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Summary 

Five series of test blocks of Pendeli marble with artificially created discontinuities of different crack 
densities (simulating three mutually orthogonaljoint sets) were tested in uniaxial compression in order 
to study the effect of discontinuities on: (a) the compressive strength and the modulus of elasticity, and 
(b) certain fracture energy parameters expressed by the ratio WffWv,  where W A is the surface energy 
and W v the volume elastic strain energy. Mathematical relationships are derived similar to those 
suggested by other authors relating strength parameters to crack densities. Such relationships clearly 
show a reduction in strength with increased crack density. The experimental results obtained permit the 
extension of Persson's relation (which refers to ideal intact rock) to the more realistic case of 
discontinuous rock mass by introducing the appropriate term that takes into consideration the effect of 
rock mass discontinuities on the energy ratio W f f W  v. A comparison between laboratory results and 
field observations was subsequently carried out assuming the rock mass to behave as a linearly elastic 
material, obeying the Hoek and Brown failure criterion. This comparison showed that laboratory 
results can be extended to larger scale. Furthermore, in order to predict the in situ strength and stability 
of a rock mass in uniaxial compression (which is of major importance in underground excavations) 
certain concepts are proposed based on laboratory tests, in situ investigations and first principles of 
linear elastic fracture mechanics. 
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Introduction 

It  is generally recognized that rock discontinuities affect the strength properties of rock 
masses, and many  examples can be cited from the relevant literature of rock failure due to the 
misjudgement of the effect of discontinuities on rock strength. Griffith's (1921) theoretical 
criterion of brittle failure is based on the assumption of the presence of microcracks in the 
rock, while the empirical criterion of failure of Hock and Brown (1980) includes two strength 
parameters that depend on the discontinuities present in the rock mass. 
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This paper examines the effect of artificially created discontinuities in rock blocks of 
different crack densities on the compressive strength, the modulus of elasticity and on certain 
fracture energy parameters. The scale dependence of rock strength and post-peak stability of 
the discontinuous rock is also investigated. 

Selection of rock type 

A careful examination of different rock types available for experimentation led to the 
conclusion that the white marble of Pendeli was a good selection for the construction of the 
test blocks and for field validation of the laboratory results, since an operating quarry with 
good exposures was accessible. Pendeli marble, which was used by the Athenians to build the 
Parthenon, is a rock virtually free from visible cracks; it is homogeneous, isotropic and 
practically linear elastic to failure, thus approaching the ideal intact rock to which linear 
elastic fracture mechanics (LEFM) theory can be applied. This marble consists of an 
equidimensional mosaic of fine calcite grains (Roos et al., 1988) with straight to gently curved 
boundaries having an average size of 0.2 mm. Certain of its properties are given in Table 1. 
Furthermore, the statistical homogeneity of the intact rock material has been confirmed 
indirectly from uniaxial compressive test data. It should be expected, therefore, that in such a 
rock any difference in its behaviour during the experimental procedure can be attributed to 
the artificially created discontinuities and not to other factors. 

Table 1. Mineral content, grain size and certain 
mechanical properties of Pendeli marble 

Calcite 99% 
Quartz < 1% 
Grain size < 1 mm 
Specific gravity 2.70 ( x 105 N m-3) 
Porosity 0.371% 
Compressive strength 83 MPa 
Tensile strength 12 MPa 
Modulus of elasticity 12 GPa 

Experimental procedure 

Three mutually orthogonal rock discontinuity sets in the test blocks were simulated by 
bonding together marble pieces of specific sizes using a low-strength marble glue in order to 
create prismatic blocks 60 x 60 • 80 mm in size, each one having a different percentage of 
artificially created discontinuities. This difference was expressed quantitatively by the crack 
density factorfof each test block in square metres of discontinuity surfaces per cubic metre of 
test block (m2/m 3). Gluing was necessary in order to create the necessary cohesion between 
the marble pieces of each block and to assist in grinding the opposite block faces to the 
prescribed standards set by ISRM (Brown, 1981). Five series, each of five test blocks as 
shown in Fig. 1, were constructed having crack density factors varying from f = 0  (A1) to 
f =  104 m2/m 3 (A5). The test blocks were subsequently fractured in uniaxial compression 
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using an SBEL CT-250A loading machine under a loading rate of 0.7 MPa s- 1 according to 
the ISRM suggested procedure (Brown, 1981). The axial deformation of each test block was 
recorded by a dial gauge to within 0.001 mm. 
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Fig. 1. Test specimens A1-A5 of Pendeli marble. Artificial discontinuities in specimens 
A2-A5 are shown in thin lines (all dimensions in mm) 

The total surface area A created during fracturing in each test block was estimated using 
Herdan's formula (Herdan, 1960) after establishing the fragment size distribution by sieving 
and characterizing their shapes by an appropriate shape factor (see Appendix A). The 
method used to determine the shape factor K of the fragments was as follows. 

(1) After each test, the fragments were laid on a flat surface and the reference grid shown in 
Fig. 2a was superimposed on them. 

(2) Next, the fragments with the superimposed grid were photographed and the 
photographs taken were digitized in a computer (Fig. 2b) to characterize numerically the 
geometrical shape of the fragments (expressed by the maximum and minimum 
dimension of the fragments). 

