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Chapter 3

Thve Schrodinger Equation and Its Applications

3. 1 WAVL FUNCTIONS OF A SINGLE PARTICLE

In quantum mechanics, a particle is characterized by a wave function y(r, t), which contains lnformallon
about the spatial state of the particle at time ¢. The wave function W(r, £) is a complex function of the three coor-
dinates x, y, z and of the time ¢, The interpretation of the wave function is as follows: The probability dP(r, )

- of the particle being at time ¢ in a volume element &r = dx dy dz located at the point r is

dP(r,1) = Cly(r, 0> d’r (3.1)

where C is a normalization constant. The total probability of finding the particle anywhere in space, at time ¢,
is equal to unity; therefore,

JdP(r, =1 (3.2)
According to (3.1) and (3.2) we conclude: '

(a) The wave function y(r, ¢) must be square-integrable, i.e.,

f @, 0l d'r (3.3)
is finite. -
(b) The normalization constant is given by the relation
!
1
E= J|w(r, N\ d’r . (3.4)

When C = 1 we say that the wave function is normalized. A wave function W(r, £) must be defined and contin-
uous cverywhere.

3.2 THE SCHRODINGER EQUATION ‘ A
Consider a particle of mass m subjected to the potential V(r, ¢). The time evolution of the wave function is
governed by the Schrédinger equation:

y(r, ! 12
iﬁ—ﬂ'ét—) = zlmv w(r, 1) + V(r, DY(r, 1) (3.5)

where V7 is the Laplacian operator, 0%/0x" +2%/9 y2 +09°/97°. Pay attention to two important propertics of the
Schrddinger equation:

(a) The Schrodinger equation is a lincar and homogencous cquation in y. Conscquently, the superposition
principle holds; that is, if y,(r, £), y(r, 1), ..., W,(r, {) arc solutjons of the Schrodinger cquation, then

' Y= Za‘.\yi(r, t) is also a solution.

i=n

21



22 THE SCHRODINGER EQUATION AND ITS APPLICATIONS [CHAPR. 3

2

(b) The Schrodinger equation is a first-order equation with respect to time; therefore, the state at time f,
deterntines its subsequent state at all times.

3.3 PARTICLE IN A TIME-INDEPENDENT POTENTIAL

The wave function of a pamc]e subjected to a time-independent potential V(r) satisfies the Schrodinger
equation:

ow(r, 1) # .
War - {;Vzw(r, f) + V), 1 (3.6)

Performing a separation of variables y(r, f) = ¢(r)x(9), we have x (1) = Ae™® (A and w are constants), where
¢(r) must satisfy the equation

# :
—5= V) + VIO = hwg(r) (3.7)

where i@ i$ the energy of the state E (see Problem 3.1). This is a stationary Schridinger equation, where a
wave function of the form

W, 1) = dr)e” = or)e 38

is called a stationary solution of the Schridinger equation, since the probability density in this case does not:

depend on time [see Problem 3.1, part (b)]. Suppose that at time ¢ = 0 we have

Y@E0) = Y 0,0 39

n

where ¢,(r) are the spatial parts of stationary states, y,(r, t) = d(r)e”'', In this case, '1ccordmg to the super-
position principle, the time- evoluuon of y(r, 0) is described by

Y = Y e - (3.10)

n
For a free particle we have V(r, f) = 0, and the Schrédinger equation is satisfied by solutions of the form

i(k-r—-of)

: y(r, 1) = Ae (3.11)

where A is a constant; k and o satisfy the relation @ = fik/2m. Solutions of this form are called plane waves.
Note that since the y(r, ¢) are not square-integrable, they cannot rigorously represent a particle. On the other

+hand, a superposition of plane waves can yield an expression that is square-integrable and can therefore describe
the dynamics of a particle,

y(r, t) = Jg(k)eilk o g (3.12)

(27‘:)3/2

A wave function of this form is called ¢ wave-packet. We often study the case of a one-dimensional wave-
packet,

1 (7 e otk ' »
yix, t) = EJ g(k)e! ke = el g (3.13)

3.4 SCALAR PRODUCT OF WAVE FUNCTIONS: OPERATORS

With each pair of wave functions ¢(r) and y(r), we associate a complex number defined by-

(0, ¥) = J.tb*(r)\u(r)d?' (3.14)

where (¢, y) is the scalar product of ¢(r) and y(r) (see Chapter 2).

S T Lo

ey

Rl bal. 8



RERELLALEERREEEE N AL KR KRS N R AEESANENXRYRRERL 2 04

Lo Lo e 5.4 el

o

o
<

i I F X

H iy toan

RERTE R g

T

ot

~Ty

FTRE——
ZAErRa Sauy

T R T

LAY

TR

T T T T T R T T R

3T M

e oRN: 3

CHAP. 3] THE SCHRODINGER EQUATION AND ITS APPLICATIONS 23

An operator A acting on a wave function y(r) creates another wave function y'(r). An operator is called a
linear operator if this correspondence is linear, i.e., if for every complex number o, and o.,,

A Loy (0) + 0,W,(r)] = 0 AW, (D) + 0L,A VL) (3.15)
There are two scts of operators that arc important:
(a) The spatial operators X, Y, and Z are defined by

Xy(x, y,z, 1) = xyx, 3,2, 0 _
Yy, y,z,0) = yy(x, y, 2, 8) (3.16)
‘ \ Zy(x, y, 25,0 = zy(x, ¥, 2,0 1

. (b) The momentum operators p,, Py and p, are dcfined by

fi. 0

IJ,V\V(X, »zh) = i al\lf(x ¥y 2, 1)
fi 0

Py, y, 2, 0) = f‘a-y\y(x, Yy 2, f) .. (3.17)
fi d

PV Y, 2,0) = T2, 9, 2, 1)

The mean value of an operator A in the state y(r) is defined by

(A = J\y*(r) [Ay@®)] dr (3.18)
The root-mean-square deviation is defined by

o | AA = J(A%) - (aY | (3.19)
whcre A is the operator A - A.

Consxdcr the operator called the Hamiltonian of the parllclc Itis deﬁncd by

72

2mv +V(r, t).._ -+ V(r, 1) (3.20)

1=

where p? is a condensed notation of the operator pJr + pv + pz. Using the operator forinulation, the Schrédinger
cquation is written in the form
O

ih

d
; —\%—'—) = Hy(r, f) (3.21)

If the potential cnergy is tinie-independent, a stationary solution must satisfy the equation
HH(r) = Ed(r) (3.22)

where £ is a real number called the energy of state. Equation (3.22) is the eigenvalue equation of the operator

- H; the application of H on the eigenfunction ¢(r) yiclds the same function, multiplied by the corresponding

eigenvalue E, The allowed energics are therefore the eigenvalues of the operator H.

3.5 PROBABILITY DENSITY AND PROBABILITY CURRENT

Consider a patticle described by a nornmalized wave function y(r, ¢). The probability density is defined by

p(r, 1) = ly(r, 0’ (3.23)
At time ¢, the probability dP(r, t) of finding the particle in an infinitesimal volume d’r located at r is equal to
dP(r, 1) = p(r,ndr | (3.24)
i
‘(.I



24 THE SCHRODINGER EQUATION AND ITS APPLICATIONS k [CHAP. 3
The integral of p(r, 1) ovelr all space remains constant at all times. Note that this does not mean that p(r, r) must .

be time-independent at every point r. Nevertheless, we can express a local conservation of probability in the
form of a continuity equation,

‘1%';’—’)+V'-.l(r,z) =0 . (3.25)
where J(r, 1) is the probability current, defined by .
| o h 1 N " (3.26)
Jo, 0 = 5 -1y (V) -y (V)] = ,;Re[\lf A ] . , '

Consider two regions in a space where their constant potentials are separated by a potential step or barrier,
see Fig. 3-1. ‘

V() V) B -

(@) ()

Fig. 3-1 (a) Potential step; () potential barrier.

We define transmission and reflection coefficients as follows. Suppose that a particle (or a stream of parti-
cles) is moving from region I through the potential step (or barrier) to region IL. In the gencral case, a stationary
state’ describing this situation will contain three parts. In region I the state is composed of the incoming wave
with probability current J; and a reflccted wave of probability current /. Inregion 1l there is a transmittcd wave -
of probability current J..

The reflection coefficient is defined by

I
R = |- " (3.27)
J
' The transmission cocfficient is defined by
T Iy (3.28)
=17 | | _
\ ‘ Solved Problems

3.1.  Consider a particle subjected to a time-independent potential V(r). (a) Assume that a state of the particle
is described by a wave function of the form yi(r, £) = &{(r)x(H). Show that x(r) = Ae”'® (A is constant)
and that ¢(r) must satisfy the cquation

1‘2 2
-2—'"—1V"q»(r)+vu-)¢(r) = hoo(r) L @G

where m1 is the mass of the particle. (b) Prdvc that the solutions of the Schridinger equation of part (a)
lead to a time-independent probability density.
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CHAP. 3]  THE SCHRODINGER EQUATION AND ITS APPLICATIONS 25

3.2.

