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Chapter 14 
Oscillations 
 
Conceptual Problems 
 
1 •  
Determine the Concept The acceleration of an oscillator of amplitude A and frequency 
f is zero when it is passing through its equilibrium position and is a maximum when it is 
at its turning points. 

 
When v = vmax: 0=a  

 
When x = xmax: AfAa 222 4πω ==  

  
2 •  
Determine the Concept The condition for simple harmonic motion is that there be a linear 
restoring force; i.e., that F = −kx. Thus, the acceleration and displacement (when they are 
not zero) are always oppositely directed. v and a can be in the same direction, as can v and 
x. 

 
3 •  
(a) False. In simple harmonic motion, the period is independent of the amplitude. 
 
(b) True. In simple harmonic motion, the frequency is the reciprocal of the period which, 
in turn, is independent of the amplitude. 
 
(c) True. The condition that the acceleration of a particle is proportional to the 
displacement and oppositely directed is equivalent to requiring that there be a linear 
restoring force; i.e., F = −kx ⇔ ma = −kx or a = − (k/m)x. 
 
*4 •  
Determine the Concept The energy of a simple harmonic oscillator varies as the square 
of the amplitude of its motion. Hence, tripling the amplitude increases the energy by a 
factor of 9. 
 
5 ••  
Picture the Problem The total energy of an object undergoing simple harmonic motion 
is given by ,2

2
1

tot kAE =  where k is the stiffness constant and A is the amplitude of the 

motion. The potential energy of the oscillator when it is a distance x from its equilibrium 
position is ( ) .2

2
1 kxxU =  
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Express the ratio of the potential 
energy of the object when it is 2 cm 
from the equilibrium position to its 
total energy: 
 

( )
2

2

2
2
1

2
2
1

tot A
x

kA
kx

E
xU

==  

 

Evaluate this ratio for x = 2 cm and  
A = 4 cm: 

( ) ( )
( ) 4

1
cm4
cm2cm2

2

2

tot

==
E

U
 

 
 ( ) ( )

( ) 4
1

cm4
cm2cm2

2

2

tot

==
E

U
 

and correct. is )(a  

 
6 •  
(a) True. The factors determining the period of the object, i.e., its mass and the spring 
constant, are independent of the oscillator’s orientation. 
 
(b) True. The factors determining the maximum speed of the object, i.e., its amplitude 
and angular frequency, are independent of the oscillator’s orientation. 
 
7 •  
False. In order for a simple pendulum to execute simple harmonic motion, the restoring 
force must be linear. This condition is satisfied, at least approximately, for small initial 
angular displacements.  
 
8 •  
True. In order for a simple pendulum to execute periodic motion, the restoring force must 
be linear. This condition is satisfied for any initial angular displacement.  
 
*9 ••  
Determine the Concept Assume that the first cart is given an initial velocity v by the 
blow.  After the initial blow, there are no external forces acting on the carts, so their 
center of mass moves at a constant velocity v/2.  The two carts will oscillate about their 
center of mass in simple harmonic motion where the amplitude of their velocity is v/2.  
Therefore, when one cart has velocity v/2 with respect to the center of mass, the other 
will have velocity −v/2.  The velocity with respect to the laboratory frame of reference 
will be +v and 0, respectively.  Half a period later, the situation is reversed; one cart will 
move as the other stops, and vice-versa. 
  
*10 ••  
Determine the Concept The period of a simple pendulum depends on the reciprocal of 
the length of the pendulum. Increasing the length of the pendulum will decrease its period 
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and the clock would run slow. 
 
11 •  
True. The mechanical energy of a damped, undriven oscillator varies with time according 
to τteEE −= 0  where E0 is the oscillator’s energy at t = 0 and τ  is the time constant. 
 
12 •  
(a) True. The amplitude of the motion of a driven oscillator depends on the driving (ω) 

and natural (ω0) frequencies according to ( ) .22222
0

2
0 ωωω bmFA +−=  When  

ω = ω0, the amplitude of the motion is a maximum and is given by .22
0 ωbFA =  

 
(b) True. The width of the resonance curve (∆ω) depends on the Q value according to 

Q10 =∆ ωω . Thus when Q is large, ∆ω is small and the resonance is sharp. 

 
13 •  
Determine the Concept Examples of driven oscillators include the pendulum of a clock, 
a bowed violin string, and the membrane of any loudspeaker. 

 
14 •  
Determine the Concept The shattering of a crystal wineglass is a consequence of the 
glass being driven at or near its resonant frequency. correct. is )(a  

 
*15 •  
Determine the Concept We can use the expression for the frequency of a spring-and-
mass oscillator to determine the effect of the mass of the spring. 

 
If m represents the mass of the 
object attached to the spring in a 
spring-and-mass oscillator, the 
frequency is given by: 
 

m
kf

π2
1

=  

If the mass of the spring is taken 
into account, the effective mass is 
greater than the mass of the object 
alone. 
 

eff2
1

m
kf'

π
=  

Divide the second of these equations 
by the first and simplify to obtain: 
 

eff

eff

2
1

2
1

m
m

m
k

m
k

f
f'

==

π

π
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Solve for f ′: 

effm
mff' =  

 

reduced. be willfrequency   that thepredicts spring  theof mass effective
 eaccount th into  taking ofroot  square  thersely withinv  varies Because m,ef'

 

 
16 ••  
Determine the Concept The period of the lamp varies inversely with the square root of 
the effective value of the local gravitational field. 

 
1. greater than T0 when B. the train rounds a curve of radius R with 

speed v. 
 

2. less than T0 when D. the train goes over the crest of a hill of 
radius of curvature R with constant speed. 
 

3. equal to T0 when A. the train moves horizontally with 
constant velocity. 
 

 C. the train climbs a hill of inclination θ at 
constant speed. 

 
17 ••  

Picture the Problem We can use 
M
kf

π2
1

= to express the frequencies of the two 

mass-spring systems in terms of their masses. Dividing one of the equations by the other 
will allow us to express MA in terms of MB. 

 
Express the frequency of mass-
spring system A as a function of its 
mass: 

A
A 2

1
M
kf

π
=  

 
Express the frequency of mass-
spring system B as a function of its 
mass: 

B
B 2

1
M
kf

π
=  

 
Divide the second of these equations 
by the first to obtain: 
 

B

A

A

B

M
M

f
f

=  

Solve for MA: 
B4

1
B

2

B

B
B

2

A

B
A 2

MM
f

fM
f
fM =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  
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and correct. is )(d  

 
18 ••  
Picture the Problem We can relate the energies of the two mass-spring systems through 
either 2

2
1 kAE = or 22

2
1 AME ω=  and investigate the relationship between their 

amplitudes by equating the expressions, substituting for MA, and expressing AA in terms 
of AB. 

 
Express the energy of mass-spring 
system A: 
 

2
A

2
AA2

12
AA2

1
A AMAkE ω==  

 

Express the energy of mass-spring 
system B: 
 

2
B

2
BB2

12
BB2

1
B AMAkE ω==  

 

Divide the first of these equations 
by the second to obtain: 
 

2
B

2
BB2

1

2
A

2
AA2

1

B

A 1
AM
AM

E
E

ω
ω

==  

 
Substitute for MA and simplify: 

2
B

2
B

2
A

2
A

2
B

2
BB

2
A

2
AB 221

A
A

AM
AM

ω
ω

ω
ω

==  

 
Solve for AA: 

B
A

B
A 2

AA
ω

ω
=  

 
 Without knowing how ωA and ωB, or kA and 

kB, are related, we cannot simplify this 
expression further. correct. is )(d  

   
19 ••  
Picture the Problem We can express the energy of each system using 2

2
1 kAE = and, 

because the energies are equal, equate them and solve for AA. 
 
Express the energy of mass-spring 
system A in terms of the amplitude of 
its motion: 
 

2
AA2

1
A AkE =  

Express the energy of mass-spring 
system B in terms of the amplitude 
of its motion: 
 

2
BB2

1
B AkE =  
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Because the energies of the two 
systems are equal we can equate 
them to obtain: 
 

2
BB2

12
AA2

1 AkAk =  

Solve for AA: 
B

A

B
A A

k
kA =  

 
Substitute for kA and simplify to 
obtain: 22

B
B

B

B
A

AA
k

kA ==  

and correct. is )(b  

 
20 ••  
Picture the Problem The period of a simple pendulum is independent of the mass of its 
bob and is given by .2 gLT π=  

 
Express the period of pendulum A: 

g
LT A

A 2π=  

 
Express the period of pendulum B: 

g
LT B

B 2π=  

 
Divide the first of these equations by the 
second and solve for LA/LB: 

2

B

A

B

A
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

L
L

 

 
Substitute for TA and solve for LB to 
obtain:  BB

2

B

B
A 42 LL

T
TL =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

and correct. is )(c  

 
Estimation and Approximation  
 
21 ••  
Picture the Problem The Q factor for this system is related to the decay constant τ  
through TQ πττω 20 == and the amplitude of the child’s damped motion varies with 

time according to .2
0

τteAA −=  We can set the ratio of two displacements separated by 

eight periods equal to 1/e to determine τ  in terms of T. 
 

Express Q as a function of τ : 
T

q πττω 2
0 ==                          (1) 
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The amplitude of the oscillations 
varies with time according to: 
 

τ2
0

teAA −=  

The amplitude after eight periods is: 
 

( ) τ28
08

TteAA +−=  

Express and simplify the ratio A8/A: ( )
τ

τ

τ
T

t

Tt

e
eA

eA
A
A 4

2
0

28
08 −

−

+−

==  

 
Set this ratio equal to 1/e and solve 
for τ : 
 

Tee T 414 =⇒= −− ττ  
 

Substitute in equation (1) and 
evaluate Q: 

( ) ππ 842
==

T
TQ  

 
*22 ••  
Picture the Problem Assume that an average length for an arm is about 0.8 m, and that it 
can be treated as a uniform stick, pivoted at one end. We can use the expression for the 
period of a physical pendulum to derive an expression for the period of the swinging arm. 
When carrying a heavy briefcase, the mass is concentrated mostly at the end of the pivot 
(i.e., in the briefcase), so we can treat the arm-plus-briefcase as a simple pendulum.   
 
(a) Express the period of a uniform 
rod pivoted at one end: 
 MgD

IT π2=  

where I is the moment of inertia of the 
stick about an axis through one end, M is 
the mass of the stick, and D (= L/2) is the 
distance from the end of the stick to its 
center of mass. 
 

Express the moment of inertia of the 
stick with respect to an axis through 
its end: 
 

2
3
1 MLI =  

Substitute the values for I and D to 
find T: 
 ( ) g

L
LMg

MLT
3
222

2
1

2
3
1

ππ ==  

 
Substitute numerical values and 
evaluate T: 
 

( )
( ) s47.1

m/s81.93
m8.022 2 == πT  

 
(b) Express the period of a simple 
pendulum: 

g
L'T π2'=  

where L′ is slightly longer than the arm 
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length due to the size of the briefcase. 
 

Assuming L′ = 1 m, evaluate the 
period of the simple pendulum: s01.2

m/s81.9
m12 2 == πT'  

 
.reasonable seem estimates  these, they walkas people ofn observatio From  

 
Simple Harmonic Motion 
 
23 •  
Picture the Problem The position of the particle is given by ( )δω += tAx cos  where A 

is the amplitude of the motion, ω is the angular frequency, and δ  is a phase constant. 
 

(a) Use the definition of ω to 
determine  f: 

Hz00.3
2

s6
2

1

===
−

π
π

π
ωf  

 
(b) Evaluate the reciprocal of the  
frequency: 

s333.0
Hz00.3

11
===

f
T  

 
(c) Compare x = (7 cm) cos 6π t to  

( )δω += tAx cos : 
cm00.7=A  

 
(d) x = 0 when cosω t = 0: 

2
0cos 1 πω == −t  

 
Solve for t: 

( ) s0833.0
622

===
π
π

ω
πt  

 
Differentiate x to find v(t): ( )[ ]

( ) t

t
dt
dv

ππ

π

6sincm/s42

6coscm7

−=

=
 

 
Evaluate v(0.0833 s): 
 

( ) ( ) ( ) 0s0833.06sincm/s42s0833.0 <−= ππv  

 
s. 0.0833  at direction  negative in the moving is particle  the0,   Because =< tv  

 
24 •  
Picture the Problem The initial position of the oscillating particle is related to the 
amplitude and phase constant of the motion by δcos0 Ax =  where 0 ≤ δ < 2π. 
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(a) For x0 = 0: 0cos =δ  
and 

2
3,

2
0cos 1 ππδ == −  

 
(b) For x0 = −A: δcosAA =−  

and 
( ) πδ =−= − 1cos 1  

 
(c) For x0 = A: δcosAA =  

and 
( ) 01cos 1 == −δ  

 
(d) When x = A/2: δcos

2
AA

=  

and 

32
1cos 1 πδ =⎟
⎠
⎞

⎜
⎝
⎛= −  

 
*25 • 
Picture the Problem The position of the particle as a function of time is given 
by ( )δω += tAx cos . Its velocity as a function of time is given by ( )δωω +−= tAv sin  
and its acceleration by ( )δωω +−= tAa cos2 . The initial position and velocity give us 

two equations from which to determine the amplitude A and phase constantδ. 
 

(a) Express the position, velocity, 
and acceleration of the particle as a 
function of t: 

( )δω += tAx cos                  (1) 
( )δωω +−= tAv sin             (2) 
( )δωω +−= tAa cos2          (3) 

 
Find the angular frequency of the 
particle’s motion: 

11 s19.4s
3

42 −− ===
ππω

T
 

 
Relate the initial position and 
velocity to the amplitude and phase 
constant: 

δcos0 Ax =  

and 
δω sin0 Av −=  

 
Divide these equations to eliminate 
A: 

δω
δ
δω tan

cos
sin

0

0 −=
−

=
A

A
x
v
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Solve for δ  and substitute numerical 
values to obtain: 00tantan

0

1

0

01 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−

ωω
δ

xx
v

 

 
Substitute in equation (1) to obtain: ( )

( ) ( )[ ]t

tx

1

1

s19.4coscm25

s
3

4coscm25

−

−

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=
π

 

 
(b) Substitute in equation (2) to 
obtain: 

( )

( ) ( )[ ]t

tv

1

11

s19.4sincm/s105

s
3

4sins
3

4cm25

−

−−

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

ππ

 

 
(c) Substitute in equation (3) to obtain: ( )

( ) ( )[ ]t

ta

12

1
2

1

s19.4coscm/s439

s
3

4coss
3

4cm25

−

−−

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

ππ
 

 
26 •  
Picture the Problem The maximum speed and maximum acceleration of the particle in 
are given by ωAv =max  and .2

max ωAa =  The particle’s position is given by 
( )δω += tAx cos  where A = 7 cm, ω = 6π s−1, and δ  = 0, and its velocity is given by 

( )δωω +−= tAv sin . 

 
(a) Express vmax in terms of A and ω: ( )( )

m/s32.1cm/s42

s6cm7 1
max

==

== −

π

πωAv
 

 
(b) Express amax in terms of A and ω: ( )( )

222

212
max

m/s9.24cm/s252

s6cm7

==

== −

π

πωAa
 

 
(c) When x = 0: 0cos =tω  

and 

2
3,

2
0cos 1 ππω == −t  

 

Evaluate v at :
2
πω =t  ωπω AAv −=⎟

⎠
⎞

⎜
⎝
⎛−=

2
sin  

i.e., the particle is moving to the left. 
 



Oscillations 
 

 

1057

Evaluate v at :
2

3πω =t  ωπω AAv =⎟
⎠
⎞

⎜
⎝
⎛−=

2
3sin  

i.e., the particle is moving to the right. 
 

