
4 Sequences. Convergence

Now that we have defined the notion of distance between points, we are ready to discuss
the notion of convergence. This notion is familiar from analysis (see MAB141), where is has
been studied for the simplest example of a metric: the distance ρR between real numbers.

4.1 Sequences and subsequences

Let A be any set. Suppose that for any natural number n we have specified an element xn

in A. Then we say that a sequence is given. In other words, a sequence is merely an infinite
list x1, x2, . . . of elements of A. We denote a sequence by (xn) or simply by writing down
its first several terms: x1, x2, . . . . One should distinguish between a sequence and a set of
all its elements, since some elements in a sequence may be listed repeatedly. For example,
0, 1, 0, 1, 0, . . . is a sequence, whereas the set of all its elements is merely {0, 1}.

Let k1, k2, . . . be a strictly increasing sequence of natural numbers: 1 ≤ k1 < k2 <
k2, . . . . Then, for any sequence (xn), we can consider a subsequence (xkn), which consists
of the terms xk1 , xk2 , . . . .

For example, let xn = 1/n and kn = n2; then the subsequence (xkn) of a sequence (xn)
is 1, 1/22, 1/32, 1/42, . . . .

4.2 Convergence

Definition 4.1 (!!). Let M be a metric space and (xn) be a sequence of elements of M .
The sequence (xn) is said to converge to a point x ∈ M if

lim
n→∞

ρ(xn, x) = 0. (4.1)

The point x is called a limit of the sequence (xn) and we write limn→∞ xn = x or xn → x
as n → ∞. If we want to emphasize that the convergence is considered with respect to the
metric ρ of the space M , we shall write M-limn→∞ xn or ρ-limn→∞ xn.

One can reformulate the definition of convergence in the following way. The sequence
(xn) converges to x if and only if for any neighbourhood B(x; ε) of x, there exists a natural
number N = N(ε) such that for all n ≥ N(ε) one has xn ∈ B(x; ε). Indeed, by the definition
of the limit, (4.1) means that for any ε > 0 there exists a natural number N = N(ε) such
that for all n ≥ N(ε) one has ρ(xn, x) < ε. But the last inequality means exactly that xn

belongs to the ball B(x; ε).
Yet another formulation of the definition of convergence is the following one. The

sequence (xn) converges to x if and only if every neighbourhood B(x; ε) contains all but
finitely many of the terms of (xn). Indeed, the expression ‘all but finitely many’ means
precisely ‘all starting from some N = N(ε)’.

The limit of a sequence is unique. Indeed, if a sequence (xn) converged to a and to b,
then we should have

ρ(a, b) ≤ ρ(a, xn) + ρ(xn, b) → 0 as n → ∞.
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Therefore, ρ(a, b) = 0 which, by the axiom (i) of the metric, implies that a = b.

Proposition 4.2 (!). If a sequence (xn) converges to x, than any of its subsequences also
converges to x.

Proof.

We know: ∀ε > 0 ∃N(ε) ∀n ≥ N(ε) : xn ∈ B(x; ε); (4.2)

we need to prove: ∀ε > 0 ∃K(ε) ∀n ≥ K(ε) : xkn ∈ B(x; ε). (4.3)

But since kn ≥ n, by (4.2) we see that for any n ≥ N(ε) one has xkn ∈ B(x; ε). Therefore
(4.3) holds with K(ε) = N(ε).

Proposition 4.3. If limn→∞ xn = x, then for any y ∈ M one has

lim
n→∞

ρ(xn, y) = ρ(x, y). (4.4)

Proof. 1. First let us prove the following useful inequality:

|ρ(a, c) − ρ(b, c)| ≤ ρ(a, b). (4.5)

Indeed, by the triangle inequality,

ρ(a, c) ≤ ρ(a, b) + ρ(b, c) ⇒ ρ(a, c) − ρ(b, c) ≤ ρ(a, b);

ρ(b, c) ≤ ρ(b, a) + ρ(a, c) ⇒ ρ(b, c) − ρ(a, c) ≤ ρ(a, b),

which gives (4.5).
2. Taking a = xn, b = x, c = y in (4.5), we get

|ρ(xn, y) − ρ(x, y)| ≤ ρ(xn, x) → 0 as n → ∞,

which implies (4.4).

In a similar way, one can prove that if limn→∞ xn = x, limn→∞ yn = y, then one has
limn→∞ ρ(xn, yn) = ρ(x, y).

Similarly to subsets, we call a sequence (xn) bounded if there exists R > 0 such that for
any m, n ∈ N one has ρ(xn, xm) ≤ R. Equivalently, a sequence (xn) is bounded if and only
if there exists a ball B such that xn ∈ B for all n ∈ N.

Theorem 4.4 (!). Every convergent sequence is bounded.

Proof. Let xn → x in the metric space M . By the definition of convergence, there exists
such N ∈ N that for all n ≥ N one has xn ∈ B(x; 1). Let us take

R0 = max
n=1,...,N−1

ρ(x, xn), R = max{1, R0}.

We see that xn ∈ B(x; R) for any n ∈ N. Thus, (xn) is bounded.
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The concept of convergence looks simpler in normed linear spaces.

Theorem 4.5. Let L be a normed linear space. A sequence (xn) converges to x if and only
if the sequence (xn − x) converges to 0.

