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1. Find all the complex solutions to the following equations:

(i) ez = 1− i; (ii) cos z = 5/4; (iii)
i

e3iz
= 1 + i.

2. Sketch the following subsets of C and say which of them is a domain:

(i) {z ∈ C : 1 < |z − 2| < 3, Re (z) ≥ 0}; (ii) {z ∈ C : | exp(z)| < 1}.

3. Determine which of the following series converge:

(i)
∞∑

n=1

(
1
n2

+
i

n

)
;

(ii)
∞∑

n=1

1
2n

(
cos
((π

e

)n)
+ i sin

((π

e

)n))
.

4. Find the radius of convergence of the following power series:

(i)
∞∑

n=0

(−1)nzn; (ii)
∞∑

n=0

(
1
2

)n2

zn; (iii)
∞∑

n=0

zn2
.

5. Express cos2(z) as a power series in z, giving all terms up to z6.

6. Show that

(i) sin z =
1
2i

(
eiz − e−iz

)
and cos z =

1
2
(
eiz + e−iz

)
;

(ii) sin(z ± w) = sin z cos w ± cos z sinw, for all z, w ∈ C;

(iii) cos(z ± w) = cos z cos w ∓ sin z sinw, for all z, w ∈ C.

Hence, deduce that sin2 z + cos2 z = 1 for all z ∈ C.

7. We define

sinh z =
1
2
(ez − e−z) and cosh z =

1
2
(ez + e−z).

(i) Prove that sin iz = i sinh z and cos iz = cosh z for all z ∈ C.

(ii) Prove that | cos(x+ iy)|2 = cos2 x+cosh2 y−1 for all x, y ∈ R. Hence,
deduce that | cos(z)| is an unbounded function on C.
[Hint: For the first result, use 6(iii) and 7(i).]

Your answers should of course be written in sentences, notation should be
defined, you should explain what you are doing, and symbols such as =
and =⇒ should be used correctly.
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Ex 1: Worked examples

1. Find the limit of
n

n + i
as n tends to infinity.

Solution: We have

n

n + i
=

n/n

n/n + i/n

=
1

1 + i/n

→ 1, as n →∞.

2. Does
1

(1 + i)n
converge?

Solution: We have

1
(1 + i)n

=
(

1
1 + i

)n

=
(

1
1 + i

1− i

1− i

)n

=
(

1− i

2

)n

.

Consider the modulus of (1− i)/2:∣∣∣∣1− i

2

∣∣∣∣ =
√(

1
2

)2

+
(
−1

2

)2

=

√
1
2
.

So we have ∣∣∣∣(1− i

2

)n∣∣∣∣ = ∣∣∣∣1− i

2

∣∣∣∣n =

(√
1
2

)n

→ 0.

As the modulus of the sequence tends to zero, the sequence must
tend to zero.

3. Find the radius of convergence for
∞∑

n=1

(3z)n

n2
.

Solution: We use the ratio test on the series
∞∑

n=1

∣∣∣∣ (3z)n

n2

∣∣∣∣. Let an =∣∣∣∣ (3z)n

n2

∣∣∣∣. Then,

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ (3z)n+1

(n + 1)2

∣∣∣∣/ ∣∣∣∣ (3z)n

n2

∣∣∣∣
=

∣∣∣∣ (3z)n+1

(3z)n

/
n2

(n + 1)2

∣∣∣∣
=

(
n

n + 1

)2

|3z|

= 3
(

n

n + 1

)2

|z|

→ 3.1.|z|, as n →∞,

= 3|z|.

The series converges absolutely, and hence converges, if 3|z| < 1, i.e.
|z| < 1/3.

Therefore, the radius of convergence is 1/3.
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1. Sketch the following contours:

(i) γ1(t) = 2 + 2e2πit (0 ≤ t ≤ 1);

(ii) γ2(t) =
{

it, (0 ≤ t ≤ 1),
t− 1 + i, (1 ≤ t ≤ 2);

(iii) γ3(t) = i + e−it (0 ≤ t ≤ π/2).