Any cracks present which were visible to the eye in the relatively large fragments, and 
which were not considered by Herdan's formula, were measured separately and added to 
those estimated previously. 

Effect of the crack density factor on the strength parameters 

Typical axial load-axial displacement curves for the five series of test blocks are shown in 
Fig. 3. The following parameters were measured from the relevant tests. 
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(a) 

01.1 cm 
Fig. 2. Numerical characterization of the geometrical shape of fragments produced after 
each test: (a) photograph; (b) digitized photograph 

(1) the uniaxial compressive strength o-c, which was obtained by dividing the peak load 
carried by the specimen during the test by the initial cross-sectional area of the specimen; 

(2) the tangent modulus of elasticity E, measured at a stress level equal to 0.5 or 
(3) the fragment size distribution produced after fracturing; 
(4) for the test blocks of series A3, A4 and A5, for which the full failure curves were obtained, 

the area under the axial load-axial deformation curves, as depicted in Fig. 4. In terms of 
energy this area represents the surface energy W A absorbed during the propagation of 
cracks in the rock until complete failure. 

The mode of failure of the intact marble test blocks (A1) was manifested by a system of 
conjugate shear cracks and crushing at late stages of compression. The photographs of Fig. 5 
show early and intermediate stages in the compression of test blocks A2 which contain 
artificial discontinuities. The mode of failure is manifested by a system of both linear and 
curved cracks running in an oblique direction to the direction of loading and across the 
horizontal artificial discontinuity of the test block. This indicates that the effect of pre- 
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Fig. 3. Typical load~deformation curves for the five types of test block (the circles denote 
experimental points). Note different horizontal scales for (a) and (b) 

existing artificial discontinuities is to create a rather more complicated crack pattern than the 
single system of conjugate shear cracks created in the intact specimen. 

The experimental results for the variation of the compressive strength a c and of the 
modulus of elasticity E with respect to different crack densities values f a r e  summarized in 
Tables 2 and 3, The indices d and i denote test blocks with and without artificially created 
discontinuities respectively. From Tables 2 and 3 it can be seen that the dispersion of the 
values of the uniaxial compressive strength and of the modulus of elasticity around the mean 
value was not significant for each of the five series of the test blocks. This implies that the 
intact rock material used in the experiments is statistically homogeneous. 

As expected, the effect of rock discontinuities was to reduce the rock strength and the 
elastic parameters. Such reduction is expressed for the case under consideration by the 
following relationships, which are graphically shown in Figs 6 and 7 respectively: 
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L 

Axial displacement 5 

Fig. 4. Complete load-deformation curve ofa lineady elastic so~eningmaterial. The area 
under this curve represents, in terms ofenergy, the surface energy dissipated during crack 
propagation 

ac--~a=e-~176 (1) 
ffci 

E d  - 0  0124f = e (2) 
Ei  

Since in the present experiments the edge-length of all the nearly cubical specimens, L s, 
was constant and equal to 0.06 m, then by considering geometric similarity principles in 
order to apply the previous equations to other sizes L and corresponding crack density 
factors f,  the following are obtained: 

~rc~ = e -~176  f (3) 
O-ci 

E d  -~. e - 0.0124(L[Ls) f (4) 
Ei 

with L s = 0.06 m. 

Energy parameters related to fracture of intact rocks 

Progress made during recent years in the fields of experimental observation and fracture 
mechanics permits further examination of the effect of artificially created discontinuities on 
certain energy parameters related to fracture. For this examination the energy ratio WA/W v 
was selected which is also referred to in the literature as 'brittleness number' (Cherepanov, 
1979; Carpinteri, 1980), where WA is the surface energy and Wv is the volume elastic strain 
energy. The former is the energy consumed within the rock during the pre-failure and post- 
failure regime of the test block in order to gradually extend pre-existing cracks and to create 
new surfaces. The consumption of this energy increases as the stress level increases, since 
more cracks are activated and new surfaces are created that finally lead to rock failure by 
fracture. According to Ouchterlony (1980) W A is related to the total surface area A of newly 
created cracks in the rock by the relationship: 
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Fig. 5. Progressive failure of a marble specimen with artificial discontinuities (test block 
A2) 
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Table 2. Effect of the crack density factor f of artificial 
discontinuities on the uniaxial compressive strength a c 

Tsoutrelis and Exadaktylos 

Standard 
Crack density a~ deviation 

Test factor, f mean value of a~ 
block (m2/m 3) (MPa) (MPa) O'ed/0"ci a 

A1 0 83.00 8.45 1.00 
A2 29 43.99 5.40 0.53 
A3 50 37.35 5.95 0.45 
A4 71 21.58 5.63 0.26 
A5 104 10.79 3.80 0.13 

" aCd, UCS for blocks with discontinuities introduced; aol, UCS for 
intact blocks. 

Table 3. Effect of the crack density factor f of artificial 
discontinuities on the modulus of elasticity E 

Standard 
Crack density E deviation 

Test factor, f mean value of E 
block (m2/m 3) (GPa) (GPa) 

A1 0 12.00 2.44 1.00 
A2 29 7.80 1.36 0.65 
A3 50 6.96 1.39 0.58 
A4 71 4.56 1.33 0.38 
A5 104 3.60 0.87 0.30 

" Ed, modulus of elasticity for blocks with discontinuities introduced; 
Ei, modulus of elasticity for intact blocks. 