Solve for t: 
( ) s250.0

s62
3

2
3

1 === −π
π

ω
πt  

 
27 ••  
Picture the Problem The position of the particle as a function of time is given by 

( )δω += tAx cos . Its velocity as a function of time is given by ( )δωω +−= tAv sin  
and its acceleration by ( )δωω +−= tAa cos2 . The initial position and velocity give us 

two equations from which to determine the amplitude A and phase constant δ. 
 
(a) Express the position, velocity, 
and acceleration of the particle as 
functions of t: 

( )δω += tAx cos                  (1) 
( )δωω +−= tAv sin             (2) 
( )δωω +−= tAa cos2          (3) 

 
Find the angular frequency of the 
particle’s motion: 

11 s19.4s
3

42 −− ===
ππω

T
 

 
Relate the initial position and 
velocity to the amplitude and phase 
constant: 

δcos0 Ax =  

and 
δω sin0 Av −=  

 
Divide these equations to eliminate 
A: 

δω
δ
δω tan

cos
sin

0

0 −=
−

=
A

A
x
v

 

 
Solve for δ: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

ω
δ

0

01tan
x
v

 

 
Substitute numerical values and 
evaluate δ: ( )( )

rad445.0
s24.19cm25

cm/s50tan 1
1

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

−δ
 

 
Use either the x0 or v0 equation (x0 is 
used here) to find the amplitude:  ( ) cm7.27

rad0.445cos
cm25

cos
0 =

−
==

δ
xA  

 
Substitute in equation (1) to obtain: ( ) ( )[ ]445.0s19.4coscm7.27 1 −= − tx  
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(b) Substitute in equation (2) to obtain: ( )

( ) ( )[ ]445.0s19.4sincm/s116

445.0s
3

4sin

s
3

4cm7.27

1

1

1

−−=

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛×

⎟
⎠
⎞

⎜
⎝
⎛−=

−

−

−

t

t

v

π

π

 
(c) Substitute in equation (3) to obtain: 
 

( )

( ) ( )[ ]445.0s19.4coscm/s486

445.0s
3

4coss
3

4cm7.27

12

1
2

1

−−=

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

−

−−

t

ta ππ
 

 
28 ••  
Picture the Problem The position of the particle as a function of time is given 
by ( )δω += tAx cos . We’re given the amplitude  A of the motion and can use the initial 

position of the particle to determine the phase constant δ. Once we’ve determined these 
quantities, we can express the distance traveled ∆x during any interval of time. 

 
Express the position of the particle 
as a function of t: 
 

( ) ( )δω += tx coscm12                (1)            

 

Find the angular frequency of the 
particle’s motion: 

1s
4s8

22 −===
πππω

T
 

 
Relate the initial position of the 
particle to the amplitude and phase 
constant: 

δcos0 Ax =  

 
 

Solve for δ: 
2

0coscos 101 πδ === −−

AA
x

 

 
Substitute in equation (1) to obtain: ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −

2
s

4
coscm12 1 ππ tx  
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Express the distance the particle 
travels in terms of tf and ti: 

( )

( )

( )

⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=∆

−

−

−

−

2
s

4
cos

2
s

4
coscm12

2
s

4
coscm12

2
s

4
coscm12

i
1

f
1

i
1

f
1

ππ

ππ

ππ

ππ

t

t

t

tx

 

 
(a) Evaluate ∆x for tf = 2 s, ti = 1 s: 

( ) ( )

( )

( ) }{
cm0.12

01cm12

2
0s

4
cos

2
s2s

4
coscm12

1

1

=

−−=
⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=∆

−

−

ππ

ππx

 

 
(b) Evaluate ∆x for tf = 4 s, ti = 2 s: 

( ) ( )

( )

( ) }{
cm0.12

10cm12

2
s2s

4
cos

2
s4s

4
coscm12

1

1

=

−=
⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=∆

−

−

ππ

ππx

 

 
(c) Evaluate ∆x for tf = 1 s, ti = 0: 

( ) ( )

( )

( ) }{
cm49.8

07071.0cm12

2
0s

4
cos

2
s1s

4
coscm12

1

1

=

−−=
⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=∆

−

−

ππ

ππx
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(d) Evaluate ∆x for tf = 2 s, ti = 1 s: 
( ) ( )

( )

( ) }{
cm51.3

7071.01cm12

2
s1s

4
cos

2
s2s

4
coscm12

1

1

=

+−=
⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=∆

−

−

ππ

ππx

 

 
29 ••   
Picture the Problem The position of the particle as a function of time is given 
by ( ) ( )δω += tx coscm10 . We can determine the angular frequency ω from the period 

of the motion and the phase constant δ  from the initial position and velocity. Once we’ve 
determined these quantities, we can express the distance traveled ∆x during any interval 
of time. 
 
Express the position of the particle 
as a function of t: 
 

( ) ( )δω += tx coscm10                (1)            

 

Find the angular frequency of the 
particle’s motion: 

1s
4s8

22 −===
πππω

T
 

 
Find the phase constant of the 
motion: 00tantan

0

1

0

01 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−

ωω
δ

xx
v

 

 
Substitute in equation (1) to obtain: ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= − tx 1s

4
coscm10 π
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(a) A graph of ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= − tx 1s

4
coscm10 π

 follows: 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 2 4 6 8

t  (s)

x  
(c

m
)

 
(b) Express the distance the particle travels in terms of tf and ti: 
 

( ) ( )

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=∆

−−

−−

i
1

f
1

i
1

f
1

s
4

coss
4

coscm10

s
4

coscm10s
4

coscm10

tt

ttx

ππ

ππ

       (2) 

 
Substitute numerical values in 
equation (2) and evaluate ∆x in each 
of the given time intervals to obtain: 

tf ti ∆x 
(s) (s) (cm) 
1 0 93.2  

2 1 07.7

3 2 07.7

4 3 93.2  
 

 
*30 ••  
Picture the Problem We can use the expression for the maximum acceleration of an 
oscillator to relate the 10g military specification to the compliance frequency. 
 
Express the maximum acceleration 
of an oscillator: 

2
max ωAa =  
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Express the relationship between 
the angular frequency and the 
frequency of the vibrations: 
 

fπω 2=  

Substitute to obtain: 
 

22
max 4 Afa π=  

Solve for  f: 

A
af max

2
1
π

=  

 
Substitute numerical values and 
evaluate  f: Hz9.12

m101.5
m/s98.1

2
1

2

2

=
×

= −π
f  

 
31 ••  
Picture the Problem The maximum speed and acceleration of the particle are given by 

ωAv =max  and 2
max ωAa = . The velocity and acceleration of the particle are given by 

tAv ωω sin−=  and .cos2 tAa ωω−=  
 

(a) Find vmax from A and ω: ( )( )
m/s85.7

sm5.2 1
max

=

== −πωAv
 

 
Find amax from A and ω: ( )( )

2

212
max

m/s7.24

sm5.2

=

== −πωAa
 

 
(b) Use the equation for the position 
of the particle to relate its position at 
x = 1.5 m to the time t′to reach this 
position: 
 

( ) t'πcosm2.5m5.1 =  

Solve for π t′: rad9273.06.0cos 1 == −t'π  

 
Evaluate v when π t = π t′: ( )( ) ( )

m/s28.6

rad9273.0sinsm5.2 1

−=

−= −πv
 

where the minus sign indicates that the 
particle is moving in the negative direction. 
 

Evaluate a when πt = πt′: ( )( ) ( )
2

21

m/s8.14

rad9273.0cossm5.2

−=

−= −πa
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where the minus sign indicates that the 
particle’s acceleration is in the negative 
direction. 

 
*32 ••  
Picture the Problem We can use the formula for the cosine of the sum of two angles to 
write x = A0 cos(ωt + δ) in the desired form.  We can then evaluate x and dx/dt at t = 0 to 
relate Ac and As to the initial position and velocity of a particle undergoing simple 
harmonic motion. 
 
(a) Apply the trigonometric identity 

( ) δωδωδω sinsincoscoscos ttt −=+  
to obtain: 
 

( ) [
]

tAtA

tA
tA

t
tAtAx

ωω

ωδ
ωδ
δω

δωδω

cossin

coscos
sinsin

sinsin
coscoscos

cs

0

0

00

+=

+
−=
−

=+=

 

provided 
δsin0s AA −= and δcos0c AA =  

 
(b) At t = 0: 

c0 cos)0( AAx == δ  

 
Evaluate dx/dt: [ ]

tAtA

tAtA
dt
d

dt
dxv

ωωωω

ωω

sincos

cossin

cs

cs

−=

+==
 

 
Evaluate v(0) to obtain: δωω sin)0( 0AAv s −==  

 
Simple Harmonic Motion and Circular Motion 
 
33 •  
Picture the Problem We can find the period of the motion from the time required for the 
particle to travel completely around the circle. The frequency of the motion is the 
reciprocal of its period and the x-component of the particle’s position is given 
by ( )δω += tAx cos .   

 
(b) Use the definition of speed to 
find the period of the motion: 
 

( ) s14.3
m/s8.0

m4.022
===

ππ
v

rT  

 
(a) Because the frequency and the 
period are reciprocals of each other: 

Hz318.0
s14.3

11
===

T
f  

 
(c) Express the x component of the ( )δω += tAx cos  
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position of the particle: 
 

 

Assuming that the particle is on the 
positive x axis at time t = 0: 
 

δcosAA = ⇒ 01cos 1 == −δ  

Substitute for A, ω, and δ to obtain: ( )
( ) ( )[ ]t

ftAx
1s2coscm40

2cos
−=

= π
 

 
*34 •  
Picture the Problem We can find the period of the motion from the time required for the 
particle to travel completely around the circle. The angular frequency of the motion is 2π 
times the reciprocal of its period and the x-component of the particle’s position is given 
by ( )δω += tAx cos .   

 
(a) Use the definition of speed to 
express and evaluate the speed of  
the particle: 

( ) cm/s4.31
s3
cm1522

===
ππ

T
rv  

 
(b) Express the angular velocity of 
the particle: 

rad/s
3
22 ππω ==

T
 

 
(c) Express the x component of the 
position of the particle: 
 

( )δω += tAx cos  

 

Assuming that the particle is on the 
positive x axis at time t = 0: 
 

δcosAA = ⇒ 01cos 1 == −δ  

Substitute to obtain: ( ) tx ⎟
⎠
⎞

⎜
⎝
⎛= −1s

3
2coscm15 π

 

 
Energy in Simple Harmonic Motion 
 
35 •  
Picture the Problem The total energy of the object is given by ,2

2
1

tot kAE =  where A is 

the amplitude of the object’s motion. 
 
Express the total energy of the 
system: 

2
2
1

tot kAE =  

 
Substitute numerical values and 
evaluate Etot: 

( )( ) J22.5m0.1kN/m4.5 2
2
1

tot ==E  
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36 •  
Picture the Problem The total energy of an oscillating object can be expressed in terms 
of its kinetic energy as it passes through its equilibrium position: .2

max2
1

tot mvE =  Its 

maximum speed, in turn, can be expressed in terms of its angular frequency and the 
amplitude of its motion. 
 
Express the total energy of the 
object in terms of its maximum 
kinetic energy: 
 

2
max2

1 mvE =  

Express vmax: AfAv πω 2max ==  

 
Substitute to obtain: ( ) 2222

2
1 22 fmAAfmE ππ ==  

 
Substitute numerical values and 
evaluate E: 

( )( ) ( )
J41.3

s4.2m1.0kg32 2122

=

= −πE
 

 
37 •  
Picture the Problem The total mechanical energy of the oscillating object can be 
expressed in terms of its kinetic energy as it passes through its equilibrium position: 

2
max2

1
tot mvE = . Its total energy is also given by .2

2
1

tot kAE =  We can equate these 

expressions to obtain an expression for A. 
 
(a) Express the total mechanical 
energy of the object in terms of its 
maximum kinetic energy: 
 

2
max2

1 mvE =  

Substitute numerical values and 
evaluate E: 

( )( ) J0.368m/s0.7kg1.5 2
2
1 ==E  

 
(b) Express the total energy of the 
object in terms of the amplitude of 
its motion: 
 

2
2
1

tot kAE =  

Solve for A: 

k
EA tot2

=  

 
Substitute numerical values and 
evaluate A: 

( ) cm84.3
N/m500

J368.02
==A  
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38 •  
Picture the Problem The total energy of the oscillating object can be expressed in terms 
of its kinetic energy as it passes through its equilibrium position: .2

max2
1

tot mvE =  Its total 

energy is also given by .2
2
1

tot kAE =  We can solve the latter equation to find A and solve 

the former equation for vmax. 
 
(a) Express the total energy of the 
object as a function of the amplitude 
of its motion: 

 

2
2
1

tot kAE =  

 
 

Solve for A: 

k
EA tot2

=  

 
Substitute numerical values and 
evaluate A: 

( ) cm00.3
N/m2000

J9.02
==A  

 
(b) Express the total energy of the 
object in terms of its maximum 
speed: 
 

2
max2

1
tot mvE =  

 

Solve for vmax: 

m
Ev tot

max
2

=  

 
Substitute numerical values and 
evaluate vmax: 

( ) m/s0.775
kg3

J0.92
max ==v  

 
39 •  
Picture the Problem The total energy of the object is given by .2

2
1

tot kAE =  We can 

solve this equation for the force constant k and substitute the numerical data to determine 
its value. 
 
Express the total energy of the 
oscillator as a function of the 
amplitude of its motion: 
 

2
2
1

tot kAE =  

 

Solve for k: 
2
tot2

A
Ek =  

 
Substitute numerical values and 
evaluate k: 

( )
( )

kN/m1.38
m0.045
J1.42

2 ==k  
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*40 ••  
Picture the Problem The total energy of the object is given, in terms of its maximum 
kinetic energy by .2

max2
1

tot mvE =  We can express vmax in terms of A and ω and, in turn, 

express ω in terms of  amax to obtain an expression for Etot in terms of  amax. 
 
Express the total energy of the 
object in terms of its maximum 
kinetic energy: 
 

2
max2

1
tot mvE =  

 

Relate the maximum speed of the 
object to its angular frequency: 
 

ωAv =max  

Substitute to obtain: 
 

( ) 22
2
12

2
1

tot ωω mAAmE ==  

Relate the maximum acceleration of 
the object to its angular frequency: 

2
max ωAa =  

or 

A
amax2 =ω  

 
Substitute and simplify to obtain: 

max2
1max2

2
1

tot mAa
A

amAE ==  

 
Substitute numerical values and 
evaluate Etot: 

( )( )( )
J0.420

m/s3.50m0.08kg3 2
2
1

tot

=

=E
 

 
Springs 
 
41 •  

Picture the Problem The frequency of the object’s motion is given by .
2
1 mkf
π

=  

Its period is the reciprocal of its frequency. The maximum velocity and acceleration of an 
object executing simple harmonic motion are ωAv =max  and ,2

max ωAa =  respectively. 

