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BUCKLING MODELING OF REINFORCING BARS WITH IMPERFEC TIONS

Leonardo M. Massorieand Daniel Morodér

ABSTRACT

Reinforced concrete columns in seismic zones algesied to combined actions,
resulting in axial loads in longitudinal reinforgirbars. Thus, knowing the bar response,
especially when it is subjected to important axiampressive forces that might lead to
buckling, is important. A bar buckling model basedconcentrated plasticity and with the
capability of introducing an initial imperfectioss described. The initial imperfection is
imposed by bending the bar with a transverselyiagppionpermanent force. Additionally,
a comprehensive study of the monotonic tensileomsp beyond the peak stress point and a
simple cyclic rule, complete the physical approatthe model. Comparisons of the model
with experimental results reveal that peak capdeawerage axial stress) is well captured,
as well as the post-peak response shape (avermjestagss versus strain), with differences
observed basically in the peak capacity for speasneith high bar imperfection-to-
diameter ratio, and in the shape of the post-peakanse for specimens with low bar

length-to-diameter ratio.
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1. INTRODUCTION

Reinforced concrete columns in seismic zones dogesied to combined actions that
include mainly axial, moment and shear forces. limdgnal reinforcing bars act as
members that resist axial loads, which also couteith to maintain the moment of the
column. Thus, the axial response of longitudinat bacomes relevant. In absence of
buckling effects the axial response can be assattatthe monotonic or cyclic response of
bars. That situation, although ideal, might notrespnt all cases. Reinforced concrete
columns under cyclic lateral displacements, whegtresent a seismic action, would remain
elastic under small displacements. Under severdiriga lateral displacements would
increase, and in combination with compressive driaes, deterioration of cover concrete
that ends with spalling would reveal part of thediudinal bars which are supported by
stirrups. A large distance between stirrups woulgger buckling at lower loads, which
also affects the column response. Thus, modelinguakling is required to establish a
good understanding of column behavior, especialtlgmthe longitudinal bar response may

be affected by relatively large stirrup separation.

The study of buckling has its beginning with Euier the 18th century, which
developed a simple equation to calculate the afifwad for the elastic case. More recent
developments have included material inelasticitiye pplication to reinforced concrete
modeling appeared with Bresler and Gilbetl}, [providing the information about tie
spacing requirements and the buckling behavioroofitudinal reinforcement steel in

compressed concrete members based on criticakelstaaation at yielding. Further efforts
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have been done by researchers in order to capwtreomly the buckling capacity of
longitudinal bars, but also to describe their monat, as well as their axial cyclic
response. Numerical simulations using fiber disza¢ibn of beam-column elements with
distributed plasticity have been introduced (eMau and El-Mabsout2]; Dhakal and
Maekawa 8]), characterizing in part the monotonic respoi®elic response has also been
estimated based on calibration of monotonic expemtal response of bars subjected to
buckling (e.g., Dhakal and Maekaw&];[Monti and Nuti @]), allowing the introduction of
cyclic constitutive material laws for steel inclaodi buckling into beam and column
analysis. Other authors have adopted different fimagleapproaches to introduce the
buckling behavior to the beam and columns resporgeh as introducing concentrated
plasticity models based on steel material constéutws (e.g., Gomes and Appletdsj; [

Restrepo)).

2. RESEARCH SIGNIFICANCE
The model describe in this paper considers a sirapproach adopted by Restred [

but with the capability of introducing an initiahperfection, imposed by bending the bar
with a transversely applied nonpermanent force.ihatthlly, a comprehensive study of the
monotonic response pointed out the need of defithegensile response beyond the peak
stress point, and a consistent point of fracturkog®ther, with a reliable compressive
constitutive law for the steel material and a sengyclic rule, helps to an overall simple
and physical approach to the problem. Thus, thidehoverified with experimental tests

from the literature, can be implemented into colianalysis.

