
Math 574 - AMPL Handout 1 1

Introduction to AMPL

Details of how to download and start up the student version of AMPL are given in http://www.ampl.com.
Download and install AMPL in your PC (if you do not have a PC, you can submit your models on-line at the
above web page, but this procedure is rather inconvenient). To solve problems using AMPL, you will also have
to download a solver (such as CPLEX). For Windows, the solver is included in the zip file that you download
(amplcml.zip). For Unix/Linux, you need to download cplex separately (details are given in the web page
too). Cplex is the preferred solver.

The first chapter from the AMPL book is available as a PDF document from the above web page. Go through
the first chapter in detail. One copy of the AMPL book is put on reserve in the Owen library (reference desk)
under the course Math 574. You can also borrow the book from me.

1 AMPL Basics

AMPL is a modeling language which allows the user to represent optimization models in a compact and logical
manner. The data (for instance, demand for each month, amount of raw material available, distance between
cities, cost on arcs etc.) is handled separately from the optimization model itself (which consists of the decision
variables, objective function, and constraints). Thus the user need not alter the original model each time a
small change is made in the data. You need to create a model file (for example FarmerJones.mod) and a data
file (FarmerJones.dat). The model file declares the data parameters, the variables, objective function, and
the constraints in a symbolic fashion. All the numbers (actual data) are provided in the data file. Note the
following.

• Its a (good) convention to name model files as something.mod, and data files as something.dat (AMPL
will accept any name for the model and data files though).

• Every declaration (of a parameter, variables, objective function or a constraint) ends with a ; (semi-
colon). This is true for both the model and the data file.

• You can specify values for a parameter in the data file only if it is already declared in the model file.

• Before solving problems, you need to specify the solver. We will be using CPLEX as the solver. It is a
good practice to start each AMPL session by typing option solver cplex; at the ampl: prompt.

1.1 Example: The Farmer Jones problem

(Taken from Introduction to Mathematical Programming by Winston and Venkataramanan.)

Farmer Jones must decide how many acres of corn and wheat to plant this year. An acre of wheat yields
25 bushels of wheat and requires 10 hours of labor per week. An acre of corn yields 10 bushels of corn and
requires 4 hours of labor per week. Wheat can be sold at $4 per bushel, and corn at $3 per bushel. Seven
acres of land and 40 hours of labor per week are available. Government regulations require that at least 30
bushels of corn need to be produced in each week. Formulate and solve an LP which maximizes the total
revenue that Farmer Jones makes.

The model and data files are given below. You can use any text editor to create the model and data files. For
instance, Notepad and Wordpad work well in Windows. You could use MS Word, but make sure you save
the files as text only documents. Vi or emacs could be used in Unix/Linux machines.

Math 574 - AMPL Handout 1 2

Model file: FarmerJones.mod

AMPL model file for the Farmer Jones problem

The LP is

max Z = 30 x1 + 100 x2 (total revenue)

s.t x1 + x2 <= 7 (land available)

4 x1 + 10 x2 <= 40 (labor hrs)

10 x1 >= 30 (min corn)

x1, x2 >= 0 (non-negativity)

set Crops; # corn, wheat

param Yield {j in Crops}; # yield per acre

param Labor {j in Crops}; # labor hrs per acre

param Price {j in Crops}; # selling price per bushel

param Min_Crop {j in Crops}; # min levels of corn and wheat (bushels)

param Max_Acres; # total land available (acres)

param Max_Hours; # total labor hrs available

var x {j in Crops} >= 0; # x[corn] = acres of corn, x[wheat] = acres of wheat

maximize total_revenue: sum {j in Crops} Price[j]*Yield[j]*x[j];

subject to land_constraint: sum {j in Crops} x[j] <= Max_Acres;

subject to labor_constraint: sum {j in Crops} Labor[j]*x[j] <= Max_Hours;

subject to min_crop_constraint {j in Crops}: Yield[j]*x[j] >= Min_Crop[j];

Data file: FarmerJones.dat

set Crops := corn wheat;

param Yield :=

corn 10

wheat 25;

param Labor :=

corn 4

wheat 10;

param Price :=

corn 3

wheat 4;

param Min_Crop :=

corn 30

wheat 0; # No minimum level specified for wheat

param Max_Acres := 7;

param Max_Hours := 40;

Math 574 - AMPL Handout 1 3

More points to note:

• Comments can be included using the symbol #. Everything after a # in a line are ignored.

• Symbolic parameters are declared for data, whose actual values are specified in the data file. Any
parameter is declared using the keyword param.

• Variables are declared using the keyword var.

• The objective function starts with a maximize or a minimize, followed by a name, and then a colon (:).
The actual expression of the objective function then follows.

• Each (set of) constraint(s) begins with the keyword subject to followed by a constraint name, possible
indexing, and then a colon (:). The expression for the constraint(s) follows.

