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Planar Bipedal Walking with Anthropomorphic Foot Action
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Abstract— This paper investigates the key problem of walking
with both fully actuated and underactuated phases. The studied
robot is planar, bipedal, and fully actuated in the sense that
it has feet with revolute, actuated ankles. The desired walking
motion is assumed to consist of three successive phases: a fully-
actuated phase where the stance foot is flat on the ground,
an underactuated phase where the stance heel lifts from the
ground and the stance foot rotates about the toe, and an
instantaneous double support phase where leg exchange takes
place. The main contribution of the paper is to provide a  Fig. 1. The three phases of walking modeled in this papery-fadtuated
provably asymptotically stabilizing controller that integrates phase where the stance foot is flat on the ground, underadtpaise where
the fully-actuated and underactuated phases of walking. By the stance heel rises from the ground and the stance f(_)dbssotmout
comparison, existing humanoid robots, such as Asimo and Qrio, the stgnce toe, and double-support phase where the swihgnipacts the
use only the fully-actuated phase (i.e., they only execute flat- ground.
footed walking), or RABBIT, which uses only the underactuated
phase (i.e., it has no feet, and hence walks as if on stilts).

The controller proposed here is organized around the hybrid Honda Robot, Asimo [4], [5], Sony’s biped, Qrio [6], and

zero dynamics of Westerveltet al. (2003) in order that the . . . .
stability analysis of the closed-loop system may be reduced to a Johnnie at the University of Munich [7], [8]. Each of these

one-dimensional Poincaé map that can be computed in closed robot’s control systems is organized around a high-level
form. The ubiquitous Zero Moment Point (ZMP) is used to  trajectory generator for the individual joints of the ropatm-

establish conditions under which the foot will not rotate about  pined with low-level servoing to ensure trajectory tragkin
its extremities; the ZMP is not used for stability analysis. An There are some differences in how the low-level servoing

example is given to show that a periodic walking motion can be . . .
unstable while the ZMP remains strictly within the footprint of is implemented—Honda uses PD control [5], Johnnie uses

the robot. feedback linearization [8], while Sony has revealed litb®ut
Index Terms— Robotics; Humanoids; Hybrid Zero Dynamics; their algorithms—but thes? dlﬁ(.a.re,r,]ces are falrl),/ ms@(am'
Orbital Stability; Poincar & map; ZMP. In each case, the overall “stability” of the robot's motioash
been based on the Zero Moment Point (ZMP) criterion (see
|. INTRODUCTION Figure 2), and consequently, these robots literally walk fla
HE stance foot plays an important role in human walk—fOOted'

ing since it contributes to forward progression, vertical A stability analysis of a flat-footed walking gait for a five-

support, and initiation of the lifting of the swing leg from link biped with an actuated ankle was carried out numescall
the ground [1], [2]. This paper addresses the modeling ant [9], [10], using the Poincér return map. The control law
control of planar bipedal robots with feet, with emphasis onSed feedback linearization to maintain the robot's pestur
a walking motion that allows anthropomorphic foot action@nd advance the swing leg; trajectory tracking was only used
[3] as depicted in Figure 1. The associated model is hybrid if? the limited sense that the horizontal component of the
nature, with phases modeled by ordinary differential eiqnat ~ center of mass was commanded to advance at a constant
interleaved with discrete transitions and reset mapsheurt ate. The unilateral constraints due to foot contact were
more, one of the phases is underactuated. Stable walkir@refu_”y presented. Motivated by energy eff|.C|ency, emga
corresponds to the design of asymptotically stable periodiWork in [11], [12] has shown how to realize a passive
orbits in these hybrid systems and not equilibrium pointsWalking gait in a fully actuated biped robot walking on a flat
Feedback laws are proposed to create periodic orbits aid théurface. Stablhty of the resultmg walking motion has _been
stability properties are established through a carefulyaisa ~"gorously established. The main drawback, however, i§ tha
of the Poincag return map. This is quite different than the the assumption of full actuation once again restricts the fo
prevailing methods in the controlled-biped literature vene Motion to flat-footed walking.
heuristic stability criteria are commonly used. For walking gaits that include foot rotation, varioad hoc

Over the past decade, several remarkably anthropomoeontrol solutions have been proposed in the literature,[14]
phic robots have been constructed, such as the well knowfd5], [16], [17], [18], [19], but none of them can guarantee

. stability in the presence of the underactuation that occurs
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“legs” that are connected at a point called the “hips.” The
link at the extremity of each leg is called a “foot” and the
joint between the foot and the remainder of the leg is called
an “ankle.” The feet are assumed to be “forward facing.”
The forward end of each foot is called a “toe” and the
back end is called a “heel.” Each revolute joint is assumed
to be independently actuated. It is assumed that walking
consists of three successive phases, a fully-actuatee: phas
underactuated phase, and a double-support phase, see Figur

e

@

o

(b)

Fig. 2. The ZMP (Zero Moment Point) principle in a nutshelleddize

a robot in single support as a planar inverted pendulum fegth¢o a base
consisting of a foot with torque applied at the ankle and #fleo joints

are independently actuated. Assume adequate friction sdhtédoot is not
sliding. In (a), the robot's nominal trajectory has been pkthso that the

1. The detailed assumptions for the robot and the gait are
listed in Appendix I. A representative robot is shown in Figu
3 along with a coordinate convention.

center of pressure of the forces on the foBt,remains strictly within the
interior of the footprint. In this case, the foot will not até (i.e, the foot is
acting as a base, as in a normal robotic manipulator), and tHeisytstem
is fully actuated. It follows that small deviations from thiampned trajectory
can be attenuated via feedback control. In case (b), howdwercenter of
pressure has moved to the toe, allowing the foot to rotate sybm is now
underactuated (two degrees of freedom and one actuatat)designing a
stabilizing controller is nontrivial, especially when ingbeevents are taken
into account. The ZMP principle says to design trajectosieghat case (a)
holds; i.e., walk flat footed. Humans, even with prosthetigsjeuse foot
rotation to decrease energy loss at impact [13].

q3,u3

Work in [13] shows that plantarflexion of the ankle, which
initiates heel rise and toe roll, is the most efficient mettmd
reduce energy loss at the subsequent impact of the swing leg.
This motion is also necessary for thetheticsof mechanical
walking.

In this paper, the analysis of walking with point feet is Fig. 3. Model of a 7-link robot with coordinate conventigh. is not shown.
extended 10 design a controller that provides asymptdfical L% S5 as = = 0. In general, for vl obot e
stable walking with an anthropomorphic foot mottorin  andgqy is the angle between the ground and the stance foot.
particular, Section Il models a walking motion consistirfg o
three successive phasdes fully-actuated phase where the
stance foot is flat on the ground, an underactuated phase
where the stance heel lifts from the ground and the stancA. Underactuated phase
foot rotates about the toe, and an instantaneous doubjsgup .
phase where leg exchange takes place, see once again Figur he _underactuated phase is when the S‘af‘ce heel of the
1. A control law is proposed in Sections Il and 1V, based on'© ot fises from th? grounq.and_ the robot bggms to roll over
virtual constraints. The hybrid zero dynamics is used toiced the stance toe; this condition is characterized by the foot

the complexity of the associated stability analysis proble rotation indicator (FRI) point of [26] being strictly in frd of

A systematic method for choosing the virtual constraints i§he ZF?nce_ fo%t. Thf sftan((j:et;totehls fassumetd t;[wo ?Ct a}s_a p_lsptt; th
given in Section V, with an illustrative example worked aut i condition is characterized by the forces at the toe lyindiini

