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Planar Bipedal Walking with Anthropomorphic Foot Action
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Abstract— This paper investigates the key problem of walking
with both fully actuated and underactuated phases. The studied
robot is planar, bipedal, and fully actuated in the sense that
it has feet with revolute, actuated ankles. The desired walking
motion is assumed to consist of three successive phases: a fully-
actuated phase where the stance foot is flat on the ground,
an underactuated phase where the stance heel lifts from the
ground and the stance foot rotates about the toe, and an
instantaneous double support phase where leg exchange takes
place. The main contribution of the paper is to provide a
provably asymptotically stabilizing controller that integrates
the fully-actuated and underactuated phases of walking. By
comparison, existing humanoid robots, such as Asimo and Qrio,
use only the fully-actuated phase (i.e., they only execute flat-
footed walking), or RABBIT, which uses only the underactuated
phase (i.e., it has no feet, and hence walks as if on stilts).
The controller proposed here is organized around the hybrid
zero dynamics of Westervelt et al. (2003) in order that the
stability analysis of the closed-loop system may be reduced to a
one-dimensional Poincaŕe map that can be computed in closed
form. The ubiquitous Zero Moment Point (ZMP) is used to
establish conditions under which the foot will not rotate about
its extremities; the ZMP is not used for stability analysis. An
example is given to show that a periodic walking motion can be
unstable while the ZMP remains strictly within the footprint of
the robot.

Index Terms— Robotics; Humanoids; Hybrid Zero Dynamics;
Orbital Stability; Poincar é map; ZMP.

I. I NTRODUCTION

T HE stance foot plays an important role in human walk-
ing since it contributes to forward progression, vertical

support, and initiation of the lifting of the swing leg from
the ground [1], [2]. This paper addresses the modeling and
control of planar bipedal robots with feet, with emphasis on
a walking motion that allows anthropomorphic foot action
[3] as depicted in Figure 1. The associated model is hybrid in
nature, with phases modeled by ordinary differential equations
interleaved with discrete transitions and reset maps. Further-
more, one of the phases is underactuated. Stable walking
corresponds to the design of asymptotically stable periodic
orbits in these hybrid systems and not equilibrium points.
Feedback laws are proposed to create periodic orbits and their
stability properties are established through a careful analysis
of the Poincaŕe return map. This is quite different than the
prevailing methods in the controlled-biped literature where
heuristic stability criteria are commonly used.

Over the past decade, several remarkably anthropomor-
phic robots have been constructed, such as the well known

This work was supported by NSF grant ECS-0322395.
Jun Ho Choi is with the Intelligent Robotics Research Center, Korea

Institute of Science and Technology, Hawolgok-dong 39-1, Sungbuk-ku,
Seoul 136-791, Korea,junhochoi@kist.re.kr

J. W. Grizzle is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, Michigan 48109-
2122, USA,grizzle@umich.edu

Fig. 1. The three phases of walking modeled in this paper: fully-actuated
phase where the stance foot is flat on the ground, underactuated phase where
the stance heel rises from the ground and the stance foot rotates about
the stance toe, and double-support phase where the swing foot impacts the
ground.

Honda Robot, Asimo [4], [5], Sony’s biped, Qrio [6], and
Johnnie at the University of Munich [7], [8]. Each of these
robot’s control systems is organized around a high-level
trajectory generator for the individual joints of the robot, com-
bined with low-level servoing to ensure trajectory tracking.
There are some differences in how the low-level servoing
is implemented—Honda uses PD control [5], Johnnie uses
feedback linearization [8], while Sony has revealed littleabout
their algorithms—but these differences are fairly insignificant.
In each case, the overall “stability” of the robot’s motion has
been based on the Zero Moment Point (ZMP) criterion (see
Figure 2), and consequently, these robots literally walk flat
footed.

A stability analysis of a flat-footed walking gait for a five-
link biped with an actuated ankle was carried out numerically
in [9], [10], using the Poincaré return map. The control law
used feedback linearization to maintain the robot’s posture
and advance the swing leg; trajectory tracking was only used
in the limited sense that the horizontal component of the
center of mass was commanded to advance at a constant
rate. The unilateral constraints due to foot contact were
carefully presented. Motivated by energy efficiency, elegant
work in [11], [12] has shown how to realize a passive
walking gait in a fully actuated biped robot walking on a flat
surface. Stability of the resulting walking motion has been
rigorously established. The main drawback, however, is that
the assumption of full actuation once again restricts the foot
motion to flat-footed walking.

For walking gaits that include foot rotation, variousad hoc
control solutions have been proposed in the literature [14],
[15], [16], [17], [18], [19], but none of them can guarantee
stability in the presence of the underactuation that occurs
during heel roll or toe roll. Our previous work on point feet
[20], [21], [22], [23], [24] ideally positions us to handle this
underactuation; indeed, conceptually, a point foot corresponds
to continuous rotation about the toe throughout the entire
stance phase (e.g., walking like a ballerina or as if on stilts).
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Fig. 2. The ZMP (Zero Moment Point) principle in a nutshell. Idealize
a robot in single support as a planar inverted pendulum attached to a base
consisting of a foot with torque applied at the ankle and all other joints
are independently actuated. Assume adequate friction so that the foot is not
sliding. In (a), the robot’s nominal trajectory has been planned so that the
center of pressure of the forces on the foot,P, remains strictly within the
interior of the footprint. In this case, the foot will not rotate (i.e, the foot is
acting as a base, as in a normal robotic manipulator), and thus the system
is fully actuated. It follows that small deviations from the planned trajectory
can be attenuated via feedback control. In case (b), however, the center of
pressure has moved to the toe, allowing the foot to rotate. Thesystem is now
underactuated (two degrees of freedom and one actuator), and designing a
stabilizing controller is nontrivial, especially when impact events are taken
into account. The ZMP principle says to design trajectoriesso that case (a)
holds; i.e., walk flat footed. Humans, even with prosthetic legs, use foot
rotation to decrease energy loss at impact [13].

Work in [13] shows that plantarflexion of the ankle, which
initiates heel rise and toe roll, is the most efficient methodto
reduce energy loss at the subsequent impact of the swing leg.
This motion is also necessary for theestheticsof mechanical
walking.

In this paper, the analysis of walking with point feet is
extended to design a controller that provides asymptotically
stable walking with an anthropomorphic foot motion1. In
particular, Section II models a walking motion consisting of
three successive phases2: a fully-actuated phase where the
stance foot is flat on the ground, an underactuated phase
where the stance heel lifts from the ground and the stance
foot rotates about the toe, and an instantaneous double-support
phase where leg exchange takes place, see once again Figure
1. A control law is proposed in Sections III and IV, based on
virtual constraints. The hybrid zero dynamics is used to reduce
the complexity of the associated stability analysis problem.
A systematic method for choosing the virtual constraints is
given in Section V, with an illustrative example worked out in
Section VI. In Section VII, flat-footed walking is recovered
as a special case of the results of Section III. In order to
underline that the ZMP principle alone is not sufficient for the
stability of a walking gait, this result is used in Section VIII
to construct a periodic orbit on which the ZMP principle is
satisfied at each point of the gait, but yet the orbit is unstable.
Conclusions are given in Section IX.

II. ROBOT MODEL

The robot considered in this paper is bipedal and planar
with N ≥ 4 rigid links connected by ideal (frictionless)
revolute joints to form a tree structure (no closed kinematic
chains). It is assumed to have two identical open chains called

1A summary of this work was reported in [25].
2For simplicity, heel strike with a subsequent heel roll is notaddressed. It

can be handled in the same manner as toe roll.

“legs” that are connected at a point called the “hips.” The
link at the extremity of each leg is called a “foot” and the
joint between the foot and the remainder of the leg is called
an “ankle.” The feet are assumed to be “forward facing.”
The forward end of each foot is called a “toe” and the
back end is called a “heel.” Each revolute joint is assumed
to be independently actuated. It is assumed that walking
consists of three successive phases, a fully-actuated phase, an
underactuated phase, and a double-support phase, see Figure
1. The detailed assumptions for the robot and the gait are
listed in Appendix I. A representative robot is shown in Figure
3 along with a coordinate convention.
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Fig. 3. Model of a 7-link robot with coordinate convention.θυ is not shown.
It is defined asθυ = π − q7 + θϕ. In general, for anN -link robot, it is
assumed thatqN−1 is the angle between the stance foot and the stance tibia
andqN is the angle between the ground and the stance foot.

