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Abstract

The release of agricultural land for urban use by landowners, the development of this land into urbanized
land lots by land developers and the construction of buildings by housing developers is a complex
multistage process which we study and model as a chain of sub-markets. The theoretical complexity
comes from the interaction between supply agents at each stage, the existence of a natural monopoly
associated with a location externality such as agglomeration, access and neighborhood advantages and
the spatial context of this linked market.

Analytical models are derived for each supplier agent type, assuming they behave stochastically. We
apply the maximum entropy framework to generate models consistent with discrete choice theory. The
cases of perfect and imperfect competition are considered, along with constrained and unconstrained
supply. The usual economic properties required for deterministic models are demonstrated to hold here.
The calibration of parameters is discussed and equilibrium equations for quantity and prices are derived.

Thus, this new model can be conceived as a key tool in an overall land use model, providing a detailed
and economically consistent description of the supply side. With this enhancement, a land use
equilibrium is established on more solid ground.

JEL classification codes: R0 - Urban, Rural, and Regional Economics: General

1.    INTRODUCTION

In the context of urban economics, demand for and supply of locational choices can be described as two
optimization processes that provide the basic inputs to produce market equilibrium. Under the paradigm
of rationality of consumers and suppliers, each optimization process describes the expected behavior of
agents in the market.

The commodity traded in the market analyzed here is a residential option, which is described by
several attributes. Some are associated with the location of the land lots, and include the building and
natural environment, as well as accessibility and attractiveness. Other attributes describe the land lot
itself, including size and view, plus the dwelling type, i.e. size, number of rooms, etc. Urban economists
have recognized that locational attributes are not only associated with transport costs, but also with
access to agglomeration economies related to the built environment. This property makes such a good
very peculiar - it becomes quasi-unique. Attributes associated with the dwelling, on the other hand, do
not introduce any peculiarity; they are produced and traded in the competitive building market.

Alonso’s (1964) bid-auction model is consistent with this economic condition of quasi-
uniqueness by assuming that location options are traded in auctions; we can make the softer, but perhaps
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also more realistic, assumption that agents have information on a common value at each location (see
McAffe and McMillan 1987). This means that each location has a widely known estimate of the value
before the auction, but the final price is still defined by the rule of the highest bidder, who gets the
property or right to use this location. The theoretical discussion of this approach produced the bid-choice
model (Martínez, 1992).  In contrast with normal competitive goods, where prices are the result of a
competitive equilibrium between demand and supply, in this framework the price formation process has
two components. The dwelling cost is a competitive component with a production function, whereas the
location value is a monopolistic component resulting from capitalizing the consumers preferences
expressed by their willingness-to-pay.

In this market context, suppliers produce location-dwelling options subject to the conditions that
the final price is defined by the best bid. Thus, their production problem can be described as choosing
the number of location options supplied for each combination of location, land lots and dwellings that
yields them the maximum profit for a given dwelling prices. Here we model this problem for several
assumptions of market suppliers’ behavior and market conditions.

2    THE SUPPLY MODEL'S ECONOMIC STRUCTURE

2.1  THE MARKET STRUCTURE

The first main element of the model is that we decompose the housing supply system into a
three-step production process, where each step involves different producers or agents; this approach
extends the Ueda et. al. (1996) model. These steps describe the residential supply market as a production
chain, starting with a landowner, followed by a land developer and finally a housing developer, as
shown in Figure 1.

LANDOWNERS (L):
Agricultural land is made available for urban development. Agriculture landowners release a total of 0

iQ
broadacres of land in each zone i to maximize their profit obtained from the price differential between
the agricultural land price ( )ip 1 and the release price ( )ip , paying a marketing cost ic  and subject to
urban regulation policies.

LAND DEVELOPERS (LD)
The land developer agent divides the released land in each zone into a number of land lots ( )kiL  of

different sizes ( )kq .  This agent maximizes the profit obtained from buying the land at a price (pi) and

selling an optimum number of lots of each size at a price kip , while paying out an exogenous marketing-

management-development cost kic . For computational simplicity, the land size is defined here as a
discrete variable, with index k identifying the range of land lot sizes.

HOUSING DEVELOPERS (HD)
These agents build houses on the land lots.  They decide the number of houses of type v to be built on
each land lot ( )vkiX  to maximize the profit obtained from the price difference between buying land at

prices ( )kip  and selling houses at prices ( )vkir , incurring exogenous building costs ( )vkic . Housing types

                                                                
1 Overlining denotes exogenous variables (model parameters).
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are defined with regard to the building attributes, for example, detached, dual occupancy, etc., and may
be extended to consider flats.

