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ABSTRACT
In this paper, we introduce and study a framework, calledpeer
data exchange, for sharing and exchanging data between peers.
This framework is a special case of a full-fledged peer data man-
agement system and a generalization of data exchange between a
source schema and a target schema. The motivation behind peer
data exchange is to model authority relationships between peers,
where a source peer may contribute data to a target peer, specified
using source-to-target constraints, and a target peer may use target-
to-source constraints to restrict the data it is willing to receive, but
cannot modify the data of the source peer.

A fundamental algorithmic problem in this framework is thatof
deciding the existence of a solution: given a source instance and a
target instance for a fixed peer data exchange setting, can the tar-
get instance be augmented in such a way that the source instance
and the augmented target instance satisfy all constraints of the set-
ting? We investigate the computational complexity of the problem
for peer data exchange settings in which the constraints aregiven
by tuple generating dependencies. We show that this problemis
always in NP, and that it can be NP-complete even for “acyclic”
peer data exchange settings. We also show that the data complexity
of the certain answers of target conjunctive queries is in coNP, and
that it can be coNP-complete even for “acyclic” peer data exchange
settings.

After this, we explore the boundary between tractability and in-
tractability for the problem of deciding the existence of a solution.
To this effect, we identify broad syntactic conditions on the con-
straints between the peers under which testing for solutions is solv-
able in polynomial time. These syntactic conditions include the im-
portant special case of peer data exchange in which the source-to-
target constraints are arbitrary tuple generating dependencies, but
the target-to-source constraints are local-as-view dependencies. Fi-
nally, we show that the syntactic conditions we identified are tight,
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in the sense that minimal relaxations of them lead to intractability.

1. Introduction

Several different frameworks for sharing data between independent
stores have been formulated and investigated in depth.Data ex-
changeis one of the conceptually simpler, yet technically challeng-
ing, such frameworks [8]. In a data exchange setting, data from
a source schema are transformed to data over a target schema ac-
cording to specifications given by source-to-target constraints. This
framework models a situation in which the target passively receives
data from the source, as long as the source-to-target constraints are
satisfied. Data exchange is closely related to data integration [15].
In particular, data exchange systems can be used as buildingblocks
in data integration systems, where data from a set of independent
sources having no interaction with each other are transformed to
data in a global mediated schema.Peer data management systems
(PDMS) constitute a much more powerful and complex framework
than data exchange, as they model a situation in which a number
of peers interact with each other and cooperate in sharing and ex-
changing data [14, 20, 19]. In a peer data management system,
there is no distinction between source and target, since a peer may
simultaneously act as a distributor of data (thus, a source peer) and
a recipient of data (thus, a target peer). In such a system, the re-
lationship between peers is specified using constraints that can be
in either direction (from one peer to another, and vice-versa), in-
stead of constraints in a single direction, as was the case indata
exchange. Furthermore, each peer can be a stand-alone database
system or a separate data integration system in which the schema
of the peer is a mediated global schema over a set of local sources
accessible only by that peer.

The Peer Data Exchange Framework In this paper, we intro-
duce and study a framework, calledpeer data exchange, which is a
generalization of data exchange and a special case of a full-fledged
peer data management system. This framework models a situation
in which there is interaction between two peers that have differ-
ent roles and capabilities: one of them, called thesourcepeer, is
an “authoritative” or “trusted” peer that can contribute new data,
while the other peer, called thetarget peer, imposes restrictions
on the data that it is willing to accept, but has no permissionor
capability to modify the data of the source peer. In a peer data ex-
change setting, the relationship between the two peers is specified
by constraints that go in either direction, that is, some aresource-
to-target constraints and others are target-to-source constraints. As
in data exchange, the source-to-target constraints specify what data
a source peer is willing to exchange. Unlike data exchange, how-
ever, the target is no longer a passive recipient of source data that



obey the source-to-target constraints. Instead, the target peer uses
target-to-source constraints to impose restrictions on the data that
it is willing to receive; moreover, the target may have its own data.
Suppose that we are given a source instance and a target instance
that may or may not satisfy the constraints of the setting; ifthe con-
straints are not satisfied, the goal then is to augment the target data
in such a way that thegivensource instance and theaugmentedtar-
get instance satisfy all constraints between the two peers,as well
as other existing target constraints. As an illustration, the source
peer may be an authoritative genomic database, such as Swiss-Prot
[17], while the target peer may be a genomic database maintained
at a university under a different schema and populated with various
data. At regular intervals of time, the university databaseis will-
ing to receive new data from Swiss-Prot but cannot export anydata
back to Swiss-Prot. The target may restrict the data it is willing to
receive to only Swiss-Prot data that it views as relevant. Hence, the
data received have to satisfy constraints that go in either direction.

Algorithmic Problems The first fundamental algorithmic problem
in peer data exchange is that of deciding theexistence of a solution.
More formally, a peer data exchange setting consists of a source
schemaS, a target schemaT, a set of source-to-target constraints
Σst, a set of target-to-source constraintsΣts, and a setΣt of target
constraints. Each such setting, gives rise to the followingdeci-
sion problem: given a source instance and a target instance,can the
target instance be augmented in such a way that the given source
instance and the augmented target instance satisfy all constraints
of the peer exchange setting? The second fundamental algorith-
mic problem in peer data exchange is that of obtainingthe certain
answersof queries posed over the target schema. The concept of
the certain answers has become the standard semantics of query-
answering in data integration [1, 15], data exchange [8], and peer
data management [14]; this concept is also perfectly meaningful in
peer data exchange.

In the sequel, we investigate these algorithmic problems for peer
data exchange settings in which the constraints between thepeers
are given by a finite set of tuple-generating dependencies (tgds)
[3]. We also allow for target constraints in the form of target tgds
or target equality-generating dependencies (target egds). By defi-
nition, a tgd from one relational schema to another is a first-order
formula of the form∀x(ϕ(x) → ∃yψ(x,y)), whereϕ(x) is a
conjunction of atomic formulas over the first schema andψ(x,y)
is a conjunction of atomic formulas over the second. An equality-
generating dependency on a relational schema is a formula ofthe
form∀x(ϕ(x) → z1 = z2),whereϕ(x) is a conjunction of atomic
formulas over the schema andz1, z2 are among the variables inx.
Tuple-generating dependencies have been used for specifying data
exchange between relational schemas [8, 7]; moreover, theyare
the core of the mapping specification language of the Clio schema-
mapping and data exchange system [18]. Tuple-generating depen-
dencies generalize both the local-as-view (LAV) and the global-as-
view (GAV) constraints in data integration [15], since the former
are tgds in whichϕ(x) is a single atomic formula, and the latter
are tgds in whichψ(x,y) is a single atomic formula. In their full
generality, tuple-generating dependencies are GLAV (global-and-
local-as-view) constraints.

Summary of Results Consider a fixed peer data exchange setting
in which Σst is a finite set of source-to-target tgds,Σts is a finite
set of target-to-source tgds, andΣt = ∅ (no target constraints).
Our first main result asserts that testing for the existence of solu-
tions is in NP, and that the data complexity of the certain answers of

unions of conjunctive queries is in coNP. These complexity bounds
turn out to be tight, because we exhibit peer data exchange settings
as above for which testing for the existence of solutions is NP-
complete, while the data complexity of the certain answers of con-
junctive queries is coNP-complete; actually, the lower bounds hold
even for peer data exchange settings in which the “dependency”
graph between the relations of the peers is acyclic. We also show
that the same upper bounds hold even if the setting allows fora set
Σt of target constraints that is the union of a finite set of target egds
and a finiteweakly acyclicset of target tgds.

The complexity of testing for the existence of solutions andcom-
puting the certain answers in peer data exchange settings should be
compared and contrasted with the complexity of the same problems
for data exchange, which can be viewed as the special case of peer
data exchange in whichΣts = ∅ (no target-to-source tgds) and
alsoJ = ∅ (the target contains no data before the exchange). In-
deed, as shown in [8], there are polynomial-time algorithmsto test
for the existence of solutions and to compute the certain answers
of unions of conjunctive queries in every data exchange setting in
whichΣst is a finite set of source-to-target tgds andΣt is the union
of a finite set of target egds and a finite weakly acyclic set of target
tgds. Moreover, ifΣt = ∅ (no target constraints), then testing for
the existence of solutions is trivial for data exchange, since solu-
tions always exist. There is also a sharp contrast with full-fledged
peer data management systems, where, as shown in [14], comput-
ing the certain answers of conjunctive queries can be an undecid-
able problem. Thus, from a computational point of view, peerdata
exchange is more challenging than ordinary data exchange, but less
intractable than full peer data management.