(@) We substitute y(r, 1) = ¢(r)x () in the Schrédinger cquation:

ih(r di) X(l)[—'“V ¢(r)]+x(l)V(r)¢(r) (3.1.2)

In the regions in which the wave function yw(r', ) does not vanish, we divide both sides of (3.1.2) by ¢(l‘)x(r),
50 We ubl.un

dhdy(ny 1
A0 di T o)
* The left-hand side of (3.1.3) is a function of ¢ only, and does not depend on r. On the other hand, the right-hand

side is a function of r only. Therefore, both sides of (3.1.3) depend ncither on r nor on ¢, and are thus conslants
that we will sct Lqu.ll 10 fro for convenienee. Henee,

L dy@) d[Inx]
O dr =TTy

[ v ¢(r)] +V(r), . (3..3)

= ho . (3.14)

==
Therefore,
Iny(n = J—iu) dt = —iot+C = y() = Ae™™ (3.1.5)
where A is constant. Substituting in (3.1.3), we scc that ¢(r) inust satisfy the equation
2,,,\7 o(F) + V(N)$(r) = fod(r) (3.1.6)
(b) For a function of the form y(r, 1) = &(r)e™"®', the probability density is by definition

o, 1) = lya, o’ = [ome ] [pr)e ™™ = pr)e @ o*m)e = o)’ (3.1.7)

We sce that the probability density does nol depend on time. This is why this kind of solution is called
“stationary.”

Cousider the Hamiltonian for a onc-dimensional system of two particles of masses 1, and m, subjected
to a potential that dcpends only on the distance between the particles x| ~x,,

2
P l’

i ° T 57’7; 2m +Vlx, - x) (3:24)

(a) Wrilte the Schrodinger cquation using the new variables x and X, where
mx |+,

X = x;—x, (relative distance) X = m— (cepter of mass) (3.2.2)

(b) Use a separation of variables 1o find the equations governing the cvolullon of the center of mass and
the relative distance of the particles. Interpret your results.

(a) Interms of x; and x,, thc wave function of the two particles is governed by the Schrodinger equation:

L 0Y(xy, Xy, 1) ~ ‘ iaz\v(x.,.\g, H riaz\v(x,,xz, H
CONET = Hylx, 0, 1) = 2my ot Tlmy gy

+V(x,~x) ylx, xp, 0) (3.2.3)

In order to transform to the variables x and X, we have lo cxpress the differcntiations 9%/ dx? and @/3x%in
terms of the new variables. We have

dx ox 7). ¢ n, S 9X n,

o dx dx, =~ ox, m+my,  0x, m,+m, (3-24)
_Thus, for an urbitiary function f(x,, x;) wc obtain ‘
df(xy, xy) _ If(x, X)_O_\ of (x, X)a_X _ o (x, X) my I (x, X) (32.5)

dx, ~  Jx ox, VT OX 9x;, = " ox “m+m, 0X
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]

Similarly,

of (x;, ) Of(x, X) Ox af(\ X)oX (v, X) ny o df(x, X)
dx, O« dx, YTOX 0, T T ox + m +m, 0JX (3.2.6)
or i '
J d my 9 J J m, 9
ax, ox ¥ m,0x ax, = " ax tm, +myoX (3.2.7)
For the second derivatives in x; and x, we have
hY ( d m 9 )( dJ mg 9 ) L ’
EE = m + my + IHZETY ox + m + mza—X (3.2.8)

J° m. 9 9 meodd ( m )2 ?
:a:5+m,+mz§—.\'57(_+m,+mla_xa—x+ ny+my/ 5yt

The wave function must be a smooth function for both x, and x,, so we can interchange the order of differen-
tiation and obtain -

2 2 n 2 52 2m, 3 9
9.2 ( ‘ ) , (3.2.9)

— + — 4 s TS
a'\.f o my+my/ oxr m+ m,0Xdx

For x, we have

i _ ( k) ne, i)( J m, i) _ Pk ( n, ) 9 2m, 9 ~
9x2 T _ax+ml +m,0X —a—,;+m| +mydX/ ~ 5; + my+my) 5y ni + myoXox (3.2.10)
Substituting (3.2.9) and (3.2.10) in (3.2.3), we get
8\|I(x X0 _ﬁ_ 9 ( m ) a' 2m] J 9
T o T 2my [ ga? + my+my/) 5yt m +m, n, +m,0X0x yx, X, 1)
2 [az ( m, )2 2? 2m, 9 9

-5+ ——
2n,) 92 T \my+my) gxr T omp+m ,0X0x

]\y(r XD+ V(r)\y(r,X )]

R 1\, X, ) ﬁ?( 1 )az G
= —'2*(,,—,1+,-,a) + VW, X, ) -7 v Xon  (3211)

ny +m

ox?

(b) Since the Hamiltonian is time-independent, y(x, X, £) = ¢(x, X)x(f) (we separate the time and the spatial var-

iables; see Problem 3.1). The equation governing the stationary part ¢(x, X) is Hd(x, X) = E,,0(x, X), where
E, o 18 the total energy. Substituting in (3.2.//) we arrive at

fi2( my +my\o? 201 \ewX) ‘
R e SO e T o = Bt ) (3.2.12)

m +I712
Performing a separation of the variables ¢(x, X) = E(N(X), (3.2.12) becomes

#2201 (m +my0\9? §(x) h? 1 1 azn(X) k
_7§(x)( o ) +V(X) = 5T +Ewm, (3.2.13)

ol To2n@my+my gy
The left-hand side of (3.2./3) depends only on .v; on the other hand, the nght-lmnd side is g function only of X.
Therefore, neither side can depend on x or on X, and bolh are thus equal to a constant. We set

« A2l A n(v) S
TINOm, +my gyt E., (3.2.14)

By inspection, we ‘conclude that (3.2.14) is the equation governing the stationary wave funcuon of a frec par-
ticle of mass m; +my, i.e.,

A1 Dn(X)
2m + i, aY

= E,,NX) , (3.2.15)

Note that the wave function corresponding to the center of mass of the two particles behaves as a {ree particle -

of mass m, +m, and energy E_,. This result is completely analogous to the classical case. Returning to

.

s
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(3.2.13), the equation for the relative posilion of the two particles is

2
/,~(m, + 11,
2\ mpm,

) = S L pEQ) = B =Eom (3.2.16)

Equation (3.2.16) governs the stationary wave function of a particle of mass (m, + m,) /m m, held in a poten-
tial V(x) and having a total encrgy £, — £, Thus the relative position of the two particles behaves as a
particle with an effective mass (m, + 1) /m i, and of energy £, — E . held in an effcctive potential V(x).
This is also analogous to the classical casc. '

3.3.  Consider a particle of mass m confined in a finite one-dimensional potential well V(x); see Fig. 3-2.

,Z!{lfﬂ 2 R0 R R i ORI AR T R Wit v Dati g W Piden A o pan R %

V)

>

= Vo :

=

1 1
¥,
F S Fig. 3-2
i 1y / dv
- é : Prove that (a) (—fl—t‘) = <'I’>, and (b)) ——+ ‘ <P> <_E>’ where (&) and {p) are the mean values of the

’E“‘l : . . : . dV\ _
B coordinate and momentum of the particle, respectively, and ~7c/ 8 the mcan valuc of the force acting

‘on the particle. This resuit can be generalized to other kinds of opcrdlors and is called Elrenfest’'s
* theoren.

(a) Suppose that the wave [unction Y(x, ) refers to a particle. The Schrbdinger equation is

op(x,n ih az\y(,\', noi

S = Zm FYE I Vv, 0 | 7(3.3.1)
*(x ih Ty,
and its conjugate equation is 0\1_1()(\__,__1_) = - ,,L'—%Q + LV(.\')\]I*(.\', t). [Notice that we assume V(x) to be
_ t 2 9y h
T real.] The integral j [w(x, 1) dx must be finite; so we get
B IY(x, ¢ dy(x, t
Clim |y, t)|2 = lim |y(, r)I2 =0 and lim —}ls:—)' = lim Wg‘ ) =0 (3.3.2)
Ilence, the time derivative of (x) is '
d { "oy X, ¢t -
¢(1:> ;J W Oy, 1) dx = J- Y a(t‘ d v, 1 dx+j *(x, Dx W( D (3.3.3)
Substituting the Schrodinger equation and its conjugalte gives
d(x i [ w0 if" .
((1 t> ZmJ- —‘%;_2—.\'\|l(x. Ndx+ % \y‘k(x, HY(x, 1) dx
‘ i N a’? \|I(\ l) i B . ! ]
‘ + 2'" \V ( ’ ) ,\ - ﬁ \V ('\v l)v(’\)“’(x: t)d-’\
i M) (x f)
=5 F,ITLI:J-{ oy XYy, ) dx - J. v, t)x :’ _ (3.34)