2.2  THE BEHAVIORAL MODEL

We assume, for each step in the chain, a free market where producers maximize the profits (π)
obtained from buying partially developed land, investing in some extra development, such as managing
and marketing, at a cost per unit area, and selling at a profit.

The model is specified within a static equilibrium framework, where supply and demand adjust
to achieve an equilibrium condition that defines the static set of prices in the system which are
instantaneously informed to all actors. A similar model structure may be studied in future research
within a dynamic context, where producers in the chain make decisions based on information lagged
over time.

The producers’ behavior is assumed to be represented by the maximization of their stochastic
profit function in choosing among deterministic supply options. This means that we assume actors as
having  probabilistic behavior, which may be interpreted as either homogeneous actors applying mixed
strategies and/or a degree of heterogeneity in actors’ behavior and attributes. We maintain that this
framework is highly natural for the choice problem in this market. An  alternative probabilistic
framework would be to assume  deterministic behavior upon facing probabilistically available options,
with actors choosing the optimal stochastic outcome. The analysis of this second option is  not handled
in this paper.

This stochastic behavior is modeled applying a maximum entropy (or probabilistic) framework,
extending the concepts introduced in Wilson (1970) and Roy and Lesse (1981). Additionally, observed
information on total supply and demand is introduced to improve the fit of the model. This defines
optimization problems yielding demand and supply functions for each agent that we prove to be
consistent with  standard micro-economic theory and also with random choice theory.

2.3  ECONOMIC EQUILIBRIUM

The important question about whether residential supply represents a perfect or imperfect
competitive market is discussed here, deriving models for these two hypothetical cases. In the first case,
each agent behaves as a price taker, whilst in the second case agents can anticipate the consumers’
demand function and extract their maximum willingness-to-pay. For this latter case, oligopolistic
demand functions are obtained by inverting the competitive demand function in terms of supply price,
which is then introduced into the supply function at the previous step in the market chain.

There is a strong theoretical argument, developed in the tradition of Alonso’s (1964) urban
economics, to support the thesis that landowners enjoy a non-competitive or oligopolistic land market. It
is also plausible to assume that land and housing developers normally operate in a competitive market,
because firms produce lots and houses anywhere, without having natural locational advantages. This is
valid unless we consider that imperfect competition in the land market induces speculative behavior in
developers, who manage to partially capitalize locational advantages. Although there is the cost of extra
complexity associated with modeling imperfect competition, the importance of this model is that it is
thoroughly consistent with the bid-auction model of land-use. This consistency is theoretically sound,
because the argument that locational advantages justify the best bid rule in the land-use model is valid
across the supply hierarchy, each one capturing a portion of the total monopoly power as land is
developed.
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Figure 1.  Diagram of Model Chained Structure
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We study the long run case, where supply is adjusted to find static equilibrium. The classical
long run competitive equilibrium model assumes that all firms are identical –homogeneous - with the
same technology and capital, which generates equi-profit equilibrium. However, in the urban land
market, goods are differentiated due to the quasi - unique characteristics of the land; thus landowners are
not homogeneous as suppliers because they hold monopoly power on spatially differentiated locational
externalities, which yields differentiated profits. In this case, for the equi-profit condition to hold, it
would be required to assume strong state intervention, a case not considered in this model. Since profit
differentials are generated by locational externalities, then it sounds reasonable to consider that profit is
maximized  in each homogenous zone, independently of other zones.

Firstly, we analyze the more classical assumption that supply exactly equals demand, which is
modeled by specifying an unconstrained supply model. Then, we relax this condition allowing for some
excess supply, but it asymptotically diminishes towards the classical Walras price equilibrium; this is
modeled by non-linear models with capacity constraints, which generate production functions (denoted
by superscript P) as well as functions for sold stock ( )S . We derive these functions for landowners

( )S
ii QQ ,0 , land developers ( )S

ki
P
ki LL ,  and housing developers ( )S

vki
P
vki XX , .

2.4  THE ENTROPY MODELING APPROACH

Finally, it is important to discuss some wider developments in entropy-type models, which are
making them relevant in the context of economics and  thus particularly useful in our study. These
concepts are expressed in more detail in Roy (1997). Typically, the only cost-related data present in the
spatial entropy models of Wilson (1970) were transport costs. Thus, entropy models for determination of
transport flows were interpreted as minimizing the expected total cost of travel. However, in an
important statement, Smith (1990) proposed that this 'behavioral' data in an entropy model should be
encapsulated in constraints that are consistent with an appropriate model theory. Roy accepted this
advice in using entropy to form probabilistic models demonstrating asymptotic convergence properties
to the classical deterministic models of microeconomic theory, making the classical models special cases
of the more general entropy models. For instance, in the supply behavior of the competitive firm (or an
aggregate of ‘identical’ firms), the profit objective of the deterministic theory of the firm is effectively
enhanced in the probabilistic analogue by addition of a weighted entropy term, in which the enhanced
objective can be interpreted as expected profits.  Secondly, adapting ideas from Lesse (1982), it is
possible to treat Lagrange multipliers of the estimated models as parameters in transformed versions for
projection, allowing projected quantities to be endogenous and price-responsive. As these parameters are
directly related to elasticities in microeconomics, their stability is only guaranteed over a relatively short
time period.