After this, we explore the boundary between tractability and in-
tractability in peer data exchange settings.To this effect, we identify
a class of peer data exchange settings, denoted byCtract, for which
the existence of solutions can be tested in polynomial time.The
classCtract is defined by imposing syntactic conditions on the con-
straints between the peers; these conditions are extractedthrough
a careful examination of the impact of existentially quantified vari-
ables and of their relationship to other variables occurring in the
constraints. Although the syntactic conditions used to defineCtract

are rather technical,Ctract itself is a broad class that contains sev-
eral important special cases of peer data exchange, including the
following two: the case in which the source-to-target tgds are full
tgds, and the case in which the target-to-source tgds are local-as-
view (LAV) constraints. Finally, we show that the syntacticcondi-
tions we identified are tight, in the sense that minimal relaxations
of the conditions lead to intractability; thusCtract turns out to be a
maximal class of tractable peer data exchange settings.

Related Work There is an extensive literature on data integration
using sound, complete and exact views [1, 13, 15]. Several differ-
ent frameworks and systems for sharing data in networks of inde-
pendent sources have also been formulated and studied [4, 16, 6,
10, 11]. Calvanese et al. [6] and Franconi et al. [10, 11] propose
a semantics based on an epistemic interpretation of the constraints
between peers. This is in contrast to the first-order interpretation
used in our work and in PDMS. Bertossi and Bravo [5] also use
first-order interpretations, but propose a semantics drawnfrom the
area of consistent query answering that is based on repairs [2]. This
approach has the advantage that data can be shared between peers,
even when there is no consistent solution satisfying all constraints.
However, the complexity of the problem of obtaining certainan-
swers is higher than in peer data exchange (Πp

2-complete vs. coNP-



complete), and no tractability results have been given for this se-
mantics.

2. Peer Data Exchange Settings
This section contains the precise definitions of a peer data exchange
setting and the associated algorithmic problems, as well asa brief
discussion of the relationship of peer data exchange settings with
data exchange settings and peer data management systems.

Preliminaries

A schemais a finite collectionR = (R1, . . . , Rk) of relation sym-
bols, each of a fixed arity. AninstanceI over R is a sequence
(RI

1, . . . , R
I
k) such that eachRI

i is a finite relation of the same
arity asRi. We shall often useRi to denote both the relation
symbol and the relationRI

i that interprets it. Given a tuplet,
we denote byR(t) the association betweent and the relationR
where it occurs. LetS = (S1, . . . , Sn) andT = (T1, . . . , Tm)
be two disjoint schemas. We refer toS as thesourceschema and
to T as thetarget schema. We write(S,T) to denote the schema
(S1, . . . , Sn, T1, . . . , Tm). Instances overS will be calledsource
instances, while instances overT will be calledtarget instances. If
I is an instance overS andJ is an instance overT, then we write
(I, J) to denote the instanceK over (S,T) such thatSK

i = SI
i

andTK
j = T J

j , for 1 ≤ i ≤ n and1 ≤ j ≤ m.

A source-to-target tuple-generating dependency(tgd) is a formula
of the form∀x(ϕ(x) → ∃yψ(x,y)), whereϕ(x) is a conjunc-
tion of atomic formulas over the source schemaS, andψ(x,y) is
a conjunction of atomic formulas over the target schemaT. Sim-
ilarly, a target-to-source tgdis a formula of the form∀x(α(x) →
∃yβ(x,y)), whereα(x) is a conjunction of atomic formulas over
the target schemaT, andβ(x,y) is a conjunction of atomic formu-
las over the target schemaS. For example, ifS contains a binary
relationE, andT contains a binary relationH , then the source-
to-target tgd∀x∀y∀z(E(x,z) ∧ E(z, y) → H(x, y)) transforms
pairs of nodes connected via anE-path of length 2 toH-edges.
Similarly, ∀x∀y(H(x,y) → ∃z(E(x, z) ∧ E(z, y))) is a target-
to-source tgd that transformsH-edges to pairs of nodes connected
via anE-path of length 2.

A target tgd is a formula of the form∀x(ϕ(x) → ∃yχ(x,y)),
where bothϕ(x) andχ(x,y) are conjunctions of atomic formu-
las over the target schemaT. A target equality-generating depen-
dency(egd) is a formula of the form∀x(ϕ(x) → z1 = z2), where
ϕ(x) is a conjunction of atomic formulas overT and z1, z2 are
among the variables inx. Clearly, functional dependencies onT
are special cases of target egds. In what follows, we will often
drop the universal quantifiers in front of a dependency, and implic-
itly assume such quantification. However, we will write downall
existential quantifiers.

Peer Data Exchange Settings and Solutions

DEFINITION 1. A peer data exchange (PDE) settingis a quin-
tupleP = (S,T,Σst,Σts,Σt) such that:

• S is a source schema andT is a target schema;

• Σst is a finite set of source-to-target tgds;

• Σts is a finite set of target-to-source tgds;

• Σt is a finite set of target tgds and target egds.

I J

S T

Σst

Σts

Authoritative
Source Peer

Receiving
Target Peer

Can J be extended to a target instance J’ 
such that J’ satisfies Σt and  (I,J’) satisfies 
Σst ∪ Σts ?

Σt

J’

Figure 1: Illustration of Peer Data Exchange

Given a source instanceI and a target instanceJ of P , it may be
the case that(I, J) violates the constraints ofP . Thus, we will be
interested in finding instances, which we callsolutions, that satisfy
all constraints ofP . In peer data exchange the target peer is as-
sumed to be willing to accept data coming from an authoritative,
trusted source. Therefore, we will consider solutions where the in-
stance of the target peer may be augmented with data coming from
the source. However, the target peer does not have the authority or
ability to interfere with the source’s data, which therefore remain
unchanged.

DEFINITION 2. Let P = (S,T,Σst,Σts,Σt) be a PDE set-
ting, I a source instance, andJ a target instance. We say that a
target instanceJ ′ is asolution for(I, J) in P if

• J ⊆ J ′;

• (I, J ′) |= Σst ∪ Σts;

• J ′ |= Σt.

This definition generalizes the notion of solution in data exchange
settings [8] in two ways. The first and more significant one is the
presence of the target-to-source dependenciesΣts ; the second is
that the input has a target instanceJ , in addition to the source in-
stanceI . Thus, data exchange settings are a special case of PDE
settings where bothΣts andJ are empty.

As noted earlier, tuple-generating dependencies are GLAV con-
straints that generalizes both LAV and GAV constraints in data
integration systems. Our PDE framework, with target-to-source
dependencies, is able to capture GLAV with exact views in data in-
tegration systems [15]. The following source-to-target dependency
φ(x) → ∃y ψ(x,y) and target-to-source dependencyψ(x,y) →
φ(x), whereφ andψ can be interpreted as queries over the source
and target respectively, assert that the query over the target contains
exactly those tuples from the query over the source. It is easy to see
that in the case whereφ is a single source relation, this expresses
LAV with exact views in data integration.

Although the definition of PDE setting involves two peers, itcan
be easily extended to a family of source peers exchanging data
with the same target peer. Assume thatS1, . . . ,Sn,T are pair-
wise disjoint schemas. Amulti-PDE settingis a family P1 =
(S1,T,Σs1t,Σts1

,Σt1), . . ., Pn = (Sn,T,Σsnt,Σtsn
,Σtn

) of
PDE settings. Given instancesI1, . . . , In of the source peers, and
an instanceJ of the target peer, asolutionJ ′ for ((I1, . . . , In), J)
in P1, . . . ,Pn is a target instanceJ ′ containingJ such thatJ ′ is a
solution for(Im, J) in Pm, for everym ≤ n. Note that, in defin-
ing multi-PDE settings, we could have allowed constraints on the
sourcesS1, . . . ,Sn, as well as constraints between these sources.



This, however, would have no impact on which target instances are
solutions, as the source instances have to remain unchanged.

It is clear thatJ ′ is a solution for((I1, . . . , In), J) in P1, . . . ,Pn

if and only if J ′ is a solution for(I1 ∪ · · · ∪ In, J) in the PDE
setting(S1∪· · ·∪Sn,T,Σst,Σts,Σt), whereΣst = ∪n

m=1Σsmt,
Σts = ∪n

m=1Σtsm
, andΣt = ∪n

m=1Σtm
. Thus, every multi-PDE

setting can be simulated by a single PDE that has the same space
of solutions as the original multi-PDE.