 
(a) The frequency of the motion is 
given by: m

kf
π2
1

=  

 
Substitute numerical values and 
evaluate f: Hz89.6

kg2.4
kN/m4.5

2
1

==
π

f  
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(b) The period of the motion to is 
the reciprocal of its frequency: 

s145.0
s89.6

11
1 === −f

T  

 
(c) Because the object is released 
from rest after the spring to which it 
is attached is stretched 10 cm: 
 

m100.0=A  

(d) Express the object’s maximum 
speed: 
 

fAAv πω 2max ==  

 

Substitute numerical values and 
evaluate vmax: 
 

( )( ) m/s33.4m1.0s89.62 1
max == −πv  

(e) Express the object’s maximum 
acceleration: 
 

maxmax
2

max 2 fvvAa πωω ===  

 

Substitute numerical values and 
evaluate amax: 

( )( )
2

1
max

m/s187

m/s33.4s89.62

=

= −πa
 

 
(f) The object first reaches its 
equilibrium when: 

( ) ms3.36s145.04
1

4
1 === Tt  

 
Because the resultant force acting 
on the object as it passes through its 
equilibrium point is zero, the 
acceleration of the object is: 

0=a  

 
42 •  

Picture the Problem The frequency of the object’s motion is given by .
2
1 mkf
π

=  

Its period is the reciprocal of its frequency. The maximum velocity and acceleration of an 
object executing simple harmonic motion are ωAv =max  and ,2

max ωAa =  respectively. 

 
(a) The frequency of the motion is 
given by: m

kf
π2
1

=  

 
Substitute numerical values and 
evaluate f: Hz88.1

kg5
N/m700

2
1

==
π

f  
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(b) The period of the motion is the 
reciprocal of its frequency: 

s531.0
s88.1

11
1 === −f

T  

 
(c) Because the object is released 
from rest after the spring to which it 
is attached is stretched 8 cm: 
 

m0800.0=A  

(d) Express the object’s maximum 
speed: 
 

fAAv πω 2max ==  

 

Substitute numerical values and 
evaluate vmax: 

( )( ) m/s945.0m08.0s88.12 1
max == −πv

 
(e) Express the object’s maximum 
acceleration: 
 

maxmax
2

max 2 fvvAa πωω ===  

 

Substitute numerical values and 
evaluate amax: 

( )( )
2

1
max

m/s2.11

m/s945.0s88.12

=

= −πa
 

 
(f) The object first reaches its 
equilibrium when: 

( ) s.1330s531.04
1

4
1 === Tt  

 
Because the resultant force acting 
on the object as it passes through its 
equilibrium point is zero, the 
acceleration of the object is: 

0=a  

 
43 •  
Picture the Problem The angular frequency, in terms of the force constant of the spring 
and the mass of the oscillating object, is given by .2 mk=ω  The period of the motion is 

the reciprocal of its frequency. The maximum velocity and acceleration of an object 
executing simple harmonic motion are ωAv =max  and ,2

max ωAa =  respectively. 

 
(a) Relate the angular frequency of 
the motion to the force constant of 
the spring: 

m
k

=2ω  

or 
mfmk 222 4πω ==  

 
Substitute numerical values to 
obtain: 

( ) ( ) N/m682kg3s4.24 212 == −πk  
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(b) Relate the period of the motion 
to its frequency: 

s417.0
s4.2

11
1 === −f

T  

 
(c) Express the maximum speed of 
the object: 
 

fAAv πω 2max ==  

 

Substitute numerical values and 
evaluate vmax: 
 

( )( ) m/s51.1m1.0s4.22 1
max == −πv  

(d) Express the maximum 
acceleration of the object: 
 

AfAa 222
max 4πω ==  

Substitute numerical values and 
evaluate amax: 

( ) ( ) 2212
max m/s7.22m0.1s4.24 == −πa

 
*44 •  
Picture the Problem We can find the frequency of vibration of the car-and-passenger 

system using ,
2
1

M
kf

π
=  where M is the total mass of the system. The spring 

constant can be determined from the compressing force and the amount of compression. 
 
Express the frequency of the car-
and-passenger system: M

kf
π2
1

=  

 
Express the spring constant: 

x
mg

x
Fk

∆
=

∆
=  

where m is the person’s mass. 
 

Substitute to obtain: 

xM
mgf
∆

=
π2
1

 

 
Substitute numerical values and 
evaluate f: 

( )( )
( )( )

Hz601.0

m102.35kg2485
m/s9.81kg85

2
1

2

2

=

×
= −π

f
 

 
45 •  
Picture the Problem We can relate the force constant k to the maximum acceleration by 
eliminating ω2 between mk=2ω and .2

max ωAa =  We can also express the frequency  f 
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of the motion by substituting mamax/A for k in .
2
1

m
kf

π
=  

 
(a) Relate the angular frequency of 
the motion to the force constant and 
the mass of the oscillator: 
 

m
k

=2ω or mk 2ω=  

 

Relate the object’s maximum 
acceleration to its angular frequency 
and amplitude and solve for the 
square of the angular frequency: 

2
max ωAa =  

or 

A
amax2 =ω                                      (1) 

 
Substitute to obtain: 

A
mak max=  

 
Substitute numerical values and 
evaluate k: 

( )( ) kN/m08.3
m103.8

m/s26kg4.5
2

2

=
×

= −k  

(b) Replace ω in equation (1) by 2πf 
and solve for f  to obtain: A

af max

2
1
π

=  

 
Substitute numerical values and 
evaluate f: Hz16.4

m103.8
m/s26

2
1

2

2

=
×

= −π
f  

 
(c) The period of the motion is the 
reciprocal of its frequency: 

s240.0
s16.4

11
1 === −f

T  

 
46 •  
Picture the Problem We can find the frequency of the motion from its maximum speed 
and the relationship between frequency and angular frequency. The mass of the object 
can be found by eliminating ω between mk=2ω  and .max ωAv =  

 
(b) Express the object’s maximum 
speed as a function of the frequency 
of its motion: 
 

fAAv πω 2max ==                          (1) 

 

Solve for f: 
A

vf
π2
max=  

 
Substitute numerical values and 
evaluate f: ( ) Hz04.6

m108.52
m/s2.2

2 =
×

= −π
f  
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(a) Relate the square of the angular 
frequency of the motion to the force 
constant and the mass of the object: 
 

m
k

=2ω ⇒ 2ω
km =                       (2) 

 

Eliminate ω between equations (1) 
and (2) to obtain: 2

max

2

v
kAm =  

 
Substitute numerical values and 
evaluate m: 

( )( )
( )

kg25.1

m/s2.2
m105.8N/m101.8

2

223

=

××
=

−

m
 

 
(c) The period of the motion is the 
reciprocal of its frequency: 

s166.0
s04.6

11
1 === −f

T  

 
47  ••  
Picture the Problem The maximum speed of the block is given by ωAv =max  and the 

angular frequency of the motion is rad/s48.5== mkω . We’ll assume that the 

position of the block is given by tAx ωcos= and solve for ωt for x = 4 cm and x = 0. We 
can use these values for ωt to find the time for the block to travel from x = 4 cm to its 
equilibrium position. 
 
(a) Express the maximum speed of 
the block as a function of the 
system’s  angular frequency: 
 

ωAv =max  

Substitute numerical values and 
evaluate vmax: 

( )( )
m/s438.0

rad/s48.5m08.0max

=

=v
  

 
(b) Assuming that t,Ax ωcos=  

evaluate ωt for x = 4 cm = A/2: 32
1coscos

2
1 πωω ==⇒= −ttAA

 

 
Evaluate v for :3πω =t  ( )

( ) m/s379.0
2
3m/s438.0

3
sinm/s438.0sinmax

==

==
πωtvv

 

 
Express a as a function of  vmax and 
ω: 
 

tvtAa ωωωω coscos max
2 ==  
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Substitute numerical values and 
evaluate a: 

( )( )
2m/s20.1

3
cosrad/s48.5m/s438.0

=

=
πa

 

 
(c) Evaluate ωt for x = 0: 

2
0coscos0 1 πωω ==⇒= −ttA  

 
Let ∆t = time to go from 3πω =t to 

2πω =t . Then: 632
πππω =−=∆t  

 
Solve for and evaluate ∆t: 

( ) ms5.95
rad/s48.566

===∆
π

ω
πt  

 
*48 ••  
Picture the Problem Choose a coordinate system in which upward is the positive y 
direction. We can find the mass of the object using .2ωkm =  We can apply a condition 

for translational equilibrium to the object when it is at its equilibrium position to 
determine the amount the spring has stretched from its natural length. Finally, we can use 
the initial conditions to determine A and δ and express x(t) and then differentiate this 
expression to obtain v(t) and a(t). 
 
(a) Express the angular frequency of 
the system in terms of the mass of 
the object fastened to the vertical 
spring and solve for the mass of the 
object: 
 

2
2

ω
ω km

m
k

=⇒=  

Express ω2 in terms of  f: 222 4 fπω =  

 
Substitute to obtain: 

224 f
km

π
=  

 
Substitute numerical values and 
evaluate m: ( ) kg51.1

s5.54
N/m1800

212
==

−π
m  

 
(b) Letting ∆x represent the amount 
the spring is stretched from its 
natural length when the object is in 
equilibrium, apply ∑ = 0yF  to the 

object when it is in equilibrium: 

0=−∆ mgxk  
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Solve for ∆x: 
k

mgx =∆  

 
Substitute numerical values and 
evaluate ∆x: 

( )( ) mm23.8
N/m 1800

m/s81.9kg51.1 2

==∆x  

 
(c) Express the position of the object 
as a function of time: 
 

( )δω += tAx cos  

 

Use the initial conditions  
(x0 = −2.5 cm and v0 = 0) to find δ: π

ω
δ ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− 0tantan 1

0

01

x
v

 

 
Evaluate ω: 

rad/s34.5
kg1.51
N/m1800

===
m
kω  

Substitute to obtain: ( ) ( )[ ]
( ) ( )[ ]t

tx

rad/s5.34coscm5.2

rad/s5.34coscm5.2

−=

+= π
 

 
Differentiate x(t) to obtain v: ( ) ( )[ ]tv rad/s5.34sincm/s4.86=  

 
Differentiate v(t) to obtain a: ( ) ( )[ ]ta rad/s5.34cosm/s8.29 2=  

 
49 ••  
Picture the Problem Let the system include the object and the spring. Then, the net 
external force acting on the system is zero. Choose Ei = 0 and apply the conservation of 
mechanical energy to the system.  
 
Express the period of the motion in 
terms of its angular frequency: 
 

ω
π2

=T                      (1) 

Apply conservation of energy to the 
system: 
 

fi EE = or springg0 UU +=  

 

Substitute for Ug and Uspring: ( )22
10 xkxmg ∆+∆−=  

 
Solve for ω2 = k/m: 

x
g

m
k

∆
==

22ω  

 
Substitute numerical values and 
evaluate ω2: 

( ) 2
2

2
2 rad/s574

m103.42
m/s9.812

=
×

= −ω  
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Substitute in equation (1) to obtain: s0.262
rad/s574

2π
2
==T  

 
50 ••  
Picture the Problem Let the system include the object and the spring. Then the net 
external force acting on the system is zero. Because the net force acting on the object 
when it is at its equilibrium position is zero, we can apply a condition for translational 
equilibrium to determine the distance from the starting point to the equilibrium position. 
Letting Ei = 0, we can apply conservation of energy to the system to determine how far 
down the object moves before coming momentarily to rest. We can find the period of the 
motion and the maximum speed of the object from kmT π2=  and .max mkAv =  

 
(a) Apply ∑ = 0yF  to the object 

when it is at the equilibrium 
position: 
 

00 =−mgky  

Solve for y0: 
k

mgy =0  

 
Substitute numerical values and 
evaluate y0: 

( )( ) cm3.92
N/m250

m/s9.81kg1 2

0 ==y  

 
(b) Apply conservation of energy to 
the system: 

fi EE =  

or 
springg0 UU +=  

 
Substitute for Ug and Uspring: 2

f2
1

f0 kymgy +−=  

 
Solve for yf: 

k
mgy 2

f =  

 
Substitute numerical values and 
evaluate yf: 

( )( ) cm7.85
N/m250

m/s9.81kg12 2

f ==y  

 
(c) Express the period T of the 
motion in terms of the mass of the 
object and the spring constant: 
 

k
mT π2=  
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Substitute numerical values and 
evaluate T: s0.397

N/m250
kg1π2 ==T  

 
(d) The object will be moving with 
its maximum speed when it reaches 
its equilibrium position: 
 

m
kAAv == ωmax  

 

Substitute numerical values and 
evaluate vmax: 

( )

cm/s62.0

kg1
N/m250cm3.92max

=

=v
 

 
(e) The time required for the object to 
reach equilibrium is one-fourth of its 
period: 

( ) ms99.3s0.3974
1

4
1 === Tt  

 
51 ••  
Picture the Problem The stunt woman’s kinetic energy, after 2 s of flight, is 

.2
s22

1
s2 mvK =  We can evaluate this quantity as soon as we know how fast she is moving 

after two seconds. Because her motion is oscillatory, her velocity as a function of time is 
( ) ( ).sin δωω +−= tAtv  We can find the amplitude of her motion from her distance of 

fall and the angular frequency of her motion by applying conservation of energy to her 
fall to the ground. 
 
Express the kinetic energy of the 
stunt woman when she has fallen for 
2 s: 
 

2
s22

1
s2 mvK =                            (1) 

Express her velocity as a function of 
time: 

( ) ( )δωω +−= tAtv sin  

where δ = 0 (she starts from rest with 
positive displacement) and 

( ) m96m1922
1 ==A  
( ) ( ) ( )ttv ωω sinm96−=∴       (2) 

 
Letting Ei = 0, use conservation of 
energy to find the force constant of 
the elastic band: 
 

elasticg0 UU +=  

or 
00 2

2
1 =+−= khmgh  

Solve for k: 
h
mgk 2

=  
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Substitute numerical values and 
evaluate k: 

( )( ) N/m6.13
m192

m/s9.81kg602 2

==k  

 
Express the angular frequency of 
her motion: m

k
=ω  

 
Substitute numerical values and 
evaluate ω: rad/s0.320

kg60
N/m6.13

==ω  

 
Substitute in equation (2) to obtain:  ( ) ( )( )

( )[ ]
( ) ( )[ ]t

t
tv

rad/s320.0sinm/s7.30
rad/s320.0sin

rad/s320.0m96

=
×
−=

 

 
Evaluate v(2 s): ( ) ( ) ( )( )[ ]

m/s3.18
s2rad/s320.0sinm/s7.30s2

=
=v

 

 
Substitute in equation (1) and 
evaluate K(2 s): 

( ) ( )( ) kJ10.1m/s18.3kg60s2 2
2
1 ==K

 
 
*52 ••  
Picture the Problem The diagram shows 
the stretched bungie cords supporting the 
suitcase under equilibrium conditions. We 

can use 
M
kf eff

2
1
π

= to express the 

frequency of the suitcase in terms of the 
effective ″spring″ constant keff and apply a 
condition for translational equilibrium to 
the suitcase to find keff.   
  
Express the frequency of the 
suitcase oscillator: M

kf eff

2
1
π

=  

 
Apply 0=∑ yF  to the suitcase to 

obtain: 
 

0=−+ Mgkxkx  

or 
02 =− Mgkx  

or 
0eff =− Mgxk  

where keff = 2k 
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Solve for keff  to obtain: 
x

Mgk =eff  

 
Substitute to obtain: 

x
gf

π2
1

=  

 
Substitute numerical values and 
evaluate f: Hz23.2

m05.0
m/s81.9

2
1 2

==
π

f  

 
53 ••  
Picture the Problem The frequency of the motion of the stone and block depends on the 
force constant of the spring and the mass of the stone plus block. The force constant can 
be determined from the equilibrium of the system when the spring is stretched 
additionally by the addition of the stone to the mass. When the block is at the point of 
maximum upward displacement, it is momentarily at rest and the net force acting on it is 
its weight. 
 
(a) Express the frequency of the 
motion in terms of  k and m: 
 

tot2
1

m
kf

π
=  

where mtot is the total mass suspended from 
the spring. 
 