3



3. MODELING STUDIES
3.1 Tensile material model

Common mild reinforcing steel bars are usually abhtarized by their monotonic stress
versus strain response in tension. The tensile toamresponse of bars behaves linear-
elastic until yielding is achieved, (s, in Fig. 1), maintaining an almost constant stress until
initiation of strain hardening is observdg &« in Fig. 1). Different steel composition may
result in a softer tensile response, showing aezitvansition from the linear-elastic zone
to the strain hardening zone. Strain hardening@etstood as an increase of strength with
the increment of strain. The peak strength, or maxn strength f§, &, in Fig. 1), is
followed by a degradation of the strength, whiclalso associated to a strain localization
that results in a local cross-section reductiowedker zones of the bar. Ultimate strength
(fu, &u In Fig. 1) is observed before the axial strength drops to z the onset of bar
fracture.Figure 1 shows a representation of the overall stress sesfain response of
reinforcing bars in tension characterized by thelehgroposed by Mander et ar].[ The
model by Mander presents an elasto-plastic respamdgié reaching the initiation of
hardeningf(, e« in Fig. 1), followed by a curve that describes the hardenamge until the
peak strength poinfy, ey in Fig. 1). The degrading zone, not characterized by Maratet,
usually by no one for engineering purposes, israssulinear until bar fracturd,( &, in
Fig. 1). The experimental determination of the constieitinonotonic material response for
steel in tension once strain localization begingpéak strength) is spurious due to the fact
that the strain concentration might fall insideootside the gage length of the instrument
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measuring axial deformation, resulting in eithergéa or smaller deformations,
respectively. Not only that, even if the concembratof deformation is guarantied to be
localized inside the instrumented length, the exrpental stress-strain response would be
associated to the gauge length used for deformatieasurement. That is, if the strain
concentration is distributed over a lendfwhich is smaller than the gauge lendghthe
engineering strain, measured over the gauge lemgitd result in a smaller straifig. 2).

In general, if a section of the longitudinal bareader axial load presents strain
concentration due to softening of the material, laeger strain at lower stress, all other
points in the bar in order to maintain equilibriuas, a beam-column element, are required
to unload instead of overcome the peak stres&idn 2, a scheme of a reinforcing bar
undergoing tensile forces is shown assuming thesthain concentration zone falls inside
the displacement transducer length used to deterthi@ bar strain. The zone with strain
concentration over the lengthreveals the actual material constitutive stressugestrain
response in engineering coordinates, where aftachieg the peak strength (point 1)
continues straining until point 2. Outside the istr@oncentration zone, after reaching the
peak strength (point 1) instead of continue strejnundergoes unloading (point 2) due to
material heterogeneity that results in slightlyosger sections. In terms of the overall
response, using a displacement transducer overngthld, (larger than the strain
localization zone) to determine the bar relativeptiicement, and then the average strain,
results in smaller strain values after the pea&sstithan at the strain localization zone.

Thus, the ultimate strain defined for the strainaamtration zones,, is determined by

Eup =em{(eu,g —2,) 1, +( fu;mj-og —|p)}/p @
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where g, 4 is the ultimate strain based on the gauge leragtt,under the assumption that
the unloading response follows the initial elastitfness, E Common mild reinforcing
steel bars present large ultimate strain, whictideéa the approximation of Edl)(given by

|
gu,p~8m+(8u,g_gm)'l_g (2)
p

The previous equations determine the real straithatstrain concentration zone by
correcting the strain values obtained experimentafter the peak stress was reached,

under the assumption that the strain concentréitsinside the gauge length.

In general, constitutive material models for remsfog bars have been calibrated using
data before degradation is observed (e.g., Mandar F]) to avoid spurious results. Also,
many analyses would not require reaching such |astgeins. The model verification
presented in this study requires in some casesirgatarge tensile strains, which forces
the analysis to calibrate the tensile responseemifarcing bars after reaching the peak

stress.

3.2 Compressive material model

The tensile stress versus strain response is ysalath adopted as the response for the
steel in compression. However, it has been shoaftiie use of engineering coordinates to
estimate the stress and the strain as well, thegtingy the initial cross-sectional area and bar
length to estimate such magnitudes, does not repirdise true or actual stress or strain the
material is undergoing due to sequential increAstement length and decrement of cross-

sectional area while in tension. The use of truerdinates or natural coordinates as
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indicated by Dodd and Restrepo-Posa8a grovides stress and strain measurement
accounting for the current cross-sectional area laad length. These stress and strain
measurement has been shown to provide a good éstifma the stress versus strain
response for bars in compression, assuming anicaémehavior of the steel material in
tension and compression in true coordinates. T¢tmspressive response can be estimated
from tensile tests. According to Dodd and RestrEpsadad] findings such analysis gives
good correlation with tests results performed impeession until buckling is observed.

The compressive stress versus strain respdnses() can be determined by

fs,c == fs,t (1+ gs,t )2 (3)
ESI
=_—5 4
> l+eg, @

where fsc and &, are the stress and strain coordinates (engineeroggdinates) in
compression (negative) for the corresponding str&gs and strain,es;, coordinates
(engineering coordinates) in tension (positive)ug,honce the constitutive steel material
response is characterized in tension through taststhe post-peak is corrected in order to
represent the strain values in the strain concémtraone, Eq.J) and é) can be used to
determine the compressive constitutive steel respoAlthough, tensile tests end with bar
fracture, that ultimate point value may not be c¢steat with a failure mechanism in
compression when using E®) @nd @). Post-peak points for the tensile response can be

extrapolated assuming no fracture failure in otdesstimate the compressive response.



