to a perceptual system. 
But that ’ s not to say that there is no relevant evidence. For instance, 
 McCaffrey and Machery (2012)  have argued that the (domain-specific, 
modality-general) pattern of semantic loss found in semantic dementia is 
evidence against neo-empiricism. 
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 Thesis 2 is about  conceptual processing . According to neo-empiricists, 
thinking consists in manipulating the conscious or unconscious perceptual 
representations that one entertains when one is thinking. While neo-
empiricists have written at length about the nature of the representations 
that make up our thoughts (Thesis 1), they have not said much about the 
nature of conceptual processing. Still, in substance, categorization, for 
instance, would work like this: when one has to decide whether something 
is a dog, one simulates perceiving a dog, matches one ’ s current perception 
and one ’ s simulation, and, if the match is close enough, one decides that 
the object to be categorized is a dog (e.g.,  Barsalou 1999 , 576). 

 2   Thoughts and Neo-Empiricism 

 2.1   Occurrent Thoughts 
 According to neo-empiricists, to entertain the concept of dog — that is, to 
have occurrent thoughts about dogs as such — consists in simulating per-
ceiving a dog. But what is it to think that Fido is a dog, that dogs bark, 
that the big dog seems eager to cross the street, or that the dog that barked 
scared the cat? That is, what is it to entertain a proposition? 

 Barsalou acknowledges that any theory about the vehicles of concepts 
has to be consistent with our capacity to entertain propositions: 

 Another important lesson that we have learned from amodal symbol systems is that 

a viable theory of knowledge must implement propositions that describe and inter-

pret situations. (1999, 595) 

 Unsurprisingly, he holds that perceptual symbols can express propositions, 
and, using the example of a perceived jet in the left part of the visual field, 
he describes recognitional thoughts that apply concepts to perceived indi-
viduals as follows: 

 As visual information is picked up from the individual [e.g., a jet], it projects in 

parallels onto simulators in memory. A simulator becomes increasingly active if (1) 

its frame contains an existing simulation of the individual, or if (2) it can produce 

a novel simulation that provides a good fit.  …  The simulation that best fits the 

individual eventually controls processing. Because the simulation and the percep-

tion are represented in a common perceptual system, the final representation is a 

fusion of the two.  …  Binding a simulator successfully with a perceived individual 

via a simulation constitutes a type-token mapping.  …  Most importantly, this type-

token mapping implicitly constitutes a proposition, namely, the one that underlies 

 “ it is true that the perceived individual is a jet. ”  In this manner, perceptual symbol 

systems establish simple propositions. (1999, 596) 
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 Prinz describes entertaining propositional thoughts as follows: 

 Suppose that Boris forms the desire to hunt a fat gnu, and this desire consists of a 

perceptual simulation of a person with a rifle pursuing a gnu-shaped animal with an 

oversized belly. Is there a component of this simulation that counts as the  GNU  proxy-

type? Can it be distinguished from the  FAT  proxytype? Or the  HUNTING  proxytype? 

 In some cases, one may be able to distinguish parts of a simulation by intrinsic 

features. Different bound shape representations, for example, may constitute dis-

tinct proxytypes. Perhaps the gnu-shaped representation can be distinguished from 

the person-shaped representation and the rifle-shaped representation in that way. 

But there is no separate representation for hunting or for fatness. They are built up 

from or into the bound shape representations. If there is no distinct proxytype for 

hunting or for fatness in this representation, how can we say it is a token of a desire 

to hunt a fat gnu? The answer may lie in the origin of the simulation. Mental repre-

sentations of hunting and fatness are used when the simulation is initially formed. 

 …  There is a sense in which proxytypes for  HUNTING  and  FAT  are contained in the 

simulation, but they meld with other proxytypes. (2002, 150 – 151) 

 Some important points emerge from these neo-empiricist descriptions of 
occurrent propositional thoughts. First, occurrent thoughts are produced 
either by  blending , melding, or fusing together (all these metaphors are 
equivalent) the perceptual representations that result from people ’ s 
knowledge in long-term memory (their simulators or their networks of 
perceptual representations) or by blending such representations with the 
perceptual representations produced by our perceptual systems (see Bar-
salou ’ s quotation above). Unfortunately, in contrast to  Smolensky ’ s (1988)  
tensor-product brand of connectionism, which involves similar ideas (dis-
cussed at length in  Fodor and McLaughlin ’ s 1990  companion paper to 
 Fodor and Pylyshyn 1988 ), neo-empiricists have not described this blend-
ing process at great length, using metaphors instead. For instance, it is 
opaque what rule, if any, governs this process. But it is clear that, while 
the symbols that express propositions (e.g., the proposition that the dog 
is barking at the cat)  may  be made out of subsymbols corresponding to 
the constituents of the propositions expressed (e.g., a symbol representing 
a dog), in a neo-empiricist framework they  need not : as Prinz puts it in 
the quotation above,  “ There is no separate representation for hunting or 
for fatness ”  (2002, 151). 

 As a result, the concepts that are involved in entertaining a thought 
need not be cotokened as distinct symbols together with the symbol 
expressing this thought. In Prinz ’ s example, while the concept of fatness 
is involved in thinking about hunting a fat gnu, no distinct symbol for 
fatness occurs together with the thought that one is hunting a fat gnu. 
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 Furthermore, the subsymbols that are genuine parts of the symbols 
expressing thoughts (e.g., the symbol of a gnu in Prinz ’ s example) do not 
recur identically across thoughts; rather, they are context-sensitive. This 
context-sensitivity takes two forms. First and foremost, unlike indexicals 
and relative predicates, the  vehicles  of concepts vary across concepts ( Bar-
salou 1999 , 598 – 599;  Prinz 2002 , 149). A cup is represented differently in 
different contexts; that is, perceptual simulations of cups vary depending 
on the context. In effect, then, according to neo-empiricists, concepts are 
not portable representations — they are not representations that can be 
transported identically from thought to thought. Second, just like indexi-
cals  2   or relative predicates in natural languages, the semantic properties of 
concepts are determined by, and thus vary across, contexts. This second 
form of context-dependence results from the first: whereas, according to 
neo-empiricists, the extension of a concept is probably not meant to vary 
across contexts (tokens of  CUP  all have the same extension, viz., the set of 
cups), the way the members of its extension are thought about — what Prinz 
calls  “ the cognitive content ”  of the concept — varies across contexts, since 
it depends on how one simulates perceiving them (one thinks differently 
about cups in different contexts). This characteristic of perceptual symbols 
is reminiscent of the representations in connectionist networks, since in a 
connectionist network tokens of the same concept, say,  CUP , correspond to 
different patterns of activation in different contexts — a point emphasized 
by Fodor and Pylyshyn ( Fodor and Pylyshyn 1988 ;  Smolensky 1988 ,  1991 ; 
 Fodor and McLaughlin 1990 ). 

 Not only are the parts of symbols expressing propositions not portable, 
their delineation can also be vague: there may not be any fact of the matter 
about where one subsymbol starts and another ends. 

 Finally, current thoughts (beliefs, desires, judgments, etc.) have parts 
(e.g., a symbol of a gnu is a part of the thought that I am hunting a gnu), 
but no constituents.  Fodor and Pylyshyn (1988)  were instrumental in 
bringing to the fore the distinction between the parts and the constituents 
of representations. A constituent is either simple or complex. Complex 
constituents are recursively formed out of other constituents by putting 
them together according to some rule. These rules form the syntax of the 
representation, or symbol, system. Syntactic rules are semantically rele-
vant and determine the semantic properties of complex symbols, that is, 
the interpretation of a complex symbol is a function of its constituents 
and of its syntax. Naturally, although every constituent is a part of a 
representation, not all parts are constituents. This point can be easily 
grasped by considering sentences in natural languages. Although  “ dog 
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barks ”  is a part of  “ the dog barks at the cat, ”  it is not one of its constitu-
ents; in contrast,  “ the dog ”  and  “ barks at the cat ”  are constituents of this 
sentence because each of them was formed out of primitive symbols 
(which are by definition constituents) by applying some syntactic rule. 
Just like representations in connectionist networks (patterns of activation 
of nodes within a layer; see  Fodor and Pylyshyn 1988 ), simulations have 
parts, but these are not constituents, for their parts are not put together, 
or concatenated, according to some syntactic rule. Whatever rule is meant 
to govern the blending of perceptual symbols according to neo-empiri-
cists, the subsymbols for a cat and for a dog in the thought that the dog 
is barking at the cat are not put together according to a syntactic rule: 
the symbol for the dog is not meant to be the argument of a definite 
description operator, and the resulting symbol is not meant to be identi-
fied as the first argument of the predicate for barking or as standing in 
a subject relation to this predicate.  3   

 To summarize, according to neo-empiricists, occurrent propositional 
thoughts can, but need not, be made out of subsymbols for the concepts 
that were involved in producing the thoughts. The subsymbols that are 
parts of the propositional symbols are not portable across thoughts; their 
delineation can be vague; and they do not stand in syntactic relations. 
Thus, they are not constituents. 

 2.2   Thoughts in Long-Term Memory 
 Before critically examining neo-empiricists ’  theory of occurrent proposi-
tional thoughts, we should say a few words about non-occurrent thoughts, 
that is, about the thoughts in long-term memory. Even when one is not 
currently entertaining the thought that dogs bark, that thought is somehow 
stored in long-term memory. How do neo-empiricists characterize this type 
of thought? 

  Prinz (2002 , chap. 6) deals with this question at some length. He pro-
poses that in a given network of representations in long-term memory, 
perceptual representations are connected by various links, of which he 
distinguishes five types: hierarchy (a link that connects two perceptual 
representations when a perceptual representation results from zooming 
in on another representation), transformation (a link that connects 
two perceptual representations when one can result from a possible trans-
formation of the other), binding (a link that connects two perceptual 
representations when the first represents a property, part, or behavior of 
the instance of the other), situational (a link that connects two perceptual 
representations when these typically co-occur), and predicative (a link that 
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connects a singular and a predicative perceptual representation). For 
instance, to represent in long-term memory the proposition that dogs bark, 
perceptual representations of dogs are connected to auditory representa-
tions of barking by a binding link. 

 3   Thoughts in Long-Term Memory Require Amodal Symbols 

 Neo-empiricists eschew amodal symbols altogether: According to them, 
thoughts are perceptual through and through. We should thus be on the 
lookout for amodal symbols accidentally smuggled in to account for the 
nature of thought and cognitive processing. 

 Neo-empiricists often treat multimodal representations as perceptual 
( Prinz 2002 ), an assumption amodal theorists are bound to object to; they 
do the same for words ( Prinz 2002 ), which is barely less controversial. In 
this section, however, I want to focus on a less obvious place where amodal 
symbols may be smuggled in: the links hypothesized to connect perceptual 
representations in a long-term memory network. These links are content-
ful: they represent specific relations between the referents of the linked 
perceptual relations. For instance, the binding link can represent parthood 
(among several other possible relations). Consistent with the claim that 
the hypothesized links are contentful, they are labeled in Prinz ’ s pictorial 
representation of a long-term memory network (fig. 6.4 in  Prinz 2002 ). 
But, because these links are not perceptual representations, it would seem 
that they are amodal symbols in disguise. 

 It would not do to respond by allowing for some amodal symbols in 
addition to perceptual representations (in the spirit, if not the letter, of 
dual-code theories; see, e.g.,  Dove 2010 ), for, if some representations were 
amodal, why would they be limited to representing the relations repre-
sented by Prinz ’ s hypothesized links? Why not amodal representations of 
abstract entities, such as democracy and causation, and of unobservable 
entities, such as atoms? And if the latter are allowed, why not representa-
tions of dogs, cats, going to the dentist, and so on? 

 A better response would be to deny that the hypothesized links are 
symbols, and thus, a fortiori, that they are amodal symbols. In this spirit, 
Prinz denies that entertaining the negation of a proposition involves any 
representation in addition to the perceptual representation involved in 
entertaining the proposition itself. Rather, entertaining a negated proposi-
tion (e.g., that dogs do not purr) consists in a particular way of matching 
the perceptual representation expressing the nonnegated proposition (e.g., 
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that dogs purr) to perceptual experiences (Prinz 2002, 181 – 183). Negation 
is thus not a representation, it is a particular operation completed on rep-
resentations. Prinz proposes to treat disjunctive thoughts and quantified 
thoughts similarly (183 – 184).  4   This strategy could perhaps be extended to 
links. 

 However, it is not easy to specify operations corresponding to the dif-
ferent links that need to be hypothesized, and one can doubt that all of 
them can be reduced to operations. Without any concrete proposal, it is 
difficult to assess the prospects of this strategy. More important, the strat-
egy used by Prinz to account for negation in a neo-empiricist framework 
does not directly apply to the links hypothesized to make up long-term 
memory networks since it concerns occurrent thoughts, and not the 
thoughts in long-term memory. Furthermore, it is not at all clear that we 
can we extend Prinz ’ s strategy to these latter thoughts. To deal with nega-
tion, disjunction, and quantification, Prinz focuses on different ways of 
matching occurrent simulations that express propositions to perceptions, 
but this strategy is not applicable to the representation of relations such 
as parthood, for the issue there is how to represent propositions in the first 
place. Perhaps Prinz could suggest that the links are priming relations: 
when a perceptual representation is retrieved from long-term memory, the 
perceptual representations it is linked to are likely to be retrieved too. But 
this suggestion is a nonstarter, since priming relations are not contentful; 
furthermore, supposing that they were, priming relations would still be 
insufficiently fine-grained to represent all the relations that need to be 
represented. 

 There is a general lesson to be learned from this discussion. Perceptual 
representations in long-term memory could stand for individuals or classes, 
but to represent a proposition, it seems that we need amodal symbols that 
put these perceptual representations together. Without them, perceptual 
representations remain unstructured. 

 However, a neo-empiricist has another card up her sleeve: she can 
respond that thoughts in long-term memory need not be explicitly 
represented, and thus that amodal symbols are not needed to structure 
perceptual symbols into thoughts in long-term memory. Rather, to have 
non-occurrent thoughts just is to have a capacity to entertain occurrent 
thoughts. For instance, to believe that dogs bark when that thought is not 
occurring just is to be able to entertain the occurrent thought that dogs 
bark. We now turn to assessing neo-empiricists ’  views about occurrent 
thoughts. 
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 4   Neo-Empiricists Mischaracterize Thinking 

 4.1   The Individuation of Thoughts 
 In the neo-empiricist view of thoughts described in section 2, it is not 
obvious what makes a given occurrent thought the thought it is since the 
symbols corresponding to the constituents of the proposition expressed 
need not be cotokened with the symbol expressing the proposition itself. 
Indeed, one wonders what distinguishes two thoughts that would only 
differ by the missing symbol. To reuse Prinz ’ s example, what distinguishes 
the perceptual representation of myself hunting a gnu from the perceptual 
representation of myself hunting a fat gnu if no symbol for fatness is 
cotokened with the perceptual representation in the second case? 

 Here is what Prinz has to say in response to this issue:  “ While one 
cannot separate out the representations of hunting or of fatness, one can 
identify the contributions that Boris ’ s knowledge make to this simulation ”  
(2002, 150). This response is ambiguous, and can be read in two different 
ways. First, Prinz seems to hold that the two thoughts under consideration 
differ — different perceptual representations are entertained — because our 
long-term knowledge about fatness is involved in producing the latter, but 
not the former. On this view, then, cotokening is not needed to individuate 
thoughts because perceptual representations are exactly as fine-grained as 
the propositions they express. 

 So understood, Prinz ’ s response suffers from two problems. It seems to 
rest on a confusion between the vehicle and the content of perceptual 
representations. No doubt, a perceptual representation of a fat gnu repre-
sents the gnu differently from a mere representation of a gnu — namely, it 
represents it as fat — but this claim concerns the content of the two percep-
tual representations, not their vehicles, whereas the individuation issue 
raised here concerns their vehicles. Second, bracketing this first problem, 
the context-dependence of the tokens of a given concept, which was also 
discussed in section 2, raises another problem for Prinz ’ s response: because 
the occurrences of a concept such as  CUP  differ across contexts, a mere dif-
ference in perceptual simulations is not sufficient to individuate occurrent 
thoughts. So, perceptual representations are more fine-grained than the 
propositions they express (assuming that not every difference in the vehicle 
of a concept makes a difference in the thought expressed). 

 The second reading of Prinz ’ s solution deals with this problem: what 
distinguishes the thought that I am hunting a gnu from the thought that 
I am hunting a fat gnu is that the concept for fatness in long-term memory 
was involved in producing the second thought, but not the first one, and 
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what makes all the thoughts expressing propositions that have fatness as 
a constituent thoughts about fatness despite the variation in how fatness 
is represented is that all of them come from the same concept in long-term 
memory. As Prinz puts it:  “ The answer may lie in the origin of the simula-
tion. Mental representations of hunting and fatness are used when the 
simulation is initially formed ”  (2002, 151). Barsalou too embraces this 
solution: 

 If the same individual conceptualizes  bird  differently across occasions, how can sta-

bility be achieved for this concept? One solution is to assume that a common simu-

lator for  bird  underlies these different conceptualizations both between and within 

individuals.  …  Consider how a simulator produces stability within an individual. 

If a person ’ s different simulations of a category arise from the same simulator, then 

they can all be viewed as instantiating the same concept. Because the same simulator 

produced all of these simulations, it unifies them. (1999, 588) 

 That is, what individuates thoughts — what makes the perceptual represen-
tations expressing propositions the thoughts they are — is a historical prop-
erty, namely, the origins of these thoughts. 

 4.2   Recognizing the Identity of Thoughts 
 Prinz ’ s and Barsalou ’ s solution to the individuation problem is only par-
tially satisfactory since there are in fact  two  individuation problems and 
their solution addresses only one of them. The first problem, the one we 
started with, concerns the individuation of thoughts proper — what makes 
a thought the thought it is — and, as we have just seen, neo-empiricists 
appeal to the origins of the thought to deal with this issue. The second 
problem concerns how the identity of thoughts or of thought components 
is recognized: how does one know what thought one is thinking, how does 
one recognize that one is thinking the same thought on two different 
occasions, how does one know what one is thinking about, and how does 
one recognize that one is thinking about the same thing on two different 
occasions? 

 Let ’ s examine this second problem in more detail. As we have seen, 
constituents of the proposition expressed by an occurrent perceptual simu-
lation are not necessarily expressed by distinct subsymbols cotokened with 
the occurrent perceptual simulation (as was the case for the fatness of the 
gnu in Prinz ’ s example), and the tokens of a concept, such as  CUP , differ 
across occasions. In addition, historical properties, in virtue of which, 
according to neo-empiricists, thoughts are the thoughts they are, are not 
presently instantiated: the origin of an entity — where it comes from — is 
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not one of its presently instantiated properties. Of course, two entities 
often differ because they have different origins. For instance, an authentic 
Vermeer painting and a modern copy (by, say, van Meegeren) would be 
made with different pigments. But that ’ s not the point; rather, the point 
is that the origin of an entity is a temporal relation between a current 
entity and a past event, not one of its currently instantiated properties. For 
this reason, an occurrent thought does not wear its origin on its sleeve, so 
to speak, although some of its present properties may be evidence about 
where it comes from. But then, if thoughts are individuated by their origin 
and if the origin of a thought is not presently instantiated, how do we 
know what thought we are currently entertaining or what we are currently 
thinking about? For instance, how do I know that I want to hunt a  fat  
gnu? Do I need to infer what thought I am now thinking from some of its 
presently instantiated properties? 

 This problem can be formulated at the personal or at the impersonal 
level. At the personal level, the question is: how do  I  know what I am now 
thinking about if the origin of my thought determines its identity and if 
its origin is not a presently instantiated property? At the impersonal level, 
the question becomes: when a thought is entertained, how do cognitive 
processes manage to process it appropriately, that is, as the thought it is 
rather than as if it were some other thought? How is it that the proper 
inferences are drawn from the occurrence of a particular thought if its 
identity depends on its origin and if its origin is not a presently instanti-
ated property? These two formulations are plausibly interconnected. 

 So, the problem is the following: if no symbol for fatness is cotokened 
when I am simulating hunting a fat gnu, how do I infer from the thought 
that I will be hunting a fat gnu that any gnu that will be killed will be 
heavy and difficult to carry? And if the simulation of a human being 
varies across contexts, how can I infer that Socrates is mortal from simu-
lating the thought that Socrates is a human, and that human beings are 
mortal (however these thoughts are simulated)? If neo-empiricists do not 
have a satisfying answer to these questions, then neo-empiricism fails to 
explain the phenomenon of thinking: it fails to explain what it is to move 
from thought to thought, even if it has a satisfactory account of the 
individuation of thoughts (section 4.1). Naturally, neo-empiricists are not 
allowed to smuggle in amodal symbols to answer these questions. Amodal 
theorists who follow  Fodor and Pylyshyn (1988)  do not face a similar 
challenge: since the symbol for fatness is necessarily cotokened when I 
am thinking about fatness and since this symbol is portable, inferences 
involving thoughts about fatness (or about human beings) are simply due 
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to the sensitivity of cognitive processes to this symbol. (The usual familiar 
story.) 

 Neo-empiricists could respond, as Prinz does, that the simulation of 
hunting a fat gnu and that of hunting a gnu differ and that cognitive 
processes are sensitive to such differences. They could also hold that cogni-
tive processes treat the varying tokens of a given concept (e.g., the varying 
simulations of a cup) identically. However, first, the nature of the differ-
ence between the simulation of hunting a fat gnu and the simulation of 
hunting a gnu has not been properly specified, since Prinz seems to confuse 
the content and the vehicle of simulations. Second, before being entitled 
to this response, neo-empiricists need to explain how cognitive processes 
perform this feat. To meet this challenge, neo-empiricists could appeal to 
learning: Exactly as connectionist networks can treat different patterns of 
activation similarly when they have been trained to do so, and exactly as 
they do not need vehicles to be composed of distinct constituents to draw 
appropriate inferences, cognitive processes could have learned to distin-
guish simulations that are not distinguished by their constituents and to 
treat varying occurrences of a concept identically. 

 However, appealing to learning is unsatisfying. First, because, in con-
trast to connectionism, where learning can be formally studied as well as 
simulated, neo-empiricists theories have not characterized in any detail the 
properties of the processes defined over simulations, it is not clear what 
these processes can and cannot do, including what they can and cannot 
learn. Bracketing this first, minor issue, it would also seem that people are 
able to draw proper inferences from their occurrent thoughts or that they 
are able to infer from premises because of the nature of their cognitive 
architecture (the way their mind is organized), not because of a contingent 
history of learning, a point made against neural networks by  Fodor and 
Pylyshyn (1988) . If we are able to infer a claim from several premises only 
because processes have learned to treat different tokens of a concept simi-
larly, then in principle we could think that Socrates is a human being and 
that human beings are mortal without being able to infer that Socrates is 
mortal if we had not learned to treat the two occurrences of  HUMAN  identi-
cally. But our mind just doesn ’ t seem to work that way: By virtue of the 
way our mind is built, when we are thinking that Socrates is a human 
being and that human beings are mortal, we are in a position to infer than 
Socrates is mortal, although various performance factors (such as distrac-
tion, limited working memory, etc.) may actually prevent us from drawing 
this inference. What ’ s more, assuming the productivity of thought with 
 Fodor and Pylyshyn (1988) , there must be thoughts that we have not 
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learned to distinguish or varying tokens of the same concept that we have 
not learned to treat identically. Finally, appealing to learning is inconsis-
tent with the systematicity of our inferential capacities ( Fodor and Pyly-
shyn 1988 ). If inferential capacities are systematic, then anybody who can 
infer  p  from  p   &   q  can also infer  p  from  p   &  ( q   &   r ). But if recognizing a 
thought for what it is requires learning, then there is no guarantee that 
whoever can make the first inference can also make the second inference, 
since she may not have learned to recognize the latter thought. So, if 
thought is really systematic, then neo-empiricism is unacceptable. 

 4.3   Wrapping Up 
 Neo-empiricism suffers from some of the problems identified by Fodor and 
Pylyshyn (1988) in their discussion of connectionism. If the neo-empiricist 
view about occurrent thoughts is right, then occurrent thoughts are indi-
viduated by their origins, but, if they are, then it is unclear how we are 
able to draw the inferences that our thoughts justify. If neo-empiricists 
were to allude to learning to solve this problem, then they would probably 
have to acknowledge that the capacity to draw a conclusion from occurrent 
thoughts is a matter of a contingent history of learning rather than a 
characteristic of our cognitive architecture. Some thoughts would have to 
be such that we are unable to draw the appropriate conclusions from them 
if thoughts are productive, while our inferential capacities would turn out 
to be nonsystematic. 

 Conclusion 

 Neo-empiricists ’  views about thought are unacceptable. They cannot 
explain what it is to have thoughts in long-term memory without positing 
amodal symbols, and their theory of occurrent thoughts (occurrent simula-
tions) renders thinking — our ability to move from thought to thought —
 either mysterious or a matter of a contingent history of learning.      

 Notes 

 1.   For additional discussion, see  Rice 2011 . 

 2.   Of course, unlike indexicals, the reference of a perceptual symbol does not change 

across contexts. Rather, its sense or cognitive content is context-sensitive. 