A. Underactuated phase

The underactuated phase is when the stance heel of the
robot rises from the ground and the robot begins to roll over
the stance toe; this condition is characterized by the foot
rotation indicator (FRI) point of [26] being strictly in front of
the stance foot. The stance toe is assumed to act as a pivot; this
condition is characterized by the forces at the toe lying within
the allowed friction cone. Both of these conditions (i.e., foot
rotation and non-slip) are constraints that must be imposedin
the final controller design phase, which is discussed in Section
V.

Since there is no actuation between the stance toe and the
ground, the dynamics of the robot in this phase is equivalent
to anN -DOF robot with unactuated point feet and identical
legs, as treated in [21]. Define the generalized coordinatesas
qυ = (q1, · · · , qN )⊤ ∈ Qυ, whereQυ is a simply connected
open subset of IRN . The dynamics are obtained using the
method of Lagrange, yielding

Dυ(qυ)q̈υ + Cυ(qυ, q̇υ)q̇υ + Gυ(qυ) = Bυuυ, (1)

whereuυ = (u1, · · · , uN−1)
⊤ is the vector of torques applied

at the joints. The dynamic equation in state-variable form is
expressed aṡxυ = fυ(xυ) + gυ(xυ)uυ.
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B. Fully-actuated phase

During the fully-actuated phase, the stance foot is assumed
to remain flat on the ground without slipping. The ankle
of the stance leg is assumed to act as an actuated pivot.
Since the stance foot is motionless during this phase, the
dynamics of the robot during the fully-actuated phase is
equivalent to anN − 1 DOF robot without the stance foot
and with actuation at the stance ankle, as studied in [27]. Let
qϕ = (q1, · · · , qN−1)

⊤ ∈ Qϕ be the configuration variables,
whereq1, · · · , qN−2 denote the relative angles of the joints
except the stance ankle,qN−1 denotes the angle of the stance
ankle joint, andQϕ is a simply connected open subset of
IRN−1, see Figure 3. Note that because the stance foot remains
on the ground,qN−1 is now an absolute angle (i.e., it is
referenced to the world frame).

The dynamics for the fully-actuated phase are derived using
the method of Lagrange, yielding a model of the form

Dϕ(qϕ)q̈ϕ+Cϕ(qϕ, q̇ϕ)q̇ϕ+Gϕ(qϕ) = Bϕ1ub+Bϕ2uA, (2)

where q̇ϕ are the velocities,uA = uN−1 is the input at the
ankle joint, andub = (u1, · · · , uN−2)

⊤ are the inputs applied
at the remaining joints. The state is taken asxϕ = (qϕ; q̇ϕ) ∈
TQϕ and the dynamic equation is given by3

ẋϕ =

[

q̇ϕ

D−1
ϕ (−Cϕq̇ϕ − Gϕ + Bϕ2uA)

]

+

[

0
D−1

ϕ Bϕ1ub

]

=: fϕ(xϕ, uA) + gϕ(xϕ)ub. (3)

Note that, to satisfy the condition that the stance foot is flat on
the ground, the FRI point needs to be kept strictly within the
support region of the foot. This constraint must be imposed
in the final controller design stage, see Section V.

C. Double-support phase

During the double-support phase, the swing foot impacts
the ground. For simplicity, it is assumed that the swing foot
is parallel to the ground at impact. It is also assumed that
the feet are arc shaped so that the only contact points with
the ground are the heel and the toe, see Figure 4. Due to

(a) Arc-shaped (b) Flat

Fig. 4. Examples of feet. As long as the toe and heel are the onlycontact
points with the ground, (a) and (b) are equivalent.

the impacts, impulsive forces are applied at the toe and the
heel simultaneously, which cause discontinuous changes in
the velocities; however, the position states are assumed to
remain continuous [28]; the full set of hypotheses is listedin
Appendix I.

Representing the double-support phase requires an N+2
DOF model (e.g. N DOF for the joints and 2 DOF for the
position of the center of mass). Adding Cartesian coordinates,

3Note that the ankle torque is included infϕ(xϕ, uA); the reason for this
will be clear in Section III.

(ph
c , pv

c ), to the center of mass of the robot givesqd =
(qυ; ph

c ; pv
c ) and q̇d = (q̇υ; ṗh

c ; ṗv
c ), see Figure 3. Since the

swing heel and the swing toe are assumed to land on the
ground at the same time, there are two ground reaction forces,
which can be modeled as a resultant force and torque at the
swing ankle. LetΥF

a (qd) denote the Cartesian coordinates of
the swing ankle and letΥτ

a(qd) denote the absolute angle of
the swing foot. The method of Lagrange yields the dynamics
for the double-support phase as follows:

Dd(qd)q̈d + Cd(qd, q̇d)q̇d + Gd(qd)

= Bdu + EF
d δF + Eτ

dδτ, (4)

whereu = (ub;uA), EF
d =

(

∂ΥF
a (qd)
∂qd

)⊤

, Eτ
d =

(

∂Υτ
a(qd)

∂qd

)⊤

,
andδF andδτ denote the resultant ground reaction force and
the torque at the swing ankle, respectively.

Under the hypotheses IH6 (the actuators not being impul-
sive) and IH1 (which is the stance foot neither rebounds nor
slips), following the procedure in [20] gives

x+
ϕ =





[

R 0
]

q−d
[

R 0
]

Π

[

Ddq̇−d
0

]





=

[

∆ϕ
q,υ(q−υ )

∆ϕ
q̇,υ(q−υ )q̇−υ

]

:= ∆ϕ
υ (x−

d ), (5)

whereR is a relabeling matrix and

Π =





Dd −EF
d −Eτ

d

(EF
d )⊤ 0 0

(Eτ
d)⊤ 0 0





−1

. (6)

Note that, because the stance toe acts as a pivot just before
the impact,x−

d is uniquely determined byx−
υ .

D. Foot Rotation, or Transition from Full Actuation to Un-
deractuation

The transition from a flat foot to rotation about the toe
can be initiated by causing the angular acceleration about the
stance toe to become negative. To characterize the motion
of the stance foot, or equivalently, when the robot transi-
tions from full actuation—foot is flat on the ground—to
underactuation—foot rotates about the toe, the foot rotation
indicator (FRI) point of Goswami is used [26]. See Appendix
II for the detailed calculation.

By enforcing that the FRI point is strictly in front of the
stance foot, the transition is initiated. If torque discontinuities4

are allowed—as they are assumed to be in this paper—when
to allow foot rotation becomes a control decision. Here, in
view of simplifying the analysis of periodic orbits in Section
IV, the transition is assumed to occur at a fixed point in the
fully-actuated phase5. Hence,Hυ

ϕ = θϕ(qϕ) − θ−ϕ,0, where
θϕ(qϕ) is the angle of the hips with respect to the stance
ankle (see Figure 3) andθ−ϕ,0 is a constant to be determined.

4This is a modeling decision. In practice, the torque is continuous due to
actuator dynamics. It is assumed here that the actuator time constant is small
enough that it need not be modeled.

5When the transition condition is met, namely,θϕ = θ−ϕ,0, a jump in the
torque is made to achievëqN < 0. This moves the FRI point in front of the
foot.
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The positions and the velocities remain continuous with
a step-change in torque. The ensuing initial value of the
underactuated phase,x+

υ , is defined so as to achieve continuity
in the position and velocity variables:

x+
υ =

[

q+
υ

q̇+
υ

]

=









q−ϕ
π
q̇−ϕ
0









=: ∆υ
ϕ(x−

ϕ ). (7)

Continuity of the torques is not imposed, and hence neither
is continuity of the accelerations. It is assumed that the control
law in the underactuated phase will be designed so that the
FRI point is in front of the toe.

E. Overall Hybrid Model

As in [29], the overall model can be expressed as a non-
linear hybrid system containing two state manifolds (called
“charts” in [30]):

Σϕ :















Xϕ = TQϕ

Fϕ : ẋϕ = fϕ(xϕ, uA) + gϕ(xϕ)ub

Sυ
ϕ = {xϕ ∈ TQϕ|H

υ
ϕ(xϕ) = 0}

T υ
ϕ : x+

υ = ∆υ
ϕ(x−

ϕ )

(8)

Συ :















Xυ = TQυ

Fυ : ẋυ = fυ(xυ) + gυ(xυ)uυ

Sϕ
υ = {xυ ∈ TQυ|H

ϕ
υ (xυ) = 0}

T ϕ
υ : x+

ϕ = ∆ϕ
υ (x−

υ )

where, for example,Fϕ is the flow on state manifoldXϕ, Sυ
ϕ

is the switching hyper-surface for transitions betweenXϕ and
Xυ, T υ

ϕ : Sυ
ϕ → Xυ is the transition function applied when

xϕ ∈ Sυ
ϕ.

