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Abstract

In the presence of relatively signi®cant states of radial pressures between the helical wires of a steel cable (spiral
strand and/or wire rope), and signi®cant levels of interwire friction, the individual broken wires tend to take up

their appropriate share of the axial load within a certain length from the fractured end, which is called the recovery
(or development) length.
The paper presents full details of the formulations for determining the magnitude of recovery length in any layer

of an axially loaded multi-layered spiral strand with any construction details. The formulations are developed for

cases of fully bedded-in (old) spiral strands within which the pattern of interlayer contact forces and associated
signi®cant values of line-contact normal forces between adjacent wires in any layer, are fully stabilised, and also for
cases when (in the presence of gaps between adjacent wires) hoop line-contact forces do not exist and only radial

forces are present.
Based on a previously reported extensive series of theoretical parametric studies using a wide range of spiral

strand constructions with widely di�erent wire (and cable) diameters and lay angles, a very simple method (aimed at

practising engineers) for determining the magnitude of recovery length in any layer of an axially loaded spiral strand
with any type of construction details is prestented.
Using the ®nal outcome of theoretical parametric studies, the minimum length of test specimens for axial fatigue

tests whose test data may safely be used for estimating the axial fatigue lives of the much longer cables under
service conditions may now be determined in a straightforward fashion. Moreover, the control length over which
one should count the number of broken wires for cable discard purposes is suggested to be equal to one recovery
length whose upper bound value for both spiral strands and/or wire ropes with any construction details is

theoretically shown to be equal to 2.5 lay lengths. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Notation

A pD2/4, wire cross-section area

b half-width of line-contact patch
D wire diameter
d strand outer diameter

E Young's modulus for steel
fi + 1,i magnitude of the radial contact force per unit

length between the wires in layers i and i + 1

fi-1,i magnitude of the radial contact force per unit
length between the wires in layers i and iÿ 1

j = i+ 1

lifs recovery length in layer i
N number of layers
NT total number of wires in a strand

n number of wires in each layer, number of sub-
divisions

p pitch of the wire

PRC line-contact force for an assumed single layer
strand with a rigid core

PMSi line-contact force in layer i of a multi-layered

spiral strand
Q1

( j), Q2
( j) assumed tensile forces at the ends of interval j

R wire radius
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r = riÿDi/2
ri helix radius in layer i

S1 wire axial strain
S 01 strand axial strain
S 02C rigid body motion including contact patch

e�ects
S2 normal strain between wires in line-contact
T wire tension

Ti (x) magnitude of the tensile force in a fracturedwire
in layer i at a distance x

Xi the body force per unit length in layer i

XRi magnitude of the clench force provided by each
layer i acting on layer i+ 1

XMSj total radial force experienced by layer j = i + 1
in a multi-layered spiral strand

Dx length of interval
x spacing between the contact patches along the

concave side of a helical wire

x' spacing of contact points on the convex side
of wires

a lay angle

a' lay angle after deformation
gi helix angle in layer i (= p/2ÿ ai)
gi, gi helix angles on the upper and lower lines of

contact of a wire in layer i, respectively
dn normal approach of distant points in the Hertz

problem
m co-e�cient of friction

u Poisson's ratio
z co-ordinate along the fractured wire with the

fractured end denoted by z= 0

Superscript and subscript
i layer number (outer layer: i = 1)

j interval number

2. Introduction

There is currently a discernible trend towards the

requirement of certifying authorities for operators to
demonstrate, both at the design stage and during its
lifetime, the structural integrity of o�shore installations

such as compliantly moored structures. This has led to
the need for an adequate procedure for predicting the
fatigue endurance of mooring components coupled
with realistic discard criteria for large diameter steel

cables (spiral strands and wire ropes) for which until
fairly recently, there was little reliable and publicly
available literature. Large diameter cables also form an

important part of suspension and cable-stayed bridging
applications, amongst others.
With the passage of time and when exposed to var-

ious detrimental e�ects such as fatigue loading and/or
stress corrosion, the individual component wires may
break. The wire breakages may be external and/or in-

ternal, and internal wire breakages are invariably di�-

cult to detect reliably by currently available methods
of inspection, although some encouraging progress has
been made in fairly recent years.

In the presence of relatively signi®cant states of
radial pressure between the wires due to their helical

nature in spiral strands and/or wire ropes, and signi®-
cant levels of interwire friction, the individual broken
wires tend to take up their appropriate share of the

axial load within a certain length from the fractured
end, which is called the recovery (or development)
length.

A knowledge of recovery length should prove useful
when developing discard criteria for cables based on

the remaining fatigue life (or strength). Moreover, as
discussed by Raoof and Hobbs [1] a knowledge of the
recovery length enables one to determine the appropri-

ate minimum length of test specimens to be used for
axial fatigue tests in order for the fatigue results to
represent the actual behaviour of the much longer

cables under service conditions.
It is now well established that, depending on the

type of cable construction and nature of application,
the in¯uence of broken wires on the strength of a
cable is not directly equivalent to a loss of area of

steel; the number and distribution of wire breaks
around a cable cross section and also along its length

are both important. This, in turn, depends on the type
of cable construction and its state of internal lubrica-
tion. Formation of multiple breaks along any individ-

ual wire is a relatively common occurrence. The
performance of a wire rope is usually not a�ected by
an occasional broken wire in the cable. With su�cient

friction, a broken wire will be capable of supporting its
total share of the load in a relatively short length.

