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BUCKLING MODELING OF REINFORCING BARS WITH IMPERFEC TIONS 
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ABSTRACT 

Reinforced concrete columns in seismic zones are subjected to combined actions, 

resulting in axial loads in longitudinal reinforcing bars. Thus, knowing the bar response, 

especially when it is subjected to important axial compressive forces that might lead to 

buckling, is important. A bar buckling model based on concentrated plasticity and with the 

capability of introducing an initial imperfection is described. The initial imperfection is 

imposed by bending the bar with a transversely applied nonpermanent force. Additionally, 

a comprehensive study of the monotonic tensile response beyond the peak stress point and a 

simple cyclic rule, complete the physical approach of the model. Comparisons of the model 

with experimental results reveal that peak capacity (average axial stress) is well captured, 

as well as the post-peak response shape (average axial stress versus strain), with differences 

observed basically in the peak capacity for specimens with high bar imperfection-to-

diameter ratio, and in the shape of the post-peak response for specimens with low bar 

length-to-diameter ratio. 
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1. INTRODUCTION 

Reinforced concrete columns in seismic zones are subjected to combined actions that 

include mainly axial, moment and shear forces. Longitudinal reinforcing bars act as 

members that resist axial loads, which also contributed to maintain the moment of the 

column. Thus, the axial response of longitudinal bar becomes relevant. In absence of 

buckling effects the axial response can be associated to the monotonic or cyclic response of 

bars. That situation, although ideal, might not represent all cases. Reinforced concrete 

columns under cyclic lateral displacements, which represent a seismic action, would remain 

elastic under small displacements. Under severe loading, lateral displacements would 

increase, and in combination with compressive axial forces, deterioration of cover concrete 

that ends with spalling would reveal part of the longitudinal bars which are supported by 

stirrups. A large distance between stirrups would trigger buckling at lower loads, which 

also affects the column response. Thus, modeling of buckling is required to establish a 

good understanding of column behavior, especially when the longitudinal bar response may 

be affected by relatively large stirrup separation. 

 

The study of buckling has its beginning with Euler in the 18th century, which 

developed a simple equation to calculate the critical load for the elastic case. More recent 

developments have included material inelasticity. The application to reinforced concrete 

modeling appeared with Bresler and Gilbert [1], providing the information about tie 

spacing requirements and the buckling behavior of longitudinal reinforcement steel in 

compressed concrete members based on critical load estimation at yielding. Further efforts 
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have been done by researchers in order to capture not only the buckling capacity of 

longitudinal bars, but also to describe their monotonic, as well as their axial cyclic 

response. Numerical simulations using fiber discretization of beam-column elements with 

distributed plasticity have been introduced (e.g., Mau and El-Mabsout [2]; Dhakal and 

Maekawa [3]), characterizing in part the monotonic response. Cyclic response has also been 

estimated based on calibration of monotonic experimental response of bars subjected to 

buckling (e.g., Dhakal and Maekawa [3]; Monti and Nuti [4]), allowing the introduction of 

cyclic constitutive material laws for steel including buckling into beam and column 

analysis. Other authors have adopted different modeling approaches to introduce the 

buckling behavior to the beam and columns responses, such as introducing concentrated 

plasticity models based on steel material constitutive laws (e.g., Gomes and Appleton [5]; 

Restrepo [6]). 

 

2. RESEARCH SIGNIFICANCE 

The model describe in this paper considers a similar approach adopted by Restrepo [6] 

but with the capability of introducing an initial imperfection, imposed by bending the bar 

with a transversely applied nonpermanent force. Additionally, a comprehensive study of the 

monotonic response pointed out the need of defining the tensile response beyond the peak 

stress point, and a consistent point of fracture. Altogether, with a reliable compressive 

constitutive law for the steel material and a simple cyclic rule, helps to an overall simple 

and physical approach to the problem. Thus, this model, verified with experimental tests 

from the literature, can be implemented into column analysis. 
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3. MODELING STUDIES 

3.1 Tensile material model 

Common mild reinforcing steel bars are usually characterized by their monotonic stress 

versus strain response in tension. The tensile monotonic response of bars behaves linear-

elastic until yielding is achieved (fy, εy in Fig. 1), maintaining an almost constant stress until 

initiation of strain hardening is observed (fy, εsh in Fig. 1). Different steel composition may 

result in a softer tensile response, showing a curved transition from the linear-elastic zone 

to the strain hardening zone. Strain hardening is understood as an increase of strength with 

the increment of strain. The peak strength, or maximum strength (fm, εm in Fig. 1), is 

followed by a degradation of the strength, which is also associated to a strain localization 

that results in a local cross-section reduction at weaker zones of the bar. Ultimate strength 

