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1. Find all the complex solutions to the following equations:
M e*=1-4 @) cosz=5/4 (i) 5= =1+
€
2. Sketch the following subsets of C and say which of them is a domain:
i) {eC:1<|z2—2]<3, Re(z)>0} (i) {z€C:|exp(z)| <1}.

3. Determine which of the following series converge:
03 (7112 T ;) ;
Y 5 (sos(2)) i ((2)))-

4. Find the radius of convergence of the following power series:
2
o0 o0 1 n o0
LI DY (2> 2 () Y2
n=0 n=0 n=0
5. Express cos?(z) as a power series in z, giving all terms up to 2°.

6. Show that

1, . . 1, . ,

(i) sinz = % (e“ — e‘“) and cosz = 3 (e"z + e"’z);
i

(ii) sin(z £ w) = sin zcosw = cos zsinw, for all z,w € C;

(iii) cos(z £ w) = coszcosw Fsinzsinw, for all z,w € C.
Hence, deduce that sin® z + cos? z = 1 for all z € C.

7. We define
. 1 _ 1 _
sinh z = 5(62 —e?)and coshz = 5(62 +e77).

(i) Prove that siniz = ¢sinh z and cosiz = cosh z for all z € C.

(i) Prove that |cos(z +iy)|? = cos® z +cosh® y — 1 for all z,y € R. Hence,
deduce that | cos(z)| is an unbounded function on C.
[Hint: For the first result, use 6(iii) and 7(i).]

Your answers should of course be written in sentences, notation should be
defined, you should explain what you are doing, and symbols such as =
and = should be used correctly.



Ex 1: Worked examples

1. Find the limit of Z_ - as n tends to infinity.
n 1
Solution: We have
n B n/n
n+i  n/nti/n
_ 1
- 1+i/n
— 1, as n — oo.
2. Does 1 converge?
' 1+ ge:

Solution: We have

1 (1
(144 \1+i

) - () - ()"

Consider the modulus of (1 —i)/2:

1—1
2

So we have

(%)

(6 ()
()

1—14
2

As the modulus of the sequence tends to zero, the sequence must

tend to zero.

Solution: We use the ratio test on the series Z

. Then,

’ (32)"

Ap+1
An,

Find the radius of convergence for Z

(32)"

n=1

(32)" |

2 Let a,

n=1
(32)n+

el [
- ‘(?3);/ <nfl>2
- <nil>2|3z
3(7111)2'2

3.1.]z[, as n — oo,
3|z|.

The series converges absolutely, and hence converges, if 3|z| < 1, i.e.

2] < 1/3.

Therefore, the radius of convergence is 1/3.
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. Sketch the following contours:

(i) 71 (t) =2+ 2> 0<t<1);

. it (0<t<1),
(ii) 72(15)—{ t—1+14, (1<t<2)

(iii) y3(t) =i+e®  (0<t<7/2).
(Check your answers carefully, because these contours will be used
several times later.)

. Using the contours above, evaluate the following contour integrals

b
directly from the definition ( / f= / FOY@®)Y (t) db):
10 a

. dz . . dz
[1) /Yl m7 (11) /YZ ZdZ, (111) ‘/YS m

. (Exercise 6.3 of notes) Show that the length of the contour given by
traversing once round a circle, centred at 2z, and of radius r, is 27r.

. Suppose that 7 : [a,b] — C is a contour. Show that L(v) > |v(b) — v(a)|.
What does this mean geometrically?

ez

. Find an estimate for , where z = ¢?, 0 ¢ R. (I.e. Find an M such

z

< M, where z = ¢, § e R.)

z

that

(&
z

. Set y(t) = 3ei* (0 <t < ). Use the Estimation Lemma to show that

eZ
d
’Lz—l :

. Let v(¢) describe the semi-circle Re®, where 0 < t < 7, and R > 3.
Show that

3
< Zred.
_27re

TR

SE-HE-9)

6312
/ (22 +4)(22 +9) dz
i



Ex 2: Worked examples

d
1. Find / ?Z where « describes the semi-circle from —1 to 1 in the upper

.
half of the complex plane.
Solution: We have 7(t) = e~%, where —7 <t < 0. Then,

0
[E - [ e a
o —T

[Note that other parametrisations of the path will give the same an-
swer. Eg. Let y(t) = e "™ for 0 < t < 7.]