4
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3

Integration by parts gives

d{x) ih v (@, N, 5 oy (x, 1) 0
dr ﬂé}m{[ PR A )]_ -J‘J TAx o XY l)]dx

4

E . .
) f ) o, :
[\p x, Nx—=—" W(‘ ):|_€+J‘ ar[\j/ *(x, nx]—— \V( dx} e ;‘ (,3‘3‘5,)
Using (3.3.2), the first and third terms equal to zcro; so we have | )
dxy b a\p (X, 1) P a\y ‘(x, 1) a\y(r t)
a7 TIm M- Tox W Ddy- ax Yox &
£ -£
Y (x, 1) oWy, t N . Iy, t ’
+J;wo_\-\ Y (1) 1) ’5‘\ )(/.\+J’F’qr‘(,\-, PEA LY "(‘ UGN ] (3.3.6)

Eventually, integration by parts of the {irst term gives

_ 2 2
% - ‘2% J‘,‘,‘LU‘;( W O, D15 4 2 f éw (0 W( g dx}

R L ‘ S
B 'ZJ‘ W Ny o dxe= ) (3.3.7)
Consider the time derivative of {p):

! a fov(x, 1) fr I, DAy, H nl ) d gy, 1) :
(fllr,) = IJ. yH(y, t),. x dy = 7,[ 2 'ar l()\ (L\+TI vy, I)Ede (3.3.8)

—o0 ~o0 —o0

Since Y(x, 1) has smoolh derivatives, we can interchange the time and spatial derivatives in the second term.
Using the Schridinger equation, (3.3.8) becomes

2 - . ot
d{p) _ _ ﬁ_J 2 Y, N *(x, HOW(x, 1) 1-‘*'J VO, ’)a\u_(x, )] "

dt 2m o Jdx ox

7 " ) o
+'2,_,,_" v 0)° W( dx—J TAES 1)5(; [.V(x)\y(x, ] dx _ (3.3.9)

Integration by par:ls of the first term gives

o ‘ r g
w19 *(x : * ) NI y(x, 1
/ EJ‘ J Vi (;\, e \V_()\ )] de = lim { (—)\ll,("' ’)(—)\I{(—\, )] _ ¢ \I’a(‘ ) ‘V(‘ )d } (3310)
_ dx . v E-deo dx dx £ v t ()Y
Using (3.3.2), we arrive at .
! = lim |~ DW )('\’. ,)D \V(\ ’) Iy ' i (3.3.11)
§-ree o & A ()\ i L

\ :
Again, integration by parts gives

\

, : : .
R L

I = lim {_ [qr'-(_\-, o'—"@} +I v, ,)'l}lMu} f -y )0 w(v ,) N (33.12)
o (—).\'h - = X

Returning to (3.3.9), we finally have

(i(%:—) = j VO (, t) )(I\—J yh(y, 1

o ,) v | : . .
- v, I)V(\) dx = ~“dx A (3.3.13)
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3.4.

3.5,

y

Jjx, ) =

: .tions. Each of the currents is constant and time-independent in its magnitude. The term e
particles are of energy pz/ 2m. The amplitudes of the currents are A and B.

‘ . . 9p(r, 0
Consider a particle described by a wave function y(r, £). Calculate the time-derivative Pa PR where

p(r, 1) is the probability density, and show that the continuity equation : Pgt 2 +V-J, ) = Ois valid,

l fi
where J(r, £) is the probability current, cqual to - , Re [\y ( V\y)]
Usmg the Scluodmgcr cquation,

a\y(r r)
it dt 2m

V wy(r, £) + V(r, Hy(r, t) (34.1)

W (r, 1) t)

3 2"'V wrr, 0+ V(r, Dy, 1), According

Assuming V(x) is real, the conjugate cxplcwon is —ih——=—

to the definition of p(r, ¢), p(r, ) = W*(r, Hy(, 1); hence,

ap(r, 1) Iy, 0

5 = Y \y(rr)+\y(rf) W(

| (34.2)

Using (3.4.1) and its conjugate, we arrive at

s t)—,,LV(r OV, DW(E, 0 - W, 0 50V, 0

+EW*("’ Hv(r, Hy(r, ) = 2”” Ly, nv? yi(r, £) — y(r, Hv? v, ) (34.3)

We sct
Jr,n = —‘Rc[ ( V\y):l 2””[\;/ o, OV u(r, B —y(r, DV y*(r, 1) (34.4)

Using the theorem V- (UA) = (VU )-A +U(V - A), we have

fi .
Vo = 2-,;;[(Vw*> (V) + ¥ (V') = (V) - (Vv -y (VM)

2,,,, Ly* Vi -y Vit (34.5)
$0
ap(r,
l —Rf)—r,—’) V30 =0 | (34.6)
Consider the wave function
‘V('\" f) - [Aei[u'/ﬁ + Be-il’X/"] c“"l’2’(2’"h ' (3.5.1)
Find the probability currcat corresponding to this wave function.
The probability current is by definition
. h Iy ay*
ey = 27,,(\4/*5;— f \v) (3.5.2)

. . . * _ * —ipx/h ¥ inx/h i[l2l/2Ill,I. R o R .
The complex conjugate of wis y (x, 1) = (A ¢ +B "My e ; 50 a direct calculation yields

)

~ipx/h ipx/h {B "Xlip —ipx/h ip“A*“ I ipx/h ipx/h ~ipx
_57”.[(,.4% "/'+B*c”-/')(ﬁAe” "t FBe ”“’)»—(—TA*G"’ ey ,B*ev/')(/\eﬂ b+ Be r‘/")]

ZIN[(M(2 AT Be i 4 A it g}y (AP - A 136—2'/”/"+A11* 2'1"/"+u;|2)}

m( |A* - |13]2J : (35.3)

Note that the wave function y(x, r) expresses a superposition of two currents of particles moging in opposite direc-
-p'/2mk implies that the
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’

3.6.  Show that for a one-dimensional square-integrable wave-packet,

o »
J J)dx = o (3.6.1)

—o00

.

where j(x) is the probability current.

Consider the integral J Jyix, r)|2d):. This integral is finite, 5o we have lim |y(x, r)|2 = 0. Hence,
X =3 teo

—oo

- nf ayr(y,
j j<)dx = 5 J ]:ly (x, 1) e “’a(x D, r)lé%—):ldx : (36.2)

Integration by parts gives

o ’ E oo
J yix, N—=— W ( 2 )(Lr = élim {[W(x, HY*(x, I):] g—J. aly( yE(x, r)dx} =—J \[!*( I)—W‘(—"“zd (3.6.3)~

__§ —oo
Therefore, we have
) RN A
J‘ JW) de = "—,J y(y, r)7(7-_‘,\y(.\', Ndy = "y i (3.6.4)

3.7.  Consider a particle of mass m held in a one-dimensional potential V(x). Suppose that in some region V(x)
is constant, V(x) = V.For this region, {ind the stationary states of the particle when (@) E>V,(b) E<V,
and (c) E = V, where E is the energy of the particle.

(a) The stationary states are the solutions of

;’,,,a)q’(;) FV) = ) 6
For E >V, we introduce the positive constant & defined by Ak /2m = E-V,s0 that
aa(i(\) Koy = 0 | (3.7.2)
The solution of this equation can be writlen in tlie form
‘ O(x) = AeF A (3.7.3)

where A and A’ are arbitrary complex constants. -
(b)) We introduce the positive constant p defined by fi’p*/2m = V- E; 50 (3.7.1) can be writien as

d o
a¢(z" p4(x) = 0 374
The gcncrul sofutiou of 3.74) is ¢(x) = Be™ + B'e™ wherc B and B' are arbitrary complcx'constants.
2 . .
(c) When E = V we have _8_4)_(;) = 0; so ¢(x) is a linear function of x, ¢(x) = Cx+ C' where C and C' are
0xX

complex conslants.

3.8.  Consider a particle of mass m confined in an infinite onc-dimensional potential well of width a:

0 eyt ’
V(x) = { 2 2 (3.8.1)

otherwise
Find the eigenstates of the Hamiltonian (i.e., the stationary states) and the corresponding eigenenergies.