Apply ∑ = 0yF  to the stone when 

it is at its equilibrium position: 
 

0=−∆ mgyk  

Solve for k: 
y

mgk
∆

=  

 
Substitute numerical values and 
evaluate k: 

( )( ) N/m5.89
m0.05

m/s9.81kg0.03 2

==k  

 
Substitute and evaluate  f: 

Hz997.0
kg0.15

N/m5.89
2
1

==
π

f  

 
(b) The time to travel from its lowest 
point to its highest point is one-half its 
period: 
 

( ) s0.502
s0.9972

1
2
1

12
1 ==== −f
Tt  
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(c) When the stone is at a point of 
maximum upward displacement: 

( )( )
N0.294

m/s9.81kg03.0 2
net

=

== mgF
 

 
54 ••  
Picture the Problem We can use the maximum acceleration of the oscillator 

2
max ωAa = to express amax in terms of  A, k, and m. k can be determined from the 

equilibrium of the system when the spring is stretched additionally by the addition of the 
stone to the mass. If the stone is to remain in contact with the block, the block’s 
maximum downward acceleration must not exceed g. 
 
Express the maximum acceleration 
in terms of the angular frequency 
and amplitude of the motion: 
 

2
max ωAa =  

Relate ω2 to the force constant and 
the mass of the stone: m

k
=2ω  

 
Substitute to obtain: 

m
kAa =max  

 
Apply ∑ = 0yF  to the stone when 

it is at its equilibrium position: 
 

0=−∆ mgyk  

Solve for k: 
y

mgk
∆

=  

 
Substitute numerical values and 
evaluate k: 
 

( )( ) N/m5.89
m0.05

m/s9.81kg0.03 2

==k  

Substitute numerical values to 
express amax in terms of  A: 

( )AAa 2
max s3.39

kg0.15
N/m5.89 −==  

 
Set amax = g and solve for Amax: 

2max s3.39 −=
gA  

 
Substitute for g and evaluate Amax: cm0.25

s39.3
m/s9.81

2

2

max == −A  
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55 ••  
Picture the Problem The maximum height above the floor to which the object rises is 
the sum of its initial distance from the floor and the amplitude of its motion. We can find 
the amplitude of its motion by relating it to the object’s maximum speed. Because the 
object initially travels downward, it will be three-fourths of the way through its cycle 
when it first reaches its maximum height. We can find the minimum initial speed the 
object would need to be given in order for the spring to become uncompressed by 
applying conservation of energy. 
 
(a) Relate h, the maximum height 
above the floor to which the object 
rises, to the amplitude of its motion: 
 

h = A + 5.0 cm                 (1) 

Relate the maximum speed of the 
object to the angular frequency and 
amplitude of its motion and solve 
for the amplitude: 
 

ωAv =max  

or 

k
mvA max=                      (2) 

 
Using its definition, express and 
evaluate the force constant of the 
spring: 

( )( ) N/m654
m0.03

m/s9.81kg2 2

==
∆

=
y

mgk  

 
Substitute numerical values in 
equation (2) and evaluate A: cm1.66

N/m654
kg2m/s3.0 ==A  

 
Substitute in equation (1) to obtain: cm6.66cm5.00cm66.1 =+=h  

 
(b) Express the time required for the 
object to reach its maximum height 
the first time: 
 

Tt 4
3=  

Express the period of the motion: 

k
mT π2=  

 
Substitute numerical values and 
evaluate T: s347.0

N/m654
kg22 == πT  

 
Substitute to obtain: ( ) s261.0s347.04

3 ==t  
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(c) Because h < 8.0 cm: ed.uncompressnever  is spring the  

 
Using conservation of energy and 
letting Ug be zero 5 cm above the 
floor, relate the height to which the 
object rises, ∆y, to its initial kinetic 
energy: 

0sg =∆+∆+∆ UUK  

or, because Kf = Ui = 0, 
( )

( ) 02
i2

1

2
2
12

i2
1

=−−

∆+∆−

yLk

ykymgmv
 

 
Because :iyLy −=∆   

 
( ) ( ) 02

2
12

2
12

i2
1 =∆−∆+∆− ykykymgmv  

and 
02

i2
1 =∆− ymgmv  

 
Solve for and evaluate vi for  
∆y = 3 cm: 

( )( )
m/s0.767

cm3m/s9.8122 2
i

=

=∆= ygv
 

i.e., the minimum initial velocity that must 
be given to the object for the spring to be 
uncompressed at some time is 

m/s767.0  

 
*56 ••   
Picture the Problem We can relate the elongation of the cable to the load on it using the 
definition of  Young’s modulus and use the expression for the frequency of a spring and 
mass oscillator to find the oscillation frequency of the engine block at the end of the wire. 
 
(a)  Using the definition of  
Young’s modulus, relate the 
elongation of the cable to the 
applied stress: 
 

ll∆
==

AFY
strain
stress

 

Solve for ∆l: 
AY

Mg
AY
F ll

l ==∆  

 
Substitute numerical values and 
evaluate ∆l: 

( )( )( )
( )( )

mm04.1

GN/m150cm5.1
m5.2m/s81.9kg950

22

2

=

=∆l
 

 
(b)  Express the oscillation 
frequency of the wire-engine block 
system: 

M
kf eff

2
1
π

=  
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Express the effective ″spring″ 
constant of the cable: ll ∆

=
∆

=
MgFkeff  

 
Substitute to obtain: 

l∆
=

gf
π2
1

 

 
Substitute numerical values and 
evaluate f: Hz5.15

mm04.1
m/s81.9

2
1 2

==
π

f  

 
Energy of an Object on a Vertical Spring 
 
57 ••  
Picture the Problem Let the origin of our coordinate system be at y0, where y0 is the 
equilibrium position of the object and let Ug = 0 at this location. Because Fnet = 0 at 
equilibrium, the extension of the spring is then y0 = mg/k, and the potential energy stored 
in the spring is 2

02
1

s kyU = . A further extension of the spring by an amount y increases Us 

to ( ) .2
02

12
2
12

02
1

0
2

2
12

02
1 kymgykykykyykyyyk ++=++=+  Consequently, if we set  

U = Ug + Us = 0, a further extension of the spring by y increases Us by ½ky2 + mgy while 
decreasing Ug by mgy. Therefore, if U = 0 at the equilibrium position, the change in U is 
given by ( ) ,' 2

2
1 yk where y′ = y − y0. 

 
(a) Express the total energy of the 
system: 
 

2
2
1 kAE =  

 

Substitute numerical values and 
evaluate E: 
 

( )( ) J0.270m0.03N/m600 2
2
1 ==E  

(b) Express and evaluate Ug when 
the object is at its maximum 
downward displacement: 

( )( )( )
J0.736

m0.03m/s9.81kg2.5 2

g

−=

−=

−= mgAU

 

 
(c) When the object is at its 
maximum downward displacement: ( )( )

( )( )( )
J1.01

m0.03m/s9.81kg2.5

m0.03N/m600
2

2
2
1

2
2
1

s

=

+

=

+= mgAkAU
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(d) The object has its maximum 
kinetic energy when it is passing 
through its equilibrium position: 

( )( )
J0.270

m0.03N/m600 2
2
12

2
1

max

=

== kAK
 

 
58 ••  
Picture the Problem Let the origin of our coordinate system be at y0, where y0 is the 
equilibrium position of the object and let Ug = 0 at this location. Because Fnet = 0 at 
equilibrium, the extension of the spring is then y0 = mg/k, and the potential energy stored 
in the spring is .2

02
1

s kyU =  A further extension of the spring by an amount y increases Us 

to ( ) .2
02

12
2
12

02
1

0
2

2
12

02
1 kymgykykykyykyyyk ++=++=+  Consequently, if we set  

U = Ug + Us = 0, a further extension of the spring by y increases Us by ½ky2 + mgy while 
decreasing Ug by mgy. Therefore, if U = 0 at the equilibrium position, the change in U is 
given by ( ) ,' 2

2
1 yk  where y′ = y − y0. 

 
(a) Express the total energy of the system: 
 

2
2
1 kAE =  

 
Letting ∆y represent the amount the 
spring is stretched from its natural 
length by the 1.5-kg object, apply 

∑ = yy maF to the object when it is 

in its equilibrium position: 
 

0=−∆ mgyk  

Solve for k: 
 y

mgk
∆

=  

 
Substitute for k to obtain: 

y
mgAE
∆

=
2

2

 

 
Substitute numerical values and 
evaluate E: 

( )( )( )
( )

J127.0

m0.0282
m022.0m/s9.81kg1.5 22

=

=E
 

 
(b) Express Ug when the object is at 
its maximum downward 
displacement: 
 

mgAU −=g  

 

Substitute numerical values and 
evaluate Ug: 

( )( )( )
J0.324

m0.022m/s9.81kg1.5 2
g

−=

−=U
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(c) When the object is at its maximum 
downward displacement: 
 

mgAkAU += 2
2
1

s  

 

Substitute numerical values and 
evaluate Us: 

( )( )
( )( )( )

J451.0

m0.022m/s9.81kg1.5

m0.022N/m265
2

2
2
1

s

=

+

=U

 

 
(d) The object has its maximum 
kinetic energy when it is passing 
through its equilibrium position: 

( )( )
J0.127

m0.022N/m265 2
2
1

2
2
1

max

=

=

= kAK

 

 
*59 ••   
Picture the Problem We can find the amplitude of the motion by relating it to the 
maximum speed of the object. Let the origin of our coordinate system be at y0, where y0 is 
the equilibrium position of the object and let Ug = 0 at this location. Because Fnet = 0 at 
equilibrium, the extension of the spring is then y0 = mg/k, and the potential energy stored 
in the spring is .2

02
1

s kyU =  A further extension of the spring by an amount y increases Us 

to ( ) .2
02

12
2
12

02
1

0
2

2
12

02
1 kymgykykykyykyyyk ++=++=+  Consequently, if we set  

U = Ug + Us = 0, a further extension of the spring by y increases Us by ½ky2 + mgy while 
decreasing Ug by mgy. Therefore, if U = 0 at the equilibrium position, the change in U is 
given by ( ) ,' 2

2
1 yk  where y′ = y − y0. 

 
(a) Relate the maximum speed of 
the object to the amplitude of its 
motion: 
 

ωAv =max  

Solve for A: 
 k

mvvA max
max ==
ω

 

 
Substitute numerical values and 
evaluate A: ( ) cm1.90

N/m300
kg1.2m/s0.3 ==A  

 
(b) Express the energy of the object 
at maximum displacement: 
 

2
2
1 kAE =  

 

Substitute numerical values and 
evaluate E: 
 

( )( ) J0.0542m0.019N/m300 2
2
1 ==E
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(c) At maximum displacement from 
equilibrium: 
 

mgAU −=g  

 

Substitute numerical values and 
evaluate Ug: 

( )( )( )
J0.224

m0.019m/s9.81kg1.2 2
g

−=

−=U
 

 
(d) Express the potential energy in 
the spring when the object is at its 
maximum downward displacement: 
 

mgAkAU += 2
2
1

s  

Substitute numerical values and 
evaluate Us: 

( )( )
( )( )( )

J278.0

m019.0m/s81.9kg2.1

m0.019N/m300
2

2
2
1

s

=

+

=U

 

 
Simple Pendulums 
 
60 •  
Picture the Problem We can determine the required length of the pendulum from the 
expression for the period of a simple pendulum. 
 
Express the period of a simple pendulum: 

g
LT π2=  

 
Solve for L: 

2

2

4π
gTL =  

 
Substitute numerical values and evaluate L: ( ) ( ) m21.6

4
m/s9.81s5

2

22

==
π

L  

 
61 •  
Picture the Problem We can find the period of the pendulum from moon2 gLT π=  
where gg 6

1
moon =  and L = 6.21 m. 

 
Express the period of a simple 
pendulum: 

moon

2
g

LT π=  

 
Substitute numerical values and 
evaluate T: ( ) s2.12

m/s9.81
m6.212 2

6
1

== πT  
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62 •  
Picture the Problem We can find the value of g at the location of the pendulum by 
solving the equation gLT π2=  for g and evaluating it for the given length and 

period. 
 
Express the period of a simple 
pendulum: g

LT π2=  

 
Solve for g: 

2

24
T

Lg π
=  

 
Substitute numerical values and 
evaluate g: 

( )
( )

2
2

2

m/s79.9
s68.1

m7.04
==

πg  

 
*63 •  
Picture the Problem We can use gLT π2=  to find the period of this pendulum. 

 
Express the period of a simple 
pendulum: g

LT π2=  

 
Substitute numerical values and 
evaluate T: s7.11

m/s9.81
m432 2 == πT  

 
64 ••  
Picture the Problem The figure shows the 
simple pendulum at maximum angular 
displacement φ0. The total energy of the 
simple pendulum is equal to its initial 
gravitational potential energy. We can 
apply the definition of gravitational 
potential energy and use the small-angle 
approximation to show that .2

02
1 φmgLE ≈   

 
 
Express the total energy of the simple 
pendulum at maximum displacement: [ ]0

ntdisplacememax

cos1 φ−=

==

mgL

mghUE
 

 
For φ << 1: 2

2
11cos φφ −≈  
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Substitute and simplify to obtain: ( )[ ] 2
02

12
02

111 φφ mgLmgLE =−−=  

 
65 ••  
Picture the Problem Because the cart is 
accelerating down the incline, the period of 
the simple pendulum will be given by 

eff2 gLT π=  where  geff is less than g 

by the acceleration of the cart. We can 
apply Newton’s 2nd law to the cart to find 
its acceleration down the incline and then 
subtract this acceleration from g to find geff.  
 
Express the period of a simple 
pendulum in terms of its length and 
the effective value of the 
acceleration of gravity: 
 

eff

2
g
LT π=  

Relate geff to the acceleration of the 
cart: 
 

agg −=eff  

Apply xx maF =∑ to the cart and 

solve for its acceleration: 
 

mamg =θsin  

and 
θsinga =  

 
Substitute to obtain: 

( )θπ

θ
ππ

sin1
2

sin
22

−
=

−
=

−
=

g
L

gg
L

ag
LT
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66 ••  
Picture the Problem The figure shows the 
simple pendulum at maximum angular 
displacement φ0. We can express the 
angular position of the pendulum’s bob in 
terms of its initial angular position and 
time and differentiate this expression to 
find the maximum speed of the bob.  We 
can use conservation of energy to find an 
exact value for vmax and the approximation 

2
2
11cos φφ −≈  to show that this value 

reduces to the former value for small φ.  
 
(a) Relate the speed of the 
pendulum’s bob to its angular 
speed: 
 

dt
dLv φ

=                            (1) 

Express the angular position of the 
pendulum as a function of time: 
 

tωφφ cos0=  

Differentiate this expression to 
express the angular speed of the 
pendulum: 
 

t
dt
d ωωφφ sin0−=  

 

Substitute in equation (1) to obtain: tvtLv ωωωφ sinsin max0 −=−=  

 
Simplify vmax to obtain: 

gL
L
gLv 00max φφ ==  

 
(b) Use conservation of energy to 
relate the potential energy of the 
pendulum at point 1 to its kinetic 
energy at point 2: 
 

0=∆+∆ UK  
or, because K1 = U2 = 0, 

012 =−UK  

 

Substitute for K2 and U1: 02
22

1 =−mghmv  

 
Express h in terms of L and φ0: 
 

( )0cos1 φ−= Lh  

Substitute for h and solve for  
v2 = vmax to obtain: 

( )0max cos12 φ−= gLv       (2) 
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(c) For φ0 << 1: 2
02

1
0cos1 φφ ≈−  

 
Substitute in equation (2) to obtain: ( ) gLgLv 0

2
02

1
max 2 φφ ==  

in agreement with our result in part (a). 
 