Section VI. In Section VI, flat-footed walking is recovered th? ?Ilowe% f”Ct'OT. cone. BOthtOf. tkt]e?ﬁ (t:ond|tt|obns.(|.eptf d
as a special case of the results of Section Ill. In order tcfg af_lonl an no"n-s(;p) are crc])ns ra|nh§h & dmus ed'mpg:;e
underline that the ZMP principle alone is not sufficient foe t the final controller design phase, which is discussed iniatect

stability of a walking gait, this result is used in SectionlIVI ) ) )
to construct a periodic orbit on which the ZMP principle is Since there is no actuation between the stance toe and the

satisfied at each point of the gait, but yet the orbit is uristap 9round, the dynamics of the robot in this phase is equivalent
Conclusions are given in Section IX. to an N-DOF ropot with ungctuated point feet and |d'ent|cal
legs, as treated in [21]. Define the generalized coordiredes
¢ = (q1, -+ ,qn) " € Q,, whereQ, is a simply connected
open subset of R. The dynamics are obtained using the
dhethod of Lagrange, yielding

(P}, p})

Il. RoBOT MODEL

The robot considered in this paper is bipedal and plan
with N > 4 rigid links connected by ideal (frictionless)
revolute joints to form a tree structure (no closed kinemati 1)
chains). It is assumed to have two identical open chainsaall
whereu, = (uy,--- ,ux_1)" is the vector of torques applied
at the joints. The dynamic equation in state-variable fosm i

expressed as, = fy,(¥y) + gu (@) Uy.

Dv(‘]v)(jv + CU(QU,%)QU + GU(QU) = Bvuvv

1A summary of this work was reported in [25].
2For simplicity, heel strike with a subsequent heel roll is adtiressed. It
can be handled in the same manner as toe roll.
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B. Fully-actuated phase (pt,p?), to the center of mass of the robot gives =
During the fully-actuated phase, the stance foot is assumedv; P23 P¢) and da = (3 pf;pe), see Figure 3. Since the
to remain flat on the ground without slipping. The ankleSWing heel and the swing toe are assumed to land on the
of the stance leg is assumed to act as an actuated piv&round at the same time, there are two ground reaction forces
Since the stance foot is motionless during this phase, th&hich can be mo%eled as a resultant force and torque at the
dynamics of the robot during the fully-actuated phase i$Wing ankle. Letr';(qa) denote the Cartesian coordinates of
equivalent to anV — 1 DOF robot without the stance foot the swing ankle and I€17;(¢q) denote the absolute angle of
and with actuation at the stance ankle, as studied in [27]. L&he swing foot. The method of Lagrange yields the dynamics

dp = (q1,- - Lanv_1)T € Q,, be the configuration variables, for the double-support phase as follows:

wheregqy,--- ,qn_2 denote the relative angles of the joints Da(qa)iia + Ca(q, Ga)da + Ga(qa)

except the stance ankley_; denotes the angle of the stance — Byu+ EFSF + ET6 @)
ankle joint, andQ,, is a simply connected open subset of = Pau d a9

R"~!, see Figure 3. Note that because the stance foot remain F T (q)) | or T (qa)

on the ground,gy_; is now an absolute angle (i.e., it is Whereu = (up;ua), Ef = D4 Ed =5 ’

anddF' andér denote the resultant ground reaction force and
51e torque at the swing ankle, respectively.

Under the hypotheses IH6 (the actuators not being impul-
sive) and IH1 (which is the stance foot neither rebounds nor
Dy ()i +Cis(qy, dp)ip+Gyu(qe) = Borup+Byoua, (2)  slips), following the procedure in [20] gives

referenced to the world frame).
The dynamics for the fully-actuated phase are derived usin
the method of Lagrange, yielding a model of the form

where g, are the velocitiesys = uy—; is the input at the [R 0 ]qq
ankle joint, andu, = (u1,--- ,ux_2) ' are the inputs applied i = [R 0] Dagyq
at the remaining joints. The state is takenas= (q,;q,) € 0
TQ, and the dynamic equation is given © (g—
£4 y q g y _ Awq,v(gv ')_ = Aw(x(}), (5)
. qg& 0 A(j,v (qv )qv v
To = D' (=Cypgy — Gy + Bypaua) * D' By whereR is a relabeling matrix and
= fo(xp,un) + gp(xe)up. 3) Dy —Ef _E7 -1
Note that, to satisfy the condition that the stance foot isdita o= | (EHYT 0 0 } (6)
the ground, the FRI point needs to be kept strictly within the (EDT 0 0
support region of the foot. This constraint must be imposeqote that, because the stance toe acts as a pivot just before
in the final controller design stage, see Section V. the impact,z; is uniquely determined by .
C. Double-support phase D. Foot Rotation, or Transition from Full Actuation to Un-

During the double-support phase, the swing foot impactéleractuation
the ground. For simplicity, it is assumed that the swing foot The transition from a flat foot to rotation about the toe
is parallel to the ground at impact. It is also assumed thatan be initiated by causing the angular acceleration alheut t
the feet are arc shaped so that the only contact points witstance toe to become negative. To characterize the motion
the ground are the heel and the toe, see Figure 4. Due tf the stance foot, or equivalently, when the robot transi-
tions from full actuation—foot is flat on the ground—to
| underactuation—foot rotates about the toe, the foot rotatio
\ indicator (FRI) point of Goswami is used [26]. See Appendix
: Il for the detailed calculation.
(a) Arc-shaped (b) Flat By enforcing that the FRI point is strictly in front of the
Fig. 4. Examples of feet. As long as the toe and heel are theasnisact stance foot, the transition is initiated. Iftorque d_lsctnuitles“
points with the ground, (a) and (b) are equivalent. are allowed—as they are assumed to be in this paper—when
to allow foot rotation becomes a control decision. Here, in

the impacts, impulsive forces are applied at the toe and th@eéw of simplifying the analysis of periodic orbits in Semii
heel simultaneously, which cause discontinuous changes fY, the transition is assumed to occur at a fixed point in the
the velocities; however, the position states are assumed fdlly-actuated phase Hence, H, = 0,(q,) — 0, where

remain continuous [28]; the full set of hypotheses is listed 0»(qy) is the angle of the hips with respect to the stance
Appendix . ankle (see Figure 3) anl, , is a constant to be determined.

Representing the double-support phase requires an N+24Th_ ) deling decision. | ice. the t < comirs due &

[ IS IS a modeling decision. In practice, the torque Is C ue to

DOI_:_ model (e'g' N DOF for the jQIHtS and 2 DOF fOI_’ the actuator dynamics. It is assumed here that the actuator tinstardris small
position of the center of mass). Adding Cartesian cooré®at enough that it need not be modeled.

5When the transition condition is met, namely, = 0, a jump in the
3Note that the ankle torque is included fip (z,, ua ); the reason for this  torque is made to achievgy < 0. This moves the FRI point in front of the
will be clear in Section III. foot.