3.3 Simple cyclic material model

The previous analysis defines the monotonic behadicsteel reinforcement. Cyclic
response requires more detailed description. M&egl sonstitutive material models have
been proposed to predict cyclic response (e.g., eidetto and Pinto9]; Dodd and
Restrepo-Posada&][ Mander et al. T]), although most of them have assumed identical
compressive and tensile response of steel. Sucimasen is reasonable for relative small
strain values. However, the analysis of bars thagsent buckling with an initial
imperfection shows relative high axial strain ef@nthe first loading steps (e.g., induction
of the initial imperfection imposed by bending thar with a transversely applied
nonpermanent force at bar midheight). For the amalgf reinforcing bar buckling under
monotonic axial loading, cyclic response of steelaquired in order to describe initial
imperfections or model deviation from a uniformagtr distribution in the cross-section
once buckling is onset. In this case, usually dbcfycles are achieved. Thus, a calibrated
material model, capable of reproducing few or inptate cycles, for not only small strains,
but also relatively large strains is required tptage the response of buckling bars that

consider imperfections.

The suggested simple cyclic material model forlgtedepicted inFig. 3. The model
maintains both envelop monotonic responses foll gtetension and compression. Once
reversal loading occurs from the envelope (&.g,.s1 orf.1", &1" in Fig. 3) outside the
linear range a curve (called cur joints the current unloading point (origin) ang@int

with the same strain coordinate of the previousatihg point from the opposite envelope



(end). The end stress of curkas determined based on the assumption that stgainione
direction shifts the origin of the opposite envetapve (dashed lines). The shifted envelop
curve, that is connected with an elastic stiffniesthe unloading point, starts from a virtual
plastic strain point (e.g., poind,(s,1") in Fig. 3) and defines the new stress value. In case
of unloading from the envelope for the first tintee zero strain point in the opposite
envelope is selected as the previous unloadingt poithat branch. After following the
curve A, it is considered for simplicity that the materialbdel follows the remaining
envelope curve (initiation or connection to the edape curve is marked with a dotHig.

3). In the linear range, i.e., before yielding, tlesponse is maintained within the linear-
elastic behavior. In case of unloading or reloadiithin a curveA, a similar curve can be
defined that joints reversal from cumeto the previous unloading point from the opposite
envelope or another unloading point from cuAeFor the purposes of this study, it is
considered that unloading or reloading within aveuk are forced to joint to the previous

point from the opposite envelope, maintaining e model parameters for cure

The curveA represents the Bauschinger effect, that is, sofdrading and reloading
branches affected by the strain previously attair@dang and Manderl(] present a
formulation to characterize curvg based on the Menegotto-Pinto equation, whichaallo
defining, among others, the initial and final urdoey/reloading stiffness values. Although
this formulation is general, it presents the disedage of requiring a numerical iterative
scheme in order to connect initial and end poiftsuove A. Such formulation is simplified

in this study by adopting a final unloading/reloaglistiffness value that guarantees



connecting the initial and end points of cuAkeThe modified stresdy versus straing)

expression that characterize cufves given by

1-Q
1{5{‘95_80 H
ff - fo

where R is a parameter that represents the BauschingexctefE, is the initial

fo="1 + Eo(es—eo) Q+

— (5)

unloading/reloading modulus of the steel baand &, are the stress and strain coordinates

of the origin of curvée, f and & are the stress and strain coordinates of the Eodree A,

— fo—f
and Q is a parameter defined a&):% (with E  =—"—2
—a E;—&

and

[o]

%I/R
a:(1+[EO/ ESEC]R) ) that warranties that curve ends at £, f;). Equation 5 describes a

function that connects the origin and end pointsri®ans of a variable radius of curvature
(R), such that small values Bfresult in a soft transition between an initiaffs#ssEo, and
a final stiffness. In the other hand, large valoER (e.g., 25) results in a curve that closely
follows two asymptotes formed by the initial anddfi stiffness, that is, instead of gradually
changing the slope, cunfepresents a kink characterized by two slopes (thialiand final
stiffness values). The previous function is thelfy fknown after defining the paramet@r
and the stiffnes&,. According to the cyclic formulation by Chang akM@nder [LO] and
after calibration with experimental data of testsfprmed by Panthaki (1991) (reported by

Chang and Mandedf()]), these parameters for unloading branch are
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E, =E,(1- 3A¢) (6)

R=16 fy l/311(A 7
-1 | (1-10v) ™

S

and for the reloading branch

E, = E (1-42) ®)

f 1/3
R= ZO{EYJ (1- 20Me) ©)

S

where A¢g = ‘ef —-&,

/2, andfy, andEs represent the yield stress and elastic stiffnésbeo

steel bar.