Obviously, multiple wire breaks in a relatively short
length of the cable may have a signi®cant in¯uence on
the cable's load-carrying capacity. On the experimental

side, several investigators have used methods of vary-
ing sophistication for measuring the recovery lengths
of individual wires in axially loaded spiral strands and

ropes [2±5]. The recovery length for the individual
wires in a helical cable is usually given as a percentage

of the lay length of the cable under investigation. It is
shown that the recovery length is a function of the
type of cable construction.

Chein and Costello [6] published an analytical model
for estimating the recovery length in cables. They used
the classical rigid-plastic Coulomb friction model, and

invoked Saint-Venant's principle to investigate the
recovery length of the central (straight) core wire in a

simple seven-wire helical strand. Raoof [7] extended
the theoretical model of Chein and Costello [6] to
include the transition between the full-slip to no-slip

friction interactions along the core (straight) wire of an
axially preloaded and multi-layered helical strand.
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Raoof's model was based on an extension of a pre-

viously reported orthotropic sheet theory [8] and well-

established results in the ®eld of contact between

rough and elastic bodies [9]. Later work by Raoof and

Huang [10] addressed the problem of estimating the

recovery length in parallel wire cables prestressed by

external wrapping or intermittent bands (used as, for

example, the main cables in suspension bridges). In

their work, Raoof and Huang [10] spotted an oversight

in Gjelsvik's [11] model on the same problem, and

extended Gjelsvik's model to cater for the interwire

no-slip to full-slip transition along the recovery length.

Recently, the present authors reported [12] the sali-

ent features of a theoretical model for determining the

recovery length in the helical wires in any internal

layer of an axially preloaded multi-layered spiral

strand with the e�ect of hoop and radial interwire con-

tact forces fully accounted for. Indeed, using theoreti-

cal parametric studies which covered the full practical

range of cable (and wire) diameters and lay angles, a

straightforward approach for determining the recovery

length was suggested, which may be particularly useful

for practising engineers. However, due to space limi-

tations, only part of the theoretical formulations were

reported, and no methods of solution for the complex

®nal equation de®ning the magnitude of recovery

length, were given. Instead, much attention was

devoted to the presentation of the ®nal numerical

results and a discussion of their practical implications.

Final numerical results relating to sheathed spiral

strands in deep water platform applications have also

been presented in another publication by the present

authors [13].

The purpose of this paper is to present full details of

the formulations used for arriving at the already

reported numerical results with particular emphasis on

the method(s) of solution for the complex ®nal

equation de®ning the value of recovery length based

on estimates of interwire hoop and radial forces as pre-

dicted by the orthotropic sheet concept. As a double

check, Leclair's [14] method (as opposed to the ortho-

tropic sheet concept) will also be fully utilised for esti-

mating interwire contact forces and developing the

formulations for estimating the magnitude of recovery

length in the absence of hoop contact forces.

Moreover, using the ®nal numerical results, recommen-

dations will be made for a very simple means of deter-

mining the control length for any type of spiral strand

(or indeed wire rope) construction aimed at practising

engineers. The control length being de®ned as the

appropriate length of the cable along which one should

count the number of broken wires for cable discard

purposes as recommended by various codes of practice.

As a pre-requisite to this, however, full details of the

theoretical formulations will be presented next.

3. Theory

3.1. Determination of the normal contact forces in an
intact spiral strand

Full details of the derivations are given elsewhere [8]
and only the ®nal formulations will be presented in the
following. As demonstrated in the next section, the
various parameters mentioned in the following play a

central role in developing the model for determining
the recovery length.
Very brie¯y, in the theoretical orthotropic sheet

model each layer of wires in a multi-layered helical
strand is treated as a statically indeterminate ortho-
tropic cylinder with a complaint core. The core

resists the `rigid body' radial movements, which
would occur in its absence because of the change of
lay angle from a to a' as the axial load changes and
the wires assume a closer packing. Taking a single

layer of wires with a core for a given cable axial
strain, S 01, the core is initially removed and the rigid
body motion, S 02c, including contact patch e�ects, is

calculated. Replacing the core, and enforcing com-
patibility of radial movements, the deformations in
the hoop direction and the line contact forces may

then be computed as functions of the net radial
strain, S 02, which is the one used for the orthotropic
sheet. Using such a technique, the magnitude of the

line-contact force, PRCi, for an assumed single layer
helical strand with a rigid core whose single outer
layer corresponds to the layer i in a multi-layered
strand whose outer layer is denoted by i = 1, is

found by solving the following:

dni � 4PRCi�1ÿ n2�
pE

1

3
� 1n

Di

bi

� �
; �1a�

where, the widths of the line-contact patches in layer
i, 2bi, with wire diameters, Di, whose Young's mod-

ulus and Poisson's ratio are E and n, respectively,
are given by

2bi � 1:6
PRCiDi�1ÿ n2�

E

� �1
2

: �1b�

In Eq. (1a), the approach distance between centres
of adjacent wires in line- contact, dni, under normal

strain, S2i, is given by

dni � S2iDi; �2�
where, for a given lay angle in layer i, ai, and strand

axial strain S 01, S2i may be calculated from Eqs. (2)±
(8) in ref (8): S2i denotes the normal strain between
the centres of wires in line-contact in layer i for the

case of an assumed single layer strand with a rigid
core whose helical wires have helix radius ri, with a
total number of ni wires in the layer.
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The magnitude of radial force, XRCi, in the single
layer strand with a rigid core, on the other hand, is