\
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The positions and the velocities remain continuous witH23], we use the method of virtual constraints to create a
a step-change in torque. The ensuing initial value of théwo-dimensional zero dynamics manifold, in the 2N-
underactuated phase, is defined so as to achieve continuity dimensional state space of the underactuated phase. This
in the position and velocity variables: requires the use of the full complement &f — 1 actuators
on the robot. In the fully-actuated phase, we have one less

I degree of freedom because the stance foot is motionless and

Tl = { Q"jr } = T |= Af(z,). (7)  flat on the ground. Consequently, we use-2 actuators—all
e qg actuators except the ankle of the stance foot—to create a two-

dimensional zero dynamics manifolel,—that is compatible

Continuity of the torques is not imposed, and hence neithewith Z, in the sense that the following invariance conditions
is continuity of the accelerations. Itis assumed that thércd  hold: AY(Sy N 2,) C 2, and A$(Sy N 2,) C Z,. The
law in the underactuated phase will be designed so that th&ctuation authority at the ankle is subsequently emploged f

e

FRI point is in front of the toe. stability and efficiency augmentation, and for enforcing th
non-rotation of the foot. The invariance conditions guétean
E. Overall Hybrid Model the existence of a hybrid zero dynamics for the closed-loop

As in [29], the overall model can be expressed as a nonhybrid model. The techniques in [21] are then extended to
. - - : compute the Poincamap of the closed-loop system in closed
linear hybrid system containing two state manifolds (ahlle P P d

“charts” in [30]): form. Precise stability conditions then follow.

Xo = TQ, A. Control design for the underactuated phase
Y, Fe 'Eﬁ B {i(xé’g‘g T;f((;“’;lﬁ’ 0} The greatest difficulties in the control design and analysis
TV x_f _ Af(x_) elmelme involve the underactuated phase of the motion. Since the
o P\ stance toe acts as a pivot and there is no actuation at theestan
(8) toe, the feedback design proceeds as in [21]ket b, (z,)
X, = TQ, be an(NN — 1) x 1 vector of output functions satisfying the
5 . T :Siz = fu(%); gv(]?‘;)uv following hypotheses:
. 4 _ {x,f’ € TQu[HE (wv) = 0} HHU1) The output functionh,(z,) depends only on the
Ifay = Af(xy) configuration variables;

where, for exampleF,, is the flow on state manifold,, Sy~ HHU2) The decoupling matrixy, Ly, h. is invertible for an

is the switching hyper-surface for transitions betweénand open setQ,, C Q,;
Xy, TP : 8§ — X, is the transition function applied when HHU3) Existence off,(¢,) such that[h.(g.); 0 (qv)] is @
Ty €S, diffeomorphism;

The transition from the underactuated phase to the fullyHHU4) There exists a point iQ, whereh,, vanishes.
actuated phase occurs when the swing foot impacts thgHUS) There exists a unique poing, , € Q, such that

ground. HenceH?(z,,) = T} (z,), where Y} (z,) denotes (ho(q;),Y2(q;)) = (0,0), Y?(¢;) > 0 and the rank
the vertical coordinate (height) of the swing heel, see f&gu of [hy; Tg] at g, o equals toN, where Y?(z,) denotes
5. the horizontal coordinate of the swing toe.

Remark 1.8 is read as the switching surfad@m the  Then there exists a smooth manifold, = {z, ¢
fully-actuated phasep, to the underactuated phase denotedrQ, |h,(z,) = 0,Ls h,(z,) = 0}, called the
v. underactuated-phase zero dynamics manifold, fd 2,

, is smooth.S¢ N Z, is one-dimensional ifS¥ N 2, # 0.
x, €8] ’ zy = Aj(xy) ‘\ Differentiating the outpuy,, twice yields,
yv = WUy (9)

= L3 ho(zy) + Ly, Ly, ho () u,. (10)

Ty = [ (we) + gp(wp)uy

Since the decoupling matrik,, Ly, h,(z,) is invertible, the
fully-actuated phase underaciuated phase feedback control

\’ o= Av(zy) ‘»/rl €Sy UZ = _(Lngfu hv(xv))il(LQ,l, hv(zv)) (11)

renders the zero dynamics manifold invariant. In addition

Fig. 5. Diagram of system. to the hypotheses HHU1-HHUS, if hypothesis RH5 in the
Appendix | is also satisfied, then the underactuated phase
zero dynamics in the coordinates of := (0,,0,) =

IIl. CREATING THEHYBRID ZERO DYNAMICS

In a certain sense, the basic idea of the control law design A (12)
is quite straightforward. Following the development in]j21 o = K2(6,), (13)

v

(0, dy(q,)d,) can be written as
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where d,, is the last row of D, and o, is the angular manifold, the fully-actuated phase zero dynamics can be
momentum about the stance toe during the underactuateditten as
phase, [31]. Equations (12) and (13) are writtenzgs=

[z, (20). 9@ = "klo (0p)oy (19)
The transition map from the underactuated phase to the G, = K2(0,)+ua (20)
fully-actuated phase on the hybrid zero dynamics becomes v L ’
0F — 0.0 [ R 0 ] 0« (14) wherewuy is the torque applied at the stance ankig,is the
1%} - ® v

last row of D, ando,, is the angular momentum about the

stance ankle during the fully-actuated phase [31]. Eqoatio

wheres? is a constant that can be calculated as in [21].  (19) and (20) are written as, = fz_(z,,ua). The ankle
torqueuy can be used either to shape the potential energy
or to affect the convergence rate of the solution of the fuybri

B. Control design for the fully-actuated phase zero dynamics.

Since the stance foot is motionless and acting as a baseThe transition map from the fully-actuated phase to the
during this phase, the model only has — 1 DOF. Conse- underactuated phase on the zero dynamics becomes
quently, the robot is fully actuated, opening up many feelba

U; = 6o, (15)

design possibilities. For example, we could, in principle, 0F — 0.0 4y 1)
design for an empty zero dynamics, feedback linearize the Y ™
model, etc. —though we would run a high risk of requiring of = 5%0, (22)

so much ankle torque that the foot would rotate, thereby

causing underactuationinstead, we follow a design where, wheres? is a constant that can be calculated using [21].
in principle, the ankle torque could be used exclusively for

ensuring that the foot does not rotate, but in most cases, it

can also bg used to augment stability and efficiency of th%_ Hybrid zero dynamics

overall walking cycle.

N — 2 virtual constraints are used to create a two- Let Z, be the zero dynamics manifold of the fully-
dimensional zero dynamics for the fully-actuated phaseisha actuated phase ang, = fz_(z,,ua) be the associated zero
driven by the ankle torque. Let, = h,(z,) be a(N —2)x1  dynamics driven byus. Let AY be the transition map from
vector of output functions. Let the output functign satisfy  the fully-actuated phase to the underactuated phaseZl.et

the following hypotheses: be the zero dynamics manifold of the underactuated phase
HHF1) The output functionh,(z,) depends only on the andZ, = f,(z,) be the associated zero dynamics. Lef
configuration variables of the fully-actuated phase; be the transition map from the underactuated phase to the

HHF2) Forusy = 0, the decoupling matrixi, L; h, is  fully-actuated phase. ¥z, € S; N Z,, Aj(z,) € 2, and
invertible for an open se@, C Q,; Vz, € S§§ N 2y, AY(20) € Z,, then

HHF3) There existd,(q,) such that{h,(q,);0,(q,)] is a
diffeomorphism;

S j— — v
HHF4) There exists a point where, vanishes; “ :ffif(%’ up), %y ¢ gﬁ ggw us €R
HHF5) There exists a unique poiqf , € Q,, such thaty,, = zv _f WE?))’ zf Z‘Si N ZW (23)
— _ U (= _ ' . ) v — JZ,\Fv), v b v
hw(q%o) =0, Hy,(q%o) =0 and [hg,,H;] has full rank. Z$ _Ab(z), e SPNE,