1.0 
Experimental points ~ ~ 

0.8 \ Fitted exponential curve 

o 0.6 

0.4 

N o . 2  

o 
0 20 40 60 80 100 120 

Crack density factor (m2/m 3) 

Fig. 6. Effect of crack density Nctor on the stress ratio ffcd/aci 
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Fig. 7. Effect of crack density factor on the modulus ratio EJE i 

WA=?A (5) 

wherc W A is expressed in joules, A in m 2 and 7 is the specific surface energy exprcsscd in 
J m-2. ?represcnts the surface energy consumed per unit area of the ncwly crcatcd crack 
surfaces and depends on the specific material response during the fracture proccss under 
consideration. When thc fracture mcchanism is perfectly brittle, 7 can be estimated cithcr 
from atomic force attraction laws or from measurements. If, howcvcr, energy is irreversibly 
dissipated through plastic flow or through another dissipative mechanism (such as friction) 
during a unit area crack extension, then the specific surface energy is referred to as thc 
cffcctivc specific surface cncrgy F and includes the true surface free energy ? plus all the other 
forms of dissipative energies, which sometimes considerably surpass the former. Krech and 
Chamberlain (1972) demonstrated cxperimcntally that F is between 140 and 560 times 
higher in a uniaxial compressive test than in a uniaxial tensile test, with the highcr values 
noted in strong materials like Barrc granitc, and the lower in weaker materials like Bcrca 
sandstone. Also, Kcmcny and Cook (1987) found from compression experiments that for 
Wcstcrly granite, the cnergics to create splitting and shear cracks arc about thrce orders of 
magnitude greatcr than thc cnergy needed to drive the tensile microcracks, owing to the largc 
amount of subsidiary crack surfacc area crcatcd in forming the larger-scale fractures. Labuz 
and Biolzi (1991) found from triaxial test data that r = 2000 J m-2  for Indiana limestone 
while the tensile specific surface energy 7 of the same rock was found to be equal to 
0.035 J m - z .  

Therefore, from an engineering point of view, an experimentally measured value of F is 
preferred. This can be done by measuring the area under the axial load-axial displacement 
curve obtained using a servo-controlled or stiff loading machine (Krech and Chamberlain, 
1972), as shown in Fig. 4. From the experimental data from test blocks A3, A4 and A5, for 
which the full failure curves were obtained, Table 4 was constructed. From this table the 
following conclusions can be drawn. 

(1) The effective specific surface energy F is not much affected by the crack density fac tor fof  
the artificial discontinuities (coefficient of variation = 8.5 %). 

(2) The mean value of F can be taken as 4340 J m -2. Since in bending tests under 
three-point loading on prenotched marble specimens described in Appendix B, ~ was 
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Table 4. Effect of the crack density factor f of artificial 
discontinuities on the effective specific surface energy F 

Standard 
Crack density F deviation 

Test factor, f mean value of F 
block (m2/m 3) (J m -2) (J m -2) 

A3 50 4755 571 
A4 71 3856 694 
A5 104 4403 616 

Tsoutrelis and Exadaktylos 

found to be equal to 44 J m -  2,  it is concluded that the effective specific surface energy in 
compression, F, is 98.6 times the specific surface energy in tension, 7. 

The other energy parameter W v is the elastic strain energy which has been stored in the 
strained rock until the peak load point is reached. It is proportional to the volume of the test 
block and is represented by the area under the prefailure portion of the axial load-axial 
displacement curve. For the case under consideration of uniaxial compression of a linearly 
elastic Hookean material the following relationship holds true (Jaeger and Cook, 1976): 

2 
O- e 

W v = ~ V o (6) 

where W v is the stored elastic strain energy in rock of volume V o (J), a c is the compressive 
strength (N m-2), E is the modulus of elasticity (N m-2),  and Vo is the initial volume of the 
rock specimen tested (m3). 

Persson (1983) studied in detail the variation of the energy ratio with respect to the mode of 
loading, the geometric size and certain mechanical properties of rocks. He concluded that for 
the case of linearly elastic, brittle and intact rock subjected to uniaxial loading, the ratio 
WA/W v at fracture is given by 

- 2 - ( 7 )  
i aciV0 L 

where C is a constant depending on the nature of the crack tip stress field and the geometry of 
rock fracture (axial splitting or shear band type of fracture), ry is the characteristic size of the 
microcracking zone ahead of the crack tip (m), and L is the characteristic dimension of the 
rock structure or specimen (m). 

The characteristic microcracking zone size can be regarded as an adjustment term to be 
added to the notch depth or the crack depth in LEFM calculations or in the evaluation of 
experimental results. Based on LEFM theory the characteristic size of the microcracking 
process zone can be estimated (Ouchterlony, 1980) by the relationships 

0.4E7 (8) 
r y  - -  0.2 

o r  

0.2KI~ 
ry - at z (9) 
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since K~c = ( 2 E 7 )  : /2 ,  where E is the modulus of elasticity (N m-  2), ~r t is the tensile strength of 
rock (N m-Z), and K~c is the critical mode-I stress intensity factor in plane strain conditions 
or fracture toughness of the rock (N m-  3/2). 