(fu, εu in Fig. 1) is observed before the axial strength drops to zero at the onset of bar 

fracture. Figure 1 shows a representation of the overall stress versus strain response of 

reinforcing bars in tension characterized by the model proposed by Mander et al. [7]. The 

model by Mander presents an elasto-plastic response until reaching the initiation of 

hardening (fy, εsh in Fig. 1), followed by a curve that describes the hardening range until the 

peak strength point (fm, εm in Fig. 1). The degrading zone, not characterized by Mander, and 

usually by no one for engineering purposes, is assumed linear until bar fracture (fu, εu in 

Fig. 1). The experimental determination of the constitutive monotonic material response for 

steel in tension once strain localization begins (at peak strength) is spurious due to the fact 

that the strain concentration might fall inside or outside the gage length of the instrument 
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measuring axial deformation, resulting in either larger or smaller deformations, 

respectively. Not only that, even if the concentration of deformation is guarantied to be 

localized inside the instrumented length, the experimental stress-strain response would be 

associated to the gauge length used for deformation measurement. That is, if the strain 

concentration is distributed over a length, lp, which is smaller than the gauge length, lg, the 

engineering strain, measured over the gauge length would result in a smaller strain (Fig. 2). 

In general, if a section of the longitudinal bars under axial load presents strain 

concentration due to softening of the material, i.e. larger strain at lower stress, all other 

points in the bar in order to maintain equilibrium, as a beam-column element, are required 

to unload instead of overcome the peak stress. In Fig. 2, a scheme of a reinforcing bar 

undergoing tensile forces is shown assuming that the strain concentration zone falls inside 

the displacement transducer length used to determine the bar strain. The zone with strain 

concentration over the length lp reveals the actual material constitutive stress versus strain 

response in engineering coordinates, where after reaching the peak strength (point 1) 

continues straining until point 2. Outside the strain concentration zone, after reaching the 

peak strength (point 1) instead of continue straining, undergoes unloading (point 2) due to 

material heterogeneity that results in slightly stronger sections. In terms of the overall 

response, using a displacement transducer over a length lg (larger than the strain 

localization zone) to determine the bar relative displacement, and then the average strain, 

results in smaller strain values after the peak stress than at the strain localization zone. 

Thus, the ultimate strain defined for the strain concentration zone, εu,p, is determined by 

( ) ( ), ,
u m

u p m u g m g g p p
s

f f
l l l l

E
ε ε ε ε

  −= + − ⋅ + ⋅ −    
         (1) 
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where εu,g is the ultimate strain based on the gauge length, and under the assumption that 

the unloading response follows the initial elastic stiffness, Es. Common mild reinforcing 

steel bars present large ultimate strain, which leads to the approximation of Eq. (1) given by 

( ), ,
g

u p m u g m
p

l

l
ε ε ε ε≈ + − ⋅                 (2) 

The previous equations determine the real strain at the strain concentration zone by 

correcting the strain values obtained experimentally after the peak stress was reached, 

under the assumption that the strain concentration falls inside the gauge length.   

 

In general, constitutive material models for reinforcing bars have been calibrated using 

data before degradation is observed (e.g., Mander et al. [7]) to avoid spurious results. Also, 

many analyses would not require reaching such large strains. The model verification 

presented in this study requires in some cases reaching large tensile strains, which forces 

the analysis to calibrate the tensile response of reinforcing bars after reaching the peak 

stress. 

 

3.2 Compressive material model 

The tensile stress versus strain response is usually also adopted as the response for the 

steel in compression. However, it has been shown that the use of engineering coordinates to 

estimate the stress and the strain as well, that is using the initial cross-sectional area and bar 

length to estimate such magnitudes, does not represent the true or actual stress or strain the 

material is undergoing due to sequential increase of element length and decrement of cross-

sectional area while in tension. The use of true coordinates or natural coordinates as 
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indicated by Dodd and Restrepo-Posada [8] provides stress and strain measurement 

accounting for the current cross-sectional area and bar length. These stress and strain 

measurement has been shown to provide a good estimate for the stress versus strain 

response for bars in compression, assuming an identical behavior of the steel material in 

tension and compression in true coordinates. Thus, compressive response can be estimated 

from tensile tests. According to Dodd and Restrepo-Posada [8] findings such analysis gives 

good correlation with tests results performed in compression until buckling is observed. 