Algorithmic Problems in PDE Settings

Given a source instanceI and a target instanceJ of a PDE setting
P , a solution for(I, J) may or may not exist; furthermore, if a
solution exists, it need not be unique up to isomorphism.

EXAMPLE 1. LetP be a PDE setting in which the source schema
consists of a binary relation symbolE, the target schema consists
of a binary relation symbolH , and the constraints are as follows:

Σst : E(x, z) ∧E(z, y) → H(x, y)
Σts : H(x, y) → E(x, y)
Σt : ∅ (no target constraints)

If I = {E(a, b), E(b, c)} andJ = ∅, then no solution for(I, J)
exists. IfI = {E(a, a)} andJ = ∅, thenJ ′ = {H(a, a)} is the
only solution for(I, J). If I = {E(a, b), E(b, c), E(a, c)} and
J = ∅, then both{H(a, c)} and{H(a, b),H(b, c),H(a, c)} are
solutions for(I, J).

This example illustrates a striking difference between data exchange
settings and peer data exchange settings. Specifically, if adata ex-
change setting has no target constraints (Σt = ∅), then, for every
source instanceI , a solution always exists. As seen above, how-
ever, this need not be true for peer data exchange settings with
Σt = ∅ andJ = ∅. We will study in depth the problem of de-
ciding the existence of a solution in a peer data exchange settings,
and we will unveil deeper differences between data exchangeand
peer data exchange.

DEFINITION 3. Assume thatP is a PDE setting. Theexistence-
of-solutions problem forP , denoted bySOL(P), is the following
decision problem: given a source instanceI and a target instance
J , is there a solutionJ ′ for (I, J) in P?

The other basic algorithmic problem that we will study is that of ob-
taining thecertain answersof target queries in PDE settings. The
definition of certain answers we use is an adaptation of the standard
concept used in incomplete databases [12, 21] and information inte-
gration [1, 15]; in our context, this means that the set of “possible”
worlds is the set of all solutions for a given source instanceand a
given target instance in a PDE setting.

DEFINITION 4. LetP be a PDE setting andq a query over the
target schema ofP . Let alsoI be a source instance andJ a target
instance. We say that a tuplet is acertain answer ofq on (I, J),
denotedt ∈ certain(q, (I, J)), if J ′ |= q[t], for every solution
J ′ for (I, J) in P . We writecertain(q, (I, J)) to denote the set
of all certain answers ofq on (I, J). If q is a Boolean query, then
certain(q, (I, J)) = true if J ′ |= q, for every solutionJ ′ for
(I, J) in P ; otherwise,certain(q, (I, J)) = false. Note that ifq
is a Boolean query, then computing the certain answers ofq in the
PDE settingP is a decision problem.

Consider the PDE setting in Example 1. Ifq is the Boolean query
∃x∃y∃z(H(x,y) ∧ H(y, z)), thencertain(q, ({E(a, a)}, ∅)) =
true, whilecertain(q, ({E(a, b), E(b, c), E(a, c)}, ∅)) = false.

Relationship to PDMS

Peer data management systems (PDMS), formalized and studied by
Halevy et al. [14], constitute a decentralized, extensiblearchitec-
ture in which peers interact with each other in sharing and exchang-
ing data. As mentioned in the Introduction, every PDE setting is a
special case of a PDMS. In this section, we describe the relation-
ship between peer data exchange settings and peer data manage-
ment systems in precise terms.

According to [14], a PDMSN with peersP1, . . . , Pn has the fol-
lowing characteristics.

• Each peerPi has its own schema which is disjoint from those of
the other peers, but visible to all other peers.

• The schema of each peer can be a mediated global schema over a
set of local sources that are accessible only by that peer (thus each
peer can be a data integration system). The relationship between
the peer and its local sources is specified usingstorage descriptions
that arecontainment descriptionsR ⊆ Q or equality descriptions
R = Q, whereR is one of the relations in the schema of the peer
andQ is a query over the local sources of the peer.

• The relationship between peers is specified using three types of
peer mappings: inclusion mappings, equality mappings, anddefi-
nitional mappings, where

1. Each inclusion mapping is a containmentQ1(A1) ⊆ Q2(A2)
between conjunctive queriesQ1(A1) andQ2(A2), where
A1 andA2 are subsets of the set of all relations in the schemas
of the peers.

2. Each equality mapping is an equalityQ1(A1) = Q2(A2)
between conjunctive queriesQ1(A1) andQ2(A2) as above.

3. Each definitional mapping is a Datalog program with rules
having single relations from the schemas of the peers in both
the head and the body of each rule.

In the terminology of [14], adata instanceD of a PDMSN is
an assignment of values to both the local sources of each peerand
to the relations of the schema of each peer. A data instanceG is
consistentwith N andD if G andD satisfy all the specifications
given by the storage descriptions and the peer mappings ofN (see
[14] for the precise definition). This concept captures whatit means
for a data instanceG to be asolutionfor a given data instanceD in
the PDMSN .

We now have all the necessary background to spell out the rela-
tionship between peer data exchange settings and peer data man-
agement systems. Indeed, letP = (S,T,Σst,Σts,Σt) be a PDE
setting. We claim that there is a PDMSN (P) with two peersS
andT such that the solutions for a given instance inP essentially
coincide with the consistent data instances for a corresponding data
instance inN (P). The specification of the PDMSN (P) is as fol-
lows:

• The peer mappings ofN (P) are given by the dependencies in
Σst ∪Σts ∪Σt. In particular,N (P) has no definitional mappings.

• For every relation symbolSi in the schema ofS, there is a local
relation symbolS∗

i of the same arity asSi, and an equality storage
descriptionS∗

i = Si.



• For every relation symbolTj in the schema ofT, there is a
local relation symbolT ∗

j of the same arity asTj , and a containment
storage descriptionT ∗

j ⊆ Tj .

Note that the schemas of the local sources ofS andT in N (P) are
replicas of the schemas ofS andT. Intuitively, the equality stor-
age descriptions forS capture the fact that in peer data exchange
the data of the source peer remain unchanged, whereas the contain-
ment storage descriptions forT capture the fact that in peer data
exchange the data of the target peer may be augmented with new
data. LetI be a source instance and letJ be a target instance ofP .
It is now easy to verify thatK is a solution for(I, J) in P if and
only if (I∗, I), (J∗, K) is a consistent data instance for the data
instance(I∗, J∗) of N (P), whereI∗ andJ∗ are copies ofI andJ
over the local sources ofS andT.

In conclusion, every PDE setting can be viewed as a PDMS with
equality storage descriptionsS∗

i = Si for the source peer, contain-
ment storage descriptionsT ∗

j ⊆ Tj for the target peer, and peer
mappings given by the constraints of the PDE.

There are peer data management systems for which testing forthe
existence of solutions and computing the certain answers ofcon-
junctive queries are undecidable problem as well [14]. We will
show that the state of affairs is quite different for peer data ex-
change settings.

3. Complexity
Let P = (S,T,Σst,Σts,Σt) be a fixed peer data exchange set-
ting. In this section, we show that the existence-of-solutions prob-
lem for P is in NP, whereΣst andΣts are arbitrary finite sets of
source-to-target tgds and target-to-source tgds, andΣt is assumed
to be the union of a finite set of target egds with aweakly acyclic
finite set of target tgds. For such settings, the data complexity of
the certain answers ofmonotonequeries (in particular, unions of
conjunctive queries) is in coNP. We also show that there are PDE
settings withΣt = ∅ for which the existence-of-solutions problem
is NP-complete, and the data complexity of the certain answers of
conjunctive queries is coNP-complete.

These results about peer data exchange settings contrast sharply
both with results about peer data management systems and with re-
sults about data exchange settings. As mentioned earlier, there are
PDMS for which these problems are undecidable [14]. For data
exchange settings in whichΣst is an arbitrary finite set of source-
to-target tgds andΣt is the union of a finite set of target egds with a
weakly acyclic finite set of target tgds (recall that in data exchange
settings there are no target-to-source tgds), these problems are solv-
able in polynomial time [8]. In fact, ifΣt = ∅, then the existence-
of-solutions problem is trivial, as solutions always exists.

3.1 Upper Bound

The concept of aweakly acyclicset of target tgds was introduced
in [8] and used to show that thechase procedureterminates in poly-
nomial time on such sets of tgds. Intuitively, weak acyclicity is a
syntactic condition placed on sets of tgds to ensure that a chase step
does not use labeled nulls from an attribute to create new labeled
nulls in the same attribute. This ensures that the chase sequence is
finite.