(based on hoop tension formula)

XRCi � Ti sin
2 ai

ri
; �3�

where, the axial tension in helical wires of layer i,

Ti=EAiS
i
1; with each wire in layer i having normal

cross-section area Ai=p D2
i /4. The magnitude of the

wire axial strain in layer i is denoted by S1
i , and may

be obtained from the following [15]:

Si
1

S 01
� 1ÿ 0:00255ai � 0:000215a2i ÿ 0:0000271a3i ; �4�

where, S 01=strand axial strain which (for a given cable
axial load) may easily be calculated once the value of
strand e�ective Young's modulus is known. Note that

ai in Eq. (4) relates to the absolute magnitude of lay
angle (irrespective of lay direction) in layer i and is
expressed in degrees.

The magnitude of the helix radius in layer i, ri, is
[16]

ri � Ri 1�
tan2 p

2
ÿ p
ni

� �
cos2 ai

24 35
1
2

; �5�

where Ri=wire radius in layer i whose number of
wires and lay angle are denoted by ni and ai, respect-
ively.

The magnitude of the clench force, XRi, as shown in
Fig. 1, provided (under a spiral strand axial strain, S 01)
by each layer i acting on layer i+ 1 is given by

XRi � XMSi ÿ 2PMSi cos bi; �6�

where, the angle bi in Fig. 1 is given by [17]

cos bi �
1

sin2 ai

�����������������������������������
1�

tan2 p
2
ÿ p
ni

� �
cos2 ai

vuut ÿ

���������������������������������������������������������������������������������������������������������������������������������������������������������
tan2

p
2
ÿ p
ni

� �
1� 1

cot2 ai cos2 p
2
ÿ p
ni

� �
cos2 ai � tan2 p

2
ÿ p
ni

� �h i
24 35� cos4 aig

vuuut : �7�

8><>:
Note that Eq. (6) is the correct version of Eq. (19) in

ref (8). All the results based on the orthotropic sheet

theory reported to date employ Eq. (6) in the above.

Each wire in layer j = i + 1 thus experiences a total

radial force, XMSj , given by

XMSj � EAj
Si
1 sin

2 aj
rj

� XRi
xi
x 0j
; �8�

where, the spacings between the contact patches along

the concave side of a wire in layer i,xi, with nj wires in

layer j= i+ 1, are [18]

xi � 2pr
nj

cos aj
sin�ai ÿ aj� �9�

and the spacings of contact patches on the convex side
of a helical wire in layer j, x 0j , with ni wires in layer

i = jÿ 1 is given by

x 0j �
2pr
ni

cosai
sin�ai ÿ aj� �10�

with

r � ri ÿDi

2
: �11�

Using Eqs. (1)±(5), estimates of PRCi and XRCi are

obtained for a number of S 01 values for all the layers i
in the strand in order to produce PRCi against XRCi

plots for various layers. Calculation of the normal

(hoop and radial) forces in the multi-layered assembly
(PMCi and XMSi) then follows.
For the outer layer (layer number 1) the hoop forces

are a function of the clench (radial) force generated in
the helical wires so that PRC1/XRC1 and PMS1/XMS1 re-
lationships are identical. For the other (inner) layers,
the additional clench force provided by the outer layer

i on layer i+ 1, X
Ri
, is given by Eq. (6): using the pre-

viously calculated PRCj/XRCj data it is then possible to
®nd corresponding values for PMSj and XMSj for layer

j = i + 1. The process is then repeated, moving in
another layer [19].

3.2. Calculation of the recovery length

The tension in a fractured wire in layer i, Ti (z),
increases from zero at the fractured end to Ti

(z = lfs) = EAiS1
i at the end of the recovery length

where the wire axial tension becomes equal to that of
the neighbouring unfractured wires in the same layer,

with lfs=recovery length, Ai=wire normal cross-sec-

tion area in layer i whose axial strain is Si
1 and E is

the Young's modulus for steel. The gradual increase in

tension is partly due to the radial forces exerted on the
fractured wire from the inner and outer neighbouring
layers iÿ 1 and i + 1, and partly due to the hoop

forces exerted on the fractured wire from the unfrac-
tured wires in the same layer i which touch the wire
under consideration in line-contact, Fig. 1. Using the
principle of axial equilibrium one gets

Ti�x� �
�x
0

m XR;iÿ1
xiÿ1
x 0i
� 2PMSi�z� � XRi�z�

� �
dz: �12�
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Using Eqs. (6) and (12)