In order to verify good correlation between thegm®ed cyclic model and experimental
results a series of data reported by Chang and &dh@] are used. Representative results
are presented ifrig. 4. As it can be seen, the general trend is captaiéid this simple
model. However, slope discontinuities are expedatetansition zones from curv to the

monotonic envelop as observedHig. 4(a)and4(c).

3.4 Lumped plasticity buckling model for reinforcing bar

Reinforced concrete columns are commonly constiuasea series of longitudinal bars
supported by stirrups or cross-ties surroundeddnciete, which are design to withstand
axial (usually compressive loads), moment and sl@aes. The following discussion
focuses on axial and moment action on columns. @wtibns transfer axial forces to the

longitudinal reinforcement together with transvérfaces from concrete core (inside
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stirrups) expansion and stirrup straining. The lafoeces in compression on reinforcing
bars may lead to buckling between two consecuttiveups §ig. 5). This behavior has
been capture by many researchers (e.g., Bayrak Siredkh [L1]; Bae et al. 12])

considering variables such as bar diameter, stirsppcing, as well as an initial

imperfection that deviates the bar from being gtrai

In order to capture not only the bar critical lo#uht is, the load required to buckle the
bar, but also the overall stress versus strainoresyy a sufficiently refined model is
required. The model described in this study wagptatdhafrom Restrepdd] to incorporate
an initial imperfection, and was compared to expertal results available in the literature

(reflecting the conditions imposed in the experitsign

The model for a bar of diametelr and lengthL between two consecutive stirrups
assumes fixed condition at both ends, with the gtxae of the upper end, which is allowed
to move vertically (longitudinally, seleig. 5). The initial imperfectione, is included as a
transversal deviation from the vertical axis. Akfarmations are concentrated in four
plastic hinges located at both ends and at botbssaf the mid-length of the bar. The
selection of the location of the plastic hingesysb® the nature of the loading conditions.
For the selected specimens the imperfection isimddaafter clamping both ends and
applying a transversal point load at bar mid-leng#isulting in maximum moments at bar
ends and mid-length. Assuming uniform material prps along the bar, the zone of
maximum moment would result in concentration ofodetfation once linear behavior is

overcome. The symmetry of the load application dedd the conclusion that the
12



concentration of deformation at bar mid-length bardivided into two plastic hinges. After
the imperfection is included, the progression @& #xial load would deform the bar even
further, but in this case the axial load would Hegu a constant vertical force along the
length of the bar and a moment distribution simitawhat is expected while inducing the
imperfection. Thus, if axial strain and curvature aoncentrated only inside the plastic
hinge length, inducing the imperfection as weltres posterior application of the axial load
results in the same four hinge configuration. Tfoeeanentioned plastic hinge formulation
does not satisfy the beam solution within the lindastic range since it assumes that there
are always four hinges with same moment and ratatghich is not consistent when
loading the bar to induce the imperfection while tmaterial model remains elastic.
Although this approximation, it is shown in a laga&ction, by comparing the response of
the analytical model to experimental results, tin@t overall average stress versus strain

response is captured, including the peak strespasidpeak curve shape.

At this point, once the axial strain and curvatua@ies are known, a sectional analysis
would allow determining the axial stresses at d#ffee location of the bar cross-section
under the Bernoulli’s hypothesis (plane sectiomsaia plane after rotation), and using the
uniaxial material constitutive law. Axial resultaribrce and resultant moment are

determined based on integration of the uniaxialsses and tributary areas.

3.4.1 Initial imperfection
The initial imperfection,e, can be approximately imposed by forcing a uniform

curvature g, over the plastic hinge length, equal to
13



4 e
¢, =tan (L/Z—Ip]/p (10)

Imposing an initial curvature over the plastic t@nigngth would result in permanent
resultant moment at the plastic hinges. In ordesatcsfy equilibrium at the initiation of the
axial tests, that is, all resultant moments neetlelcome zero since there is no longer a
transversal force inducing the imperfection. Thiggests that the initial imposed curvature
needs to be reduced in order to observe unloadintiffarent points in the cross-section
that results in zero resultant moment. After uningdthe residual curvature becomgs
which yield to a permanent transversal displacerae@iving the relatively high unloading
stiffness, small variation of curvature is antid¢gzhand the imperfection value would vary
in many cases slightly after unloading. It can benarically solved for the initial curvature

required to obtain the desirable imperfection

The described procedure assumes that the impabteadxial strain is small. If axial
strain of the plastic hinge is measured at thedeatroid, differences in the tensile and
compressive envelop stress versus strain respavnselsl result in relatively small axial
strains. Similar phenomenon is anticipated wherctheature is reduced due to unloading.
Preliminary analysis suggests that incorporating #xial flexibility results in small

differences.
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3.4.2 Application of axial force