(d) Express the difference in the 
results from (a) and (b): 
 

bmax,amax, vvv −=∆                   (3) 

Using φ0 = 0.20 rad and L = 1 m,  
evaluate the result in (b): 

( )( )( )
m/s0.6254

2.0cos1m1m/s81.92 2
bmax,

=

−=v
 

 
Using φ0 = 0.20 rad and L = 1 m,  
evaluate the result in part (a): 

( ) ( )( )
m/s6264.0

m1m/s9.81rad20.0 2
a.max

=

=v
 

 
Substitute in equation (3) to obtain: 

mm/s1.00m/s0.001

m/s0.6254m/s6264.0

==

−=∆v
 

 
Physical Pendulums  
 
67 • 
Picture the Problem The period of this physical pendulum is given by 

MgDIT π2= where I  is the moment of inertia of the thin disk with respect to an 

axis through its pivot point. We can use the parallel-axis theorem to express I in terms of 
the moment of inertia of the disk with respect to its center of mass and the distance from 
its center of mass to its pivot point. 
 
Express the period of physical 
pendulum: MgD

IT π2=  

 
Using the parallel-axis theorem, find 
the moment of inertia of the thin 
disk about an axis through the pivot 
point: 

2
2
3

22
2
12

cm

MR

MRMRMRII

=

+=+=
 

 

Substitute to obtain: 

g
R

MgR
MRT

2
322

2
2
3

ππ ==  

 
Substitute numerical values and 
evaluate T: 

( )
( ) s10.1

m/s9.812
m0.232 2 == πT  
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68 •  
Picture the Problem The period of this physical pendulum is given by 

MgDIT π2= where I  is the moment of inertia of the circular hoop with respect to an 

axis through its pivot point. We can use the parallel-axis theorem to express I  in terms of 
the moment of inertia of the hoop with respect to its center of mass and the distance from 
its center of mass to its pivot point. 
 
Express the period of the physical 
pendulum: MgD

IT π2=  

 
Using the parallel-axis theorem, find 
the moment of inertia of the circular 
hoop about an axis through the pivot 
point: 
 

2222
cm 2MRMRMRMRII =+=+=  

 

Substitute to obtain: 

g
R

MgR
MRT 2222

2

ππ ==  

 
Substitute numerical values and 
evaluate T: 

( ) s01.2
m/s9.81

m0.522 2 == πT  

 
69 •  
Picture the Problem The period of a physical pendulum is given by 

MgDIT π2= where I  is its moment of inertia with respect to an axis through its 

pivot point. We can solve this equation for I  and evaluate it using the given numerical 
data. 
 
Express the period of the physical 
pendulum: MgD

IT π2=  

 
Solve for I: 

2

2

4π
MgDTI =  

 
Substitute numerical values and 
evaluate I: 

( )( )( )( )

2

2

22

mkg504.0
4

s2.6m0.1m/s9.81kg3

⋅=

=
π

I
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*70 ••  
Picture the Problem We can use the expression for the period of a simple pendulum to 
find the period of the clock. 
 
(a) Express the period of a simple 
pendulum: g

T lπ2=  

 
Substitute numerical values and 
evaluate T: 
 

s01.4
m/s81.9
m42 2 == πT  

(b) 
period.  theshortens tray in the

coins placing pendulum,  theof mass ofcenter   theraisingy effectivelBy 
 

 
71 ••  
Picture the Problem Let x be the distance of the pivot from the center of the rod, m the 
mass at each end of the rod, and L the length of the rod. We can express the period of the 
physical pendulum as a function of the distance x and then differentiate this expression 
with respect to x to show that, when x = L/2, the period is a minimum. 
 
(a) Express the period of a physical 
pendulum: MgD

IT π2=                  (1) 

 
Express the moment of inertia of the 
dumbbell with respect to an axis 
through its center of mass: 

2
2
1

22

cm 22
mLLmLmI =⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=  

 
Using the parallel-axis theorem, 
express the moment of inertia of the 
dumbbell with respect to an axis 
through the pivot point: 
 

22
2
12

cm 22 mxmLmxII +=+=  

 

Substitute in equation (1) to obtain: 

x
xLC

x
xL

g

mgx
mxmLT

22
4
1

22
4
1

22
2
1

2

2
22

+
=

+
=

+
=

π

π

       (2) 

where 
g

C π2
=       
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Set dT/dx = 0 to find the condition for 
minimum T: extremafor  0

22
4
1

=
+

⋅=
x

xL
dx
dC

dx
dT

 

 
Evaluate the derivative to obtain: ( )

0
2

22
4
1

2

22
4
12

=
+

+−

x
xLx

xLx
 

 
Because the denominator of this 
expression cannot be zero, it must be 
true that: 
 

( ) 02 22
4
12 =+− xLx  

Solve for x to obtain: Lx 2
1=  

i.e., the period is a minimum when the 
pivot point is at one of the masses. 
 

(b) Substitute x = L/4 in equation (2) 
and simplify to obtain: 

( )
g
L

gL
LLT 52

2
1

2
4
12

4
1

ππ =
+

=  

 
Substitute numerical values and 
evaluate T: 

( ) s17.3
m/s81.9
m25

2 == πT  

 
Remarks: In (a), we’ve shown that x = L/2 corresponds to an extreme value; i.e., to 
either a maximum or a minimum. To complete the demonstration that this value of 
x corresponds to a minimum, we can either (1) show that d2T/dx2 evaluated at x = 
L/2 is positive, or (2) graph T as a function of x and note that the graph is a 
minimum at x = L/2. 
    
72 ••  
Picture the Problem Let x be the distance of the pivot from the center of the rod.  We’ll 
express the period of the physical pendulum as a function of the distance x and then 
differentiate this expression with respect to x to find the location of the pivot point that 
minimizes the period of the physical pendulum. 
 
Express the period of a physical 
pendulum: MgD

IT π2=                  (1) 
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Express the moment of inertia of the 
dumbbell with respect to an axis 
through its center of mass: 

( )
2

3
2

2
12
1

22

cm 2
22

mL

LmLmLmI

=

+⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

 

 
Using the parallel-axis theorem, 
express the moment of inertia of the 
dumbbell with respect to an axis 
through the pivot point: 
 

22
3
2

2
cm

4

4

mxmL

mxII

+=

+=
 

 

Substitute in equation (1) to obtain: 

x
xL

g

mgx
mxmLT

22
3
2

22
3
2

4

4
42

+
=

+
=

π

π
       

or 

x
xL

CT
22

3
2 4+

= where 
g

C π
=  

 
Set dT/dx = 0 to find the condition 
for minimum T: extremafor  04 22

3
2

=
+

×=
x

xL
dx
dC

dx
dT

 
 

Evaluate the derivative to obtain: ( )
0

42

48
22

3
2

2

22
3
22

=
+

+−

x
xLx

xLx
 

 
Because the denominator of this 
expression cannot be zero, it follows 
that: 
 

( ) 048 22
3
22 =+− xLx  

Solve for x to obtain: 
6

Lx =  

 
The distance to the pivot point from 
the nearer mass is: 

LLLd 0918.0
62
=−=  

 
Remarks: We’ve shown that 6Lx =  corresponds to an extreme value; i.e., to 

either a maximum or a minimum. To complete the demonstration that this value of 
x corresponds to a minimum, we can either (1) show that d2T/dx2 evaluated at 
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6Lx = is positive, or (2) graph T as a function of x and note that the graph is a 

minimum at 6Lx = . 

 
*73 ••  
Picture the Problem Let x be the distance of the pivot from the center of the meter stick, 
m the mass of the meter stick, and L its length. We’ll express the period of the meter stick 
as a function of the distance x and then differentiate this expression with respect to x to 
determine where the hole should be drilled to minimize the period. 
 
Express the period of a physical 
pendulum: MgD

IT π2=                  (1) 

 
Express the moment of inertia of the 
meter stick with respect to its center 
of mass: 

2
12
1

cm mLI =  

 

Using the parallel-axis theorem, 
express the moment of inertia of the 
meter stick with respect to the pivot 
point: 
 

22
12
1

2
cm

mxmL

mxII

+=

+=
 

 

Substitute in equation (1) to obtain: 

x
xLC

x
xL

g

mgx
mxmLT

22
12
1

22
12
1

22
12
1

2

2

+
=

+
=

+
=

π

π

       

where 
g

C π2
=  

 
Set dT/dx = 0 to find the condition 
for minimum T: extremafor  0

22
12
1

=
+

×=
x

xL
dx
dC

dx
dT

 

 
Evaluate the derivative to obtain: ( )

0
2

22
12
1

2

22
12
12

=
+

+−

x
xLx

xLx
 

 
Because the denominator of this 
expression cannot be zero, it follows 

( ) 02 22
12
12 =+− xLx  
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that: 
 
Solve for and evaluate x to obtain: cm9.28

12
cm100

12
===

Lx  

 
The hole should be drilled at a distance: cm1.21cm28.9cm50 =−=d  

from the center of the meter stick. 
 
74 ••  
Picture the Problem Let m represent the mass and r the radius of the uniform disk. 
We’ll use the expression for the period of a physical pendulum and the parallel-axis 
theorem to obtain a quadratic equation that we can solve for d. We will then treat our 
expression for the period of the pendulum as an extreme-value problem, setting its 
derivative equal to zero in order to determine the value for d that will minimize the 
period. 
 
(a) Express the period of a physical 
pendulum: mgd

IT π2=                        

 
Using the parallel-axis theorem, 
relate the moment of inertia with 
respect to an axis through the hole 
to the moment of inertia with 
respect to the disk’s center of mass: 
 

22
2
1

2
cm

mdmR

mdII

+=

+=
 

Substitute to obtain: 

gd
dR

mgd
mdmRT

22
2
1

22
2
1

2

2

+
=

+
=

π

π
          (1) 

 
Square both sides of this equation, 
simplify, and substitute numerical 
values to obtain:  

0
24

2

2

2
2 =+−

RdgTd
π

 

or 
( ) 0m320.0m553.1 22 =+− dd  

 
Solve the quadratic equation to 
obtain: 

m0.245=d  

The second root, d = 1.31 m, is too large to 
be physically meaningful. 
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(b) Set the derivative of equation (1) 
equal to zero to find relative maxima 
and minima: 

extremafor0

2 22
2
1

=

+
⋅=

d
dR

dd
d

gdd
dT π

 

 
Evaluate the derivative to obtain: ( )

0
2

2
22

2
1

2

22
2
12

=
+

+−

d
dRd

dRd
 

 
Because the denominator of this 
fraction cannot be zero: 
 

( ) 02 22
2
12 =+− dRd  

Solve this equation to obtain: 
2

Rd =  

 
Evaluate equation (1) with 

2Rd = to obtain an expression 

for the shortest possible period of 
this physical pendulum: 
 

g
R

Rg

RRT 22

2

2
2

2
12

2
1

ππ =
+

=  

 

Substitute numerical values and 
evaluate T: 

( ) s13.2
m/s81.9

m8.022 2 == πT  

 
Remarks: We’ve shown that 2Rd = corresponds to an extreme value; i.e., to 

either a maximum or a minimum. To complete the demonstration that this value of 
d corresponds to a minimum, we can either (1) show that d2T/dd2 evaluated at 

2Rd = is positive, or (2) graph T as a function of d and note that the graph is a 

minimum at 2Rd = . 

 
75 •••  
Picture the Problem We can use the equation for the period of a physical pendulum and 
the parallel-axis theorem to show that h1 + h2 = gT 2/4π 2. 
 
Express the period of the physical 
pendulum: mgd

IT π2=                        

 
Using the parallel-axis theorem, 
relate the moment of inertia with 
respect to an axis through P1 to the 

2
1cm mhII +=  
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moment of inertia with respect to 
the disk’s center of mass: 
 
Substitute to obtain: 

1

2
1cm2

mgh
mhIT +

= π            

 
Square both sides of this equation 
and rearrange to obtain: 1

1

cm
2

2

4
mh

h
ImgT

+=
π

                   (1) 

 
Because the period of oscillation is 
the same for point P2: 

2
2

cm
1

1

cm mh
h
Imh

h
I

+=+  

 
Solve this equation for Icm: 21cm hmhI =  

 
Substitute in equation (1) to obtain: 

1
1

21
2

2

4
mh

h
hmhmgT
+=

π
 

or 

2

2

12 4π
gThh =+  

 
76 •••  
Picture the Problem We can find the period of the physical pendulum in terms of the 
period of a simple pendulum by starting with mgLIT π2= and applying the parallel-

axis theorem. Performing a binomial expansion for r << L on the radicand of our 
expression for T  will lead to T ≈ T0 (1 + r2/5L2). 

 
(a) Express the period of the 
physical pendulum: 
 

mgL
IT π2=  

Using the parallel-axis theorem, 
relate the moment of inertia of the 
pendulum about an axis through its 
center of mass to its moment of 
inertia with respect to an axis 
through its point of support: 
 

22
5
2

2
cm

mLmr

mLII

+=

+=
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Substitute and simplify to obtain: 

2

2

0

2

2

2

2

22
5
222

5
2

5
21

5
212

5
212

22

L
rT

L
r

g
L

L
r

g
L

gL
Lr

mgL
mLmrT

+=

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

+
=

ππ

ππ

 

 
(b) Using the binomial expansion, 

expand :
5
21

21

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

L
r

 

2

2

2

2

2

2

221

2

2

5
1

sorder term-higher 
5
2

8
1

5
2

2
11

5
21

L
r

L
r

L
r

L
r

+≈

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

 

provided r << L 
 

Substitute in our result from (a) to 
obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≈ 2

2

0 5
1

L
rTT  

 
(c) Express the fractional error when 
the approximation T = T0 is used for 
this pendulum: 

2

2

2

2
00

0

5
1

5
1

1

L
r

L
r

T
T

T
TT

T
T

=−+=

−=
−

≈
∆

 

 
Substitute numerical values and 
evaluate ∆T/T: 

( )
( )

0.008%
cm1005

cm2
2

2

=≈
∆
T
T

 

 
For an error of 1%: 

01.0
5 2

2

=
L
r

 

 
Solve for and evaluate r with  
L = 100 cm: 

( )
cm22.4

0.05cm10005.0

=

== Lr
 

 
77 •••  
Picture the Problem The period of this physical pendulum is given by 

.2 MgDIT π=  We can express its period as a function of the distance d  by using the 

definition of the center of mass of the pendulum to find D in terms of d and the parallel-
axis theorem to express I  in terms of d. Solving the resulting quadratic equation yields d. 
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In (b), because the clock is losing 5 minutes per day, one would reposition the disk so 
that the clock runs faster; i.e., so the pendulum has a shorter period. We can determine 
the appropriate correction to make in the position of the disk by relating the fractional 
time loss to the fractional change in its position. 

 
(a) Express the period of the 
physical pendulum: 
 

cmtot

2
gxm
IT π=  

Solve for
cmx
I

: 
2

tot
2

cm 4π
gmT

x
I

=                               (1) 

 
Express the moment of inertia of the 
physical pendulum, relative to an 
axis through the pivot point, as a 
function of d: 
 

22
2
12

3
12

cm MdMrmLMdII ++=+=  

 
 

Substitute numerical values and 
evaluate I: 

( )( ) ( )( )
( )

( ) 22

2

2
2
12

3
1

kg2.1mkg0802.1
kg2.1

m15.0kg2.1m2kg8.0

d
d

I

+⋅=

+

+=

 

 
Locate the center of mass of the 
physical pendulum relative to the 
pivot point: 

( ) ( )( ) ( )dx kg1.2m1kg0.8kg2 cm +=  

and 
dx 6.0m4.0cm +=  

 
Substitute in equation (1) to obtain: 
 

( ) ( )( ) ( ) 22
2

2222

m/skg49698.0
4

kg2m/s81.9
0.6m4.0

kg2.1mkg0802.1 TT
d

d
⋅==

+
+⋅

π
    (2) 

 
Setting T = 2.5 s and solving for d 
yields: 

m63572.1=d  

where we have kept more than three 
significant figures for use in part (b). 
 