The compressive stress versus strain response (fs,c, εs,c) can be determined by 

( )2

, , ,1s c s t s tf f ε= − +                   (3) 

,
,

,1
s t

s c
s t

ε
ε

ε
= −

+
                   (4) 

where fs,c and εs,c are the stress and strain coordinates (engineering coordinates) in 

compression (negative) for the corresponding stress, fs,t, and strain, εs,t, coordinates 

(engineering coordinates) in tension (positive). Thus, once the constitutive steel material 

response is characterized in tension through tests, and the post-peak is corrected in order to 

represent the strain values in the strain concentration zone, Eq. (3) and (4) can be used to 

determine the compressive constitutive steel response. Although, tensile tests end with bar 

fracture, that ultimate point value may not be consistent with a failure mechanism in 

compression when using Eq. (3) and (4). Post-peak points for the tensile response can be 

extrapolated assuming no fracture failure in order to estimate the compressive response. 
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3.3 Simple cyclic material model 

The previous analysis defines the monotonic behavior of steel reinforcement. Cyclic 

response requires more detailed description. Many steel constitutive material models have 

been proposed to predict cyclic response (e.g., Menegotto and Pinto [9]; Dodd and 

Restrepo-Posada [8]; Mander et al. [7]), although most of them have assumed identical 

compressive and tensile response of steel. Such assumption is reasonable for relative small 

strain values. However, the analysis of bars that present buckling with an initial 

imperfection shows relative high axial strain even for the first loading steps (e.g., induction 

of the initial imperfection imposed by bending the bar with a transversely applied 

nonpermanent force at bar midheight). For the analysis of reinforcing bar buckling under 

monotonic axial loading, cyclic response of steel is required in order to describe initial 

imperfections or model deviation from a uniform strain distribution in the cross-section 

once buckling is onset. In this case, usually no full cycles are achieved. Thus, a calibrated 

material model, capable of reproducing few or incomplete cycles, for not only small strains, 

but also relatively large strains is required to capture the response of buckling bars that 

consider imperfections. 

 

The suggested simple cyclic material model for steel is depicted in Fig. 3. The model 

maintains both envelop monotonic responses for steel in tension and compression. Once 

reversal loading occurs from the envelope (e.g., fr,1
-, εr,1

- or fr,1
+, εr,1

+ in Fig. 3) outside the 

linear range a curve (called curve A) joints the current unloading point (origin) and a point 

with the same strain coordinate of the previous unloading point from the opposite envelope 
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(end). The end stress of curve A is determined based on the assumption that straining in one 

direction shifts the origin of the opposite envelop curve (dashed lines). The shifted envelop 

curve, that is connected with an elastic stiffness to the unloading point, starts from a virtual 

plastic strain point (e.g., point (0, εp,1
+) in Fig. 3) and defines the new stress value. In case 

of unloading from the envelope for the first time, the zero strain point in the opposite 

envelope is selected as the previous unloading point in that branch. After following the 

curve A, it is considered for simplicity that the material model follows the remaining 

envelope curve (initiation or connection to the envelope curve is marked with a dot in Fig. 

3). In the linear range, i.e., before yielding, the response is maintained within the linear-

elastic behavior. In case of unloading or reloading within a curve A, a similar curve can be 

defined that joints reversal from curve A to the previous unloading point from the opposite 

envelope or another unloading point from curve A. For the purposes of this study, it is 

considered that unloading or reloading within a curve A are forced to joint to the previous 

point from the opposite envelope, maintaining the same model parameters for curve A. 

 

The curve A represents the Bauschinger effect, that is, softer unloading and reloading 

branches affected by the strain previously attained. Chang and Mander [10] present a 

formulation to characterize curve A, based on the Menegotto-Pinto equation, which allows 

defining, among others, the initial and final unloading/reloading stiffness values. Although 

this formulation is general, it presents the disadvantage of requiring a numerical iterative 

scheme in order to connect initial and end points of curve A. Such formulation is simplified 

in this study by adopting a final unloading/reloading stiffness value that guarantees 
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connecting the initial and end points of curve A. The modified stress (fs) versus strain (εs) 

expression that characterize curve A is given by 

( ) 1

1

1

s o o s o RR

s o
o

f o

Q
f f E Q

E
f f

ε ε

ε ε

   − = + − +     −  +     −      

        (5) 

where R is a parameter that represents the Bauschinger effect, Eo is the initial 

unloading/reloading modulus of the steel bar, fo and εo are the stress and strain coordinates 

of the origin of curve A, ff and εf are the stress and strain coordinates of the end of curve A, 

and Q is a parameter defined as sec

1
oE E a

Q
a

−
=

−
 (with sec

f o

f o

f f
E

ε ε

−
=

−
 and 

[ ]( ) 1

sec1
RR

oa E E
−

= + ) that warranties that curve A ends at (εf, ff). Equation 5 describes a 

function that connects the origin and end points by means of a variable radius of curvature 