The transition from the underactuated phase to the fully-
actuated phase occurs when the swing foot impacts the
ground. Hence,Hϕ

υ (xυ) = Υv
h(xυ), whereΥv

h(xυ) denotes
the vertical coordinate (height) of the swing heel, see Figure
5.

Remark 1:Sυ
ϕ is read as the switching surfacefrom the

fully-actuated phase,ϕ, to the underactuated phase denoted
υ.

ẋϕ = fuA
ϕ (xϕ) + gϕ(xϕ)ur ẋυ = fυ(xυ) + gυ(xυ)uυ

x+
υ = ∆υ

ϕ(x−
ϕ )

x+
ϕ = ∆ϕ

υ(x−
υ )

x−
ϕ ∈ Sυ

ϕ

x−
υ ∈ Sϕ

υ

fully-actuated phase underactuated phase

Fig. 5. Diagram of system.

III. C REATING THE HYBRID ZERO DYNAMICS

In a certain sense, the basic idea of the control law design
is quite straightforward. Following the development in [21],

[23], we use the method of virtual constraints to create a
two-dimensional zero dynamics manifoldZυ in the 2N -
dimensional state space of the underactuated phase. This
requires the use of the full complement ofN − 1 actuators
on the robot. In the fully-actuated phase, we have one less
degree of freedom because the stance foot is motionless and
flat on the ground. Consequently, we useN−2 actuators—all
actuators except the ankle of the stance foot—to create a two-
dimensional zero dynamics manifoldZϕ—that is compatible
with Zυ in the sense that the following invariance conditions
hold: ∆υ

ϕ(Sυ
ϕ ∩ Zϕ) ⊂ Zυ and ∆ϕ

υ (Sϕ
υ ∩ Zυ) ⊂ Zϕ. The

actuation authority at the ankle is subsequently employed for
stability and efficiency augmentation, and for enforcing the
non-rotation of the foot. The invariance conditions guarantee
the existence of a hybrid zero dynamics for the closed-loop
hybrid model. The techniques in [21] are then extended to
compute the Poincaré map of the closed-loop system in closed
form. Precise stability conditions then follow.

A. Control design for the underactuated phase

The greatest difficulties in the control design and analysis
involve the underactuated phase of the motion. Since the
stance toe acts as a pivot and there is no actuation at the stance
toe, the feedback design proceeds as in [21]. Letyυ = hυ(xυ)
be an(N − 1) × 1 vector of output functions satisfying the
following hypotheses:
HHU1) The output functionhυ(xυ) depends only on the

configuration variables;
HHU2) The decoupling matrixLgυ

Lfυ
hυ is invertible for an

open setQ̃υ ⊂ Qυ;
HHU3) Existence ofθυ(qυ) such that[hυ(qυ); θυ(qυ)] is a

diffeomorphism;
HHU4) There exists a point iñQυ wherehυ vanishes.
HHU5) There exists a unique pointq−υ,0 ∈ Q̃υ such that

(hυ(q−υ ),Υv
a(q−υ )) = (0, 0), Υh

t (q−υ ) > 0 and the rank
of [hυ; Υv

a] at q−υ,0 equals toN , whereΥh
t (xυ) denotes

the horizontal coordinate of the swing toe.
Then there exists a smooth manifoldZυ = {xυ ∈
TQυ|hυ(xυ) = 0, Lfυ

hυ(xυ) = 0}, called the
underactuated-phase zero dynamics manifold, andSϕ

υ ∩ Zυ

is smooth.Sϕ
υ ∩ Zυ is one-dimensional ifSϕ

υ ∩ Zυ 6= ∅.
Differentiating the outputyυ twice yields,

ÿυ = νυ (9)

= L2
fυ

hυ(xυ) + Lgυ
Lfυ

hυ(xυ)uυ. (10)

Since the decoupling matrixLgυ
Lfυ

hυ(xυ) is invertible, the
feedback control

u∗
υ := −(Lgυ

Lfυ
hυ(xυ))−1(L2

fυ
hυ(xυ)) (11)

renders the zero dynamics manifold invariant. In addition
to the hypotheses HHU1–HHU5, if hypothesis RH5 in the
Appendix I is also satisfied, then the underactuated phase
zero dynamics in the coordinates ofzυ := (θυ, συ) =
(θυ, dυ(qυ)q̇υ) can be written as

θ̇υ = κ1
υ(θυ)συ (12)

σ̇υ = κ2
υ(θυ), (13)
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where dυ is the last row ofDυ and συ is the angular
momentum about the stance toe during the underactuated
phase, [31]. Equations (12) and (13) are written asżυ =
fZυ

(zυ).
The transition map from the underactuated phase to the

fully-actuated phase on the hybrid zero dynamics becomes

θ+
ϕ = θϕ ◦

[

R 0
]

q−υ , (14)

σ+
ϕ = δϕ

υ σ−
υ , (15)

whereδϕ
υ is a constant that can be calculated as in [21].

B. Control design for the fully-actuated phase

Since the stance foot is motionless and acting as a base
during this phase, the model only hasN − 1 DOF. Conse-
quently, the robot is fully actuated, opening up many feedback
design possibilities. For example, we could, in principle,
design for an empty zero dynamics, feedback linearize the
model, etc. —though we would run a high risk of requiring
so much ankle torque that the foot would rotate, thereby
causing underactuation.Instead, we follow a design where,
in principle, the ankle torque could be used exclusively for
ensuring that the foot does not rotate, but in most cases, it
can also be used to augment stability and efficiency of the
overall walking cycle.

N − 2 virtual constraints are used to create a two-
dimensional zero dynamics for the fully-actuated phase that is
driven by the ankle torque. Letyϕ = hϕ(xϕ) be a(N−2)×1
vector of output functions. Let the output functionyϕ satisfy
the following hypotheses:

HHF1) The output functionhϕ(xϕ) depends only on the
configuration variables of the fully-actuated phase;

HHF2) For uA = 0, the decoupling matrixLgϕ
Lfϕ

hϕ is
invertible for an open set̃Qϕ ⊂ Qϕ;

HHF3) There existsθϕ(qϕ) such that[hϕ(qϕ); θϕ(qϕ)] is a
diffeomorphism;

HHF4) There exists a point wherehϕ vanishes;
HHF5) There exists a unique pointq−ϕ,0 ∈ Q̃ϕ such thatyϕ =

hϕ(q−ϕ,0) = 0, Hυ
ϕ(q−ϕ,0) = 0 and [hϕ;Hυ

ϕ] has full rank.

Then there exists a smooth manifoldZϕ = {xϕ ∈
TQϕ|hϕ(xϕ) = 0, Lfϕ

hϕ(xϕ) = 0}, called the fully-
actuated-phase zero dynamics manifold, andSυ

ϕ ∩ Zϕ is
smooth.Sυ

ϕ ∩ Zϕ is one-dimensional ifSυ
ϕ ∩ Zϕ 6= ∅.

Differentiating twice the outputyϕ for the fully-actuated
phase gives

ÿϕ := νϕ (16)

= L2
fϕ

hϕ(xϕ) + Lgϕ
Lfϕ

hϕ(xϕ)ub. (17)

SinceLgϕ
Lfϕ

hϕ is invertible, the feedback control

u∗
b = −(Lgϕ

Lfϕ
hϕ(xϕ))−1(L2

fϕ
hϕ(xϕ, uA)) (18)

renders the zero dynamics manifold for the fully-actuated
phase invariant.

In addition to the hypotheses HHF1–HHF5, if the hy-
pothesis RH5 is satisfied, then in the coordinates ofzϕ :=
(θϕ, σϕ) = (θϕ, dϕ(qϕ)q̇ϕ) restricted to the zero dynamics

manifold, the fully-actuated phase zero dynamics can be
written as

θ̇ϕ = κ1
ϕ(θϕ)σϕ (19)

σ̇ϕ = κ2
ϕ(θϕ) + uA, (20)

whereuA is the torque applied at the stance ankle,dϕ is the
last row ofDϕ, andσϕ is the angular momentum about the
stance ankle during the fully-actuated phase [31]. Equations
(19) and (20) are written aṡzϕ = fZϕ

(zϕ, uA). The ankle
torqueuA can be used either to shape the potential energy
or to affect the convergence rate of the solution of the hybrid
zero dynamics.

The transition map from the fully-actuated phase to the
underactuated phase on the zero dynamics becomes

θ+
υ = θυ ◦

[

q−ϕ ,
π

]

(21)

σ+
υ = δυ

ϕσ−
ϕ , (22)

whereδυ
ϕ is a constant that can be calculated using [21].