For x>a/2 and x <—a/2 the potential is infinite, so there is no possibility of finding the particle outside the
well. This means that

a a :
ql(.\’ > 5) =0 \y(x < 5) =0 (3.8.2)
Since the wave function must be continuous, we also have Wa/2) = y(—-a/2) = 0.For—a/2 S x < a/2the poten-
tial is constant, V(x) = O; therefore, we can rely on the results of Problem 3.7. We distinguish between three
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3.9.

possibilities concerning the energy L. As in Problem 3.7, part (a), for E> 0 we define the positive constant k,
12k /2m = E;so we obtain $(x) = Ae™ + A'e™™, Imposing the continuous conditions, we arrive at

1 Aeita/2 4 A'p-ika/2 = () I Ae-i*a/2 4 A'eika/2 = (3.8.3)
Multiplying (3.8.31) by e*9/2 we oblain A' = —Ae™, Subslituting A’ into (3.8.311) yiclds '
Aeike/2 _ poikagikas2 = () (3.84)

Muluplym;, (3.8.4) by emi*as2 and dividing by A [il A = 0 then y(x) =0} we obtain ¢7#¢ — ¢« = (), Using the
relation ¢'® = cos o+ i sin o we have ~2i sin (ka) = 0. The last relation is valid only if ka = nn, where n is an
integer. Also, since & must be positive, n must also be positive. We sce that the possible positive eigenenergies of

the particle are

I SO AT A 222

Eo= =t '—(" ) LA (3.8.5)
n 2m 2m\ a 2ma’

The corresponding eigenfunctions are ) .

w"(x) - Aeikn,\- _Aclk,,ue‘ik"x = Aeinty/a_ eirm(a—,\‘) /4 Ael’lm/Z [L"""‘ (a/a=1/2) _ p-inm(x/a- l/2)]
= Csin {nn(;{ - l,)] =1,2..) 5 (3.8.6)
where C is a normalization constant obtained by
a/2
1 . x|
> = sin? [nn( - — -)] dx ‘ (3.8.7)
C a 2
~a’/2
x| dx
Defining y = Pt and dy = ——, (3.8.7) becomes
, .
| a a sin(2mny) 70 a
g J sin2 (nmy) dy = i_[ , Ll =cos 2mrny) ] dy = i[""T]_. =3 (3.8.8)

Therefore, C = A/2/4. Finally,

W, = AEsin [nn('(—: - %)] (3.8.9)

Consider now the case when E<0. As in Problem 3.7, part (b), we introduce the positive constant p,
#2p?/2m = —E.Stationary states should be of the form y(x) = Be™ + B'e ™. Imposing the boundary condilions,
we obtain

1 Bere/24 Beva/2=0 Il Bera/24 Bevar2 =0 (3.8.10)

Multiplying (3.8.101) by ¢P</2 yiclds B' = ~BeP?, s0 Be*/2~ BeP"eP’2 = (0, Multiplying by e?*? and dividing
by B, we obtain1 - ¢2P* = 0. Therclore, 2pa = 0. Since p must be positive, there are no states with corresponding
negalive cnergy. j

Finally, we consider the case when £ = 0. According to Problem 3.7, part (¢), we have y(x) = Cx+C".
Iniposing the boundary conditions yiclds

a d
C3+C' =0 —C§+C'=0 (3.8.11)

2

Solving these cquations yiclds C = C' = 0, so the conclusion is that there is no possible state with £ = 0.

Refer to Problem 3.8. At ¢ = 0 the particle is in a state described by a lincar combination of the two
lowest stationary states: ' ‘

2 2
P, 0) = oy, () + By() (lod® +[p1* = 1) (3.9.1)
(a) Calculate the wave function y(x, 1) and the mcean valuce of the opcralols xand p as afunction of time.
(b) Verify the Ehrenlest theorem, md{x)/dt = {p,). :

3

(a) Consider part (¢) of Problem 3.1. The time-evolution of the stationary states is of the form

v, 0 = y () exp(-iE, t/h) (3.9.2)
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‘

Consequently, using the superposition principle gives

Yix, 1) = oy, 0+ Byylx, 1)

a[ﬁsin [7‘(5*%):{“[’[-27::;2’]] + [B[A/:%siH [2n('—;—%):{cxp[_27i’;’f:’ﬂ . 1 (3.9.3)

We now calculate

a’2 a/2
f wr(x, Dy, N de = J‘

(x) = Lo 2y, 0+ BAwi (v, D] x [ow,(x, 1) + By,(x, n] dx
-a/2 -a/2 L
as2 a’/? a’2
= QZJ. Yy, I)|2 dx + [32J' RTACS r)’2 dx +2Re I:OL* [3J. XY Dy(x, 1) dle (3.94)
~a/2 —a/2 -a/2

Consider each of the three elements separately:

a’/2 a/2
=] x dv = 5 i [(f 1)}/~ 3.9.5
= ,\{\pl(x, N dx = > xsin|m = -5 ]| dx (3.9.5)
' -as/2 —a’/? .
1 I x
Defining y = 5— 5 dy = %\, so

0 0 . p0

I,-= aJ 2y + 1) sin? (ny) dy = 2(1] y sin® (7y) dy +aJ sin2 (my) dy ° (3.9.6)

-1 -1 -1

Solving these integrals yiclds

2 . 0 .
_ Yy~ ysin(2my) cos (27y) [X sin (Zny)]o _a_a_
I = 20[4—- o TRl _|+a T an =-5+5 =0 (3.9.7)
One can repeat this procedure to show that

as2 as2 ' ‘

L=| = iy = ~'22('5 1)(1—0 398

)= -‘l‘l’z(-‘r nf"dy = p xsin [ -5 j, Y = (3.9.8)
-a/2 ~a/2

. ‘ . . . . . . X 1V,
Note that this result can arise from different considerations. The function f(x) = sin? [27{[—1 - i)] s an even
function of x: i

[sman(-3-)" = [raman(Ee )] = [oin(an(Z ) oe))

[sm 21:('(—', - %)] = /(9 (3.9.9)

On the other hand, f(v) = x is an odd function of x; thercflore, x sin’ [2rn(x/a~1/2)] is an even function
of x, and its integral vanishes from —a/2 to a/2.Consider now the last termn in (3.9.4):

ar2 /2 '
" S . 2, :
- o e = 2 1_1)JA- [ (-_",l)]. RLEUIN .
13_I ,\\Il,(.\,'l)\jlg(.\,l) dy = (’j /ﬂ.\.sm[n(u 5 |sin n Z=5)|exp P dy (3.9.10)

=0

]

~a/2

Defining y = x/a—1/2, dy = dx/a, and ® = 3n°%/2ma®, we obtain

0 0
i -it ! . :
1 (:("'"”J (2y + 1) sin (mwy) sin (2ny) dy = ae ”’J (2y + 1) 5 [cos (my) — cos (3ny) ] dy

-t n .
m_‘l -itnf

T 92t (3.9.11)

Finally, returning to (3.9.4) we obtain

N 1_6_(_72 R ko —iory iz_a'R * . 1 f ok Sl 12
(v) = ot c (0 Pe™y = ‘)7t2l c (o fB) cos (1) + Re (jo*P) sin(wr)] . (3.9.12)

Taan e

e s - 1 —p
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Consider the mecan value of the momentuni:

a’/2 a/l -
h S . M YD)
L :<)_A"’(‘ ndv= 7] ety + preie 0l o+ B Jdv - (3.9.03)

-a/2 —al/2

We calculale scparately cach of the four terms in (3.9.73):

a’2 a’/2 . «
SOV (D) 2n (v vl
W Ix dy = aa sin [n Pt ]cos [n: b ](I,\' (3.9.14)
—a’? —a’? .
L x 1y, , . X1y, — . . '
sin I:n 2732 ] is an even [unction of x and cos [n 73 ] is an odd [unction, so their product is an odd [unc-
tion, and therefore the integral of the product between v = —a/2 and X = /2 equals zero. Also,
a/l a/2
AT AR 22n , x o1 x o1
\4/2 (x, r)’*‘——‘——d.\' =0 sm[2n 273 ]cos[2n T3 }LL\ (3.9.15)
-a/2 -a/2

1
} is an even one; therefore, their product is an odd

..

1
sin [2n(3 - i)] is an odd function of x and cos [2n(

function, and thus the integral between x = —u/2 and « = 2 vanishes. We have

a/2 /2 . '
. ()\Ilz(\ 3] 4y . x| x 1 it -
I= \4/l 0 dy = — sm[n 272 ]cos[2n 272 ]e 'Ot dx (3.9.16)
) -a/2 a ~a/2
Dclining y = 5— 5 and dy = — llk integral / becomies
) . 8
arn 4np cos(my)  cos(3my)1° »
1= “"J sin(ry) cos (2ny) dy = | S LS P grier (3.9.17)
-1
Finally, .
a’/2 /2
. v 0) 2n , x| Yo, ,
= \|I (x, 1)———11.\‘ =7 siil [ZR(;—E)] cos [n il ]c"'"d.\‘ (3.9.18)

—a/2 -a/2

Using the samec definitions used above, we arrive at

1 [V
_2_”' iwt H N e — 2_“ iwt cos (Ity) COS(?)TC)‘)]O — _§_ iwr
I'= 7 ¢ J151|1 (2ry) cos (my) dy = ¢ [— T o LT T34 (3.9.19)
Substituting the results in equation (3.9.13), we [inally rcach
8’) *® ,»iu)l +,l(l)l
() = 3—’0[(1 e apre (3.9.20)
(b) In part (a) we obtain
loal 3in’h . 3in’h
(x(n) = - [u u\p(_ n 2'1]+(x[}"' cxp[ d ;I]] (3.9.21)
2 2ma .