Ti�x� � mXR;iÿ1
xiÿ1
x 0i

x� 2m
�x
0

PMSi�z�dz

� m
�x
0

�XMSi�z� ÿ 2PMSi�z� cos bi�dz: �13�

Eqs. (3), (8) and (13) may then be used to arrive at the
following

Ti�x� � 2mXR;iÿ1
xiÿ1
x 0i

x� m
sin2 ai
ri

�x
0

Ti�z�dz

� 2m�1ÿ cos bi�
�x
0

PMSi�z�dz: �14�

Assuming that for a large diameter spiral strand, fracture

of an individual helical wire (i.e. loss of its axial force)
does not signi®cantly alter the axial forces in the other

(unfractured) helical wires, the relationship between PMSi

and XMSi is (as discussed in the previous section) already
known. In addition, using Eqs. (3) and (8)

XMSi�z� � sin2 ai
ri

Ti�z� � XR;iÿ1
xiÿ1
x 0i

�15�

therefore, at z= 0,

XMSi�0� � XR;iÿ1
xiÿ1
x 0i

�16�

and, following Eqs. (14)±(16)

Ti�x� �2mXR;iÿ1
xiÿ1
x 0i

x� m
sin2 ai
ri

�x
0

Ti�z�dz

� 2m�1ÿ cos bi�
ri

sin2 ai

�sin2 ai
ri

Ti�x��XR;iÿ1
xiÿ1
x 0
i

XR;iÿ1
xiÿ1
x 0
i

PMSi�XMSi�
dTi�z�
dz

dXMSi; �17�

while, using Eq. (15)

dXMSi�z�
dz

� sin2 ai
ri

dTi�z�
dz

�18�

with all the other parameters known, Eq. (17) provides
the value of recovery length, lfs, using the following nu-
merical technique.

3.3. Method (a) of solution: non-linear

Sub-divide the pitch into n segments of length Dx
with an assumed linear variation of T(x) in the inter-
val. In each interval, j, then, the following holds

dT�z�
dz

� �
1Q

�j�
2 ÿQ

�j�
1

Dx
�19a�

�GT �19b�
where, Q1

( j) and Q2
( j) are the assumed tensile forces at

the ends of interval j; with�xj
xjÿ1

T�z�dz11

2
�Q� j�1 �Q� j�2 �Dx �20a�

�R1 �20b�
and

�sin2 ai
ri

Tj�XR;iÿ1
xiÿ1
x 0
i

sin2 ai
ri

Tjÿ1�XR;iÿ1
Xiÿ1
x 0
i

PMS�XMS�
GT

dXMS

� 1

GT

�sin2 ai
ri

Q
�j�
2
�XR;iÿ1

xiÿ1
x 0
i

sin2 ai
ri

Q
�j�
1
�XR;iÿ1

xiÿ1
x 0
i

PMS�XMS�dXMS � R2 �21�

where, GT is independent of XMS.

Fig. 1. Pattern of interwire/interlayer contact forces in an axi-

ally loaded spiral strand.
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For any interval j, Eq. (17) may then be written as

Tj �Tjÿ1 � 2mXR;iÿ1
xiÿ1
x 0i

Dx

� m
sin2 ai
ri

R1 � 2m�1ÿ cosbi�
ri

sin2 ai
R2; �22a�

where

Tjÿ1 � Q
�j�
1 : �22b�

For the ®rst interval (i.e. j= 1), the following may in-

itially be assumed:

x0 � 0 �23a�

Q
�1�
1 � 0 �23b�

and

x1 � Pitch

n

� Dx �23c�

Q�1�2 � 2mXR;iÿ1
xiÿ1
x 0i

Dx; �23d�

where, n = assumed number of sub-divisions.

Using (23a±d), ®nd GT, R1 and R2 from Eqs. (19)±

(21), respectively. From Eq. (22), then, we have the

new value of T1 which will, in turn, by setting

Q2
(1)=T1, be used for obtaining updated values for GT,

R1 and R2. The iteration process is repeated for a

number of times until the calculated values of T1 and

Q2
(1) in the last iteration are su�ciently close.

In the second interval (i.e. j = 2), the following in-

itial values of Q1
(2) and Q2

(2) may be assumed:

Q
�2�
1 � Q

�1�
2 �23e�

and

Q
�2�
2 � Q

�2�
1 � G

�1�
T Dx: �23f�

Eq. (23), thus, may be used in the iterative process as

for T1 to ®nd the value of T2 in the second interval,

and so on.

The whole process is repeated until in some interval

j, the magnitude of Tj is found to be greater than the

corresponding tension in an unbroken wire. Wire

recovery length in layer i, lfs
i , is, then, given as

lifs � jDx: �24�
Number of sub-divisions, n, is subsequently changed

(by, say, a factor 2), and the process is repeated so

that an alternative value of recovery length is found.

The iteration is stopped when two su�ciently close

estimates of recovery length are found.