C. Hybrid zero dynamics

Let Zϕ be the zero dynamics manifold of the fully-
actuated phase anḋzϕ = fZϕ

(zϕ, uA) be the associated zero
dynamics driven byuA. Let ∆υ

ϕ be the transition map from
the fully-actuated phase to the underactuated phase. LetZυ

be the zero dynamics manifold of the underactuated phase
and żυ = fυ(zυ) be the associated zero dynamics. Let∆ϕ

υ

be the transition map from the underactuated phase to the
fully-actuated phase. If∀zϕ ∈ Sυ

ϕ ∩ Zϕ, ∆υ
ϕ(zϕ) ∈ Zυ and

∀zυ ∈ Sϕ
υ ∩ Zυ, ∆ϕ

υ (zυ) ∈ Zϕ, then















żϕ = fZϕ
(zϕ, uA), z−ϕ 6∈ Sυ

ϕ ∩ Zϕ, uA ∈ IR
z+
υ = ∆υ

ϕ(zϕ), z−ϕ ∈ Sυ
ϕ ∩ Zϕ

żυ = fZυ
(zυ), z−υ 6∈ Sϕ

υ ∩ Zυ

z+
ϕ = ∆ϕ

υ (zυ), z−υ ∈ Sϕ
υ ∩ Zυ

(23)

is an invariant hybrid subsystem of the full-order hybrid
model. The system (23) is called thehybrid zero dynamics
andZϕ andZυ are hybrid zero dynamics manifolds.

Remark 2:By definition, Zϕ and Zυ are hybrid zero
dynamics manifolds if, and only if,∀z−ϕ ∈ Sυ

ϕ ∩ Zϕ,

hυ ◦ ∆υ
ϕ(z−ϕ ) = 0, (24)

Lfυ
hυ ◦ ∆υ

ϕ(z−ϕ ) = 0, (25)

and∀z−υ ∈ Sϕ
υ ∩ Zυ anduA = 0,

hϕ ◦ ∆ϕ
υ (z−υ ) = 0, (26)

Lfϕ
hϕ ◦ ∆ϕ

υ (z−υ ) = 0. (27)

How to achieve these conditions is developed in Section V.
¤
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IV. A NKLE CONTROL AND STABILITY ANALYSIS

Due to the ankle torque that appears in the zero dynamics
for the fully-actuated phase in (20), the robot’s center of
mass can move backward as well as forward during a step.
In other words, the angular momentum about the stance
ankle can be zero before entering the underactuated phase.
We assume here, however, that the angular momentum is
never zero during a step; see GH7 in Appendix I. One can
think of this hypothesis as a difference between walking and
dancing. Furthermore, during the underactuated phase, the
angular momentum of the robot is never zero if the robot
completes a step [21].

The ankle torque provides additional design freedom in the
fully-actuated phase, which can be used for various purposes.
In this paper, two possible usages of the ankle torque are
suggested: changing the walking speed of the robot through
potential-energy shaping; affecting the convergence rateto the
periodic orbit. The stability of the robot on the hybrid zero
dynamics is analyzed with a Poincaré map for the overall
system, which can be obtained by composing the Poincaré
map for each phase.

A. Analysis on the hybrid zero dynamics for the underactu-
ated phase

For the underactuated phase, the zero dynamics is equiv-
alent to the robot with unactuated point feet, [21]. If the
robot completes a step, the angular momentum during the
underactuated phase is never zero. Therefore,ζυ =

σ2
υ

2 is
a valid coordinate transformation, whereσυ is the angular
momentum. Letz−υ = (θ−υ , σ−

υ ) ∈ Sϕ
υ ∩ Zυ and let θ+

υ be
defined as in (21). If(δϕ

υ )2ζ−υ − V max
Zυ

> 0, then following
the procedure in [21] with (12) and (13) gives

1

2
(σ−

υ )2 −
1

2
(σ+

υ )2 = ζ−υ − ζ+
υ = −VZυ

(θ−υ ), (28)

where

VZυ
(θυ) = −

∫ θυ

θ+
υ

κ2
υ(ξ)

κ1
υ(ξ)

dξ, (29)

V max
Zυ

= max
θ+

υ ≤θυ≤θ−

υ

VZυ
(θυ). (30)

The Poincaŕe map for the underactuated phaseρυ : Sυ
ϕ ∩

Zϕ → Sϕ
υ ∩Zυ on the hybrid zero dynamics is defined with

(22) as
ρυ(ζ−ϕ ) = (δυ

ϕ)2ζ−ϕ − VZυ
(θ−υ ). (31)

B. Analysis on the hybrid zero dynamics for the fully-actuated
phase with ankle torque used to change walking speed

An ankle torque control strategy that is useful for modi-
fying the walking speed is proposed. The Poincaré map for
the fully-actuated phase is then calculated, and the Poincaré
map for the overall reduced system is determined for stability
analysis of the robot on the hybrid zero dynamics.

Since the angular momentum of the robot during the fully-
actuated phase,σϕ, is not zero during the fully-actuated phase,

ζϕ =
σ2

ϕ

2 is a valid coordinate transformation. For the purpose

of potential-energy shaping, the ankle torque during the fully-
actuated phase,uA, is assumed to be a funcion ofθϕ only.
Then, (19) and (20) become

dζϕ = σϕdσϕ =
κ2

ϕ(θϕ)

κ1
ϕ(θϕ)

+
uA(θϕ)

κ1
ϕ(θϕ)

dθϕ. (32)

Let z−ϕ = (θ−ϕ , σ−
ϕ ) ∈ Sυ

ϕ ∩Zϕ andθ+
ϕ be defined as in (14).

For θ+
ϕ ≤ θϕ ≤ θ−ϕ , define

V uA

Zϕ
(θϕ) = −

∫ θϕ

θ+
ϕ

κ2
ϕ(ξ)

κ1
ϕ(ξ)

+
uA(ξ)

κ1
ϕ(ξ)

dξ, (33)

V uA, max
Zϕ

= max
θ+

ϕ≤θϕ≤θ−

ϕ

V uA

Zϕ
(θϕ). (34)

If (δυ
ϕ)2ζ−ϕ − V uA, max

Zϕ
> 0, then (32) can be integrated,

which results in

1

2
(σ−

ϕ )2 −
1

2
(σ+

ϕ )2 = ζ−ϕ − ζ+
ϕ = −V uA

Zϕ
(θ−ϕ ). (35)

With (15), the Poincaŕe map for the fully-actuated phase on
the hybrid zero dynamics,ρϕ : Sϕ

υ ∩ Zυ → Sυ
ϕ ∩ Zϕ, is

defined as

ρϕ(ζ−υ ) = (δϕ
υ )2ζ−υ − V uA

Zϕ
(θ−ϕ ). (36)

Hence, the Poincaré map for the overall reduced system in
(θυ, ζυ) coordinates,ρ(ζ−υ ) : Sϕ

υ ∩Zυ → Sϕ
υ ∩Zυ, is defined

as composition of (31) and (36) as follows.

ρ(ζ−υ ) = ρυ ◦ ρϕ(ζ−υ )

= (δυ
ϕ)2(δϕ

υ )2ζ−υ − (δυ
ϕ)2V uA

Zϕ
(θ−ϕ ) − VZυ

(θ−υ ),(37)

with domain of definition

D = {ζ−υ > 0|(δϕ
υ )2ζ−υ − V uA, max

Zϕ
> 0,

(δυ
ϕ)2(δϕ

υ )2ζ−υ − (δυ
ϕ)2V uA

Zϕ
(θ−ϕ ) − V max

Zυ
(θ−υ ) > 0}. (38)

Theorem 1:Under the hypotheses RH1–RH5, GH1–GH7,
and IH1–IH7 in Appendix I, HHF1–HHF5, and HHU1–
HHU5,

ζ∗υ = −
(δυ

ϕ)2V uA

Zϕ
(θ−ϕ ) + VZυ

(θ−υ )

1 − (δυ
ϕ)2(δϕ

υ )2
(39)

is an exponentially stable fixed point of (37) if, and only if,

0 < (δυ
ϕ)2(δϕ

υ )2 < 1, (40)

(δυ
ϕ)2(δϕ

υ )2VZυ
+ (δυ

ϕ)2V uA

Zϕ

1 − (δυ
ϕ)2(δϕ

υ )2
+ V max

Zυ
< 0, (41)

(δυ
ϕ)2(δϕ

υ )2V uA

Zϕ
+ (δυ

ϕ)2VZυ

1 − (δυ
ϕ)2(δϕ

υ )2
+ V uA,max

Zϕ
< 0. (42)

Proof: D is non-empty if, and only if,(δυ
ϕ)2(δϕ

υ )2 > 0.
If there existsζ∗υ ∈ D satisfying ρ(ζ∗υ) = (δυ

ϕ)2(δϕ
υ )2ζ∗υ −

(δυ
ϕ)2V uA

Zϕ
(θ−ϕ )−VZυ

(θ−υ ), thenζ∗ is an exponentially stable
fixed point if, and only if,0 < (δυ

ϕ)2(δϕ
υ )2 < 1, and in this

case, (39) is the value ofζ∗. Finally, (41) and (42) are the
necessary and sufficient conditions for (39) to be inD.