(R), such that small values of R result in a soft transition between an initial stiffness Eo, and 

a final stiffness. In the other hand, large values of R (e.g., 25) results in a curve that closely 

follows two asymptotes formed by the initial and final stiffness, that is, instead of gradually 

changing the slope, curve A presents a kink characterized by two slopes (the initial and final 

stiffness values). The previous function is then fully known after defining the parameter R 

and the stiffness Eo. According to the cyclic formulation by Chang and Mander [10] and 

after calibration with experimental data of tests performed by Panthaki (1991) (reported by 

Chang and Mander [10]), these parameters for unloading branch are 
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( )1 3o sE E ε= − ∆                   (6) 

( )
1/3

16 1 10y

s

f
R

E
ε

 = − ∆  
                (7) 

 and for the reloading branch 

( )1o sE E ε= −∆                   (8) 

( )
1/3

20 1 20y

s

f
R

E
ε

 = − ∆  
                (9) 

where 2f oε ε ε∆ = − , and fy and Es represent the yield stress and elastic stiffness of the 

steel bar. 

 

In order to verify good correlation between the proposed cyclic model and experimental 

results a series of data reported by Chang and Mander [10] are used. Representative results 

are presented in Fig. 4. As it can be seen, the general trend is captured with this simple 

model. However, slope discontinuities are expected in transition zones from curve A to the 

monotonic envelop as observed in Fig. 4(a) and 4(c). 

   

3.4 Lumped plasticity buckling model for reinforcing bar 

Reinforced concrete columns are commonly constructed as a series of longitudinal bars 

supported by stirrups or cross-ties surrounded by concrete, which are design to withstand 

axial (usually compressive loads), moment and shear forces. The following discussion 

focuses on axial and moment action on columns. Such actions transfer axial forces to the 

longitudinal reinforcement together with transversal forces from concrete core (inside 
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stirrups) expansion and stirrup straining. The axial forces in compression on reinforcing 

bars may lead to buckling between two consecutive stirrups (Fig. 5). This behavior has 

been capture by many researchers (e.g., Bayrak and Sheikh [11]; Bae et al. [12]) 

considering variables such as bar diameter, stirrup spacing, as well as an initial 

imperfection that deviates the bar from being straight. 

 

In order to capture not only the bar critical load, that is, the load required to buckle the 

bar, but also the overall stress versus strain response, a sufficiently refined model is 

required. The model described in this study was adapted from Restrepo [6] to incorporate 

an initial imperfection, and was compared to experimental results available in the literature 

(reflecting the conditions imposed in the experiments). 

 

The model for a bar of diameter d and length L between two consecutive stirrups 

assumes fixed condition at both ends, with the exception of the upper end, which is allowed 

to move vertically (longitudinally, see Fig. 5). The initial imperfection, e, is included as a 

transversal deviation from the vertical axis. All deformations are concentrated in four 

plastic hinges located at both ends and at both sides of the mid-length of the bar. The 

selection of the location of the plastic hinges obeys to the nature of the loading conditions. 

For the selected specimens the imperfection is obtained after clamping both ends and 

applying a transversal point load at bar mid-length, resulting in maximum moments at bar 

ends and mid-length. Assuming uniform material properties along the bar, the zone of 

maximum moment would result in concentration of deformation once linear behavior is 

overcome. The symmetry of the load application leads to the conclusion that the 
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concentration of deformation at bar mid-length can be divided into two plastic hinges. After 

the imperfection is included, the progression of the axial load would deform the bar even 

further, but in this case the axial load would result in a constant vertical force along the 

length of the bar and a moment distribution similar to what is expected while inducing the 

imperfection. Thus, if axial strain and curvature are concentrated only inside the plastic 

hinge length, inducing the imperfection as well as the posterior application of the axial load 

results in the same four hinge configuration. The aforementioned plastic hinge formulation 

does not satisfy the beam solution within the linear elastic range since it assumes that there 

are always four hinges with same moment and rotation, which is not consistent when 

loading the bar to induce the imperfection while the material model remains elastic. 

Although this approximation, it is shown in a later section, by comparing the response of 

the analytical model to experimental results, that the overall average stress versus strain 

response is captured, including the peak stress and post-peak curve shape. 