 3.   In addition, constituents are often taken to be portable representations that 

necessarily co-occur with the thoughts they constitute. 
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 4.   This strategy does not seem to be able to deal with the thought that it is not the 

case that it is not the case that  p . If negation is a particular way of matching a 

represented proposition to perceptual experiences, then it is unclear what the nega-

tion of a negation is. If neo-empiricists respond that the negation of a negation is 

merely the assertion of a proposition, then they can ’ t distinguish the thought that 

it is not the case that it is not the case that  p  from the thought that  p .      
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 IV 





 1   Introduction 

 In their massive 1988 article in  Cognition , Jerry Fodor and Zenon Pylyshyn 
introduced the world to something they called  “ systematicity ”  and used it 
over the course of sixty-eight pages to bludgeon the then nascent reintro-
duction of artificial neural network research into the cognitive sciences. 
This was not their first attempt to squash a new research program in the 
cognitive sciences. They published, in the same journal, a similarly lengthy 
attempt at taking down Gibsonian ecological psychology ( Fodor and Pyly-
shyn 1981 ). Luckily, both these research programs survived the attempted 
infanticide and are cheerful adults with grant money, conferences, and 
journals of their own. 

 In this not at all massive essay, I will look back at this historical episode 
and its aftermath. Even though the 1988 article did not succeed in ending 
the artificial neural network research program, it has been enormously 
influential, having been cited more than 2,600 times (by August 2012, 
according to Google Scholar). This outsized influence can only be a testa-
ment to the esteem in which cognitive scientists hold Fodor and Pylyshyn. 
It certainly cannot be attributed to the scientific argument that Fodor and 
Pylyshyn make in the article. This is the case because they invented the 
concept of systematicity whole cloth. In 1988, there was no laboratory 
evidence demonstrating the systematicity of human thought. After defend-
ing this contentious claim, I will argue for something much less contro-
versial. I will discuss a recent line of research in cognitive science that is 
inconsistent with systematicity. This line of research uses nonlinear 
dynamical systems models to demonstrate that certain cognitive abilities 
are interaction dominant. Interaction-dominant systems are temporary, 
task-specific collections of physiological components, in which the intrin-
sic behavioral tendencies of the components are overwhelmed by the effect 
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of the interactions among the components. I will argue that interaction-
dominant systems cannot exhibit systematicity. 

 2   The Original Systematicity Argument 

 Fodor and Pylyshyn ’ s original argument against the possibility of connec-
tionist networks as a model of the cognitive architecture goes roughly as 
follows. 

 1.   Human thought is systematic. 
 2.   Systematicity requires representations with compositional structure. 
 3.   Connectionist networks do not have representations with composi-
tional structure. 
 4.    Therefore , connectionist networks are not good models of human 
thought. 

 This argument is one of the most important and influential in the recent 
history of cognitive science. It drew stark battle lines soon after Rumelhart, 
McClelland, and the PDP Research Group (1986) drew attention to con-
nectionist networks. It is also an argument that has been convincing to 
many people. 

 The key empirical premise in the argument is premise 1, the claim that 
human thought is systematic. Fodor and Pylyshyn describe what they 
mean by the claim many times in the course of their article, by saying that 
human cognitive abilities come in clusters such that if a human has one 
ability in a cluster, he or she also has the others. Fodor and Pylyshyn put 
it as follows: 

 What we mean when we say that linguistic capacities are  systematic  is that the ability 

to produce/understand some sentences is  intrinsically  connected to the ability to 

produce/understand certain others.  …  

 You don ’ t, for example, find native speakers of English who know how to say in 

English that John loves the girl but don ’ t know how to say in English that the girl 

loves John. ( Fodor and Pylyshyn, 1988 , 37) 

 Later, Fodor and McLaughlin (1990) claim that systematicity is a matter of 
psychological law: 

 As a matter of psychological law, an organism is able to be in one of the states 

belonging to the family only if it is able to be in many of the others.  …  You don ’ t 

find organisms that can think the thought that the girl loves John but can ’ t think 

the thought that John loves the girl. (Fodor and McLaughlin 1990, 184) 
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 Fodor and Pylyshyn take the second premise of the argument to follow 
from the first. Systematicity and compositionality are  “ best viewed as two 
aspects of a single phenomenon ”  (1988, 41). In particular, systematicity is 
assumed to require compositionality, where compositionality is the claim 
that  “ a lexical item must make approximately the same contribution to 
each expression in which it occurs ”  (42). So for thought to be systematic, 
its representations must be made up of syntactic parts that have semantics, 
and those parts must be able to be rearranged to form other representations 
with the semantics of the parts maintained. That is, the representation 
 “ Joanie loves Chachi ”  is composed of the parts  “ Joanie, ”   “ loves, ”  and 
 “ Chachi, ”  and those parts can be rearranged to form the representation 
 “ Chachi loves Joanie ”  with  “ Chachi, ”   “ loves, ”  and  “ Joanie ”  still having 
the same referents.  “ Systematicity depends on compositionality, so to the 
extent that natural language is systematic it must be compositional 
too ”  (43). 

 Premise 3 is a claim about connectionist networks, and a contentious 
one. Many defenders of connectionism, such as Smolensky (1991), van 
Gelder (1990), and Chalmers (1990), have argued that connectionist net-
works can have representations with compositional structure. In any event, 
if premise 3 is granted, the conclusion follows directly. Although I think 
it ’ s obvious that Smolensky, van Gelder, and Chalmers are right that con-
nectionist networks can exhibit systematicity, I will not pursue that here. 
Instead, I will attempt to call premise 1 into question. I will follow  Dennett 
(1991)  and  Clark (1997)  in arguing that, although some portions of human 
language (especially written language) are systematic, human thought in 
general is not. I will do this by presenting empirical evidence that many 
human abilities are not accomplished by compositional representational 
structures. Since systematicity requires compositionality, this will be empir-
ical evidence that many human cognitive abilities are not systematic. I will 
present this evidence in sections 4 and 5. The next section, section 3, is a 
rant. 

 3    “ The Great Systematicity Hoax ”  

 Not long after the publication of  “ Connectionism and the Cognitive Archi-
tecture, ”  Tim van Gelder regularly gave a talk called  “ The Great Systematic-
ity Hoax. ”  Unfortunately, that talk was never turned into a published 
paper. The main point of the talk was that the term  “ systematictity ”  is too 
poorly defined to be of any use in scientific and philosophical reasoning. 
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Moreover, van Gelder argued, there is good reason to think that human 
cognition is not, in fact, systematic. The arguments in Ken Aizawa ’ s (2003) 
book  The Systematicity Arguments , I believe, go a long way toward solidify-
ing the concept of systematicity. This suggests that van Gelder ’ s first criti-
cism, that systematicity is ill defined, no longer holds up. His second one 
fares much better, and it holds up because the title of van Gelder ’ s talk is 
accurate — the idea that human thought is systematic was simply made up 
by Fodor and Pylyshyn, without any specific evidence in its favor. 

 Presumably, Fodor and Pylyshyn wrote  “ Connectionism and the Cogni-
tive Architecture ”  sometime in 1986 or 1987, since it was published in the 
first issue of  Cognition  ’ s 1988 volume. The question one might ask at this 
point is whether there was any actual evidence, gathered by laboratory 
scientists, demonstrating that human thought was in fact systematic. To 
find out, I conducted a keyword search for the term  “ systematicity ”  in Web 
of Science (see http://thomsonreuters.com/web-of-science/). As of summer 
2011, there were 323 articles published with the keyword  “ systematicity, ”  
but only eight of those were before 1988. The eight articles, as they were 
output by the Web of Science search engine, appear in   table 14.1 .   

 Of these articles, three are in philosophy (Rockmore 1987; Sasso 1981; 
Bazhenov 1979), but none of these is related to philosophy of mind or 
cognitive science. Rockmore 1987 and Sasso 1981 are in the history of 
philosophy; Bazhenov 1979 is about scientific theory change. Three of the 
articles (Blevy-Roman 1983; Tarone 1982; Keller-Cohen 1979) appear in 
the journal  Language Learning , and are about second language learning. 
Two of the articles look like promising sources of evidence for Fodor and 
Pylyshyn ’ s claims about systematicity. Rubenstein, Lewis, and Rubenstein 
1971 is actually about human language. But its findings do not support 
Fodor and Pylyshyn ’ s views of systematicity. Rubenstein et al. report a 
behaviorist study of reaction times to homophones, and their paper 
includes no claims related to the systematicity of human thought. Gentner 
and Toupin 1987 looks promising, at least in that it is the work of promi-
nent cognitive scientists and is about human cognition. However, the 
article is actually about the relationships among sources and targets in 
analogical reasoning, and not at all about the relationship among lexical 
items. There was no prior published work that used the term  “ systematic-
ity ”  in the way that  Fodor and Pylyshyn (1988)  did. Of course, it could be 
the case that only the term  “ systematicity ”  was made up by Fodor and 
Pylyshyn, and they were referring to a well-studied psychological phenom-
enon. We can check this, in the standard scholarly fashion, by looking at 
the references in Fodor and Pylyshyn ’ s article. They cite sixty-five articles, 
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  Table 14.1  

  1. Author(s):  Rockmore, T. 

  Title:  Hegel and the Science of Logic — The Formation of Principles of 
Systematicity and Historicism — Russian — Motroshilova, N. V. 

  Source:   Archives de Philosophie  50 (3): 495 – 496, Jul. – Sep. 1987 

  ISSN:  0003-9632 

  2. Author(s):  Gentner, D.; Toupin, C. 

  Title:  Systematicity and Surface Similarity in the Development of Analogy 

  Source:   Cognitive Science  10 (3): 277 – 300, Jul. – Sep. 1986 

  ISSN:  0364-0213 

  3. Author(s):  Bleyvroman, R. 

  Title:  The Comparative Fallacy in Interlanguage Studies — The Case of 
Systematicity 

  Source:   Language Learning  33 (1): 1 – 17, 1983 

  ISSN:  0023-8333 

  4. Author(s):  Tarone, E. E. 

  Title:  Systematicity and Attention in Interlanguage 

  Source:   Language Learning  32 (1): 69 – 84, 1982 

  ISSN:  0023-8333 

  5. Author(s):  Sasso, R. 

  Title:  Scope of  “ De Deo ”  of Spinoza ( “ Ethics ” , I) + An Example of the Workings 
of Systematicity in Philosophical Discourse 

  Source:   Archives de Philosophie  44 (4): 579 – 610, 1981 

  ISSN:  0003-9632 

  6. Author(s):  Kellercohen, D. 

  Title:  Systematicity and Variation in the Non-Native Child ’ s Acquisition of 
Conversational Skills 

  Source:   Language Learning  29 (1): 27 – 44, 1979 

  ISSN:  0023-8333 

  7. Author(s):  Bazhenov, L. B. 

  Title:  Systematicity as a Methodological Regulative Principle of Scientific Theory 

  Source:   Voprosy Filosofii  6: 81 – 89, 1979 

  ISSN:  0042 – 8744 

  8. Author(s):  Rubenste, H.; Lewis, S. S. ; Rubenste, M. A. 

  Title:  Homographic Entries in Internal Lexicon — Effects of Systematicity and 
Relative Frequency of Meanings 

  Source:   Journal of Verbal Learning and Verbal Behavior , 10 (1): 57 – 62, 1971 

  ISSN:  0022-5371 
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but only one chapter of one work is listed as evidence that human thought 
is systematic. In note 24, Fodor and Pylyshyn cite chapter 4 of Pinker 1984 
as showing that children always display systematicity with respect to the 
syntactic structures that appear in noun phrases (Fodor and Pylyshyn 1988, 
39). It turns out, however, that this particular chapter actually includes 
evidence that children learning language do not always display systematic-
ity. So  Fodor and Pylyshyn (1988)  gave absolutely no evidence that human 
thought is systematic. 

 This utter lack of empirical evidence puts Fodor and Pylyshyn ’ s argu-
ment in the class of what I ’ ve called  “ Hegelian arguments ”  in the past 
( Chemero 2009 ). That name is derived from the legend that Hegel argued, 
in his  Habilitation , that the number of planets was necessarily seven. Hegel 
did not actually argue for this claim. Instead, he used a number series from 
Plato ’ s  Timaeus  to argue that, as a matter of logic, there could be no eighth 
planet between Mars and Jupiter — this despite contemporary observational 
evidence that there was in fact a planet between Mars and Jupiter. Despite 
observational evidence to the contrary, Hegel argued that astronomers 
should just stop looking for a planet between Mars and Jupiter, because 
there could not be one. Fodor and Pylyshyn argue that everyone should 
stop doing connectionist network research because there could never be a 
connectionist model of real cognition. Like Hegel, Fodor and Pylyshyn base 
their argument on what has to be the case, and not on empirical evidence. 
Hegelian arguments are arguments made without systematically gathered 
empirical evidence that no theory of a particular kind could ever account 
for some phenomenon of interest. They are aimed at shutting down 
research programs. This sort of argument is surprisingly common in the 
cognitive sciences, in a way that it is not in other sciences. (See, e.g., 
Chinese rooms, qualia, symbol grounding, bat phenomenology, etc.) It is, 
to put it mildly, surprising that so many cognitive scientists were embroiled 
in a debate that had so little basis in scientific reality. 

 As much as one might deplore the argumentative tactics, there is one 
way in which the time and effort spent discussing systematicity will have 
been worthwhile. If, despite Fodor and Pylyshyn ’ s lack of evidence for it, 
human cognition is in fact systematic in the way that Fodor and Pylyshyn 
describe, we should be grateful to them for pointing it out for us. Especially, 
if one begins from a classical cognitivist point of view, it seems highly 
plausible that (some? most? all?) human cognition is systematic. Indeed, 
Ken Aizawa (in personal communication) has suggested that the systema-
ticity of human cognition is so obvious as to not require experimental 
evidence demonstrating it. Yet, many things that seemed obvious to casual 
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observation turn out to be untrue after scientific investigation: the Earth 
moves, after all. 

 4   Interaction-Dominant Systems 

 A recent line of research in the cognitive sciences explains many cognitive 
phenomena in a way that is incompatible with their exhibiting composi-
tionality and, therefore, systematicity. There is now significant evidence 
suggesting that many cognitive abilities arise in  interaction-dominant 
systems . This new research program promises to shed light on questions 
about cognition and the mind that previously seemed  “ merely philosophi-
cal. ”  In the remainder of this section I will briefly (and inadequately) set 
out the basic concepts and methodologies of this new research program. 
In the next section, I show how those concepts and methodologies have 
been put into use in the cognitive sciences, focusing on the ways in which 
interaction dominance is inconsistent with systematicity. 

 First, some background: an  interaction-dominant system  is a highly inter-
connected system, each of whose components alters the dynamics of 
many of the others to such an extent that the effects of the interactions 
are more powerful than the intrinsic dynamics of the components ( van 
Orden, Holden, and Turvey 2003 ). In an interaction-dominant system, 
inherent variability (i.e., fluctuations or noise) of any individual compo-
nent A propagates through the system as a whole, altering the dynamics 
of components B, C, and D. Because of the dense connections among the 
components of the system, the alterations of the dynamics of B, C, and 
D will lead to alterations to the dynamics of component A. The initial 
random fluctuation of component A, in other words, will reverberate 
through the system for some time. So too would nonrandom changes in 
the dynamics of component A. This tendency for reverberations gives 
interaction-dominant systems what is referred to as  “ long memory ”  (Ding, 
Chen, and Kelso 2002). In contrast, a system without this dense dynami-
cal feedback, a  component-dominant system , would not show this long 
memory. For example, imagine a computer program that controls a robotic 
arm. Although noise that creeps in to the commands sent to from the 
computer to the arm might lead to a weld that misses its intended mark 
by a few millimeters, that missed weld will not alter the behavior of the 
program when it is time for the next weld. Component-dominant systems 
do not have long memory. Moreover, in interaction-dominant systems, 
one cannot treat the components of the system in isolation: because of 
the widespread feedback in interaction-dominant systems, one cannot 
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isolate components to determine exactly what their contribution is to 
particular behaviors. And because the effects of interactions are more 
powerful than the intrinsic dynamics of the components, the behavior 
of the components in any particular interaction-dominant system is not 
predictable from their behavior in isolation or from their behavior in 
some other interaction-dominant system. Interaction-dominant systems, 
in other words, are not  modular . Indeed, they are in a deep way  unified  
in that the responsibility for system behavior is distributed across all of 
the components. As will be discussed below, this unity of interaction-
dominant systems has been used to make strong claims about the nature 
of human cognition ( van Orden, Holden, and Turvey 2003 ,  2005 ;  Holden, 
van Orden, and Turvey 2009 ). 

 In order to use the unity of interaction-dominant systems to make 
strong claims about cognition, it has to be argued that cognitive systems 
are, at least sometimes, interaction dominant. Interaction-dominant 
systems self-organize, and some will exhibit  self-organized criticality . Self-
organized criticality is the tendency of an interaction-dominant system to 
maintain itself near critical boundaries, so that small changes in the system 
or its environment can lead to large changes in overall system behavior. It 
is easy to see why self-organized criticality would be a useful feature for 
behavioral control: a system near a critical boundary has built-in behav-
ioral flexibility because it can easily cross the boundary to switch behaviors 
(e.g., going from out-of-phase to in-phase coordination patterns). (See 
 Holden et al. 2009  for discussion.) It has long been known that self-orga-
nized critical systems exhibit a special variety of fluctuation called  1/f 
scaling  or  pink noise  (Bak, Tang, and Wieseneld 1987). 1/f scaling or pink 
noise is a kind of not-quite-random, correlated noise, halfway between 
genuine randomness (white noise) and a drunkard ’ s walk, in which each 
fluctuation is constrained by the prior one (brown noise). 1/f scaling is 
often described as a fractal structure in a time series, in which the 
variability at a short timescale is correlated with variability at a longer 
timescale. In fact, interaction-dominant dynamics predicts that this 1/f 
scaling would be present. As discussed above, the fluctuations in an inter-
action-dominant system percolate through the system over time, leading 
to the kind of correlated structure to variability that is 1/f scaling. Here, 
then, is the way to infer that cognitive and neural systems are interaction 
dominant: exhibiting 1/f noise is evidence that a system is interaction 
dominant. 

 This suggests that the mounting evidence that 1/f scaling is ubiquitous 
in human physiological systems, behavior, and neural activity is also evi-
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dence that human physiological, cognitive, and neural systems are interac-
tion dominant. To be clear, there are ways other than interaction-dominant 
dynamics to generate 1/f scaling. Simulations show that carefully gerry-
mandered component-dominant systems can exhibit 1/f scaling (Wagen-
makers, Farrell, and Radcliff 2005). But such gerrymandered systems are 
not developed from any physiological, cognitive, or neurological principle, 
and so are not taken to be plausible mechanisms for the widespread 1/f 
scaling in human physiology, brains, and behavior ( van Orden, Holden, 
and Turvey 2005 ). So the inference from 1/f scaling to interaction domi-
nance is not foolproof, but there currently is no plausible explanation of 
the prevalence of 1/f scaling other than interaction dominance. Better than 
an inference to the best explanation, that 1/f scaling indicates interaction-
dominant dynamics is an inference to the only explanation. 

 Applying this to the main point of this essay, interaction-dominant 
systems cannot exhibit compositionality. Only when dynamics are com-
ponent dominant is it possible to determine the contributions of the 
individual working parts to the overall operation of the system. When 
dynamics are interaction dominant, it is impossible to localize the aspects 
of particular operations in particular parts of the system. A system exhibits 
compositionality when it has parts that make the same contribution to 
every representation in which they appear. Interaction-dominant systems 
have not been defined in terms of representation specifically, but in terms 
of the contribution of parts to any system completing a task. The key is 
that, with interaction-dominant dynamics, it is impossible to say what the 
contributions of the individual parts are. Moreover, individual parts will 
make different contributions to different interaction-dominant systems —
 whatever intrinsic behavioral dynamics the components bring to the 
system are overrun by the effects of their interactions with other 
components. So, even if we could figure out what part of the interaction-
dominant system that realizes a particular instance of the thought that 
 “ Joanie loves Chachi ”  plays the role of  “ Chachi, ”  we have no reason to 
believe any of the following about that part: that it would play the 
same role in the realization of any subsequent thought; that it would nec-
essarily play any role in subsequent realizations of thoughts about Chachi; 
even that it would play the role of  “ Chachi ”  should it be involved in sub-
sequent realizations of the thought that  “ Joanie loves Chachi. ”  The con-
tribution of any participant in an interaction-dominant system is 
thoroughly context dependent. The part that plays the role of  “ Chachi ”  
in one context might become  “ Potsie ”  or  “ spoon ”  or  “ fly-or-BB ”  in another. 
Interaction-dominant systems cannot have compositional structure. And, 
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since compositionality is required for systematicity, interaction-dominant 
systems cannot exhibit systematicity. 

 This matters for discussions of systematicity in cognition only to the 
extent that cognition seems to be accomplished via interaction-dominant 
dynamics. In the next section I will argue that at least some of it is. 
Maybe lots. 

 5   Interaction Dominance in Cognition 

 The evidence that cognitive tasks are accomplished by interaction-domi-
nant systems has been gathered primarily, but not entirely, by those who 
argue that cognitive systems are necessarily embodied and sometimes 
extend beyond the biological body.  1   1/f scaling has been observed in the 
brain, and in a wide variety of cognitive and behavioral tasks, from 
tapping, to key pressing, to word naming, and many others (see  van 
Orden, Kloos, and Wallot 2009  for a review). This indicates that task-
specific, temporary coalitions of components encompassing portions of 
the participants ’  brain and body were responsible for the performance of 
the experimental task. That the portions of the cognitive system that 
engages in tasks such as these is not fully encapsulated in the brain is 
perhaps not that surprising, since each has a strong motor component. 
But we also see 1/f scaling in  “ purely cognitive ”  phenomena. In one 
example,  Stephen, Dixon, and Isenhower (2009 ;  Stephen and Dixon 2009 ) 
have shown that problem-solving inference is accomplished by an inter-
action-dominant system. They found that learning a new strategy for 
solving a problem coincides with the appearance of 1/f scaling, as mea-
sured in eye movements. This indicates that even leaps of insight do not 
occur in the brain alone — the eye movements are part of the interaction-
dominant system that realizes the cognitive act. Findings such as this 
affect not only the extent of the biological resources required for 
cognitive faculties, but also the separation of cognitive faculties from one 
another.  

 There is reason to think that this expansion of the cognitive system 
does not stop at the boundaries of the biological body. For example,  Dotov, 
Nie, and Chemero (2010 , in press;  Nie, Dotov, and Chemero 2011 ) describe 
experiments designed to induce and then temporarily disrupt an extended 
cognitive system. Participants in these experiments play a simple video 
game, controlling an object on a monitor using a mouse. At some point 
during the one-minute trial, the connection between the mouse and the 
object it controls is disrupted temporarily before returning to normal. 
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Dotov et al. found 1/f scaling at the hand-mouse interface while the mouse 
was operating normally, but not during the disruption. As discussed above, 
this indicates that, during normal operation, the computer mouse is part 
of the smoothly functioning interaction-dominant system engaged in the 
task; during the mouse perturbation, however, the 1/f scaling at the hand-
mouse interface disappears temporarily, indicating that the mouse is no 
longer part of the extended interaction-dominant system. These experi-
ments were designed to detect, and did in fact detect, the presence of an 
extended cognitive system, an interaction-dominant system that included 
both biological and nonbiological parts. The fact that such a mundane 
experimental setup (using a computer mouse to control an object on a 
monitor) generated an extended cognitive system suggests that extended 
cognitive systems are quite common. 

 These, of course, are not the only examples of interaction dominance 
in cognition. Dixon, Holden, Mirman, and Stephen (2012) constructed a 
fractal theory of  development , explicitly connecting their theory to complex 
systems work in developmental biology. In addition, interaction-dominant 
dynamics have been found in  word naming  ( van Orden et al. 2003 ),  word 
recall  ( Rhodes and Turvey 2007 ),  visual search  (Stephen and Mirman 2010), 
 memory  ( Maylor et al. 2001 ; Brown et al. 2007), and  social cognition  (Rich-
ardson et al. 2007; Harrison and Richardson 2009). (See  van Orden, Kloos, 
and Wallot 2009  and  Kello et al. 2010  for reviews.) 

 1/f scaling is ubiquitous in the brain as well. Heterogeneous coupling 
and multiscale dynamics are widespread features of the brain. Brain con-
nectivity is organized on a hierarchy of scales ranging from local circuits 
of neurons to functional topological networks. At each scale the relevant 
neural dynamics are determined not just by processes at that scale, but by 
processes at other smaller and larger scales as well. Such multilevel clus-
tered architectures promote varied and stable dynamic patterns via critical-
ity and other dynamical and topological features. There is therefore also 
growing evidence that neural circuits are interaction dominant. Several 
recent studies have found evidence of 1/f scaling in human neural activity 
(e.g.,  Freeman, Rogers, Holmes, and Silbergeld 2000 ;  Bressler and Kelso 
2001 ;  Bullmore et al. 2001 ; Linkenaker-Hansen et al. 2001;  Buzsaki 2006 ; 
 Freeman 2006 ,  2009 ;  Freeman and Zhai 2009 ; see  Bogen 2010  for a philo-
sophical discussion).  He, Zempel, Snyder, and Raichle (2010)  have extended 
these latter findings by demonstrating that human arrhythmic brain activ-
ity is  multifractal , in that it contains mutually nested and coupled fre-
quency scales — lower frequencies of brain activity modulate the amplitude 
of higher frequencies. This is a dynamic property not only characteristic 
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of interaction-dominant systems, but exhibited only by interaction-dom-
inant systems (Ihlen and Vereijken 2010). 