The application of the axial force, changes the previous equilibrium, modifying the
axial strain g, and curvatureg, in the plastic hinge zone. At the cross-sectevel Fig. 6),
the uniaxial strain at fiberr at a distance; from the centroid (referencey, would vary

assuming the Bernoulli’s hypothesis by

5 =e+gx (1)

The uniaxial cyclic constitutive material modelised to determined the stressgsat

each fibei. The resultant forcgpf and momentr() are determined by

p:_ZGiA (12)

m=> 0,AX (13)

whereA is the tributary area of each fiker

Therefore, the application of the axial force inglsi@ moment resultant at the plastic
hinge. The symmetry of the problem under studywal@nalyzing only one quarter of the
bar that stands in between two consecutive stirrtjig 7 shows the element under
analysis. The upper end of the selected segmetitedbar (quarter) falls in the inflection
point, resulting in no moment, but just axial far@ée other end, however, has a resultant

momentm. From equilibrium

(14)
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where w is the additional transverse displacement at bal-lemgth. The transverse
displacement is determined based on the geometheafeformation mechanism assuming
that all transversal deformations appear aftertioytaof the plastic hinges. The total

transverse displacement at mid-length can be detechy

sin(6.+6
e+W:M(L_| (15)
coss, 2 °

where 6. and g, are the rotation due to the initial imperfectiardaotation after applying

the axial loadf), respectively. All rotations are assumed formgdluniform distribution

of curvature over the plastic hinge lend).(The rotations are calculated by

41 —tant| €
6,=¢Jl,=tan (L/Z—Ip] (16)

6, =4, (17)

p p
whereg. and g, are the curvature due to the initial imperfecton after applying the axial
load ), respectively. It can be noticed that the plakiitge length value is maintained

unchanged along the entire loading procedure.

Giving the fixed rotational condition at both eratsd the force distribution, maximum
moments (absolute values) are obtained at both @ydsmetry) and bar mid-length. To
maintain symmetry for a homogeneous bar, four glaghges are placed at maximum

moment locations. It is assumed that such plagtigds concentrate all deformations.
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For the vertical displacement)( it is assumed that deformation due to axialist(a)
and curvatured) can be decoupled in the termsandv,, which are associated to the axial
strain €) and curvatured), respectively, which simplifies the numerical @edure. Thus,

the vertical displacement is determined by

vv¢+vg(L2|p){1%} 4¢, (18)

wheres, is the axial strain at the plastic hinge region.

Thus, the engineering average axial stres9 @nd average axial straine § are

determined by

5= - (19)

> o

P
ZA

(20)

™|
I

<

The present study validates a plastic hinge fortiariacapable of reproducing the
average axial stress versus average axial straponse of reinforcing bar with an initial
imperfection under compression. The methodolog§oalgh described and compared to
experimental evidence on isolated reinforcing baran be used to study column
performance. Two different approaches from therditere could be adopted to obtain
moment versus curvature responses: the Gomes aptetdp b] formulation and the

Bayrak and Sheikhlfl] formulation. Gomes and Appleto][developed a stress versus
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strain constitutive law for reinforcement under goassion incorporating bar buckling as
three plastic hinges that form once spalling ofexasoncrete occurs. The plastic hinges are
defined based on fully plasticized cross-secti@arab. The compressive constitutive law
for the reinforcement is then applied into a sewloanalysis by limiting the cyclic
response that would be obtained if no bucklingresent. Thus, an identical procedure can
be followed, replacing the compressive envelopther longitudinal bar with the proposed
approach. Bayrak and Sheiki1] followed a different direction. In their formulah
experimental stress versus strain responses fuoreing bar affected by buckling are used
to predict sectional response. In this case, totiaof bar buckling occurs after spalling of
cover concrete. At that point, ties are strainedl @nfined concrete tends to push and bend
the longitudinal reinforcement between ties outwarbhe acting transverse force on the
longitudinal reinforcement generates a midheigfiedéon, calculated base on an assumed
shape function for the force distribution along ltfae. The midheight deflection is set as the
initial imperfection assuming that further actiare controlled by the axial force. Thus, an
identical procedure can be followed, replacingdbmpressive envelop for the longitudinal

bar with the proposed approach for a predefine rfapgon.