(Check your answers carefully, because these contours will be used
several times later.)

2. Using the contours above, evaluate the following contour integrals

directly from the definition (
∫

γ

f =
∫ b

a

f(γ(t))γ′(t) dt):

(i)
∫

γ1

dz

z − 2
; (ii)

∫
γ2

z̄ dz; (iii)
∫

γ3

dz

(z − i)2
.

3. (Exercise 6.3 of notes) Show that the length of the contour given by
traversing once round a circle, centred at z0 and of radius r, is 2πr.

4. Suppose that γ : [a, b] → C is a contour. Show that L(γ) ≥ |γ(b)− γ(a)|.
What does this mean geometrically?

5. Find an estimate for
∣∣∣∣ez

z

∣∣∣∣, where z = eiθ, θ ∈ R. (I.e. Find an M such

that
∣∣∣∣ez

z

∣∣∣∣ ≤ M , where z = eiθ, θ ∈ R.)

6. Set γ(t) = 3eit (0 ≤ t ≤ π). Use the Estimation Lemma to show that∣∣∣∣∫
γ

ez

z − 1
dz

∣∣∣∣ ≤ 3
2
πe3.

7. Let γ(t) describe the semi-circle Reit, where 0 ≤ t ≤ π, and R > 3.
Show that ∣∣∣∣∫

γ

e3iz

(z2 + 4)(z2 + 9)
dz

∣∣∣∣ ≤ πR

(R2 − 4)(R2 − 9)
.
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Ex 2: Worked examples

1. Find
∫

γ

dz

z
where γ describes the semi-circle from −1 to 1 in the upper

half of the complex plane.

Solution: We have γ(t) = e−it, where −π ≤ t ≤ 0. Then,∫
γ

dz

z
=

∫ 0

−π

1
e−it

(
−ie−it

)
dt

= −i

∫ 0

−π

dt

= −πi.

[Note that other parametrisations of the path will give the same an-
swer. Eg. Let γ(t) = e−it+πi for 0 ≤ t ≤ π.]

2. Let γ(t) = Reit, 0 ≤ t ≤ π describe a semi-circle, with R > 1.

Show that ∣∣∣∣∫
γ

e2iz

(z2 + 1)2
dz

∣∣∣∣ ≤ πR

(R2 − 1)2
.

Solution:

We have z2 = z2 + 1− 1. So

|z2| ≤ |z2 + 1|+ 1 by the triangle inequality,

|z|2 − 1 ≤ |z2 + 1|
1

|z2 + 1|
≤ 1

|z|2 − 1
, for |z| > 1,

1
(|z2 + 1|)2

≤ 1
(|z|2 − 1)2

1
(|z2 + 1|)2

≤ 1
(R2 − 1)2

, since |z| = R on the semi-circle.

For the numerator of the integrand:

|e2iz| = |eiz|2 = |eRe(iz)|2 = |e−Im(z)|2.

But Im(z) ≥ 0 because γ lies in the upper half-plane. Thus, 0 ≤
e−Im(z) ≤ 1 and so |e2iz| ≤ 12 = 1.

Hence, ∣∣∣∣ e2iz

(z2 + 1)2

∣∣∣∣ ≤ 1
(R2 − 1)2

.

The length of γ is πR since it gives a semi-circle. Thus, the estimate
follows from the Estimation Lemma.
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1. Express each of the following functions of z = x + iy in the form
u(x, y) + iv(x, y), and hence or otherwise determine the set of points
on which it is differentiable:

(i) 1/z (z ∈ C\{0}); (ii) z̄ (z ∈ C); (iii) arg (z) (Re (z) > 0).

2. Verify directly that u(x, y) = x3− 3xy2 + 1 is a harmonic function. Find
an analytic function f(z) such that u is the real part of f .

3. Check that the function u : R2 → R given by

u(x, y) = x4 − 6x2y2 + y4 − x2 + y2

satisfies Laplace’s equation at each point of R2.

Find a function v : R2 → R such that the function f given by f(x+iy) =
u(x, y) + iv(x, y) is complex differentiable at each point of C.