 The recognition of interaction-dominant dynamics in the brain, in 
behavior, and in brain-body-environment systems has exploded in the 
twenty-first century. There is no reason not to expect this to continue. 
Finding that many or most of our cognitive abilities are realized by inter-
action-dominant systems would be bad news for Fodor and Pylyshyn ’ s 
claim that exhibiting systematicity is a requirement on any theory of the 
cognitive architecture. 

 6   Implementation: A Last Refuge for Systematicity? 

 Fans of systematicity might seem to have a ready objection at this point. 
Fodor and Pylyshyn argue that systematicity is a requirement on any 
theory of the cognitive architecture. Connectionist networks do not exhibit 
systematicity, so the cognitive architecture cannot be an architecture of 
connectionist networks. Still, they continue, it is possible that connection-
ist networks are a reasonable theory of how the cognitive architecture is 
implemented in the brain. Something similar might be going on with 
interaction dominance. It is possible, the objection would go, that interac-
tion dominance might characterize the implementation of the cognitive 
architecture, without thereby characterizing the cognitive architecture 
itself, which might be component dominant and hence potentially sup-
portive of compositionality.  2   In order to claim that interaction dominance 
is a feature of the low-level implementation of a high-level component-
dominant system, one would have to encapsulate the interactions  within  
components. That interaction dominance was so encapsulated was the 
early view of David Gilden, who first found 1/f scaling in cognition (Gilden, 
Thornton, and Mallon 1995; Gilden 2001). Gilden (2001) used subtractive 
methods to isolate 1/f scaling to memory processes, and claimed that 1/f 
scaling is part of the  formation  of representations. This is exactly what 
would be required to claim that interaction-dominant systems are part of 
the implementation of the component-dominant systems that make up 
the cognitive architecture, allowing the cognitive architecture to poten-
tially exhibit compositionality and systematicity. 

 This attempted save of systematicity is implausible. It must be noted 
that, as with the simulations described in section 4, the hypothesis that 
certain memory processes involved in forming representations alone are 
interaction dominant has essentially no basis in known physiology or 
behavior. This does not make it impossible that representation formation 
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alone is interaction dominant, but it does suggest the need for some sort 
of strong evidence. The evidence that Gilden (2001;  van Orden et al. 2003 ) 
provides involves the subtraction of background noise to isolate the 1/f 
scaling of the supposedly encapsulated memory processes. First, although 
I will not discuss it here, there is good reason to be skeptical of any use of 
subtractive methods to isolate components of cognitive systems (see, e.g., 
Uttal 2001; van Orden, Pennington and Stone 2001; among many others). 
In contrast with this meager evidence that interaction dominance is iso-
lated to one or a few encapsulated systems, there is voluminous evidence 
that interaction dominance is ubiquitous in physiology, the brain, and 
behavior at all scales. (See section 5.) There is every reason to doubt that 
interaction-dominant dynamics is a feature only of the implementation of 
the cognitive architecture, but not of cognition itself. To claim the con-
trary, it would need to be shown that the interaction-dominant dynamics 
seen at each scale is in fact explicable in terms of 1/f scaling encapsulated 
within one or more of the components of the component-dominant 
system at that scale. Of course, it is logically possible that such a case could 
be made, but no one should be betting that it will happen. 

 7   Systematicity Revisited 

 At this point, it isn ’ t clear how much of cognition is accomplished by 
interaction-dominant systems, but it is clear that it is more than a little. 
To whatever extent cognition is interaction dominant, it won ’ t exhibit 
systematicity. This makes it seem as if the time spent arguing over whether 
or not connectionist networks can exhibit systematicity was wasted. That 
said, it is worthwhile to realize, as it seems to me we have by now, that 
theories of what is going on inside the brain during cognition do not have 
to imply inherent systematicity. It won ’ t be breaking any new ground for 
me to say that what is required is the ability to explain the limited ways 
in which human intelligent behavior exhibits systematicity in those 
limited cases in which it does, and that this won ’ t necessarily require that 
the brain-internal portions of the cognitive system exhibit systematicity 
(see, e.g.,  Rumelhart et al. 1986 ;  Dennett 1991 ;  Clark 1997 ;  Wilson 2004 ). 
This is one of the key claims of embodied cognitive science. Those cases 
in which human intelligent behavior exhibits systematicity seem to be 
primarily those in which humans work with an external formal system, 
such as logic, arithmetic, and some portions of (especially written) natural 
language. We humans can do these things, but they do not make up most 
of what we do. In fact, working with external formal systems is something 
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that requires years of instruction — reading, writing, and arithmetic. And 
even then, we ’ re not very good at them. Even PhDs in philosophy are 
much more competent at tying their shoes than they are at proving theo-
rems. It is, perhaps, a historical quirk that cognitive scientists missed this 
point for so long. The legacy of Fodor and Pylyshyn ’ s 1988 paper is to have 
stalled by a few years the widespread acceptance of the fact that human 
cognitive abilities are not housed in brains alone. 
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 1   Introduction 

 The systematicity debate initially turned on the issue of the best explana-
tion for the systematicity of cognition — then a property taken for granted, 
so that it barely required anything more than cursory exemplification. 
Connectionists challenged the idea that a  “ language of thought ”  of atomic 
constituents, plus formal combinatorial rules, was the only (best) approach 
to account for that claimed property of cognition. In these post-cognitivist 
times, we rather think that the proper reaction to the Fodor and Pylyshyn ’ s 
(1988) challenge is to deny that cognition is systematic in general. Syste-
maticity rather seems a property intrinsically dependent upon language 
rather than cognition in general, since the typical examples of systematic-
ity are in fact syntax-bound; in addition, when we examine nonverbal 
cognition, we don ’ t find the kind of systematicity required by the argu-
ment. Current post-cognitivist approaches to cognition, which emphasize 
embodiment and dynamic interaction, in its turn, also challenge the 
cognitivist assumption that the explanandum that a theory of cognition 
has to account for includes systematicity as a basic property of cognitive 
processes. 

 While the general strategy to claim that cognition is systematic was 
based on structural parallels between language and thinking, inferring for 
thinking what was supposed to be obvious for language, it has also been 
proposed that the systematicity of cognition can be found in perception —
 on the understanding that perception is a cognitive process, and one 
that is clearly independent of language. In  The Language of Thought , Fodor 
(1975) exemplified his general approach to cognition by appealing to three 
areas of research: language processing, decision making, and perception. 
However, at that time the systematicity as explanandum and the combi-
natorial structure of representational elements as explanans were not 
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clearly distinguished, and in fact, there was no explicit discussion of 
whether perception is systematic on the same model — the linguistic one —
 that was used to claim that cognition is systematic. But the basic idea is 
reasonably clear: perception is to count as systematic if it can be shown 
that perceptual capacities come in groups, if having one perceptual capac-
ity involves having some others — just as understanding one sentence is 
connected to understanding many others.  Marr ’ s (1982) theory , which 
tried to account for perception in terms of basic representations and formal 
rules to combine and transform them, displayed the same kind of explana-
tory strategy as that of a combinatorial syntax of representational units, 
and was taken by Fodor as support for his language of thought (LOT) 
approach. So, it could be said that one way to support the systematicity of 
perception is to show that it can be better explained by a version of this 
classical cognitive architecture. 

 In this chapter, after briefly reviewing our previous arguments against 
the systematicity of cognition in general, and for a change in the order of 
dependence between thought and language — so that the systematicity of 
thought, when it is found, is parasitic on the systematicity of language — we 
will discuss the attempt to argue for the systematicity of perception and 
the contention that it is better explained by a combinatorial syntax of 
primitive representational units. We will first discuss the example offered 
to claim that perception is systematic, quite apart from a commitment to 
Marr ’ s approach to perception: the phenomenon of amodal completion, 
as presented by Aizawa (this vol.). We will argue that it falls short of 
proving that perception is systematic, because what is claimed to be a 
group of interconnected perceptual abilities is better viewed as just one; 
furthermore, the best explanation of amodal completion is not in terms 
of a compositional structure plus inferential processes, because it is a 
global, emergent pattern that arises from context-dependent interactions. 
The way it is discussed by Aizawa, moreover, can ’ t sustain the claim that 
perception is systematic in the required sense, because it is just a version 
of the standard illustration of cognitive systematicity by propositional 
interdependencies — those that we claim are language dependent. 

 Next, we will discuss whether there is indeed a way to sustain the claim 
that perception is in fact systematic. Again, our response will be negative. 
Our strategy will consist in showing that, in general, it is wrong to try to 
explain perception in terms of basic representational, language-like units, 
plus formal rules of inference over those units. For the classicists, the very 
existence of an account of this kind was taken as indirect proof that the 
explanandum was indeed systematic. We agree that if indeed the best 



From Systematicity to Interactive Regularities 373

explanation available for a given cognitive process were in terms of a clas-
sical architecture, then it would be right to expect it to be systematic. 
However, we will try to show that classical accounts, such as Marr ’ s, are 
not the best explanations available. To this end, we will discuss one of the 
areas where clear apparent systematicity can be found, such as spatial 
perception (other similar phenomena include viewpoint invariance, or 
shape generalization). We will challenge a basic assumption of Marr ’ s 
approach in this regard: that percepts involve an integration within a 
common spatial representational framework, which has the properties of 
Euclidean space. And we will discuss the phenomenon of spatial distortion, 
to claim that the strategy to account for it in terms of basic representations 
plus formal inferences is flawed. This discussion will also allow us to show 
that, although systematic dependencies are not found in perception in 
general, some robust regularities are central to perception. To account for 
them, though, we will claim that the best explanation is a nonclassical 
one — one along the lines of the ecological approach to perception: the 
approach that looks for the higher-order informational invariants, found 
in the sensorimotor loop, that cognitive systems exploit to guide their 
behavior. The fruitfulness of this approach will be exemplified by briefly 
considering two phenomena: sensory substitution and direct learning. 

 We can sum up our argument by confronting the basic structure of 
Fodor and Pylyshyn ’ s argument for a LOT. The argument was: (1) Cogni-
tion is systematic; (2) the best (only) explanation of systematicity is com-
positional structure; therefore, (3) the best (only) explanation of cognition 
requires compositional structure. We reject premise 1 and modify premise 
2: to the extent that regularities are found in cognition, its best explanation 
requires taking into account the dynamics of the interaction and the 
context-dependencies that constrain the way the elements may interact. 
Therefore, the conclusion has to be modified too; the best explanation is 
one that captures, and accounts for, this kind of informational pattern 
captured in the interaction dynamics. It is true that we still lack a common 
unifying framework for all the post-cognitivist approaches that may accom-
modate this idea, but it has to be conceded at least that we now have a 
promising way to avoid the roadblocks that have turned the classical 
approach into a stagnant research program. 

 2   Cognition Is Not Systematic in General; It Is Language Dependent 

 In previous work ( Gomila 2011, 2012 ; Gomila,  Travieso, and Lobo 2012 ), 
we have developed a variation of the response strategy to Fodor and 
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Pylyshyn ’ s challenge initially offered by  Dennett (1991 ,  1993 ) and later by 
 Clark (1997) : cognition is not systematic in general; rather, cognition 
exhibits systematicity when it is intrinsically connected to language. Thus, 
the LOT approach gets the wrong dependencies. It views the systematicity 
of language as derived from the systematicity of thought, when it is the 
other way around: thinking is systematic when, and because, it is linguisti-
cally structured. 

 We have argued for this view by means of two main arguments. On the 
one hand, we have shown that systematicity is syntax bound, which sug-
gests that it is language dependent. Thus, for instance, the typical illustra-
tions of systematicity involve sentences like  “ John loves Mary ”  and  “ Mary 
loves John, ”  while it is not realized that possible combinations like  “ loves 
John Mary ”  should also be possible if systematicity were not syntax bound. 
Conversely,  “ John loves Mary ”  is not constitutively connected to  “ Mary is 
loved by John ” : the latter takes two more years to develop, despite the fact 
that the concepts involved are the same. This sort of example calls into 
question the basic notion of systematicity: if a mind can think X and can 
think Y, then it can think any combination of X and Y. They suggest that 
what can be thought is syntax bound, because syntax is required for the 
articulation of thoughts ( Hinzen 2012 ). On the other hand, we have argued 
that nonverbal cognitive creatures do not exhibit the kind of systematicity 
at stake, because while they are good in perception, they are not so good 
at imagination and inference ( Tomasello and Call 1997 ). The literature on 
human conceptual development, in addition, suggests that nonverbal crea-
tures are capable of conceptual abilities much earlier than thought by 
Piaget, but they do not combine these elements systematically in their 
behavioral interactions, even if some of them may prove productive, until 
much later ( Spelke 2003 ;  Carruthers 2005 ) — when they have acquired their 
lexical labels ( Lupyan 2008 ) and the ability to combine them, according 
to their syntactical categories, within sentential structures, as in the case 
of the critical role of the acquisition of the sentential complement to make 
false belief understanding possible ( de Villiers and de Villiers 2009 ). Simi-
larly, comparative psychology also supports this restructuring effect of 
language: studies of ape cognition indicate that nonhuman primates are 
good at perception, but not so good at other cognitive processes such as 
reasoning ( Premack 2004 ). Only the symbol-trained individuals show some 
degree of systematic understanding. Nonverbal minds, in general, exhibit 
highly specialized cognitive abilities, which resemble the kind of listlike 
way of learning a language that is the opposite of our systematic way of 
learning it. 
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 In contrast to  Johnson (2004)  and  Chemero (2009) , though, we acknowl-
edge that systematic connections play an important role in language, and 
language-dependent thinking, precisely because of the structuring role of 
the syntax: the knowledge of a language is not made up of a list of ele-
ments, or a set of independent components, but of intrinsically intercon-
nected ones. This organization is the key to the openness of such knowledge, 
which is manifested in our ability to understand or say previously unheard 
proferences, and for linguistically coded concepts, to think and understand 
new thoughts. In summary, some cognitive processes, those that are propo-
sitionally articulated, do exhibit systematicity, but only because they rely 
on the systematicity of language. 

 3   Systematicity in Perception: Is Amodal Completion Enough? 

 To resist our argument, then, one requires evidence of systematic processes 
having nothing to do with language. In addition, this evidence cannot be 
piecemeal and argued case by case, if we are to avoid the risk of inviting 
the response that the alleged examples lack generality. For these reasons, 
the question of whether perception exhibits the kind of systematicity in 
question becomes pressing, as a last-resort place to look for systematicity. 
Not surprisingly, Fodor (1975) claimed that evidence of systematicity came 
from three areas: language, decision making, and perception, on the 
grounds of the classical theories developed at that time in those different 
areas — again, seeing the explanandum as closely related to the explanans. 
Given the connection of conscious decision making to a linguistically 
structured process, and its limited role within animal cognition in general, 
as well as current evidence that nonverbal cognition does not exhibit the 
sort of systematicity of verbal cognition, perception becomes the critical 
place to look for systematicity. 

 However, to demonstrate that perception exhibits systematicity is not 
an easy task, because the very plausibility of the description of a set of 
abilities as systematically related depends, to an important degree, on the 
sort of explanation that can in fact unify those abilities. To put it differ-
ently, the very individuation of the abilities claimed to be systematically 
connected can ’ t be question begging or ad hoc but has to be principled —
 that is, grounded in the best account available. Thus, to illustrate this 
point, it could be claimed that there is a systematic relation between the 
ability to use a red pen and the ability to use a black pen — that if you can 
use one, you can also use the other. But, regardless of whether the claim 
is true, such a proposal invites the reply that these are not basic abilities, 
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and therefore, they do not constitute a proper explanandum that calls for 
a principled account in the first place. Using a red pen and using a black 
pen are better seen not as two systematically related abilities but rather as 
exemplifications of a single one. 

 This kind of consideration undermines, in our view, such  “ easy ”  ways 
to contend that perception is systematic as  McLaughlin ’ s (1993) approach ; 
he lists several such  “ connections, ”  some connected with beliefs, some 
with perception. The latter are these: 

 (3)   the capacity to see a visual stimulus as a square above a triangle and the capacity 

to see a visual stimulus as a triangle above a square, and 

 (4)   the capacity to prefer a green triangular object to a red square object and the 

capacity to prefer a red triangular object to a green square object. ( McLaughlin 1993 , 

219) 

 Similarly,  Cummins (1996)  claims: 

 Consider, for example, the perception of objects in space: 

 (SP)   Anyone who can see (imagine) a scene involving objects l and 2 can see 

(imagine) a scene in which their locations are switched. 

 Again, any system employing a complete scheme will satisfy (SP), but it is surely the 

case that spatial representation underlies a number of substantive systematicities as 

well. ( Cummins 1996 , 604) 

 The problem with this way of identifying systematic dependencies is that 
it does not guarantee that it captures different though intrinsically con-
nected perceptual capacities or abilities. It rather seems a way to parcel out 
a capacity — the perception of objects in space — in terms of the multiple 
ways in which it can be exemplified. This is made clearer when the distinc-
tion between the transparent and the opaque reading of the verb  “ see ”  is 
taken into account. On the transparent reading,  “ an agent sees a scene 
involving objects 1 and 2 ”  means that the agent gets visual information 
from the scene, without any commitment to the content of his visual expe-
rience. On the opaque reading, the description aims at how the scene is 
grasped by the subject. This makes clear that it is not two different visual 
capacities that are involved in these examples (capacities claimed to be 
intrinsically interdependent), but just one: an ability of visual perception 
that is exercised on different occasions, as the transparent reading makes it 
clear. It is at the level of the contents of the visual experiences — the opaque 
reading — that the dependencies are found, but this has to do with the con-
cepts available to the subject, that is, with thinking, not with perception. It 
follows that what does the work of supporting a systematic connection in 
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McLaughlin ’ s examples is not the visual process itself (in fact, just one 
capacity, not several), but the conceptual contents. Were McLaughlin and 
Cummins to concede the point, then they would be conceding that their 
argument is for the systematicity of cognition, not perception. 

 A more stringent approach is put forth by Aizawa (this vol.). His strategy 
is to focus on a perceptual process, the phenomenon of amodal comple-
tion, as a more principled way to individuate capacities, supported by 
scientific research, and to allege their systematic connections. Amodal 
completion occurs when the subject perceives a complete object despite 
its being partially occluded in the subject ’ s visual field. Thus, a famous 
example of amodal completion is that we see the dog behind the fence, 
not just stripes of it. In addition, amodal completion also applies to object 
perception, since each object partially occludes itself. We perceive the 
whole object, thus completing that part which in fact does not stimulate 
our retinas (we see our car, not just the surface that is facing us). This is 
the well-studied phenomenon of  “ filling in, ”  uncovered by such eminent 
names of the history of psychology as Michotte and Kanisza (for a review 
of current views, see  Shipley 2001 ). 

 The way Aizawa chooses to deploy this phenomenon, though, is not 
from its scientific characterization, but in a way parallel to that of McLaugh-
lin and Cummins: Aizawa finds evidence of systematicity in the proposi-
tional contents that characterize the perceptive experience. Taking as an 
example a  “ Pac-Man ”  shaped figure, which is perceived as a black square 
occluding a gray circle (see Aizawa, this vol., fig. 3.1), he states that it 
proves the existence of four systematically interrelated capacities: 

 Consider the following fourfold combination of capacities: 

 i.   The capacity to see a black square occluding a gray circle 

 ii.   The capacity to see a gray square occluding a black circle 

 iii.   The capacity to see a black circle occluding a gray square 

 iv.   The capacity to see a gray circle occluding a black square. (Aizawa, this vol.) 

 From this, he concludes: 

 Amodal completion is, then, systematic, because there is a grammar to mental rep-

resentations that enables the formation of a collection of mental representations, 

such as: 

 BLACK SQUARE OCCLUDING GRAY CIRCLE 

 GRAY SQUARE OCCLUDING BLACK CIRCLE 

 BLACK CIRCLE OCCLUDING GRAY SQUARE 

 GRAY CIRCLE OCCLUDING BLACK SQUARE. (Aizawa, this vol.) 
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 In this way, despite the interest of considering the phenomenon of amodal 
completion from a scientific point of view, to find out whether it can be 
best accounted for in terms of a set of primitive components, systemati-
cally combined, as one would expect from a defense of classicist systema-
ticity, Aizawa chooses in fact to follow the same strategy as McLaughlin: 
it is the propositional contents of the visual experiences that might exhibit 
systematicity in the desired sense, not the perceptual capacity itself, which 
again, seems to be one and the same. To appreciate this, observe what 
happens when the occluded shape is not that of a well-known geometrical 
figure, but, for example, that of a heart (see   figure 15.1 ).    

 In this case, it is not true that seeing a black heart occluding a gray 
square, say, is systematically connected to seeing the square occluding the 
heart, because no heart is completed in this case: amodal completion is 
not systematic in the required sense. Notice that, while the perceptual 
experience does not support the contention that the set of claimed inter-
dependent capacities are systematic at the perceptual level, it is still pos-
sible to formulate them at the propositional level, which means again that 
these systematic patterns are in fact to be found at the conceptual level, 
connected to language understanding: 

 Figure 15.1 
 Amodal completion fails for a heart figure, due to the Gestalt law of good continu-

ation that constrains the interpolation process. 
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 Black square occluding a gray heart 
 Gray square occluding a black heart 
 Black heart occluding a gray square 
 Gray heart occluding a black square 

 The fact that amodal completion does not work in this case clearly indicates 
that the perceptual process does not proceed by the systematic combination 
of perceptual primitives (corresponding to the basic conceptual units of the 
language of thought), plus some inferential process that transforms the cor-
responding mental formulas in that language (which is what Aizawa should 
demonstrate in order to sustain his claim that perception is systematic in 
the proper way), but by some kind of global organization of a Gestalt effect. 
Briefly, the perceptual process of amodal completion depends on the pos-
sibility of establishing an edge (in particular, a closed edge delimiting an 
object), and in the case of a partial occlusion by another object (another 
closed edge), the visual system interpolates the edge so as to close it and 
make the partially occluded object perceptible as such. This mechanism has 
limitations, of course, such as the incapacity to interpolate acute angles, 
because of what the Gestaltists called the good continuation law. Therefore, 
the heart is not completed, as there is no  “ good continuation ”  to join the 
two edges that touch the square. In conclusion, amodal completion is not 
a case of a systematic process, thought to depend upon a set of primitive 
elements that get combined, but the emerging result of the interaction and 
context-dependency of forms, curvatures, points of view, and dynamic 
information. Of course, a  “ classical ”  account of amodal completion can still 
be defended, but it cannot be considered the best available because it lacks 
the resources to explain these and other interactive effects. 

 Thus, for instance, the interpolation process is dependent on the strength 
of the edge detected, that is, sensitive to the contrast of background and 
figure — something unexpected from a classical account. When background 
and figure are the same color or lightness (gray), the object is no more 
perceivable and the completion process does not work, as there is no partial 
occlusion of the edge. However, even subtle differences in contrast between 
object and background modulate the salience of the completion process. 
In   figure 15.2  we have selected a few examples of the many variations that 
can take place, to demonstrate the sensitivity of the process to these con-
textual factors. The point is that it is not true in general that if one is able 
to see X occluding Y, then one is also able to see Y occluding X, for any X 
and Y — as required by the notion of systematicity.    
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 This is not specific of hearts or amodal completion per se. Much the 
same happens in the complementary phenomenon of subjective or illusory 
contours, such as the famous Kanizsa triangle (see   figure 15.3 ), which also 
illustrates amodal completion for the  “ Pac-Men ”  at the angles.    

 It is not that our visual system works with basic representations of circles 
and triangles, which make their way into the visual content of the experi-
ence despite the partiality of the visual information available (as required 
by the notion of systematicity in perception at stake), but that some orga-
nizational pattern emerges out of a specific, and context-dependent, speci-
fication of values. Again, the illusion disappears if just one of the three 
angular  “ Pac-Men ”  is visible. Or consider   figure 15.4 . We do not perceive 
a triangle occluded by a cross, but a triangle appears if the cross is covered. 
Again, this demonstrates that seeing a figure is not the outcome of a set 

A B

DC

 Figure 15.2 
 Amodal completion of a square and a circle with gray (125) and black (0) under four 

different gray backgrounds (a = 235, b = 200, c = 50, d = 20). Changing the contrast 

between figure and background changes the salience of the completed object accord-

ingly. It is part of the explanation of the phenomenon that the interpolation of the 

edge depends on the strength of the contrast of the edge. 



From Systematicity to Interactive Regularities 381

 Figure 15.3 
 The Kanisza triangle. 

 Figure 15.4 
 (a) The disappearing triangle. (b) The cross blocks the completion of the triangle, 

as in the first figure. 
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of abilities of seeing its elementary parts, compositionally integrated 
through an inferential process. As a consequence, seeing a certain relation-
ship between A and B does not guarantee that A and B hold as algebraic 
variables for any such elementary part, nor does it guarantee that the 
converse relationship between B and A can also be seen — as required by 
systematicity. The conceptual articulation of the visual content of the 
experience, on the other hand, which obviously allows the expression of 
all such combinatorial possibilities, has to do with linguistic abilities, as 
argued in the previous section.    