In addition, in examining the issue of available capacities in modeling Walrasian equilibrium,
advice was obtained from an early paper of Hotelling (1932). In a regional context, Hotelling
demonstrated the rationale for generic logistic forms of regional supply and demand functions, which
demonstrate spill-over effects into adjacent regions when capacity in any region is hard-pressed. Such
non-separable functions can be obtained via entropy using a parallel argument, where units of available
capacity are taken as distinguishable (or heterogeneous) in the entropy objective of the constrained
model, acting somewhat like a compressing spring (repulsion effect) as the capacity limit in any zone is
approached.

Last, but not least, most probabilistic demand (and supply) functions arising from the entropy
framework are analytically invertible. This opens the door to development of tractable model
frameworks for imperfect competition.
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The aim of the paper is to present several models. In the following section, models of
competitive markets are derived both for the constrained and unconstrained cases. The extension of
these models to imperfect competition is presented in Section Four. Several models are formally
presented in these two Sections, leaving comments, interpretations and further analysis to Section Five.

3.     COMPETITIVE LAND MARKET

Although we have argued that the urban land market is normally imperfect, we shall start with
models of a hypothetical competitive market for the sake of completeness and simplicity in the
presentation and to obtain a comparison with the case of imperfect competition. For similar  reasons, we
first present the unconstrained model, so as to introduce later the extra complexity associated with the
constrained model.

3.1  UNCONSTRAINED MODELS FOR COMPETITIVE MARKETS

The assumption in the unconstrained model is that supply from one step equals demand for the
next agent in the chain.

Landowner Model (L/C/UNCNST)2

The entropy represents the number of ways that distinguishable units of land can be allocated into the
different housing zones. When this quantity is maximized under the necessary constraints, enforcing
compliance with base period observations, we obtain the most likely quantities of land released. The
entropy, given by

( ){ }∑ −−=
i

ii
L QlnQS 1

is maximized under the landowners’ profit constraints, given by

( )∑ −−=
i

iiii
L cppQπ ,

which assumes landowning as an homogeneous industry. Additionally, total agricultural land potentially
available for release for residential use is constrained by:

∑ =
i

i QQ 0

                                                                
2 Notation for models is step or agent by L, LD, and HD respectively; C and IC for perfect and imperfect competition; CNST
and UNCNST for constrained and unconstrained models.
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With α1 the Lagrange multiplier on the profit constraint and γ1 that on the total quantity constraint, we
obtain the Lagrangian function for each profit assumption:

( ){ } ( )∑ ∑∑ 





 −+






 −−−+−−=
i i

i
i

Liiiiii
L QQcppQQlnQF 0

111 γπα

with first order conditions given by:

( ) 11 γα +−−+−=
∂
∂

iiii
i

L

cppQln
Q
F

 = 0

This yields the landowners’ maximum profit supply function:

( )[ ]11exp γα +−−= iiii cppQ (1)

In this model, α1 is calibrated by linear extrapolation to reproduce observed profit and/or by
using equation (1) with the more readily available supply data. It represents the price sensitivity of
supply to profit variations.  γ1 is calculated  by substituting equation (1) into the total land constraint,
yielding

[ ]














−−
=

∑
i

iii )cpp(exp

Q
ln

1

0

1
α

γ

which depends on prices and other exogenous parameters. Note that, upon  substituting this into the
supply function we obtain the multinomial logit formula, which makes our supply function alternatively
interpretable as a random choice model with a Gumbel distribution of suppliers’ profit.

In order to use (1) in projection, we need to transform the Lagrangian function F L above to F L'
such that the Lagrange multipliers α 1 and γ 1 can be interpreted as parameters via the following Legèndre
transform (Lesse, 1982)

FL'  =  FL - π L ∂ FL / ∂ π L - Q0 ∂ FL / ∂ Q0

which comes out as

 ZL'  =  -∑i Qi [ln Qi - 1] + α 1 ∑i Qi (pi - p ci i− ) + γ 1 ∑i Qi

If this expression is maximized in terms of Qi with α1 and γ1 as given parameters, relation (1) is
produced, which upon substitution into the constraints yields their observed right-hand sides. Thus,
taking α1 and γ1 as given, relation (1) can be used for projection when prices or costs change. The above
formalism applies in principle for all the following cases, both for perfect and imperfect competition.