3.5 Numerical implementation

The previously described model concentrates albrdedtions in four plastic hinges
without distinction between elastic or plastic defations, and maintaining the plastic
hinge length constant. This, although allows ugimg model even for the initial loading

stages while the material remains elastic, intredwtifferences with a model that treats the
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elastic deformation as part of the entire bar lengither than just the plastic hinge region.
It is shown, in a later section, that the overatidel response presents good agreement with
experimental results, revealing that the assumpifoconcentrating all deformation at the

plastic hinges has little impact in the generalawebr.

3.5.1 Initial imperfection

The numerical procedure that includes the initiaperfection is described iRig. 8.
The model has one iterative scheme over one varidtie initial curvaturegy), that is, the
curvature required to induce deformation in thelbathe externally applied load. Defined
the initial curvature, and evaluated at the fibed aection levels, the curvature obtained
after unloading is set as the curvatufg),(that once the externally applied load is removed

results in a permanent mid-length transversal dedtione.

An alternative scheme (Alternative 1, 4eig. 8) is also presented to guarantee force
equilibrium in the axial direction. Using a zeroiaxstrain would result in a small axial
force, due to the asymmetry of the material modeknsion and compression, which has
little impact in the overall response. Incorporgtthe axial strain can be done in the same
numerical schemes by adding this new variable. Mosiinear numerical procedures can

be used to solve the problem, such as Newton-Raphggection method, etc.

The specimens that presented no initial imperfectian be treated as bars with small

imperfections in order to observe buckling (withrnsversal displacement), which deviates
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from the trivial solution that basically reproduct® compressive constitutive material

response with signs of only axial displacement.

3.5.2 Application of axial force

The numerical procedure that applies the increnexxial force is described iRig. 9.
The scheme allows incrementally determining diffiérkmading stages by increasing the
average axial straing() in the bar. The new strain value results in a regwilibrium,
which is solved iteratively. The model has oneatee scheme over one variable: the
additional curvatured), that is, the additional curvature induced in b by the axial
load, which already has the imperfection includég. in the previous section, most

nonlinear numerical procedures can be used to $bé/problem.

4. MODEL CORRELATION WITH TEST RESULTS
The following section includes a comparison betwdha described model and

experimental results from the literature.

4.1 Overview of tests

A series of tests carried out by Bayrak and Sh§ldh are considered for comparison
with the described model. The test program consaiéwo important characteristics that
made it suitable for the numerical comparison. Thst program included different
imperfection magnitudes and the tensile coupors teste strained beyond the peak stress

point. The experimental program carried out by Blkyand Sheikh11] was performed
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using Grade 400fy(,omna = 400 MPa) 20Md = 19.5 mm) steel reinforcing bars. Seven
different tie spacing to longitudinal bar diametatiosL/d were used, starting from 4 and
ending with 10. For each/d ratio, four different levels of initial imperfeotn €) were
tested, with ratiog/d ranging from 0 to 0.3. Initial imperfections warngroduced into the
bars, which had the two ends restrained againstioot by pushing at the middle length of
the bar with an external force, yielding to theiddse initial imperfection-over-diameter
ratio (Fig. 10aA). The axial displacement was measured by fouativariable differential
traducersKig. 10aB. Companion specimens were tested to validatesiheatability of the

tests.

4.2 Model results

The material model was calibrated to a monotorspaeese including the modification
in the degrading zone. The strain concentratiorezonce degrading occurred, was set as
the diameter length, which is consistent with tesuanption of plastic hinge length of one
diameter considered for the bar buckling model.,(lg=d). The fracture strain was
determined according to Eg2)(for a 50 mm gauge length. The experimental tensil
analytical tensile (with and without the post-peakrection) and compressive responses
are depicted irFig. 10 in engineering coordinates. Tensile responsesshosvn until
fracture is set, whereas the compressive respanseti shown in full range to adopt a

reasonable scale.

The numerical procedure is performed using thebcatied material model and the

cyclic model described in previous sections, diszireg the cross-section in twenty fibers,
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which showed to be enough refinement. The avertagessversus average strain response
is compared to the experimental dataFig. 11 All cases with different imperfection
values are considered, and the numerical procestlopted did not consider Alternative 1
(seeFig. 8), that is, no axial force equilibrium is guaramtdp£0). In order to numerically
obtain the buckling response for bars with no irffgtion a small perturbation was
imposed. In this case, an imperfection-to-diametgo of 0.01 was used (i.e/d=0.01>0).
Regarding the length-to-diameter ratit/d) only four values were considered for

comparison: 4, 6, 8 and 10.