 

At this point, once the axial strain and curvature values are known, a sectional analysis 

would allow determining the axial stresses at different location of the bar cross-section 

under the Bernoulli’s hypothesis (plane sections remain plane after rotation), and using the 

uniaxial material constitutive law. Axial resultant force and resultant moment are 

determined based on integration of the uniaxial stresses and tributary areas. 

 

3.4.1 Initial imperfection  

The initial imperfection, e, can be approximately imposed by forcing a uniform 

curvature, φe, over the plastic hinge length, lp, equal to 



 

 14

1tan
2e p

p

e
l

L l
φ −

 =   − 
                (10) 

 

Imposing an initial curvature over the plastic hinge length would result in permanent 

resultant moment at the plastic hinges. In order to satisfy equilibrium at the initiation of the 

axial tests, that is, all resultant moments need to become zero since there is no longer a 

transversal force inducing the imperfection. This suggests that the initial imposed curvature 

needs to be reduced in order to observe unloading at different points in the cross-section 

that results in zero resultant moment. After unloading, the residual curvature becomes φe, 

which yield to a permanent transversal displacement e. Giving the relatively high unloading 

stiffness, small variation of curvature is anticipated and the imperfection value would vary 

in many cases slightly after unloading. It can be numerically solved for the initial curvature 

required to obtain the desirable imperfection e. 

 

The described procedure assumes that the impact of the axial strain is small. If axial 

strain of the plastic hinge is measured at the bar centroid, differences in the tensile and 

compressive envelop stress versus strain responses would result in relatively small axial 

strains. Similar phenomenon is anticipated when the curvature is reduced due to unloading. 

Preliminary analysis suggests that incorporating the axial flexibility results in small 

differences. 
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3.4.2 Application of axial force  

The application of the axial force, p, changes the previous equilibrium, modifying the 

axial strain, ε, and curvature, φ, in the plastic hinge zone. At the cross-section level (Fig. 6), 

the uniaxial strain at fiber i at a distance xi from the centroid (reference), εi, would vary 

assuming the Bernoulli’s hypothesis by 

i ixε ε φ= +                    (11) 

 

The uniaxial cyclic constitutive material model is used to determined the stresses, σi, at 

each fiber i. The resultant force (p) and moment (m) are determined by 

i i
i

p Aσ= −∑                    (12) 

i i i
i

m A xσ=∑                    (13) 

where Ai is the tributary area of each fiber i. 

 

Therefore, the application of the axial force induces a moment resultant at the plastic 

hinge. The symmetry of the problem under study allows analyzing only one quarter of the 

bar that stands in between two consecutive stirrups. Fig 7 shows the element under 

analysis. The upper end of the selected segment of the bar (quarter) falls in the inflection 

point, resulting in no moment, but just axial force. The other end, however, has a resultant 

moment m. From equilibrium 

( )
2

e w
m p

+
=                    (14) 



 

 16

where w is the additional transverse displacement at bar mid-length. The transverse 

displacement is determined based on the geometry of the deformation mechanism assuming 

that all transversal deformations appear after rotation of the plastic hinges. The total 

transverse displacement at mid-length can be determined by 

( )sin

cos 2
e p

p
e

L
e w l

θ θ
θ
+  + = −                  (15) 

where θe and θp are the rotation due to the initial imperfection and rotation after applying 

the axial load (p), respectively. All rotations are assumed formed by a uniform distribution 

of curvature over the plastic hinge length (lp). The rotations are calculated by 

1tan
2e e p

p

e
l

L l
θ φ −

 = =   − 
               (16) 

p p plθ φ=                     (17) 

where φe and φp are the curvature due to the initial imperfection and after applying the axial 

load (p), respectively. It can be noticed that the plastic hinge length value is maintained 

unchanged along the entire loading procedure. 

 

Giving the fixed rotational condition at both ends and the force distribution, maximum 

moments (absolute values) are obtained at both ends (symmetry) and bar mid-length. To 

maintain symmetry for a homogeneous bar, four plastic hinges are placed at maximum 

moment locations. It is assumed that such plastic hinges concentrate all deformations. 
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For the vertical displacement (v), it is assumed that deformation due to axial strain (ε) 

and curvature (φ) can be decoupled in the terms vε and vφ, which are associated to the axial 

strain (ε) and curvature (φ), respectively, which simplifies the numerical procedure. Thus, 

the vertical displacement is determined by 

( ) ( )cos
2 1 4

cos
e p

p p p
e

v v v L l lφ ε
θ θ

ε
θ

 + = + = − − +  
          (18) 

where εp is the axial strain at the plastic hinge region. 