Note that, one could assume that landowners are fully differentiable by zone due to location
externalities, maximizing local profit given by

( )iiii
L
i cppQ −−=π

which leads to
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( ) ( )( )∑ ∑∑ 




 −+−−−+−−=

i i
i

i

L
iiiiiiii

L QQcppQQlnQF 0
111 γπα

yielding
( )[ ]11

' exp γα +−−= iiiii cppQ (2)

In this case, in order to calibrate the i1α  parameters from profit levels, observations of profits for
each zone are required, which might not be easy to obtain.

As this approach to obtain supply models is also used in deriving the following models in this
paper, it is therefore  worth commenting on an optional interpretation of the model. Let us define the
suppliers’ objective function as the maximization of profit plus a weighted entropy term. The

Lagrangian of this problem is equal to LL
FF )/1( 1α=  which has the same solution as FL for a given

domain and positive 1α . With this formulation the parameter 1/1 α  becomes proportional to the standard
deviation of the stochastic distribution introduced by the entropy term, so that as it tends to zero, the
models tend to reproduce the deterministic profit maximization case. This statistical interpretation  of the
α  parameters is also consistent with the logit model, where 1α  represents the scale parameter of the
Gumbel distribution that is proportional to the inverse of the standard deviation. It is also consistent with

the interpretation of 
L

F  as expected profits.

Land Developer Model (LD/C/UNCNST)

The total number of 0
iL  lots is split into Lki  lots of size kq , yielding the following entropy:

( )∑ −−=
ki

kiki
LD LlnLS 1

which is maximized subject to the aggregated profit constraint:

( )∑ −−=
ki

ikkikiki
LD cqppLπ   ,

and complementary quantity sum information from the observed land market introduced to the model :

∑∑ ==
i

kik
k

kii LLLL 00

Thus, the first order conditions with Lagrange multipliers 22 , iγα  and kη , respectively, are:

( ) ( ) 022 =++−−+−=
∂
∂

kikikikiki
ki

LD

cqppLln
L

F ηγα

which yield the optimum values:
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( )[ ]kikikikiki cqppL −−++= 22exp αηγ (3)

As before, 2α  is calibrated from profit or supply data. In this case, the model is doubly
constrained, so that parameters 2iγ  and kη  are interdependent. However, they are easy to  evaluate by
the usual iterative algorithm to obtain balancing factors (see for example Wilson 1970). As shown by
Anas (1983), this model can also be interpreted as multinomial logit.

Introducing the equilibrium condition between supplied and developed land:

∑=
k

kkii qLQ

we can obtain the expression of the land price for a unit of land pi, given by:

( )[ ]






 −−+++−++= ∑ kik

e
ikiki

k
kii

e
i cqppexpqlncpp 221

1

1 αηγγ
α

(4)

This equation expresses the expected price at equilibrium in a fixed-point format, called the
logsum fixed-point, that is ( )e

i
e
i pfp = , which cannot be solved analytically for e

ip  but has a numerical

unique solution for a given set of pki and 1γ . Observe that numerical complexity is introduced by the
change of units between area land units and numbers of lots, which requires the transformation factor

kq .

Housing Developers (HD/C/UNCNST)

In this case, land lots are further developed and the entropy expresses the number of ways in which
lots can be enhanced with houses of different types:

( )∑ −−=
vki

vkivki
HD XlnXS 1

which is maximized subject to the aggregated profit:

( )∑ −−=
vki

vkikivkivki
HD cprXπ

and the conditions from observed quantity information:

∑ ∑ ==
vk i

vkvkiivki XXXX 00

It follows that:

( ) 033 =++−−+−=
∂
∂

vkivkikivkivki
vki

HD

cprXln
X
F ηγα

yielding the housing supply function as:
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( )[ ]vkivkikivkivki cprX ηγα ++−−= 33exp (5)

As before, this is a doubly-constrained model and its parameters can be obtained using the same
technique.

Introducing the supply demand consistency equation:

∑=
v

vkiki XL

we can obtain the expression for lot prices at equilibrium e
kip , given by:

( ) ( )[ ]






 ++−+−−+

+
= ∑

v
vkivkivkikikiki

e
ki crexplncqpp ηγαηγα

αα 3322

32

1
(6)

In this case, the price function is explicit and depends on land prices as the production factor, and
on selling prices of house options using the lot size qk.