 4   From Systematicity to Regularities in Spatial Perception 

 We have discussed the case of amodal completion, to reject Aizawa ’ s alle-
gation that it demonstrates that perception is systematic in the required 
sense. At several points we have underlined the fact that Aizawa ’ s way to 
describe the relevance of the phenomenon of amodal completion to the 
question of whether perception is systematic fails to address the right 
kind of requirement: he remains concerned in the end with the  “ rough 
and ready ”  apparent systematic relations among the propositional con-
tents of one ’ s visual experience pointed out by McLaughlin, instead of 
trying to find the relevant scientific evidence that allows a principled 
individuation of capacities, or — given the close connection between the 
description of the explanandum and the explanans — trying to put forward 
an explanation of amodal completion that appeals to representational 
primitives plus inferential rules of transformation of such representations, 
as the supposedly  “ best possible ”  explanation of the phenomenon. For 
one indirect argument in favor of the systematicity of perception consists 
in the claim that the best theory of perception is committed to a classical 
architecture. As a matter of fact, this was Fodor ’ s strategy, when he 
appealed to the influential approach of  Marr (1982) . So, in this section 
we want to raise the question of whether a compositional-inferential 
program, such as Marr ’ s, is the best explanation available in the case of 
spatial perception. 

 Marr ’ s program shared the basic notion that spatial perception is a 
process that starts from sensory inputs and ends in a representation of a 
spatial configuration. What ’ s new to Marr ’ s approach is the way he articu-
lated that process as an inferential one, as a formal transformation of very 
specific kinds of representations according to formal rules. Marr focused 
on how a 3D representation is built up from the 2D raw data of the retinal 
image; in particular, he dealt with the transformation of the egocentric 
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frame of reference of the image from a particular point of view to an allo-
centric representation of the object perceived. The allocentric representa-
tion of the object has to be located in a spatial representation of the 
environment, where geometric transformations may be performed and the 
different objects are integrated in a single representation. This spatial rep-
resentation is thought to be systematically used to solve spatial behavior 
in a way that resembles the use of lexical units in language processes. 
Spatial representations can be rotated, symmetrically transformed, and 
permuted, and can undergo the rest of classical transformations of Euclid-
ean geometry. 

 However, several geometrical, haptic, and visual tasks, such as spatial 
matching tasks ( Cuijpers, Kappers, and Koenderink 2003 ;  Kappers 1999 ; 
 Fern á ndez-D í az and Travieso 2011 ), reveal powerful perceptual distortions 
in how such spatial integration takes place. In what follows, we will show 
that the classical strategy to account for such distortions as anomalous 
inferences is flawed, and that a superior explanation can be provided 
within the approach of ecological psychology. 

 A relevant task to consider in this respect is the parallelity test ( Kappers 
1999 ), a task where it is checked whether this crucial axiom of Euclidean 
geometry holds for spatial perception. The task consists in rotating a test 
rod so as to place it parallel to a reference rod. The result of this test is that 
we make strong errors in grasping parallelity, both in psychophysical esti-
mations and when performing parallelity estimations in different modali-
ties (see   figure 15.5 ). In the haptic domain, when performing the task while 
blindfolded, the deviations from parallelity appear in different planes (i.e., 
horizontal, frontal, and sagittal), and both in bimanual (i.e., one hand 
touching the reference rod and the other the test rod) and unimanual (i.e., 
one hand touches the reference rod and then goes to the test rod and 
rotates it). These distortions happen both for vision and for touch ( Cui-
jpers, Kappers, and Koenderink 2003 ) and probably for hearing, although 
in this case estimations are made using pointing tasks where participants 
are asked to point/orient the rods to sound sources ( Arthur, Philbeck, 
Sargent, and Dopkins 2008 ).    

 The way to address these results from a classical, Marr-inspired approach 
is to attribute these deviations to an erroneous application of inferences. 
Such errors, according to this approach, produce deformations of the 
spatial representation, resulting in a perceptual illusion. These erroneous 
inferences are thought to be due to the fact that the allocentric representa-
tion inherits a bias produced by the initially egocentric frame of reference. 
More specifically, in a sophisticated version of this explanatory strategy, 
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 Figure 15.5 
 Deviations in the haptic parallelity test (adaptation from  Fern á ndez-D í az, and Tra-

vieso 2011 ). In this example, subjects are asked to put the test bar parallel to the 

reference bar (  figure 15.5a ).   Figure 15.5b  shows mean results on an acoustic pointing 

task. Finally,   figure 15.5c  shows differences in a parallelity crossmodal haptic-

acoustic task where the interactions vary depending whether the sound source is 

aligned with the reference or the test rods. 
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 Cuijpers et al. (2003)  suggest that the resulting spatial representation, the 
cognitive map where spatial behavior is planned, fits better with another 
geometry that does not include the parallelity axiom of Euclidean geom-
etry. In particular, spatial representation is thought to be better described 
through a Riemannian space with a constant negative curvature, so that 
the deviations are intrinsic to the allocentric representation itself. For this 
explanation to go through, though, it should hold in all cases. However, 
our results show that this is not the case for the haptic system. The strong 
and systematic deviations in parallelity matching tasks disappear when the 
task is a mirror one (i.e., when participants are asked to mirror the orienta-
tion of the reference rod to a test rod to the mid-sagittal axis, that is, the 
mid-body). And when the haptic parallelity task is performed on the back 
of the subject, the pattern of deviations is inverted ( Fern á ndez-D í az and 
Travieso 2011 ). 

 On the other hand, the assumption that all modalities are integrated in 
an amodal spatial representation ( Nanay 2011 ) does not hold either. If the 
curved space descriptions were consistent (with different curvatures) for 
visual, acoustic, and haptic modalities, they would interact systematically, 
that is, crossmodal interaction should be consistent with the spatial map 
they produce. In fact, this result has been found in visual-haptic crossmo-
dal interaction, where vision improves haptic performance reducing the 
deviations from parallelity ( Newport, Rabb, and Jackson 2002 ). But con-
trary to the assumption, it has been shown that, depending on the task, 
crossmodal information can be used to increase or decrease perceptual 
errors in parallelity matching tasks ( Fern á ndez-D í az and Travieso 2011 ). 
Even temporal delays affect the geometrical matching results ( Zuidhoek, 
Kappers, van der Lubbe, and Postma 2003 ). What this suggests is that dif-
ferent tasks rely on different spatial information, which is locally specified, 
rather than globally integrated into a unique spatial map. Similar results 
have been found in many other sensorimotor tasks, to the point that rel-
evant authors in the field try to explain  “ why we don ’ t mind to be incon-
sistent ”  ( Smeets and Brenner 2008 ). 

 In conclusion, although the use of a Riemannian space allows a better 
description of results than that of a Euclidean one, it is not true that the 
negative curvature is stable or constant, because it may change depending 
on sensory modality, perceptual task, body configuration, or whether the 
information available is dynamic or static, or depending on the temporal 
constraints of the task. Moreover, no evidence justifies holding that this 
mathematical description reflects a spatial integrated representation that 
is fed by the different modalities. Geometrical tasks are context and task 
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dependent to the point that different solutions are used to solve the dif-
ferent tasks, sometimes relying on the proprioception of the movements, 
others on the visual control of the hand or on dynamic information. 

 However, it is still evident that our behavior in space is stable and well 
adapted. Although, as we have already argued, classical cognitivism ’ s 
account of this stability is inadequate, the multiple regularities that char-
acterize our patterns of sensorimotor interaction with our environment 
still require an explanation. In our view, such regularities are grasped 
through our forms of action in the environment, in particular in the pat-
terns of information made available in the sensorimotor loop that sustains 
such interactions, as the ecological approach in perception holds (Gibson 
1979;  Turvey and Carello 1986 ). The idea of a sensorimotor loop, to start 
with, refers to the necessity of a dynamic interaction of the perceiver and 
the environment in order to generate, and be able to pick up, those regu-
larities — the  “ invariants ”  in neo-Gibsonian terms. When the perceiver 
moves, there are sensory patterns that change lawfully depending on the 
context. Through those changes, robust high-order regularities are revealed: 
those regularities that remain constant across the changes. Once the cogni-
tive system has grasped them, it can access the relevant environmental 
properties for the task at hand, without the need for further representa-
tional inferences or explicit representations. 

 Let us consider an example. Dynamic touch is the perceptual ability to 
estimate different properties of objects, like length, through invariants in 
the rotational mechanics that are accessible via the proprioceptive system. 
Typically, this ability is exhibited in estimating properties such as the 
length of a rod by grasping it from one end (when it can be wielded but 
not seen). Estimating the length of an object that is only grasped at a 
certain position has to rely on the resistance of the object to rotation at 
the point of wielding. This resistance is described in rotational mechanics 
by the inertia tensor, a numerical quantity (a 3  ×  3 matrix for 3D move-
ments) for the object ’ s resistance to rotation, which is related to its point 
of rotation and its mass distribution. It is the equivalent to mass in the 
expression F = m  ∙  a, but in the rotational form: 

  I  =  ∫    ρ (s)  δ (s) 2  dV , (1) 

 where  “  ρ (s) ”  is the mass-density function and  “  δ (s) ”  is the distance or 
radius to the rotation axis. 

 If mass can be estimated by applying a force and perceiving the resulting 
acceleration in an object, the inertia tensor can be estimated by applying 
a torque and perceiving the resulting angular acceleration. Different 
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torques will produce different angular acceleration values, whereas the 
inertia tensor will be constant over those transformations. But the most 
important point of this example is that in order for anybody to access those 
invariants it is necessary to wield the object: to generate a sensorimotor 
loop. This way, the sensory changes contingent upon the perceiver ’ s move-
ments give access to those invariants across time. At the same time, the 
invariants guarantee that the objects ’   “ responses ”  to the perceiver actions 
are regular (i.e., the mass-density function and the length of the radius do 
not change unless the object is grasped at another point or immersed in 
another medium). For example, the stronger the force applied in the torque 
during the wielding movement, the more angular acceleration the object 
reaches, according to the lawful relations that the inertia tensor specifies. 
As a matter of fact, it has been demonstrated that our estimations of length, 
weight, and other properties of bodies is adjusted to the predictions of the 
inertia tensor ( Turvey 1996 ), and that different features of the wielding 
affect what is perceived, such as applied force ( Debats, van de Langenberg, 
Kingma, Smeets, and Beek 2010 ), amplitude, and speed of the wielding 
( Lobo and Travieso 2012 ), or the orientation of those movements ( Arma-
zarski, Isenhower, Kay, Turvey, and Michaels 2010 ;  Michaels and Isenhower 
2011ab ). 

 These findings, and many others along the same lines, suggest a superior 
way to account for the regularities in our perceptual experience, one not 
derived from some reservoir of conceptual primitives that get recombined 
through inferential processes. Quite the opposite: the regularities appear 
at the interaction of the physical object with the actions of the perceiver 
on it. These invariants are the  high-order informational patterns in the senso-
rimotor loop , which are thus grasped by the perceiver. Ecological psychology 
(Gibson 1979;  Turvey and Carello 1986 ) tries to uncover such invariants 
that humans are attuned to by engaging actively with the world. This 
amounts to a radical departure from the traditional view of perception as 
the recovery of the distal stimulus out of an impoverished proximal stimu-
lus that reaches the retina. From this standpoint, the sensory information 
available in perception is not the amount of light at a certain location of 
the retina, but movement and intensity gradients, stable relative propor-
tions, or changes in these gradients. The fact that through interaction we 
become sensitive to these higher-order parameters runs against the tradi-
tional view that they are calculated, or derived, from lower-level ones 
( Michaels and Carello 1981 ). In the next section, we will provide some 
further illustration of this approach to perception by considering how it 
can be applied in two areas: sensory substitution and direct learning. In so 
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doing, we expect to make even clearer why the ecological approach is 
superior to the classical one. 

 5   Sensory Substitution 

 When the field of sensory substitution was developed in the late 1960s 
and early  ’ 70s, the implicit idea that drove the project, in congruence with 
classical cognitivism, was to produce an alternative input to the visual 
system through the haptic system. Thus, the first devices developed (i.e., 
the Optacon and TVSS), were designed to get spatial information (letters 
in the case of the Optacon and images in the case of the TVSS) from 
cameras whose light detection was transformed in vibration delivered to 
the body in a  “ tactile retina. ”  Participants thus would receive an alternative 
sensory stimulation, upon which they could apply the systematic infer-
ences of perceptual processing. In other words, sensory substitution was 
originally conceived as just the substitution of the sensory input, leaving 
the rest of the perceptual process intact. Some comments by Bach-y-Rita 
(1972), probably the most influential pioneer in sensory substitution, are 
revealing in this respect:  “ You see with your brain, not with your eyes ” ; 
 “ The nerve impulses coming from the eye are no different than those from 
the big toe ” ; or  “ Just give the brain the information and it will figure it 
out ”  (all from Bach-y-Rita 1972). 

 These first devices were designed with an atomistic conception of the 
stimulus: the amount of light at each position, so that the device had to 
transduce that magnitude into a certain amount of vibration. All other 
visual properties were supposed to arise from inferential processes. There-
fore, research on these devices was focused on detection thresholds for 
intensity and frequency of vibration, the minimum distance between 
vibrators, and other variables in the skin psychophysics (see  Jones and 
Sarter 2008  and  Gallace, Tan, and Spence 2007  for a review). 

 However, many users were not able to experience the externality of 
perception, that is, to interpret the sensory signals produced by the device 
as of external objects. A cursory comment by Bach-y-Rita (1972) indicates 
that he came close to realizing the cause: he noticed that, with a portable 
version of the TVSS, blind participants had difficulties in establishing the 
contingencies between the camera movements and the vibration pattern. 
In addition, the generalization in the use of these devices still is an unre-
solved question, and this is probably related to the fact that most of these 
devices give symbolic information to the user, like a signal meaning that 
someone is calling, or discrete signals like beeps indicating the direction 
to move. 
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 These problems, in our opinion, can be overcome by adopting the eco-
logical psychology approach ( Travieso and Jacobs 2009 ). From this perspec-
tive, to be successful, the design of a haptic-to-vision sensory substitution 
device has to offer the possibility of establishing sensorimotor contingen-
cies so that high-order informational patterns become available to the 
perceiver. Thus, we have built up a simple haptic-to-visual sensory substitu-
tion prototype. The guiding idea is that some of the higher-order invariants 
that can be extracted through sensorimotor interaction in the visual 
modality can also be found through sensorimotor interaction in the haptic 
modality. In other words, the sensory substitution device can work for 
these intermodal magnitudes. In one of its possible configurations, the 
device has twenty-four stimulators located vertically on the chest of the 
user; and they vibrate as a function of the distance to the first obstacle (see 
  figure 15.6  for a schema of the apparatus). The user is free to move wearing 
the apparatus, and we test the detection of obstacles and objects by means 
of psychophysical methods.    

 Our experimental results show that participants with the sensory sub-
stitution device are able to learn how to use the device and to improve 
their behavior with it ( Lobo, Barrientos, Jacobs, and Travieso 2012 ). They 
manage to do so when they can use dynamic vibratory information 
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 Figure 15.6 
 Illustration of the sensory substitution device (adaptation from  D í az, Barrientos, 

Jacobs, and Travieso 2011 ). The upper row shows the alignment of the virtual sensors 

detecting the distance of the first obstacle encountered. The lower row shows the 

corresponding pattern of stimulation. As can be seen, different patterns appear when 

the subject leans back and forth, or when he or she encounters obstacles. 
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contingent upon their own movements; in this way, they can detect move-
ment gradients and the presence of nearby surfaces and their size ( D í az, 
Barrientos, Jacobs, and Travieso 2011 , 2012). For example, our results show 
that using contingent and continuous informational patterns, participants 
are able to better detect steps than with static and discrete information, 
where they are limited to vibration differences between adjacent vibrators. 
Their discrimination was better than the predictions in the psychophysical 
literature, which establish three or four centimeters as the minimum 
distance to distinguish between vibrators, and five to seven distinguishable 
levels of vibrations at the chest ( Verrillo 1973 ;  Van Erp 2007 ). We also 
found that the use of dynamic vibratory information allows a better detec-
tion of steps when it is contingent on the user ’ s movement, compared to 
the very same pattern of information given to another perceiver non-
contingent on his movements ( D í az et al. 2011 , 2012), a test that was not 
possible in previous devices. 

 Again, the use of our sensory substitution prototype shows that spatial 
perception is improved when dynamic patterns of information are avail-
able and that these dynamic patterns should be contingent on the per-
ceiver ’ s movements, reaffirming the interaction-dominant character of 
sensorimotor processes. In this respect, the ecological approach to sensory 
substitution can overcome one of the main handicaps of former devices, 
where the necessity of understanding sensorimotor contingencies was 
revealed to be problematic. On the contrary, establishing those contingen-
cies is now the base of the new functioning. 

 However, it could be conceded that the ecological approach works well 
for sensorimotor processes, while disputing that it can contribute to our 
understanding of higher cognition. This is a very big question, of course, 
but at the moment it can at least be said that learning is within the reach 
of our approach. In the next section, we present how we have begun to 
study learning. 

 6   Direct Learning 

 Work with the sensory-substitution device has made it clear that partici-
pants learn to use it: they need time to discover the relevant invariants in 
the sensory input across their own movements. This idea has been general-
ized beyond the area of sensory substitution, and we have begun to study 
this process of learning, of discovering and using the relevant magnitude 
for a particular task. By analogy with the  “ direct perception ”  notion of 
ecological psychology, it has been called  “ direct learning ”  ( Jacobs and 
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Michaels 2007 ;  Jacobs, Ib á  ñ ez-Gij ó n, D í az, and Travieso 2011 ;  Michaels, 
Arzamarski, Isenhower, and Jacobs 2008 ). The main hypothesis guiding 
this theory is that, just as a crucial aspect of understanding perception is 
knowing the information on which it is based, as the ecological theory 
states, in order to develop a theory of learning we should also know the 
information on which it is based and how the subject manages to discover 
it. We have already seen that the perception-action loop can be described 
as an interrelated process. Perception is the process of accessing informa-
tional variables that emerge during interaction with the environment, and 
action is the behavior guided by the information variables given by percep-
tion. Thus, a learning process is a change in behavior in order to improve 
adaptation. 

 The theory of direct learning has initially focused on two types of per-
ceptual learning: calibration and education of attention. Calibration is the 
process of changing the adjustment of a kind of action to an informational 
variable. That is, if an informational variable is used to guide a certain 
behavior, as, for example, the trajectory of a moving object in interception, 
we can become more accurate and efficient in following that trajectory as 
a way to improve our interception abilities. Formally expressed: 

  a= f(I).  (2) 

 This means that the action is a function of the perceptual information, 
and calibration is conceived as the modulation of  f , to improve the adjust-
ment of the action to the informational variable. A classic example of cali-
bration is that of wearing prismatic goggles, by which the visual field is 
displaced several degrees. Whereas these goggles initially produce errors in 
aiming, pointing, and so on, subjects quickly adapt through a process of 
calibration, which allows them to compensate for the deviations in the 
visual field. 

 The second type of learning is the education of attention. Far from the 
classical definition of attention as a centrally guided cognitive process, 
here attention is operationally defined as a change in the variable used to 
guide the action system. That is, the education of attention is a change in 
the informational basis of action. In reference to equation (2), the educa-
tion of attention is a change of the variable  I . Methodologically, this line 
of research consists in selecting, given a certain perception-action situa-
tion, an informational space of candidate variables to guide the action in 
that situation. These candidates can be a position in a fixed image in an 
experimental task, or dynamic information from an image produced by a 
moving subject, or those rotational variables in the above-mentioned 
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example of dynamic touch. This set of variables constitutes an informa-
tional space ( Jacobs and Michaels 2007 ;  Jacobs and Travieso 2010 ). An 
informational space is a continuous space in which each point represents 
an informational variable, and the trajectories represent the change pro-
duced by learning. The study of the learning process consists, therefore, 
in the study of changes in the use of the variables in the informational 
space. The method to estimate variables used by the subject is regression 
or correlation between the informational variables and the action variables 
(or psychophysical estimations) during the different phases of the study. 
Representing the different variables used by the subject in the different 
experimental sessions, the evolution of the perception-action loop can be 
observed (Jacobs et al. 2011). This evolution is due to the utility of the 
variables, which is assessed through the feedback received: if the action is 
not successful when based on an informational variable (e.g., if the tennis 
player misses the shot when he fixates on the net), next time a different 
informational variable may be selected. A measure of the precision of 
actions is required in order to compare and switch to the informational 
variable that best guides action. 

 This approach has proved useful for describing perceptual learning 
processes such as emergency breaking ( Fajen and Devaney 2006 ), haptic 
estimations ( Michaels, Arzamarski, Isenhower, and Jacobs 2008 ), landing 
in-flight simulators ( Huet, Jacobs, Camachon, Goulon, and Montagne 
2009 ;  Huet, Jacobs, Camachon, Missenard, Gray, and Montagne 2011 ), and 
dynamic tasks like catching balls ( Morice, Fran ç ois, Jacobs, and Montagne 
2010 ). It has also been proposed for the design of training regimes in sports 
(Ib á  ñ ez-Gij ó n, Travieso, and Jacobs 2011). 

 7   Conclusion 

 In this chapter, we have argued that perception is not systematic, in the 
way required for a formal combinatorial explanation to claim some supe-
riority. The regularities that do exist in spatial perception, which are not 
properly systematic, are better explained as the result of interactions with 
a rich and regular environment, along the lines of ecological psychology, 
and the search for higher-order informational patterns in the sensorimotor 
loop. From this point of view, the patterns need not be explicitly repre-
sented for the cognitive system to be sensitive to them, nor is it required 
that the cognitive system builds an integrated explicit representation of 
all the sensorimotor information that can influence the behavior of the 
system. 
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 Is this approach another form of eliminating cognition from the picture, 
or confusing it with behavior, as suggested by Aizawa? We don ’ t think so. 
It is rather committed to a different understanding of cognition, as a 
dynamical, interactive process, instead of the logicism of the classical cog-
nitivist view, or the simple associationism of the connectionist view. It is 
true that the different alternative approaches to cognitivism are not in 
complete agreement about how to conceive of cognition, and therefore, 
have not converged on a unique new paradigm. But it should be recog-
nized that classical cognitivism has made only meager progress and faces 
insurmountable problems. 
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 1   Introduction 

 The honeybee bounces against the pane of glass, the moth circles the 
lightbulb, and the dog chases its tail. Honeybees, moths, and dogs are each 
capable of a complex and interesting set of behaviors. But sometimes we 
notice animals failing to accomplish their goals and being unable to adapt 
their behavior successfully in light of their failures. At moments like these 
it is natural to think less of the family dog, the honeybee, or the moth. 
This is not one of our dog ’ s more impressive moments, and while the dog 
is not a stupid creature, chasing its tail certainly appears to be a stupid 
behavior. 

 When a behavior is obviously automatic, repetitive, or arbitrary, we tend 
to downgrade the level of agency we ascribe to the animal or system in 
question. By contrast, when a system adapts to changing environmental 
conditions, contributes to the pursuit of some identifiable goal, can be 
combined in flexible ways with other behaviors, and has a variety of other 
systematic features, we are inclined to judge that the behavior is the result 
of some underlying intelligence or agency. 

 This chapter suggests that our intuitive judgments about the underlying 
intelligence or agency of nonlinguistic cognitive agents are prompted by 
a set of systematic features that mark what we will call  intelligent behavior . 
These systematic features of intelligent behaviors do not necessarily license 
the claim that there is any single coordinating or governing intelligence 
in the agent. However, we will argue that intelligent behavior is indicative 
of meaningful engagement with the environment. This meaningful engage-
ment is phylogenetically and ontogenetically prior to the kinds of intel-
lectual and cognitive capacities that we expect from adult humans. 

 In the pages that follow, we will explain what it means to locate syste-
maticity in the behavior of infralinguistic and minimally cognitive agents. 

 16   The Emergence of Systematicity in Minimally Cognitive 

Agents 

 Paco Calvo, Emma Mart í n, and John Symons 
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Along the way, we will unpack the idea of meaningful engagement with 
the environment and will offer some ideas as to how such engagement 
might serve as the basis for the emergence of more sophisticated forms of 
cognition and agency. 

 2   Systematicity 

 Jerry Fodor, Zenon Pylyshyn, Brian McLaughlin, and others argued that 
the productive and systematic features of thought should be explained in 
terms of a combinatorial system of mental representations with a syntacti-
cally and semantically classical character. They argue that since human 
language exhibits some essentially systematic features and since language 
is an expression of human thought, human thought must also have the 
systematic features we find in language. We can understand novel sen-
tences when we hear them and can create new meaningful sentences by 
combining the parts of old meaningful sentences according to those sys-
tematic transformations we associate with competent use of a natural 
language. If one can genuinely understand the sentence  “ Carnap likes 
Quine, ”  then one can understand the sentence  “ Quine likes Carnap. ”  The 
fact that such transformations pose no challenge to the intelligence of 
adult humans is taken as evidence that thought itself has the same struc-
ture as language. 

 Competing approaches to the Fodorian model of mind included the 
view that thought works as a series of images, or that it has the same 
structure as action, or that thought is brainlike in the sense of being orga-
nized in a network. From the Fodorian perspective, all of the major alterna-
tives failed to provide the explanatory power of the assumption that there 
exists a syntactically and semantically combinatorial system of mental 
representations. 