Then there exists a smooth manifold, = {z, €

TQglhe(zy) = 07Lf<ph¥’(x59.) = 0}3 called the fU”_Y' is an invariant hybrid subsystem of the full-order hybrid
actuated-phase zero dynamics manifold, &N Z, iS  model. The system (23) is called tihgbrid zero dynamics

smooth.S7 N Z,, is one-dimensional i5; N 2, # 0. and Z, and 2, are hybrid zero dynamics manifolds.
Differentiating twice the outpuy,, for the fully-actuated Remark 2:By definition, Z, and Z, are hybrid zero
phase gives dynamics manifolds if, and only iff>_ € SN Z,,
Up = Vy (16) o
hy o AY = 0, 24
= L?” he (o) + Lo, Ly, he(2p)up. (17) ° 99(%) 29
i Ly,hooAg(z,) = 0, (25)

SinceL,, Ly, h, is invertible, the feedback control

. _ andvz; € S N Z, andupy =0,
uy = —(Lg, Ls hy(zy)) 1(Lfcwh¢(mqu)) (18)

renders the zero dynamics manifold for the fully-actuated he o Af(z,) = 0, (26)
phase invariant. Li,h,oAf(z,) = 0. (27)

In addition to the hypotheses HHF1-HHF5, if the hy-
pothesis RH5 is satisfied, then in the coordinates of.= How to achieve these conditions is developed in Section V.

(0p,0,) = (0,,d,(gs)d,) restricted to the zero dynamics O
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IV. ANKLE CONTROL AND STABILITY ANALYSIS of potential-energy shaping, the ankle torque during thig-fu
(gctuated phase;,, is assumed to be a funcion 6§ only.

Due to the ankle torque that appears in the zero dynami
fThen, (19) and (20) become

for the fully-actuated phase in (20), the robot's center o

mass can move backward as well as forward during a step. ,@i(gw) ua(0,)

In other words, the angular momentum about the stance dCp = 0pdoy, = L (0,) (0 )daw- (32)
ankle can be zero before entering the underactuated phase. vy ey

We assume here, however, that the angular momentum itz = (0,,0,) € S;N Z, and&jg be defined as in (14).

never zero during a step; see GH7 in Appendix |. One carForng <6, <0,, define
think of this hypothesis as a difference between walking and

dancing. Furthermore, during the underactuated phase, the ua [P sRE)  uald)
H : VZ (09’3) - 1 + 1 dé.v (33)
angular momentum of the robot is never zero if the robot ¢ or Kp(&)  KL(E)
completes a step [21]. vy mer = max  VZ*(0,). (34)
The ankle torque provides additional design freedom in the ‘ 05<0,<0, =

fuIIy—f':\ctuated phase, Whjch can be used for various PUEOSE, ¢ (62)2C5 — V24 ™% 5 0 then (32) can be integrated,
In this paper, two possible usages of the ankle torque arehicﬁ regults in”

suggested: changing the walking speed of the robot througw ) )
potential-energy shaping; affecting the convergencetcetiee V2 D H\2 ot uag—

periodic orbit. The stability of the robot on the hybrid zero o (7o) Tl = m e = VNG (39)
dynamics is analyzed with a Poinéamap for the overall With (15), the Poincd map for the fully-actuated phase on
system, which can be obtained by composing the Pdincartthe hybrid zero dynamicsp, : S¢ N Z, — SY N Z,, is
map for each phase. defined as

o) = (62)°¢ — VEAO,). 36
A. Analysis on the hybrid zero dynamics for the underactu- Pelb) = (006 = V2. (6,) (36)
ated phase Hence, the Poincarmap for the overall reduced system in

For the underactuated phase, the zero dynamics is equilfv:¢v) coordinatesp(¢,) : SPNZ, — SfN Z,, is defined
alent to the robot with unactuated point feet, [21]. If the@S composition of (31) and (36) as follows.
robot completes a step, the angular momentum dgring thep(g_)
underactuated phase is never zero. Theref¢fe= %U is N
a valid coordinate transformation, whesg is the angular

momentum. Let:; = (0, ,0,) € S N Z, and letd; be  with domain of definition

= puope((y)
(05)%(08)%¢, — (02)2Vz2(0,) — Vz, (0,(87)

defined as in (21). I{07)%¢; — VZ*** > 0, then following
the procedure in [21] with (12) and (13) gives D = {¢ >0[(09)%¢, — Vg " >0,
8U)2(89)2¢, — (8Y)2VEA(67) — Va9 (9) > 0}. (38
%(05)27%(0_;},)2: ;* ;‘,:7‘/2“(9;)7 (28) ( go) ( U) C’U ( Lp) ZW( go) Z, ( ’U) } ( )
Theorem 1:Under the hypotheses RH1-RH5, GH1-GH7,
where and IH1-IH7 in Appendix |, HHF1-HHF5, and HHU1-
Vo (6.) /-Gv K2 (€) ” 29) HHUS,
v = - v s V)21 UA (H— —
= or Ku(€) ¢ = MUIREAL );L;/ > ©.) (39)
VEer = max  Vz, (0,). (30) 1—(62)2(6%)
! 0. <0,<0,

) is an exponentially stable fixed point of (37) if, and only if,
The Poincaé map for the underactuated phase : S; N

Z, — 8¢ N Z, on the hybrid zero dynamics is defined with 0< (5};)2(5;‘,’)2 <1, (40)
(22) as (32)2(5%)2Vz, + (62)2VEA
A v v ¥ Ze max
pu(Cy) = (55;)2@4; - Vz,(0,). (31) 1— (55)2(57)2 +Vz" <0, (41)

(00)%(99)*Vz2 + (65)*Ve
1—(63)%(65)°
Proof: D is non-empty if, and only if(62)*(67)* > 0.
An ankle torque control strategy that is useful for modi-f there exists¢* € D satisfying p(¢*) = (09)%(68)2¢ —
fying the walking speed is proposed. The Poikcarap for  (5u)2V24(6;) — Vz, (0, ), then¢* is an exponentially stable
the fully-actuated phase is then calculated, and the Pd@Encagiyeq povint if, and only if,0 < (62)2(6¥)? < 1, and in this
map for the overall reduced system is determined for stgbili c5ge (39) is the value af*. Finally, (21) and (42) are the

analysis of the robot on the hybrid zero dynamics. necessary and sufficient conditions for (39) to beDin
Since the angular momentum of the robot during the fully- Remark 3:The stability of the reduced model is not af-

actuateZd phase,,, is not zero during the fully-actuated phase, fected by the choice ofia(6,) sinces?, does not depend on
Cp = %“’ is a valid coordinate transformation. For the purposeu,. However, the fixed poin{* is affected byu,. a

v

B. Analysis on the hybrid zero dynamics for the fully-actdat
phase with ankle torque used to change walking speed

FVESTT <0, (42)
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C. Analysis on the hybrid zero dynamics for fully-actuatedwith domain of definition
phase with ankle torque used to affect convergence rate

D ={¢, €R[¢, >0} (53)

It is now shown how the ankle torque can be used to affect
the stability of the robot on the hybrid zero dynamics; In
particular the torque is used to affect convergence rate. Fo Theorem 2:Assume the hypotheses RH1-RH5, GH1-
the analysis, the Poindamap for the fully-actuated phase GH7, and IH1-IH7 in Appendix I, HHF1-HHF5, and HHU1-

is calculated and then composed with the Poiacarap of
the underactuated phase to provide the Poncaap of the
overall reduced system.