3.2  CONSTRAINED MODELS FOR COMPETITIVE MARKETS

These models assume that the total supplied units may be in excess of the actual demand, which
requires some extensions of the previous unconstrained models in this direction. In the specification of
excess supply one may assume a linear or non-linear decrease of stock. In this latter and perhaps more
interesting case, the entropy function may be specified by an extended model recognizing
distinguishable capacity units, where the slope of the supply function decreases in a logistic form with
price as production approaches capacity (Hotelling, 1932).

Landowner Model (L/C/CNST)

From a total of 0
iQ  broadacres of building land released for development in the base year in zone

i, S
iQ  is sold.  The entropy now represents the number of ways that the units of supplied land and unsold

land can be allocated from within the distinguishable units of capacity, written as:

( )[ ]!Q!QQ!QlnS S
i

S
iii

L −= 00

which yields the following objective:

( ) ( )[ ] [ ]∑ ∑ −−−−−−=
i i

S
i

S
i

S
ii

S
ii

L QlogQQQlnQQS 1100

The entropy is maximized under the following constraints:

( ) ( )[ ]∑∑ −−−−==
i

i
S
iiiiii

S
i

L

i

S
i pIQQpQcpQQQ 000           π

where I represents the interest rate which generates the cost of holding stock.
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With 1γ and 1α  as the respective Lagrange multipliers, we obtain

( )[ ]
( )[ ]{ }iii

iiio
i

S
i cpp

cpp
QQ

−Ι+++
−Ι++=

11

11

exp1
exp

αγ
αγ

(7)

which is the classical logistic functional form. In this case, parameters may be calibrated by linear
extrapolation for α1 and solving a fixed-point problem for 1γ , because in this case, 1γ  cannot be directly
expressed analytically.

Land Developer Model (LD/C/CNST)

The total number of lots 0
iL  is subdivided by lot size into the number of produced lots P

ikL  and

sold lots S
ikL . The entropy is:

( ) 







−Π

= ∏ ∏i ik S
ki

S
ik

P
ik

P
ik

P
ikk

iLD

LLL
L

L
L

S
!!!

!
ln

0

This reduces to

=LDS [ ] ( ) ( )[ ]∑ ∑ −−−−−−
ki ik

S
ki

p
ki

S
ki

p
ki

S
ki

S
ki LLlnLLLlnL 11

being maximized under the following total quantity constraints:

Po
k

i

P
ki

Po
i

k

P
ki LLLL == ∑∑

0S
i

k

S
ki LL =∑ 0S

k
i

S
ki LL =∑

plus the usual profit constraint:

( ) ( )∑ ∑ −−−−=
ki ki

ki
S
ki

P
kiki

P
kiki

P
kiki

S
ki

LD qIpLLcLqpLpLπ 

If these are associated with Lagrange multipliers kiki ηγχφ ,,, 2  and 2α , we can finally write:

( )[ ] ( )[ ])(exp1exp 222 kikikikikikiki
P
ki qIppqIpcqpL ++++−−−++= αηγαχφ (8)

( )[ ] [ ])(expexp 222 kikikikikikiki
S
ki qIppqIpcqpL +++−−−++= αηγαχφ (9)
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If we introduce the consistency condition S
i

k

P
ikk QLq =∑ , using (7) and (8) we obtain the

following equation for the equilibrium land price:

( )[ ]
( )[ ]

( )[ ]
( )[ ]∑ +++−−

++++
=

−Ι+++
−Ι++

k k
e
ikik

e
iki

k
e
ikik

k
ii

e
i
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e
io

i qIpcqp

qIpp
q

cpp
cpp

Q
2

22

11

11

exp

exp1
exp1

exp

αχφ
αηγ

αγ
αγ

(10)

which represents a fixed-point equation for e
ip , even if we assume no holding stock cost (I=0). As for

equation (4), this equation cannot be analytically solved for e
ip . As demonstrated for related models for

commodity flows (Roy and Johansson, 1993), both existence and uniqueness of the equilibrium is
guaranteed.