 As many cognitive scientists and philosophers argued in the 1990s, 
alternative cognitive architectures may also be able to produce behaviors 
that mimic the systematic features of human language.  1   However, for pro-
ponents of a Fodorian view of systematicity, merely being able to reproduce 
systematic properties is not the purpose of a science of cognition. The real 
goal is explanation rather than simulation, and from the Fodorian perspec-
tive, a classical computational architecture provides the best path toward 
an  explanation  of mind insofar as the classical framework, like cognition 
and language, is systematic to the core. 

 Fodorians argue correctly that explaining the nature of human thought 
surely involves giving some account of its systematic features. However, 
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the exclusive focus on linguistic systematicity has meant that other forms 
of systematicity have been neglected. So, for example, Robert Cummins 
(1996) pointed to the systematic features of visual perception as an example 
of a nonlinguistic form of systematicity that also seems important to a full 
understanding of perception and associated aspects of human thought. 

 Our view is that we ought to extend Cummins ’ s insight beyond percep-
tion, and we argue that systematicity can also be found in the behavioral 
repertoire of agents. The kind of systematic properties that we target are 
those that distinguish intelligent, adaptive behaviors from automatic, non-
adaptive behaviors. 

 Very roughly, at this stage, we can intuitively recognize the difference 
between the way a wolf stalks its prey and the way that the wolf ’ s stomach 
digests its prey: in a Dennettian spirit, one might say that understanding 
and explaining the hunting behavior of a wolf involves adopting some-
thing like an intentional stance toward the behavior, whereas understand-
ing processes in the digestive system does not ( Symons 2002 ). In the pages 
that follow, we focus on cases that fall somewhere in between fully auto-
matic physiological processes and full-fledged intentional action. The 
kinds of simple behaviors that we will discuss in this chapter are those 
exhibited by plants and other minimally cognitive agents. 

 Some biological processes, say, the excretion of bile or the rhythm of a 
beating heart, adapt to changing environments in a manner that reliably 
comports with the goals of an agent and yet do not warrant the honorific 
 “ intelligent. ”  As mentioned above, automatic processes of this kind differ 
intuitively from the actions of intelligent agents insofar as they can be 
explained without reference to intentional content. So, how should we 
understand the transition from automatic processes to full-fledged intel-
ligent behaviors? The behavior of a plant shares some features in common 
with digestion while also bearing some resemblance to the kind of inten-
tional cognitive lives of animals like wolves and human beings. Examples 
of sophisticated plant behavior straddle the line between automatic physi-
ological processes and systematic cognitive (albeit minimally cognitive) 
phenomena. These strike us as obvious opportunities to investigate the 
emergence of meaningful engagement with the environment. 

 The greatest strength of the Fodorian approach to systematicity was its 
careful attention to explanation. Rivals should also have an account of 
what is required for an account to qualify as genuinely explanatory in the 
cognitive or psychological domain. In this chapter, we propose taking a 
neo-Gibsonian approach to the explanation of behavioral systematicity. 
However, the target of explanation is different for us than it is for the 
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Fodorian. Our goal is to provide an explanation of the  emergence  of sys-
tematic intelligence per se rather than a defense of a particular cognitive 
architecture. On our view, arguments concerning the virtues of cognitive 
architectures can be distinguished from arguments concerning explana-
tion. Recognizing the distinction is likely to benefit progress on both 
topics. 

 On our view, explaining the emergence of intelligent behavior requires 
attention to marginal cases of behavioral systematicity in minimally cogni-
tive agents like plants and insects rather than beginning with the linguisti-
cally mediated cognition of adult human beings. To this end, we critically 
review some recent work in the field of  “ plant neurobiology ”  for the 
purpose of determining whether the ecological perspective can account for 
the behavioral systematicity that interests us in plants and other minimally 
cognitive agents. The approach we present here offers a framework for a 
naturalistic account of the emergence of intelligent behavior over the 
course of natural history, and we hope that explaining the systematic fea-
tures of the behavior of plants and insects can provide the basis for under-
standing systematicity in more familiar kinds of cognitive systems. 

 3   Minimal Forms of Cognitive Agency 

 Common sense tells us that plants are unlikely to qualify as cognitive in 
any meaningful sense. One reason for this is the impression that plants do 
not really do much. Since plants generate their own food from light or 
other energy sources they move on a timescale that is normally impercep-
tible to animals.  2   Cognitive scientists and philosophers have assumed that 
there must be a strong connection between movement and cognition. 
Thus, Patricia Churchland represents the traditional view of plant intelli-
gence as follows: 

 If you root yourself in the ground, you can afford to be stupid. But if you move, you 

must have mechanisms for moving, and mechanisms to ensure that the movement 

is not utterly arbitrary and independent of what is going on outside. (1986, 13) 

 Elsewhere, she writes: 

 First and foremost, animals are in the  moving  business; they feed, flee, fight, and 

reproduce by moving their body parts in accord with bodily needs. This  modus 

vivendi  is strikingly different from that of plants, which take life as it comes. (2002, 

70) 

 Plants are usually slow moving, but are they stupid? Time-lapse photogra-
phy has permitted plant researchers to notice nonprogrammed forms of 
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movement triggered by differential changes in volume or in rates of 
growth. For example, consider the light-foraging behavior of the stilt palm 
( Allen 1977 ), a plant that grows new roots in the direction of sunlight, 
letting the older ones die. In relation to light-foraging behavior of this sort, 
Anthony  Trewavas (2003)  writes: 

 The filiform stem explores, locates and recognizes a new trunk and reverses the 

growth pattern. As it climbs, the internode becomes progressively thicker and leaves 

progressively redevelop to full size.  …  This behaviour is analogous to animals that 

climb trees to forage, intelligently descend when food is exhausted or competition 

severe, and then climb the next tree. (15) 

 Apparently the stilt palm is not taking life as it comes. In addition,  pace  
Michael Tye and others, we now know that the behavior of plants is often 
flexible.  3   Strikingly, plants appear to learn from experience, not by modify-
ing their  “ dendrites, ”  but rather by developing plasmodesmatal connec-
tions ( Trewavas 2003 ). Goal-oriented overcompensatory growth, oscillations 
in gravitropic behavior, and acclimatization under different forms of stress 
are well-studied illustrations of error-correction and learning in plants. 

 Our ignorance of the capabilities of plants has given way to the view 
that many plants do not simply sit passively photosynthesizing. Instead, 
plants can adapt in ways that may lead to an advantage in the future based 
on an assessment of current conditions. Plants can respond to soil struc-
ture, volume, and neighbor competition in ways that are advantageous to 
them. We now know of several examples of plant behavior that can be 
interpreted as territorial and that plants can discriminate their own roots 
from alien roots.  4   A number of examples of interplant communication 
have also been documented. Some plants communicate aerially with con-
specifics and members of different species via a number of released volatile 
organic compounds that cause changes in the behavior of their conspecif-
ics.  5   Most famously, the physiological processes underlying the collective 
response of acacia trees to being eaten by giraffes are well understood.  6   

 Insights into the adaptive behavior of some plants have encouraged the 
development of a controversial field known as  “ plant neurobiology. ”  Plant 
neurobiologists induce considerable discomfort in many of their colleagues 
when they use terms like  communication ,  planning ,  navigating ,  discriminat-
ing ,  perceiving , and  remembering  to describe plant behavior. According to 
plant neurobiologists, higher plants have physiological processes that are 
analogous to animal nervous systems. They argue that these systems allow 
plants to act in intelligent ways.  7   But concerns immediately arise. Can the 
adaptive behavior of plants be considered cognitive in any meaningful 
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sense? It is easy to find examples of plant neurobiologists providing inap-
propriately high-level cognitive explanations for the behavior of plants. 
Furthermore, many mainstream plant biologists have criticized plant neu-
robiology, describing it as  “ founded on superficial analogies and question-
able extrapolations ”  ( Alpi et al. 2007 ). 

 On our view, the reasons that careful observers of plant behavior are 
tempted to use anthropomorphic language stems from the systematic 
features of plant behavior. In the behavior of plants, we see the first infra-
linguistic glimmerings of the kind of intelligence that we see in higher 
animals. We now know that the behavior of plants, specifically their move-
ment and the changes we detect in their morphology are often flexible 
and non-automatic. For the most part, this behavior takes place very 
slowly, but with the benefit of time-lapse photography, we can clearly see 
how some plants respond to change in ways that solve problems in 
dynamic and competitive environments. 

 An objection to our approach would be to deny that there is anything 
 cognitive  associated with plant behavior. Admittedly, we set the bar low for 
the purposes of this chapter insofar as we consider  motility  and the posses-
sion of a dedicated  sensorimotor organization system  as sufficient conditions 
for minimal cognition. Minimal cognition initially consists of exploiting 
the spatiotemporally dispersed characteristics of metabolically relevant 
environmental features. This is achieved courtesy of free and reversible 
bodily movement and is enabled by organized sensorimotor activity.  8   
Plants may be taken to exemplify minimal cognition insofar as they 
manipulate their respective environments in meaningful ways.  9   

 Our goal for the remainder of this chapter will be to show that these 
systematic features of behavior can be fruitfully understood in Gibsonian 
terms in a way that illuminates the meaningful interaction of the plant 
and its environment. 

 The behavior of plants is intelligent insofar as it is engaged with the 
environment in ecologically meaningful ways. But unpacking precisely 
what it means to call something  “ ecologically meaningful ”  is a nontrivial 
challenge. Why would we even feel tempted to invoke notions like meaning 
in this context? Let ’ s consider an example: when we observe a vine in 
time-lapse photography exploring its environment we notice that its 
behavior has a systematic structure. Consider its ability to reach for a 
surface, test its suitability, withdraw if unsuitable, adjust its position 
slightly, and then repeat the behavior as necessary. The intuitive sense that 
the plant is striving, or has a plan, is obviously anthropomorphic. However, 
this intuitive reading of the plant ’ s behavior is our response to the visual 
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evidence that plants must cope with a dynamic landscape of threats and 
opportunities in their environment. While time-lapse photography allows 
us to notice plant behavior, and plant physiology can reveal the mecha-
nisms at work in the plant, explaining the apparent meaningfulness and 
intelligence that is exhibited in plant behavior requires a different approach. 
We suggest that we can understand the intuitive meaningfulness of plant 
behavior by attending to ecological principles without thereby falling prey 
to anthropomorphism. 

 4   Fodorian Objections to the Ecological Approach 

 Systematicity is a characteristic feature of intelligent behavior. The source 
of this systematicity is the manner in which the organism engages with 
its environment. When an organism acts, it will do so for metabolically 
relevant reasons. We assume that if a given organism has the ability to 
acquire a metabolically relevant piece of information from its environ-
ment, it will thereby acquire a variety of systematically related patterns. 
On our view, even at the lowest levels, metabolically relevant patterns have 
systematic features. These systematic features of behavior are integral to 
the agent ’ s capacity to respond selectively to a changing environment. 
Systematically organized patterns in behavior and the environment are 
precisely what support the agent ’ s capacity to freely and reversibly navigate 
its local environment. Getting clear on what we mean by  “ metabolically 
relevant ”  information, and why a Gibsonian perspective is helpful here, is 
the central task of this section of the chapter. 

 To meet the charge of anthropomorphism, our account of systematicity 
in minimally cognitive systems must demonstrate that it does not rely on 
some prior cognitively penetrated system of relations. On our view, the 
emergence of higher-level cognition depends on systematic features in 
behavior and the environment. (See  Symons 2001. ) We contend that 
inquiry into the mechanisms that underlie the minimally cognitive capaci-
ties that are necessary for navigating environments containing metaboli-
cally relevant information will provide an account of how systematicity 
first appears over the course of natural history. 

 Following Fodor, philosophers have been very suspicious of claims like 
ours. During the 1980s, Fodor and Pylyshyn criticized Gibson ’ s account of 
perception before moving on to criticize connectionist cognitive architec-
tures later in the decade. Their 1981 paper  “ How Direct Is Visual Percep-
tion? Some Reflections on Gibson ’ s  ‘ Ecological Approach ’  ”  argued that the 
only way for ecological theories of perception to account for vision is by 
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allowing for cognitive penetrability in the form of inferential processing. 
Their classic 1988 paper  “ Connectionism and Cognitive Architecture: A 
Critical Analysis ”  argued that the only way for connectionist theory to 
account for the systematicity of thought is by committing itself to a clas-
sical combinatorial structure.  

 Their 1988 paper addressed the possibility of a representational 
realist alternative to a classical model of the mind. In their 1981 paper, 
they criticized the possibility of a nonrepresentational alternative to a 
constructivist theory of perception. The ecological counterpart to represen-
tation and perceptual processing are information pickup and perceptual 
resonance, respectively. The connectionist counterparts to propositional, 
context-independent forms of representation and computation are context-
dependent, vectorial representations and vector-to-vector transformations, 
respectively. 

 In what follows, we read Fodor and Pylyshyn ’ s criticism of nonclassical 
cognitive architectures and their criticism of ecological theories as related 
defenses of a classical computational model of mind. Both lines of criticism 
challenge competitors to demonstrate how nonclassical alternatives could 
provide explanations of genuinely cognitive phenomena. As we shall see, 
shifting from the systematicity of thought to the systematicity of overt 
behavior allows an alternative explanatory framework that circumvents 
some of their concerns. 

 It is helpful to briefly introduce Gibson ’ s theory of perception by 
contrast with the classical view before arguing for the applicability of 
Gibsonian ideas to the systematicity of behavior. Theories of perception 
can be divided roughly into those that are congenial to some form of 
Helmholtzian constructivism ( Rock 1983 ) and those that adopt an 
ecological approach ( Gibson 1979 ). Proponents of the former regard per-
ception primarily as the outcome of a logic-like process of inference, 
whereby perception is hypothesized to be mediated or indirect. Following 
the Gibsonian lead, ecological theories of perception assume that an 
agent ’ s perception is organized around its actions. Opportunities for 
action are perceived directly by agents as they interact with their local 
environment.  10   

 The two core principles of Gibsonian psychology that we stress are the 
 specificational  account of information and the idea that  affordances  are what 
are perceived by agents.  11   The notions of specification and affordance play 
a technical and idiosyncratic role in Gibson ’ s thought so we shall introduce 
them first. When properties of the world match unambiguously the pat-
terns of ambient energy arrays available to a perceptual system, the energy 
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arrays serve to  specify  the properties. Matches of this kind result from con-
straints that operate at an ecological scale between the agent and its envi-
ronment. This is the most obvious contrast with constructivists, for whom 
there is an inherently ambiguous relation between the pattern in the 
energy array and the world. The assumption that this ambiguity must exist 
is precisely the reason that traditional constructivist theories call for an 
inferential treatment of perception. 

 How do Gibsonian theories explain visual perception without recourse 
to inferential processes? The optical variable tau ( τ ) ( Lee 1976 ) provides a 
canonical illustration of the way information of optic arrays specifies prop-
erties of the environment unambiguously. Consider the distance between 
a car and an intersection as the driver approaches a stop sign. How does 
the driver judge when to apply the brakes to stop the car? What type of 
information can the driver rely on? One answer is provided by tau theory. 
David Lee defines tau as the inverse of the relative rate of expansion on 
the retina of an incoming object (e.g., a traffic sign).  12   In this way, the 
ecological psychologist treats tau as an optical invariant insofar as it speci-
fies time-to-contact, not just between driver and stop sign, but between 
any animal and the object in its vicinity in terms of rate of retinal expan-
sion in the direction of motion. Presented formally, 

  τ  =  θ /(  Δ  θ / Δ t ) 

 where   θ   stands for the angular size of the incoming object, and   Δ  θ / Δ t  stands 
for the image ’ s rate of expansion, as projected into the eye. The ecological 
psychologist ’ s working hypothesis is that the optic flow field that obtains 
in the changing ambient optic arrays during navigation permits the agent 
to grasp the rate at which action gaps are closing ( Lee 1998 ). In our 
example, a tau-theoretic approach does not demand articulation in terms 
of the agent ’ s beliefs concerning the actual speed of the car or the size of 
the signal.  13   

 The second major principle of ecological psychology is the idea that we 
perceive affordances. Gibson explains affordances as follows: 

 The affordances of the environment are what it offers the animal, what it provides 

or furnishes, either for good or ill. The verb to afford is found in the dictionary, but 

the noun affordance is not. I have made it up. I mean by it something that refers to 

both the environment and the animal in a way that no existing term does. It implies 

the complementarity of the animal and the environment. (1979, 127) 

 By contrast, from a Helmholtzian perspective, agent-independent vari-
ables, such as (absolute) distance, size, or speed, serve as the basic building 
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blocks of perception. On this view, we perceive the distance to an object 
or its size and subsequently infer the object ’ s availability for some action. 
By contrast, affordances are ecological properties, meaning that they are 
individuated by reference to the agent. Compare the ecological property 
of being reachable to the physical property of being one meter in length. 
Affordances are  “ opportunities for behavior ” ; properties of the local envi-
ronment that permit agents to interact in ways that are relevant to the 
agent itself. The availability of an object for grasping is a property that 
makes no sense apart from its relation to an agent. 

 Ecological theories of perception take their start from the notion that 
what a biological agent perceives depends initially at least on the aspects 
of the environment that are relevant for it — more specifically, on those 
aspects of the environment that are available for biologically relevant 
interactions. We perceive by directly resonating with informational invari-
ants that specify opportunities for behavior in the form of affordances. 
Different biological agents will perceive different affordances — that is, dif-
ferent opportunities for behavioral interaction within their respective envi-
ronmental niches.  14   

 Having outlined some of the central tenets of Gibson ’ s view in very 
broad strokes, we are ready to turn to the objections. Ecological psychology 
is widely criticized as failing to do justice to the explanatory role played 
by systematic features of cognition. Consider speech perception, in particu-
lar the debate over  “ rule learning ”  in infants.  Marcus et al. (1999)  per-
formed a series of experiments with seven-month-old infants. After having 
exposed them for two minutes to strings of artificial syllables conforming 
to a simple grammar — for example,  “ le le di, ”   “ ga ga li, ”  and the like, from 
an AAB grammar, or  “ wi je je, ”   “ ga li li, ”  and so on, from an ABB one —
 infants ’  speech perception skills were tested by analyzing their listening 
preferences for pairs of novel strings, one of which belonged to the same 
category they had been habituated to — for example,  “ wo wo fe ”  (AAB) 
versus  “ wo fe fe ”  (ABB). The results show that infants listened longer to 
those that did not conform to the pattern they had been exposed to during 
habituation.  15   

 Marcus et al. interpret their results as showing that infants exploit 
abstract knowledge that allows them to induce the implicit grammar 
common to different sequences of syllables: 

 We propose that a system that could account for our results is one in which infants 

extract abstract-like rules that represent relationships between placeholders (vari-

ables) such as  “ the first item X is the same as the third item Y ”  or more generally that 

 “ item I is the same as item J. ”  ( Marcus et al. 1999 , 79) 



The Emergence of Systematicity 407

 Connectionist responses focused on the possibility that an associative 
learning mechanism might induce  sameness  out of the statistical depen-
dencies between syllable tokens in the linguistic corpus (Elman 1999). 
Their working hypothesis was that infants might be exploiting discrepan-
cies based on expectations in order to make successful predictions in 
accordance with Marcus et al. ’ s data. If connectionist networks were to 
do so associatively, without recourse to universally open-ended rules or 
to devices that store particular values of variables to perform variable 
binding, no classical implementation would be required ( Calvo and 
Colunga 2003 ).  16    

 Likewise, the ecological psychologist may frame the challenge of 
explaining how infants perceive speech in terms of the  direct  perception 
of  sameness -related properties. After all, the class of artificial syllables in 
Marcus et al. ’ s experiments corresponds to a set of objects in the infant ’ s 
environment. We may thus try to make sameness available in the form of 
parameters that specify the property of  “ item I belonging to the same set 
as item J. ”  As this is an empirical matter, an infant ’ s perceptual systems 
could in principle resonate to any such property. Certainly, the Gibsonian 
may conjecture, the resonator in question might be a complex one, but so 
be it. 

 A combined reading of the two papers by Fodor and Pylyshyn men-
tioned above (1981, 1988) provides the arguments against the possibility 
that sameness is transduced in this way. According to  Fodor and Pylyshyn 
(1988) : 

 Connectionist theories acknowledge  only causal connectedness  as a primitive relation 

among nodes; when you know how activation and inhibition flow among them, 

you know everything there is to know about how the nodes in a network are related. 

By contrast, Classical theories acknowledge not only causal relations among the 

semantically evaluable objects that they posit, but also a range of structural relations, 

of which constituency is paradigmatic. (12) 

 On the other hand, as  Fodor and Pylyshyn (1981)  observe: 

 The reason that productive properties are  prima facie  not transduced is that, in many 

of the most interesting cases, membership in the associated set is inferred from a 

prior identification of the internal structure to the stimulus. (177) 

 Swap  “ classical ”  and  “ connectionist ”  for  “ constructivist ”  and  “ ecological 
psychology, ”  and  “ nodes ”  and  “ network ”  for  “ transductors ”  and  “ organ-
ism, ”  respectively; bear in mind that a combinatorial syntax and semantics 
for mental representations and structure-sensitivity of processes operate 
as a constraint on candidate mechanisms,  17   and the challenge takes the 
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following form: given that ecological psychology acknowledges causal 
connectedness only as the relation of transduction in the environment-
organism coupling, these systems face the challenge of explaining how 
properties that are relevant to systematic features of behavior are trans-
duced. Specifically, for example, how can sameness be directly perceived, 
without resorting to a prior internal structure of some sort that allows for 
the identification of membership itself? 

 The ecological theorist of perception acknowledges only causal relations 
among the meaningful opportunities for behavior that they posit in the 
form of affordances — in the form of the direct relation of interaction that 
obtains between organism and environment when observed at the appro-
priate ecological scale. From a Fodorian perspective, the ecological theorist 
of perception turns a blind eye to any  internal  structural relations, and as 
such, the approach fails to deliver the kind of structural richness available 
to classical computational models. Were we to target ecological parameters 
that specify sameness non-inferentially, the Fodorian would complain that 
we have not provided an explanation as to how productive or systematic 
properties obtain. 

 There are a number of responses to this line of argument. One of us has 
explored the idea that arguments against ecological approaches that appeal 
to the complexity of some information-processing task sometimes proceed 
with an explanatory project in mind different from Gibson ’ s ( Symons 
2001 ,  2007 ). Another general line of response is to see Fodorian criticisms 
as due to an unwarranted concern with the linguiform structuring of 
higher cognitive abilities. Linking cognitive phenomena to speech percep-
tion and similar cognitive tasks begs the question against nonclassical 
alternatives insofar as nonclassical approaches would regard language-level 
systematicity as an achievement for an agent rather than as a precondition 
for cognitive agency. 

 The critical issue here is clearly the question of the target of explanation. 
As is well known, the Fodorian perspective denies that there is an extra-
linguistic source of explanation for linguistic capacities. However, if we 
hope to explain the emergence of systematicity per se, then we will need 
to shift our focus from higher-level cognition to nonhuman, infraverbal, 
minimal forms of cognition.  18   In the sections that follow, we will explain 
the kinds of systematic features of behavior in minimally cognitive agents 
that we believe can serve as the scaffolding for the kind of linguistic sys-
tematicity that interested Fodor et al. in the 1980s and  ’ 90s. Once again, 
the target of explanation is the emergence of the kinds of systematic fea-
tures that are exhibited by intelligent behavior. 
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 5   A Neo-Gibsonian Approach to Minimally Cognitive Agents 

 We propose what we are calling a neo-Gibsonian response to Fodor and 
Pylyshyn ’ s challenge.  19   In this section we elaborate on the principles of 
 “ general tau theory ”  (Lee 2009) to give form to a neo-Gibsonian approach 
to the systematicity of behavior in minimally cognitive agents. 

 General tau theory (Lee 2009) is a theory of the  skilled  control of goal-
directed movement. The chief concern of tau theory is the control of 
movement as a system interacts with objects in its local environment. This 
requires the control of  “ action gaps ”  between a given current state and the 
desired goal state. The closure of action gaps has been studied extensively, 
with general tau theory serving to account for such varied phenomena as 
the visual control of braking or steering by drivers ( Lee 1980 ), of diving by 
gannets ( Lee and Reddish 1981 ), or of docking on feeders by humming-
birds ( Lee et al. 1991 ). These are examples of the  “ time-to-collision ”  
problem ( Lee 1976 ). What unites these apparently disparate phenomena 
is the coordinated control of action gaps, and in these cases, tau is the 
informational variable that underlies goal-directed behavior. 

 According to general tau theory, for a movement to be  goal directed  the 
agent must be able to control the action gap between the current state of 
the system and a goal state. The ecological variable tau is the informational 
currency for the purpose of the controlling action gaps. The tau of an 
action gap can be sensed courtesy of a corresponding sensory gap (Lee 
2009). As we saw earlier, direct sensing of the surrounding optic flow-field 
by a driver ’ s perceptual system provides a canonical example. This is also 
how a gannet, as it dives into the ocean, is capable of retracting its wings 
at the appropriate moment ( Lee and Reddish 1981 ). 