Therefore, we have

(I(,\‘) I()u'hn h N antih antih | 8l jor_ fon
m-= = —o*Pexp| - =t |+ ap*expl Tt la*pe - ap*e (3.9.22)
2ma- 2ma

di " 92 2ma? = 3ia
By inspection, the last expression is identical to {p,). Thus, lor this particular case Ehreulest’s theorem is
verified. - ' :

3.10. Refer again to Problem 3.8. Now suppose that the potential well is located between x = Oand x = a:

‘ ‘ . { 0 0<x=a .
; Vi) = & otherwisc ‘ (3.10.1)

Find the stationary eigenstates and the corresponding eigenenergies.



34 THE SCHRODINGER EQUATION AND ITS APPLICATIONS [CHAP.3-

]

We begin by. performing a formal shift of the potential well, ¥ = x —a/2, so the problem becomes identical to

Problem 3.8:
; 0 —a/2<xgus? n
V@ = | w " otherwise , (3.10.2)
Using the solution of Problem 3.8, the possible energics are
2222
fi
E, = 22 (3.10.3)
2ma*

where 1 is a positive integer. The corresponding eigenstates are

W, (0 = J% sin I:nn(g - %ﬂ (3.104)

Or, in terms of the original coordinate, we have
) = [g i (’—-”” ) 5.103)
W) = S sin{ — - J0.

3.11. Consider the step potential (Fig. 3-3):

Vix Vo x>0 (3.41.1)
\ W=1o <o
V(x)
Vo
———F> ) jeeeee——————————-
1 It
X
Fig. 3-3 *
Consider a current of particles of energy £ >V, moving from x = —eo to the right. (@) Write the station-

ary solutions for cach of the regions. (h) Express the fact that there is no current coming back from
- x = +ooto the left. (¢) Use the matching conditions to express the reflected and transmitted amplitudes
~in terms of the incident amplitude. Note that since the potential is bounded, it can be shown that the
derivative of the wave function is continuous for all x.

(a) Referring to Problém 3.7, part (a), we define

K = 2m"E k. = 2m(f;1— V) : (3.11.2)
h2 - s .

Then the general solutions for the regions I (x < 0) and II (x> 0) are

0,0 = AT Ay e 0y(x) = Ayer 4 Ay o7 (3.11.3)
(h) 'The wave function of form e'** represents particles coming from x = —es to the right, and e~** represents
particles moving from x = +ooto the left. ¢,(x) is the superposition of two waves. The first one is of incident '
particles propagating [rom lelt 1o right and is of muplitude A|: the second wave is of amplitude A\ and repre-
sents reflected particles moving from right to left. Since we consider incident particles coming from x = —eo
to the right, it is not possible to find in II a current that moves from v = +eo to the left. Therefore, we set
Ay = 0.Thus, ¢,,(x) represents the current of transmitted particles with corresponding amplitude A,.

(c) First we apply the continuity condition of ¢(x) at x =0, §,(0) = ¢,(0). So substituting in (3.11.3) gives
A+ A = A, (3.11.4)
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od(x
Secondly, —% should also be continuous at x = 0; we have .

99,(x : : 09y, (x) "
a')(c) = ik A e o ik A et D”). = ik,A et (3.11.5)
d9,(0 d,(0
Applying (l; ) = ¢E;|f ) , we obtain
ik, (A~ A)) = ikA, (3.11.6)
Substituting A, gives A, + A} = (A, ~ A}) k,/k,, which yiclds
Al k=
7‘—1 = ik (3.117)
‘ ki =k,
Eventually, substituting (3.11.7) in (3.11 4) yields Al(l T ) = A,; therefore,
. 1R
A, 2k
= Tk (3.11.8)

3.12. Refer to Problem 3.11. (@) Compute the probability current in the reglons 1 and 1I and interpre! each
term. (b) Find the reflection and transmission coefficicnts.

(@)

®)

For a stationary state ¢(x), the probability current is time-independent and equal to

J(x) = 2m,[¢*( D¢(r) e )aqi(\)] (3.12.1)
Using (3.11.3) for region |, we have
Jix) = 22“[(/\* T A ) (kA ik Aye )
(A AR (= ik ATe "‘n‘ +ik A M) ) = TH—(|A,{ — |y (3.12.2)
Similarly, for region Il we have
Sy = 2”” [A* At (ik, )c"‘ * = Age™ (—iky) e = — |A2| (3.12.3)

. The probability current in region [ is llu, sum of two terms: fik |A l| /m corrcsponds to the incoming current

moving from left to right, and ~7ik |A | / m corresponds to the reflected current (moving from right to left).
Note that the probability current in region II represents the transmitted wave. ‘
Using the definition of the reflection coefficient (see Summary of Theory, refer to Eq. 3.27), it cquals

| APk, sm | A2 3124
- IAllzﬁkl/m T A o
Substituting (3.11.7), we arrive at
2
(k| ~k,) 4k k .
- ______' _2 S = o ——2 5 (3.12.5)
(ky +k,) (k,+ k)
The trausmission cocfficient is
ALtk kA 3126
}Azlzhk,/m kylA, o
Substituting (3.71.8), we wrrive at
) k, ( 2k, )2 4k k,
T = 3 L = ———— (3.12.7)

(ky+ k)
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¥ ‘ : N
3.13. Consider a free particle of mass m whose wave function at time # = 0is given by

Ja

(21()]/4 .

oo

2 2 " i
y(y, 0) = oW Rk A IR g (3.13.1)

Calculate the time-evolution of the wave-packet y{x, 7) and the probability densily_l\u(x: t)|2. Sketch

qualitatively the probability density for 1 <0, r = 0, and ¢ > 0. You may use the following identity: For

any complex number & and f§ such that —n/4 < arg (o) < /4,

o

—o0

x , Ja i
The wave-packet at t = O is a superposition of plane waves e/** with coefficients We @ tk=k) /4; this is
T .

a Gaussian curve centered at k = k,. The time-evolution of a plane wave " has the form etkxemiERIR

e™*xe=ih1/Im We set (k) = fik®/2m, s0 using the superposition principle, the time-evolution of the wave-packet

y(x, 0) is

Wi, 1) = f e =k /4 i thx -0t 4y : (3.13.3)

a
(2n)3/4 »

Our aim is to transform this integral into the form of (3./3.2). Therefore, we rearrange the terms in the exponent:
) .

a 2 ’
-7 (k~kg) +i[kx— (k)]

2 2
a iﬁ,r)’z (a__ . ) a ,
—(Z+m k™ + 2/(04‘-1,\’ k—-4/\0

il

2 2 2 2
2 kg +ix ((Lk +iv) 2
1 ol 2 Ko™ H - .
=_(“_+L”) 2 PRI _%kg (3.13.4)
4 " 2m 2(£+,i_f££) 4(‘I_+Zﬂ)
4  2m 4  2m
Substituting in (3.13.4) and using (3.13.2) yields
’ ( azkf,) o 2
expl——~ Thotix
Nt = - ex — 3.13.5
R AT e 4
4 + 2m m

The conjugate complex of (3./3.5) is

*
Y, ) = T exp - (3.13.6)
4 " 2m m
Hence,
2,2 o 2 a 2 :
( a k(,) ak, . a-k,
, a eXp\ -3~ =) -+ ia*k,x 5 —x?—iatkyx |
lyxi ol = = : exp + -
22 ((;2 ,‘ﬁ,r)(a? ,'f,,t) a’+2iht/m a*=2itt/m
7 2\ T "2
”21"(:; Akt NE ky o 4f"k0“2
__ - | a + " + 207 —— —xX +—;;'—.\'r
2 | “ m-
— T eXp | — ‘
na?J1 + a2 2 /ma a' + 4kt /m’
2 2
) 1 2a" (x ~hkgt/m)
=17 exXpy-—- 1 N (3.13.7)
a1 + 4t srmiat a +4hTr/m y

i (i P A

j c,az(,wm’(,y - :@ g (3.13.2)

@
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W(x, )i2

t>0

Fig. 3-4

The probability density is a Gaussian curve for every limc2 tentered at v = (fiky/m) . (i.c., the wave-packet
moves with a velocity V, = fik,/m.) The value of [y(x, H|” is maximal for t = 0 and tends 1o zero when t — oo,
The width of the wave-packet is minimal for ¢ = 0 and tends (o e when 1 — oo; sec Fig. 3-4.

3.14.  Consider a squarc potential barrier (Fig. 3-5):

0 x<0 :
. 3.14.1
vy = 1 Yo O<x<l (3.44.1)
0 l<x
V()
v()
1 H 11
0 ) X

Fig. 3-5

{a) Assume that incident particles ol energy I2 >V, are coming from x = —eo. Find the stationary states.
Apply the matching conditions at x = 0 and x = [. (b) Find the transmission and reflection coefficients.
Sketch the transmission cocllicient as a function of the barricr’s width /, and discuss the results.