The tensile strength of Pendeli marble was determined by the Brazilian test according to 
ISRM (1978) specifications. From these tests a mean value of o- t = 12 MPa with a standard 
deviation of 0.7 MPa was obtained. Fracture toughness K~c was also determined 
experimentally by testing prenotched marble specimens in three-point bending as is 
described in detail in Appendix B. Kic and 7 were found to be equal to 1.03 MN m-  3/2 and 
44 J m-2 respectively. 

Having estimated Kic and o-t, then from Equation 9 we get 

ry = 0.002 m 

For the uniaxial compression of intact Pendeli marble test blocks, the constant parameter 
C of Equation 7 can be estimated by inserting the following values in the equation: 

F = 987 

8 3  
O" c - -  T~O-t  

Vo 

and by taking into account Equation 8 the following is obtained: 

-Wvv) 0.4E7 2 98 53 543 rv (10) 
i -  ~2 0.4 '~121(S3~2 L -  L 

Therefore C=  543 in the case under consideration. This value is 3.6 times higher than the 
value of C reported by Persson (1983), namely C=  150. This can be attributed to the fact that 
the growth of one macrofracture at an angle fl with respect to the loading direction assumed 
by Persson (1983) has been replaced in the intact marble test blocks by a system of conjugate 
shear cracks at the peak load and later crushing of the specimen in the post-failure regime 
that results in the creation of a greater surface area than that of Persson's macrofracture. 

Equations 7 and 10, however, which hold true for the intact rock with Griffith cracks, do 
not take into consideration the effect of pre-existing macro-discontinuities in the ratio 
WA/W v and consequently they cannot be applied to jointed rock masses. 

Effect of the crack density factor on the energy and strength parameters 

Laboratory-scale analysis 

Present experiments permit the extension of the energy relationship (Equation 8) to the 
discontinuous rock material domain provided that measurements of the newly created 
surfaces can be established up to the point of fracture. Following Herdan's (1960) relation the 
new surfaces created in each test block until fracture occurred in uniaxial compression were 
established by sieving and weighing. The results are given in Table 5 and presented 
diagrammatically in Fig. 8. The variation of the ratio A~/A i with respect to the crack density 
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Table 5. Effect of the crack density factorfof artificial 
discontinuities on the newly created area of fracture surfaces, A 

Standard 
Crack density .4 deviation 

Test factor, f mean value of A 
block (m2/m 3) (m 2) (m 2) AJAi a 

A1 0 0.190 0.037 1.00 
A2 29 0.140 0.029 0.73 
A3 50 0.120 0.034 0.63 
A4 71 0.100 0.016 0.54 
A5 104 0.074 0.024 0.39 

,4a, area of fracture surfaces for blocks with discontinuities intro- 
duced; Ai, area of fracture surfaces for intact blocks 
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Fig. 8. Effect of crack density factor on the surface area ratio A,~/Aj 

factorfis given by the following equation, which was derived by nonlinear regression analysis 
of the experimental data at 95% confidence level: 

Ao = e _ O . O 1 9 4 ( L / L s ) f  ' for Ls= 0.06 m (11) 
Ai 

The above equation shows that as the crack density factor of the artificially created 
discontinuities increases in the test block and the compressive strength decreases, a reduction 
of the newly formed cracks during fracturing is observed. This observation agrees with the 
theoretical model of brittle fracture and the experimental results of Radchenko and 
Michailov (1970) and Shukla and Fourney (1983). It is due to the fact that the ability of the 
rock to store strain energy decreases as the density of pre-existing discontinuities increases. 



Effect of rock discontinuities under uniaxial compression 93 

By dividing the first term of Equation 7 for discontinuous and intact rock, the following 
relationship is obtained: 

(WA/Wv)a-Ea[~176 -2AaFd (12) 
(~VA/Wv) i E i  ~ Ai r i 

Equation 12 coupled with the previous Equations 3, 4, 7 and 11 and the experimental 
observation that F values are not much affected by the presence of discontinuities (i.e. 
F d = F i = F) suggest that the following general empirical equation relates the energy ratio to 
certain fracture mechanics properties of the rock mass: 

W A _ C r y  e~(L/Ls) f (13) 
Wv L 

where in the example considered the constant parameters are: ~=0.018m, C=543,  
r v = 0.002 m and L s = 0.06 m. The value of ~ is characterized by a length dimension due to 
dimensional considerations. Equation 13 is an extention of Equation 7 derived by Persson 
for intact rock. The term e ~(L/Ls)I appearing in Equation 13 is a configuration correction 
factor experimentally derived that takes into account the effect of pre-existing discontinui- 
ties, as well as the scale effect, on the energy ratio. Although the size of the microcracking 
process zone ry is affected by the presence of discontinuity surfaces, as LEFM predicts, in the 
above formulation this effect is discarded since r v in Equation 13 is related only to the ratio 
(WA/Wv) i in the left term of Equation 12; that is, it is a property of the intact rock only. 