Fig. 11 shows reasonable good correlation for most cades.peak capacity is better
captured in the cases with lower imperfectionsfdbénces are usually in the range from 5
to 15% when comparing the peak stress between tiielnand experimental results. Only
the specimen with the largest imperfection and kiwength, i.e.,e/d=0.3 andL/d=4,
presents an analytical peak stress at a largenstidiereas the experimental result has
already degraded presenting large differences.pis¢-peak response recovers the shape
observed in the experiments. Differences are olesefor specimens with low length-to-
diameter ratio (e.gl,/d=4,6); where the model overestimates the stresse st presents a
less pronounced degradation than the tests. Ircdkes with relatively larger length-to-
diameter ratio (e.gL/d=8,10), the post-peak differences are usually feas 10% when
comparing the stress between the model and expetaineesults, all the way up to the
maximum experimental average axial strain commanthe range between 20% and 30%.
Regarding the overall response for different impetbn values introduced in the

specimens, the analytical prediction reveals sintilands as the experimental response,
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that is, the larger the imperfection the softer theponse (lower stress). This is also
consistent with other authors observations (e.ge Bt al. 13]), which indicates that

imperfection influences the bar response.

Additional comparison analyses were performed tdabdish the relevance of
guarantying axial force equilibrium during the imfeetion induction process. Equilibrium
of the axial force for that stage was included ascdbed inFig. 8 as Alternative 1. As
expected, due to the flexural nature of the loadeundition, the impact of such
consideration was minoif-ig. 12 includes a similar comparison &sg. 11, for two
representative cases: with an imperfection-to-diametio of O (the nominal O value was
an actual value of 0.01) and 0.3 (extreme caseghis$ case, the additional dashed curves
considered the correct equilibrium. As it can bensehe response are almost identical,
especially for the case with a low imperfectionuwea/d=0). The largest difference is seen
for the case with the largest imperfection valeld<0.3) and the smallest bar length value
(L/d=4), where the maximum axial average stress doesglifier in more than 2% to the
case that does not satisfy initial axial force &gnum, yielding to a response closer to the
experimental data. Another difference, which is estpd due to the nature of the
implementation, is the initial stress value. Thedelowvithout Alternative 1 (not satisfying
initial axial force equilibrium) presents initiakial stresses, which are small for the case
with a low imperfection value e(d=0), and increase for the case with the largest
imperfection value gd=0.3) and the smallest bar length valléd€4), where the initial

stress value does not exceed the maximum axiahgeestress in more than 3%.
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5. SUMMARY AND CONCLUSIONS

A model capable of representing the buckling ofgitudinal reinforcing bars with
induced initial imperfections was developed and pared to available experimental data.
The model considers concentrated plasticity at fdastic hinges. The locations of plastic
hinge correspond to zones of maximum moment thatirscduring the induction of the
imperfection as well as the deformation due to &x&l load. The imperfections were
induced by clamping the bar ends and applying rstrarsal force yielding in a residual
maximum transversal displacement. Once the impofecs set, the axial load acts on the
specimen maintaining both ends fixed, which resut® moment configuration that is
consistent with the stage of induction of imperf@ct Thus, the mechanical model is
maintained, and a sectional analysis, based orxiahizonstitutive material laws for steel,
is used. The monotonic tensile response is charaeteby common parameters, but it is
additionally considered the post-peak behaviorrgdeoto guarantee a good response of the
model. Giving the little information on this aspeatlinear response is proposed and a
correction of the ultimate or fracture strain idiked based on strain concentration at the
necking zone of the bar. The monotonic compres&sgponse is characterized based on the
tensile curve, assuming that tensile and compressisponses are identical in the true or
natural coordinates, except that the compressisporese does not present fracture. The
cyclic behavior of the steel material was basedaocsimple curve that incorporates the

Bauschinger effect, which reasonable well agredis ayiclic bar tests with few cycles.
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The model assumes that all deformations are coratedt at the plastic hinges,
resulting in an approximation of the response ie thlastic range. Although the
approximation, comparisons of the model with expental results reveal that peak
capacity is well captured, as well as the post-peagonse shape. Differences are observed
basically with the peak capacity for specimens \itih imperfection values, and with the

shape of the post-peak response for specimendomitlength-to-diameter ratio.

Additionally, it was also observed from the testsmparison that the numerical
procedure that includes initial axial force equilion at the imperfection induction stage
(indicated as Alternative 1) has a small impacthie overall response, especially for the

case of low imperfection value.

REFERENCES
[1] Bresler B, Gilbert PH. Tie Requirements for Rerced Concrete Columns. ACI

Journal Proceedings 1961;58(11):555-570.

[2] Mau ST, EI-Mabsout M. Inelastic Buckling of Révrcing Bars. Journal of Engineering
Mechanics 1989;115(1):1-17.