It should be noted that as (in the presence of inter-

wire friction in the hoop and radial directions) the

axial force in the fractured wire increases in magnitude
along the length of the wire from the fractured end,

there exists some degree of non-linearity in the
imposed levels of frictional forces on the fractured wire
(such as those due to PMSi and, hence, XR,i). However,

it may intuitively be assumed that the degree of non-
linearity is not of much practical signi®cance. In other
words, it may be suggested that variation of the ten-

sion in the fractured wire along its length from the
fractured end, x, is linear: this assumption, then, will
considerably simplify the solution procedure for

Eq. (17). This alternative (i.e. linearized) solution pro-
cedure will be referred to as method (b). Indeed, the
simpler linear solution has been found to lead to
reasonable predictions of recovery length. This simpler

(alternative) method is particularly reasonable because
the magnitude of the coe�cient of friction between the
heavily lubricated wires (which is a controlling par-

ameter in the theoretical model) remains very unpre-
dictable although one may reasonably assume its value
to lie within certain bounds. Indeed, it may be argued

that the coe�cient of friction for even a given contact
patch may vary during the working life of the cable
and there are variations of the coe�cient of friction

over di�erent contact patches throughout the internal
structure of a spiral strand. Bearing this in mind, there
is little point in trying to obtain mathematically exact
estimates of recovery length, and, in view of the fact

that the deviations from non-linearity have been found
not be very signi®cant, a linear solution would su�ce
for most practical situations.

3.4. Method (b) of solution: linear

The last two parts in Eq. (17) are functions of ten-
sion in the fractured wire, which will be assumed to be

a linear function of the distance from the broken end,
i.e.

Ti�x� � qx: �25�
In the above, q is a constant and x is the distance
from the fractured end. After substituting Eq. (25) into
Eq. (17), the following expression is obtained, which

may be solved using numerical techniques.

Ti�x� �2mXR;iÿ1
xiÿ1
x 0i

x

� m
sin2 ai
ri

q
x2

2
� 2m�1ÿ cosbi�

� ri

sin2 ai

1

q

�sin2 ai
ri

qx�XR;iÿ1
xiÿ1
x 0
i

XR;iÿ1
xiÿ1
x 0
i

PMSi�XMSi�dXMSi: �26�

A value of x is initially assumed and noting that
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Ti�x� � EAiS
i
1 �27�

one may combine Eqs. (25) and (27) to ®nd the value
of q. After substituting Eq. (27) and the so-obtained

value of q into Eq. (26), the solution may easily be
found using, for example, the false position
method [20]. This solution, then, gives the magnitude

of the recovery length in layer i of an axially preloaded
multi-layered spiral strand.
It should be pointed out that the values of circum-

ferential (i.e. normal) contact forces as calculated by
the orthotropic sheet theory only apply to fully
bedded-in (i.e. old) strands with no gaps present
between the wires in line-contact in various layers. As

discussed at some length elsewhere [22], although for
newly manufactured (but prestretched) strands, gaps
may exist between the adjacent wires in a given layer,

with the passage of time under working conditions,
due to the occurrence of interwire fretting and bed-
ding-in, these gaps gradually close-up and various

adjacent wires in a given layer assume a state of full
line-contact across which normal (hoop) contact forces
are transmitted: this situation, however, has been
shown by carefully conducted experiments [22] to take

a rather long time, and during this period there will
always be uncertainties regarding the exact magnitudes
of line-contact forces between wires which is another

crucial parameter as regards the presently reported for-
mulations. Nevertheless, two extreme cases of zero or
full-contact may be assumed where the full-contact

hoop forces may be estimated by the previously pre-
sented formulations and the zero contact case will be
discussed next.

3.5. Calculation of recovery length using Leclair's
approach

Leclair [14], has presented a method for obtaining
the magnitudes of radial contact forces in multi-layered

spiral strands in the absence of any interwire contact
forces in the hoop direction, where small gaps have
been assumed to exist between the neighbouring wires

in any given layer. As discussed later, the orthotropic
sheet theory can (as an extreme case) also handle the
zero line-contact force regime.
Using Leclair's method for obtaining the magnitude

of radial forces, the magnitude of the tensile force in a
fractured wire in layer i at a distance x from the bro-
ken end, Ti(x), is

Ti�x� � m
�x
0

� fi�1;i � Xi�z� � fiÿ1;i�z��dz; �28�

where fi + 1,i is the magnitude of radial contact force
per until length between the wires in layers i and i + 1
(which for a given strand axial load, is a constant)),

fi,i ÿ1 is the radial contact force acting on the wire

from the layer below which depends on the tension in

the fractured wire, and Xi is the body force per unit

length in layer i, i.e.

Xi�z� � cos2 gi
ri

Ti�z� �29a�
� CiTi�z�: �29b�

In the above, Ci is a constant, and gi represents the

helix angle in layer i (i.e. gi=p/2ÿ ai) with ri denoting

the helix radius.

Re-stating Eq. (38) in ref. [14] (in the present

notation)

fiÿ1;i�z� � Xi�z� �
Xn
j�i�1

njpi cos �gi
nipj cos gi

 Yjÿ1
k�i�1

cos �gk
cos gk

!
Xj; �30�

where, ni and nj are the number of wires (with pi and

pj denoting their associated pitches) in layers i and j,

respectively, with g i and gi de®ning the helix angles on

the lower and upper lines of contact of a wire in layer

i, respectively.

Eq. (30) may be rewritten as

fiÿ1;i�z� � Xi�z� � Bi; �31�
where Bi is a constant independent of distance along

the wire. Using Eqs. (28), (29) and (31) the equivalent

version of Eq. (22) (which is based on the orthotropic

sheet concept) is given as

Tj � Tjÿ1 � mAi�1Dx� 2mCi

�xj
xjÿ1

T�z�d�z� � mBiDx;

�32�
where

Ai�1 � fi�1;i
� constant �33�

or

Tj � Tjÿ1 � m�Ai�1 � Bi�Dx� 2mCiR1: �34�

In Eq. (34), R1 is as de®ned in the previous section, i.e.