(a) Similar to Problem 3.7, part (¢), we define

I 2m (£ -V,)
b= by = (3.14.2)

Thus, the stationary solutions for the three regions I (x < 0), 11 (0 <x < 1), and HE (x> /) arc:

q’l(-“) — Al(,’ik'x'f' Avle—l'kl.\'

(b“('\,) = Azeikz.\'_*_ Auze—ikz.\‘ (3143)
Py = Ayt Ayt

Each of the solutions describes a sum of térms representing movement from left to right, and from right (o left.

We consider incident particles from x = ~oo, 50 there should be no particles in region Il moving from x = oo

to the left. Therefore, we sct Ay = 0. The matching conditions at x = [ enable us to express A, and A’ in

terms of A;. The continuity of ¢(x) at x =/{ yiclds () = ¢, (), so

Ayt 4 Apehal = A, (3.14.4)
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The continuity of ¢'(x) yields _
ikyAye™ ik, Ayemtal = ik ALl : (3.14.5)
Equations (3./4.4) and (3.14.5) give

ky+ k.
= ik, —k)!
A,y = [ T et -’]A3

1

(3.14.6)
AL = /2:_/2 Ptk 1| 4
AT 3
The matching conditions at x = 0 yield .
, PO =0,(0) = A +A=A,+ A, (3.14.7)
and '
‘ $0) = Oh0) = kA = ik A = kA= ik Ay (3.14.8)
so we obtain
ky+k, ky—k,
A = T3 A+ 3%, Al ) (3.14.9)
Using (3./4.6), we can cxpress A in lerms of Aj:
[k k) o =k
LA [_Z}T— R T N
(k,+k2) ~(k|—k2)“ (k, +L) + (k, —k) oy
= g, cos (ky0y) —i T sin (k1) je" v Ay -
2 ,2 ‘ [
= [coq (kD) i 2L r, 2 sin (kzl)J"ik'lAJ (3.14.10)
Similarly, we cxpress Aj in terms of Ay
A = kzlk kl;l:kz '2 ) [(kl+k2k)(l\k - (."“'r"z” (ky + ky) (ky— &) St +k2)'}A3
(A} —A)+(A ) I~k - (K =12 TR — i ‘ o :
= g, cos (k, D o+i T sin (k,1) A3_'2I\I\ sm(k De™A, (3.14.11)

(h) The reflection coefficient is the ratio of squares ol the amplitudes Lorrcqpon(lmb to the incident and reflection
waves (compare to Problem 3.12):

R =M S C(31442)
A, | SRS
U.sing the results of part (u) we obtain
k- k2 ? ,
Kk, Sin (k) (2= k) sind? (ko)
R = ST == = — (3.14.13)
ok ky+ky akTks + (K = k3)” sin? (k,1) :
cos?(k,l) + N sin (k,/) .
Finally, the transmission coeﬂ‘iéiem is
| Ak3HS
=4 = ! - —— (3.14.14)
A, K~ k3 dkiks + (ky —k3) " sin? (k1) :

cos? (k,I) +( 57 /\ZJ sin? (k,l)

The transmission coefficient osulldtes periodically as ‘lllumuon of I (sce Fig. 3-6) betwecn its maximum vilue
(one) and its minimum value [ + V /4E(E-V,)] . When /s an integral multiple of n/k,, there is no
reflection from the barrier; this is callcd resonance scattering (see Chapter 15).
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4k3 k3
4kTR3+ (k- k3)*

" 3.15. Consider the square potential barrier of Problem 3.14. Find the stationary states describing incident par-

ticles of energy E < V,. Compute the transmission coefficient and discuss the results.

The method of solution is analogous to that of Problem 3.14. Referring to Problem 3.7, we define

2mE 2m(V,—E) ; )
k= ’— = ’-——————- 3.15.1
1 ﬁz p ﬁz . ( )

The stationary solutions for the three regions 1 (v< 0), I (0 <x < ), and 111 (> Darc

¢l('\.) - Alcik|,|'+ Avlc—ikr\'

Ppv) = Aye™ + Ape™ (3.15.2)
) = Ajehit 4 Ay e
We describe incident particles coming from x = —oo, so we set A} = 0. Applying the malchi'ng conditionsin x = [
- gives - . '
o = o) = A+ A =a et \ (3.15.3)
Oul) = i) = Apef'— Ay =ik A (3.154)
From (3.15.3) and (3.15.4) wc obtain
A, = [p—%e“""’”]m Ay = [p—;—?e"‘l*"”]AJ (3155)
The matching conditions at x = 0 yicld
00 =0,(0) = A +A =A,+ A (3.15.6)
0U0) = Ou(0) = kA, —ik A} = pA,—pA, (3.15.7)

From (3.15.6) and (3.15.7) wc obtain

ik +p ik -p
A = -27k_l—A2+ —'ZTZ'I—A'Z (3.15.8)
Using (3.15.5), we arrive at
Gk, +p) ik, ~p) K2~ p?
_ Lik=-pyt L ik +p)i — |- | N e ikt

LA = [_-4iklp e’ = Tikp ¢ ' Ay = l'-—?_k'p sinh (pl) + cosh(pl) |¢"VAy  (3.15.9)

Finally, consider the transmission coclficient:
2 .
T = ]% - ! . - ! (3.15.10)

W (p! 'pz'nhzl 1 karpzz'an/'
cosh?(pl) + 2%.p sinh? (p/) +'2k1p sinh?(p/)
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2

where we used the identity cosh? o — sinh? o = 1. Hence,

4L (V- I) .
T = e (3.15.11)
R 2mVy~ LI~ )

4E (V,— E) + V| sinh T

]

We see that in contrast to the classical predictions, particles of energy £ < V, have a nonzero probablllty of crossing
the potential barrier. This phenomenon is called the tunnel effect.

3.16. In this problem we study the bound states for a fmltc square potential well (see Fig. 3-7). Consider the
one-dimensional potential defined by

0 (x<—-a/2)

vir) = | VYo ~a/2<x<a’/2 (3.16.1)
0 (a/2<x) ‘ -
V(x) ‘

'—a/2 af?

X
1 I 111
-V,

Fig. 3-7

(a) Write the stalidnary solutions for a particle of mass m and energy -V, < £ < 0 for each of the regions
I(x<-a/2),ll(-a/2<x<a/2),and 1l (a/2 < x). (b) Apply the matching conditions at x = —a/2
and x = a/2.0Obtain an cquation for the possible energies. Draw a graphic representation of the equa-
tion in order to obtain qualitative properties of the solution. .

(a) Referring to Problem 3.7, we define

ComE 2m(lL+V,) :
. | o= [2ME k= [——— (3.16.2)

y

fi- K2
Th;:n the slatiohary solutions for each of the regions are
d(v) = A + Ae™
D) = Bt 4 e (3.16.3)

")m(-\') - (/u(,p_\ + (/-(, A&l

Since ¢(x) must be bounded in regions 1 and 111, we set A' = ' = 0; therefore,

¢() = Ae™
Pu(¥) = Be™ 4 B A
() = Ce™* 1 (3.16.4)
(h) The continuity of ¢(x) and §'(x) atx = —a/2 yiclds
| : AePV/2 = Be-ika/2 g Boikas?
’ {pAc-P"/1 = fhBe-%a/ et (3.16.5)
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Similarly, the matching conditions at x = a/2 yicld

-pas2 = poika/2 . pr,-ika/2 '
{ Ce ¢ ¢ (3.16.6)
_pcc_pu/Z - "chiku/Z _ "kB'[,—iku/Z ;
Hence, we can express B and B’ in terms of A:
+ik ) —ik :
b= (B )y (2 cpiinan )y (3.16.7)
We substitute (3./6.7) in (3.16.6) to obtain )
' +ik —ik
€= (p‘zT - e )A
i " - S (3.108)
P~ _[PFIA Ly, P ',_iL..)
. e = (g et =Lyt )
To obtain a nonvanishing solution of (J./6.8), we must have
+ik —ik +ik -ik .
N S M =) (3.10.9)
which is cquivalent to ’
E_—ka — 2ika ‘ .
(p+ik =¢ (3.10.10)

Equation (3./6.10) is an cquation lor E, since p and & depend only on £ and on the constants of the problem.

The solutions of (3.76.10) in terms of E are the energies corresponding to bound states of the well.