Housing Developer Model (HD/C/CNST)

Agents allocate from supply p
kiL  at each zone i, distinguishable lots for housing development,

building p
vkiX houses of type v on them, of which s

vkiX get sold. Then, the system entropy becomes

( )∏ ∏
∏∑ 








−





 −

=
ki vki S

vki
S
vki

p
vki

p
vki

v

p
vki

v

p
vki

p
ki

p
kiHD

!X!XX

!X

!X!XL

!L
lnS

With the usual approximations, S is written after some cancellation as:

( ) ( )[ ] ( ) ( )[ ] [ ]∑ −−∑ ∑ −−−−−∑−∑−−=
vki

S
vkiXln

S
vkiX

ki vki

S
vkiX

P
vkiXln

S
vkiX

P
vkiX

v

P
vkiX

P
kiLln

v

P
vkiX

P
kiL

HD
S 111

This is maximized under the following constraints

∑ ∑ ∑ ===
i k v

S
ki

S
vki

S
vi

S
vki

S
vk

S
vki XXXXXX 000

∑ ∑ ==
vk i

vk
P
vkii

P
vki XXXX 00 ;

( )( )∑ −−+−=
vki

ki
S
vki

P
vkivkiki

P
vkivki

S
vki

HD IpXXcpXrX )(π

attached to the objective with Lagrange multipliers vkikivivk ηγψφλ ,,,, 3 and α3 respectively. Upon

differentiation with respect to P
vkiX  and S

vkiX , equating to zero and performing summations to remove
Xvki from the right-hand side, we finally obtain the production of housing:

( ) ( )
( ) ( )[ ]∑ −−+−+

−−+−=

v

S
vki

P
vki

P
vki

S
vki

P
vki

P
vkiP

ki
P
vki LX

ρρρ
ρρρ

expexp1
expexp

(11)
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with the amount sold of each type on each lot category being:

( )
( ) ( )[ ]∑ −−+−+

−−=

v

S
vki

P
vki

P
vki

S
vki

P
vkiP

ki
S
vki LX

ρρρ
ρρ

expexp1
exp

(12)

with

( )

( ) and        3

33

kivivkkivki
S
vki

vkikivkiki
P
vki

Ipr

Ipcp

ψφλαρ

ηγαρ

++++=−

−−+−=−

Introducing the equilibrium condition between sold lots and those transformed to housing lots,
given by ∑=

v

P
vki

S
ki XL , we obtain:

∑ 





+

==
v ki

kiP
ki

P
vki

S
ki A

A
LXL

1
(13)

with ( )[ ]∑ −−+−=
v

S
vki

P
vki

P
vkikiA )exp(exp ρρρ , and using equation (8):

( )kiki
P
ki CBL += 1      and        kiki

S
ki CBL ⋅= (14)

with ( )[ ]kikikikiki qIpcqpB −−−++= 2exp αχφ  and ( ))(exp 2 kikikiki qIppC +++= αηγ .

Substituting (14) into (13), we obtain a market equilibrium condition kiki CA = . To extract pki it is
necessary to assume no holding costs (I=0), which yields:

[ ] ( )( )






 +++++−−+−−

−
= ∑

v
kivivkvkivkivkiki

e
ki )r(expcexplnp ϕφλααηγηγ

αα 3332
32

1
1 (15)

which is the expected equilibrium price for lots k in zone i. It is worth noting that this price is expressed
in terms of model parameters only, except for the house price or rent rvki. This makes lot prices
dependent on the consumer/supply equilibrium in the residential housing market.
In this family of constrained models, supply functions do not reproduce the multinomial logit formula;
hence the underlying distribution is different from  IID Gumbel.

3.3  HOTELLING’S LEMMA

This is a classical lemma in deterministic micro-economics, also called the derivative property of profit
functions, which states that the firm’s net supply function is equal to the price derivative of the profit
function. In other words, it should be possible to obtain the supply function from the profit function; in
fact this is the approach used by Ueda et. al (1996) to derive supply and demand functions.
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The landowners case
In this section, we shall prove the lemma for the probabilistic landowners supply model of the

competitive and constrained case. Let us establish (1/α2) times the Legèndre transform (Lesse, 1982) of
the total original entropy objective F, converting it into the 'equivalent' unconstrained objective,
identified as an expected profit.

( ) ( )[ ] [ ]
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after considerable cancellation, we finally obtain:
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with K being a constant. Thus:
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The land developers case.
Similarly, for the probabilistic land developer supply function of the constrained model in (8), the
transform yields:
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with K a constant. After considerable cancellation, we finally obtain:
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i
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1 00
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(16)

Now, substituting from (8), we can prove Hotelling’s Lemma as follows:

}{
1

2
2

P
ki

ki

L
p
Z

α
α 








=

∂
∂  (17)

where an increase in the output price increases profit. Thus, our probabilistic result maintains this
fundamental property of the classical deterministic theory. An analogous result, but with a minus sign,
occurs deriving Z with respect to the input prices pi. Similar results may be demonstrated via the
Legèndre transform for the housing developers.