Remark 3:The stability of the reduced model is not af-
fected by the choice ofuA(θϕ) sinceδυ

ϕ does not depend on
uA. However, the fixed pointζ∗ is affected byuA. ¤
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C. Analysis on the hybrid zero dynamics for fully-actuated
phase with ankle torque used to affect convergence rate

It is now shown how the ankle torque can be used to affect
the stability of the robot on the hybrid zero dynamics; In
particular the torque is used to affect convergence rate. For
the analysis, the Poincaré map for the fully-actuated phase
is calculated and then composed with the Poincaré map of
the underactuated phase to provide the Poincaré map of the
overall reduced system.

Due to the assumption GH7, which assumes non-zero

angular momentum during the fully-actuated phase,ζϕ =
σ2

ϕ

2
is a valid coordinate transformation. Define the ankle torque
uA to be

uA = −κ2
ϕ(θϕ) + κ1

ϕ(θϕ)

(

a(ζϕ − ζ∗ϕ(θϕ)) +
dζ∗ϕ(θϕ)

dθϕ

)

,

(43)
where a is a negative constant,ζ∗ϕ(θϕ) is a function ofθϕ

only, which describes the desired path ofζϕ during the fully-
actuated phase, andκ1

ϕ(θϕ) and κ2
ϕ(θϕ) are from (19) and

(20), respectively. Then the zero dynamics becomes

θ̇ϕ = κ1
ϕ(θϕ)σϕ (44)

σ̇ϕ = κ1
ϕ(θϕ)

(

a(ζϕ − ζ∗ϕ(θϕ)) +
dζ∗ϕ(θϕ)

dθϕ

)

. (45)

In (θϕ, ζϕ) coordinates, combining (44) and (45) yields

dζϕ

dθϕ

= a(ζϕ − ζ∗ϕ(θϕ)) +
dζ∗ϕ(θϕ)

dθϕ

. (46)

Define η = ζϕ − ζ∗ϕ(θϕ). Then, with (46), differentiatingη
gives

dη

dθϕ

=
dζϕ

dθϕ

−
dζ∗ϕ(θϕ)

dθϕ

(47)

= a(ζϕ − ζ∗ϕ(θϕ)) = aη, (48)

which can be solved forθ+
ϕ ≤ θϕ ≤ θ−ϕ to give

η(θϕ) = ea(θϕ−θ+
ϕ )η(θ+

ϕ ). (49)

Therefore,

ζϕ = ζ∗ϕ(θϕ) + ea(θϕ−θ+
ϕ )(ζ+

ϕ − ζ∗ϕ(θ+
ϕ )). (50)

Sinceθϕ = θ−ϕ at the transition from the fully-actuated phase
to the underactuated phase,

ζ−ϕ = ζ∗ϕ(θ−ϕ ) + ea(θ−

ϕ −θ+
ϕ )(ζ+

ϕ − ζ∗ϕ(θ+
ϕ )). (51)

The Poincaŕe map for the fully-actuated phase,ρϕ : Sϕ
υ ∩

Zυ → Sυ
ϕ ∩ Zϕ, is therefore given as

ρϕ(ζ−υ ) = (δϕ
υ )2ea(θ−

ϕ −θ+
ϕ )ζ−υ + ζ∗ϕ(θ−ϕ ) − ea(θ−

ϕ −θ+
ϕ )ζ∗ϕ(θ+

ϕ ).
(52)

Combining (31) and (52) gives the Poincaré map for the
overall reduced system; in(θυ, ζυ) coordinates,ρ(ζ−υ ) = ρυ ◦
ρϕ(ζ−υ ) : Sϕ

υ ∩ Zυ → Sϕ
υ ∩ Zυ, as follows:

ρ(ζ−υ ) = (δϕ
υ )2(δυ

ϕ)2ea(θ−

ϕ −θ+
ϕ )ζ−υ + (δυ

ϕ)2(ζ∗ϕ(θ−ϕ )

−ea(θ−

ϕ −θ+
ϕ )ζ∗ϕ(θ+

ϕ )) − VZυ
(θ−υ )

with domain of definition

D = {ζ−υ ∈ IR|ζ−υ > 0}. (53)

Theorem 2:Assume the hypotheses RH1–RH5, GH1–
GH7, and IH1–IH7 in Appendix I, HHF1–HHF5, and HHU1–
HHU5 are satisfied. Letζ∗ be a differentiable function ofθϕ,
satisfying the following conditions,

ζ∗ϕ(θϕ) > 0, ∀θϕ ∈ [θ+
ϕ , θ−ϕ ] (54)

(δϕ
υ )2(δυ

ϕ)2ζ∗ϕ(θ−ϕ ) − ζ∗ϕ(θ+
ϕ ) = (δϕ

υ )2VZυ
(θ−υ ). (55)

Then,

ζ∗υ =
(δυ

ϕ)2ζ∗ϕ(θ−ϕ ) − (δυ
ϕ)2ea(θ−

ϕ −θ+
ϕ )ζ∗ϕ(θ+

ϕ ) − VZυ
(θ−υ )

1 − (δϕ
υ )2(δυ

ϕ)2ea(θ−

ϕ −θ+
ϕ )

(56)
is an exponentially stable fixed point of (53) if, and only if,

0 < (δϕ
υ )2(δυ

ϕ)2ea(θ−

ϕ −θ+
ϕ ) < 1, a < 0 (57)

(δυ
ϕ)2ζ∗ϕ(θ−ϕ ) − V max

Zυ
> 0 (58)

Proof: The domain of definition,D, is non-empty if,
and only if, (58) is satisfied. If there existsζ∗υ ∈ D satisfying
ζ∗ = ρ(ζ∗), whereρ is the Poincaŕe map defined in (53),
then,ζ∗ is an exponentially fixed point if, and only if, (57) is
satisfied, in which case the value of the fixed point is given
as (56).

Remark 4:The convergence rate of the solution to the limit
cycle can be altered by the ankle torque,uA, through choice
of a, as long as the constraint on the FRI point during the
fully-actuated phase is satisfied. ¤

D. Stability of the robot in the full-order model

A very important result not proved in the paper is that
asymptotically stable periodic orbits of the hybrid zero dy-
namics areasymptotically stabilizablein the full-order model.
The proof is based on extending the main result of [20]. For
an analogous result in running, see [29].

V. DESIGNING THE VIRTUAL CONSTRAINTS

To render the analytical results in the previous section
useful for feedback design, a convenient finite parametrization
of the virtual constraints and the angular momentum during
the fully-actuated phase must be introduced as in [21, Sec. V].
This introduces free parameters into the hybrid zero dynamics,
(23). A minimum cost criterion can then be posed and
parameter optimization applied to the hybrid zero dynamics
to design a provably stable, closed-loop system with satisfied
design constraints, such as walking at a prescribed average
speed, the forces on the support leg lying in the allowed
friction cone, and the foot rotation indicator point withinthe
hull of the foot during the fully-actuated phase and strictly in
front of the foot in the underactuated phase.
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A. Parametrization using B́ezier polynomials

For the parametrization of the output function for each
phase, B́ezier polynomials are used. Let

bi
ϕ(sϕ) :=

Mϕ
∑

k=0

αi
k

Mϕ!

k!(Mϕ − k)!
sk

ϕ(1 − sϕ)Mϕ−k, (59)

bi
υ(sυ) :=

Mυ
∑

k=0

βi
k

Mυ!

k!(Mυ − k)!
sk

υ(1 − sυ)Mυ−k, (60)

whereMϕ > 3, Mυ > 3, sϕ(θϕ) =
θϕ−θ+

ϕ

θ−

ϕ −θ+
ϕ

and sυ(θυ) =

θυ−θ+
υ

θ−

υ −θ+
υ

. Note thatsϕ = 0, sϕ = 1, sυ = 0, and sυ = 1

represent the beginning and the end of the fully-actuated
phase and the beginning and the end of the underactuated
phase, respectively. Define the output function for each phase,
satisfying the output hypotheses in Section III, to be

yϕ = hϕ(qϕ) = ht
ϕ(qϕ) − hd

ϕ ◦ θϕ(qϕ) (61)

yυ = hυ(qυ) = ht
υ(qυ) − hd

υ ◦ θυ(qυ), (62)

whereht
ϕ is a vector withN − 2 elements specifying inde-

pendent entities to be controlled during fully-actuated phase,
ht

υ is a vector containingN − 1 independent values to be
controlled during underactuated phase,hd