4. Let f be differentiable on a domain D and suppose that f(z) is always
real. Use the Cauchy–Riemann equations to show that f ′ = 0 on D.

5. (Failure of the mean value theorem.) Give an example of a differen-
tiable function f : C → C for which f(0) = f(1), but such that f ′(z) = 0
for no value of z.

6. Recall the following contours from Problems 2, which we use again
below.

γ1(t) = 2 + 2e2πit (0 ≤ t ≤ 1),

γ2(t) =
{

it, (0 ≤ t ≤ 1),
t− 1 + i, (1 ≤ t ≤ 2),

γ3(t) = i + e−it (0 ≤ t ≤ π/2).

Use the Fundamental Theorem of Calculus for contour integrals to
evaluate the following:∫

γ1

z dz;
∫

γ2

cos(πz) dz;
∫

γ3

dz

(z − i)2
.

7. Suppose that
∞∑

n=0

anzn has radius of convergence R > 0, and set f(z) =

∞∑
n=0

anzn for |z| < R.

(i) If g(z) = f(z) + f(−z) find the value of g(k)(0) for each k (in terms
of the an).

(ii) Deduce that, if f is an odd function (i.e., f(−z) = −f(z)), then
an = 0 for all even values of n.
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Ex 3: Worked examples
1. Find a k such that v(x, y) = y3−4xy+kx2y could be the imaginary part

of a complex differentiable function.

Solution: For the function to be the imaginary part of a differentiable
complex function it must satisfy Laplace’s equation. We must have,

0 = vxx + vyy = 2ky + 6y = y(k + 6),

for all y, i.e k = −3.

[Note that this does not imply v is the imaginary part of a differ-
entiable function for k = 3. It is the only possibility that satisfies
Laplace’s equation. In fact, v is the imaginary part of f(z) = −z3−2z2.]

2. Let f(z) = ez, for all z ∈ C. Determine the points where f is differen-
tiable.

Solution: We have,

ez = ex−iy = ex(cos y + i sin y).

So u(x, y) = ex cos y and v(x, y) = −ex sin y. Thus,

ux = ex cos y and vy = −ex cos y

The first CR equation, ux = vy, can therefore only hold if cos y = 0, i.e.
y = 1

2 (2k + 1)π for some k ∈ Z.

Now,
uy = −ex sin y and vx = −ex sin y.

The second CR equation, uy = −vx, can only hold if sin y = 0, i.e.
y = 2kπ for some k ∈ Z.

Thus, for the CR equations to hold we need y = 1
2 (2k + 1)π for some

k ∈ Z, and y = 2kπ for some k ∈ Z. No such y exist, and so the CR
equations hold nowhere.

Hence, f is differentiable nowhere.

3. Integrate
∫

γ

dz

(3z + 2)2
, where γ = γ2 from over the page.

The function is the derivative of F (z) = − 1
3(3z + 2)

and so by the Fun-

damental Theorem, we have∫
γ

dz

(3z + 2)2
= F (γ(2))− F (γ(0)) = F (1 + i)− F (0)

= − 1
3(3(1 + i) + 2)

−
(
− 1

3(3× 0 + 2)

)
= − 1

15 + 9i
+

1
6

=
2
17

+
1
34

i.

4. Integrate
∫

γ

sin z dz, where γ = γ1 from over the page.

Solution: sin z is the derivative of − cos z so we can apply the Funda-
mental Theorem of Calculus. The contour is closed and hence the
integral is zero.
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1. Use Cauchy’s integral formula to evaluate the following:

(i)
∫

Γ1

z4

z − 1
dz, where Γ1(t) = 2eit (0 ≤ t ≤ 2π);

(ii)
∫

Γ2

z4

z − 1
dz, where Γ2(t) = 2e−it (0 ≤ t ≤ 4π);

(iii)
∫

Γ3

cos(z)
z2 − 2z

dz, where Γ3 is the square with vertices at ±1± i, tra-

versed once anticlockwise.