Proof. By the definition,

x = lim
n→∞

xn ⇔ lim
n→∞

ρ(x, xn) = 0 ⇔ lim
n→∞

‖x − xn‖ = 0 ⇔ lim
n→∞

ρ(x − xn, 0) = 0

⇔ lim
n→∞

(xn − x) = 0.

4.3 Examples

1. Let us discuss convergence in the spaces R
n
1 , R

n
2 , R

n
∞.

Theorem 4.6 (!*). Let (x(k)) be a sequence of points in R
n and let x ∈ R

n. Then the
following conditions are equivalent:

(i)
∥∥x(k) − x

∥∥
R

n
2
→ 0 as k → ∞;

(ii)
∥∥x(k) − x

∥∥
R

n
1
→ 0 as k → ∞;

(iii)
∥∥x(k) − x

∥∥
Rn∞

→ 0 as k → ∞;

(iv) x
(k)
j → xj as k → ∞ for all coordinates j = 1, . . . , n.

Proof. First note that (iii) and (iv) are equivalent by the definition of the norm in R
n
∞.

Next, let us prove that for any y ∈ R
n, one has

‖y‖
Rn∞

≤ ‖y‖
R

n
2
≤ ‖y‖

R
n
1
≤ n ‖y‖

Rn∞
. (4.6)

The first two inequalities in (4.6) have been already proven above (see (3.8)). Let us prove
the last one. We have:

‖y‖
R

n
1

=
n∑

k=1

|yk| ≤
n∑

k=1

max
j=1,...,n

|yj| = ‖y‖
Rn∞

n∑
k=1

1 = n ‖y‖
Rn∞

.

It remains to note that by (4.6), (iii) ⇒ (ii) ⇒ (i) ⇒ (iii)

By the above theorem, a sequence (x(k)) converges or not converges to x in R
n
1 , R

n
2 or

R
n
∞ simultaneously. The convergence means that all the n coordinates of x(k) converge to

the corresponding coordinates of x as k → ∞.
2. Let us discuss convergence in the sequence spaces lp, l∞. Consider the following

sequence:

x(n) =
1

n
(1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . . ).
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Then
∥∥x(n)

∥∥
l∞

= 1/n,
∥∥x(n)

∥∥
l1

= 1. Thus, x(n) converges to zero in l∞, but does not
converge to zero in l1.

What about convergence in lp for p �= 1? One has
∥∥x(n)

∥∥
lp

= n
1
p
−1, so

∥∥x(n)
∥∥

lp
→ 0 for

p > 1.
3. Let us discuss convergence in C(a, b). Convergence of functions in C(a, b) is called

uniform convergence. By definition, the sequence of functions fn converges uniformly to
the function f on a (finite, infinite or semi-infinite) interval ∆, if

∀ε > 0 ∃N = N(ε) such that ∀n ≥ N(ε), one has sup
x∈∆

|f(x) − fn(x)| ≤ ε.

This is equivalent to:

∀ε > 0 ∃N = N(ε) such that ∀n ≥ N(ε), and ∀x ∈ ∆, one has |f(x) − fn(x)| ≤ ε.

Note that in the last line, N does not depend on x, i.e. is chosen uniformly for all x. Hence
the term uniform convergence.

Example 4.7. The sequence fn(x) = 1
n2+x2 converges to the zero function f(x) = 0 in

C(R) (i.e., converges uniformly on R). Indeed,

sup
x≤0

|fn(x)| = fn(0) = n−2 → 0 as n → ∞.

One should distinguish between uniform convergence and pointwise convergence. A
sequence of functions fn is said to converge pointwise to a function f(x) on a (finite,
infinite or semi-infinite) interval ∆, if for any x ∈ ∆ one has fn(x) → f(x) as n → ∞. Note
that pointwise convergence means precisely the following:

∀x ∈ [a, b] and ∀ε > 0 ∃N = N(ε, x) such that ∀n ≥ N(ε, x), one has |f(x) − fn(x)| ≤ ε,

which differs from the definition of the uniform convergence ‘only’ by the order of statements
and by the fact that now N depends on x.

If a sequence of functions fn converges uniformly to f , then it converges to f pointwise
on the same interval (this follows directly from the definitions above: one simply has to take
N(ε, x) to be equal to N(ε)). However, the converse is not true, as the following example
shows.

Example 4.8. Consider the sequence of functions fn(x) = 1
1+(x−n)2

in C(R) (draw the

graph of f0, f1, f2). On the one hand, for any fixed x ∈ R, fn(x) → 0. Thus fn(x)
pointwise converges to the zero function f(x) = 0. However, ‖fn‖C(R) = 1 and thus fn does
not converge to zero uniformly on R.

These considerations depend on the interval of the real line that we are discussing. In-
deed, the above sequence converges uniformly to the zero function oin the interval (−∞, 0]:

sup
x≤0

|fn(x)| = fn(0) = (1 + n2)−1 → 0 as n → ∞.
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Example 4.9. The sequence fn(x) = 1
n

sin(nx) converges to zero in C(−1, 1). Indeed,

‖fn‖C(−1,1) = sup
x∈[−1,1]

|fn(x)| ≤ 1

n
→ 0, as n → ∞.

Note that this sequence does not converge to zero in C1(−1, 1):

‖fn‖C1 = sup
x∈[−1,1]

(|fn(x)| + |f ′
n(x)|) ≥ (|fn(0)| + |f ′

n(0)|) = 1.

4. Consider the space with a discrete metric ρd. Here xn → x if and only if xn = x for
all large enough n.
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