Extrapolation of laboratory results to larger scale 

Since Equation 13 was derived from laboratory experiments, it is interesting to know if its 
validity can be extended to in situ rock masses and for ranges off-values other than those 
artificially created. 

Based on (a) back analysis of the rock mass strength from a number of studies of in situ 
plate bearing tests on rock specimens of size L of the order of 0.5 m, and (b) on the Hoek and 
Brown criterion of failure of rock masses, Brown and Hock (1988) and Nicholson and 
Bieniawski (1990) suggested the following relationships: 

O-ecl = e(RMR - 100)/18 (14a) 
O'ci 

Ed = (1/t)e(Rm- loo)/ls (14b) 
Ei 

where RMR is the rock mass rating, varying from very low values for completely fractured 
rocks to 100 for the intact rock, and t is a scale parameter which varies between 1.0 for intact 
rock with R M R =  100 and some upper bound value for completely fractured rock with 
RMR = 0. 

In order to compare the strength ratios predicted from Equations 14a and 3 the RMR 
value is substituted by the joint spacing rating (JSR) based on the following relations 
(Bieniawski, 1976): 

R M R = 7 0 + J S R  for JSR> 10 (15a) 
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RMR = 53 + JSR for 

Therefore, Equation 14 becomes: 

JSR ~< 10 (15b) 

O'ed = eOSR--30)/1S for JSR>10 (16a) 
O'ei 

Since in 

Ged = e{JSR- 47)/18 for JSR~<10 (16b) 
Gei 

the plate bearing tests L = 0.5 m then the corrected Equation 3 for this scale becomes 

6ea----e -~ (17) 
Gei 

with f =  (joint spacing) -1 according to geometrical probability principles (Underwood, 
1968). The strength ratios acd/a~i predicted from Equations 16 and 17 for various values o f f  
and corresponding values of JSR are compared in Table 6. It can be easily concluded that 
they are in agreement except for a highly fractured rock mass, where Equation 17 gives a 
lower strength ratio. 

Table 6. Comparison of the ratio fled~at1 values obtained using the 
Brown and Hoek (1988) relation and Equation 17 

fled/flr a 
Crack density 
factor, f Brown and Hoek (1988) 
(m2/m 3) JSR Equation 16 Equation 17 

0.33 30 1.00 0.94 
1.00 25 0.75 0.83 
3.33 20 0.57 0.54 

20.00 10 0.13 0.02 

a fled, UCS for blocks with discontinuities introduced; flr UCS for intact 
blocks. 

Since F was found to be independent of f i n  the uniaxial compression of the marble test 
blocks, and assuming that this holds true irrespective of the testing scale, it only remains to be 
shown that the ratio Ad/A i is exponentially related to f,  in order that Equation 10 can be 
taken to apply to the loading conditions of the rock mass of Pendeli marble. To investigate 
this relationship, for which no data exist in literature, a large three-dimensional exposure of 
Pendeli marble at a quarry face was selected and site investigations were carried out in order 
to distinguish between primary and secondary discontinuities of the rock mass as discussed 
below. 

It was found that three orthogonal discontinuity sets of high persistence were present in the 
rock mass: one set belonging to bedding, and two others to axial splitting joint sets. The 
joints were characterized by fairly smooth, planar surfaces, continuity in orientation and 
infilling with hard calcite or ferruginous material. This discontinuity pattern, which reflects 
the local geology and early tectonics, is considered as primary. It was similar to the three 
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mutually orthogonaljoint sets simulated in the marble test blocks of our experiments. A total 
number of four sampling windows of fresh marble exposures in the same quarry face having 
an L dimension equal to 6 m and different intensity of pre-existing discontinuities were 
photographed. The discontinuity patterns present in the photographs were then computer 
digitized. These sampling windows were considered to represent typical two-dimensional 
sections of corresponding rock blocks in the rock mass with the third dimension of 1 m, 
which corresponds to the mean spacing of the third joint set. Since each of the exposed planes 
appearing in the photographs corresponds to one of the pre-existing joint sets, two pre- 
existing discontinuity sets of the rock were present in the digitized photographs as is shown in 
Fig. 9. The remaining joints and cracks appearing in the photographs were the result of 
compressive strain episodes of later age as witnessed by branching, rough surfaces, small 
apertures, non-persistency and random orientation with some of the joints following the 
orientations of the primary joint sets. These were considered as secondary discontinuities. 

, f=0.62 m2/m 3 

A:67.3 m 2 

I 

L I 

0 2m 
(a) 

••./r.•-• f:0.85 m2/m 3 
~ J  A:34"8m2 

I 
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(b) 

t f=0.9 m2/m 3 
A=27 m 2 

f=1.1 m2/m 3 

A=24. I m 2 

1 ~  d "  
0 2m 2m 

(c) (d) 
Fig. 9. Digitized photographs of exposed Pendeli marble surfaces of different crack 
density factors (appearing darker and thicker than the secondary cracks) 

From the digitized photographs (Fig. 9) the average spacing Say of the new (secondary) 
discontinuities on a superimposed set of perpendicular sampling lines was found and the 
corresponding total surface area (opposite sides of the crack surface areas are both 
considered) was estimated by the relation (Underwood, 1968) 
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2V 
A = - -  (18) 

Say 

where V is the volume of the rock block corresponding to the digitized photograph 
(6 x 6 x 1 = 36 m~). 