 

Thus, the engineering average axial stress (σ ) and average axial strain (ε ) are 

determined by 

i
i

p p

A A
σ = =∑                   (19) 

v

L
ε =                      (20) 

 

The present study validates a plastic hinge formulation capable of reproducing the 

average axial stress versus average axial strain response of reinforcing bar with an initial 

imperfection under compression. The methodology, although described and compared to 

experimental evidence on isolated reinforcing bars, can be used to study column 

performance. Two different approaches from the literature could be adopted to obtain 

moment versus curvature responses: the Gomes and Appleton [5] formulation and the 

Bayrak and Sheikh [11] formulation. Gomes and Appleton [5] developed a stress versus 
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strain constitutive law for reinforcement under compression incorporating bar buckling as 

three plastic hinges that form once spalling of cover concrete occurs. The plastic hinges are 

defined based on fully plasticized cross-sectional area. The compressive constitutive law 

for the reinforcement is then applied into a sectional analysis by limiting the cyclic 

response that would be obtained if no buckling is present. Thus, an identical procedure can 

be followed, replacing the compressive envelop for the longitudinal bar with the proposed 

approach. Bayrak and Sheikh [11] followed a different direction. In their formulation 

experimental stress versus strain responses for reinforcing bar affected by buckling are used 

to predict sectional response. In this case, initiation of bar buckling occurs after spalling of 

cover concrete. At that point, ties are strained and confined concrete tends to push and bend 

the longitudinal reinforcement between ties outwards. The acting transverse force on the 

longitudinal reinforcement generates a midheight deflection, calculated base on an assumed 

shape function for the force distribution along the bar. The midheight deflection is set as the 

initial imperfection assuming that further actions are controlled by the axial force. Thus, an 

identical procedure can be followed, replacing the compressive envelop for the longitudinal 

bar with the proposed approach for a predefine imperfection. 

 

3.5 Numerical implementation 

The previously described model concentrates all deformations in four plastic hinges 

without distinction between elastic or plastic deformations, and maintaining the plastic 

hinge length constant. This, although allows using the model even for the initial loading 

stages while the material remains elastic, introduces differences with a model that treats the 
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elastic deformation as part of the entire bar length, rather than just the plastic hinge region. 

It is shown, in a later section, that the overall model response presents good agreement with 

experimental results, revealing that the assumption of concentrating all deformation at the 

plastic hinges has little impact in the general behavior. 

 

3.5.1 Initial imperfection  

The numerical procedure that includes the initial imperfection is described in Fig. 8. 

The model has one iterative scheme over one variable: the initial curvature (φ1), that is, the 

curvature required to induce deformation in the bar by the externally applied load. Defined 

the initial curvature, and evaluated at the fiber and section levels, the curvature obtained 

after unloading is set as the curvature (φe), that once the externally applied load is removed, 

results in a permanent mid-length transversal deformation e. 

 

An alternative scheme (Alternative 1, see Fig. 8) is also presented to guarantee force 

equilibrium in the axial direction. Using a zero axial strain would result in a small axial 

force, due to the asymmetry of the material model in tension and compression, which has 

little impact in the overall response. Incorporating the axial strain can be done in the same 

numerical schemes by adding this new variable. Most nonlinear numerical procedures can 

be used to solve the problem, such as Newton-Raphson, bisection method, etc. 

 

The specimens that presented no initial imperfection can be treated as bars with small 

imperfections in order to observe buckling (with transversal displacement), which deviates 
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from the trivial solution that basically reproduces the compressive constitutive material 

response with signs of only axial displacement. 

 

3.5.2 Application of axial force  

The numerical procedure that applies the incremental axial force is described in Fig. 9. 

The scheme allows incrementally determining different loading stages by increasing the 

average axial strain (ε ) in the bar. The new strain value results in a new equilibrium, 

which is solved iteratively. The model has one iterative scheme over one variable: the 

additional curvature (φp), that is, the additional curvature induced in the bar by the axial 

load, which already has the imperfection included. As in the previous section, most 

nonlinear numerical procedures can be used to solve the problem. 

 

 4. MODEL CORRELATION WITH TEST RESULTS 

The following section includes a comparison between the described model and 

experimental results from the literature. 