(b) There are 1440 minutes per day. 
If the clock loses 5 minutes per day, 
then the period of the clock is 
related to the perfect period of the 
clock by: 
 

perfect14401435 TT =                                

where Tperfect = 3.5 s. 
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Solve for and evaluate T: 
 

( )

s51220.3

s5.3
1435
1440

1435
1440

perfect

=

== TT
 

 
Substitute T = 3.51220 s in equation 
(2) and solve for d to obtain: 
 

m40140.3=d  
 

Substitute T = 3.50 s in equation (2) 
and solve for d ′ to obtain: 
 

m37825.3=d'  

Express the distance the disk needs 
to be moved upward to correct the 
period: 
 

cm2.32 

m37825.3m40140.3

=

−=−=∆ d'dd
 

 
*78 ••  
Picture the Problem The period of a simple pendulum depends on its amplitude φ0 

according to 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛++= ...

2
1sin

4
3

2
1

2
1sin

2
112 0

4
2

20
2

2 φφπ
g
LT . We can 

approximate T to the second-order term and express ∆T/T = (Tslow – Taccurate)/T. Equating 
this expression to ∆T/T  calculated from the fractional daily loss of time will allow us to 
solve for and evaluate the amplitude of the pendulum that corresponds to keeping perfect 
time. 

 
Express the fractional daily loss of 
time: 86400

48
s3600

h1
h24

day1
day

s48
=××=

∆
T
T

 

 
Approximate the period of the clock 
to the second-order term: ⎥⎦

⎤
⎢⎣
⎡ += 0

2
2 2

1sin
2
112 φπ

g
LT  

 
Express the difference in the periods 
of the slow and accurate clocks: 

( )

( )

⎥⎦
⎤−

⎢⎣
⎡ °=

⎟⎟
⎠

⎞
⎥⎦
⎤

⎢⎣
⎡ +−

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ °+=

−=∆

0
2

2

2
2

0
2

2

2
2

accurateslow

2
1sin

2
1

4.8
2
1sin

2
12

2
1sin

2
11

4.8
2
1sin

2
112

φ

π

φ

π

g
L

g
L

TTT
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Divide both sides of this equation by 
T  to obtain: 0

22

2
1sin

4
12.4sin

4
1 φ−°=

∆
T
T

 

 

Substitute for 
T
T∆

and simplify to 

obtain: 
 

86400
48

2
1sin

4
12.4sin

4
1

0
22 =−° φ  

and 

05605.0
2
1sin 0 =φ  

 
Solve for φ0: °= 43.60φ  

 
79 ••  
Picture the Problem The period of a simple pendulum depends on its amplitude φ0 

according to 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛++= ...

2
1sin

4
3

2
1

2
1sin

2
112 0

4
2

20
2

2 φφπ
g
LT . We’ll approximate 

T  to the second-order term and express ∆T/T = (Tslow – Tcorrect)/T. Equating this 
expression to ∆T/T  calculated from the fractional daily loss of time will allow us to solve 
for and evaluate the amplitude of the pendulum that corresponds to keeping correct time. 

 
Express the fractional daily loss of 
time: 1440

5
min60
h1

h24
day1

day
min5

=××=
∆
T
T

 

 
Approximate the period of the clock 
to the second-order term: ⎥⎦

⎤
⎢⎣
⎡ += 0

2
2 2

1sin
2
112 φπ

g
LT  

 
Assuming that the amplitude of the 
slow-running clock’s pendulum is 
small enough to ignore, express the 
difference in the periods of the slow 
and corrected clocks: 

⎥⎦
⎤

⎢⎣
⎡−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−=

−=∆

0
2

2

0
2

2

correctslow

2
1sin

2
12

2
1sin

2
1112

φπ

φπ

g
L

g
L

TTT

 

 
Divide both sides of this expression 
by T to obtain: 0

2

2
1sin

4
1 φ−=

∆
T
T

 

 

Substitute for 
T
T∆

and simplify to 

obtain: 
 

1440
5

2
1sin

4
1

0
2 −

=− φ  

and 
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1178.0
2
1sin 0 =φ  

 
Solve for φ0: °= 5.130φ  

 
Damped Oscillations 
 
80 •  
Picture the Problem We can use the definition of the damping constant and its 
dimensions to show that it has units of kg/s. 

 
Using its definition, relate the decay 
constant τ  to the damping constant b: b

m
=τ ⇒ 

τ
mb =  

Substitute the units of m and τ  to 
obtain: 

[ ]
[ ] s

kg lly,Dimensiona ==
T
Mb  

 
81 •  

Picture the Problem For small damping, ( )
cycle

2
EE

Q
∆

=
π

where ∆E/E is the fractional 

energy loss per cycle. 
 

Relate the Q factor to the fractional 
energy loss per cycle: ( )

cycle

2
EE

Q
∆

=
π

 

 
Solve for and evaluate the fractional 
energy loss per cycle: 

( ) %14.3
200
22

cycle
===∆

ππ
Q

EE  

 
82 •  
Picture the Problem We can find the period of the oscillator from kmT π2= and its 

total initial energy from 2
2
1

0 kAE = . The Q factor can be found from its definition 

( )
cycle

2 EEQ ∆= π and the damping constant from .0 bmQ ω=  

 
(a) The period of the oscillator is 
given by: k

mT π2=  

Substitute numerical values and 
evaluate T: s444.0

N/m400
kg22 == πT  

 
(b) Relate the initial energy of the 2

2
1

0 kAE =  
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oscillator to its amplitude: 
 

 

Substitute numerical values and 
evaluate E0: 
 

( )( ) J0.180m0.03N/m400 2
2
1

0 ==E  

(c) Relate the fractional rate at 
which the energy decreases to the Q 
value and evaluate Q: 

( ) 628
01.0

22

cycle

==
∆

=
ππ

EE
Q  

 
Express the Q value in terms of b: 

b
mQ 0ω=  

 
Solve for the damping constant b:  

TQ
m

Q
mb πω 20 ==  

Substitute numerical values and 
evaluate b: 

( )
( )( ) kg/s0451.0

628s444.0
kg22

==
πb  

 
83 ••  
Picture the Problem The amplitude of the oscillation at time t is ( ) τ2

0
teAtA −= where  

τ = m/b is the decay constant. We’ll express the amplitudes one period apart and then 
show that their ratio is constant. 

 
Relate the amplitude of a given 
oscillation peak to the time at which 
the peak occurs: 
 

( ) τ2
0

teAtA −=  

Express the amplitude of the 
oscillation peak at t′ = t + T: 
 

( ) ( ) τ2
0

TteATtA +−=+  

Express the ratio of these 
consecutive peaks: 

( )
( ) ( )

constant

2
2

0

2
0

=

==
+

−
+−

−
τ

τ

τ
T

Tt

t

e
eA

eA
TtA

tA
 

 
84 ••  
Picture the Problem We can relate the fractional change in the energy of the oscillator 
each cycle to the fractional change in its amplitude. Both the Q value and the decay 
constant τ  can be found from their definitions. 

 
(a) Relate the energy of the 
oscillator to its amplitude: 
 

2
2
1 kAE =  
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Take the differential of this 
relationship to obtain: 
 

kAdAdE =  

Divide both sides of this equation by 
E: A

dA
kA

kAdA
E

dE 22
2
1

==  

 
Approximate dE and dA by ∆E and 
∆A and evaluate ∆E/E: 

%10%)5(2 ==
∆
E
E

 

 
(b) For small damping: 

τ
T

E
E

=
∆

 

and 

s30
0.01

s3
==

∆
=

EE
Tτ  

 
(c) Using its definition, express and 
evaluate Q: 

( ) 8.62s30
s3

22
0 ====

πτπτω
T

A  

 
85 ••  
Picture the Problem We can use the physical interpretation of Q for small damping 

( )
cycle

2
EE

Q
∆

=
π

to find the fractional decrease in the energy of the oscillator each 

cycle.  
 

(a) Express the fractional decrease in 
energy each cycle as a function of the 
Q factor and evaluate EE∆ : 

 

314.0
20
22

===
∆ ππ

QE
E

 

 

(b) Using the definition of the Q 
factor, use Equation 14-35 to express 
ω′ as a function of Q: 

21

20

21

2
0

2

2

0

4
11

4
11

⎥
⎦

⎤
⎢
⎣

⎡
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Q

m
b'

ω

ω
ωω

 

 
Use the approximation 
(1 + x)½ ≈ 1 + ½x for small x to obtain: ⎥

⎦

⎤
⎢
⎣

⎡
−= 20 8

11
Q

' ωω
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Express and evaluate ω′ − ω0:  

( )
percent1013.3

208
1

8
1

8
11

2

2

20200

−×−=

−=

−=−⎥
⎦

⎤
⎢
⎣

⎡
−=−

QQ
' ωωωω

 

 
86 ••  
Picture the Problem The amplitude of the spring-and-mass oscillator varies with time 
according to τ2

0
teAA −= and its energy according to τteEE −= 0 . 

 
(a) Express the amplitude of the 
oscillations as a function of time: 
 

( ) s4cm6 teA −=  

Evaluate the amplitude when t = 2 s: ( ) ( ) ( )
cm64.3

cm6cm6s2 21s4s2

=

== −− eeA
 

 
Evaluate the amplitude when t = 4 s: ( ) ( ) ( )

cm21.2

cm6cm6s4 1s4s4

=

== −− eeA
 

 
(b) Express the energy of the system 
at t = 0: 

( ) J600 0
s20

0 === − EeEE

  
Express the energy in the system at  
t =2 s: 
 

( ) 1
0

s2s2
0s2 −− == eEeEE

  

The energy dissipated in the first 2 s is: ( ) ( )
( )

( )( )
J9.37

1J60

1

s20

1

1
0

s20

=

−=

−=

−=∆

−

−

−

e

eE

EEE

 

 
The energy dissipated in the second 
2-s interval is: 

( )
( )( ) J0.241J9.37

1
1

s22s
s2s42

=−=

−=∆
−

−
−

e

eEE
 

 
*87 ••  
Picture the Problem We can find the fractional loss of energy per cycle from the 
physical interpretation of Q for small damping. We will also find a general expression for 
the earth’s vibrational energy as a function of the number of cycles it has completed.  We 
can then solve this equation for the earth’s vibrational energy after any number of days. 



Chapter 14    
 

 

1106 

(a) Express the fractional change in 
energy as a function of Q: 

%57.1
400
22

===
∆ ππ

QE
E

 
 

(b) Express the energy of the 
damped oscillator after one cycle: 

⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=

E
EEE 101  

 
Express the energy after two cycles: 2

012 11 ⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=⎟

⎠
⎞

⎜
⎝
⎛ ∆
−=

E
EE

E
EEE  

 
Generalizing to n cycles: ( )

( )n

n
n

n

E

E
E
EEE

9843.0

0157.011

0

00

=

−=⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=

 

 
(c) Express 2 d in terms of the 
number of cycles; i.e., the number 
of vibrations the earth will have 
experienced:  

T

T

3.53
min54

1min2880

h
m60

d
h24d2d2

=

×=

××=

 

 
Evaluate E(2 d): ( ) 0

3.53
0 430.0)9843.0(d2 EEE ==  

 
88 ••  
Picture the Problem The diagram shows 
1) the pendulum bob displaced through an 
angle θ0 and held in equilibrium by the 
force exerted on it by the air from the fan 
and 2) the bob accelerating, under the 
influence of gravity, tension force, and 
drag force, toward its equilibrium position. 
We can apply Newton’s 2nd law to the bob 
to obtain the differential equation of 
motion of the damped pendulum and then 
use its solution to find the decay time 
constant and the time required for the 
amplitude of oscillation to decay to 1°.  
  
(a) Apply ∑ = ατ I to the pendulum 
to obtain: 
 

2

2

dsin
dt
dIFmg θθ =+− ll  
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Express the moment of inertia of the 
pendulum with respect to an axis 
through its point of support: 
 

2lmI =  

Substitute for I and Fd to obtain: 
 0sin2

2
2 =++ θθ

lll mgbv
dt
dm  

 
Because θ << 1 and v = lω = ldθ/dt: 
 02

2

2
2 =++ θθθ

lll mg
dt
db

dt
dm  

or 

02

2

=++ θθθ
l

mg
dt
db

dt
dm  

 
The solution to this second-order 
homogeneous differential equation 
with constant coefficients is: 
 

( )δωθθ τ += − 'te t cos2
0             (1) 

where θ0 is the maximum amplitude,  
τ = m/b is the time constant, and the 

frequency ( )200 21 ωωω mb' −= . 
 

Apply aF rr
m=∑ to the bob when 

it is at its maximum angular 
displacement to obtain: 

0sin 0fan =−=∑ θTFFx  
and 

0cos 0 =−=∑ mgTFy θ  
 

Divide the x equation by the y 
equation to obtain: 
 

0
0

0fan tan
cos
sin θ

θ
θ

==
T
T

mg
F

 

or  
0fan tanθmgF =  

 
When the bob is in equilibrium, the 
drag force on it equals Ffan: 
 

0tanθmgbv =  

Solve for m/b in the definition of τ 
to obtain: 

0tanθ
τ

g
v

b
m
==  

 
Substitute numerical values and 
evaluate τ : ( ) s16.8

5tanm/s9.81
m/s7

2 =
°

=τ  

 
(b) From equation (1) we have: τθθ 2

0
te−=  

 
When the amplitude has decreased 
to 1°: 
 

°=° − 15 2τte or 2.02 =− τte  
 

Take the natural logarithm of both 
sides of the equation to obtain: 
 

( )2.0ln
2

=−
τ
t
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Solve for t: ( )2.0ln2τ−=t  
 

Substitute for τ  and evaluate t: ( ) ( ) s3.262.0lns16.82 =−=t  

 
Driven Oscillations and Resonance 
 
89 •  
Picture the Problem The resonant frequency of a vibrating system depends on the mass 

of the system and on a “stiffness” constant according to 
m
kf

π2
1

0 = or, in the case of a 

simple pendulum oscillating with small-amplitude vibrations, .
2
1

0 L
gf

π
=  

 
(a) For this spring-and-mass oscillator 
we have: Hz01.1

kg10
N/m400

2
1

0 ==
π

f  

 
(b) For this spring-and-mass oscillator 
we have: Hz01.2

kg5
N/m800

2
1

0 ==
π

f  

 
(c) For this simple pendulum we have: 

Hz352.0
m2
m/s9.81

2
1 2

0 ==
π

f  

 
90 •  
Picture the Problem We can use the physical interpretation of Q for small damping to 
find the Q factor for this damped oscillator. The width of the resonance curve depends on 
the Q factor according to .0 Qωω =∆  

 
(a) Using the physical interpretation 
of Q for small damping, relate Q to 
the fractional loss of energy of the 
damped oscillator per cycle: 
 

( )
cycle

2
EE

Q
∆

=
π

 

Evaluate this expression for 
( ) %2

cycle
=∆ EE : 

314
02.0

2
==

πQ  

 
(b) Relate the width of the 
resonance curve to the Q value of 
the oscillatory system: 
 

Q
f

Q
00 2πωω ==∆  
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Substitute numerical values and 
evaluate ∆ω: 

( ) rad/s00.6
3.14

s3002 -1

==∆
πω

 

 
91 ••  
Picture the Problem The amplitude of the damped oscillations is related to the damping 
constant, mass of the system, the amplitude of the driving force, and the natural and 

driving frequencies through
( ) 22222

0
2

0

ωωω bm

FA
+−

= . Resonance occurs when 

.0ωω =  At resonance, the amplitude of the oscillations is 22
0 ωbFA =  and the 

width of the resonance curve is related to the damping constant and the mass of the 
system according to .mb=∆ω  

 
(a) Express the amplitude of the 
oscillations as a function of the 
driving frequency: 
 

( ) 22222
0

2

0

ωωω bm

FA
+−

=

                           

Determine ω0: rad/s14.14
kg2
N/m400

0 ===
m
kω  

 
Evaluate the radicand in the 
expression for A to obtain: 
 

( ) ( ) ( )[ ]
( ) ( )

424

22

2222

s/kg1004.4
rad/s10kg/s2

rad/s10rad/s14.14kg2

×=

+

−

 

 
Substitute numerical values and 
evaluate A: 

cm98.4
s/kg1004.4

N10
424
=

×
=A  

 
(b) Resonance occurs when: rad/s1.140 == ωω

  
(c) Express the amplitude of the 
motion at resonance: 2

0
2
0

ωb
FA =  

 
Substitute numerical values and 
evaluate A: ( ) ( )

cm35.4
rad/s14.14kg/s2

N10
22
==A  

 
(d) The width of the resonance 
curve is: 

rad/s00.1
kg2

kg/s2
===∆

m
bω
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92 ••  
Picture the Problem We’ll find a general expression for the damped oscillator’s energy 
as a function of the number of cycles it has completed.  We can then solve this equation 
for the number of cycles corresponding to the loss of half the oscillator’s energy. The Q 
factor is related to the fractional energy loss per cycle through QEE π2=∆  and the 
width of the resonance curve is Q0ωω =∆  where ω0 is the oscillator’s natural angular 

frequency.  
 