DEFINITION 5. [8] (Weakly acyclic set of tgds)Let Σ be a set

of tgds over a fixed schema. Construct a directed graph, called the
dependency graph, as follows: (1) there is a node for every pair
(R, A) with R a relation symbol of the schema andA an attribute
of R; call such a pair (R, A) a position; (2) add edges as follows:
for every tgdφ(x) → ∃yψ(x,y) in Σ and for everyx in x that
occurs in ψ:

• For every occurrence ofx in φ in position (R,Ai):

1. for every occurrence ofx in ψ in position (S,Bj ), add
an edge(R,Ai) → (S,Bj) (if it does not already ex-
ist).

2. in addition, for every existentially quantified variabley
and for every occurrence ofy in ψ in position (T ,Ck),
add aspecial edge(R,Ai) → (T,Ck) (if it does not
already exists).

Note that there may be two edges in the same direction be-
tween two nodes but exactly one of the two edges is special.
ThenΣ is weakly acyclicif the dependency graph has no cy-
cle going through a special edge.

It should be noted that weakly acyclic sets of tgds include asa spe-
cial case sets of full tgds, that is, tgds of the form∀x(ϕ(x) →
ψ(x)) in which no existentially quantified variables occur in the
right-hand side. They also include acyclic sets of inclusion depen-
dencies as a special case.

To obtain the complexity upper bounds, we extend the chase pro-
cedure in [8] to what we call asolution-awarechase procedure that
chases an instance with tgds and with another given instance. This
procedures chases an instanceK with a set of tgds and at the same
time uses values from a given instanceK′ (thought of as a “so-
lution”) that containsK and satisfies the tgds at hand. Instead of
creating labeled nulls to witness the existential variables of a tgd
during a chase step, asolution-aware chase stepuses values from
the given “solution”K′ to witness the existential variables. These
values are guaranteed to exist sinceK′ containsK and satisfies the
tgds. Note that values fromK′ are used only when a chase step is
applied with a tgd that contains existential variables. Thefollowing
is the definition ofsolution-aware chase stepandsolution-aware
chase sequence.

DEFINITION 6. (Solution-aware chase step)LetK1 be an in-
stance.

(tgd) Let d be a tgd∀x(φ(x) → ∃yψ(x,y)). Let K be an in-
stance that containsK1 such thatK satisfiesd. Let h be a
homomorphism fromφ(x) to K1 such that there is no ex-
tension ofh to a homomorphismh′ from φ(x) ∧ ψ(x,y)
toK1. We say thatd can be applied toK1 with homomor-
phismh and solutionK, or simply,d can be applied toK1

with homomorphismh if K is understood from context.

LetK2 be the union ofK1 with the set of facts obtained by
taking the image ofψ under a homomorphismh′ whereh′

is an extension ofh such that each variable iny is assigned
a value inK and the image of the atoms ofψ underh′ are
atoms inK. We say thatthe result of applyingd toK1 with

h and solutionK is K2, and writeK1

d,h,K
−→ K2. We drop

K and writeK1

d,h
−→ K2 if K is understood from context.

(egd) Letd be an egd∀x(φ(x) → (x1 = x2)). Leth be a homo-
morphism fromφ(x) to K1 such thath(x1) 6= h(x2). We
say thatd can be applied toK1 with homomorphismh. We
distinguish two cases.



• If both h(x1) andh(x2) are in Constthen we say that
the result of applyingd toK1 with h is “failure” , and

writeK1

d,h
−→ ⊥.

• Otherwise, letK2 beK1 where we identifyh(x1) and
h(x2) as follows: if one is a constant, then the labeled
null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the
other. We say thatthe result of applyingd toK1 with h

isK2, and writeK1

d,h
−→ K2.

DEFINITION 7. (Solution-aware chase)Let Σ be a set of tgds
and egds. LetK be an instance andK′ be an instance that contains
K and satisfies the set of tgds inΣ.

• A solution-aware chase sequence ofK with Σ andK′ is
a sequence (finite or infinite) of solution-aware chase steps

Ki
di,hi−→ Ki+1, with i = 0, 1, ..., with K = K0 anddi a

dependency inΣ.

• A finite solution-aware chase ofK with Σ andK′ is a finite

solution-aware chase sequenceKi
di,hi−→ Ki+1, 0 ≤ i ≤ m,

with the requirement that either (a)Km = ⊥ or (b) there
is no dependencydi of Σ and there is no homomorphismhi

such thatdi can be applied toKm with hi. We say thatKm is
the result of the finite solution-aware chase. We refer to case
(a) as the case of afailing finite solution-aware chaseand we
refer to case (b) as the case of asuccessful finite solution-
aware chase.

LEMMA 1. Let Σ be the union of a finite set of egds with a
weakly acyclic finite set of tgds on some schema. Then there exists
a polynomialp(x) having the following property: ifK andK′ are
instances such thatK′ containsK, and such thatK′ satisfies the
tgds inΣ, then the length of every solution-aware chase sequence
ofK with Σ andK′ is bounded byp(|K|), where|K| is the size of
K.

Using Lemma 1, we can show that whenever a solution for(I, J)
exists in a PDE in whichΣt is the union of a finite set of egds with a
weakly acyclic finite set of tgds, then a “small” solution must exist,
where “small” means that its size is polynomially bounded bythe
size of (I, J).

LEMMA 2. LetP = (S,T,Σst,Σts,Σt) be a PDE setting in
whichΣt is the union of a finite set of egds with a weakly acyclic
finite set of tgds. LetI be a source instance andJ be a target
instance such thatJ satisfiesΣt. If there exists a solutionJ ′ for
(I, J), then there exists a solutionJ∗ for (I, J) that is contained
in J ′ and has size bounded by a polynomial in the size of(I, J).

Using Lemmas 1 and 2, we can easily derive the following result.
THEOREM 1. LetP = (S,T,Σst,Σts,Σt) be a PDE setting

in whichΣt is the union of a finite set of egds with a weakly acyclic
finite set of tgds. The existence-of-solutions problemSOL(P) for
P is in NP.

PROOF. From Lemma 2, if there is a solution for(I, J), then
there is a solution(I, J∗) that is polynomial in the size of(I, J).
Checking that(I, J∗) |= Σst, (J∗, I) |= Σts andJ∗ |= Σt can
be done in polynomial time in the size of(I, J) since the peer data
exchange is fixed.

By definition, a queryq is monotoneif it is preserved under the ad-
dition of tuples, that is, ift ∈ q(K) andK ⊆ K′, thent ∈ q(K′).
Clearly, unions of conjunctive queries are monotone queries.

THEOREM 2. LetP = (S,T,Σst,Σts,Σt) be a PDE setting
in whichΣt is the union of a finite set of egds with a weakly acyclic
finite set of tgds. Ifq is a monotone query overT, then computing
the certain answers ofq is in coNP.

PROOF. Let t be ak-ary tuple fromI and supposet 6∈
certain(q, (I, J)). It suffices to show that there is a solutionJ∗

that is polynomial in the size of(I, J) andt 6∈ q(J∗). Sincet 6∈
certain(q, (I, J)), there is a solutionJ ′ such thatt 6∈ q(J ′). From
Lemma 2, it follows that there is a solutionJ∗ that is polynomial
in the size of(I, J) andJ∗ is contained inJ ′. Sinceq is monotone
andt 6∈ q(J ′), it follows thatt 6∈ q(J∗).

3.2 Lower Bound

We show next that there are PDE settings with no target constraints
in which testing for the existence of solutions is NP-hard, and com-
puting the certain answers of target conjunctive queries iscoNP-
hard. Although this result could be derived from [1, Theorem5.1]
and [13, Theorem 8], we give a self-contained proof using a partic-
ularly simple reduction from the CLIQUE problem whose features
we will analyze later on.

THEOREM 3. There exists a peer data exchange settingP with
Σt = ∅ such that testing for the existence of solutions is a NP-
complete problem. Moreover, there is a Boolean conjunctivequery
q such that the decision problem of computing the certain answers
of q in P is coNP-complete.

PROOF. (Sketch) From Theorem 1, we know that the problem
is in NP. The NP-hardness is established via a reduction fromthe
CLIQUE problem: given a graphG and a positive integerk, does
G contain a k-clique? As usual, agraph is a structureG = (V,E),
whereV is a set of nodes andE ⊆ V 2 is binary relation that is
symmetric and irreflexive (no self-loops).