 

4.1 Overview of tests 

A series of tests carried out by Bayrak and Sheikh [11] are considered for comparison 

with the described model. The test program considered two important characteristics that 

made it suitable for the numerical comparison. The test program included different 

imperfection magnitudes and the tensile coupon tests were strained beyond the peak stress 

point. The experimental program carried out by Bayrak and Sheikh [11] was performed 
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using Grade 400 (fy,nominal = 400 MPa) 20M (d = 19.5 mm) steel reinforcing bars. Seven 

different tie spacing to longitudinal bar diameter ratios L/d were used, starting from 4 and 

ending with 10. For each L/d ratio, four different levels of initial imperfection (e) were 

tested, with ratios e/d ranging from 0 to 0.3. Initial imperfections were introduced into the 

bars, which had the two ends restrained against rotation, by pushing at the middle length of 

the bar with an external force, yielding to the desirable initial imperfection-over-diameter 

ratio (Fig. 10aA). The axial displacement was measured by four linear variable differential 

traducers (Fig. 10aB). Companion specimens were tested to validate the repeatability of the 

tests. 

 

4.2 Model results 

The material model was calibrated to a monotonic response including the modification 

in the degrading zone. The strain concentration zone, once degrading occurred, was set as 

the diameter length, which is consistent with the assumption of plastic hinge length of one 

diameter considered for the bar buckling model (i.e., lp=d). The fracture strain was 

determined according to Eq. (2) for a 50 mm gauge length. The experimental tensile, 

analytical tensile (with and without the post-peak correction) and compressive responses 

are depicted in Fig. 10 in engineering coordinates. Tensile responses are shown until 

fracture is set, whereas the compressive response is not shown in full range to adopt a 

reasonable scale. 

 

The numerical procedure is performed using the calibrated material model and the 

cyclic model described in previous sections, discretizing the cross-section in twenty fibers, 
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which showed to be enough refinement. The average stress versus average strain response 

is compared to the experimental data in Fig. 11. All cases with different imperfection 

values are considered, and the numerical procedure adopted did not consider Alternative 1 

(see Fig. 8), that is, no axial force equilibrium is guaranteed (p≠0). In order to numerically 

obtain the buckling response for bars with no imperfection a small perturbation was 

imposed. In this case, an imperfection-to-diameter ratio of 0.01 was used (i.e. e/d=0.01>0). 

Regarding the length-to-diameter ratio (L/d) only four values were considered for 

comparison: 4, 6, 8 and 10. 

 

Fig. 11 shows reasonable good correlation for most cases. The peak capacity is better 

captured in the cases with lower imperfections. Differences are usually in the range from 5 

to 15% when comparing the peak stress between the model and experimental results. Only 

the specimen with the largest imperfection and lowest length, i.e., e/d=0.3 and L/d=4, 

presents an analytical peak stress at a large strain, whereas the experimental result has 

already degraded presenting large differences. The post-peak response recovers the shape 

observed in the experiments. Differences are observed for specimens with low length-to-

diameter ratio (e.g., L/d=4,6); where the model overestimates the stress, since it presents a 

less pronounced degradation than the tests. In the cases with relatively larger length-to-

diameter ratio (e.g., L/d=8,10), the post-peak differences are usually less than 10% when 

comparing the stress between the model and experimental results, all the way up to the 

maximum experimental average axial strain commonly in the range between 20% and 30%. 

Regarding the overall response for different imperfection values introduced in the 

specimens, the analytical prediction reveals similar trends as the experimental response, 
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that is, the larger the imperfection the softer the response (lower stress). This is also 

consistent with other authors observations (e.g., Bae et al. [13]), which indicates that 

imperfection influences the bar response. 

 

Additional comparison analyses were performed to establish the relevance of 

guarantying axial force equilibrium during the imperfection induction process. Equilibrium 

of the axial force for that stage was included as described in Fig. 8 as Alternative 1. As 

expected, due to the flexural nature of the loading condition, the impact of such 

consideration was minor. Fig. 12 includes a similar comparison as Fig. 11, for two 

representative cases: with an imperfection-to-diameter ratio of 0 (the nominal 0 value was 

an actual value of 0.01) and 0.3 (extreme cases). In this case, the additional dashed curves 

considered the correct equilibrium. As it can be seen, the response are almost identical, 

especially for the case with a low imperfection value (e/d=0). The largest difference is seen 

for the case with the largest imperfection value (e/d=0.3) and the smallest bar length value 

(L/d=4), where the maximum axial average stress does not differ in more than 2% to the 

case that does not satisfy initial axial force equilibrium, yielding to a response closer to the 

experimental data. Another difference, which is expected due to the nature of the 

implementation, is the initial stress value. The model without Alternative 1 (not satisfying 

initial axial force equilibrium) presents initial axial stresses, which are small for the case 

with a low imperfection value (e/d=0), and increase for the case with the largest 

imperfection value (e/d=0.3) and the smallest bar length value (L/d=4), where the initial 

stress value does not exceed the maximum axial average stress in more than 3%. 
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5. SUMMARY AND CONCLUSIONS 

A model capable of representing the buckling of longitudinal reinforcing bars with 

induced initial imperfections was developed and compared to available experimental data. 