ϕ(θϕ) and hd
υ(θυ)

are the desired curves for the controlled elements to track
during each phase. The desired curves,hd

ϕ(θϕ) and hd
υ(θυ),

are defined as follows.

hd
ϕ(θϕ) =





b1
ϕ ◦ sϕ(θϕ)

· · ·
bN−2
ϕ ◦ sϕ(θϕ)



 , (63)

hd
υ(θυ) =





b1
υ ◦ sυ(θυ)

· · ·
bN−1
υ ◦ sυ(θυ)



 . (64)

Note that due to the properties of the Bézier polynomials, the
desired output function at the beginning of each phase is

hd
ϕ(sϕ)|sϕ=0 = α0 (65)

∂hd
ϕ(sϕ)

∂sϕ

∣

∣

∣

∣

∣

sϕ=0

= Mϕ(α1 − α0) (66)

hd
υ(sυ)|sυ=0 = β0 (67)

∂hd
υ(sυ)

∂sυ

∣

∣

∣

∣

sυ=0

= Mυ(β1 − β0), (68)

and, similarly, at the end of each phase is

hd
ϕ(sϕ)|sϕ=1 = αMϕ

(69)

∂hd
ϕ(sϕ)

∂sϕ

∣

∣

∣

∣

∣

sϕ=1

= Mϕ(βMϕ
− βMϕ−1) (70)

hd
υ(sυ)|sυ=1 = βMυ

(71)

∂hd
υ(sυ)

∂sυ

∣

∣

∣

∣

sυ=1

= Mυ(βMυ
− βMυ−1), (72)

where

αi =







α1
i
...

αN−2
i






, i = 0, · · · ,Mϕ (73)

βj =







β1
j

...
βN−1

j






. j = 0, · · · ,Mυ (74)

When the ankle torque is used to affect the stability as
explained in Section IV-C, the desired path of the angular
momentum also needs to be designed. Since the angular
momentum during the fully-actuated phase is never zero,
ζ∗ = (σ∗)2

2 is parameterized instead of the desired angular
momentum,σ∗, which is given by

ζ∗ ◦ sϕ(θϕ) :=

m
∑

k=0

γk

m!

k!(m − k)!
sk

ϕ(1 − sϕ)m−k, (75)

wherem > 1. By the properties of B́ezier polynomials,

ζ∗(sϕ)|sϕ=0 = γ0 (76)

ζ∗(sϕ)|sϕ=1 = γm. (77)

B. Achieving invariance of the hybrid zero dynamics

To achieve the invariance, the output function for each
phase needs to be designed such that the invariance conditions
(24), (25), (26), and (27) are satisfied. Sinceyϕ and yυ

satisfy HHF3 and HHU3, respectively,[hϕ(qϕ); θϕ(qϕ)] and
[hυ(qυ); θυ(qυ)] are invertible, which holds if, and only if,

Hϕ(qϕ) :=

[

ht
ϕ(qϕ)

θϕ(qϕ)

]

(78)

and

Hυ(qυ) :=

[

ht
υ(qυ)

θυ(qυ)

]

(79)

are invertible. By definition, on the zero dynamics manifold
for each phase, the output function satisfies the following
conditions.

yϕ = hϕ(qϕ) = ht
ϕ(qϕ) − hd

ϕ ◦ θϕ(qϕ) = 0, (80)

yυ = hυ(qυ) = ht
υ(qυ) − hd

υ ◦ θυ(qυ) = 0. (81)

Since Hϕ(qϕ) and Hυ(qυ) are invertible, the condition for
the position states after the transition to remain in the zero
dynamics manifold for the underactuated phase is derived as

[

β0

θυ(q+
υ )

]

= Hυ ◦





H−1
ϕ ◦

[

αMϕ

θϕ(q−ϕ )

]

π



 . (82)

Similarly, the condition for the position states to be in the
zero dynamics manifold for the fully-actuated phase after the
transition from the underactuated phase to the fully-actuated
can be obtained to be
[

α0

θϕ(q+
ϕ )

]

= Hϕ ◦

(

[

R 0
]

(

H−1
υ ◦

[

βMυ

θυ(q−υ )

]))

,

(83)
whereR is the relabeling matrix.
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Since ẏϕ = 0 and ẏυ = 0 on the zero dynamics manifold
for each phase,

ẏϕ =
∂ht

ϕ(qϕ)

∂qϕ

q̇ϕ −
∂hd

ϕ

∂sϕ

∂sϕ

∂θϕ

θ̇ϕ = 0, (84)

ẏυ =
∂ht

υ(qυ)

∂qυ

q̇υ −
∂hd

υ

∂sυ

∂sυ

∂θυ

θ̇υ = 0. (85)

Since Hϕ(qϕ) and Hυ(qυ) are invertible, the condition for
the velocity states after the transition from the fully-actuated
phase to the underactuated phase to be in the zero dynamics
manifold for the underactuated phase can be obtained from
the transition map (7) as

β1 =
θ−ϕ − θ+

υ

Mυ

∂ht
υ

∂qυ

Σ
κ1

ϕ(θ−ϕ )

κ1
υ(θ+

υ )δυ
ϕ

+ β0, (86)

where

Σ =













∂Hϕ

∂qϕ

−1

[

Mϕ(αMϕ−αMϕ−1)

θ−

ϕ −θ+
ϕ

1

]

0












. (87)

Similarly, the condition for the velocity states to be in thezero
dynamics manifold for the fully-actuated after the transition
can be obtained as

α1 =
θ−ϕ − θ+

ϕ

Mϕ

∂ht
ϕ

∂qϕ

∆ϕ
q̇,υ(q−υ )

∂Hυ

∂qυ

−1

Ξ
κ1

υ(θ−υ )

κ1
ϕ(θ+

ϕ )δϕ
υ

+ α0,

(88)
where

Ξ =

[

Mυ(βMυ−βMυ−1)

θ−

υ −θ+
υ

1

]

. (89)

When the ankle torque is controlled to affect the stability,
the desired path of the angular momentum during the fully-
actuated phase,ζ∗ϕ(sϕ), needs to satisfy (54), which is essen-
tially equivalent to non-zero angular momentum hypothesis
GH7, and (55) for periodicity. Sinceζ∗ϕ(θ+

ϕ ) = γ0 and
ζ∗ϕ(θ−ϕ ) = γm, the condition forγ0 is given by

γ0 = (δυ
ϕ)2(δϕ

υ )2γm − (δϕ
υ )2VZυ

(θ−υ ), (90)

from (55).

C. Specifying the remaining free parameters

There are free coefficients in the Bézier polynomials after
meeting the invariance conditions and they can be used
to satisfy constraints for stability, friction to realize non-
slipping, anthropomorphic gait, average walking speed, etc.
This section explains the various constraints.

Equality constraint:

EC1) Average walking speed is constant. The walking speed
of the robot, which is defined as step length divided by
time duration of a step, is given by

v =
Ls

Ts

, (91)

whereLs is the step length andTs is the time elapsed
for the step.

Inequality constraints:

IEC1) The stability condition (57) is satisfied;
IEC2) The non-slipping assumption is satisfied. In each

phase, the foot will not slip if the ratio of the tangen-
tial reaction force and the normal reaction force from
the ground are within the friction cone, which can be
formulated as ∣

∣

∣

∣

FT

FN

∣

∣

∣

∣

≤ µ, (92)

whereµ is the Coulomb friction coefficient of the surface
and FT is the tangential force, andFN is the normal
reaction force;

IEC3) The normal reaction force from the ground is positive.
This is due to the fact that the ground reaction force
is unilateral. In other words, the ground cannot pull the
robot down;

IEC4) The height of the swing foot is positive during step;
IEC5) The FRI point is within the stance footprint (i.e, the

convex hull of the foot);
IEC6) The stance foot leaves the ground after the double

support;
IEC7) The angles of the knees and ankles are limited to

produce anthropomorphic gait;
IEC8) The torque applied at each joint is limited to a physi-

cally realizable value.

The desired output functions and the desired angular mo-
mentum during a step need to be determined, subject to the
invariance condition and the constraints being satisfied. This
can be formulated as an numerical optimization problem. The
cost function used here is defined as

J =
1

Ls

∫ T−

I

T+

I

N
∑

k=1

|q̇kuk| dt, (93)

where Ls is the step length,T+
I and T−

I are the time of
beginning and end of the step, respectively.