Let P be the following peer data exchange setting. The source
schemaS consists of three binary relationsD, S andE, while the
target schemaT consists of a single 4-ary relationP . There are no
target dependencies, that is,Σt = ∅. The constraints betweenS
andT are as follows:

Σst : D(x, y) → ∃z∃wP (x, z, y, w)

Σts : P (x, z, y, w) → E(z, w)
P (x, z, y, w) ∧ P (x, z′, y′, w′) → S(z, z′)

Given a graphG = (V,E) and a positive integerk, we con-
siderk distinct elementsa1, . . . , ak, and form the source instance
I(G, k) = (D,S,E), whereD = {(ai, aj) | 1 ≤ i ≤ k, 1 ≤
j ≤ k, i 6= j} is the inequality relation on{a1, . . . , ak} and
S = {(v, v) | v ∈ V } is the equality relation on the setV of
nodes ofG. The target instanceJ is defined to be empty. Intu-
itively, the tgd inΣst associates each pair of elements (x, y) in D
with a pair of elements (z, w) through the relationP . The first tgd
in Σts asserts that (z, w) is an edge inE and the second tgd inΣts

asserts that an element ina1, . . . , ak cannot be associated with two
distinct nodes inG.



It is now easy to verify thatG has ak-clique if and only if there is
a solution for(I(G, k), ∅) in P .

Let q be the Boolean query∃xP (x,x, x, x). We use the same re-
duction above for the coNP-hardness of the certain answers of q
assuming that thek distinct elements are drawn fromV , the node
set ofG. If V contains less thank nodes, one could extendV to k
nodes. It is is easy to verify thatG contains ak-clique if and only
if certain(q, (I(G,k), ∅)) = false.

In [14], it was shown that if in a PDMS all storage descriptions
are containment descriptions and all peer mappings are inclusion
mappings with an acyclicdependencygraph, then the certain an-
swers of conjunctive queries are computable in polynomial time.
Thedependencygraph of a PDMS is the directed graph with nodes
the relations of the peers, and edges between two relationsP and
R if there is an inclusion peer mappingQ1(A1) ⊆ Q2(A2) such
thatP occurs inQ1(A1) andR occurs inQ2(A2). Note that the
PDE setting used in the reduction of Theorem 3 has inclusion peer
mappings with an acyclic dependency graph, yet the problem of
computing certain answers is coNP-hard. The jump in complex-
ity arises due to the fact that in PDE settings the source instance
can never change, which means that the constraints placed onstor-
age descriptions in the source are not containment descriptions, but
equality descriptions.

4. A Large Tractable Class
In this section, we identify syntactic conditions on PDE settings
with no target constraints that yield polynomial-time algorithms for
deciding the existence of solutions. As seen in the proof of Theo-
rem 3, even such strong topological conditions as the acyclicity of
the dependency graph of source and target relations cannot guar-
antee tractability of these problems. Instead, we considerdifferent
conditions that are derived by taking a closer look at the existential
quantifiers in the constraints of the PDE setting.

DEFINITION 8. LetP = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints.
• We say that thei-th position of a relation symbolT of T is
markedif Σst contains a source-to-target tgd

ϕ(x) → ∃yψ(x,y)

such thatT (z1, . . . , zi, . . . , zn) is one of the conjuncts ofψ(x,y),
andzi is one of the existentially quantified variablesy.

• We say that a variablez is marked in a target-to-source tgd

α(x) → ∃wβ(x,w)

of Σts if one of the following two holds:

1. z appears at a marked position of a conjunct ofα(x)

2. z is one of the existentially quantified variablesw.

Note that the two conditions in the definition of a marked variable
are mutually exclusive.

To illustrate the concepts of marked position and marked variable,
let us consider a PDE setting having the following constraints:

Σst : S(x1, x2) → ∃yT (x1, y)
Σts : T (x1, x2) → ∃wS(w, x2)

In this setting, the only marked position is the second position of
T , while the marked variables of the target-to-source dependency
arex2 andw.

Let us also consider the PDE setting in the proof of Theorem 3 used
in the reduction from the CLIQUE problem:

Σst : D(x, y) → ∃z∃wP (x, z, y, w)
Σts : P (x, z, y, w) → E(z, w)

P (x, z, y, w) ∧ P (x, z′, y′, w′) → S(z, z′)

In this setting, the marked positions are the second and the fourth
position ofP . The marked variables of the first tgd inΣts arez
andw, and the marked variables for the second tgd inΣts arez,w,
z′, andw′.

We now introduce the classCtract, which is the focus of this sec-
tion. Below, ifα(x) → ∃wβ(x,w) is a tgd inΣts, we will refer
to α(x) as theleft-hand sideof the tgd, and to∃wβ(x,w) as the
right-hand sideof the tgd.

DEFINITION 9. LetP = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints. We say thatP ∈ Ctract if

1. For every tgdD in Σts, every marked variable ofD appears
at most once in the left-hand side ofD

and

2. One of the following two conditions holds:

2.1 The left-hand side of every tgd inΣts consists of exactly
one literal;

or

2.2. For every tgdD in Σts and for every pair of marked
variablesx andy of D that appear together in a conjunct of
the right-hand side ofD,

either

(a)x andy appear together in some conjunct of the left-hand
side ofD

or

(b) x andy do not appear at all in the left-hand side ofD.

Admittedly, the definition of the classCtract is quite technical. We
arrived at it after carefully analyzing the causes of intractability in
numerous concrete PDE settings, such as the one used in the reduc-
tion from the CLIQUE problem. To convey some feeling forCtract,
we should point out that it is a rather broad class that contains sev-
eral interesting families of PDE settings as subclasses.

Note thatCtract is, in effect, the union of two different classes:
the first is the class of PDE settings that satisfy conditions(1) and
(2.1), while the second is the class of PDE settings that satisfy con-
ditions (1) and (2.2). The first of these classes can be described as
the class of PDE settingsP = (S,T,Σst,Σts, ∅) in which every
target-to-source tgd is has exactly one literal in its left-hand side
which has no repeated variables. Hence, this is the class of PDE
settings in which the target-to-source tgds are local-as-view (LAV)
dependencies, an important class in data integration [15].

The second class contains as a subclass the family of all PDE set-
tingsP = (S,T,Σst,Σts, ∅) in which every source-to-target tgd



is a full tgd, which means that it is of the formϕ(x) → ψ(x). In-
deed, if every source-to-target tgd is full, then the only marked vari-
ables are the ones that are existentially quantified in some target-to-
source tgd. If two such variables appear together in the right-hand
side of some target-to-source tgdD, then neither appears in the
left-hand side ofD, hence condition (2.2) (b) is satisfied.

We are now ready to state the main result of this section.

THEOREM 4. LetP be a PDE setting inCtract. Then,SOL(P),
the problem of testing for the existence of solutions is solvable in
polynomial time.

The proof of Theorem 4 uses properties of the chase procedureand
homomorphism techniques. An outline of this proof will be given
in the next section. In the remainder of this section, we derive
some corollaries and then show that, in a certain sense,Ctract is a
maximal class of tractable PDE settings.

COROLLARY 1. LetP = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints. IfΣst is a set of full dependencies, then
testing for the existence of solutions is solvable in polynomial time.

COROLLARY 2. LetP = (S,T,Σst,Σts, ∅) be a PDE setting
with no target constraints. If every target-to-source dependency of
Σts has exactly one literal on its left hand side which has no re-
peated variables, then testing for the existence of solutions is solv-
able in polynomial time.

We now show that the conditions definingCtract are tight, in the
sense that minimal relaxations of them lead to intractability. Let us
consider again the PDE setting used in the proof of Theorem 3,for
whichSOL(P) is NP-complete:

Σst : D(x, y) → ∃z∃wP (x, z, y,w)
Σts : P (x, z, y, w) → E(z, w)

P (x, z, y, w) ∧ P (x, z′, y′, w′) → S(z, z′)

As seen earlier, the marked variables ofΣts arez andw (for the
first tgd), andz, w, z′, andw′ (for the second tgd). Not surpris-
ingly, this PDE setting does not belong toCtract, since it violates
both condition (2.1) and condition (2.2) in Definition 9. These vi-
olations, however, are minimal. Indeed, condition (2.1) isviolated
because just one of the target-to-source tgds has two conjuncts in its
left-hand side. Furthermore, condition (2.2) is violated because the
marked variablesz andz′ appear in the only literal of the right-hand
side of the second target-to-source tgd, but do not appear together
in one of the conjuncts of the left-hand side; nonetheless, they are
at distance two of each other, as they are “connected” via thevari-
ablex. Thus, the condition of being adjacent in theGaifman graph
of the variables in the left-hand side of the tgd cannot be relaxed to
even being connected via a path of length two.