We shall translorm (3.16.10) to-express it in terms of & only. There are two possible cases. The first onc is

p—ik)z - ika
I (p+fk = —¢ (3.16.11)

The left-hand side of (3.16.11) is a complex number of modulus | and phase -2 tan-! (k/p). (p + ik is the com-
plex conjugate of p ~ ik.) The right-hand sidc of (3.16.11) is also a complex number of modulus 1, and its pliase
is T+ ka(=e™ = ™. o™ = oDy Therelore, we have

k) ' (n ku) k (n ka) (n ku) (/\'a) ' |
=~ =] = 4 — - == = — s -t — | = —_— ] ——
tan (p = 2+. 5 = P mn[ ) ] tan| 5+ cot| 5 an (ka/2) (3.16.12)

and

ka p
tan 2 )= % (3.16.13)
2mV
We define &k, = Py = ke p*, where the parameter , is £-independent. Consider
l

1 L_,,) e (/\_0)2 A
cost (ka/2) ““‘“2(2 =2 =1 (3.16.14)

Equation (3.16.11} is thus cquivalent to the lollowing system of cquations:

. (L")' _k
COs 2 = k()

(3.10.15)
(%)
tan{ 5 J> 0
. where we used (3.16.13) and (3.16.14) together with the fact that both p and & are positive.
We turn to the second possible case, i.c.,
. (P 'I‘)2 _ ika |
II (p+ik = ¢ (3.16.16)
Similar arguments as in casc [ lead us to '
k w  k

-2 tan™! (5) =ka = la /_\21_1’= _E . (3.16.17)
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Consider
L[ ka tan2 (ka/2) i : :
s112(—) = = ~ (3.16.18
! 2 1 + tan? (kﬂ/z) [(2 +p° ' )
Thus,
sin (%’) = EL—
0

(3.16.19)
&)
tan 5 <0

In Fig. 3-8 we represent (3.16.15) and (3.16.19) graphically, The straight line represents the function k/ k,, and

s 5 amafes(5 )}

the sinusoidal arcs represent the functions and The dotted parts are the regions where the

k .
condition on tan(ia) is not fulfilled.

1 N T T~ . U s - ~
) /o / / 7/ '
/ ’ ’ / )
/ 7/ / 1
'
]
’ ’ ’ ’ .
I Vi 7 t
’ / / ’ \
’ ’ ’ ’ !
/ ’ ’ :
’ ’ ’ ’ ,
I / I 7 1
L L !
L
nt/a 2 1t/a n/ja 4rn/a ky Sn/a k
Fig. 3-8

The intersections marked with a circle represent the solutions in terms of &, From these eoluuom it is possible
to determine the possible cnergies. From Fig. 3-8 we sce that if &k, < w/a, that is, if

w2’

2ma?

Vo<V, = (3.16.20)

then there exists only one bound state of the particle. Then, ifV, £V <4V there are two bound states, and so

con. If V » Vy, the slope 1/k, of the straight lmc is very sm.\ll For lhc lowest encrgy levels we have

approxmmte]y
k=17 (n=1,2,3,...) (3.16.21)
and consequently,
2,{2 2 : ’
E=""2y, . (3.16.22)
2ma® .

Consider a particle of mass m and energy £ > 0 held in the one-dimensional potential -V 3(x — a). (a)
Integrate the stationary Schrédinger equation between a — € and a + €. Taking the limit € — 0, show
that the derivative of the eigenfunction ¢(x) presents a discontinuity at x = g and determine it. (b) Rely-
ing on Problem 3.7, part (a), ¢(x) can be written

»

o) = A]eik.\' + Av[ c—ik.\’ x<a

) (3.17.1)
) = Ay Ayt x>a

r?':!r],’:)':‘n

—a- e -
B Aot .-.\.3.1‘,...‘ -
. eyt .

s

? W"-'?"'?‘— I

WP IO T ';rﬁ?y‘w(lrjt':"?\,'.‘.'ﬂ"ﬂ!ﬂf» FeA

s

7

»
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where £ = §2mE/#h2. Calculate the niatrix M defined by

A, A,
=M (3.17.2)
Ay A
(¢) Using the Schrédinger cquation,

r? d?(p( v)
~2m %

+ Vd(x — a)d(x) = Ed(v) (3.17.3)
|
Integrating between a — € and « + € yields

A d+E
h- (* (b(\)

a+E ag+E
~3 1 dy + VUJ O — a)Px) dy = ,fJ. o) dv . (3.17.4)
[ZAY .
u--£€

[ a-t

According to the definition of the d-function (see the Mathematical Appendix), the integration gives

d + € .
he(d O(v) do(x) ) o
_27;( LIX X=ad+E dx \=a-£ * VU¢(G) - E q)(/‘) d/l (3175)
’ ’ a-¢
Since $(x) is continuous and finite in the interval [a — g, @ + €], in the limit € — 0,

_fl_ . d) (i¢(_\') L

“2m rll_l,,, dx ‘l_, e | T Vod(x) = (3.17.6)
* v>da x<a

We sce that the derivative of ¢(x) presents a discontinuity at x = a that equals 2mV b(a)/ .
(b) We have two matching conditions at x = a. The continuity of $(x) at x = « yiclds

A lci(u + A'IL,—:'ku - /\20“" + A o—ika (3.17.7}
where the second matching condition is given in relation (3.17.6) and yiclds
ﬁ il-pika t o) ,—ika i1 ik vy -ika (/ ika 1 —ika
m (Ayike"™ = Ayike™ —~ Ajike™ + Ayike ™) = =V (A e + Aje™) (3.17.8)

Equations (3./7.6) and (3.17.7) cnable us to express A, and A; interms of A, and Aj:

my, mV,
0 0 _
(l ; )Al —¢ 2:LaAl

A, =
2 ikfi? ikl
?
) mv, . ( mV“) (3.17.9)
S Ay = — = etA 4| ] - —— A
2T ikk? ik
We therefore have
A, A,
Ll =M (3.17.10)
Al Al
whcre
+ M ﬂ.‘.‘ ~2ika
ikh? ikh?
M= 3.17.11]
mV(, SRk | mv, ‘ ( )
Tikfi2 " ikh?

3.18. Inthis problem we study the possible encrgics (£ > 0) of a particle of mass m held in a §-Tunclion peri-
odic potential (scc Fig. 3-9). We definc a one-dimensional potential by

\ ‘ V() = 2ma 2 O(x — na) (3.18.1)

n=-o0
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Referring to Problem 3.7, part (a), for each of the reglons Q, [na<x<(n+1)al the statlonmy solu-
tion can be written. in the form

¢”(x) —= B"cik(.\'—lm) _'-_C”e—ik(.r—nn) ) 7 (3.18.2)

V(x) L
4

-

—2a —-a a 2a X ‘ ) .

Ivig. 3-9

(a) Use Problem 3.17 to find the matrix T relating the regions Q, , , and Q,:

y ‘. Bn+l Bn
| c. )= 7 c, (3.18.3)

Prove that T is not a singular matrix. (b) Since T is a nonsingular matrix, we can find a basns (by, by)of
c? consisting of elgenveclore of the matrix T. We write

B, _ »
c.|= Bib, +Byb, (3-18.4)
0

. 2 .
where f3,, 3, are complex numbers. Impose the condition that |C,|” does not diverge for 1 — oo
to obtain a restriction on the eigenvalues of T. Express this restriction in terms of the possible encrgies E.

(@) We compare the definitions of ¢,(x) and ¢,, ,(x) according to (3./8.2) and the definition of ¢(x) in Problem
3.17, part (b). The analogy is depicted in Table 3-1.

Table 3-1

Problem 3.17 | Problem 3.18
A Bt
\ : . A C,,t’“""
A, B,, Ie—ik(yn- hHa
A} C'Hleik(;w a
V, A
2ma

Also, the boundary between the two regions €, aud | is sct in.x = (#+ 1) a, whereas in Problem 3.17
the boundary condition is imposed at x = . Using this analogy we have
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" L 73 ) . (‘ix ) "
—tk(n+1)a __ —ikna ! ikna| 22 =2ik(n+1)a
B,,..c =D.e ( I - T C.e %3 )¢

L . A ; i\
ik(n+ )a — —lklm( __’__) S20k (n+ Na """( J
C,oc B, 3%a )¢ +C,e I+ ke

Bu+l B"
=7 3.18.
Cn +1 ! Cn - ( 18 6)

(3.18.5)

We therefore have

* where

')\' ika ’)\', ika
, (' 517;)' "t s
= _i ika (1 _’_}‘_J ~ika (348.7)
*2%a® t2ka )¢

We see that T is not a singular matrix, since

, ir i\ ) (;7»_)2 .
det 7" = (”2/«1)(“2/;” *\2ka) = (3.188)
and therefore det T # 0.