Since the pre-existing (primary) discontinuities were persistent, then their specific trace 
length per unit area of the digitized photograph is equal to their specific surface area f 
(m2/m3). By using a simple regression analysis, the following exponential relationship was 
found between f and the ratio Ad/A i at 95% confidence level and correlation coefficient 
R=0.9662: 

Ad -2 23f - - = e  �9 (19) 
Ai 

By comparing Equations 11-19 it can be concluded that laboratory-scale results are 
extended to full-scale loading of the in situ rock mass since, from Equation 11, the 
multiplication factor of f is equal to - (6/0.06) x 0.0194 or - 1.94 as compared with -2.23 
from actual field measurements. 

It was shown previously that the strength and the new crack surface area ratios derived 
from the laboratory-scale tests Equations 14a and 19 can be extrapolated to the in situ rock 
mass. The same conclusion, however, cannot be made for the modulus of elasticity ratio since 
the distribution of the scale parameter t appearing in Equation 14b is not known. By 
considering that 

(1) Equation 14b proposed by Nicholson and Bieniawski shows that the elasticity ratio is an 
exponential function of RMR, or according to geometrical probability principles an 
exponential function o f f  (Underwood, 1968), 

(2) the new crack surface areas created during rock fracturing depend both on ac and E 
according to fundamental physical laws, and 

(3) the new crack surface area and strength ratios can be extended to larger scales, 

it can be concluded indirectly that the modulus of elasticity ratio given by Equation 4 is also 
valid for larger scales. Furthermore, the exponential relationship in Equation 13 for the 
energy ratio can be extrapolated to larger scales since from Equation 12 all the ratios 
appearing in the right-hand side of the same relationship can be extended to larger scales. 

Sca le  effect on r o c k  m a s s  s trength and stabi l i ty  

The size effect on failure load and on stability denotes a decrease of the stress at failure and a 
change in the mode of stability respectively, when the size of geometrically similar rock 
structures or of specimens under the same loading conditions increases. Based on the 
previous considerations the scale effect on strength and stability of discontinuous rock 
masses can be assessed. The approach of Berry (1960) and Cook (1965) is followed and not 
that of statistical fracture mechanics theory (WeibuU, 1939), since the major assumption of 
this theory is that only the distribution of flaws in the material influences the strength, and 
thus implicitly assumes that the process of rock specimen deformation and fracture initiation 
(and thus the stability) is not influenced by size. 
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Intact rocks 

In order to illustrate the size effect the simplest example of an intact rock specimen of cubical 
shape is examined first. The ultimate stress or strength of this body in uniaxial compression is 
determined according to LEFM principles by the following condition: 

r--  Wvi + WVm-- WVr 
Act 

(20) 

where W w is given by Equation 6, A ~r is the total surface area of the critical system of cracks 
that lead to the failure of the rock body, and WVm is the energy stored in the machine, defined 
a s  

Vm 2k V~ (21) 

where k=machine stiffness (N m -2) and Wvr is the residual strain energy stored in the 
cracked phase of the specimen, which is considered negligible. 

Equation 20 means that failure occurs when the load-rock system can deliver the energy 
required to create a critical crack surface area in the form of localized or diffused deformation 
in the rock body if 

Acr=sVg/3 (22) 

where s is a constant parameter that relates the geometry of fracturing with the geometry of 
the rock body. The parameter s is a function of rock microstructure, strength properties, 
loading conditions and shape of the rock. Then from Equations 6, 20 and 22 it can be shown 
that 

(2sE'F) 1/2 crr 
fie1 - Nil6 - L1/2 (23) 

where at1 is the compressive strength of a unit intact volume, V o--L 3 for cubical shaped 
specimens, and E' = kE/(k  + E) = Efor k ~> E. The above dependence of strength on the size of 
the rock body in compression is predicted by fracture mechanics and has experimentally been 
confirmed by Johns (1966) for iron ore specimens in uniaxial compression, by Bieniawski 
(1968) for cubical specimens of coal, by Pratt et al. (1972) for diorite, and by Hergert and 
Unrug (1976) who tested intact siderite specimens in triaxial compression and by Hustrulid 
(1976). In addition the experiments of all the above researchers revealed that a critical 
specimen size exists above which the strength of the rock remains constant (asymptotic 
value), as shown in Fig. 10. This asymptotic character of the size effect was also confirmed by 
Protodyakonov (1964), Einstein et al. (1970) for brittle gypsum-plaster mix specimens in 
unconfined compression, and by Mandzic (1979) for rock-salt specimens. The initial inverse 
square root and the subsequent asymptotic character (after some critical value of the size is 
reached) of the strength-size dependence of brittle fracturing of intact rocks is examined 
below. 