R1 � Q
� j�
1 �Q

� j�
2

2
Dx; �35�

where Q( j)
1 and Q( j)

2 are the assumed tensile forces at

the ends of interval j. The solution technique then fol-

lows exactly the same route as that adopted for solving

Eq. (22), with the proviso that in the iteration process

for the ®rst interval, it is assumed that

Q�1�1 � 0 �36�
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Q
�1�
2 � m�Ai�1 � Bi�Dx: �37�

In the same way as in the previous section, if one deci-

des to use a linearized solution procedure, the tension

in the fractured wire may be assumed to increase line-

arly along the broken wire, i.e. Eq. (25) may be

assumed to hold. Under such conditions Eq. (28) may

be written as

Ti�x� � m
�x
0

�fi�1;i � Ciqz� Bi�dz �38�

and in Eq. (38)

x � Ti

m�fi�1;i � Bi � 1
2
CiTi�

; �39�

Fig. 2(a and b).
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where, x is the distance along the fractured wire from
the broken end in which the wire achieves its full share

of the tensile force.

4. Results and Discussion

Fig. 2(a±c) presents the estimates of recovery length

in all the layers (except for the outer layer) of 39, 51
and 63 mm diameter spiral strands, respectively, as a
function of the mean axial strain acting on the strands.
The construction details for all these spiral strands are

given elsewhere [12]), and a value of interwire coe�-
cient of friction m = 0.12 is assumed for all the heavily
lubricated galvanised wires [21]. Note that the recovery

length in various layers is non-dimensionalised by
dividing it by the lay length (pitch) of the helical wires
in the same layer. The plots suggest that, depending on

the location of the wire inside the strand, the magni-
tude of non-dimensionalised recovery length may either
increase or decrease with increasing levels of strand
mean axial strain. However, the variations are found

to amount to no more than 10±20% of the mean
value, over a wide range of cable mean axial strains,
and in view of other uncertainties as regards, for

example, the assumed constant value of the interwire
coe�cient of friction throughout the cable, and the
exact patterns of interwire normal contact forces

throughout the strands etc., such variations in the
values of the recovery length are not believed to be of
much practical signi®cance.

The plots in Fig. 2(a±c) are all based on the non-lin-

ear method of solution [i.e. method (a)] for Eq. (17),

with the magnitudes of normal hoop and radial inter-

wire contact forces based on the estimates of the

orthotropic sheet concept as presented earlier on in

this paper. It should also be pointed out that numeri-

cal results for the magnitudes of recovery length for

the same layers of 39, 51 and 63 mm diameter strands

were also obtained using the simpler linear technique

[i.e. method (b)], and the ®nal results for both methods

(a) and (b) were very similar: as previously discussed

at some length [ref. to the paragraph following

Eq. (24)], due to the ever present uncertainties associ-

ated with the estimated magnitudes of line-contact

forces throughout a spiral strand and the assumed

value of interwire coe�cient of friction, the linearized

solution should prove of su�cient accuracy for most

practical applications (especially in view of the rather

small degrees of non-linearities found). An account of

the practical uses of the estimates of wire recovery

length will be given in the next section which suggest

that a rough (but simply obtained) estimate of wire

recovery length is all that is needed in practical engin-

eering applications. It has, however, been useful to

carry out the fully non-linear analysis to verify that the

degree of non-linearity is not signi®cant and may

safely be ignored in practice.

Using an extensive series of theoretical parametric

studies [using method (a)] covering a wide range of

spiral strand (and wire) diameters, lay angles, and

strand mean axial strains within the working range

Fig. 2. Variations of recovery length vs cable mean axial strain, for various layers of di�erent spiral strand constructions: (a)

39 mm O.D. strand; (b) 51 mm O.D. strand; (c) 63 mm O.D. strand.
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0.0007RS 01R0.004, as fully reported elsewhere [12],

(see Table 1) a generally applicable plot of wire recov-

ery length/pitch in a layer versus lay angle in that layer

for any layer of an axially preloaded spiral strand with

any construction detail has been obtained and is pre-

sented in Fig. 3(b). In Fig. 3(b), which uses the same

data points as in Fig. 3(a), a best-®t curve is included

where (bearing in mind the previously discussed real

life uncertainties regarding the assumed value of the

coe�cient of interwire friction and magnitude of line-

contact forces) a reasonable correlation has been

obtained between the individual data points and the

®tted curve. Using this curve, then, it is possible to

assess (with minimal e�ort) the magnitude of recovery

length/pitch ratio for the wires in any layer of an axi-

ally loaded spiral strand, once the lay angle of wires in

that layer are speci®ed. It should at once be pointed

out that traditionally the ®eld of wire rope has been

considered as an art and not an exact science, and it is

an area where the rule of thumb reigns supreme. What

cable manufactures and user require is not a math-

ematically complex and so-called exact solution, but a

simple and reasonable means of estimating various

structural characteristics of the cables. For these pur-

Fig. 3(a).