Since T is a nonsingular matrix, we can [ind a basis (b, b,) of C? consisting of cigenvectors of T with corre-
sponding eigenvalues o and o,; these cigenvalues are the solutions of the cubic equation det(T - otl) =0
By definition,

{'l‘bl = a,b,
3.18.9
b, = b, (.169)
Using (3.18.4), we have (forn = 1,2,..)
Bn 2 B() it n n
c = TT---T c = T"(B,b,+B,by) = P,aib, +B,asb, _ (3.18.10)
n n tines o
Consider
2 2 Bn 2 ) 2 2
el = | o 2Bl (3.18.11)

. 2.2 L o
Thercfore, jou)| < 1; otherwise lim (|B,|" +|C,|") = co. Similatly, we must have jat,| < 1. We apply a similar
consideration for n = —coz "7

B() " B—n . .
c, =T c for n=1,2... . (3.18.12)

-n

Hence,

]

B‘" et B() pu—) Bl g, BZ oy ,,.
c 1= T c, T (B,b, +B,by =(X-—,I,[I (a,b,)]+a—;[[’ (a3by) |

~n

[5‘ o '52 e B ot BH I52 n
= =TT b))+ 17 (b)) = b+ by (3.18.13)
o & SRR TR )
Thercfore,
B—n 2 2
B+ = “[c ] > Pl |12 (3.18.14)
-n (X”], . )
* sola| 2 1; otherwise |¢"(,\')[2 diverges for it ~ —eo, and similarly we must have [o,) 2 1. Summing our results,
we must have |0Ll| = |0L2| = 1, i.c., the eigenvalues of T must be of modulus 1. Therefore, we can write
dey(T-€"1) = 0 ' < (3.18.15)
-
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3

where ¢ is a real constant. So

A a_ i ( i) —ika i@] A
[( —2ka)e o] [(1+ 55 et e G =0 (3.18.16)
A rearrangement of (3.78.16) gives
A’ ( "X) ika ( i}‘) —ika | ,i0 4 ,2i0 A’ (3.18.17)
[1+4k2a2J—[ ]—me + l+me Je +e _(2ka)2_0
or
A o . 2t
l—-2[cos (ka) + 57, Sin (ka)}e’ +e® =0 (3.18.18)

Consider the real part of (3./8.18):

»

1 —2[cos(ka) + % sin (ka) Jcos d+cos(2¢) =0 (3.18.19)

Using the relation cos (2¢) = 2 cos? ¢ — |, we arrive at

\

A
cosd = cos(ka) +msin(ka) (3.18.20)

Note that since k = J2mE/#?,(3.18.20) is a constraint on the possible energies E:

We can represent this inequality schematically in the following manner. The function

fk) = cos (ka) +2—;\7(-’sin (ka) . ‘ coe ) ;(3.18.22)" ‘

behaves for k — oo as cos(ka) approximately. The schematic behavior of f(k) is depicted-in Fig; 3-10.

fk)

+1 permitted bands

Fig. 3-10

We see that there are permitted bands of possible energies separated by domains where |f{k)} 2 1, and therefore
the corresponding energy E does not correspond to a possible state. For £ — oo the forbidden bands become
very narrow, and the spectrum of the energy is ahnost continuous.

Consider a particle of mass »z held in a three-dimensional potential written in the form
V(x,y,2) = V() + U(y) + W(2) (3.19.1)

Derive the stationary Schrédinger equation for this case, and use a separation of variables in order to
obtain three independent one-dimensional problems. Relate the energy of the three-dimensional state to
the effective energies of the one-dimensional problem.

N | . ,
cos (ka) + 2ka sin (ka) | <1 (3.18.‘21)

IO T e o

R Akt
b !

1
'

F
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In our case the slulionury Schrédinger equation is

mv W(r) + [V + UQG) + WE) W) = EY(r) (3.19.2)

where W (r) is the stationary three-dimensional state and E is the energy of the state. We assume that W (r) can be
written in the form W(r) = o)X W(2), so substituting in (J./9.2) gives

I2
2"1[(( . ))X@)‘V(‘) 4’(\)[ - )\V()+¢( )x(y)L '(’H

+ [V() + UQ) + W@ o) x(mw(z) = E¢x)x(mw(z) (3.19.3)
Dividing (3.19.4) by W(r) and scparating the .\‘-dcpcn(bnl part, we gel ‘
Al 1 dRow) o4 x| d'y(2) : '
_ZTMQ)(X) 2 + V() = Uy) +W() - o X(.)’) dy ‘V( ) e (3.1‘9.4)

The left-hand side of (3.19.4) is a function of x only, while the right-hand side is a function of y and z, but does not
depend on x. Therefore, both sides cannot depend on .v; thus they equal a constant, which we will denote by E,. We
have

it d? d"¢(x)

T2m g2 +VW)OW) = £.6() (3.19.5)

We see that ¢(x) is governed by the equation describing a parlii:lc of mass m held in the onc-dimensional potential
V(x). Returning to (3.19.4), we can write ‘

Rt L ) 11 dG )] (3.19.6)

. ‘ ' ) 2mx(y) dy? +U0) = E-E - [W( )= 2m\|/(4) dz?

In (3.19.6) the left-hand side depends only on y, while the right-hand side depends only on z. Again, both sides must
equal a constant, which we will denote by E . We have

- dzx() ] k e :
“2m dy? +UX0) = £,x0) : © (3.49.7)

Thus, %(y} is a stationary statc of a l‘iclilious particle held in the one-dimensional potential U(y). Finally, we have

#? d*yi(z)

T2m g2 + W) = £.y(@) (3.19.8)

where weset £, = [ — £ — [ . lence, the three-dimensional wave function W(r) is divided into three parts, Each
part is ;,ovcmud by a one- dumnslon.ll Schrédinger equation, The energy of the three-dimensional state cquals the
sum of cnergies corresponding Lo the three one-dimensional problems, 2 = £ +E + .

Supplementary Problems

3.20.  Solve Problems 3.11 and 3.12 for the case of particles withenergy 0< E<V,.  Ans. R=land T =0,

3.21. Consider a particle-held in a one-dimensional complex potential V(x)(1 + i€) where V() is a real function and  is a

o Oy oy”
real parameter. Use the Schrodinger equation to show that the probability current j = 2"”(\V D\i -Vor and

. . i 2EV(x
the probability density p = y*w satisfy the corrected continuity equation g— (3)") = 5 ﬁ( )p' (Hint: Compare

with Problem 3.4.) .
3.22. Consider a particle of mass m held in a onc-dimensional infinite potential well:

Vo = {Vo Usy<a (3.22.1)
T oo otherwise
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3.23.

3.24,

3.25.

3.26.

3.27.

THE SCHRODINGER EQUATION AND ITS APPLICATIONS [CHAP. 3

Find the stationary states and the corresponding energics.

2kl n?

Ans. E = 3

5 +Vy (n=1,2,3,...). The corresponding statcs are the same as in Problem 3.10.
ma .

Consider an electron of energy 1 eV that encounters a potential barrier of width 1 A and of energy-height 2 eV. What
is the probability of the electron crossing the barrier? Repeat the same calculation for a proton.

Ans.  For an electron T = 0.78; for a proton T =4 x 107"

(@) A particle of mass m and energy I > 0 encounters a potential well of width 7 and depth V: .

0 x<0 ‘
Vi) = | Vo O<x<l! (3.24.1)
0 l<x :

Find the transmission coefficient. (Hint: Compare with Problem 3.14.) (b) For which values of / will the transmis-
sion be complete, if the particle is an electron of energy | eV and V,; = 4 eV?

~

1
Ans. (@) T = 2 = s ) 1=2Tn A, where 1 is an integer.
-V . 1[ 2m(E+Vy) l}
Y+ TEE vy i %

An electron is held in a finite square potential well of width 1 A. For which values of the well’s depth V,are there
exactly two possible bound stationary states for the electron?

n’h?
Ans. V<V <4V, whereV, = —— = 37.6 eV.
2ma*

N
Consider the wave function y(x) = —3 el (a) Calculate the normalization constant N where o is a real constant.
Xt - :
. . . . 20’ fh
(b) Find the uncertainty Ax Ap (be carcful in calculating Ap!). Ans, (@) N = R (h)Ax Ap = :/—i

Consider a particle of energy L > 0 confined in the potential (Fig. 3-11)

e« X<~
‘ 0 —a<x<-b ) o
| Vo) = (Yo —b<x<b | : , (3.27.1)_ ..
: 0 h<x<a '
=‘ 0o a<x

Show that for a stationary state with a nonvanishing probability of finding the particle to the right of the barrier (i.e., . ' -

at b <x < a), there is also a nonvanishing probability of finding it to the left of the barrier (i.e.,, ~a <x < —b) Note:
For E <V thig is another example of the tunnel cffect of Problem 3.15.

V(v
| w |
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Fig. 3-11
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3.28. Consider a particle of mass m confined in a onc-dimensional infinile potential well:

0 O<x<l ;
N = (3.28.1)
Vi) {oo otherwisc .

.

X C . 2 . (nmx) . r2fi2n?
Supposc that the particle is in the stationary state, ¢,(v) = LS of encrpgy I£, = 5+ Calculale ()
{x) and {(p); (b) {x?) and (p*); (¢) AxAp. | 2mL
’ |

L 2 1 n2fi2n? ‘ 1 1
Ans. (@) (x) =5, (p) =0;(b) () =L} 3~ (PP = () AxAp = nnfi |5 - .
. 2 3 onn? L2 12 2nn?

©3.29.  Consider a particle of mass » held in the potential

V(x) = =V, [8(x) + 0(x — )] (3.29.1)

where / is a constant. Find the bound states of the particles. Show that the cnergics are given by the relation
- 2 ‘ '
P = i(l—-&e) ‘ (3.29.2)

where E = —A%p2/2mand o = 2mV,/#?.