The inverse square root size effect, which characterizes brittle fracture of intact and linearly 
elastic rocks, can be explained by the fact that the elastic strain energy stored in the rock body 
is proportional to the volume of the rock, while the surface energy dissipated during 
fracturing is proportional to the area of the newly created crack surfaces. This also forms the 
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Fig. 10. Relationship between uniaxial compressive strength and size of cubical rock 
specimens (Bieniawski, 1968) 

basis of Berry's (1960) and Cook's (1965) theories. Therefore, in order to investigate the 
strength-size and stability-size relationships of brittle fracturing of intact rocks, the energy 
ratio WA/W v must be considered. Since this ratio was related by Persson and in this work to 
the properties of the intact rock, then the size-strength relationship of a given rock can be 
quantitatively investigated. 

The energy ratio WA/W v or 'brittleness number' of Equation 7 was first noted by 
Wawersik (1968, 1970) who describes two different types of post-peak stress-strain 
behaviour of the rock in compression failure as follows. 

(1) When WA/W v > 1 then, as is shown in Fig. 11, Class I failure occurs. This is characterized 
by stable failure in the sense that all the stored elastic strain energy in the rock is 
converted to surface energy and additional work must be done by the loading system on 
the rock to reduce its load-carrying capacity until complete failure. 

(2) When WA/Wv< 1 then Class II failure occurs. This is characterized as unstable since 
energy must actually be removed and the strain decreases, with the softening branch 
taking on a positive slope (Fig. 11). 

A critical state, which divides Class I from Class l I - t h e  dashed line in 
Fig. 11 -  represents the case when the elastic strain energy W v stored within the rock 
balances the energy W A required to fracture the rock (WA= Wv). 

It can be concluded, therefore, that knowledge of the energy ratio through an experimental 
estimation of the parameters appearing in Equation 7 can assess the post-peak rock stability 
behaviour of a linearly elastic, isotropic and intact rock body of given geometry and size 
subjected to certain loading conditions. 

From the above considerations, a 'critical specimen size' exists, above which W v > W A. 
This means that the global post-peak behaviour of rock is characterized by Class II 
instability and there is no size effect as verified by the reported experimental results of several 
researchers. The critical size of the rock body, Lcr, above which there is no size effect, also 
referred to in the literature as 'representative elemental volume size' (Guisiat and Haimson, 
1992), can be found from Equation 7 if we put W A = W v. In this case 
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Fig. 11. Stress-strain curves for two classes of failure of a linearly elastic rock (Wawersik 
and Fairhurst, 1970) 

L~, = Crv (24) 

Substituting in the above equation the typical values of parameters C = 500 and r r = 0.002 m 
for Pendeli marble to 0.008 m for Bohus granite it is found that L ,  = 1-4 m. This range of 
values of L ,  obtained from Equation 24 agrees with the range of values shown in Table 7, 
which were obtained experimentally by various researchers. From the above considerations 
the scale effect on strength of an intact rock body is described by the relations: 

a~l for L < L ~  (25a) 

0-cl 
O-ci = ~ = const for L > / L ,  (25b) 

L d  ~ 

Table 7. Critical rock specimen sizes above which the uniaxial compressive 
strength approaches asymptotically a constant value 

Critical specimen size, Ler 
Reference Rock type (m) 

Johns (1966) Iron ore 1.1 
Bieniawski (1968) Coal 1.7 
Pratt et al. (1972) Quartz diorite 2.5 
Pratt et al. (1972) Coal 4.0 
Mandzic (1979) Rock salt 0.4 

The above relationships can be generalized if the fractality of brittle fracture is considered 
(Chelidze and Gueguen, 1990), by putting 

Act = s L~ (26) 

where D is the Hausdorff-Besicovitch dimension of the crack network, with a lower value of 2 
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(topological dimension) and an upper value lower than 3 (euclidean dimension). By inserting 
Equation 26 into Equation 20 it follows that 

Otci ~- O-c 1 L -  (3-D)/2 ( 2 7 )  

If the fractal dimension of the three-dimensional network is 2.5, a value which is typical for 
three-dimensional percolation structures (Aharony, 1986), then the exponent of Equation 27 
takes the value -0.25 which was found by Lundborg (1967) to describe the decrease in 
compressive strength of cylindrical specimens of granite with increasing size. 

Discont inuous  rocks  

In order to extend the above to discontinuous rock, Equations 3, 25a and 25b are considered; 
that is, euclidean fracture is assumed. From these relations it can be found that 

0"cl fled = ~ e-~a/L~)Lf for L < L ~  (28a) 

~r = cr~ e -(I~/LslLy for L>~Lcr (28b) 
o. L j/2 

where f i lL  s is a constant dimensionless ratio quantifying the effect of discontinuities on intact 
rock strength. Both fl and L s are expressed in metres. 

From the above relationships it can be seen that: 

(1) one scale effect is due to the fact that the elastic strain energy is converted to surface 
energy during the fracture process, and 

(2) the other scale effect, which is expressed by the exponential function, is attributed to the 
presence of pre-existing structural macro-defect surface areas (with size comparable to 
that of the rock mass) in the rock mass. 

Furthermore, there is no scale effect on strength after some critical specimen size L ,  
(asymptotic character of strength) when there are no pre-existing macro-discontinuities in 
the rock. 