 In addition, general tau theory explains the coordinated control of two 
different action gaps, X and Y, via the  coupling  of their respective taus. A 
canonical example of tau-coupling is provided by the way we can intercept 
with our hand (H) a given target (T) at a certain goal (G), via the mainte-
nance of a constant proportion between the taus corresponding to the two 
action-gaps:  τ (HT) = k τ (HG) (see  Lee 1998 ). Or consider, for the sake of 
illustration, two boats moving in the sea at constant speeds along linear 
paths. Will the two boats collide with each other at a future time? This 
question may be approached ecologically by considering whether the two 
motion gaps, corresponding to their respective trajectories toward the 
hypothetical point of collision, close simultaneously or not. Were they to 
close simultaneously, courtesy of the maintenance of a constant ratio over 
a period of time, the two boats would enter into a collision trajectory. Note 
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how drastically a tau-coupling-based gloss differs from constructivist 
attempts to describe the closure of action gaps. In  Fauconnier and Turner ’ s 
(1998)   “ network model of conceptual integration, ”  for instance, cognitive 
integration ( “ blending ” ) would underlie the inferential capacity to control 
action gaps, X and Y. Mark Turner vividly illustrates it with the metaphor 
of a  “ shrinking triangle. ”   20   We could imagine the two boats and the hypo-
thetical point of collision forming an imaginary triangle. For the two boats 
to collide with each other would translate into the imaginary triangles that 
would form at time  t  and at subsequent time steps being proportional. 
Thus, were we to superpose the resulting proportional triangles and animate 
the image, we would  “ see ”  a shrinking triangle that collapses into the point 
of collision. According to Turner, decisions involved in collision avoidance 
call for a cognitive blend, as the shrinking triangle illustrates. But we need 
not rely on inferential treatment of any sort. General tau theory allows us 
to talk in terms of the coupling of the taus of different action gaps, and 
this is information that is specificational. Simultaneous closure delivers the 
goods  directly .  21   

 General tau theory serves to provide form and constraint to a neo-
Gibsonian theory of minimal cognition. According to the ecological theory 
of perception introduced thus far, there are invariant properties of objects 
in the environment that, when appropriately tuned to in terms of ambient 
energy arrays, result in direct perception. With a touch of analyticity, this 
is what Fodor and Pylyshyn have in mind when they read Gibson as 
meaning to say that 

 for any object or event x, there is some property P such that the direct pickup of P 

is necessary and sufficient for the perception of x. (Fodor and Pylyshyn 1981, 140) 

 Necessity and sufficiency aside, the issue boils down to the way to inter-
pret  “ ambient energy arrays ”  so as to bridge  P  and  x , but there ’ s the rub. 
Surely, the ecological psychologist has a clear picture in mind as to what 
 “ ambient energy array ”  means. Nevertheless, and with apologies to the 
reader familiar with the specialized literature, we shall spell out our par-
ticular take in the form of a set of principles that will serve to introduce 
our neo-Gibsonian approach to minimal cognition. Starting with the 
less-disputed principles, and moving in increasing order of controversy 
to the more contentious ones, the neo-Gibsonian theory of minimal 
cognition we propose (i) is not modality specific; (ii) includes intra-organ-
ismic properties; (iii) is substrate neutral; and (iv) portrays perception as 
a function of the global ambient energy array. To these four principles 
we now turn. 
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  •     A neo-Gibsonian theory of minimal cognition is not modality specific . 

 For the purpose of introducing the ecological worldview we have focused 
thus far on ambient  optic  arrays. However, there is ample evidence that 
information remains specificational regardless of the sensory modality 
involved. We may say that vision is only one facet of the question of 
action-gap closure. Considering a gap to be closed, such as the gap between 
a hummingbird and a feeder, its tau is the time needed to close it, to land 
on the feeder, at the current rate-of-closing. Likewise, the tau of a cell is 
the time needed to swim to a cathode by sensing electric fields at its current 
rate-of-closing ( Delafield-Butt et al. 2012 ). Other tau-based studies include 
the steering bats perform courtesy of echolocation ( Lee et al. 1995 ) and 
the gliding pitch between notes in expressive musical performance ( Scho-
gler et al. 2008 ). Illustrations abound. As Lee puts it: 

 To dispel a common misconception, tau is  not  the inverse of the rate of dilation of 

an optical image, any more than gravity is the apple falling on Newton ’ s head. The 

apple falling is an example of the general principle of gravity. The image dilation is 

an example of the general principle of tau. (2004, 8) 

 It is thus changes in the sensory gaps of any modality what informs as to 
which opportunities for behavioral output are present in the form of the 
closure of the action gap in question. 

  •     A neo-Gibsonian theory of minimal cognition includes intra-organismic 
properties.  

 The ecological psychologist distinguishes between ambience and environ-
ment. Ambience relates to the surrounded organism  and  the surrounding 
environment. In this way, the unity of interest is the reciprocity of the 
whole ecological scenario itself. Organism and environment are not 
detached, and in their interaction it is ambient (not environment) energy 
flows that count. However, once granted such a reciprocal relation, a rather 
literal reading of Gibson ’ s well-known aphorism —  It ’ s not what is inside the 
head that is important, it ’ s what the head is inside of  — precludes us from 
noting that direct ecological interaction between organism and environ-
ment, on the one hand, and intra-organismic, say, neural processing prop-
erties, on the other, are not antagonistic. With the emphasis on the relation 
between an organism and its surroundings, it is easy to see that the eco-
logical ambience does not need to be exclusively exogenous. 

 The neglect of endogenous ambience is clearly widespread among Gib-
sonians. A notably rare exception is Lee (2009). Affordances are neither 
external nor internal by necessity. Affordances are dispositional properties 
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to close action gaps. We may then consider both endogenous and exoge-
nous sources alike. The ecological ambience of a cell, or a population of 
cells, implies a reciprocity of the cell, say, a neuron or a population of 
cortical neurons, and its surroundings, which may be the extracellular, 
cortical, or subcortical environment. Thanks to this, intrinsic guidance can 
take place. What counts is that information remains specificational, not 
whether it is constrained by the scale of perception and action or by the 
spatiotemporal scale of endogenous cellular processes. 

  •     A neo-Gibsonian theory of minimal cognition is substrate neutral . 

 Once the distinction between exogenous and endogenous ambiences is in 
place, it is important to note that intrinsic guidance need not be (exclu-
sively)  neurally  based. This is often the case with the (neurocomputational) 
constructivist.  Llin á s and Churchland ’ s (1996)  concept of  “ endogenesis, ”  
for instance, lays the stress on the fact that cognitive activity is the result 
of endogenous neural processes. But when the ecological psychologist 
decides to go inward, the methodological constraint that operates is that 
the spatiotemporal scale of processes remains ecological, and not whether 
the substrate is neural or not. It may, for instance, be hormonal instead, 
granted that specificational information that can be detected for the 
purpose of appropriate resonance exists at the scale of hormonal processes. 
It is the fact that a property is appropriately defined at an ecological scale 
that counts. Bluntly, there is no reason why the neo-Gibsonian should be 
a neural chauvinist. 

  •     A neo-Gibsonian theory of minimal cognition portrays perception as a function 
of the global ambient energy array . 

 According to our first principle, a neo-Gibsonian theory of minimal cogni-
tion is not modality specific in the sense that specification may take place 
in a number of energy arrays. Plausibly, then, the specification of reality 
may not reside in a single ambient energy array. It is possible, however, that 
researchers have decided to focus on the optic, instead of, say, the acoustic 
array simply on experimental or methodological grounds. In this way, a 
further twist comes with the idea that specification, unconstrained, may 
exist in the global energy array itself, in some higher-order format that cuts 
across sensory modalities ( Stoffregen and Bardy 2001 ). If there are intrinsic 
forms of tau-guiding action gaps, we may be searching for transmodal 
integration via synchronous interactions between neurons; a process that 
under the hypothesis that information is picked up from the global energy 
array itself could be couched non-inferentially. This would not be a radically 
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innovative way of proceeding. Neuroscience is familiar with cross-modal 
integration ( Kujala 2001 ). What is at stake, rather, is the question of 
whether there are transducers for global variables. This, despite Fodor and 
Pylyshyn ’ s skeptical appraisal, is an open empirical question. Still, it is 
important to point out that, one way or the other — whether specification 
is transmodal or unimodal — perception would remain unmediated.  22   

 As we saw at the outset of this section,  Fodor and Pylyshyn (1981)  
stressed that the direct pickup of properties was both necessary and suffi-
cient for the perception of objects and events, but questioned that ambient 
energy arrays may permit the specification of information in the form of 
affordances. In our view, the ecological link between properties and objects 
or events may be licensed or not as a function of the way we read  “ ambient 
energy arrays. ”  According to our neo-Gibsonian reading, direct perception 
is a function of the global ambient energy array. This appraisal, combined 
with the lack of specificity with respect to modality, acknowledging intra-
organismic properties, and an eschewal of neural chauvinism, sets the stage 
for assessing the plausibility of direct perception and behavioral systema-
ticity in the remainder of the chapter. Direct perception is the emergent 
result of organism – environment interplay. In the next section, we discuss 
the question of whether a neo-Gibsonian theory of minimal cognition may 
apply to plants. 

 6   Plants as Perceiving and Behaving Organisms 

 Gibson did not believe that plants were capable of perception, and he 
might have worried that our claim that plant behavior can be understood 
according to the principles of ecological theory of perception as equivalent 
to a reductio argument against his view.  23   However, contrary to Gibson ’ s 
own view of the capacities of plants, if perception is understood in terms 
of resonance to specificational information then there is ample ground to 
argue that plants perceive. Plants are animate, move about, and have an 
internal system for organizing behavior that, in some important respects, 
is similar to the animal nervous system.  24   Circumnutation in climbing 
vines, a helical and rotational form of oscillatory movement already 
studied by  Darwin (1875) , provides one of the best well-known illustrations 
of the endogenously governed exploratory strategies of the surrounding 
environment performed by plants. Furthermore, the behavior of plants is 
often systematic in the sense of being reversible, non-automatic, and 
repeatable in a manner that responds to metabolically salient features of 
the environment. 
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 Not all ecological theorists shared Gibson ’ s dim view of the perceptual 
capacities of plants. In a reply to  Fodor and Pylyshyn (1981) ,  Turvey et al. 
(1981)  consider from an ecological point of view  Monstera gigantea , a climb-
ing vine whose seeds are able to perceive an affordance ( “ climbability ” ) 
skototropically as they grow toward darkness. As we saw earlier, it is essen-
tial to distinguish between ambience and environment, the former being 
inherently relational with respect to perception-in-action. Consider how 
climbing plants can be understood as perceivers ( Isnard and Silk 2009 ). 
Vines may well perceive Gibsonian affordances, possibilities for action, 
such as when a support is directly perceived as affording climbing. To 
understand climbability it is necessary to bear in mind that a vine and its 
support are functionally coupled subsystems. The vine should not be seen 
as a kind of organism that acts, by climbing, onto a separate kind of thing 
that is the support. As Gibson observes: 

 The words  animal  and  environment  make an inseparable pair. Each term implies 

the other. No animal could exist without an environment surrounding it. Equally, 

although not so obvious, an environment implies an animal (or at least an organ-

ism) to be surrounded. (1979, 8) 

 Replacing  “ animal ”  for  “ plant, ”  we see that the rest of Gibson ’ s claim holds 
in a relatively straightforward manner. Thus, a vine could not live without 
an environment that furnishes it with rocks, tree trunks, and all sorts of 
supports that are directly perceived as affording climbing. The complemen-
tarity of the plant and its vicinity means that the plant-in-its-environment 
serves as the proper unit of analysis. 

 On the other hand, we saw that action-gap closure is not only a matter 
of distance, but can also cover angle, pitch, frequency, and so on. In addi-
tion to the well-studied case of vision, action-gap closure also figures in 
other modalities including haptics and echolocation, among others. It is 
thus ambient energy arrays of any form that can serve this purpose. Plants 
tune to a wealth of information beyond the vectors of light and gravity. 
In the case of plants, we cannot ignore forms of sensory input such as 
electrical, magnetic, chemical, acoustical, and vibrational. Consider plant 
bioacoustics, a field of research that informs us that plants may have ben-
efited at an evolutionary scale from the perception of sound and vibrations 
( Gagliano et al. 2012 ). And yet, more intriguingly, there is evidence that 
plants even exploit bioacoustics to communicate with insects ( Barlow 
2010 ). Overall, to the best of our knowledge, plants can sense, and inte-
grate, up to twenty-two different biotic and abiotic vectors ( Trewavas 
2008 ). At first sight, then, if plants perceive, it seems there is no reason to 
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exclude the possibility that direct perception takes place as a function of 
the plant ’ s global ambient energy array. 

 We may furthermore dig deeper and address intrinsic guidance by plant 
structures, once we recognize the role of the plant ’ s endogenous ambience. 
In fact, neuroid conduction ( Mackie 1970 ) applies to protists, plants, and 
animals alike insofar as they all have nonneural cells with electric signaling 
properties. Thus, the fact that plants lack neurons is not a handicap from 
the ecological perspective.  25   

  Plant neurobiology  ( Brenner et al. 2006 ) has consolidated in the last few 
years as a discipline that studies plant behavior from the analysis of the 
integrated signaling and electrophysiological properties of plant networks 
of cells, with special attention to the involvement of action potentials, 
long-distance electrical signaling, and vesicle-mediated transport of auxin, 
among other pythohormones. As  Balu š ka et al. (2006)  point out: 

 Each root apex is proposed to harbor brain-like units of the nervous system of plants. 

The number of root apices in the plant body is high, and all  “ brain units ”  are inter-

connected via vascular strands (plant neurons) with their polarly-transported auxin 

(plant neurotransmitter), to form a serial (parallel) neuronal system of plants. (28)  26   

 If plant behavior is partly the result of endogenous nonneural processes, 
then vascular strands and auxin correlates may serve to guide endoge-
nously goal-directed climbing behavior toward tree trunks or other sup-
ports under the principles of tau-coupling and the intrinsic tau-guidance 
of action gaps. Following the analogy with animal models, it may be the 
case that taus of auxin action gaps underlie the type of hormonal informa-
tion that directs tropistic responses in plants. Tau information may guide 
climbing, and plant neurobiology may well show that the type of activity 
that underlies sensorimotor coordination across the plant may also be 
tau-based.  27   

 A condition for minimal cognition was that the navigational capacities 
and sensorimotor organization were organized globally. The  “ root-brain, ”  
a concept inspired in the discovery of the  “ transition zone ”  (TZ) within 
the root-apex, may play an important role here. Plant neurobiologists 
consider TZ — the only area in plant roots where electrical activity/fields 
are maximal, and where electrical synchronization obtains ( Masi et al. 
2009 ) — to be a  “ brainlike ”  command center ( Balu š ka et al. 2004 ,  2009 ), 
with a polar auxin transport circuit underpinning patterns of root growth. 
TZ integrates not only hormonal endogenous input, but also sensory 
stimulation. Plant roots determine root growth that results in alignment 
or repulsion movements as a function of the global structure of its 
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vicinity. We may then consider the role of the root-brain in the integra-
tion of sensorimotor pathways for the purpose of adapting flexibly as a 
number of global tropistic responses take place in the form of differential 
growth. We may thus take into account the role of the root-brain in the 
specification of plant – environment reciprocity and consider plant percep-
tion as a function of the global ambient energy array. To think of percep-
tion as a function of the global ambient energy array may mean searching 
for TZ cells at the root-brain that respond selectively to the embracing 
activity, with invariants spanning across the vectors of gravity, light, and 
the like, on the one hand, and across endogenous hormonal stimuli, on 
the other. 

 Our hypothesis is that root-brains resonate to high-order invariants. 
This hypothesis is compatible not only with perception being a function 
of the global ambient energy array, but also with the other neo-Gibsonian 
principles described above. Note that, for convenience, we simplified 
matters by considering tropistic behavior as if triggered by energy arrays 
on a case by case basis. However, Gibson provided many different examples 
of lower- as well as higher-order invariants, among them, gravity (Gibson 
1966, 319) and the penumbra of a shadow (Gibson 1979, 286). A more 
realistic portrayal should be amenable to multiple sources of perturbation. 
A possibility then is that TZ could be sensitive to structure in the global 
array directly, in the same way we have hypothesized animals are ( Stof-
fregen  &  Bardy, 2001 ). In this way, we do not need to interpret synchro-
nized firing at TZ cells as inferential processing. Rather, TZ cells, under the 
ecological lens, resonate to information from the global array. As we saw, 
there are intrinsic forms of tau-guiding action gaps. Considering that inter-
actions in the plant brain between TZ cells offer a way of integrating 
endogenous and exogenous information, affordances may be systemati-
cally perceived in terms of higher-level combinations of invariants. 

 Bearing this background in mind, we conclude this section with a 
consideration of honeybee behavioral systematicity by way of contrast. 
We then consider in the next section how to scale up from plant and 
insect direct perception and behavioral systematicity to human-level 
performance. 

 Having assumed that the globally organized exploitation of the environ-
ment by means of motility enabled by various sensorimotor organizations 
marks the borderline between purely reactive and minimally cognitive 
behavior, we may now assess the capabilities of insects as they navigate 
their metabolically relevant environment, an intelligent form of behavior 
usually couched in constructivist terms. Consider the swarming behavior 
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of honeybees ( Visscher 2003 ), where an individual contributes to the cre-
ation of a  “ spatiotemporal order characterized by the alignment of direc-
tions and maintenance of equal speeds and distances ”  ( Ciszak et al. 2012 ). 
Honeybees can estimate and communicate distance and direction of hive-
to-nectar and nectar-to-hive through the  “ waggle dance ”  ( von Frisch 1993 ). 
Abilities of this sort are not exclusive to bees. More generally, we may say 
that insects that are able to acquire a piece of information that is metaboli-
cally relevant have the resources to acquire related pieces of information 
that are also metabolically relevant. 

 Can we account for the behavior of honeybees ecologically? At first 
sight, it may seem that we cannot. Peter Carruthers, for instance, claims 
that 

 bees have a suite of information-generating systems that construct representations of 

the relative directions and distances between a variety of substances and properties 

and the hive, as well as a number of goal-generating systems taking as inputs body 

states and a variety of kinds of contextual information, and generating a current goal 

as output. (2004, 215) 

 This should remind us of Marcus ’ s take on infant speech perception. Bees, 
like infants, appear to exploit abstract knowledge that allows them to 
induce underlying regularities. This process appears to call for the imple-
mentation of operations defined over abstract variables algebraically. Con-
structivism appears again to be the default stance. To find both the nectar 
and their way back to the hive honeybees exploit directional data compu-
tationally by generating a spatiotemporal representation of the sun ’ s course 
( Dyer and Dickinson 1994 ). 

 The basis for an ecological explanation is on offer. By running experi-
ments in which bees are forced to fly in narrow tunnels,  Esch et al. (2001)  
have been able to experimentally manipulate optic flow fields. Interest-
ingly, their results are inconsistent with absolute distance or any other 
bee-independent variable being computed in the waggle dance, as would 
need to be the case under an algebraic interpretation. Rather, the estimation 
of distance is consistent with reliance on self-induced optic flow in the 
open. Srinivasan et al. (2000) provide converging evidence in terms of bee-
dependent properties, and other insects such as desert ants ( Ronacher and 
Wehner 1995 ) appear to follow a strategy with similar ecological creden-
tials.  Collett and Collett (2002)  also interpret honeybee navigation in 
Gibsonian terms. This research is compatible with ecological forms of navi-
gation that make no cognitive use of representational- cum -computational 
maps or operations of any sort. 
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 As we saw earlier, minimal cognition initially consisted of exploiting 
the environment, courtesy of free and reversible bodily movements enabled 
by various sensorimotor systems of organization. Of course, the analogy 
with plants cannot be cast straightforwardly in finding-their-way-back-
home terms.  28   Circumnutation, or other forms of plant movement, are 
specific to plants ’  needs and constraints. Still, the analogy is functional, 
and operates when drawn in relation to the exploration of roots for nutri-
ents, for instance. Roots literally navigate systematically through their local 
environment. 

 In effect, the navigational repertoire of plants is considerable, and a 
number of highly sophisticated and intriguing navigational capabilities 
may be considered beyond tendril-climbing, such as search and escape 
movements performed by roots in response to competition (see  Balu š ka, 
Mancuso et al. 2010  and references therein), or the photophobic behavior 
of crawling maize roots, a behavioral response that cannot be interpreted 
as a simple form of unidirectional negative phototropism ( Burbach et al. 
2012 ). Root-swarming behaviors exhibit similar levels of behavioral com-
plexity. Roots not only must navigate the soil structure, but must also 
coordinate their root system so as to optimize nutrient intake in addition 
to other adaptive considerations such as territoriality. In these cases, infor-
mation must be shared across the plant root system. In fact, communica-
tion takes place not only between root apices of the same plant, but also 
with respect to the root systems of neighboring ones. In this way, the 
concept of adaptive swarming behavior applies to plants, as they solve by 
social interaction problems that outstrip the individual when viewed in 
isolation ( Balu š ka, Lev-Yadun, and Mancuso 2010 ). 

 Two forms of interaction between roots that have been studied meet 
our criteria for minimal cognition. As  Ciszak et al. (2012)  report, roots 
may align/repulse and grow in the same/different direction in the absence 
of physical contact (distance-based alignment/repulsion). On the other 
hand, root crossing may take place when roots first attract each other, to 
repulse afterward. Overall, complex patterns of collective behavior have 
been observed, with groups of roots being able to choose the same or 
opposing growth direction (see  Ciszak et al. 2012  for details). We may 
thus consider how the position and orientation of individual roots relates 
in an emergent manner to the tendencies of other roots to respect align-
ment in growth. 

 These studies are consistent with the idea that roots that are able to 
acquire metabolically relevant information have the resources to acquire 
related information that is also metabolically relevant. Roots can estimate 
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and communicate distance, direction of nutrient vectors in soil patches, 
and potential competition through angle adjustment in navigation, and 
the adjustment of angle can be signaled by electric fields that roots gener-
ate, and sensed in turn by other individual roots or root systems.  29   In this 
way, swarming behavior results in systematic patterns of navigation that 
we understand are in principle subject to a methodological treatment akin 
to the one pursued by  Collett and Collett (2002) ,  Esch et al. (2001) , Srini-
vasan et al. (2000), and other authors, in the case of insect ecological 
navigation. 

 Summing up, minimally cognitive systems exploit the spatiotemporally 
dispersed characteristics of metabolically relevant environmental features 
by performing free and reversible bodily movements. As a result, both 
insects and plants generate a flow (plausibly by root circumnutation, in 
the case of plants) that is informationally rich insofar as navigational paths 
are ecologically specified. Invariant information is generated through navi-
gation, a capacity that is itself guided by the structure of that very informa-
tion. It is this reciprocity between perception and action that tells against 
a cognitivist rendering of minimal cognition, and against an inferential 
treatment of systematicity as conceived for such minimal agents.  30   

 7   The Ecological Approach to (Minimal) Cognition 

 Finally, is it possible to scale up from a neo-Gibsonian approach to minimal 
cognition to higher-level forms of systematicity? One option is to maintain 
that higher cognition inherits its combinatorial power from the structuring 
role of public language itself ( Dennett 1995 ;  Clark 1997 ;  Symons 2001 ). 
The systematicity of thought might then be seen as the felicitous outcome 
of an agreed-on systematicity of language. Sympathizers with this route 
may come, for instance, from the connectionist corner ( Bechtel and Abra-
hamsen 2002 ) or from a dynamic and interaction-dominant perspective 
( Gomila et al. 2012 ).  31   

 Rather than denying systematicity at the behavioral level, one could 
imagine a split into an ecological lower-level system and a constructivist 
higher-level one. We will not consider the former option, as we have 
granted the systematicity of behavior under our  “ minimal cognition ”  
approach.  32   The two visual systems model ( Goodale and Milner 1992 ) 
provides the canonical illustration of the second option ( Norman 2002 ), 
where the ventral ( “ what ” ) and dorsal ( “ where ” ) pathways serve different 
purposes. Whereas the ventral pathway, being inferential and memory 
based, connects vision with cognition proper and therefore fits nicely with 
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constructivist concepts, the dorsal pathway, being in charge of the control 
of motor behavior, is more in line with ecological principles. 

 Clark ’ s (2013)  “ hierarchical generative model ”  provides yet another type 
of conciliatory strategy that although, to the best of our knowledge, has 
not been considered for the purpose of responding to the systematicity 
challenge, will serve by way of contrast to pin down our methodological 
proposal.  Clark (2013)  invites us to consider a  “ unified theory of mind and 
action ”  by combining Bayesian (top-down) and connectionist (bottom-up) 
methodologies into a single architecture. According to  “ probabilistic 
models ”  of thought ( Griffiths et al. 2010 ), configurations of sequences of 
symbols obtain as a result of probabilistically tinkering with a number of 
parameters that determine syntactically correct structures. Together with 
particular mechanisms in the hippocampus and neocortex ( McClelland 
et al. 2010 ) that account for the possibility of combining rapid parsing and 
associative learning, a conciliatory solution might be forthcoming.  33   

 By contrast with these methodological choices, we believe that ecologi-
cal psychology has the resources to avoid the potential pitfalls of these 
strategies: neglectfulness of systematicity itself or, possibly, becoming 
implementational. Our claim is not that ecological psychology might be 
able to account for those cognitive phenomena that resist a description in 
terms of systematicity. Rather, we believe that a great deal of behavior 
(behavior that we identify with minimally cognitive flexible responses) is 
thoroughly systematic, and that the neo-Gibsonian may be able to explain 
it. This includes the perception of speech. Gibson notes: 

 Now consider perception at second hand, or vicarious perception: perception medi-

ated by communications and dependent on the  “ medium ”  of communication, like 

speech sound, painting, writing or sculpture. The perception is indirect since the 

information has been presented by the speaker, painter, writer or sculptor, and has 

been  selected  by him from the unlimited realm of available information. This kind of 

apprehension is complicated by the fact that direct perception of sounds or surfaces 

occurs along with the indirect perception. The sign is often noticed along with what 

is signified. Nevertheless, however complicated, the outcome is that one man can 

metaphorically see through the eyes of another. (quoted in Fowler 1986, 23 – 24) 

 Gibson ’ s comments may appear at first sight to drive us straightforwardly 
into constructivism. But, in Gibson ’ s usage, being  “ indirect ”  is not tanta-
mount to cognitive penetration. Despite his distrust of mental abstrac-
tions, in  The Senses Considered as Perceptual Systems  Gibson already hints at 
a way to bridge language and ecological psychology with an eye to articu-
lating the direct perception of meaning. For example, he discusses  “ the 
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pick up of symbolic speech ”  (1966, 90ff.) and  “ the effect of language on 
perception ”  (280 – 282). Unfortunately, Gibson did not elaborate much 
beyond some preliminary remarks.  34   We close our chapter by inviting the 
reader to consider the supracommunicative role of language as an ecologi-
cal  tool . 