3.4  SUMMARY OF MODELS FOR COMPETITIVE MARKETS.
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In this section we presented a family of supply models combining the assumption of a
competitive market and a stochastic profit maximizing setting  within an entropy framework. The well-
known balancing factor technique is applied to evaluate the model parameters that adjust to prices and to
constraints. It is worth noting that some of these constraints represent the natural consistency link
between supply and demand in the production chain; hence they are endogenous in the complete chained
model.

Regarding the functional form of the models, we derived explicit analytical expressions for
demand and for equilibrium prices (see Table 1), except for the landowner model where equilibrium
prices remain as fixed-point expressions. The unconstrained demand models reproduce the multinomial
logit formula, while for the constrained case we obtained, in most cases, the logistic functional form.

These results show that the unconstrained set of models is consistent with the random choice
theory as each one represents a multinomial logit model, hence the underlying distribution of profit
functions is identical and independent (IID) Gumbel.  Moreover, noting that equilibrium prices are given
by the known logsum formula, one can replace prices in the demand formula by equilibrium prices to
obtain a nested logit model. An additional result is that the parameter associated to prices in the supply
models, denoted by α , has a statistical interpretation as the estimate (except for an exogenous and
known factor) of the standard deviation of the underlying distribution of profits. This provides a method
to compare our model with the deterministic model since the larger the value of the α  estimated, the
smaller the standard deviation of profit and the closer to a deterministic case.
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TABLE 1: SUMMARY OF EQUATIONS FOR COMPETITIVE MARKETS

MODELS EQUATION. FORMULA MODEL
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4. IMPERFECT COMPETITION

Land developers may supply lots, and landowners land, anticipating the consumers’ willingness-to-
pay for their outputs. In this case, their expected behavior is to maximize their oligopolistic profit. In the
case of the housing developers, this is implicit in the above model when rents (rvki) represent the
expected maximum bid value, which is anticipated by these agents. Analytically, this means that in the
calculation of first order conditions, prices should be differentiated as appropriate functions of
quantities.

4.1  UNCONSTRAINED MODELS FOR IMPERFECT COMPETITION

Landowners (L/IC/UNCNST)

In contrast to the competitive case, here land prices are assumed as dependent on supply Qi, then:
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∂
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To derive the oligopolistic price *
ip , we should invert the aggregated demand function kiL in

ip (using equation 3). Take ∑=
k

kiki LqQ given by:
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Also, we have from equation (3):

( )( ) kLlncp
q

p kikikiki
k

*
i ∀−−++= 22

2

1 αηγ
α

(18)
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Then replacing the above expressions in the landowner's profit maximizing equation 0=
∂
∂

iQ
F

,

we obtain a first fixed-point equation for kiL , denoted as )( 111
kiki LfL = . Solving 1

kiL , we can obtain the

profit maximizing iQ  which is the land supply model for imperfect competition.

Land developers (LD/IC/UNCNST)

Similarly, we assume lot prices as dependent on supply, then:
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vkivkivkiki cr ηγαρ 33 )(exp .

It is worth noting that, in order to assure equilibrium, equations (18) to (20) should be solved for

kikii Lpp and, **  simultaneously, and ikLLL kikiki ,,21 ∀== . To reduce the set of equations replace

equations (19) into (18) obtaining )(**
kiii Lpp = , then replace )(2

iki pL from equation (20) into the right-

hand side of )( 11
kiki LfL =  yielding a solution fixed point ),(),( ****

ikiiki pLFpL = . This complex fixed-
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point problem is generated by the difficulty of complying simultaneously with the profit maximizing
conditions and prices being the inverse of the demand functions. In addition, there is the requirement of
consistency in outputs at two levels of the supply chain.

Finally, it is of interest to use the land developers case as a means of comparing the competitive
solution (3) with the imperfect competition solution (20). The most obvious difference is the occurrence
of the ρki term in (20), which is a non-linear composite of the influences of the different housing types ν.
On the other hand, in the simple sequential model (3), there is no direct influence at the land developer
level of housing development rents and costs. In fact the ρki terms resemble 'inclusive values' summed
over the options at the next lower level, similar to those associated with nested logit models. This
feedback effect is a strength of the imperfect competition models.

Housing Developers (HD/IC/UNCNST)

Additionally, equations (11) and (12) naturally give the supply model for the housing developer
under imperfect competition, because for the whole three steps of the supply model, residential demand
prices are assumed exogenous.