Table 1

Range of various strand parameters used in the study

Parameters Range of parameters

Strand diameter, d (mm) 16.4RdR184

Number of layers, N 2RNR11

Number of wires in each layer, n 12RnR74

Total number of wires, NT 19RNTR552

Lay angle, a (degrees) 11RaR25

Wire diameter, D (mm) 2.36RDR6.55
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poses, therefore, easy to use (practical) recommen-
dations are most welcomed by industry, and this is the

underlying reason for producing the ®tted curve in
Fig. 3(b) which (as discussed in the next section)

should su�ce for practical purposes despite the fact

that there are some (sometimes, apparently large) devi-
ations of individual data points from the ®tted line.

As fully discussed by Raoof [22], in newly manufac-
tured spiral strands there may (in contrast to the

underlying assumptions in the orthotropic sheet the-

ory) exist partial or no line-contact normal forces
between adjacent wires in a given layer. As a limiting

case, one may then assume the line-contact forces
between the wires in the same layer to vanish

altogether and repeat the theoretical parametric studies
for calculating the recovery lengths: the results for the

recovery length corresponding to this case are pre-
sented in Fig. 4(a). The results plotted in this ®gure

are found to su�er from more scatter than the data in

Fig. 3 (which relates to the fully bedded-in strands),
and the recovery length is found to increase slightly in

the absence of line-contact forces. Nevertheless, in
both cases the recovery length shows some tendency to

decrease with increases in the magnitude of the lay

angle. Finally as an alternative approach to the ortho-

tropic sheet concept, the plots in Fig. 4(b) show similar

trends of results, and these are obtained by

Leclair's [14] method for the estimation of the radial

normal contact forces, and use the solution method (a)

for solving the complex equation for determining the

magnitude of recovery length.

Although the ®tted curve in Fig. 3(b) is, strictly

speaking derived for enabling one to determine the

magnitude of recovery length in any layer of a spiral

strand, it also provides a simple means of estimating

the upper bound to the value of recovery length of a

broken wire in an axially loaded wire rope. This is the

case, simply because due to the presence of additional

compressive forces exerted by the neighbouring spiral

strands in a wire rope, the magnitudes of the frictional

forces acting on helical wires in any strand of a wire

rope will (compared to that in an isolated strand)

increase, hence, leading to a smaller value of recovery

length than that predicted by the ®tted curve in

Fig. 3(b).

Fig. 3. Variations of recovery length with changes in the values of lay angle in various layers of a number of fully bedded-in spiral

strand constructions: (a) detailed data points; (b) ®tted curve to the theoretical data.
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On the experimental side, several investigators have

used various methods for measuring the recovery
lengths of individual wires in axially loaded cables.

Davidsson [2] concludes that for the outer wires of
regular and Lang's lay six-strand ropes, the recovery

length is between 1.3 and 2.0 of the rope lay and rec-

ommends an average value of 1.7 to be used in the
absence of test data. Wiek [3], on the other hand,

quotes 1.5±6 as the recovery length of six-strand ropes,
dependent upon rope diameter, construction and type

of lay. In his experiments on 53 mm, 6 � 35 Lang's lay

rope, Hankus [4] found a recovery length of three
times the rope length, which is rather di�erent from

the values of 1±1.5 quoted by Chaplin and Tantrum [5]
who worked on 19 mm, 6 � 19 ordinary lay ropes. It is

encouraging that the range of published test data from
various sources are found to provide a similar range of

values for recovery length as given by the theoretical

data in Fig. 3(b) which suggests a range of, say, 0.5±
2.5 for the ratio of recovery length/pitch.

Finally, as fully discussed by Raoof [7] and Raoof

and Huang [10], in general, the recovery length will be
divided into two no-slip and full-slip parts with the

full-slip region being nearest to the fractured end. The

present paper has addressed only the occurrence of
full-slip (i.e. Coulomb friction) along the entire recov-

ery length, because, following Raoof [7], numerical
data has suggested that the no-slip portion of the
recovery length is generally small compared with the

full-slip portion, and (in view of other uncertainties
surrounding the problem) the no-slip portion may
reasonably be ignored.

5. Practical Applications

A knowledge of the magnitude of recovery length in

steel cables (spiral strands and wire ropes) will enable
one to determine the minimum length of test specimens
for axial fatigue life prediction of the much longer

cables under service conditions. As discussed in the
introduction, an appropriate control length for steel
cables over which the number of broken wires may be

counted for cable discard purposes, may also be deter-
mined using the predicted values of recovery length.
The question of determining the minimum length of

test specimens for axial fatigue conditions has been

dealt with in some detail by Raoof and Hobbs [1].

Fig. 4(a).
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Very brie¯y, using Wyatt's [23] temperature measure-

ments during axial cyclic tests (at 4.4 Hz) on 6 m-long
39 mm spiral strands, whose construction details are

given elsewhere [8], the zone of end e�ects was found
to extend about 2.6 lay lengths from either side: it

may, then, be concluded that a specimen with l/p = 5
(where l= length of specimen; and p = lay length of

the outer layer), will have virtually no central portion

free from end e�ects. It should, however, be noted that
those zones of end e�ects are only in¯uenced by the

disturbances to the lays of the cable during the termi-
nating process by craftsmen, and should not be con-

fused with the in¯uence of recovery length of a
fractured wire whose estimate is of relevance to the de-

termination of only the desired minimum free-®eld
length of the specimen, away from the terminations.