Next, we show that the intractability boundary is crossed iftarget
constraints are allowed. In the following two PDE settings,the
source-to-target and target-to-source constraints satisfy the condi-
tions of Ctract and yet the existence-of-solutions problem is NP-
hard for these settings.

Consider the following PDE setting:

Σst : D(x, y) → ∃z∃wP (x, z, y,w)
Σt : P (x, z, y,w) ∧ P (x, z′, y′, w′) → z = z′

Σts : P (x, z, y,w) → E(z,w)

The CLIQUE problem is reducible to the existence-of-solutions prob-
lem for this PDE setting, yetΣst andΣts satisfy conditions (1) and
(2.1) of Definition 9. Note that this setting contains a single target
egd.

Next, consider the following PDE setting:

Σst : S(z, w) → S′(z, w)
D(x, y) → ∃z∃wP (x, z, y, w)

Σt : P (x, z, y, w) ∧ P (x, z′, y′, w′) → S′(z, z′)
Σts : S′(z, z′) → S(z, z′)

P (x, z, y, w) → E(z, w).

Again, the CLIQUE problem is reducible to the existence-of-solutions
problem p for this PDE setting, yetΣst andΣts satisfy conditions
(1) and (2.1) of Definition 9. Note that the target constraints contain
a single full tgd.

Finally, we show that the intractability boundary is also crossed
if we allow disjunctions in the right-hand side of target-to-source
tgds. For this, consider the following PDE setting:

Σst : E(x, y) → ∃uC(x, u)
E(x, y) → E′(x, y)

Σts : E′(x, y) ∧ C(x, u) ∧ C(y, v) →
(R(u) ∧B(v)) ∨ (R(u) ∧G(v))∨
(B(u) ∧G(v)) ∨ (B(u) ∧R(v))∨
(G(u) ∧R(v)) ∨ (G(u) ∧B(v))

The source relations areE,R,B, andG, while the target relations
areE′ andC. Given a graphE, we construct a source instance
consisting ofE, R = {r}, G = {g} andB = {b}; we also take
the target instanceJ to be empty. It easy to see thatE is 3-colorable
if and only if there is a solution for this PDE setting. Note thatΣst

andΣts satisfy conditions (1) and (2.2) of Definition 9, and there
are no target constraints.

5. Outline of the Proof of Theorem 4
In this section, we outline the proof of the tractability result pre-
sented in Theorem 4 of last section. We present an algorithm that
decides the existence-of-solutions problem for PDE settings in the
classCtract, and outline why it is a correct polynomial-time algo-
rithm for this task.

The algorithm relies on the chase procedure and homomorphism
techniques.1 The chase procedure is used to construct a “repre-
sentative” instance, which we callIcan, that can be used to decide
the existence-of-solutions problem for a given(I, J) and a fixed
PDE settingP . The instanceIcan is representative in the sense
that we show thatSOL(P) can be reduced to the problem of check-
ing whether there is a homomorphism fromIcan to I . Although
the latter problem is NP-complete in general, we will prove that it
is tractable whenIcan is obtained by chasing the dependencies of
a PDE setting in the classCtract.

The instanceIcan is obtained by chasing the input instances(I, J)
with the dependenciesΣst andΣts of the PDE setting (recall that
Σt is empty inCtract). More precisely, let(I, Jcan) be the result of
chasing(I, J) with the source-to-target dependenciesΣst. Then,
Ican is a source instance such that(Jcan, Ican) is the result of chas-
ing (Jcan, ∅) with the target-to-source constraintsΣts. Notice that,
sinceIcan is obtained by chasing tgds, it may contain null values.
1From now on, we will assume the definition of the chase proce-
dure given in [9] (that is, the chase is no longer solution-aware).



The next theorem establishes the connection betweenSOL(P) and
the problem of checking whether there is a homomorphism be-
tweenIcan andI .

THEOREM 5. Let P be a PDE setting such that for every tgd
D in Σts, every marked variable ofD appears at most once in the
left-hand side ofD. Let I be a source instance, andJ be a target
instance. LetJcan be such that(I, Jcan) is the result of chasing
(I, J) with Σst. Let Ican be such that(Jcan, Ican) is the result
of chasing(Jcan, ∅) with Σts. Then, there exists some solution for
(I, J) in P iff there is some homomorphism fromIcan to I .

Before giving the proof of this theorem, we introduce some auxil-
iary results. The next lemma shows that, when there are no target-
to-source dependencies, the result of chasing(I, J) with the source-
to-target dependencies is an instance that has a homomorphism to
every solution. The proof, which we omit for lack of space, isa
straightforward adaptation of the proof of Theorem 3.3 of [9].

LEMMA 3. LetP be a PDE setting whereΣst consists of tgds,
andΣt andΣts are empty. LetI be a source instance (which may
contain null values), and letJ be a target instance. Let(I, Jcan)
be the result of chasing(I, J) with Σst. Then, there is a homo-
morphism fromJcan to Jsol, for every solutionJsol for (I, J) in
P .

The next lemma states that if there is a homomorphism between
two instancesK andK′, and we chase them with a set of tgds
to obtain instancesL andL′, then there is some homomorphism
betweenL andL′. It follows easily from Lemma 3.4 of [9].

LEMMA 4. Let Σ be a set of tgds. LetK andK′ be instances
(which may contain null values) such that there is a homomorphism
fromK toK′. LetL be the result of chasingK with Σ, andL′ be
the result of chasingK′ with Σ. Then, there is a homomorphism
fromL toL′.

In the proof of Theorem 5, we will construct an instanceJimg that
is a solution to the PDE setting. The instanceJimg is the result
of applying a homomorphismh to Jcan. To show thatJimg is
a solution for the PDE setting, we rely on the following property
which we shall show in Lemma 5: whenever a chase rule applies to
a set of tuples ofJimg , it also applies to the corresponding tuples
of Jcan. More precisely, letX be a set of tuples ofJcan andY be
a set of tuples ofJimg such thath(X) = Y . WheneverY satisfies
the left-hand side of a dependencyD, so mustX. It is easy to see
that this property does not hold in general. For example, consider
a tgd that maps paths of length two of the target to the source:
T1(x, y) ∧ T2(y, z) → S(x, z). LetX = {T1(A,B), T2(C,D)}
be a set of tuples ofJcan and leth be a homomorphism such that
h(A) = A, h(B) = B, h(C) = B andh(D) = D. Let Y =
h(X), that isY = {T1(A,B), T2(B,D)}. Clearly,Y satisfies
the left-hand side of the tgd, butX does not. Note that variabley
appears in two literals of the tgd and the null valuesB andC appear
at the positions ofy in the tuples ofX. It is easy to show that null
values appear only at positions where there is a marked variable.
Therefore, the variabley is a marked variable that appears twice in
the left-hand side of the tgd. This, however, violates condition 1
of classCtract (Definition 9). We show next that if condition 1 of
Ctract is satisfied, we get the desired property.

Ican I
′

3

4 2
I

Jcan Jsol

1

chase(Jcan,Σts)

chase(I ∪ J,Σst)

chase(Jsol,Σts)

solution for(I, J)

Figure 2: A diagram to illustrate Theorem 5

LEMMA 5. LetP be a PDE setting such thatP satisfies condi-
tion 1 of the definition ofCtract. Consider a dependency ofΣts of
the form∀x αt(x) → ∃y βs(x,y). LetI be a source instance, and
J be a target instance. LetJcan be such that(I, Jcan) is the re-
sult of chasing(I, J) with Σst. Leth be a function that preserves
constants. LetJimg = h(Jcan). Assume that there are tuples
T1(c1), . . . , Tm(cm) in Jimg such thatT1(c1), . . . , Tm(cm) |=
αt(x). Then, there are tuplesT1(d1), . . . , Tm(dm) in Jcan such
thatT1(d1), . . . , Tm(dm) |= αt(x), andh(di) = ci for 1 ≤ i ≤
m.

We are now ready to prove Theorem 5.

PROOF. (⇒) We will illustrate this direction of the proof with
the diagram of Figure 2. LetJsol be a solution for(I, J) in P . Let
I ′ be a source instance such that(Jsol, I

′) is the result of chasing
(Jsol, ∅) with Σts. We will show that there is a homomorphism
from Ican to I (arrow 4 in the diagram), by composing a homo-
morphism fromIcan to I ′ (arrow 2) with a homomorphism fromI ′

to I (arrow 3).