4.2  CONSTRAINED MODELS FOR IMPERFECT COMPETITION

Landowners (L/IC/CNST)

As before, in contrast to the competitive case, here land prices are assumed as dependent on
supply Qi, then:

( ) ( ) ( ) *
iS

i

*
iS

iii
S
i

S
iiS

i

p
Q

p
QpIpQlnQQln

Q

F
1111

0 ααγα +
∂
∂

+++−+−−=
∂
∂

(21)

To derive the oligopolistic price *
ip , we should invert the aggregated demand function P

kiL in
*
ip (using equation 8). Take ∑=

k

P
kik

S
i LqQ given by:

( )[ ] ( )[ ]∑ ++++−−−++=
k

kikikikikikikik
S
i )qIpp(expqIpcqpexpqQ 222 1 αηγαχφ

Differentiating implicitly, we obtain:

( ) ( )[ ] ( )[ ]

( )∑

∑
−−=

++++−−−++−−=
∂
∂

k
kik

k
kikikikikikikik

i

S
i

LqI

qIppqIpcqpqI
p
Q

2
2

222
2

2*

1

)(exp1exp1

α

αηγαχφα

which yields:

( )∑
∑
−

−=
∂
∂

k

P
kik

k

P
kik

S
i

iS
i LqI

Lq

Q

p
Q

2
2 1α



20

Also, we have from equation (8), assuming no holding stock cost (I=0):
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Then replacing the above expressions in equation (21) for 0=
∂
∂

S
iQ

F
, we obtain a fixed-point

equation for P
kiL . With the solution for P

kiL , we can obtain the value for S
iQ  which is the land supply

model for imperfect competition.

Land Developers (LD/IC/CNST)

First order conditions of the optimization problem LD/C/CNST with variable prices are:
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Analogously to the unconstrained case, here we obtain the aggregate housing developer demand
function for land lots ( ) ∑=

v

P
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S
ki XpL from equation (11).  This can be seen as non-analytically

invertible if we retain the holding cost term ( )kiIp .  However, this will be quite small for cases of fairly
low interest rates and low unused capacity.  Thus neglecting this term, the inversion comes directly from
(11) as:


















 −






=

ki
S
ki

S
ki

P
ki*

ki
GL

LL
lnp

3

1
α

 (23)
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and the supply function for land developers (for I=0) is:
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where ),(* S
ki

P
kiki LLp  is given by equation (23). If we substitute for *

kip and P
kiL  this equation becomes a

special type of fixed-point problem whose convergence needs also further investigation.

5.    FINAL COMMENTS

In this paper we have presented a set of microeconomic supply models applying the entropy
framework under the common assumption that producers behave probabilistically . This yields
expressions for expected profits. We have shown that the models comply in the limit with micro-
economic conditions which are standard for a deterministic model. We have also shown that the known
logit multinomial and nested models reproduce the competitive and unconstrained market conditions.

Each model may potentially be enriched with other informational constraints, either to enhance
those introduced above or to incorporate planning regulations. This 'natural' way of handling constraints
is a virtue of the probabilistic entropy approach.

A more complete analysis of parameter calibration and parameter stability is required, as we have
only mentioned methods that have proved to be successfully applied in similar models. However, we
foresee that the more complex expressions presented here may require an extension of the usual linear
extrapolation and fixed-point methods, such as Newton-Raphson or even the interior point method.

Imperfect competition models generate supply functions that represent fixed-point problems. The
question of whether or not the various solutions exist or are unique requires further research. Each model
of imperfect competition may be interpreted as if the agents maximize their profit in a stochastic
framework, which follows directly from the invariant Legèndre transform, where the transformed
expected profits expression substitutes for the optimizing profit objective of the corresponding
deterministic model. Based on this interpretation, the supply model has an orthodox economic
interpretation.

The supply model developed here contributes to land-use models describing the behavior of the
supply side, which can be used in a demand-supply equilibrium process. For example, it can be directly
used as the supply function of the bid-choice model applied to Santiago, called MUSSA (Martínez and
Donoso, 1995). Under this consistent economic model, the land-use market equilibrium can be properly
characterized. Nevertheless, for applications in land use models, this supply model should be extended
to include supply based on existent building stock and its regeneration.

This supply model describes the transmission mechanism of the landowner’s monopolist power,
associated with locational advantages, that is, access and locational externalities, through the chain from
land developers to the final consumer. Conversely, it describes how the consumer’s valuation of these
locational attributes is capitalized by landowners and intermediate developers. Appropriate calibration of
parameters defines the proportion of the power captured by each agent. In a wider context, this
mechanism applies to the supply process of any goods with a quasi-unique characteristic.

We have developed a set of models under competitive and constrained conditions. Upon their
application to real cities, specific market conditions should be assessed. From general analysis and
experience it seems plausible to consider imperfect competition and test whether the constrained or
unconstrained models perform best. The new models will then represent theoretically well-founded ways
for further understanding of the complex links between urban land development and transport
investment.
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