2. Let γ(t) = eit (0 ≤ t ≤ 2π). Evaluate the following integrals:

(i)
∫

γ

esin(z)

z(z − 2)2
dz; (ii)

∫
γ

e1/z

z2
dz; (iii)

∫
γ

|z + 1|2 dz.

[Hint: For part (iii) we have zz = 1 for z = eit.]

3. Suppose that f and g are differentiable functions on the domain D
and z0 ∈ D.

(i) Suppose that f(z) has a zero at z0. Show that f(z) = (z − z0)h(z),
where h is differentiable for |z − z0| < R for some R > 0. [Hint:
Think Taylor!]

(ii) Show that h(z0) = f ′(z0).

(iii) Hence, deduce L’Hopital’s rule for complex differentiable func-
tions: Show that, if f(z0) = g(z0) = 0 and g′(z0) 6= 0, then

lim
z→z0

f(z)
g(z)

=
f ′(z0)
g′(z0)

.

4. Let f be a function differentiable on all of C with Taylor expansion

f(z) =
∞∑

n=0

anzn about 0.

(i) Let g(z) = ezf(z) for z ∈ C. Show that the Taylor expansion of g is

∞∑
n=0

(
n∑

k=0

ak

(n− k)!

)
zn.

(ii) Show that, if f(z) = exp(exp(z)), then the sequence (an) satisfies
the recurrence relation

an =
1
n

n−1∑
k=0

ak

(n− k − 1)!
for n ≥ 1.

[Hint: Consider f ′(z).]
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5. Let f be function complex differentiable on the whole of C. Suppose
that f satisfies

f(z + m + ni) = f(z) for all z ∈ C, m, n ∈ Z. (∗)

This question will demonstrate the surprising fact that f must be
constant.

Let γ : [a, b] → C be the contour which goes once anticlockwise round
the square with corners 0, 1, 1 + i, i, and put M = sup{|f(γ(t))| : t ∈
[a, b]}.

(i) Quote a theorem about real continuous functions implying that
M is finite;

(ii) Apply a theorem from the course to show that |f(z)| ≤ M for all z
inside γ.

(iii) Deduce from (*) that |f(z)| ≤ M for all z ∈ C.

(iv) Prove that f is constant (applying another theorem from the
course).

Ex 4: Worked examples

1. Evaluate the following integral using Cauchy’s Integral Formula:
∫

γ

ez + z

z − 2
dz

where γ is (i) a circle of radius 1 centred at the origin and (ii) a circle
of radius 3 centred at the origin.

Solution: For both cases Cauchy’s Integral Formula gives, taking
f(z) = ez + z, which is differentiable on all of C, (so D = C),∫

γ

ez + z

z − 2
dz = 2πif(2)n(γ, 2) = 2πi(e2 + 2)n(γ, 2).

For (i) we have n(γ, 2) = 0 as 2 lies outside γ, hence the integral is 0.

For (ii) we have n(γ, 2) = 1, hence the integral is 2πi(e2 + 2).

2. Evaluate the integral
∫

γ

z2

z2 + 1
dz where γ is the circle of radius 1

centred at i.

Solution: The denominator factorises to give
z2

(z + i)(z − i)
. Let f(z) =

z2

z + i
. Then f is differentiable on C\{−i}, (i.e. D = C\{−i}) so f is

differentiable on γ and all the interior points of γ. We have n(γ, i) = 1.
Thus, by Cauchy’s Integral Formula,∫

γ

z2

z2 + 1
dz = 2πif(i)n(γ, i) = 2πi

i2

i + i
× 1 = 2πi

i

2
= −π.
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1. Use the methods given in the course to calculate the residues of the
following functions at the points stated.

(i)
eiz

z2 + 4
at 2i; (ii)

esin z

z(z − 2)2
at 0; (iii)

cos 2z

z3
at 0;

(iv)
1

ez − 1
at 0; (v)

1 + cos z

(z − π)3
at π; (vi)

1
(ez − 1)2

at 0.

2. Use Cauchy’s residue theorem to calculate the following integrals (all
contours traced anticlockwise):

(i)
∫

γ1

cos 2z

z3
dz, where γ1 is the square with vertices ±1± i.