Due to the assumption GH7, which assumes non-zero

angular momentum during the fully-actuated phase+= %*"

is a valid coordinate transformation. Define the ankle terqu

uy to be

dcx (0
wn = w20+ (0,) (a6, — czl0) + T )
)

wherea is a negative constant,;(0,) is a function off,
only, which describes the desired path(gfduring the fully-
actuated phase, and,(6,,) and x2(6,,) are from (19) and

(20), respectively. Then the zero dynamics becomes
éso = ’i}p(aw)aw (44)
. . d¢;(0,)
Op = ";(990) a(Cy — Cgp(esa)) + =20, (45)
db,
n (6,,¢,) coordinates, combining (44) and (45) yields

ac, . ac;(0,)
ﬁ = a(Cp — C«p(ego)) + Z;T-

(46)

Definen = ¢, — (;(0,). Then, with (46), differentiating
gives
ac¢: (o
d_n = d& _ Cﬁ"( 2 (47)
b, o,  db,
= a(C — 5 (0,)) = an, (48)
which can be solved fof} < 6, < 6_ to give
n(0,) = e* @0 In(6F). (49)
Therefore,
Co = Colb,) + €70 (CE — C1(0F) (50)

Sincef,, = 6, at the transition from the fully-actuated phase

to the underactuated phase,
- * — a0 —07F *
Cga :Ctp(ego)—i_e @ ¢)(C:_<Lp(0;_))

The Poincae map for the fully-actuated phasg, : S¢ N
Z, — 85N Z,, is therefore given as

po(C)) = D¢+ b,

(51)

(07)%e" ) — e8¢ (60).
(52)
Combining (31) and (52) gives the Poineamap for the
overall reduced system; if,,, (,,) coordinatesp(¢; ) = p, o

po(Cy) 8¢ N2, — 8¢ N Z,, as follows:

p(C)) = (82)2(82)2eC 0 ¢ + (68)2(C5(6;)
—e0 =02 (01)) — Vz, (6;)

HHUS are satisfied. Lef* be a differentiable function o,
satisfying the following conditions,

¢5(0,) >0, VO, €0}, 0] (54)
(38)°(85)°C5(05) = Co(65) = (8%)*Vz, (0,))- (55)
Then,
oo 0RPG(6) = (3)2e % ~0C5(6) = Ve, (0)
v 1 (55)2(552)2@(0;—@)
(56)

is an exponentially stable fixed point of (53) if, and only if,
< (69)2(89)%e0> 02 <1, a<0  (57)
(02)%¢5(0,) = V™ >0 (58)
Proof: The domain of definitionD, is non-empty if,
and only if, (58) is satisfied. If there exis{§ € D satisfying
¢* = p(¢*), wherep is the Poincg map defined in (53),
then,(* is an exponentially fixed point if, and only if, (57) is
satisfied, in which case the value of the fixed point is given
as (56). [ ]
Remark 4:The convergence rate of the solution to the limit
cycle can be altered by the ankle torqueg,, through choice
of a, as long as the constraint on the FRI point during the
fully-actuated phase is satisfied. a

D. Stability of the robot in the full-order model

A very important result not proved in the paper is that
asymptotically stable periodic orbits of the hybrid zero dy
namics areasymptotically stabilizablen the full-order model.
The proof is based on extending the main result of [20]. For
an analogous result in running, see [29].

V. DESIGNING THE VIRTUAL CONSTRAINTS

To render the analytical results in the previous section
useful for feedback design, a convenient finite parameioza
of the virtual constraints and the angular momentum during
the fully-actuated phase must be introduced as in [21, Sec. V
This introduces free parameters into the hybrid zero dyosami
(23). A minimum cost criterion can then be posed and
parameter optimization applied to the hybrid zero dynamics
to design a provably stable, closed-loop system with satisfi
design constraints, such as walking at a prescribed average
speed, the forces on the support leg lying in the allowed
friction cone, and the foot rotation indicator point withime
hull of the foot during the fully-actuated phase and styiatl
front of the foot in the underactuated phase.
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A. Parametrization using &ier polynomials where
For the parametrization of the output function for each [ ]
phase, Bzier polynomials are used. Let a; = : , 4=0,---, M, (73)
alN—2
. Moo ML .
k=0 v ﬂ] = . .] = 07 e 7M’U (74)
M
; S M,)! N-1
by(s0) = Zﬁ}gmsﬁ(l —5,)"7*, (60) LA
k=0 (M, — k)t When the ankle torque is used to affect the stability as
N explained in Section IV-C, the desired path of the angular
o

where M, > 3, M, > 3, sy(0,) = ;=—% ands,(6,) = ~momentum also needs to be designed. Since the angular
9, —67F v momentum during the fully-actuated phase is never zero,

—+_, Note thats, = 0, =1,s, =0 ands, =1 )2 . . . .
0o —07 e = NG sv = 0 y 8* — () s parameterized instead of the desired angular
represent the beginning and the end of the fuIIy—actuatem mentzuma* which is aiven b

phase and the beginning and the end of the underactuatd’ T 9 y

phase, respectively. Define the output function for eacls@ha . “ m! % mek
satisfying the output hypotheses in Section llI, to be (Cosp(ly) = Zwkg(m _ k,)!%(l —sp)" ", (79)
k=0
Yo = hyulgy) = hfp(qg)) - hi 0 0,(q,) (61) wherem > 1. By the properties of Bzier polynomials,
Yo = ho(aw) =hi(q) = hobu(a),  (62) C*(sp)lsu=0 = Y0 (76)
C(spllsp=1 = Ym- (77)

where hf,, is a vector withV — 2 elements specifying inde-
pendent entities to be controlled during fully-actuatedgeh
h! is a vector containingV — 1 independent values to be B. Achieving invariance of the hybrid zero dynamics
controlled during underactuated phad€,(0,) and h(6.,) To achieve the invariance, the output function for each
are the desired curves for the controlled elements to trachase needs to be designed such that the invariance coisditio
during each phase. The desired curvigs(d,,) and h¢(6,),  (24), (25), (26), and (27) are satisfied. Singe and y,

are defined as follows. satisfy HHF3 and HHU3, respectively(¢,); 6,(q,)] and
— [l (qv); 0.,(qy)] are invertible, which holds if, and only if,
; by, 0 5,(0,) b0
hg(0y) = : (63) ._{ ap }
p\Yo H = ¥ 78
L bﬁﬂ 0 54(0y) o(22) 04 (ay) (78)
4 bqu O Sy (91)) and bt ( )
Hi0,) = (64) Ho(g,) = [ (4 } 79
| Y0 s0(6) o) =1y g, (79)

are invertible. By definition, on the zero dynamics manifold
for each phase, the output function satisfies the following
conditions.