2. Let y(t) = Re®, 0 <t < 7 describe a semi-circle, with R > 1.
Show that )
/ esz d
———5 az
L (22 +1)2
Solution:

We have 22 =22 +1—1. So

TR

< mo

2’| < |22+ 1|+ 1 by the triangle inequality,
lz22=1 < |22 +1]
1
2241 — ]z2P-1 or |z] > 1,
1 1
12 = GE-1r
1 1
(22 + 12 = (R-12 since |z| = R on the semi-circle.

For the numerator of the integrand:

‘62i2| — ‘6z‘z|2 — |eRe(7‘,z)‘2 — |e—Im,(z)|2.

But Im(z) > 0 because v lies in the upper half-plane. Thus, 0 <
e~I™(2) <1 and so [e**| <12 = 1.

Hence,

21z

e 1
(22 4+1)2 Rz —1)2’

The length of v is 7R since it gives a semi-circle. Thus, the estimate
follows from the Estimation Lemma.

=1
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. Express each of the following functions of z = z + iy in the form
u(z,y) + iv(z,y), and hence or otherwise determine the set of points
on which it is differentiable:

(@) 1/z (z € C\{0}); (i) z (z€C); (iii) arg () (Re(z) > 0).

. Verify directly that u(z,y) = 2° — 3zy? + 1 is a harmonic function. Find
an analytic function f(z) such that u is the real part of f.

. Check that the function u : R? — R given by

u(z,y) = — 62%y* +y' —2® + ¢

satisfies Laplace’s equation at each point of R2.

Find a function v : R? — R such that the function f given by f(z+iy) =
u(z,y) + iv(z,y) is complex differentiable at each point of C.

. Let f be differentiable on a domain D and suppose that f(z) is always
real. Use the Cauchy-Riemann equations to show that f’ =0 on D.

. (Failure of the mean value theorem.) Give an example of a differen-
tiable function f : C — C for which f(0) = f(1), but such that f'(z) =0
for no value of z.

. Recall the following contours from Problems 2, which we use again
below.

) = 2422 (0<t<1),

(it (0<t<1),
n(t) = {t1+u (1<t<2),
3(t) = ite (0<t<m/2).

Use the Fundamental Theorem of Calculus for contour integrals to
evaluate the following:

/ zdz; / cos(mz) dz; / LQ
" V2 V3 (z—1)

. Suppose that Z a,z" has radius of convergence R > 0, and set f(z) =

n=0

oo
Z anz" for |z| < R.

n=0
(i) If g(2) = f(2) + f(—2) find the value of ¢(*)(0) for each k (in terms
of the a,).

(ii) Deduce that, if f is an odd function (i.e., f(—z) = —f(z)), then
a, = 0 for all even values of n.



Ex 3: Worked examples
1. Find a k such that v(z,y) = y* — 4zy + kz?y could be the imaginary part
of a complex differentiable function.
Solution: For the function to be the imaginary part of a differentiable
complex function it must satisfy Laplace’s equation. We must have,
0 = Vpy + vyy = 2ky + 6y = y(k +6),
for all y, i.e k = —3.

[Note that this does not imply v is the imaginary part of a differ-
entiable function for £ = 3. It is the only possibility that satisfies
Laplace’s equation. In fact, v is the imaginary part of f(z) = —23—222.]

2. Let f(z) = €7, for all z € C. Determine the points where f is differen-
tiable.
Solution: We have,
e” = e*W = e%(cosy + isiny).
So u(z,y) = e® cosy and v(z,y) = —e*siny. Thus,
uy =€’ cosy and v, = —e” cosy
The first CR equation, u, = v,, can therefore only hold if cosy = 0, i.e.
y = 3(2k + 1)7 for some k € Z.
Now,
uy = —e”siny and v, = —e” siny.
The second CR equation, u, = —v,, can only hold if siny = 0, i.e.
y = 2k for some k € Z.