(a) Express the energy of the damped 
oscillator after one cycle: 

⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=

E
EEE 101  

 
Express the energy after two cycles: 2

012 11 ⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=⎟

⎠
⎞

⎜
⎝
⎛ ∆
−=

E
EE

E
EEE  

 
Generalizing to n cycles: n

n E
EEE ⎟
⎠
⎞

⎜
⎝
⎛ ∆
−= 10  

 
Substitute numerical values: ( )nEE 035.015.0 00 −=  

or 
( )n965.05.0 =  

 
Solve for n to obtain: 

cycles. complete 20

5.19
965.0ln

5.0ln

≈

==n
 

 
(b) Apply the physical interpretation 
of Q for small damping to obtain: 

180
035.0
22

==
∆

=
ππ

EE
Q  

 
(c) The width of the resonance curve 
is given by: 

( )

rad/s49.3

180
Hz10022 00

=

===∆
ππωω

Q
f

Q  

 
Collisions 
 
93 •••  
Picture the Problem Let the system include the spring-and-mass oscillator and the 
second object of mass m. Because the net external force acting on this system is zero, 
momentum is conserved during the collision of the second object with the oscillator. 
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Because the collision is elastic, we can also apply conservation of energy. Let the 
subscript 1 refer to the object attached to the spring and the subscript 2 identify the 
second object. 
(a) Using momentum conservation, 
relate the speeds of the objects 
before and after their collision: 
 

2f2i1i mvmvmv =+  

or 
2f2i1i vvv =+                        (1) 

Using conservation of energy, 
obtain a second relationship 
between the speeds of the objects 
before and after their collision: 

2
f22

12
i22

12
i12

1 mvmvmv =+  

or 
2
f2

2
i2

2
i1 vvv =+                         (2) 

 
Solve equation (2) for :2

i2v  ( )( )1i2f1i2f
2
i1

2
f2

2
i2 vvvvvvv −+=−=  

 
Substitute for v2f from equation (1): ( )( )

( )( ) 2
i22i1i2i2i1i

1i2i1i1i2i1i
2
i2

22 vvvvvv

vvvvvvv

+=+=

−+++=
 

or 
02 2i1i =vv  

 
Because 01i ≠v , it follows that: 02i == vv  

i.e., the second object must be initially at 
rest. 
 

(b) Because v2i = 0, we have, from 
equation (1): 
 

1i2f vv =  

Because the object connected to the 
spring was moving through its 
equilibrium position at the time of 
collision: 

( )( )
m/s00.4

s40m1.0 1
max1i

=

=== −ωAvv
 

 
94 •••  
Picture the Problem Let the system include the spring-and-mass oscillator and the 
second object of mass m. Because the net external force acting on this system is zero, 
momentum is conserved during the collision of the second object with the oscillator. 
Because the collision is elastic, we can also apply conservation of energy. Let the 
subscript 1 refer to the object attached to the spring and the subscript 2 identify the 
second object. 

 
Using momentum conservation, 
relate the speeds of the objects 

2f2i1i mvmvmv =+  

or 
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before and after their collision: 
 

2f2i1i vvv =+                        (1) 

Using conservation of energy, obtain 
a second relationship between the 
speeds of the objects before and 
after their collision: 

2
f22

12
i22

12
i12

1 mvmvmv =+  

or 
2
f2

2
i2

2
i1 vvv =+                         (2) 

 
Solve equation (2) for :2

i2v  ( )( )1i2f1i2f
2
i1

2
f2

2
i2 vvvvvvv −+=−=  

 
Substitute for v2f from equation (1): ( )( )

( )( ) 2
i22i1i2i2i1i

1i2i1i1i2i1i
2
i2

22 vvvvvv

vvvvvvv

+=+=

−+++=
 

or 
02 2i1i =vv  

 
Because 01i ≠v , it follows that: 02i == vv  

i.e., the second object must be initially at 
rest. 
 

Because the object connected to the 
spring was moving through its 
equilibrium position at the time of 
collision: 
 

( )( )
m/s4

s40m1.0 1
max1i

=
=== −ωAvv

 

 

Express the total energy of the 
system just before the collision: 
 

2
i12

1 mvE =  

Solve for m: 
2
i1

2
v
Em =  

 
Substitute numerical values and 
evaluate m: 
 

( )
( )

kg00.1
m/s4

J82
2 ==m  

Relate the spring constant to the 
angular frequency of the oscillator: 
 

2ωmk =  

Substitute numerical values and 
evaluate k: 

( )( ) kN/m60.1s40kg1 21 == −k  

 
95 •••  
Picture the Problem Let the system include the spring-and-mass oscillator and the 1-kg 
object. Because the net external force acting on this system is zero, momentum is 
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conserved during the collision of the second object with the oscillator. Let the subscript 1 
refer to the 1-kg object and the subscript 2 to the 2-kg object. We can relate the amplitude 
of the motion to the maximum speed of the oscillator (which we can find from 
conservation of momentum) and the angular frequency of the oscillator, which we can 
determine from its definition. Once we have found the amplitudes and angular 
frequencies for both collisions, we express the position of each as a function of time, 
using the initial conditions to find the phase constants. 

 
(a) Relate the amplitude of the 
motion to the angular frequency and 
maximum speed of the oscillator: 
 

ω
maxvA =                                 (1) 

Because the 2-kg object is initially 
at rest, the maximum speed of the 
oscillator will be its speed 
immediately after the collision. Use 
conservation of momentum to relate 
this maximum speed to the speed of 
the 1-kg object before the collision:   
 

( ) max211i1 vmmvm +=  

Solve for vmax: 
1i

21

1
max v

mm
mv
+

=  

 
Substitute numerical values and 
evaluate vmax: 

( ) m/s2m/s6
kg2kg1

kg1
max =

+
=v  

 
Express the angular frequency of the 
oscillator: 
 

21 mm
k
+

=ω  

 
Substitute numerical values and 
evaluate ω: rad/s14.14

kg3
N/m600

==ω  

 
Substitute in equation (1) and 
evaluate A: 

cm1.14
s14.14

m/s2
1 == −A  

 
Express and evaluate the period of 
the oscillator’s period: 
 

s444.0
s14.14

22
1 === −

π
ω
πT  

 
(b) For an elastic collision: 
 1i

21

1
2fmax

2 v
mm

mvv
+

==  
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Substitute numerical values and 
evaluate vmax: 

( ) ( ) m/s4m/s6
kg3
kg12

max ==v  

 
Using its definition, evaluate the 
angular frequency of the oscillator: 
 

rad/s17.32
kg2
N/m600

2

===
m
kω  

 
Substitute in equation (1) and 
evaluate A: 

cm1.23
s17.32

m/s4
1 == −A  

 
Express and evaluate the period of 
the oscillator’s period: 
 

s363.0
s32.17

22
1 === −

π
ω
πT  

 
(c) For the perfectly inelastic 
collision: 
 

( ) ( ) ( )[ ]δ+= − ttx 1s1.14coscm1.14     (2) 

Use the initial conditions to evaluate δ: 
 ( ) 20

tantan 01

0

01 π
ωω

δ −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− v

x
v

 
Substitute in equation (2) to obtain: ( ) ( ) ( )

( ) ( )[ ]t
ttx

1

1

s1.14sincm1.14

2
s1.14coscm1.14

−

−

=

⎥⎦
⎤

⎢⎣
⎡ −=

π

 

 
For the elastic collision: 
 

( ) ( ) ( )[ ]δ+= − ttx 1s3.17coscm1.23     (3) 

Use the initial conditions to evaluate δ: 
 ( ) 20

tantan 01

0

01 π
ωω

δ −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− v

x
v

 
Substitute in equation (3) to obtain: ( ) ( ) ( )

( ) ( )[ ]t
ttx

1

1

s3.17sincm1.23

2
s3.17coscm1.23

−

−

=

⎥⎦
⎤

⎢⎣
⎡ −=

π

 

 
General Problems 
 
96 •  
Picture the Problem The particle’s displacement is of the form ( )δω += tAx cos . Thus, 

we have A = 0.4 m, ω = 3 rad/s, and δ = π/4. We can find the frequency of the motion 
from its angular frequency and the period from the frequency. The particle’s position at  
t = 0 and t = 0.5 s can be found directly from its displacement function. 
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(a) Express and evaluate the 
frequency of the particle’s motion: 
 

Hz477.0
2
rad/s3

2
===

ππ
ωf  

Use the relationship between the 
frequency and the period of the 
particle’s motion to find its period: 
 

s2.09
s0.477

11
1 === −f

T  

 

(b) Using the expression for the 
particle’s displacement, find its 
position at t = 0: 

( ) ( ) ( )( )

( ) m283.0
4

cosm4.0

4
0rad/s3cosm4.00

=⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡ +=

π

πx
 

 
(c) Using the expression for the 
particle’s displacement, find its 
position at t = 0.5 s: 

( ) ( ) ( )( )

( ) [ ]
m264.0

rad29.2cosm4.0
4

s5.0rad/s3cosm4.00

−=

=

⎥⎦
⎤

⎢⎣
⎡ +=

πx

 

 
97 •  
Picture the Problem We can express the velocity of the particle by differentiating its 
displacement with respect to time.  
 
(a) Differentiate the particle’s 
displacement to obtain: 

( ) ( )

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +=

=

4
rad/s3sinm/s2.1

4
rad/s3sinm4.0

π

π

t

t
dt
d
dt
dxv

 

 
(b) Evaluate the result in part (a) at  
t = 0: 

( ) ( ) ( )( )

( )

m/s849.0

4
sinm/s2.1

4
0rad/s3sinm/s2.10

−=

⎥⎦
⎤

⎢⎣
⎡−=

⎥⎦
⎤

⎢⎣
⎡ +−=

π

πv

 

 
(c) By inspection of the result in part 
(a) (or from ωAv =max ): 

m/s20.1max =v  

 
(d) Substitute vmax for v to obtain: ( ) ( ) ⎥⎦

⎤
⎢⎣
⎡ +−=

4
'rad/s3sinm/s2.1m/s2.1 πt  



Chapter 14    
 

 

1116 

or 

( ) ( )
2

31sin
4

rad/s3 1 ππ
=−=+ −t'  

Solve for t′ to obtain: s31.1=t'  

 
98 •  
Picture the Problem Let ∆y represent the amount by which the spring stretches. We’ll 
apply a condition for equilibrium to the object to relate the amount the spring has 
stretched to the angular frequency of its motion and then solve this equation for ∆y. 
 
Apply 0=∑i yF  to the object 

when it is in its equilibrium position 
and solve for the elongation of the 
spring: 
 

0=−∆ mgyk  

or 

2ω
gg

k
my ==∆  

 

Relate the angular frequency of the 
object’s motion to its period: T

πω 2
=  

 
Substitute to obtain: 

gTy
2

2
⎟
⎠
⎞

⎜
⎝
⎛=∆
π

 

 
Substitute numerical values and 
evaluate ∆x: ( ) m03.5m/s81.9

2
s5.4 2

2

=⎟
⎠
⎞

⎜
⎝
⎛=∆

π
y  

 
*99 ••  
Picture the Problem Compare the forces 
acting on the particle to the right in Figure 
14-36 with the forces shown acting on the 
bob of the simple pendulum shown in the 
free-body diagram to the right. Because 
there is no friction, the only forces acting 
on the particle are mg and the normal force 
acting radially inward. In (b), we can think 
of the particles as the bobs of simple 
pendulums of equal length.  

 
 
(a) The normal force is identical to the tension in a string of length r that keeps the 
particle moving in a circular path and a component of mg provides, for small 
displacements θ0 or s2, the linear restoring force required for oscillatory motion. 
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(b) The particles meet at the bottom. Because s1 and s2 are both much smaller than r, the 
particles behave like the bobs of simple pendulums of equal length; therefore they have 
the same periods. 
 
100 ••  
Picture the Problem The diagram shows the ball when it is a horizontal distance x from 
the bottom of the bowl. Note that we’ve chosen the zero of gravitational potential energy 
to be at the bottom of the bowl. The total energy of the ball is the sum of its potential 
energy and kinetic energies due to translation and rotation. Once we’ve obtained an 
expression for the total energy of the rolling ball, we can require, because the surface is 
frictionless, that the total energy of the sliding object be the same as that of the rolling 
ball. Because the motion of the ball is simple harmonic motion, we can assume a solution 
to its differential equation of motion and express the total energy of the ball in terms of 
this assumed solution. Doing so will lead us to an expression that we can solve for the 
oscillation frequency of the ball. 
 

 
 
(a) Express the total energy E of the 
ball: 
 

rottrans KKUKUE ++=+=      (1) 

Referring to the diagram shown 
above and assuming that R << r, 
express the potential energy of the 
ball when it is a horizontal distance 
x from the bottom of the bowl: 
 

( ) ( )θcos1−= mgrxU  
 
 

Express cosθ  as a power series: 
 ...