(ii)
∫

γ2

eiz

z2 + 4
dz, where γ2 is the boundary of the semicircle {|z| ≤

10, Im(z) ≥ 0}.

(iii)
∫

γ3

esin z

z(z − 2)2
dz, where γ3 is the unit circle.

(iv)
∫

γ4

dz

ez − 1
, where γ4 is the diamond with vertices 1, 10i,−1,−10i.

(You may wish to use some of the results of an earlier exercise.)

3. Evaluate the following integrals.

(i)
∫ ∞

−∞

dx

x4 + 1
(ii)

∫ ∞

−∞

cos x

(x2 + a2)(x2 + b2)
dx (0 < a < b)

4. (i) Calculate the residues of the function

f(z) =
2

9z2 + 82z + 9

at all its poles.

(ii) Hence, using the calculus of residues, calculate∫ 2π

0

1
41 + 9 cos(θ)

dθ.

5. (i) Find the poles and their orders of the function

f(z) =
eiz

z4 + 18z2 + 81
.

(ii) Calculate the residues of the poles in the upper half-plane for
this function and hence, using the calculus of residues, calculate∫ ∞

∞

cos x

x4 + 18x2 + 81
dx.
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Ex 5: Worked examples

1. Classify the poles of f(z) =
sin(z + 2i)
z3(z2 + 4)

.

Solution: The denominator factorises to z3(z − 2i)(z + 2i) and hence
has zeros at z = 0 (of multiplicity 3), z = 2i and z = −2i. For the first
two the numerator sin(z +2i) is non-zero. Hence, the pole at z = 0 has
order 3, and the pole at z = 2i has order 1, i.e. it is simple.

However, sin(−2i + 2i) = 0, so we must analyse further for the pole at

z = −2i. We have sin(z + 2i) = (z + 2i)− (z + 2i)3

3!
+

(z + 2i)5

5!
− . . . , and

z3(z2 + 4) = z3(z − 2i)(z + 2i), so

sin(z + 2i)
z3(z2 + 4)

=
1

z3(z − 2i)

(
1− (z + 2i)2

3!
+

(z + 2i)4

5!
− . . .

)
.

Since at z = −2i, z3(z−2i) 6= 0, by Corollary 15.7, there exists a Taylor
series g(z) for z3(z − 2i) at z = −2i. So, the function f is the product
of two power series at z = −2i, hence the pole is removable.

2. Classify the poles and calculate the corresponding residues of
ezπ

z2 + 1
.

Solution: The denominator factorises so we get
ezπ

z2 + 1
=

ezπ

(z + i)(z − i)
.

The numerator is not zero when the denominator is, (in fact it is never
zero), and so z = i and z = −i are simple poles. By Method 2 we have

res
(

ezπ

z2 + 1
,±i

)
=

ezπ

2z

∣∣∣∣
z=±i

=
e±iπ

±2i
=
∓i

2
(−1) = ± i

2
.

3. Evaluate
∫ π

−π

dt

2 + cos t
.

Solution: Let z = γ(t) = eit, −π ≤ t ≤ π, then cos t = 1
2

(
z + 1

z

)
. So,

1
2 + cos t

=
dt

2 + 1
2

(
z + 1

z

) =
2z

z2 + 4z + 1
, for z = eit.

We have, ∫ π

−π

dt

2 + cos t
= −i

∫
γ

2z

z2 + 4z + 1
z−1 dz

= −2i

∫
γ

1
z2 + 4z + 1

dz

= −2i

∫
γ

1
(z − a)(z − b)

dz

where a = −2 +
√

3 and b = −2 −
√

3. We have simple poles at a
and b. Only a lies within the unit circle and so by Cauchy’s Residue
Formula,∫ π

−π

dt

2 + cos t
= −2i× 2πi lim

z→a
(z − a)× 1

(z − a)(z − b)

= 4π lim
z→a

1
z − b

= 4π
1

a− b

=
2π√

3
.
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