Thus, for the CR equations to hold we need y = 1(2k + 1)7 for some
k € Z, and y = 2kw for some k € Z. No such y exist, and so the CR
equations hold nowhere.

Hence, f is differentiable nowhere.

d
3. Integrate / ﬁ where v = 7, from over the page.

Y

The function is the derivative of F'(z) = — and so by the Fun-

3(32+2)
damental Theorem, we have
/7 (;),;ifg)z = F(v(2) - F((0) =F(1+1) - F(0)

1 1
T 3B+ +2) (_3(3><o+2))
L1
15+9 6
2 1

4. Integrate / sin z dz, where v = v; from over the page.
v

Solution: sin z is the derivative of — cos z so we can apply the Funda-
mental Theorem of Calculus. The contour is closed and hence the
integral is zero.
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1. Use Cauchy’s integral formula to evaluate the following:

24

(i)

dz, where 'y (t) = 2¢ (0 <t<2n);
r, z—1
Z4 .

. dz, where T's(t) = 2e™" (0 <t <d4m);

(ii)

Iy @

cos(z) ) ) . .

(iif) o dz, where I'5 is the square with vertices at +1 + 4, tra-
T e — 4z

versed once anticlockwise.

2. Let y(t) = e’ (0 <t < 2m). Evaluate the following integrals:

esin(z) 61/z
(i)/ﬁdz; (n)/ — dz; (iii)/|z+1|2dz.
5 2(2 —2) Jy 2 .

[Hint: For part (iii) we have 2z = 1 for z = ]

3. Suppose that f and g are differentiable functions on the domain D
and zp € D.

(i) Suppose that f(z) has a zero at z;. Show that f(z) = (z — 20)h(z2),
where h is differentiable for |z — z9| < R for some R > 0. [Hint:
Think Taylor!]

(ii) Show that h(ZQ) = f/(ZQ).

(iii) Hence, deduce L'Hopital’s rule for complex differentiable func-
tions: Show that, if f(z9) = g(29) = 0 and ¢’(29) # 0, then

i £2) _ £0)

=0 g(2)  g'(20)
4. Let f be a function differentiable on all of C with Taylor expansion
f(z) = i anz" about 0.
n=0
(i) Let g(z) = e*f(z) for z € C. Show that the Taylor expansion of g is
o [ m a .
(ii) Show that, if f(z) = exp(exp(z)), then the sequence (a,) satisfies
the recurrence relation
an = 1 ”z_:l . — forn > 1.
" on (n—Fk—1)! -

[Hint: Consider f’(z).]



5. Let f be function complex differentiable on the whole of C. Suppose

that f satisfies
fGz+m+ni)= f(2) for all z € C, m,n € Z. (%)
This question will demonstrate the surprising fact that f must be

constant.

Let v : [a,b] — C be the contour which goes once anticlockwise round
the square with corners 0,1,1 + 7,4, and put M = sup{|f(v(¥))] : ¢t €
[a,b]}.
(i) Quote a theorem about real continuous functions implying that
M is finite;

(ii) Apply a theorem from the course to show that |f(z)| < M for all z
inside ~.
(iii) Deduce from (*) that |f(z)| < M for all z € C.

(iv) Prove that f is constant (applying another theorem from the
course).

Ex 4: Worked examples

e+ z
P
where + is (i) a circle of radius 1 centred at the origin and (ii) a circle

of radius 3 centred at the origin.

dz

. Evaluate the following integral using Cauchy’s Integral Formula: /

Solution: For both cases Cauchy’s Integral Formula gives, taking
f(2) = €* 4+ =, which is differentiable on all of C, (so D = (),

/ 6: +2Z dz = 2mif (2)n (v, 2) = 2mi(e® + 2)n(7, 2).
Y

For (i) we have n(v,2) = 0 as 2 lies outside ~, hence the integral is 0.
For (ii) we have n(v,2) = 1, hence the integral is 2mi(e? + 2).

2

. Evaluate the integral / %Hdz where ~ is the circle of radius 1
z

Y
centred at 7.