The mode of stability of a discontinuous rock body, which is of great importance in 
underground mining, can be assessed by using Equation 13. From this equation it can also 
be seen that, as for strength, one scale effect is due to the conversion of elastic strain energy to 
surface energy, and the other scale effect, which again is expressed by an exponential function 
derived in the present experiments, is due to the presence of macro-discontinuity surfaces in 
the rock. In Fig. 12 stability curves for a rock withfranging from 0 (intact) to 1 mZ/m 3 are 
shown. The rock specimen size was normalized by dividing it with Lc~ according to the 
following equation: 

W a _ 1 e,~Lor/Zs)y~L/Zor ) (29) 
W v L/Lc~ 

and L c , / L s =  1 and ~=0.5 for the curves in Fig. 12. From this figure it can be seen that the 
intact rock and the rock with a low f become unstable after some size (= L~r in the first 
example). Rocks with intermediatef are stable for low and high L but are unstable for L in 
between, and finally rocks with a high fa re  stable for all L. This stability behaviour, found 
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Fig. 12. Effect of normalized specimen size on the stability of a rock specimen in uniaxial 
compression 

from the present uniaxial compression experiments, is similar to the stability function of a 
precracked beam element found theoretically by Labuz and Biolzi (1991), which has the form 

WA= 2 X(I+v) 2 /5+5 
t- - -  H (30)  

W v 12 62 322 

where 2 = L/B represents the geometric slenderness, L is the beam length (m), B is the beam 
height (m), tc is a form factor, v is Poisson's ratio, and B is the independent variable, that is, 
the size of the specimen. 

C o n c l u s i o n s  

The effect of visible rock discontinuities (macrocracks) on the strength and on certain 
fracture energy parameters of Pendeli marble was experimentally investigated. Furthermore, 
a comparison between laboratory results and field data from in situ observations was carried 
out, considering the rock mass to a first approximation as a linearly elastic material, obeying 
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the Hoek and Brown failure criterion. In order to predict the in situ strength and stability of a 
rock mass in uniaxial compression, which is of great importance in underground 
excavations, certain concepts are proposed based on laboratory tests and first principles of 
LEFM. 
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Appendix A 

The total surface area A of newly created fractures is defined by Herdan (1960) as: 

A= KVo ~ [-~ ] -  A p (A1) 

where K is the geometric shape factor of fragments created during fracture [-see Table A1 (Herdan, 
1960)], V o is the initial volume of the test block (m3), W~ is the weight fraction over a certain size 
interval, x i is the average size in that interval (m), and A p is the total area of artificial discontinuities in 
the specimen (m2). 

The geometry of the rock fragments produced after each compression test was characterized 
numerically through digitization of photographs, using a computer program which calculated the 
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minimum and maximum dimensions of each digitized fragment, and the assumption that B =  T 
(unvisible dimension of fragments since photographs are two-dimensional) according to Table A1. 

Table A 1. Dependence of coefficient K on the geometric shape of 
rock fragments 

(L x B x T) a Sphere Cube 4 x 2 x 1 6 x 3 x 1 10 x 5 x 1 

K b 6.0 8.3 14.0 19.0 29.0 

a L=length  (maximum dimension), B=bread th  (minimum dimen- 
sion) and T=  thickness of each fragment. 
b K-= [1.57 + C(a/m)gla(n + 1)/n]/a/mn 1/2, where a and C are angular- 
ity constants taken as 0.43 and 3.1 respectively, m = BIT and n = L/B. 

This analysis showed that the ratio n has a mean value of 1.6 and the ratio m is assumed to have a value 
of 1. According, therefore, to Table A1 the value of the coefficient K is equal to 9.4. Also, the initial 
volume of each rock specimen V o was equal to 0.06 x 0.06 x 0.08 m 3 or 2.88 x 10 - 4  m a. Therefore the 
new surfaces created in each test block until complete failure can be established by sieve tests and from 
Equation A1. Any cracks visible to the eye which were present in relative large fragments and were not 
considered by Equation A1 were measured separately and added to those estimated by the same 
equation. 

Appendix B 

The test procedure for plane strain fracture toughness Klc determination is standardized by the 
American Society for Testing and Materials (ASTM) (Kaufman, 1977). In bending tests under three- 
point loading on single edge-notched specimens, as is shown in Fig. B1, the expression for Klc is 

T a = 0.45-0.55 W 
�9 �9 

Fig. B1. Specimen geometry tested 

specimen thickness = B 

PS [- /~x'k 112 /o~"1312 1~:xl512 /o~'k 712 /o~'~12-1 
- 29 46  +21 8 376 + 3 8 7  

- J (" ' )  
where P is the peak or ultimate load on the specimen (N), S is the support span (m), B is specimen 
thickness (m), Wis specimen depth (m), and a is crack length or notch depth (=0 .45-0 .55  W) (m). 

Fracture tests were conducted on three-point single edge-notched bend Pendeli marble specimens of 
thickness B = 99.5 mm, depth W= 51 mm and notch depth a = 28.5 mm, in an ELE bending machine 
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(type EL-33-604) of support span S =  180 mm. The notches were 3 rnm wide. The peak load P was 
obtained for each beam and the average was P = 6.56 kN with a standard deviation of 0.8 kN. The 
fracture toughness K~c has been evaluated from Equation B1 to be t.03 MN m -3/2. Since 

7 = ~ ~ -  (B2) 

and E =  12 GPa for Pendeli marble, then 

7=44 J m - 2  