 An ecological approach cannot be in the business of developing a gen-
erative grammar for verbal behavior; its aim is rather to foster an under-
standing of language use that is integral to the emergent and self-organized 
(linguistic and nonlinguistic) behavior of humans. In this way, the devel-
opment of an ecological approach to language ought to start with the 
realization that language is not that  special  (at least, not in the sense 
implied by cognitivism).  35    Clark (1998) , in this same spirit, proposes a 
supracommunicative role of language, although his approach is alien to 
ecological psychology concerns. Clark starts by clearing up potential mis-
understandings in the very title of his article  “ Magic Words ” : 

 Of course, words aren ’ t magic. Neither are sextants, compasses, maps.  …  In the case 

of these other tools and props, however, it is transparently clear that they func-

tion so as to either carry out or to facilitate computational operations important to 

various human projects. The slide rule transforms complex mathematical problems 

(ones that would baffle or tax the unaided subject) into simple tasks of perceptual 

recognition.  …  These various tools and props thus act to generate information, or to 

store it, or to transform it, or some combination of the three.  …  Public language, I 

shall argue, is just such a tool. (1998, 162) 

  Clark (1998)  is proposing a supracommunicative role for language. He 
criticizes noncomputational models of cognition for emphasizing com-
municative aspects of language to the detriment of its exploitation as an 
external artifact. His is nonetheless an approach that calls for the augmen-
tation, courtesy of  “ magic words, ”  of our computational powers.  36   Being 
noncomputational, our interest resides in identifying the role of language 
in serving not to augment computations but to allow for an ecological 
manipulation of the environment for the purpose of perceiving a brand 
new set of affordances that nonlinguistic animals are unaware of. 

 Tools are part and parcel of the Gibsonian worldview. The environment 
contains artifacts, and these alter its layout, which results in a global 
change of the affordances the environment furnishes to the human animal. 
Tools offer a different set of opportunities for interaction. Language, as an 
ecological tool, is not intrinsically different from artifacts such as tele-
scopes or microscopes, which permit us to go beyond the native capacities 
of our visual systems. Language further alters the environment ’ s layout, 
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providing novel ways to interact in the sociolinguistic environment. The 
ecological approach to language as a tool has to do with behaving adap-
tively in the face of linguistic information. In general, we perceive the 
affordances of artifacts; likewise, we contend, we perceive the affordances 
of words, as a more sophisticated type of artifact. We perceive interindi-
vidual emergent properties, such as public conversation, in pretty much 
the same way that we perceive rocks and their contextual affordances, or 
social affordances ( Costall 1995 ), for that matter.  37   In this way, an external 
linguistic scaffolding provides yet another set of ecological properties to 
be taken on a par with others in the environment.  38   

 8   Conclusion 

 Our approach appears to be open to a very basic challenge. This is posed 
clearly by Ken Aizawa (chapter 3, this vol.), who argues that post-connec-
tionist cognitive science has drifted away from a focus on cognition and 
has lapsed into a kind of uncritical behaviorism. He contends that an 
increasing emphasis on behavior has led to confusion concerning the 
importance of systematicity as a distinctive mark of the cognitive. We agree 
with Aizawa that denying the difference between the behavior we find in 
plants and the systematic features of higher cognition more generally 
would be foolish. However, we do not accept the view that we must mark 
the distinction between the cognitive and noncognitive by the presence 
or absence of structured systematicity. 

 Aizawa and others have long regarded cognition as essentially represen-
tational. While this view comports with our understanding of normal, 
adult human intelligence and provides a useful explanatory framework for 
psychological research with such subjects, it fails to shed any significant 
light on the emergence of cognition over the course of natural history. 
We contend that one cannot explain the emergence of the kind of 
sophisticated representational capacities that are assumed to play a role in 
adult humans if one ’ s account of systematicity presupposes preexisting 
representations. 

 The neo-Gibsonian strategy involves recognizing alternative paths to 
the emergence of cognition over the course of natural history. Rather than 
assuming that we arrive at cognition via representation, an explanation of 
the emergence of cognition supposes that we can provide explanations in 
terms of increasingly sophisticated causal patterns of relations (Garc í a 
Rodr í guez and Calvo Garz ó n 2010). If minimally cognitive systems need 
not involve representations (our neo-Gibsonian take) then objections like 
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Aizawa ’ s can be addressed. What we have assumed is that cognition is a 
form of adaptative behavior and that becoming a cognitive system involves 
an organism managing to succeed as an adaptive system. Of course, not 
all forms of adaptive behavior must be regarded as cognitive. On our view, 
minimal cognition involves adaptive behavior that is systematic. 

 Traditionally, the objection to projects like ours is that we risk conflating 
cognition with behavior, or ignoring cognition entirely. However, this is 
not the case. Instead, we have attempted to demonstrate how systematicity 
at the cognitive level can emerge from the kind of meaningful engagement 
with the environment that is phylogenetically and ontogenetically prior 
to the kinds of intellectual and cognitive capacities that we expect from 
adult humans. We assume that there are ways of meaningfully engaging 
with one ’ s environment that are nonrepresentational. We also assume that 
the concept of meaningful engagement can come apart from the concept 
of representation. 

 Clearly, our work departs from traditional debates over the systematicity 
of thought insofar as it is directed toward a different explanandum. If 
we see the goal of cognitive science as accounting for the emergence of 
intelligence and cognition, then it will be natural to attend to minimally 
cognitive agents and the emergence of simple forms of systematicity in 
behavior. 
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 Notes 

 1.   Notable early proposals are those of  Smolensky (1987 ,  1990 ), who took issue with 

the challenge by exploiting microfeatural descriptions and tensor product variable 

binding for the purpose of modeling weaker and stronger forms of compositionality, 

respectively;  Chalmers (1990) , who modeled structure-sensitive operations on recur-

sive auto-associative memories (RAAM —  Pollack 1990 ); and van Gelder (1990), who 

distinguished between functional and concatenative compositionality. 

 2.   The obvious exceptions being the familiar behavior of the Venus flytrap and the 

mimosa. 

 3.   Michael Tye dismisses any talk of plant intelligence by claiming that it is entirely 

genetically determined and inflexible:  “ The behavior of plants is inflexible. It is 

genetically determined and, therefore, not modifiable by learning. Plants do not 

learn from experience. They do not acquire beliefs and change them in light of 

things that happen to them. Nor do they have any desires ”  (1997, 302). 

 4.   Chemical and electric signaling below ground ( Schenk, Callaway, and Mahall 

1999 ) underlies root segregation, something that involves a form of self-recognition 

(roots must make decisions as to how to segregate) and amounts to a competitive 

form of territoriality. 

 5.   This has been popularized as  “ talking trees, ”  or more aptly as  “ eavesdropping ’  ’  

( Baldwin et al. 2006 ). 

 6.   For a review of plant biochemical warfare against the herbivore, see  Mith ö fer and 

Boland 2012 . 

 7.    Trewavas  observes that a number of forms of plant memory  “ can be recognized 

by the ability to interact with, and modify, the transduction pathways to new 

signals.  …  A more complex form of memory requires information storage of previ-

ous signalling, with the ability to retrieve the information at a much later time. 

Both forms occur in plants ”  (2003, 7). As to plant learning,  Trewavas (2003)  notes 

that  “ wild plants need trial-and-error learning because the environmental circum-

stances in which signals arrive can be so variable.  …  Indications of trial-and-error 

learning can be deduced from the presence of damped or even robust oscillations 

in behaviour as the organism continually assesses and makes further corrections to 

behaviour ”  (ibid., 4). 

 8.   Traditional antibehaviorist considerations ( Chomsky 1959 ) do not pose a chal-

lenge to our account of minimal cognition insofar as dedicated sensorimotor orga-

nization and navigational capacities are globally organized. 

 9.   Arguably, plants possess a far broader repertoire of cognitive capacities than those 

we discuss here. For elaboration of this proposal see  Calvo Garz ó n and Keijzer 2011 , 

and references therein. 
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 10.   For an introduction to Helmholtz ’ s theory of perception in the context of the 

early history of experimental psychology, and to some of the theoretical problems 

in the field of perception, see  Kim 2009 . A good entry point to the direct perception 

approach is  Michaels and Carello 1981 . 

 11.   For further discussion of specification and affordances in Gibson, see  Richardson 

et al. 2008 . 

 12.   For general criticism of tau theory that we ignore for present purposes, see 

 Tresilian 1999 . 

 13.   Most traditional work in cognitive science has assumed that information-pro-

cessing tasks in visual perception must be articulated in terms of an inferential 

process. David Marr, for example, argued that the principal failure of the ecological 

theory of perception was its inability to grasp the actual complexity of visual percep-

tion. Tau theory provides reason to believe that some perceptual tasks might be 

simpler than Marr believed. For more on the issue of the complexity of information 

processing, see  Symons 2007 . 

 14.   It is important to note, then, that with (unambiguous) direct perception require-

ments in terms of memory storage drop dramatically. Information does not need to 

be stored temporarily for the purpose of inferential information processing. The 

direct pickup of informational invariants in ambient light serves to explain visual 

perception. According to ecological psychology, organisms pick up invariants and 

 “ resonate ”  to (i.e., transduce) the ambient properties that they specify. The Gibso-

nian task then is to discover the type of information that is specificational for the 

non-inferential resolution of the perceptual problem in question. 

 15.   See  Marcus et al. 1999  for the details, and  Gerken and Aslin 2005  for a review 

of the language development literature. 

 16.   Although for a skeptical appraisal of the alleged success of connectionism, see 

 Marcus 2001 . 

 17.   To wit:  “ In particular, the symbol structures in a Classical model are assumed 

to correspond to real physical structures in the brain and the combinatorial structure 

of a representation is supposed to have a counterpart in structural relations among 

physical properties of the brain. For example, the relation  ‘ part of, ’  which holds 

between a relatively simple symbol and a more complex one, is assumed to corre-

spond to some physical relation among brain states ”  ( Fodor and Pylyshyn 1988 , 

13). 

 18.   The shift is strategic, as will become apparent below. Other than linguistic 

systematicity being a canonical illustration, there is no intrinsic connection to be 

found between natural languages and the systematicity of thought. McLaughlin 

(1993), for instance, explores systematicity in non-human animals. See also Aizawa ’ s 

chapter in this volume. 
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 19.    “ Neo-Gibsonian ”  insofar as Gibson himself would not have accepted an appli-

cation of ecological theories of perception to minimally cognitive agents like plants. 

We briefly touch on Gibson ’ s objections below. 

 20.   See http://vrnewsscape.ucla.edu/mind/2012-05-03_Turner_Nutshell.html. 

 21.   Tau-coupling also permits the intrinsic tau-guidance of action gaps. Lee (2009) 

considers different guiding gaps, as the gap is closed with constant acceleration or 

with constant deceleration, as you speed up to hop onto the train, or as birds dock 

on perches, respectively. 

 22.   The principle that information is specificational can be given a strong and a 

weak reading. The strong reading says that when a given pattern in the energy array 

bears a one-to-one correspondence to properties of the world, information is 

uniquely specified. On the weak reading, the relation between ambient energy arrays 

and properties of the world may be many-to-one. That is, patterns of the ambient 

energy array may allow for the transduction of environmental properties in a 

manner that, although non-unique, is unambiguous with respect to properties of 

the world. Note that this weak reading is all we need for perception, as a function 

of the global ambient energy array, to remain unmediated. 

 23.   Gibson did not regard plants as capable of perception: 

 In this book,  environment  will refer to the surroundings of those organisms that perceive and 
behave, that is to say, animals. The environment of plants, organisms that lack sense organs 
and muscles, is not relevant in the study of perception and behavior. We shall treat the vegeta-
tion of the world as animals do, as if it were lumped together with the inorganic minerals of 
the world, with the physical, chemical, and geological environment. Plants in general are not 
animate; they do not move about, they do not behave, they lack a nervous system, and they 
do not have sensations. In these respects they are like the objects of physics, chemistry, and 

geology. (1979, 7) 

 24.   This should appear obvious to many since the pioneering research on plants by 

Charles Darwin and his son. Nevertheless, despite their groundbreaking work ( The 

Movements and Habits of Climbing Plants  and  The Power of Movement in Plants ), 

conventional cognitive science has continued to ignore the perceptual and behav-

ioral capacities of plants over a century later. 

 25.   For a recent reinterpretation of the early evolution of nervous systems and what 

they can do that is congenial to our treatment of plants, see Keijzer et al. 2013. 

 26.    Alpi et al. (2007)  complain that  “ there is no evidence for structures such as 

neurons, synapses or a brain in plants ”  (136). For clarification, see Brenner et al. 

2007 and  Trewavas 2007 . 

 27.   Here we have in mind directional responses, but the same ecological principles 

may hold in the guidance of nondirectional (nastic) responses, such as the thigmo-

nastic response of the Venus flytrap ( Dionaea muscipula ) and other carnivorous 

plants when they close their traps in response to touch. 
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 28.   Interestingly, Frantisek Baluska (personal communication) observes that growing 

roots perform circumnutation movements that in a sense resemble the waggle dance 

of bees, although of course not in the information-processing sense that Carruthers, 

for instance, would endorse. 

 29.   For other possible forms of communication between root tips, see  Balu š ka, 

Lev-Yadun, and Mancuso 2010 . 

 30.   Heft ’ s work on ecological navigation is illustrative:  “ A commonly held view is 

that knowledge of environmental configuration must be based on cognitive opera-

tions that construct a mental representation, or a  ‘ cognitive map, ’  from discontinuous 

perceptual encounters. Such a constructivist account seems to be required because 

the overall layout cannot be perceived from any single location in the environment. 

 …  In contrast to this position, the most radical aspect of Gibson ’ s treatment of navi-

gation is his claim that by following paths through the environment, eventually one 

does come to perceive the overall layout of the environment ”  (Heft 1996, 124). 

 31.   On interaction-dominance, see Chemero, this volume. 

 32.    Gomila et al. (2012)  defend this view, although see Mart í nez-Manrique (this 

volume) for an alternative. 

 33.   We do not have the space to elaborate further on this (see Calvo et al. 2012), 

although we suspect that by allowing top-down processing to inform the output of 

the emergentist bottom-up part of the model, the price to pay will be subsumption 

under Fodor and Pylyshyn ’ s charge of implementation. 

 34.   Since then, a number of authors have made further efforts to conciliate the 

principles of ecological psychology with language.  Verbrugge (1985)  approaches 

language in terms of the direct perception of speech as a type of event subject to 

ecological laws (acoustical laws, in the case of verbal speech).  Reed (1987)  tries a 

quasi-grammatical approach to language that is congenial with Chomskian princi-

ples (Noble 1993). We shall not review this literature here (see  Hodges and Fowler 

2010 ;  Fowler and Hodges 2011 , for further insights). 

 35.   Noble (1993), who elaborates on the evolutionary emergence of language from 

a neo-Gibsonian stance, dubs this the  “ language is special ”  doctrine. 

 36.   Of course, such a supracommunicative role is already present in Vygotskyan 

approaches (Vygotsky 1978). 

 37.   See also  Travieso and Jacobs 2009 . 

 38.    Symons (2001)  presents an early version of this position,. arguing that system-

atic patterns of intelligent behavior do not necessarily license the view that internal 

representations play a role in the cognitive system analogous to that played by 

syntactic structures in a computer program. Linguistic structures are instead regarded 

as external targets for the development of individual brains.      
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 Introduction 

 Fodor, for all his recent changes of mind about how the mind works, is 
still convinced that systematicity is real and cannot be explained in con-
nectionist terms (Fodor 2000, 50). On the other hand, there are those who 
doubt the very existence of linguistic systematicity  à  la Fodor and Pylyshyn 
(e.g., Chemero, this vol.). It would be nice if we could make some empirical 
headway on this debate. The idea behind this chapter, then, is to exploit 
the fact that various related sorts of systematicity appear to be very often 
damaged in those with schizophrenia. Thus we have a real live case of 
something like systematicity going awry and can study the effects on cog-
nition and behavior. So this is another instance of the now popular strategy 
to use psychopathology to shed light on theories of standard cognitive 
functioning. Furthermore, evidence is mounting that one important expla-
nation for said failure of systematicity is precisely in terms of subsymbolic 
network properties or their absence. This suggests that, contra Fodor, 
although something like systematicity may be real, it need not be explained 
exclusively in terms of the symbolic and rules thereof. This leaves open 
the possibility that systematicity can be characterized and explained, at 
least partially, in terms of dynamical and network properties. As Abraha-
msen and Bechtel put it:  “ If one is seeking maximal contrast to symbolic 
rules and representations, it is to be found not in the pastiche of connec-
tionism but rather within the tighter confines of one of its tributaries, 
mathematical modeling  …  the dynamical approach to perception, action 
and cognition ”  (2006, 169). Of course, there is no reason why such cogni-
tive dynamical systems cannot for some explanatory purposes have both 
symbolic and subsymbolic aspects, broadly conceived. 

 Aside from the kind of linguistic systematicity that vexed  Fodor and 
Pylyshyn (1988)  with their specific concerns about the combinatorics of 
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semantic content (i.e., compositionality) and the language of thought 
(LOT), there is possibly a much more general kind of systematicity that 
philosophers of cognitive science sometimes call transformational syste-
maticity of thought, that is, the logical, causal, temporal and narrative 
coherence of thought as a process. Failures of transformational systematic-
ity sometimes manifest as failures of so-called linguistic systematicity; 
more will be said about the possible relationships in what comes. However, 
unlike linguistic systematicity, it ’ s clear that transformational systematicity 
really does exist and really does require explanation, because it ’ s precisely 
what some schizophrenics and perhaps some other psychotics with formal 
thought disorders lack ( Murphy 2006;   Kitcher and David 2003;   Radden 
2004;   Graham 2010 ). 

 The focus here will be on formal thought disorders in schizophrenics 
because such disorders of the form (as opposed to content) of thought are 
considered symptomatic of the disorder (Lieberman, Stroup, and Perkins 
2006). Thought disorders are consistently manifested and diagnosed in 
both speech and writing. It is therefore customary in the literature to 
discuss language explicitly when explicating thought disorders and to 
discuss thought when explicating abnormalities of language. Therefore, 
our discussion will often toggle back and forth without warning between 
thought and language. It must be acknowledged that because schizophre-
nia is so heterogeneous in symptomology, not obviously a unitary disease, 
perhaps not even a natural kind and so poorly understood in general, that 
it is not an ideal basis for doing the philosophical psychopathology of 
systematicity. Unfortunately, however, schizophrenia is the best case we 
have for the study of systematicity, so we will have to make do. 

 In section 1, I give a characterization of formal thought disorders with 
enough detail to appreciate why they entail a failure of inferential or 
transformational systematicity of thought. In section 2, I canvas recent 
attempts by systems neuroscience to explain formal thought disorders 
using dynamical systems theory and graph theory. Finally, section 3 will 
make clear that what is doing the explanatory work with regard to trans-
formational systematicity or its failure in these systems neuroscience 
models has nothing to do with representations with a combinatorial struc-
ture or anything LOT-like. Rather, the explanation has to do with the 
dynamical and graphical properties of the neural networks in question, 
and perhaps even more spatiotemporally extended networks. This account 
of transformational systematicity will involve the machinery of dynamical 
systems theory such as stable attractors, order-parameters, and the like, 
and graph theory such as small-world networks ( Sporns 2011 ;  Silberstein 
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and Chemero forthcoming ).  Fodor and Pylyshyn (1988)  claim that con-
nectionism and neural network models fail precisely because they cannot 
account for linguistic systematicity. Their argument is that systematicity 
requires representations with compositional structure and connectionist 
networks do not have representations with compositional structure. This 
is quite ironic, if the systems neuroscience explanations are at least par-
tially on target, because such explanations appeal essentially to the kinds 
of network properties that  Fodor and Pylyshyn (1988)  claim cannot explain 
systematicity. 

 1   Transformational Systematicity and Formal Thought Disorders 

 The linguistic kind of systematicity that  Fodor and Pylyshyn (1988)  are 
primarily concerned with can be broadly defined as follows: 

 Systematicity of cognitive representation: the capacity for having certain thoughts 

is  “ intrinsically connected ”  to the capacity to have certain other thoughts. ( Aizawa 

2003 ) 

  Fodor and McLaughlin (1990) would  later define systematicity as follows: 

 As a matter of psychological law, an organism is able to be in one of the states 

belonging to the family only if it is able to be in many of the others.  …  You don ’ t 

find organisms that can think the thought that the girl loves John but can ’ t think 

the thought that John loves the girl. ( Fodor and McLaughlin 1990 , 184) 

 The overriding assumption here is that linguistic systematicity requires 
compositionality. Furthermore, for thought to be systematic, its representa-
tions must be composed of syntactic components that have semantics, and 
those components must be recombinable to form other representations 
with the semantics of the components intact. 

 Transformational systematicity is much more than just linguistic syste-
maticity, however. As  Aydede (1995)  notes, it also involves  “ inferential 
coherence ”  more than just compositionality: 

 Systematicity of thought is not restricted to the systematic ability to entertain certain 

thoughts. If the system of mental representations does have a combinatorial syntax, 

then there is a set of rules, syntactic formation rules, that govern the construction of 

well-formed expressions in the system. It is this fact that guarantees formative sys-

tematicity. But inferential thought processes are systematic too: the ability to make 

certain inferences is intrinsically connected to the ability to make many others. For 

instance, according to the classicist, you do not find minds that can infer  “ A ”  from 

 “ A & B ”  but cannot infer  “ C ”  from  “ A & B & C. ”  Again, it is a nomological psychologi-

cal fact that inferential capacities come in clusters that are homogeneous in certain 
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aspects. How is this fact, which I will call inferential (or, sometimes, transforma-

tional) systematicity, to be explained? (Aydede 1995, 4) 

 Following  Aizawa (2003) , we can then define systematicity of inference as 
follows: inferences of similar logical type generally ought to elicit corre-
spondingly similar cognitive capacities, a capacity to perform one instance 
of a given type of inference given the capacity to perform another instance. 
However, transformational systematicity is more than this. It includes 
inferential coherence more broadly as well as temporal, causal, and narra-
tive coherence. 

 The best way to appreciate this is to look at formal thought disorders 
in schizophrenia. Formal thought disorder (an abnormality in the form or 
structure of thought as opposed to the content) is considered diagnostic 
of schizophrenia in the absence of obvious brain trauma. Again, formal 
thought disorders are often diagnosed and discussed via linguistic and 
written output; therefore, both language and thought will be considered 
here. One well-known example is Dysexecutive syndrome: a breakdown in 
the unity of consciousness wherein subjects are not able to consider two 
obviously related things at the same time. As Raymont and Brook put it, 
 “ If the person has any representation of the second item at all, it is not 
unified with consciousness of the first one ”  (2009, 572). This particular 
syndrome is perhaps closest to the linguistic system. However, this is only 
one manifestation of a formal thought disorder. 

 Disturbances in the form of thought are disturbances in the logical 
process of thought — more simply, disturbances in the logical connections 
between ideas. Illogicality is present where, for example, we find erroneous 
conclusions, internal contradictions, or incoherence in one ’ s thinking 
because of the loss of logical connections ( McKenna 1997 ). Other specific 
and related examples of disorders of the form of thought include: 

  Derailment or loose association —  Schizophrenics ’  ideas wander off track to 
another issue that is obliquely related or unrelated, deviating from the 
topic at hand. This is representative of a broader tendency in schizophrenic 
thought and language to include peculiar associations, the spreading and 
loosening of associations, expansions of meaning, tangents, neologisms, 
conceptual contamination, desymbolization of words, and so on (Tandon, 
Nasrallah, and Keshavan 2009). Sometimes the spreading of associations 
is exacerbated by the overwrought attention to the sound and many senses 
(connotations) of a word. In addition to phonetic issues, there are also 
problems with access to lexicon. Such language in extreme cases involves 
disorganized sentences, with no obvious logical or causal relationship 
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between them. Such language is suggestive of conceptual disorganization 
and perhaps cognitive disorientation more generally. 
  Loss of goal  — Schizophrenics often fail to take a train of thought to its 
natural conclusion. Sometimes this involves stereotyped thinking (empty 
repetition or inability to move beyond very rigid themes, which are 
returned to over and over). Such speech is often logically and semantically 
disordered, and filled with irrelevant information. In addition, relevant 
information is often ignored, conclusions are jumped to, and inductive 
inferences are poor (Tandon, Nasrallah, and Keshavan 2009). This failure 
to maintain a plan of discourse, or loss of voluntary control of speech, is 
perhaps indicative of larger cognitive deficits pertaining to action, plan-
ning, ordering, and sequencing ( Mujica-Parodi, Malaspina, and Sackheim 
2000 ). 
  Inflexible reasoning  — Schizophrenic reasoning is often either overly con-
crete or overly abstract. Understanding the meaning of nonliteral utter-
ances is often problematic, as is overcomplicating the meaning of literal 
utterances ( Mujica-Parodi, Malaspina, and Sackheim 2000 ). 