2’2
(z4+1i)(z —1)
. Then f is differentiable on C\{—:}, (i.e. D = C\{—i}) so f is

zZ+1
differentiable on ~ and all the interior points of v. We have n(~v,i) = 1.
Thus, by Cauchy’s Integral Formula,

Solution: The denominator factorises to give . Let f(2) =

Z2

2 s : s i
7,227—&-1(12 =2mif(i)n(y,i) = 27”2'—!—@' x1= 2m§ = —.
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1. Use the methods given in the course to calculate the residues of the
following functions at the points stated.

. e'® ) .. esinz ..., COS2z

(1) m at 227 (11) m at 07 (lll) 7 at 07

. 1 1+cosz . 1

(IV) ez 1 at 0, (V) m at Ty (Vl) m at 0.

2. Use Cauchy’s residue theorem to calculate the following integrals (all
contours traced anticlockwise):

2
(1) / 0053 i dz, where ~; is the square with vertices +1 +i.
z
71

(ii) / ;ﬁd'z’ where v, is the boundary of the semicircle {|z| <
5
10, Im(z) > 0}.

sin z

W dz, where ~3 is the unit circle.
zZ\Z —

(iii)
3

d
(iv) 7Zl where v, is the diamond with vertices 1,10, —1, —103.
62 —
Y4

(You may wish to use some of the results of an earlier exercise.)

3. Evaluate the following integrals.

i © o da s e cosx

4. (i) Calculate the residues of the function

2

&) = 575019

at all its poles.
(ii) Hence, using the calculus of residues, calculate

27 1
——df
/0 41 + 9 cos(h)

5. (i) Find the poles and their orders of the function

1z

e

e = armersr

(ii) Calculate the residues of the poles in the upper half-plane for
this function and hence, using the calculus of residues, calculate

> cos T
—— —dz
/Oo x4 + 1822 + 81



Ex 5: Worked examples

sin(z + 2i)

23(22 +4)°

Solution: The denominator factorises to z3(z — 2i)(z + 2i) and hence
has zeros at z = 0 (of multiplicity 3), z = 2i and z = —2i. For the first

two the numerator sin(z + 2¢) is non-zero. Hence, the pole at z = 0 has
order 3, and the pole at z = 2i has order 1, i.e. it is simple.

1. Classify the poles of f(z) =

However, sin(—2¢ + 2i) = 0, so we must analyse further for the pole at
(z 4 2i)3 N (2 + 2i)°

z = —2i. We have sin(z + 2i) = (z + 2i) — I s

2322 +4) = 23(z — 20) (2 + 24), so
sin(z 4 2i) 1 (1(Z+2i)2+(z+2i)4...>.

—...,and

23(22 +4) B 23(z — 210) 3! 5!

Since at z = —2i, 23(2 —2i) # 0, by Corollary 15.7, there exists a Taylor
series g(z) for 23(z — 2i) at z = —2i. So, the function f is the product
of two power series at z = —2i, hence the pole is removable.

zT

2. Classify the poles and calculate the corresponding residues of ;7“.
z

zZT zZT

e

241 (z4d)(z—1)
The numerator is not zero when the denominator is, (in fact it is never

Solution: The denominator factorises so we get

zero), and so z = ¢ and z = —i are simple poles. By Method 2 we have
=T =T eiiw ?’L i
res(z2+1’ Z> 22|, T zm 2 M=
T dt
3. Evaluate / T
_x 24 cost
Solution: Let z = y(t) = e, —7 <t < 7, then cost = % (z + %) So,
1 dt 2z for it
= = z =€ .
2 + cost 2+%(z+%) 2244241
We have,
T dt 1
= -1y
/_7F2—|—cost Z/ —|—4z—|—1 *

¥
= -2
Z[{zz—l—llz—ﬁ—l

o R et

where ¢« = -2 ++/3 and b = —2 — /3. We have simple poles at a
and b. Only « lies within the unit circle and so by Cauchy’s Residue
Formula,

T dt 1

/ % - gixomilim(z—a) X ——
_x 24 cost z—a (z—a)(z—0b)

= 4mlim

z—a 2 —
1
= 4
-
o
= 5

10