[3] Dhakal RP, Maekawa K. Modeling for Postyieldd&iing of Reinforcement. Journal of
Structural Engineering 2002;128(9):1139-1147.

[4] Monti G, Nuti C. Nonlinear Cyclic Behavior ofdiforcing Bars Including Buckling.

Journal of Structural Engineering 1992;118(12):32@84.

25



[5] Gomes A, Appleton J. Nonlinear Cyclic Stresgat Relationship of Reinforcing Bars
Including Buckling. Engineering Structures 1997 1I®(822—-826.

[6] Restrepo JI. Advanced Seismic Design CourseedloDepartment of Structural
Engineering, University of California at San Die2f207.

[7] Mander JB, Priestley MJN, Park R. Seismic Desgd Bridge Piers. Department of
Civil Engineering, University of Canterbury, Rep8#-2, 1984, 483 pp.

[8] Dodd LL, Restrepo-Posada Jl. Model for PredgtiCyclic Behavior of Reinforcing

Steel. Journal of Structural Engineering 1995;121433-445.

[9] Menegotto M, Pinto PE. Method of Analysis forydlically Loaded Reinforced

Concrete Plane Frames Including Changes in Geonatdy Non-Elastic Behavior of
Elements Under Combined Normal Force and Bendingcdedings, IABSE Symposium,
Lisbon, Portugal 1973.

[10] Chang GA, Mander JB. Seismic Energy BasedgkatiDamage Analysis of Bridge
Columns: Part | — Evaluation of Seismic CapacitgpBrtment of Civil Engineering, State
University of New York at Buffalo, Technical RepéCEER-94-0006, 1994, 483 pp.

[11] Bayrak O, Sheikh SA. Plastic Hinge Analysisuthal of Structural Engineering
2001;127(9):1092-1100.

[12] Bae S, Mieses AM, Bayrak O. Inelastic Bucklin§ Reinforcing Bars. Journal of
Structural Engineering 2005;131(2):314-321.

[13] Bae S, Mieses AM, Bayrak O. Closure to “Inéa8uckling of Reinforcing Bars” by

Sungjin Bae, Alexa M. Mieses, and Oguzhan Bayrakirdal of Structural Engineering

2008;134(8):1399-1402.

26



FIGURES

Figure 1 — Monotonic tensile constitutive material model $teel.

Figure 2 — Strain localization of reinforcing steel in temsi

Figure 3 — Simple cyclic constitutive material model foreite

Figure 4 —Cyclic model comparison: (a) Kent and Park, 19p2csmen 8, (b) Ma, Bertero
and Popov, 1976, specimen 1, and (c) Panthaki,, @&ktimen R5 (reported by Chang and
Mander, 1994).

Figure 5 —Buckling representation of reinforcing bar withtial imperfection.

Figure 6 —Bar cross-section at plastic hinge zone: fiberreiszation.

Figure 7 —Buckling plastic hinge model of reinforcing bar initial imperfection
(quarter bar).

Figure 8 —Numerical procedure to impose initial imperfecttorplastic hinge model.
Figure 9 —Numerical procedure for buckling analysis of plasinge model.

Figure 10 —Stress — strain material calibration (tension ammh@ression).

Figure 11 —Average stress — average strain bar buckling respenodel without
Alternative 1 (initial axial force equilibrium).

Figure 12 —Average stress — average strain bar buckling respenodel with and without

Alternative 1 (initial axial force equilibrium).
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Figure 1— Monotonic tensile constitutive material model $teel.




Figure 2 — Strain localization of reinforcing steel in temsi
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Figure 3— Simple cyclic constitutive material model foredte
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Figure 4 —Cyclic model comparison: (a) Kent and Park, 19p@cénen 8, (b) Ma, Bertero and Popov, 1976,

specimen 1, and (c) Panthaki, 1991, specimen Roited by Chang and Mander, 1994).
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Figure 5 —Buckling representation of reinforcing bar withtial imperfection.
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Figure 6 —Bar cross-section at plastic hinge zone: fiberrdigzation.
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Figure 7 —Buckling plastic hinge model of reinforcing bar Wwihitial imperfection (quarter bar).

[
»

Rigid

(L-v)/4

plastic hinge \»

(etw)/2

A
<«

[ e




Figure 8 —Numerical procedure to impose initial imperfecttorplastic hinge model.
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Figure 9 —Numerical procedure for buckling analysis of plastinge model.
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Figure 10 —Stress — strain material calibration (tension amumression).
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Figure 11 —Average stress — average strain bar buckling respaonodel without Alternative 1 (initial axial

force equilibrium).
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Figure 12 —Average stress — average strain bar buckling responodel with and without Alternative 1
(initial axial force equilibrium).
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