VI. SIMULATION

For an illustration, a planar bipedal robot with 7-rigid links
is used. See Figure 3 for the detailed coordinate conventions.
The degrees of the polynomials used in the desired output
functions and desired angular momentum for both phases are
set to beMϕ = 6, Mυ = 6, andm = 5. The parameters used
for the simulation are given in Table I. The parameters are
defined as shown in Figure 6.

Figure 7 and Figure 8 show the position and velocity states
of the robot. During the underactuated phase, the angle of the
stance foot decreases, which implies that the robot rolls over
the stance toe.

Let (0, 0)⊤ be the Cartesian coordinate of the stance toe
and let(ph

h, 0)⊤ be the location of the stance heel during the
fully-actuated phase, see Figure 3. In order for the stance foot
not to rotate, the location of the FRI point,(ph

FRI , 0)⊤ needs
to satisfy

ph
h < ph

FRI < 0. (94)

The location of the FRI point is shown in Figure 9, which
satisfies (94), indicating the stance foot remains on the ground
during the fully-actuated phase.
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−1 0

(a) 0.63% of a step

0

(b) 15.13% of a step

0

(c) 29.31% of a step

0

(d) 43.42% of a step

0

(e) 57.29% of a step

0 1

(f) 71.08% of a step

0 1

(g) 85.58% of a step

0 1

(h) 100.00% of a step

Fig. 11. Stick diagram of the robot during one step

Model Parameter Units Link Label Value

Torso MTorso 36.044
Femur MFemur 9.149Mass kg
Tibia MTibia 3.000
Foot MFoot 0.200
Torso LTorso 0.625
Femur LFemur 0.400

Length m Tibia LTibia 0.400
Toe LToe 0.100
Heel LHeel 0.060
Torso ITorso 5.527
Femur IFemur 0.331Inertia m2kg
Tibia ITibia 0.149
Foot IFoot 0.100
Torso lTorso 0.200
Femur lFemur 0.163Mass center m
Tibia lTibia 0.137
Foot lFoot 0.030

TABLE I

PARAMETERS FOR SIMULATION.

The applied torques are shown in Figure 10. Note that the
torques have a discontinuity at the transition from the fully-
actuated phase to the underactuated phase, which is allowed
in this study. Figure 11 shows the gait of the robot during a
step.

VII. SPECIAL CASE

The previous analysis can be specialized to a gait without
foot rotation, in other words, to a gait with only flat-footed
walking. This allows the differences with the ZMP criterion
to be highlighted in the next section.

The stability conditions can be derived by specializing the
calculations in Section IV to this case, the Poincaré map of
the hybrid zero dynamics is6

ρ(ζ−ϕ ) = (δϕ
υ )2ζ−ϕ − V uA

Zϕ
(θ−ϕ ), (95)

6Conceptually, we are considering an instantaneous underactuated phase
so thatVZυ

(θ−υ ) = 0 andδυ
ϕ = 1

MTorso

ITorso

lTorso

LTorso

(a) Torso

MF emur

IF emur lF emur

LF emur

(b) Femur

lTibia

LTibia

MTibia

ITibia

(c) Tibia

IFoot

lFoot

LToeLHeel

MFoot

(d) Foot

Fig. 6. Parameter definition for each link.

whereV uA

Zϕ
, the potential energy (see [23]), is given in (33).

The stability theorem becomes

Corollary 1: Under the hypotheses RH1–RH5, GH1–GH7,
and IH1–IH7 in Appendix I, HHF1–HHF5,

ζ∗ϕ = −
V uA

Zϕ
(θ−ϕ )

1 − (δϕ
υ )2

(96)



CHOI AND GRIZZLE, WALKING WITH ANTHROPOMORPHIC FOOT ACTION, SUBMITTED TO IEEE TRAN. ON ROBOTICS, NOVEMBER 7, 2005 11

0 0.5 1 1.5 2 2.5 3 3.5 4

2.6

2.8

3

3.2

Positions

Stance Foot (F)
Stance Foot (U)

0 0.5 1 1.5 2 2.5 3 3.5 4
1.2

1.4

1.6

1.8 Stance Ankle (F)
Stance Ankle (U)
Swing Ankle (F)
Swing Ankle (U)

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.6

−0.4

−0.2
Stance Knee (F)
Stance Knee (U)
Swing Knee (F)
Swing Knee (U)

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2
0

0.2
0.4
0.6 Stance Hip (F)

Stance Hip (U)
Swing Hip (F)
Swing Hip (U)

Fig. 7. Position states of the robot on HZD. The robot is walking at 1m/s.
F andU represent the fully-actuated and underactuated phases, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4
−4
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0
Velocities

Stance Foot (F)
Stance Foot (U)

0 0.5 1 1.5 2 2.5 3 3.5 4
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Velocities

Stance Ankle (F)
Stance Ankle (U)
Swing Ankle (F)
Swing Ankle (U)
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Stance Knee (U)
Swing Knee (F)
Swing Knee (U)
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0

2 Stance Hip (F)
Stance Hip (U)
Swing Hip (F)
Swing Hip (U)

Fig. 8. Velocity states of the robot on HZD. The robot is walking at 1m/s.
F andU represent the fully-actuated and underactuated phases, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
Location of FRI point

Fully actuated
Underactuated

Fig. 9. Location of the FRI point. The robot is walking at 1m/s. The
discontinuity of the FRI point is due to the discontinuity inthe torque at
each transition.

is an exponentially stable fixed point of (95) if, and only if,

0 < (δϕ
υ )2 < 1, (97)

(δϕ
υ )2V uA

Zϕ
(θ−ϕ )

1 − (δϕ
υ )2

+ V uA,max
Zϕ

< 0. (98)

These conditions are the same as in [21, Th. 3] for point-feet,
with the exception that the potential energy termV uA

Zϕ
can be

shaped by choice of the ankle torque,uA; see second term in
(33).

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

−50

0

Torques

Stance Ankle (F)
Stance Ankle (U)
Swing Ankle (F)
Swing Ankle (U)

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

−50

0
Stance Knee (F)
Stance Knee (U)
Swing Knee (F)
Swing Knee (U)

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

−50

0

50 Stance Hip (F)
Stance Hip (U)
Swing Hip (F)
Swing Hip (U)

Fig. 10. Torques of the robot.F and U represent the fully-actuated and
underactuated phases, respectively.

VIII. ZMP AND STABILITY OF AN ORBIT

The ZMP has been widely used as an indication of balance
of a bipedal robot [5], [14], [4], [6], [32], [33], [34]. The ZMP
being within the stance footprint is a sufficient and necessary
condition for the stance foot not to rotate, but it does not
mean the resulting walking motion is stable in the sense of
a periodic orbit. In this section, only the special case of flat-
footed walking is considered in order to illustrate that the
ZMP principle alone is not sufficient for the stability of the
robot.

δϕ
υ V

uA

Zϕ
(θ−ϕ ) V

uA,max

Zϕ
ζ∗ϕ

- (kgm2/s)2 (kgm2/s)2 (kgm2/s)2

Value 1.266 505.213 1050.320 1678.309

TABLE II

QUANTITIES OF THE POINCARÉ RETURN MAP OF THE HYBRID ZERO

DYNAMICS FOR AN UNSTABLE GAIT

0 1 2 3 4 5 6
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09
FRI

Fig. 12. Location of FRI point of an unstable gait. The FRI point remains
within the stance footprint,−0.16 < ph

FRI < 0.

Consider a planar bipedal robot whose gait consists only of
the fully-actuated phase followed by an instantaneous double-
support phase. The method of Section V was used to design
a periodic orbit of the robot such that: (a) the FRI point is
within the stance footprint during the fully-actuated phase in
order for the stance foot to remain flat on the ground; (b)
(δϕ

υ )2 in (95) is greater than one. See Table II. Note that if
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the stance foot does not rotate, the FRI point is equivalent to
the ZMP. The ankle torque is used for shaping the potential
energy in this illustration.

Figure 12 shows the FRI point during the fully-actuated
phase. Since the location of the FRI point satisfies (94), the
stance foot does not rotate and the ZMP principle would
“predict” stability. The gait, however, is not stable sincethe
walking speed becomes slower when there is a small error in
the velocity states at the initial conditions as shown in Figure
13. In this simulation, the velocity initial conditions areset
to 99.5% of their value on the periodic orbit.