As demonstrated in the previous section, an upper
bound value of recovery length l ifs=2.5p may be

assumed, irrespective of the associated lay angle and
cable's degree of bedding-in (age), i.e. whether the pat-

tern of normal (particularly line-contact) interwire

forces have fully stabilised or not. As a pre-requisite to
axial fatigue tests, therefore, a minimum free length in

a test specimen of lc=2 lfs or say ®ve lay lengths seems

essential. It then follows that, taken with the termin-
ation zone of in¯uence (1®ve lay lengths), the mini-

mum desirable total length of test specimens should be
around 10 lay lengths. Indeed, Chaplin [24] has (on the

basis of experience) suggested the same ®gure as a
minimum specimen length. Note that this minimum

desirable length is applicable to both spiral strands
and wire ropes of any construction.

As discussed previously, most codes of practice for

rope inspection require rope replacement when a speci-
®ed number of fractured wires are found to have

occurred over a certain control length. For example,
BS6570 [25] recommends a control length of 10 rope

diameters (i.e. about 1.5 rope lay lengths), while the
corresponding ®gures recommended by ISO4309 [26]

are 6 rope diameters (about one rope lay length), and
30 rope diameters (about ®ve rope lay lengths). The

visible wire break discard criteria as speci®ed by
BS6570 [25] and ISO 4309 [26] primarily address the

case of ropes bending over sheaves, and as discussed

by Chaplin and Potts [27], the applicability of visible
outer wire discard criteria for ropes subjected to axial

Fig. 4. Variations of recovery length with changes in the values of lay angle in various layers of a number of spiral strand construc-

tions based on the assumption of zero line-contact interwire normal forces: (a) orthotropic sheet theory; (b) Leclair's theory.
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loading and not passing over a pulley is dubious and
previous experimental attempts have been inconclusive.

For the case of axial fatigue loading on multi-
layered spiral strands, Raoof [28] has developed a
theoretical model backed by an extensive series of

large scale test data from di�erent institutions on spe-
cimens from a number of di�erent rope
manufacturers [28±31]. The theoretical model is

capable of predicting the number of axial fatigue cycles
to ®rst outer (or inner) wire fractures, and is applicable
to any type of multi-layered spiral strand construction.

According to Raoof's theoretical model, it is the mag-
nitude of stress concentration factors over the trellis
points of interlayer contact that control ®rst wire frac-
tures depending on the level of nominal axial stress in

the wires. Based on his model, for a fractured wire to
develop another fracture along its length under axial
cyclic loading, the broken wire must develop its orig-

inal level of mean axial stress which (as shown in the
present paper) takes place along a distance equal to
the associated recovery length: with the nominal wire

axial stress reaching its full magnitude, the associated
stress concentration factor over a trellis contact patch
located at the end of recovery length will be high

enough to theoretically cause another fracture along
this same wire. It may, then, be reasonably concluded
that the minimum spacing of potential fractures along
a helical wire is one recovery length. In order words,

for cable discard purposes based on the number of
broken wires, a control length equal to one recovery
length is essential. Noting that (as discussed pre-

viously) the ®tted curve in Fig. 3(b) provides a reason-
able upper bound estimate of recovery length in not
only spiral strands but also wire ropes, this curve may

also be utilised for determining the appropriate value
of control length to be used for cable discard purposes.
From Fig. 3(b) and 4, a control length of 2.5 lay
lengths may reasonably be suggested for any type of

steel cable (spiral strand and/or wire rope) construc-
tion, with any age (i.e. working life), subjected to axial
fatigue loading.

6. Conclusions

The full set of formulations for determining the
magnitude of recovery length in axially loaded spiral

strands with special emphasis placed on the method(s)
of solution for the ®nal complex equation, are pre-
sented in some detail.

Solutions are provided for two extreme cases: in
case [1], the presence of both hoop and radial normal
interwire contact forces in fully bedded-in strands are

catered for, while in case [2], the extreme condition is
considered when (in the presence of gaps between the
adjacent wires in a layer) no line-contact normal forces

exist in the hoop direction with only the radial inter-
wire contact forces being present.

Theoretical formulations using both the previously
reported orthotropic sheet concept (with and/or with-
out line-contact forces), and Leclair's method, which

only caters for the presence of radial interwire contact
forces, are reported.
Based on a series of previously reported theoretical

parametric studies, simple recommendation are made
for determining the control length for steel cables
(spiral strands and/or wire ropes) along which the

number of broken wires should be counted for cable
discard purposes. It is argued that an upper bound
value of 2.5 lay lengths (equal to the upper bound to
the magnitude of one recovery length) may reasonably

be used as a control length for both spiral strands
and/or wire ropes with any type of construction.
The practical value of recovery length, (which pri-

marily depends on the lay angle) in terms of determin-
ing the minimum length of test specimens for axial
fatigue testing so that the so-obtained results may be

used for estimating the axial fatigue lives of the much
longer cables under service conditions, is also dis-
cussed. Using the data based on theoretical parametric

studies, it is argued that a minimum specimen length
of 10 lay lengths (irrespective of the type of cable con-
struction) should ideally be used for axial fatigue tests.
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