Note that due to the properties of théBer polynomials, the
desired output function at the beginning of each phase is

hi(stp)I%ZO = (65) Yo = h@(‘]ap) = hfp(‘]ap) - hdgp © 999(%0) =0, (80)
Ohl (s Yo = hol(qu) = bl (qu) — hg 00,(q,) =0. (81)
g( w) = Mcp(al - ao) (66) . ) ) .
Se Since H,(q,) and H,(q,) are invertible, the condition for

d _ the position states after the transition to remain in the zer
hU(S’U)‘éU:O - ﬁO (67) . . . .
dynamics manifold for the underactuated phase is derived as

Ohd (s,
Lol -, (69) o
Sv S, =0 ﬁo H71 o ]\/LP
0 (q+) = HU © ® 9@(‘];) . (82)
and, similarly, at the end of each phase is vty ™
d B 69 Similarly, the condition for the position states to be in the
ho(sells,=1 = an, (69) zero dynamics manifold for the fully-actuated phase after t
ahg(sw) transition from the underactuated phase to the fully-dgetlia
Ds, = My(Bm, = Bm—1) (70) " can be obtained to be
sp=1
hg(sv)lsvzl = ﬁMU (71) |: 9;2[;)-5-) :| :H<P ° ([ R 0 ] (Hv_1 © [ Qf(qu) :|>)7
0su g —1 v v whereR is the relabeling matrix.
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Sincey, = 0 andy, = 0 on the zero dynamics manifold IEC1) The stability condition (57) is satisfied,

for each phase, IEC2) The non-slipping assumption is satisfied. In each
Oht (.) ot 9s.. phase, the foot will not slip if the ratio of the tangen-
Uy = PP iy — _‘f’_*"g% =0, (84) tial reaction force and the normal reaction force from
?qs@ 335 90, the ground are within the friction cone, which can be
. Ohy(qu) . Ohy Os, 4 formulated as
Yv = 0qv qu D5, 00, 0, =0. (85) & < (92)
Fn

Since H,(q,) and H,(q,) are invertible, the condition for _ o o
the velocity states after the transition from the fullysted wherey is the Coulomb friction coefficient of the surface
phase to the underactuated phase to be in the zero dynamics and Fr is the tangential force, andy is the normal

manifold for the underactuated phase can be obtained from reaction force; _ _ -
the transition map (7) as IEC3) The normal reaction force from the ground is positive.

0— _ ot ot 1 g This is due to the fact that the ground reaction force

B = % — 05 ony, ., ky(6y) + 6o (86) is unilateral. In other words, the ground cannot pull the
M,  9q, " kL(6:3)5Y ’ robot down;
IEC4) The height of the swing foot is positive during step;

M,y (g, o ) IEC5) The FRI point is within the stance footprint (i.e, the
T B e convex hull of the foot);
Y= 94, 17 (87) IEC6) The stance foot leaves the ground after the double

0 support;
o . _ _ IEC7) The angles of the knees and ankles are limited to

Slmllar]y, the cc_)ndmon for the velocity states to be in mq produce anthropomorphic gait;
dynamics manlfold for the fully-actuated after the traiosit IEC8) The torque applied at each joint is limited to a physi-
can be obtained as cally realizable value.

oy = 05 — 9:5 8_hf,o ¢ (q,)BHU A () The desired output functions and the desired angular mo-
M, 0q, Y77 0qy K mentum during a step need to be determined, subject to the

(88) invariance condition and the constraints being satisfidds T
where can be formulated as an numerical optimization problem. The

where

[1

= % (89)  cost function used here is defined as
1 &
When the ankle torque is controlled to affect the stability, 7= L, /T; ; | dt, (93)

the desired path of the angular momentum during the fully-

actuated phase;;(s,,), needs to satisfy (54), which is essen-where L, is the step length7}" and T, are the time of
tially equivalent to non-zero angular momentum hypothesideginning and end of the step, respectively.

GH7, and (55) for periodicity. Sinc«{;(eg) = 7 and

(5(0,) = vm, the condition fory, is given by VI. SIMULATION
Yo = (82)%(86%)%ym — (69)2Vz, (65), (90) For an illustration, a planar bipedal robot with 7-rigiddm
e voo T is used. See Figure 3 for the detailed coordinate convenition
from (55). The degrees of the polynomials used in the desired output
functions and desired angular momentum for both phases are
C. Specifying the remaining free parameters set to beM,, = 6, M, = 6, andm = 5. The parameters used

for the simulation are given in Table I. The parameters are
((:Jiefined as shown in Figure 6.

Figure 7 and Figure 8 show the position and velocity states
of the robot. During the underactuated phase, the angleeof th
stance foot decreases, which implies that the robot roks ov

There are free coefficients in theéBer polynomials after
meeting the invariance conditions and they can be use
to satisfy constraints for stability, friction to realizeom
slipping, anthropomorphic gait, average walking speed, et
This section explains the various constraints.

the stance toe.

Equality constra|r?t: ) ) Let (0,0)" be the Cartesian coordinate of the stance toe
EC1) Average walking speed is constant. The walking speeg,,q let(pl,0)T be the location of the stance heel during the

of the robot, which is defined as step length divided byg,|y_actuated phase, see Figure 3. In order for the stanok f

time duration of a step, is given by not to rotate, the location of the FRI poirp/;,0)T needs
L, to satisfy
=, 91
'S G Pl < Pins < 0. (04)
where L, is the step length and is the time elapsed The location of the FRI point is shown in Figure 9, which
for the step. satisfies (94), indicating the stance foot remains on thergto

Inequality constraints: during the fully-actuated phase.
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A4

(a) 0.63% of a step (b) 15.13% of a step

LA

(e) 57.29% of a step (f) 71.08% of a step

Fig. 11. Stick diagram of the robot during one step

[ Model Parameterf Units | Link | Label [ Value |
Torso Mrorso 36.044

Mass kg Femur Femur | 9149

Tibia Mmrivia 3.000

Foot MFpoot 0.200

Torso Lrorso 0.625

Femur | Lremur 0.400

Length m Tibia LTivia 0.400

Toe LToe 0.100

Heel Lieer 0.060

Torso ITorso 5.527

Inertia m2kg | Femur | Tremur 0.331

Tibia ITibia 0.149

Foot Troot 0.100

Torso ITorso 0.200

Mass center m Femur | lremur 0.163

Tibia ITibia 0.137

Foot lFoot 0.030

TABLE |

PARAMETERS FOR SIMULATION.

The applied torques are shown in Figure 10. Note that the
torques have a discontinuity at the transition from theyfull
actuated phase to the underactuated phase, which is allowed
in this study. Figure 11 shows the gait of the robot during a
step.

VIl. SPECIAL CASE

The previous analysis can be specialized to a gait without
foot rotation, in other words, to a gait with only flat-footed
walking. This allows the differences with the ZMP criterion
to be highlighted in the next section.

(9) 85.58% of a step

Fig. 6.

1 o

Iremur

Mripia
\

Lribia

)}
TFoot 4

BN

(c) 29.31% of a step (d) 43.42% of a step

1

(h) 100.00% of a step

Mpemur

(b) Femur

LFoot

M oot

]

(c) Tibia

Lieel

Parameter definition for each link.

The stability conditions can be derived by specializing thel he stab|I|ty theorem becomes

calculations in Section IV to this case, the Poigcanap of
the hybrid zero dynamics &

p(C5) = (55)°C; — VEA(6;),

8Conceptually, we are considering an instantaneous unmeted phase
so thatVz, (0, ) = 0 andég =1

(95)

G =-

Vzr(6,)
1— (67)2

Lroe
(d) Foot

WhereV“A the potential energy (see [23]), is given in (33).