• Each constraint and objective function must have a unique name.

• Non-negativity and other sign restriction constraints are declared along with the variable declarations.
If no sign restrictions are provided, the variable(s) are considered unrestricted in sign (urs).

1.2 Running AMPL, Output from AMPL session

To start an AMPL session in Windows, double-click on the executable names sw.exe. A scrollable window
will open with the prompt sw:. Type ampl and press enter to get the ampl: prompt. In Unix/Linux machines,
run the ampl executable to get the ampl: prompt. Here are the commands and output from an AMPL session
to solve the Farmer Jones LP.

sw: ampl

ampl: option solver cplex;

ampl: model FarmerJones.mod; data FarmerJones.dat;

ampl: expand land_constraint;

subject to land_constraint:

x[’corn’] + x[’wheat’] <= 7;

ampl: expand min_crop_constraint;

subject to min_crop_constraint[’corn’]:

10*x[’corn’] >= 30;

subject to min_crop_constraint[’wheat’]:

25*x[’wheat’] >= 0;

ampl: solve;

CPLEX 8.0.0: optimal solution; objective 370

1 dual simplex iterations (1 in phase I)

ampl: display x;

x [*] :=

corn 3

wheat 2.8

;

ampl: display total_revenue;

total_revenue = 370

ampl:

Math 574 - AMPL Handout 1 4

If there is any error in the model file, AMPL will point it out. You will have to make the appropriate corrections
in your .mod file (model file) and save it. In order to re-read the model file, you first need to give the command
reset; at the ampl: prompt. Then say model FarmerJones.mod; again. If there was no error in the model file,
but there is an error in the data file, you could reset just the data part by typing reset data;. This commands
leaves the model file in tact. The modified data file could then be read in using the data command.

The command display can be used to display the value(s) of a (set of) variables or the objective function.
In the above LP, if you give the command display land constraint; after solving the LP, AMPL will display
the value of the dual variable corresponding to the constraint (which is 0 in this case). The command expand
is used to display the actual expression of a constraint or an objective function.

1.3 Another Example: Inventory problem

(Taken from Introduction to Mathematical Programming by Winston and Venkataramanan.)

A customer requires 50, 65, 100, and 70 units of a commodity during the next four months (no backlogging is
allowed). Production costs are 5,8,4, and 7 dollars per unit during these months. The storage cost from one
month to the next is $2 per unit (assessed on ending inventory). Each unit at the end of month 4 could be
sold at $6. Use LP to minimize the net cost incurred by the customer in meeting the demands for the next
four months.

Model file: InventoryModel Pr1 Pg104.mod

AMPL model file for the inventory model

(WV-IMP problem 1 from page 104: discussed in class)

#

min z = 5 x1 + 8 x2 + 4 x3 + 7 x4 + 2 (s1+s2+s3) - 6 s4 (net cost)

#

s.t. s1 = x1 - 50 (inventory month 1)

s2 = x2+s1 - 65 (inventory month 2)

s3 = x3+s2 - 100 (inventory month 3)

s4 = x4+s3 - 70 (inventory month 4)

all vars >= 0 (non-negativity)

param n; # No. of months

param Demand {i in 1..n}; # demand for each month

param Cost {i in 1..n}; # production cost for each month

param Store_Cost; # storage cost (same for each month)

param Price; # selling price (at the end of month n)

var x {j in 1..n} >= 0; # No. units made in month j

var s {j in 0..n} >= 0; # inventory at the end of month j

s[0] - inventory at the start of month 1 = 0

minimize net_cost:

sum {k in 1..n} Cost[k]*x[k] + Store_Cost*(sum{j in 0..n-1} s[j]) - Price*s[n];

subject to inventory_balance {i in 1..n}: s[i] = x[i] + s[i-1] - Demand[i];

subject to set_initial_inventory: s[0] = 0;

Math 574 - AMPL Handout 1 5

Data file: InventoryModel Pr1 Pg104.dat

param n := 4;

param Demand :=

1 50

2 65

3 100

4 70;

param Cost :=

1 5

2 8

3 4

4 7;

param Store_Cost := 2;

param Price := 6;

Notice how all the inventory balance constraints are represented in a single line (under inventory balance).
Here is the output from AMPL where the above LP is solved.

ampl

ampl: option solver scplex;

ampl: model InventoryModel_Pr1_Pg104.mod; data InventoryModel_Pr1_Pg104.dat ;

ampl: solve; display x,s;

CPLEX 8.0.0: optimal solution; objective 1525

0 dual simplex iterations (0 in phase I)

: x s :=

0 . 0

1 115 65

2 0 0

3 170 70

4 0 0

;

ampl:

2 For more

You should read the AMPL book to learn more about AMPL. Several examples are available for free download
from the AMPL web page too.