Recall thatJcan is obtained by chasing only the dependencies of
Σst. Thus, by Lemma 3 above, there is a homomorphism from
Jcan to every solution. In particular, sinceJsol is a solution, there
is a homomorphism fromJcan to Jsol (arrow 1 of the diagram).
By Lemma 4, there is a homomorphism fromIcan to I ′ (arrow 2
of the diagram). Since(Jsol, I

′) is the result of chasing(Jsol, ∅)
with Σts only, by Lemma 3, there is a homomorphism fromI ′ to I
(arrow 3 in the diagram).

(⇐) Let h be a homomorphism fromIcan to I . We shall construct
an instanceJimg and show thatJimg is a solution for(I, J) in P .
We defineJimg as the result of applying the following functionhJ

to Jcan:

• hJ (x) = h(x) if x ∈ Dom(Ican) ∩Dom(Jcan)

• hJ (x) = x if x ∈ Dom(Jcan) −Dom(Ican)

whereDom(Ican) andDom(Jcan) denote the active domain of
Ican andJcan, respectively. In order to show thatJimg is a solution
for (I, J) in P , we will show that thatJ ⊆ Jimg , (I, Jimg) |= Σst,
and(Jimg , I) |= Σts.

Since(I, Jcan) is obtained by chasing(I, J) with Σst, we have
thatJ ⊆ Jcan. SinceJ is an instance without null values, andhJ

preserves constants,hJ (J) = J . Therefore,J ⊆ Jimg .



Algorithm ExistsSolutionP(I, J) : boolean
Let Jcan be such that(I, Jcan) is the result of
chasing(I, J) with Σst.

Let Ican be such that(Jcan, Ican) is the result of
chasing(Jcan, ∅) with Σts.

for each blockIB of Ican do
if there is no homomorphism fromIB to I then

return false
end if

end for
return true

Figure 3: Algorithm ExistsSolution

Consider a tgd ofΣst of the form∀x.φs(x) → ∃y.ψt(x,y). As-
sume that there is somec such thatI |= φs(c). Notice thatc is
a vector of constants fromDom(I), sinceI is an instance with-
out null values. Since(I, Jcan) is the result of chasing(I, J) with
Σst, we have that(I, Jcan) |= Σst. Therefore,Jcan |= ψt(c,d),
for somed. SinceJimg = hJ (Jcan), hJ is a homomorphism from
Jcan toJimg . Since conjunctive queries are preserved under homo-
morphisms,hJ (Jcan) |= ψt(hJ (c), hJ (d)). SincehJ preserves
constants,hJ (c) = c. Thus,Jimg |= ψt(c, e), for somee. We
conclude that(I, Jimg) |= Σst.

Consider a tgd ofΣts of the form ∀x αt(x) → ∃y βs(x,y).
Assume that there is somec in Dom(Jimg) such thatJimg |=
αt(c). By Lemma 5, it follows thatJcan |= αt(d), for somed
in Dom(Jcan) wherec = h(d). SinceIcan is obtained from the
chase of(Jcan, ∅) with Σts, we have that(Jcan, Ican) |= Σts.
Thus, there is somee such thatIcan |= βs(d, e). Sinceh is a ho-
momorphism fromIcan to I , and conjunctive queries are preserved
under homomorphisms, it is the case thatI |= βs(h(d), h(e)).
Sincec = h(d), we have thatI |= βs(c, f), for somef . There-
fore,(Jimg , I) |= Σts.

SinceJ ⊆ Jimg , (I, Jimg) |= Σst, and(Jimg , I) |= Σts, we
conclude thatJimg is a solution for(I, J) in P .

We now present the algorithmExistsSolutionP(I, J) (shown
in Figure 3) which decides whether there is a solution for(I, J)
in the PDE settingP . The algorithm first partitionsIcan into a set
of instances that we callblocks. Then, it checks whether there is a
homomorphism from each block ofIcan to I . The notion ofblock
is adapted from [7] and defined as follows.

DEFINITION 10. LetK be an instance. Thegraph of the nulls
ofK is an undirected graph in which: (1) the nodes are all the nulls
ofK, and (2) there is an edge between two nulls whenever the nulls
appear together in some tuple ofK.

We say thatKB is ablock of tuplesofK if KB is a maximal subset
of K that satisfies one of the following conditions: (1) there exists
a connected componentB in the graph of the nulls ofK such that
every tuple ofKB has some null value fromB; or (2) there are no
null values inKB.

The correctness of the algorithm follows from the next proposition
and Theorem 5.

PROPOSITION 1. There is a homomorphism fromIcan to I if
and only if there exists a homomorphism fromIB to I for every
blockIB of Ican.

In order to show that the algorithm runs in polynomial time for PDE
settings of classCtract, we must prove that the problem of check-
ing the existence of a homomorphism from each block ofIcan to
I is in P . We prove this by showing that every block ofIcan has
a constant number of null values. If there are source-to-target de-
pendencies only, the result follows easily. Although the result still
holds in the presence of target-to-source tgds, the proof ismuch
more involved (Theorem 6 next). The polynomial running timeof
the algorithm follows from the fact that the problem of checking for
the existence of a homomorphism from an instance with a constant
number of null values to an arbitrary instance is tractable.

THEOREM 6. Let P be a PDE setting that satisfies condition
2 of the definition ofCtract. Let I be a source instance, andJ be
a target instance. LetJcan be such that(I, Jcan) is the result of
chasing(I, J) with Σst. Let Ican be such that(Jcan, Ican) is the
result of chasing(Jcan, ∅) with Σts. Then, every block of tuples of
Ican has a constant number of null values.

Note that we only assume one of the two conditions of the defini-
tion of Ctract (condition 2). In turn, condition 2 is split into two
subconditions: 2.1 and 2.2. The proof of Theorem 6 consists of
two parts. In the first, we assume subcondition 2.1, and show that
every block ofIcan has a constant number of null values. In the
second part, we do the same assuming subcondition 2.2.

The next lemma will be used in the first part of the proof of Theo-
rem 6. It states that, assuming that the PDE satisfies subcondition
2.1, every block ofIcan is the result of chasing exactly one block
of Jcan. The proof is by induction in the size of the blocks ofIcan.

LEMMA 6. Let P = (S,T,Σst,Σts,Σt) be a PDE setting
such thatP satisfies condition 2.1 of the definition ofCtract. LetI
be a source instance, andJ be a target instance. LetJcan be such
that (I, Jcan) is the result of chasing(I, J) with Σst. LetIcan be
such that(Jcan, Ican) is the result of chasing(Jcan, ∅) with Σts.
LetIB be a block ofIcan. Then, there exists a block of tuplesJB of
Jcan such thatIB is the result of chasingJB with Σts.

PROOF. Base case.Assume thatIB has exactly one tupleS(c).
Since every dependency ofΣts has exactly one literal on the left-
hand side,S(c) is the result of chasing exactly one tuple ofJcan.

Inductive step. LetS(c) be a tuple ofIB. Let I ′B = IB −{S(c)}.
By inductive hypothesis, every tuple ofI ′B is in the result of chasing
some blockJB of Jcan. SinceIB is a block of tuples andS(c) ∈
IB, there is some tupleS′(c′) in I ′B such thatS(c) andS′(c′) share
some null valuew.

Assume thatw is a null value fromV ar(Jcan). Since every de-
pendency ofΣts has exactly one literal on the left-hand side,S(c)
is the result of chasing exactly one tupleT (d) of Jcan. Similarly,
S′(c′) is the result of chasing exactly one tupleT ′(d′) of Jcan.
Sincew appears inc andc′, andw is a null fromJcan, w occurs
in d andd′. SinceS′(c′) is in I ′B, T ′(d′) is in JB. Thus,T (d) is
also inJB. Consequently,IB is the result of chasingJB with Σts.

Assume thatw is a null value such thatw 6∈ V ar(Jcan). There-
fore,w is a null that is newly created during the chase ofJcan with



Σts. That is,w is created due to an existentially-quantified vari-
able of a tgd ofΣts. Since every dependency ofΣts has exactly
one literal on the left-hand side,S(c) andS′(c′) are in the result
of chasing exactly one tupleT (d) of Jcan. SinceS′(c′) is in I ′B,
T (d) is in JB. Consequently,IB is the result of chasingJB with
Σts.

The next two lemmas will be used in the second part of the proof
of Theorem 6 (i.e., assuming that the PDE satisfies subcondition
2.2). Recall that the null values ofIcan may be created during the
chase of the dependencies of eitherΣst or Σts. All the null values
that are created during the chase of dependencies ofΣst appear in
Jcan. The following lemma states that, for every blockIB of Ican,
the null values ofIB that were created during the chase ofΣst not
only appear inJcan but they also come from exactly one block of
Jcan. The proof is by induction in the size of the blocks ofIcan.