Corollary 1: Under the hypotheses RH1-RH5, GH1-GH7,
and IH1-IH7 in Appendix |, HHF1-HHF5,

(96)
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—— - Swing Ankle (U)

Positions.
T T T T T T
2 0 . Stance Foot (F) | 7
3F . \ \ \ v | = - — stance Foot (U)| {
L \ . \ \ \ < !
28 \ \ \ \ \ \ \
26 \ v \ \ \ v 1
. . . . 1 . . .
0 05 1 15 2 25 3 35 4
E T T T T T T ]
18 . Stance Ankle (F)
168 b S N N N = = —stance Ankle (U)|+]
/ - . . -
i \ \ . . . Sing Ankle (7) | |
\ | \ \ v
. . . . f B
05 1 15 2 25

\
L
3 35 4

Y Y WA Stance Knee (F)] /
-02F A A A A Y| - - - stance knee (U)[]
oal \ . v b Swing Knee (F) | |
- — - Swing Knee (U)
-0.61 . . . I . I I L .|
0 05 1 15 2 25 3 35 4
06l SR T T T T - Stance Hip (F)| Y|
0al — — - Stance Hip (U)|
02 \ \ Swing Hip (F) |
2r . R . . . | = — SwingHip(U) |4
-02p s P S A & L e -
0 05 1 15 2 25 3 35 4

Fig. 7. Position states of the robot on HZD. The robot is wadkat 1m/s.
F andU represent the fully-actuated and underactuated phasgsatively.

Velocities
0 T T T T T T
| ' ' ‘ | Stance Foot (F)
Ll | | \ | [z~ stance Foot )] |
| \ \ | \ I |
Vi U Vi Vi Ny Vi Vi
_al K L [ \ R Ly q
0 05 1 15 2 25 3 35 4
Velocities
T T T T T T
2 Stance Ankle (F) | 4
oF ! )M‘ *‘M\ M )’N’“ 4| — - - stance Ankie (U)
v W W YW M, Swing Ankle (F)
“2r ! V! V! V! V| = = Swing Ankle (U) | |
-4t v L L JE v V] T T ya|
0 05 1 15 2 25 3 35 4
T T T T T T
2 " n " " A Stance Knee (F) |/}
O e 4 ‘ﬁ/—\d\‘(w »‘/—\A(ﬁ \Fx—\,\‘f if — — — Stance Knee (U) -
-2 ' \ ' ' Swing Knee (F) |4
-4t N *| = — Swing Knee (U) | ¥
-6f L L L L i L L L |
0 05 1 15 2 25 3 35 4
= T T T T T T -
; ] ] ! . Stance Hip (F)
or \ N \ A \ — — — Stance Hip (U)} -
y / / J
BN NP PP e Swing Hip (F) ||
4l 1 | \ 1 1 | =~ swing Hip (U) |
6L LY M L AN Y LN T L g
0 05 1 15 2 25 3 35 4

Fig. 8. Velocity states of the robot on HZD. The robot is watkiat 1m/s.
F andU represent the fully-actuated and underactuated phasgeatavely.

Location of FR

I point

Torques

I i I

’ 7 7 ’ “ A — — — Stance Ankle (U) | /|

Stance Ankle (F) |

Swing Ankle (F)
—— Swing Ankle (U) | |

| | | |

-100E i L L L v vy It |
0 05 1 15 2 25 3 35 4

— T v !
V\/"N/\/"‘\/\/"‘\/\/"’\/\/" !
0 Y Y Y Y [\ = = - stance Knee (U){
\

Stance Knee (F)

« N s X « Swing Knee (F)
' i ' i N~ Swing Knee (U)
sl 1 1 1 1 1
i | i | | i i
I I I I I I I
100 . - . . . , . .
o 05 1 15 2 25 3 35 4
T T I T T i T [
sof- Lt o [ o i stance ip (F)]
‘\‘\ ‘\ I ‘\‘\ \‘\ \“ *”S[B"CEHIP(U)‘
O ", ‘;'*"4\ ey ey Swing Hip (F) |
| i | | I L= = swing Hip (V)
sol I I I I I 7 |
" "l " \’l " \’l n \’l n \’l n \!‘ n \!
~100k 0! ot v v v R
05 1 15 2 25 3 35 4

Fig. 10.

Torques of the robof” and U represent the fully-actuated and

underactuated phases, respectively.

VIIl. ZMP AND STABILITY OF AN ORBIT

The ZMP has been widely used as an indication of balance
of a bipedal robot [5], [14], [4], [6], [32], [33], [34]. The P
being within the stance footprint is a sufficient and necgssa

condition for the stance fo
mean the resulting walking
a periodic orbit. In this sect

ot not to rotate, but it does not
motion is stable in the sense of
ion, only the special case df fla

footed walking is considered in order to illustrate that the

ZMP principle alone is not
robot.

sufficient for the stability of the

6f Vgg 05) vg:j smaw ¢
- (kgm?/s)? | (kgm?/s)* | (kgm?/s)?
Value | 1.266 505.213 1050.320 1678.309
TABLE Il

QUANTITIES OF THE POINCARE RETURN MAP OF THE HYBRID ZERO

‘ ‘ ‘ ‘ ‘ ‘ DYNAMICS FOR AN UNSTABLE GAIT
— — — Underactuated
-0.021- 4
-0.04F 1
FRI
-0.06 1 -0. T T T T T
-0.08 4
-0.1F 1
-0.1 1
=011 1
-0.12f 4
-0.121 1
-0.14f B
0 0‘5 ‘1 1.‘5 % 2‘5 % 3‘5 L
-0.13 1
Fig. 9. Location of the FRI point. The robot is walking atri/s. The
discontinuity of the FRI point is due to the discontinuity tine torque at -01ap ]
each transition.
015 T 2 3 2 B 6

is an exponentially stable fixed point of (95) if, and only if

0<(69)? <1,
(09)2VZ2(0;)
1—(69)2

with the exception that the potential energy te‘r@l:j can be

(33).

I )

Fig. 12. Location of FRI point of
’within the stance footprint-0.16 <

an unstable gait. The FRIntaiemains
h
Pprr <0.

Consider a planar bipedal robot whose gait consists only of
the fully-actuated phase followed by an instantaneous ldeub
support phase. The method of Section V was used to design
These conditions are the same as in [21, Th. 3] for point-feeta periodic orbit of the robot such that: (a) the FRI point is
within the stance footprint during the fully-actuated phas
shaped by choice of the ankle torque,; see second term in order for the stance foot to remain flat on the ground; (b)
(6¥)?% in (95) is greater than one. See Table IIl. Note that if
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the stance foot does not rotate, the FRI point is equivatent tThe studied robot was planar, bipedal, and fully actuated in
the ZMP. The ankle torque is used for shaping the potentiaghe sense that it has non-trivial feet with revolute, aedat
energy in this illustration. ankles and all other joints are independently actuated. The
Figure 12 shows the FRI point during the fully-actuateddesired walking motion was assumed to consist of three
phase. Since the location of the FRI point satisfies (94), theuccessive phases: a fully-actuated phase where the stance
stance foot does not rotate and the ZMP principle wouldoot is flat on the ground, an underactuated phase where
“predict” stability. The gait, however, is not stable sintee  the stance heel lifts from the ground and the stance foot
walking speed becomes slower when there is a small error irotates about the toe, and an instantaneous double-support
the velocity states at the initial conditions as shown iruFég phase where leg exchange takes place. The main contribution
13. In this simulation, the velocity initial conditions aset of the chapter was to extend the hybrid zero dynamics of
to 99.5% of their value on the periodic orbit. [21] to a hybrid model with multiple continuous phases
and varying degree of freedom and degrees of actuation.
The developed method provides a provably asymptotically
stabilizing controller that integrates the fully-actwhtand
underactuated phases of walking. Two possible usage of the
i 2 g z 5 C ankle torque were suggested. The ankle torque was seen as
a means either to directly adjust the potential energy of the
hybrid zero dynamics or to affect the convergence rate of the
solution to the limit cycle. The FRI point, or equivalently
the ZMP, was used to ensure non-rotation of the stance foot,
but not for the stability proof. The stability of the gait was
shown via a Poincé& map on the hybrid zero dynamics. It
was pointed out that the trajectories of the robot that kbep t