The model considers concentrated plasticity at four plastic hinges. The locations of plastic 

hinge correspond to zones of maximum moment that occurs during the induction of the 

imperfection as well as the deformation due to the axial load. The imperfections were 

induced by clamping the bar ends and applying a transversal force yielding in a residual 

maximum transversal displacement. Once the imperfection is set, the axial load acts on the 

specimen maintaining both ends fixed, which results in a moment configuration that is 

consistent with the stage of induction of imperfection. Thus, the mechanical model is 

maintained, and a sectional analysis, based on uniaxial constitutive material laws for steel, 

is used. The monotonic tensile response is characterized by common parameters, but it is 

additionally considered the post-peak behavior in order to guarantee a good response of the 

model. Giving the little information on this aspect, a linear response is proposed and a 

correction of the ultimate or fracture strain is defined based on strain concentration at the 

necking zone of the bar. The monotonic compressive response is characterized based on the 

tensile curve, assuming that tensile and compressive responses are identical in the true or 

natural coordinates, except that the compressive response does not present fracture. The 

cyclic behavior of the steel material was based on a simple curve that incorporates the 

Bauschinger effect, which reasonable well agrees with cyclic bar tests with few cycles. 
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The model assumes that all deformations are concentrated at the plastic hinges, 

resulting in an approximation of the response in the elastic range. Although the 

approximation, comparisons of the model with experimental results reveal that peak 

capacity is well captured, as well as the post-peak response shape. Differences are observed 

basically with the peak capacity for specimens with high imperfection values, and with the 

shape of the post-peak response for specimens with low length-to-diameter ratio. 

 

Additionally, it was also observed from the tests comparison that the numerical 

procedure that includes initial axial force equilibrium at the imperfection induction stage 

(indicated as Alternative 1) has a small impact in the overall response, especially for the 

case of low imperfection value. 
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FIGURES 

Figure 1 – Monotonic tensile constitutive material model for steel. 

Figure 2 – Strain localization of reinforcing steel in tension. 

Figure 3 – Simple cyclic constitutive material model for steel. 

Figure 4 – Cyclic model comparison: (a) Kent and Park, 1973, specimen 8, (b) Ma, Bertero 

and Popov, 1976, specimen 1, and (c) Panthaki, 1991, specimen R5 (reported by Chang and 

Mander, 1994). 

Figure 5 – Buckling representation of reinforcing bar with initial imperfection. 

Figure 6 – Bar cross-section at plastic hinge zone: fiber discretization. 

Figure 7 – Buckling plastic hinge model of reinforcing bar with initial imperfection 

(quarter bar). 

Figure 8 – Numerical procedure to impose initial imperfection to plastic hinge model. 

Figure 9 – Numerical procedure for buckling analysis of plastic hinge model. 

Figure 10 – Stress – strain material calibration (tension and compression). 

Figure 11 – Average stress – average strain bar buckling response: model without 

Alternative 1 (initial axial force equilibrium). 

Figure 12 – Average stress – average strain bar buckling response: model with and without 

Alternative 1 (initial axial force equilibrium). 

 



Figure 1 – Monotonic tensile constitutive material model for steel. 
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Figure 2 – Strain localization of reinforcing steel in tension. 
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Figure 3 – Simple cyclic constitutive material model for steel. 
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Figure 4 – Cyclic model comparison: (a) Kent and Park, 1973, specimen 8, (b) Ma, Bertero and Popov, 1976, 
specimen 1, and (c) Panthaki, 1991, specimen R5 (reported by Chang and Mander, 1994). 
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Figure 5 – Buckling representation of reinforcing bar with initial imperfection. 
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Figure 6 – Bar cross-section at plastic hinge zone: fiber discretization. 
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Figure 7 – Buckling plastic hinge model of reinforcing bar with initial imperfection (quarter bar). 
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Figure 8 – Numerical procedure to impose initial imperfection to plastic hinge model. 
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Figure 9 – Numerical procedure for buckling analysis of plastic hinge model. 
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Figure 10B – Test setup scheme. 
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Figure 10 – Stress – strain material calibration (tension and compression). 
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Figure 11 – Average stress – average strain bar buckling response: model without Alternative 1 (initial axial 
force equilibrium). 
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Figure 12 – Average stress – average strain bar buckling response: model with and without Alternative 1 
(initial axial force equilibrium). 
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