LEMMA 7. Let P = (S,T,Σst,Σts,Σt) be a PDE setting
such thatP satisfies condition 2.2 of the definition ofCtract. LetI
be a source instance, andJ be a target instance. LetJcan be such
that (I, Jcan) is the result of chasing(I, J) with Σst. LetIcan be
such that(Jcan, Ican) is the result of chasing(Jcan, ∅) with Σts.
Let IB be a block ofIcan. Then, there exists a block of tuplesJB
of Jcan such that for every null valuew in V ar(IB)∩V ar(Jcan),
w ∈ V ar(JB).

PROOF. Base case.Assume thatIB has exactly one tupleS(c).
Assume that there are null valuesw andz in S(c) such thatw and
z appear inJcan. LetD be the dependency ofΣts such thatS(c)
is the result of chasing some tuplesT1(d1), . . . , Tm(dm) of Jcan

with D. Let h be a homomorphism fromT1(x1), . . . , Tm(xm)
to T1(d1), . . . , Tm(dm). Let xw andxz be variables such that
h(xw) = w andh(xz) = z. Since there are null values at the
position ofxw andxz in Jcan, xw andxz are marked variables in
D. Sincew andz appear inS(c), xw andxz appear together in a
literal of the right-hand side ofD. SinceD satisfies condition 2.2
of Ctract, xz andxw appear together in some literalTi(x) of the
left-hand side ofD. Thus,w andz appear together in some tuple
Ti(di) of Jcan. Therefore,w andz belong to the same block of
Jcan.

Inductive step. LetS(c) be a tuple ofIB. Let I ′B = IB −{S(c)}.
By inductive hypothesis, there exists a blockJB of Jcan such that
every null value ofV ar(I ′B)∩V ar(Jcan) is inV ar(JB). Assume
that there is some null value inS(c). By definition of block, there
is some tupleS′(c′) in I ′B such thatS(c) andS′(c′) share some
null valuew.

Assume thatw does not appear inJcan. LetD be the dependency
of Σts such thatS(c) is the result of chasing some tuples ofJcan

with D. Sincew does not occur inJcan, it is at a position ofc
that corresponds to a marked variable which does not appear in the
left-hand side ofD (i.e., an existentially-quantified variable ofD).
SinceP satisfies condition 2.2 of the definition ofCtract, none of
the nulls ofS(c) correspond to marked variables that appear on the
left-hand side ofD. Thus, none of the nulls ofS(c) are inJcan,
and we are done.

Assume thatw appears inJcan. Sincew appears inS′(c′),w is in
V ar(JB). Assume that there is some null valuez fromDom(Jcan)
such thatz occurs inS(c) andz is distinct fromw. We must prove
now thatz appears inV ar(JB). LetD be the dependency ofΣts

such thatS(c) is the result of chasing tuplesT1(d1), . . . , Tm(dm)
of Jcan with D, for somed1, . . . ,dm. Leth be a homomorphism
from T1(x1), . . . , Tm(xm) to T1(d1), . . . , Tm(dm). Let xw and
xz be variables such thath(xw) = w andh(xz) = z. Since there
are null values at the position ofxw andxz in Jcan, xw andxz

are marked variables inD. Sincew andz appear inS(c), xw and
xz appear together in a literal of the right-hand side ofD. Since
D satisfies condition 2.2 ofCtract, xz andxw appear together in
some literalTi(x) of the left-hand side ofD. Thus,w andz ap-
pear together in some tupleTi(di) of Jcan. Sincew ∈ V ar(JB),
Ti(di) is in JB. Thus,z appears inJB.

The following lemma states that, if the PDE satisfies condition 2.2
of Ctract, then the null values of each block come from the chase
of either tgds ofΣst or Σts, but not both.

LEMMA 8. LetP be a PDE setting such thatP satisfies condi-
tion 2.2 of the definition ofCtract. LetI be a source instance, and
J be a target instance. LetJcan be such that(I, Jcan) is the result
of chasing(I, J) with Σst. Let Ican be such that(Jcan, Ican) is
the result of chasing(Jcan, ∅) with Σts. Then, for every block of
tuplesIB of Ican, exactly one of the following holds:

• all the null values ofIB are inJcan

• none of the null values ofIB are inJcan

PROOF. Assume that some null value ofIB is fromV ar(Jcan).
Assume thatIB has some null valuesw and z such thatw 6∈
V ar(Jcan) and z ∈ V ar(Jcan). By definition of block, there
is a connected componentB of the graph of the nulls ofIcan such
thatz andw are nodes ofB. Thus, there are null valuesw′ andz′ in
B such thatw′ 6∈ V ar(Jcan), z′ ∈ V ar(Jcan), andw′ andz′ are
adjacent inB. Therefore,w′ andz′ appear together in some tuple
S(c) of Ican. LetD be the dependency ofΣts that, when chased,
causes the addition ofS(c) to Ican. Sincez′ is in V ar(Jcan), it is
at a position ofc that corresponds to a marked variable that appears
in the left-hand side ofD. Sincew′ is not inJcan, it is at a position
of c that corresponds to a marked variable which does not appear
in the left-hand side ofD (i.e., an existentially-quantified variable
of D). Thus,P violates condition 2.2 of the definition ofCtract;
contradiction.

We are now ready to prove Theorem 6. First, we claim thatJB
has a constant number of tuples. SinceI is an instance without
null values, all the null values ofJB are created when chasing ex-
actly one dependency ofΣst. That is, there is a ruleD of the
form ∀x.φs(x) → ∃y.ψt(x,y) such that all tuples ofJB are in
ψt(c,d), for somec andd. The size ofψt depends on the size
of the dependency (which is assumed to be constant). Therefore,
there is a constant number of tuples inJB.

Let IB be a block of tuples ofIcan. Assume thatP satisfies con-
dition 2.1 of the definition ofCtract. By Lemma 6, there exists a
block of tuplesJB of Jcan such thatIB is the result of chasingJB
with Σts. SinceJB has a constant number of tuples andIB is the
result of chasingJB with Σts, IB has a constant number of tuples.
Consequently,IB has a constant number of null values.

Now, assume thatP satisfies condition 2.2 of the definition of
Ctract. First, assume that none of the null values ofIB are from
V ar(Jcan). Then, all the null values ofIB are created due to



existentially-quantified variables of dependencies ofΣts. Since
each step of the chase creates new null values for the existentially-
quantified variables, all the tuples ofIB are created when chasing
exactly one dependency ofΣts. That is, there is a ruleD of the
form ∀x αt(x) → ∃y βs(x,y) such that all tuples ofIB are in
βs(c,d). The size ofβs depends on the size of the dependency
(which is assumed to be constant). Therefore, there is a constant
number of tuples inIB. Consequently, there is a constant number
of null values inIB. Second, assume thatIB contains some null
value fromV ar(Jcan). LetN be the set of null values that appear
in IB and inJcan. By Lemma 7, there exists a block of tuplesJB of
Jcan such that every null value ofN appears inJB. SinceJB has a
constant number of tuples,N has a constant number of null values.
SinceIB contains some null value fromV ar(Jcan), by Lemma 8,
V ar(IB) = N .

6. Conclusions
We have introduced a framework for data sharing among indepen-
dent peers which is a generalization of data exchange and a spe-
cial case of peer data management. Peer data exchange modelsa
scenario in which a target peer receives data from an autonomous
source and has no authority to modify the data of the source peer.
Nonetheless, the target peer may specify what data it is willing
to receive, and the exchange makes use of source-to-target and
target-to-source schema mappings. Within this conceptually sim-
ple yet powerful framework, we have shown that the existence-
of-solutions problem is NP-complete. We have also exploredthe
boundary between tractability and intractability, and identified a
broad class of PDE settings for which the existence of solutions
can be tested in polynomial time. We plan to further delineate this
boundary and also investigate tractable extensions ofCtract that in-
clude target constraints.

We have also shown that the problem of obtaining certain answers
in peer data exchange is coNP-complete for unions of conjunctive
queries. This is in contrast to peer data management, where it is
undecidable; and to data exchange, where it is tractable. Weplan to
investigate the complexity of computing certain answers for PDE
settings inCtract and to find classes of PDE settings with target
constraints for which the problem of obtaining certain answers is
tractable. Finally, we wish to explore alternative semantics when
there is no solution. A semantics for query answering based on the
semantics of repairs has been proposed [5]. However, the boundary
between tractability and intractability for this semantics remains
largely unexplored.
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