Positions
T

Stance Ankle
——Swing Ankle | +

% : : : : : o FRI point inside of the stance foot do not necessarily preduc
Fig. 13. Position states of robot with an unstable gait when vtelocity a stable gait.
states when the initial condition ag9.5% of their values on the periodic
orbit. APPENDIXI
HYPOTHESES FOR WALKING WITH FOOT ROTATION
0 ‘ ‘ Phase portat ‘ ‘ The following hypotheses are used for walking with foot

rotation. The hypotheses for the robot are:
RH1) The robot consists of N rigid links with revolute joints
RH2) The robot is planar;
RH3) The robot is bipedal with identical legs connected at
hips;
RH4) The joints between adjacent links are actuated;
RH5) The coordinate of the robot consists/éf— 1 relative
angles,q, -+ ,qnv—_1, and one absolute angley.
The hypotheses for gait are:
GH1) Walking consists of three successive phases, fully-
, actuated phase, underactuated phase, and double support
“bs ; ; 22 phase;

o GH2) The stance foot remains on the ground during fully-
Fig. 14. Phase portrait of the absolute angle of the robdt it unstable actuated phase;
gait. The pointA represents the initial condition whose velocity states areGH3) The stance foot does not slip during fully-actuated
99.5% of their values on the periodic orbit. phase'

H4) The stance toe acts as a pivot during underactuated

phase;

GH5) The stance ankle leaves the ground without interaction

GH®6) There is no discontinuous change in positions and
velocities at transition from fully-actuated phase to un-
deractuated phase;

GH7) The angular momentum about the stance ankle during
the fully-actuated phase is not zero with presence of
input.

IX. CONCLUSION The hypotheses for impact are:
This paper has provided a solution to the key problem ofH1) The swing foot has neither rebound nor slipping during
walking with both fully-actuated and underactuated phases impact;

Even with the unstable gait, the hybrid zero dynamics isG
invariant. Figure 14 shows the phase portrait of the absolut
angle of the robot. The poimt represents the initial condition.
The gait of the robot diverges from the limit cycle, which
implies that the periodic orbit is not stable.

Table Il shows the Poincaranalysis of the unstable gait.
Sinced? = 1.266, the condition (97) is not satisfied, which
causes instability.
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IH2) After impact, the stance toe leaves the ground without
any interaction with the ground;

IH3) The impact is instantaneous;

IH4) The reaction forces due to the impact can be modeled

as impulses; Center of Mass
IH5) The impulsive forces result in discontinuous changes i "
the velocities while the position states remain contingous !
IH6) The actuators at joints are not impulsive; 73 ) |7 1
IH7) The swing heel and the swing toe touch the ground at FRI point qu
the same time. L T
The hypotheses for the closed-loop chain of double inte- w/"\\:[! .
grators,ij = v, are: 7 R
CH2) Existence of solutions on & ~2 and uniqueness; @ ()
CH3) Solutions depending continuously on the initial cendi Fig. 15. Definition of parameters.
tions;
CH4) The origin being globally asymptotically stable and th
convergence being achieved in finite time; ground if g = 7 — qn 0. The location of the center of mass
CH5) The settling time depending continuously on the ihitia can be written as
condition.
Pl = || cos(an — v+ anp) (99)
APPENDIX I pe = |Fi]sin(gny — ¥ +qno0) (100)

FOOT ROTATION INDICATOR POINT DURING THE

FULLY-ACTUATED PHASE Note that || and ¢ are independent ofjy due to the

hypothesis RH5.

Let K and V' be the kinetic energy and potential energy
for the robot, respectively. Then, the potential energyhef t
robot is given as

Note to the reviewer: Given the length of the paper, we
plan to remove this section from the final paper and place
it on the web. The calculations are straightforward. We
will also include a citation to [35, Appendix G], where the
result can also be found.The FRI point is defined in [26] V = mg|7|sin(gy — ¥ + qno)- (101)
as “the point on the foot/ground contact surface, within or

outside the convex hull of the foot-support area, at whigh th Define the Lagrangian as

resultant moment of the force/torque impressed on the ot i
normal to the surface.” If the stance foot is motionless an th
ground as assumed during the fully-actuated phase, then the . L :
Foot Rotation Indicator (FRI) point becomes equivalent toL?smg (99) and (101), the following is obtained.
the Zero Moment Point (ZMP), which is within the stance ov

L=K-V. (102)

_ h
footprint. Calculating the FRI point for the fully-actuate gy 9P (103)
phase involves two phases. First, assume the stance foat is f| heref
on the ground and calculate the FRI point. Second, validatg eretore,
the assumption by checking the location of the FRI point, oL 0K 0V oV L
which needs to be within the stance footprint. dan gy Oqn  Oqn  9Pe (104)

Suppose the hypotheses RH1-RH2, RH5, and GH2-GH3 ) ) ]
in Appendix | are satisfied. In addition to the hypothesis RH5SiNc@qn is & cyclic variable so that'/dqy = 0.
let the counterclockwise direction be positive for the aiso By the property 1 in [36],
angleqy, see Figure 15. oL

Let (p”,p¥)" be the Cartesian coordinates of the center
of the mass and letp”,p¥)" be the Cartesian coordinates
of the stance ankle. L ;,0)T be the FRI point on the whereoy denotes the angular momentum about the stance
ground andFr = (0, FY)T be the ground reaction force at toe. Sincer; = 7 + 75,
the FRI point. Note that the tangential reaction force izer
by the definition of the FRI point. Let; be a vector from the
stance toe to the center of masgs,represent the vector from
the stance toe to stance ankle, aigddenote the vector from
the stance ankle to the center of mass, respectively}?Uee
the vector from the stance toe to the FRI point. Letlenote
the angle ofr; from horizontal and let) represent the angle 4 oL d . ) b o
betweenr; and the stance foot. The®, = gy — ¥ + gn 0, E&TN Tt (ON—1 + 72 X mv.) = EN_1+mp, Py —mpgpe .
where gy o is a constant such that the stance foot is on the (207)

&]T = ON, (105)

ON = ON_1+ To X mug, (106)

whereoy_; denotes the angular momentum about the stance
ankle, v. is the velocity of the center of mass, amgd =
[ p* p2 ] Then, (105) and (106) imply
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Since there is no actuation at the stance toe, the only torques]
applied is from the ground reaction force. Using the method
of Lagrange, the following is obtained.

[17]
d oL oL -
S Bx Fe=ph, FN 108) [18]
dt din  Oqn X 'R = PrRrIYR > ( )
which, together with (104) and (107), implies
. - 0 [19]
ON—1 +mpypy — mpyply +mgpl = plpFR . (109)

Using (20) with the angular momentum balance theorem
yields [20]

—mg(pl! —py) +ua +mppL —mplpe +mopt = e FR -y

(110)
Therefore,
[22]
PrriFR = maply +mplpl — mpiplk +ua.  (111)
Since F{ = mg +mp?, (111) yields the location of the FRI [23]
point as
v sh
—MP,Pc + ua
Phrr =4+ — g (112)
R [24]
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