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5
Positions

Stance Ankle
Swing Ankle

0 1 2 3 4 5 6
−1

−0.5

0
Stance Knee
Swing Knee

0 1 2 3 4 5 6
−0.5

0

0.5

1
Stance Hip
Swing Hip

Fig. 13. Position states of robot with an unstable gait when the velocity
states when the initial condition are99.5% of their values on the periodic
orbit.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Phase portrait

ẋ
6

x6

A

Fig. 14. Phase portrait of the absolute angle of the robot with an unstable
gait. The pointA represents the initial condition whose velocity states are
99.5% of their values on the periodic orbit.

Even with the unstable gait, the hybrid zero dynamics is
invariant. Figure 14 shows the phase portrait of the absolute
angle of the robot. The pointA represents the initial condition.
The gait of the robot diverges from the limit cycle, which
implies that the periodic orbit is not stable.

Table II shows the Poincaré analysis of the unstable gait.
Sinceδϕ

υ = 1.266, the condition (97) is not satisfied, which
causes instability.

IX. CONCLUSION

This paper has provided a solution to the key problem of
walking with both fully-actuated and underactuated phases.

The studied robot was planar, bipedal, and fully actuated in
the sense that it has non-trivial feet with revolute, actuated
ankles and all other joints are independently actuated. The
desired walking motion was assumed to consist of three
successive phases: a fully-actuated phase where the stance
foot is flat on the ground, an underactuated phase where
the stance heel lifts from the ground and the stance foot
rotates about the toe, and an instantaneous double-support
phase where leg exchange takes place. The main contribution
of the chapter was to extend the hybrid zero dynamics of
[21] to a hybrid model with multiple continuous phases
and varying degree of freedom and degrees of actuation.
The developed method provides a provably asymptotically
stabilizing controller that integrates the fully-actuated and
underactuated phases of walking. Two possible usage of the
ankle torque were suggested. The ankle torque was seen as
a means either to directly adjust the potential energy of the
hybrid zero dynamics or to affect the convergence rate of the
solution to the limit cycle. The FRI point, or equivalently
the ZMP, was used to ensure non-rotation of the stance foot,
but not for the stability proof. The stability of the gait was
shown via a Poincaré map on the hybrid zero dynamics. It
was pointed out that the trajectories of the robot that keep the
FRI point inside of the stance foot do not necessarily produce
a stable gait.

APPENDIX I
HYPOTHESES FOR WALKING WITH FOOT ROTATION

The following hypotheses are used for walking with foot
rotation. The hypotheses for the robot are:
RH1) The robot consists of N rigid links with revolute joints;
RH2) The robot is planar;
RH3) The robot is bipedal with identical legs connected at

hips;
RH4) The joints between adjacent links are actuated;
RH5) The coordinate of the robot consists ofN − 1 relative

angles,q1, · · · , qN−1, and one absolute angle,qN .
The hypotheses for gait are:

GH1) Walking consists of three successive phases, fully-
actuated phase, underactuated phase, and double support
phase;

GH2) The stance foot remains on the ground during fully-
actuated phase;

GH3) The stance foot does not slip during fully-actuated
phase;

GH4) The stance toe acts as a pivot during underactuated
phase;

GH5) The stance ankle leaves the ground without interaction;
GH6) There is no discontinuous change in positions and

velocities at transition from fully-actuated phase to un-
deractuated phase;

GH7) The angular momentum about the stance ankle during
the fully-actuated phase is not zero with presence of
input.

The hypotheses for impact are:
IH1) The swing foot has neither rebound nor slipping during

impact;
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IH2) After impact, the stance toe leaves the ground without
any interaction with the ground;

IH3) The impact is instantaneous;
IH4) The reaction forces due to the impact can be modeled

as impulses;
IH5) The impulsive forces result in discontinuous changes in

the velocities while the position states remain continuous;
IH6) The actuators at joints are not impulsive;
IH7) The swing heel and the swing toe touch the ground at

the same time.

The hypotheses for the closed-loop chain of double inte-
grators,ÿ = ν, are:

CH2) Existence of solutions on IR2N−2 and uniqueness;
CH3) Solutions depending continuously on the initial condi-

tions;
CH4) The origin being globally asymptotically stable and the

convergence being achieved in finite time;
CH5) The settling time depending continuously on the initial

condition.

APPENDIX II
FOOT ROTATION INDICATOR POINT DURING THE

FULLY-ACTUATED PHASE

Note to the reviewer: Given the length of the paper, we
plan to remove this section from the final paper and place
it on the web. The calculations are straightforward. We
will also include a citation to [35, Appendix G], where the
result can also be found.The FRI point is defined in [26]
as “the point on the foot/ground contact surface, within or
outside the convex hull of the foot-support area, at which the
resultant moment of the force/torque impressed on the foot is
normal to the surface.” If the stance foot is motionless on the
ground as assumed during the fully-actuated phase, then the
Foot Rotation Indicator (FRI) point becomes equivalent to
the Zero Moment Point (ZMP), which is within the stance
footprint. Calculating the FRI point for the fully-actuated
phase involves two phases. First, assume the stance foot is flat
on the ground and calculate the FRI point. Second, validate
the assumption by checking the location of the FRI point,
which needs to be within the stance footprint.

Suppose the hypotheses RH1–RH2, RH5, and GH2–GH3
in Appendix I are satisfied. In addition to the hypothesis RH5,
let the counterclockwise direction be positive for the absolute
angleqN , see Figure 15.

Let (ph
c , pv

c )⊤ be the Cartesian coordinates of the center
of the mass and let(ph

a , pv
a)⊤ be the Cartesian coordinates

of the stance ankle. Let(ph
FRI , 0)⊤ be the FRI point on the

ground and~FR = (0, FN
R )⊤ be the ground reaction force at

the FRI point. Note that the tangential reaction force is zero
by the definition of the FRI point. Let~r1 be a vector from the
stance toe to the center of mass,~r2 represent the vector from
the stance toe to stance ankle, and~r3 denote the vector from
the stance ankle to the center of mass, respectively. Let~R be
the vector from the stance toe to the FRI point. LetΨ denote
the angle of~r1 from horizontal and letψ represent the angle
between~r1 and the stance foot. Then,Ψ = qN − ψ + qN,0,
whereqN,0 is a constant such that the stance foot is on the

~r1

~r2

~r3

Center of Mass

Ψψ

(a)

~R

qN
FRI point

(b)

Fig. 15. Definition of parameters.

ground if qN = π − qN,0. The location of the center of mass
can be written as

ph
c = |~r1| cos(qN − ψ + qN,0) (99)

pv
c = |~r1| sin(qN − ψ + qN,0) (100)

Note that |~r1| and ψ are independent ofqN due to the
hypothesis RH5.

Let K and V be the kinetic energy and potential energy
for the robot, respectively. Then, the potential energy of the
robot is given as

V = mg|~r1| sin(qN − ψ + qN,0). (101)

Define the Lagrangian as

L = K − V. (102)

Using (99) and (101), the following is obtained.

∂V

∂qN

= mgph
c . (103)

Therefore,

∂L

∂qN

=
∂K

∂qN

−
∂V

∂qN

= −
∂V

∂qN

= −mgph
c , (104)

sinceqN is a cyclic variable so that∂K/∂qN = 0.

By the property 1 in [36],

∂L

∂q̇N

= σN , (105)

whereσN denotes the angular momentum about the stance
toe. Since~r1 = ~r2 + ~r3,

σN = σN−1 + ~r2 × mvc, (106)

whereσN−1 denotes the angular momentum about the stance
ankle, vc is the velocity of the center of mass, and~r2 =
[

ph
a pv

a

]⊤
. Then, (105) and (106) imply

d

dt

∂L

∂q̇N

=
d

dt
(σN−1 + ~r2 × mvc) = σ̇N−1+mph

a p̈v
c−mpv

ap̈h
c .

(107)
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Since there is no actuation at the stance toe, the only torque
applied is from the ground reaction force. Using the method
of Lagrange, the following is obtained.

d

dt

∂L

∂q̇N

−
∂L

∂qN

= ~R × ~FR = ph
FRIF

N
R , (108)

which, together with (104) and (107), implies

σ̇N−1 + mph
a p̈v

c − mpv
ap̈h

c + mgph
c = ph

FRIF
N
R . (109)

Using (20) with the angular momentum balance theorem
yields

−mg(ph
c −ph

a)+uA +mph
a p̈v

c −mpv
ap̈h

c +mgph
c = ph

FRIF
N
R .

(110)
Therefore,

ph
FRIF

N
R = mgph

a + mph
a p̈v

c − mpv
ap̈h

c + uA. (111)

SinceFN
R = mg + mp̈v

c , (111) yields the location of the FRI
point as

ph
FRI = ph

a +
−mpv

ap̈h
c + uA

FN
R

. (112)
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