 Thus, we know that transformational systematicity is real because it is 
deformed or absent in the case of disturbances in the form of thought. 
This begs the question of what causes such a disorder. 

 Before we explore the possible answers to that question, several caveats 
must be mentioned. First, reasoning is not a homogeneous cognitive func-
tion even within the categories of inductive and deductive reasoning there 
are many different types. While our concern here is primarily deductive 
reasoning, it is difficult to determine if the deficit in question is a general 
one or more task/type specific. Indeed, DSM-IV aside, it is not even a settled 
matter if schizophrenics have a general problem with deductive reasoning; 
the data on this issue are conflicting and inconclusive ( Mujica-Parodi, 
Malaspina, and Sackheim 2000 ). For example, there is some evidence to 
suggest that only some types of logic problems elicit the deficits in reason-
ing in question. Some studies allege to show that the issues arise with logic 
problems involving sentences of a natural language (such as syllogisms) 
but not with purely symbolic problems (ibid.). 

 Second, in addition to reasoning and problem solving, schizophrenics 
exhibit several neurocognitive deficits with regard to executive functions, 
including all phases of memory, attention, affect, language, and much 
more. Given that each of these executive functions requires many of the 
others to be operating normally as at least supporting conditions, it is very 
hard to determine with any degree of certainty exactly where the problem 
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lies — it is difficult to isolate specific causal variables. Going forward, then, 
the question is how shall we measure deficits in deductive reasoning and 
logic apart from all the deficits mentioned above ( Mirian, Heinrichs, and 
McDermid Vaz 2011 ). 

 Given the preceding caveats, several possibilities remain open. (A) 
Assuming that deficits in deductive reasoning are indeed robust and well 
confirmed, are they evidence of more generalized impairments in abstract 
thinking or are they truly specific to deduction? (B) Are such deficits in 
reasoning really about the form of thought, that is, deductively invalid or 
inductively weak arguments, or are they caused by problems in the initial 
stages of reasoning such as encoding, acquisition and evaluation of prem-
ises, and so on ( Mirian, Heinrichs, and McDermid Vaz 2011 )? (C) Are the 
deficits in deduction instead symptomatic of the various abnormalities in 
language associated with the disease? For example, perhaps it is anomalies 
in the pragmatics of linguistic functions such as the inability to appreciate 
context driven rules and various local and global constraints on meaning 
and use that are the real problem (Marini et al. 2008). It is well known that 
such problems arise for analogical reasoning when schizophrenics attempt 
to initially map an analogue onto its target ( Simpson and Done 2004 ). (D) 
Rather than deduction as such, are the deficits really a function of prob-
lems with memory, planning, attention, or some other executive function? 
(E) As there are delusional and nondelusional schizophrenics, hallucinat-
ing and nonhallucinating, paranoids and non-paranoids, and so on, are 
the problems with reasoning perhaps not about the neurocognitive disease 
driven defects as such, but about those other aspects of the disease? Maybe 
the deficits in logic are driven by the formation and maintenance of delu-
sional beliefs, for instance. Some people have even suggested that schizo-
phrenics have their own non-truth-preserving logic that we have yet to 
codify ( Mujica-Parodi, Malaspina, and Sackheim 2000 ). (F) Finally, are 
deficits in reasoning caused by affective abnormalities such as to do with 
emotionally laden discourse that raises concerns about belief congruency 
or saliency (Marini and et al. 2008)? 

 Clearly, much more work needs to be done to resolve these questions. 
Better testing is required to isolate deficits in deductive reasoning from all 
the other possibilities, assuming for the moment that logical reasoning is 
in fact separable from these other functions. We need testing that goes 
beyond the usual methods of object-sorting tasks, syllogistic reasoning 
tasks, analogical reasoning tasks, assessing the interpretation of nonliteral 
sentences such as proverbs, metaphors, and so on. Logic and reasoning 
tests that approximate real-world reasoning in the wild would be helpful. 
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In short, more needs to be done to establish that deficits in the form of 
reasoning are correlated with or symptomatic of disorders of thought. For 
the purposes of what follows, however, we will assume that this connection 
is well documented. 

 2   Explaining Formal Thought Disorders: Dynamical Systems Theory and 
Systems Neuroscience 

 The question of what causes disorders in the form of thought is quite 
tricky, as we have just seen. Furthermore, schizophrenia has heteroge-
neous symptoms (both  “ positive ”  and  “ negative ” ) in addition to formal 
thought disorders, affecting both central and peripheral systems. Positive 
symptoms are usually defined in terms of involving reality distortion, 
such as hallucinations and delusions, whereas the negative symptoms 
involve neurocognitive deficits. Interestingly, thought disorders could go 
either way in this classification system (Ventura, Thames, Wood, et al. 
2010). The causes and determining factors of schizophrenia generally are 
widely regarded to be multicausal and interlevel, with a myriad of genetic, 
epigenetic, neurological, and environmental factors (leading to long 
period of abnormal neural development, i.e., neurodevelopmental patho-
genesis [ Spence 2009] ). Some theorists hold that the brain abnormalities 
involved in schizophrenia derive from too much and/or too little synaptic 
pruning in development. For example, some people argue that while the 
positive symptoms in schizophrenia may be caused by the hyperconnec-
tivity of certain brain regions ( “ pathological blooming ” ), the negative 
symptoms are caused by too much pruning —  “ aberrant pruning ”  ( Rao 
et al. 2010 ). However, even if this is the case, the question remains as to 
the causes of the pruning abnormalities. There is definite genetic suscep-
tibility, but no particular genes have been identified (Sun, Jia, Fanous, 
van den Oord, Chen, et al. 2010). While there are certainly biomedical 
models, epigenetic models, and biopsychosocial models of schizophrenia, 
at the present moment the biopsychosocial models seem the best sup-
ported ( Spence 2009;   Murphy 2006;   Radden 2004 ). In short, schizophrenia 
seems to demand explanatory pluralism. Again, gene expression interact-
ing with environmental causes (physical, biological, and social) at particu-
lar stages of development seems to be the best explanation. Nor do all 
the environmental causes or catalysts fall only during the time of brain 
development. For example, one well-known factor or correlate is social 
stress, such as being an immigrant to a new country ( Eagleman 2011 , 
211). However, even restricting explanation to the brain, it is believed 
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that the  “ mechanisms of schizophrenia, ”  if you will, are multiply realized 
( Murphy 2006 ). While there are often structural abnormalities in the 
brains of schizophrenics such as thalamus volume deficits, there is no 
consensus about their universality, uniqueness, or explanatory force: there 
are no correlational laws as of yet and no localization involving such 
abnormalities that are widely regarded to explain schizophrenia ( Spence 
2009 ). 

 Models of schizophrenia range from the piecemeal to the global. Piece-
meal models tackle things symptom by symptom, whereas global models 
seek some very general property of cognition with common effects on dif-
ferent capacities. Piecemeal models tend to seek local or  “ monotopical ’  ”  
approaches that try and map particular symptoms or  “ subsyndromes ”  to 
structural abnormalities in certain brain regions in a one-to-one fashion. 
For example, thought disorders get mapped to hippocampal abnormalities 
( Volz et al. 2000 ). Cognitive dysmetria is a good example of a global model 
wherein it is 

 hypothesized that connectivity is disturbed among nodes located in the prefrontal 

regions, the thalamic nuclei and the cerebellum. A disruption in this circuitry might 

produce  “ cognitive dysmetria, ”  resulting in difficulties to prioritize, to process and 

to coordinate, as well as to respond to information. This hypothesis is in accordance 

with the suggestion that schizophrenia is not caused by a single structural brain 

defect but by alterations of critical neuronal networks. (ibid., 46). 

 Theorists have been attempting to apply dynamical systems theory (focus-
ing on nonlinear systems) and chaos theory in particular to schizophrenia 
at least since the 1990s; specifically through the study of recurrent neural 
networks. Central questions being posed in this literature include: (1) Are 
chaotic attractors diagnostic markers for schizophrenia? Some claim, for 
example, that when dynamical methods are applied to physiological brain 
signals one can show that complex dynamics are related to healthy mental 
states whereas simple, that is, chaotic dynamics are related to pathology. 
And (2) more generally, is schizophrenia a dynamical disease? In other 
words, can aspects of schizophrenia such as formal thought disorders be 
usefully and partially explained on the basis of the concepts from nonlin-
ear dynamical systems in general or chaos theory in particular ( Schmid 
1991;   Pezard and Nandrino 2001;   Heiden 2006 ). The working assumption 
here is that changes in brain dynamics can be explanatorily correlated with 
changes in mental processes. It has been hypothesized, for instance, that 
abnormalities in cortical pruning during development could cause a 
decrease in neural network storage ability and lead to the creation of  “ spu-
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rious ”  attractors. Other attempts use the machinery of phase transitions 
and order-parameters to try and model various abnormalities in schizo-
phrenia. For example, in one very simple model the order-parameter is the 
level of dopamine transmission wherein  “ the effects of dopamine are dem-
onstrated by a mathematical model which can be interpreted in two ways: 
on the one hand as a model of typical excitatory-inhibitory circuits in the 
cortex, on the other hand of a negative feedback loop between thalamus, 
prefrontal cortex and striatum. The model exhibits different types of firing 
patterns and their bifurcation, from various kinds of periodicities up to 
erratic or chaotic behavior, corresponding to different levels of dopamine 
concentration ”  ( Heiden 2006 , 36). The problem with all these models has 
been that they are much too idealized and simplistic, and quite hard to 
compare with actual physiological data. 

 Fortunately, systems neuroscience has evolved further in the last few 
years ( Sporns 2011 ; Silberstein and Chemero forthcoming  1  ). It is an out-
growth of earlier attempts to apply dynamical systems theory to the brain. 
Systems neuroscience is attempting to determine how the brain engages 
in the coordination and integration of distributed processes at the various 
length and timescales necessary for cognition and action. The assumption 
is that most of this coordination represents patterns of spontaneous, self-
organizing, macroscopic spatiotemporal patterns, which resemble the on-
the-fly functional networks recruited during activity. This coordination 
often occurs at extremely fast timescales with short durations and rapid 
changes. There is a wide repertoire of models used to account for these 
self-organizing macroscopic patterns, such as oscillations, synchronization, 
metastability, and nonlinear dynamical coupling. Many explanatory 
models such as synergetics and neural dynamics combine several of these 
features, for example, phase-locking among oscillations of different fre-
quencies ( Sporns 2011 ). 

 Despite the differences among these models, we can make some impor-
tant generalizations. First, dynamic coordination is often highly distrib-
uted and nonlocal. Second, population coding, cooperative, or collective 
effects prevail. Third, time and timing is essential in a number of ways. 
Fourth, these processes exhibit both robustness and plasticity. Fifth, these 
processes are highly context and task sensitive. Regarding the third point, 
there is a growing consensus that such integrated processes are best viewed 
not as vectors of activity or neural signals, but as dynamically evolving 
graphs. The evidence suggests that standard neural codes such as rate 
codes and firing frequencies are insufficient to explain the rapid and 
rapidly transitioning coordination. Rather, the explanation must involve 
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 “ temporal codes ”  or  “ temporal binding, ”  such as spike timing-dependent 
plasticity, wherein neural populations are bound by the simultaneity of 
firing and precise timing is essential. In these cases, neurons are bound 
into a group or functional network as a function of synchronization in 
time. The key explanatory features of such models then involve various 
time-varying properties such as the exact timing of a spike, the ordering 
or sequencing of processing events, the rich moment-to-moment context 
of real-world activity and immediate stimulus environment, an individu-
al ’ s history such as that related to network activation and learning, and so 
on. All of the above can be modeled as attractor states that constrain and 
bias the recruitment of brain networks during active tasks and behavior 
( Sporns 2011;  Von der Malsburg, Philips, and Singer 2010). 

 There is now a branch of systems neuroscience devoted to the applica-
tion of network theory to the brain. The formal tools of network theory 
are graph theory and dynamical systems theory, the latter to represent 
network dynamics — temporally evolving dynamical processes unfolding in 
various kinds of networks. While these techniques can be applied at any 
scale of brain activity, here we will be concerned with large-scale brain 
networks. These relatively new to neuroscience explanatory tools (i.e., 
simulations) are enabled by large data sets and increased computational 
power. The brain is modeled as a complex system: networks of both linear 
and nonlinear interacting components such as neurons, neural assemblies, 
and brain regions. In these models, rather than viewing the neurons, cell 
groups, or brain regions as the basic unit of explanation, brain multiscale 
networks and their large-scale, distributed, and nonlocal connections or 
interactions are the basic unit of explanation ( Sporns 2011 ). The study of 
this integrative brain function and connectivity is primarily based in topo-
logical features (network architecture) of the network that are insensitive 
to, and have a one-to-many relationship with respect to, lower-level neu-
rochemical and wiring details. At this level of analysis, all that matters is 
the topology: the pattern of connections. Different geometries (arrange-
ment of nodes and edges) can instantiate the same topology. More specifi-
cally, a graph is a mathematical representation of some actual (in this case) 
biological many-bodied system. The nodes in these models represent 
neurons, cell populations, brain regions, and so on, and the edges represent 
connections between the nodes. The edges can represent structural features 
such as synaptic pathways and other wiring diagram type features, or they 
can represent more functional topological features such as graphical dis-
tance (as opposed to spatial distance). 
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 Here we focus on the topological features, where the interest is in 
mapping the interactions (edges) between the local neighborhood net-
works, that is, global topological features — the architecture of the brain as 
a whole. While there are local networks within networks, the global con-
nections between these are of the greatest concern in systems neurosci-
ence. Graph theory is replete with a zoo of different kinds of network 
topologies, but one of perhaps greatest interest to systems neuroscience 
are small-world networks, as various regions of the brain and the brain as 
a whole are known to instantiate such a network. The key topological 
properties of small-world networks are: 

  Sparseness :   Relatively few edges given a large number of vertices. 
  Clustering :   Edges of the graph tend to form knots, for example, if X and Y 
know Z, there is a better than normal chance they know each other. 
  Small diameter :   The length of the most direct route between the most distant 

vertices, for example, a complete graph, with  
n
2

2

  edges, has a diameter of 1, 

since you can get from any vertex to any other in a single step. That is, 
most nodes are not neighbors of one another but can be reached through 
a short sequence of steps. In other words, the key topological properties 
of such networks are (A) a much higher clustering coefficient relative to 
random networks with equal numbers of nodes and edges and (B) short 
(topological) path length. That is, small-world networks exhibit a high 
degree of topological modularity (not to be confused with anatomical or 
cognitive modularity) and nonlocal or long-range connectivity. Small-
world networks strike a balance between high levels of local clustering and 
short path lengths linking all nodes, even though most nodes are not 
neighbors of one another. Keep in mind that there are many different types 
of small-world networks with unique properties, some with more or less 
topological modularity, higher and lower degrees (as measured by the 
adjacency or connection matrix), and so on ( Sporns 2011 ; Von der Mals-
burg et al. 2010). 

 The explanatory point is that such graphical simulations allow us to 
derive, predict, and discover a number of important things, such as map-
pings between structural and functional features of the brain, cognitive 
capacities, organizational features such as degeneracy, robustness and plas-
ticity, structural or wiring diagram features, various pathologies such as 
schizophrenia, autism and other  “ connectivity disorders ”  when small-
world networks are disrupted, and other essential kinds of brain coordina-
tion such as neural synchronization, and so on. In each case, the evidence 
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is that the mapping between structural and topological features is at least 
many-one. Very different neurochemical mechanisms and wiring diagrams 
can instantiate the same networks and thus perform the same cognitive 
functions. Indeed, it is primarily the topological features of various types 
of small-world networks that explain essential organizational features of 
brains, as opposed to lower-level, local purely structural features. Structural 
and topological processes occur at radically different and hard (if not 
impossible) to relate timescales. The behavior and distribution of various 
nodes such as local networks are determined by their nonlocal or global 
connections. As Sporns puts it,  “ Heterogeneous, multiscale patterns of 
structural connectivity [small-world networks] shape the functional inter-
actions of neural units, the spreading of activation and the appearance of 
synchrony and coherence ”  (2011, 259). 

 3   Schizophrenia in Graph Theory 

 There is growing evidence from systems neuroscience that the cognitive 
and behavioral deficits in schizophrenia are caused in part by a  “ distur-
bance of connectivity ”  involving  “ disorganized structural and functional 
connectivity ”  ( Sporns 2011 , 210). As we learned in the last section, graph 
theory predicts that different network architectures will present various 
advantages and vulnerabilities. Network disturbances cause disruption in 
the dynamics of circulating information or coupling, that is, a disruption 
to the large-scale structural and functional connectivity of the brain 
(topology). In particular, we are talking about disruptions of small-world 
network topologies whereby disturbances of connectivity are caused by 
the loss of specific nodes and edges (cells and their axonal connections), 
and nonlocal or global effects — changes in global network parameters 
( Sporns 2011 , chap. 10). Both anomalous decreased and increased cou-
pling are the result, leading to abnormal functional connectivity between 
regions of the frontal and temporal lobes, abnormal patterns of cortical 
synchronization within and across cortical areas during rest, sensory pro-
cessing, and cognitive tasks (ibid.). Key network properties affected include 
the complementary properties of degeneracy/plasticity and graphical 
modularity. 

 Several neuroimaging studies have yielded evidence of dysfunctional 
connectivity between regions of the brain in schizophrenia. Recent studies 
seem to confirm that said dysfunctional connectivity causes disruption of 
the key topological properties of functional brain networks, that is, effi-
cient small-world network properties (Yu et al. 2011; Liu et al. 2008). Utiliz-
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ing the fMRI data from both healthy patients and schizophrenics, graphical 
analysis shows that the brain networks of healthy subjects had their small-
world network properties intact, whereas those of patients with the disease 
did not (ibid.). The networks of schizophrenics exhibited disruptions in 
prefrontal, parietal, and temporal lobes, and disruptions of interregional 
connectivity in general, presumably as a result of dysfunctional integration 
(ibid.). Regarding the relationship between topological measures and clini-
cal variables, studies also suggest that the degree and severity of dysfunc-
tional integration is correlated with illness duration (Liu et al. 2008). 
Further studies provide even more connection between topological mea-
sures and clinical variables: 

 Interestingly, we found characteristic path length and global efficiency of the whole 

brain network were correlated with PANSS negative scale values in SZ [schizophre-

nia]. Higher negative scale scores were associated with longer character path length 

and lower global efficiency. These might indicate the more severe these symptoms, 

the lower information interactions among brain components. In addition, cluster-

ing coefficient, local efficiency of IC14 (occipital region) and shortest path length 

of IC32 (parietal region) were correlated with negative PANSS scores in SZ. Higher 

negative scale scores were associated with a higher clustering coefficient, higher local 

efficiency of IC14 (occipital region) and longer shortest path length of IC32 (pari-

etal region). These findings are in line with studies which found psychopathology 

is associated with aberrant intrinsic organization of functional brain networks in 

schizophrenia and provide further evidence for this illness as a disconnection syn-

drome. (Yu et al. 2011, 10) 

 Much more work needs to be done focusing specifically on correlations 
between thought disorder symptoms and disruptions of small-world 
network topology. 

 There are several things to note here. First, systematicity may be con-
ceived as a much more global and multifaceted feature of cognition than 
mere linguistic systematicity, which would be a subset at best — transfor-
mational systematicity is perhaps fundamental, and linguistic systematic-
ity requires no separate explanation. In discussing abduction, Fodor 
concedes that the  “ globality ”  or holism of mental processes (problem 
solving, belief formation, etc.) is sufficient to kill the computational theory 
of mind (Fodor 2000, 47). However, he remains convinced that connec-
tionism cannot account for  “ the causal consequences of logical form ”  
(ibid.). Note however that graph/network theory has many more resources 
than straight connectionism. Furthermore, if one takes the network expla-
nation seriously, there is no reason to believe that logical form has any 
special causal consequences. Nor is there any reason to believe that belief 
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formation is about rules of deductive inference; it is rather perhaps more 
like model checking. 

 Second, the explanation for the failure of transformational systematicity 
and other symptoms does not refer to representations with a combinatorial 
structure, compositionality, LOT, and so on. Indeed, the dynamical and 
graphical explanation on offer here appears to be exactly the sort Fodor 
and Pylyshyn are skeptical of. What is doing the explaining in this case 
are topological and dynamical properties of neural networks. Of course, 
fans of the computational theory of mind could argue that networks 
merely implement or realize computational processes. There is not enough 
space to fully address this retort here, but again note that the explanatory 
properties on offer are essentially graphical and dynamical. In addition, 
recall the context- and task-sensitivity of network processes, the manner 
in which different and multiple components/networks are very quickly 
reconfigured to perform different tasks, and the many dimensions of the 
importance of timing in these network processes. None of this bespeaks of 
computationalism. 

 Third, there is no reason whatsoever to think that compositionality 
would be a feature of such graphical networks even if you believe that such 
networks support or realize (in some sense) representations (of some sort) 
in the brain. That is, there is no reason to believe that the brain is primarily 
or essentially a  “ logic-engine. ”  The graphical explanation on offer is not 
obviously about the mechanism of computation in any standard sense at 
all. And although one might call such explanations mechanistic, they are 
certainly not mechanistic in the sense of localization and decomposition 
( Silberstein and Chemero forthcoming ). Given what we know about net-
works and what we know about the widespread cognitive deficits of schizo-
phrenics, perhaps what we are learning is that logical functions cannot 
really be separated in some modular fashion from other executive 
functions. 

 Fourth, given the plurality and spatiotemporally extended nature of the 
causes of schizophrenia and given the network perspective, there is no 
reason to think that the explanation of transformational systematicity, or 
its failure, resides solely in the brain. As Sporns says: 

 The operation of brain networks depends on a combination of endogenous patterns 

of neural activity and exogenous perturbations such as those generated by stimuli 

or tasks. For organisms situated and embodied in their natural environments, the 

nature and timing of these perturbations are strongly determined by bodily actions 

and behavior. By generating sequences of perturbations, embodiment generates 

sequences of network states and, thus, information in the brain. Hence, the activity 
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of an organism in its environment contributes to neural processing and information 

flow within the nervous system.  …  The embodied nature of cognition is captured 

by dynamical system theory, which describes neural, behavioral, and environmental 

processes within a common formalism. (2011, 319) 

 Perhaps it isn ’ t just disturbances of brain topology that are at issue, but 
disturbances to the topology and dynamics of brain, body, and environ-
mental networks, per the dynamical-extended view of cognition ( Silber-
stein and Chemero 2012 ). Thus, the topology of the brain isn ’ t just a 
function of endogenous neural dynamics but is a function of the brain ’ s 
coupling with body and environment, a much larger social topological 
network in which individuals themselves are hubs. As Sporns puts it, 
 “ Social interactions also give rise to networks among people. The dynamic 
coupling of the brains and bodies of interacting individuals blends into 
the complex networks that pervade social structures and organizations. 
Hence, social networks and brain networks are fundamentally interwoven, 
adjacent levels of a multi-scale architecture, possibly with some of the same 
network principles at play ”  (2011, 319). 

 If this idea strikes you as crazy, keep in mind that not only do schizo-
phrenics have disorders of movement, thought, agency, and experience, 
but those disorders are often primarily about the temporal-causal coordina-
tion and the connectivity of these functions to one another. Several people 
have noted that symptoms of schizophrenia are about disturbances in 
temporal (i.e., dynamical) coordination ( Kitcher and David 2003 ). One 
reason for this belief is their notoriously poor performance on various 
timing tests and related cognitive tests, which expose their abnormal tem-
poral processing and cognition in all areas of life (ibid.). Phenomenologi-
cally, schizophrenics often report feeling out of spatial, emotional, and 
temporal sync with the environment, others, and their own bodies. They 
also report being unsure as to where they end and the environment begins. 
In addition, they also manifest several other disorders related to self-
affection and self-caring (ibid.). So perhaps transformational systematicity 
of thought is really inextricably bound with or only one aspect of, a greater 
kind of systematicity involving brain-body-environment coordination. 
Just as Kant suggested, perhaps our coherent conceptions of self and world, 
object and action, space and time, are thoroughly interdependent. As 
many have noted, for example, successive experiences are not the same as 
experiences of succession; to have an apprehension of temporal order, one 
must apprehend the relevant period of time as a single act, and schizo-
phrenics are not able to do so. However, rather than Kant ’ s categories  “ in ”  
the mind or brain, here we are talking about order-parameters operating 
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over spatiotemporally extended graphical networks. If so, the interesting 
question now is what are the order parameters in question and how might 
we manipulate them to better help schizophrenics.      

 Note 

 1.   The remainder of this section is taken from Silberstein and Chemero forthcom-

ing, sect. 2.      
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