!4!2
1cos

42

++−=
θθθ  

 
For θ  << 1: 

!2
1cos

2θθ −≈  

 
Substitute to obtain: 

( ) 2
2
1

2

!2
11 θθ mgrmgrxU =⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−≈  
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For R << r: 

r
x

≈θ  

 
Substitute to obtain: 

( )
r

mgxxU
2

2

=
 

 
Substitute in equation (1): 

22
2

2
1

2
1

2
ωImv

r
mgxE ++=  

 
Because the ball is rolling without 
slipping, v = Rω. Substitute for ω 
and I to obtain: 
 

2
22

2

5
2

2
1

2
1

2
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛++=

R
vmRmv

r
mgxE  

Simplify to obtain: 
2

2

10
7

2
mv

r
mgxE +=

 
 

(b) Because energy is conserved if 
the side of the bowl is frictionless: 
 

constant
10
7

2
2

2

=+= mv
r

mgxE
 

 
Because the motion is simple 
harmonic motion, assume a solution 
of the form: 
 

( )δω += txx cos.0  

Differentiate this assumed solution 
with respect to time to obtain: 
 

( )δωω +−= txv sin0  

Substitute to obtain: 
 ( )( )

( )( )

( )

( )δωω

δω

δωω

δω

++

+=

+−+

+=

txm

t
r

mgx

txm

tx
r

mgE

2
2
0

2

2
2
0

2
0

2
.0

sin
10

7

cos
2

sin
10
7

cos
2

 

 
Express the condition the  
E = constant: 10

7
2

2
0

22
0 xm

r
mgx ω

=  or 
5

7 2ω
=

r
g

 

 
Solve for ω to obtain: 

r
g

7
5

=ω  
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101  •• 
Picture the Problem Assume that the 
plane is accelerating to the right with an 
acceleration a0. The free-body diagram 
shows the forces on the bob as seen in the 
accelerated frame of the airplane. Let g′ 
represent the effective value of the 
acceleration due to gravity. The period of 
the yo-yo is given by 

g'LT π2=  

where g′ is the effective value of the 
acceleration due to gravity.  

 

 

 
Express the period of your yo-yo 
pendulum as a function of the 
effective value for the acceleration 
due to gravity: 
 

g'
LT π2=  

Using the FBD, relate g′ and g: θcosmg'mg =  ⇒ 
θcos

gg' =  

 
Substitute to obtain: 

g
LT θπ cos2=  

 
Substitute numerical values and 
evaluate T: 

( ) s62.1
m/s81.9

22cosm7.02 2 =
°

= πT  

 
102 ••  
Picture the Problem The diagram shows 
the wire described in the problem statement 
with an object of moment of inertia I 
suspended from its end.  We can apply 
Newton’s 2nd law to the suspended object 
to obtain its differential equation of 
motion. By comparing this equation to the 
equation of a simple harmonic oscillator, 
we can show that .Iκω =   
  
Apply ατ I=∑ to the object hung 
from the wire to obtain: 2

2

dt
dII θακθ ==−        
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Divide both sides of this differential 
equation by I to obtain: 02

2

=+ θκθ
Idt

d
 

 
This equation can be written as: 

02
2

2

=+ θωθ
dt
d

 where 
I
κω =  

 
103 ••  
Picture the Problem The diagram shows 
the torsion balance described in the 
problem statement.  We can apply 
Newton’s 2nd law to the suspended object 
to obtain its differential equation of 
motion. By comparing this equation and its 
solution to that of a simple harmonic 
oscillator, we can obtain an equation that 
we can solve for the torsion constant κ. 

 
 
Apply ατ I=∑  to the torsion 
pendulum: 
 

2

2

dt
dII θακθ ==−  

or 

02

2

=+ θκθ
Idt

d
                         (1) 

 
The differential equation of simple 
harmonic motion is: 02

2

2

=+ x
dt

xd ω  

where 

( ) ( )δω += txtx cos0 and 
T
πω 2

=  

 
The solution to equation (1) is: 
 

( )δωθθ += tt cos)( 0   
where 

I
κω =  

 
Solve for κ to obtain: 
 

I2ωκ =  
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Express the moment of inertia of the 
torsion pendulum: 
 22

2
22
ll mmI =⎟

⎠
⎞

⎜
⎝
⎛=  

 
Substitute to obtain: 

2

22

2

2222 2
2

4
2 T

m
T
mm lll ππωκ ===  

 
Substitute numerical values and 
evaluate κ: 

( )( )
( )

m/radN1086.3

s80
m05.0kg050.02

7

2

22

⋅×=

=

−

πκ
 

 
*104 ••  
Picture the Problem Choose a coordinate system in which the direction the cube is 
initially displaced (downward) is the positive y direction. The figure shows the forces 
acting on the cube when it is in equilibrium floating in the water and when it has been 
pushed down a small distance y. We can find the period of its oscillatory motion from its 
angular frequency. By applying Newton’s 2nd law to the cube, we can obtain its equation 
of motion; from this equation we can determine the angular frequency of the cube’s 
small-amplitude oscillations. 
 

 
 
Express the period of oscillation in 
terms of the angular frequency of 
the oscillations: 
 

ω
π2

=T                      (1) 

 

Apply ∑ = 0yF to the cube when 

it is floating in the water: 
 

0B =− Fmg  

Apply ∑ = yy maT to the cube 

when it is pushed down a small 
distance y: 

y
' maFmg =− B  
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Eliminate mg between these 
equations to obtain: 

y
' maFF =− BB  

or 

y
' maFFF =−=∆ BBB  

 
For y << 1: 

2

2
2

BB dt
ydmgyaVgdFF =−=−=≈∆ ρρ  

 
Rewrite the equation of motion as: 

gya
dt

ydm ρ2
2

2

−=  

or 

yy
m

ga
dt

yd 2
2

2

2

ωρ
−=−=  

where 
m

ga ρω
2

2 =  

 
Solve for ω: 

m
ga ρω =  

 
Substitute in equation (1) to obtain: 

g
m

a
m
ga

T
ρ

π
ρ
π 22

==  

 
105 ••  
Picture the Problem Assume that the density of the earth ρ is constant and let m 
represent the mass of the clock. We can decide the question of where the clock is more 
accurate by applying the law of gravitation to the clock at a depth h below/above the 
surface of the earth and at the earth’s surface and expressing the ratios of the acceleration 
due to gravity below/above the surface of the earth to its value at the surface of the earth. 
 
Express the gravitational force 
acting on the clock when it is at a 
depth h in a mine: 

( )2E hR
GM'mmg'
−

=  

where M′ is the mass between the location 
of the clock and the center of the earth. 
 

Express the gravitational force 
acting on the clock at the surface of 
the earth: 
 

2
E

E

R
mGMmg =  
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Divide the first of these equations by 
the second to obtain: ( )

( )2E

2
E

E
2
E

E

2
E

hR
R

M
M'

R
GM

hR
GM'

g
g'

−
=−=  

 
Express M ′: 
 

( )3E3
4 hRV'M' −== πρρ  

 
Express ME: 3

E3
4

E RVM πρρ ==  

 
Substitute to obtain: ( )

( )2E

2
E

3
E3

4

3
E3

4

hR
R

R
hR

g
g'

−
−

=
πρ

πρ
 

 
Simplify and solve for g′: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

EE

E 1
R
hg

R
hRgg'  

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

E

1
R
hgg'                       (1) 

 
Express the gravitational force 
acting on the clock when it is at an 
elevation h: 
 

( )2E

E

hR
mGMmg''

+
=  

 

Express the gravitational force 
acting on the clock at the surface of 
the earth: 
 

2
E

E

R
mGMmg =  

Divide the first of these equations by 
the second to obtain: ( )

( )

2

E

2
E

2
E

2
E

E

2
E

E

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

−
=+=

R
h

hR
R

R
GM

hR
GM

g
g''

 

 
Solve for g′′: 2

E

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

R
hgg''  

 



Chapter 14    
 

 

1124 

elevated. isclock   theifgreater  iserror  the
 Thus, . is than  closer to is  that see  we(2), and (1) equations Comparing g''gg'

 

 
106 ••  
Picture the Problem The figure shows 
this system when it has an angular 
displacement θ. The period of the system is 
related to its angular frequency according 
to T = 2π/ω. We can find the equation of 
motion of the system by applying 
Newton’s 2nd law. By writing this equation 
in terms of θ and using a small-angle 
approximation, we’ll find an expression for 
ω that we can use to express T. 

 
  
(a) Express the period of the system 
in terms of its angular frequency: 
 

ω
π2

=T                                   (1) 

Apply ∑ = aF rr
m to the bob: ∑ =−−= xx MaTkxF θsin  

and 

∑ =−= 0cos MgTFy θ  

 
Eliminate T between the two 
equations to obtain: 
 

xMaMgkx =−− θtan  

 

Noting that x = Lθ and 

,2

2

dt
dLLax
θα ==  

eliminate the variable x in favor  
of θ : 
 

θθθ tan2

2

MgkL
dt
dML −−=  

For θ << 1, tanθ ≈ θ : 

( )θ

θθθ

MgkL

MgkL
dt
dML

+−=

−−=2

2

 

or 

θωθθ 2
2

2

−=⎟
⎠
⎞

⎜
⎝
⎛ +−=

L
g

M
k

dt
d

 

where 

L
g

M
k
+=ω  
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Substitute in equation (1) to obtain: 

L
g

M
k

T
+

=
π2

 

 
(b) When T = 2 s and M = 1 kg we 
have: 
 L

g
π22 =  

 
When T = 1 s we have: 

L
gk +

=
π21  

 
Solve these equations 
simultaneously to obtain: 

N/m6.29=k  

 
107 ••  
Picture the Problem Applying Newton’s 2nd law to the first object as it is about to slip 
will allow us to express µs in terms of the maximum acceleration of the system which, in 
turn, depends on the amplitude and angular frequency of the oscillatory motion. 
 

(a) Apply ∑ = xx maF to the 

second object as it is about to slip: 
 

max2maxs, amf =  

Apply ∑ = 0yF to the second 

object: 
 

02n =− gmF  

 

Use nsmaxs, Ff µ= to eliminate 

maxs,f and nF between the two 

equations: 

max22s amgm =µ  

and 

g
amax

s =µ  

 
Relate the maximum acceleration of 
the oscillator to its amplitude and 
angular frequency: 
 

21

2
max mm

kAAa
+

== ω  

 

Substitute for amax to obtain: 
( )gmm

Ak

21
s +
=µ  
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(b)
increased. is  and system  theof mass  total theincreasing

by  reduced is   . because unchanged is   unchanged. is 2
2
1

T
kAEEA ω=

 

 
108 ••  
Picture the Problem The diagram shows 
the box hanging from the stretched spring 
and the free-body diagram when the box is 
in equilibrium. We can apply ∑ = 0yF  to 
the box to derive an expression for x. In (b) 
and (c), we can proceed similarly to obtain 
expressions for the effective spring 
constant, the new equilibrium position of 
the box, and frequency of oscillations when 
the box is released. 

 
  
(a) Apply ∑ = 0yF  to the box to 
obtain: 

( ) 00 =−− mgxxk  
 
 

Solve for x: 
0x

k
mgx +=  

 
Substitute numerical values and 
evaluate x: 
 

( )( )

m46.2

m5.0
N/m500

m/s81.9kg100 2

=

+=x

 
 

(b) Draw the free-body diagram for 
the block with the two springs 
exerting equal upward forces on it: 
 

 
 

Apply ∑ = 0yF  to the box to 
obtain: 

( ) ( ) 000 =−−+− mgxxkxxk  
or 

( ) 00eff =−− mgxxk                      (1) 
where 

kk 2eff =  
 



Oscillations 
 

 

1127

When the box is displaced from this 
equilibrium position and released, 
its motion is simple harmonic 
motion and its frequency is given 
by: 
 

m
k

m
k 2eff ==ω  

Substitute numerical values and 
evaluate ω: 
 

( ) rad/s16.3
kg100
N/m5002

==ω  

 
(c) Solve equation (1) for x: 

02
x

k
mgx +=  

 
Substitute numerical values and 
evaluate x: 

( )( )
( )
m48.1

m5.0
N/m5002

m/s81.9kg100 2

=

+=x
 

 
109 ••  
Picture the Problem We’ll differentiate the expression for the period of simple 

pendulum 
g
LT π2= with respect to g, separate the variables, and use a differential 

approximation to establish that .
2
1

g
g

T
T ∆

−≈
∆

 

 
(a) Express the period of a simple 
pendulum in terms of its length and 
the local value of the acceleration 
due to gravity: 
 

g
LT π2=  

Differentiate this expression with 
respect to g to obtain: 
 

[ ]

g
T

gLgL
dg
d

dg
dT

2

2 2321

−=

−== −− ππ
 

 
Separate the variables to obtain: 
 g

dg
T
dT

2
1

−=  

 
Approximate dT and dg by ∆T and 
∆g for ∆g << g: 
 

g
g

T
T ∆

−≈
∆

2
1

 

(b) Solve the result in part (a) for ∆g: 
 T

Tgg ∆
−=∆ 2  
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Express ∆T/T: 
 

31004.1
s3600

h1
h24

d1
d
s90

−×−=

××−=
∆
T
T

 

 
Substitute and evaluate ∆g: ( )( )

22

32

cm/s2.04m/s.02040

1004.1m/s81.92

==

×−−=∆ −g
 

 
110  ••  
Picture the Problem We can find the frequency of the vibrating system from its angular 
frequency; this depends on the spring constant and the total mass involved in the motion. 
The energy of the system can be found from the amplitude of its motion. 
 
(a) Relate the frequency of the 
vibrating system to its angular 
frequency: 

m
kf

22
1

2 ππ
ω

==  

 
Substitute numerical values and 
evaluate f: ( ) Hz25.2

kg6.02
N/m240

2
1

==
π

f  

 
Express the total energy of the 
system: 

2
2
1 kAE =  

 
Substitute numerical values and 
evaluate E: 
 

( )( ) J43.2m0.6N/m240 2
2
1 ==E  

(b) (1) The glue dissolves when the 
spring is at maximum compression: 
 

 

Relate the frequency to the system’s 
new angular frequency: 
 

m
kf

ππ
ω

2
1

2
1

1 ==  

 
Substitute numerical values and 
evaluate f1: 

Hz18.3
kg6.0
N/m240

2
1

1 ==
π

f  

 
Express the system’s new amplitude 
as a function of the oscillator’s 
maximum speed and its new angular 
frequency: 

k
mvvA max

1

max
1 ==

ω
 

 

Find the maximum speed of the 
oscillator: 

( )( )
m/s48.8

m0.6s25.222 1
max

=
=== −ππω fAAv
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Substitute and evaluate A1: ( )

cm42.4

N/m240
kg0.6m/s8.481

=

=A
 

 
Express and evaluate the energy of 
the system: 
 

( )( )
J21.6

m0.424N/m240 2
2
12

12
1

1

=

== kAE
 

 
(b) (2) The glue dissolves when the 
spring is at maximum extension and 
f2 is the same as f1: 
 

Hz18.32 =f  

Because the second object is at rest, 
the amplitude and energy of the 
system are unchanged: 

m600.02 == AA  

and 
J43.22 == EE  

 
111 ••  
Picture the Problem Choose a coordinate system in which the positive x direction is to 
the right and assume that the object is displaced to the right. In case (a), note that the two 
springs undergo the same displacement whereas in (b) they experience the same force. 
 
(a) Express the net force acting on 
the object: 

( ) xkxkkxkxkF eff2121net −=+−=−−=

where 21eff kkk +=  

 
(b) Express the force acting on each 
spring and solve for x2: 

2211 xkxkF −=−=  

or 

1
2

1
2 x

k
kx =  

 
Express the total extension of the 
springs: eff

21 k
Fxx −=+  

 
Solve for keff: 

21
1

2

1
1

11

21

11

21
eff

11
1

kk
x

k
kx

xk
xx
xk

xx
Fk

+
=

+
=

+
−

−=
+

−=
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Take the reciprocal of both sides of 
the equation to obtain: 

21eff

111
kkk

+=  

 
*112  ••  
Picture the Problem If the displacement of the block is y = A sin ωt, its acceleration is  
a = −ω2Asinωt. 
 
(a) At maximum upward extension, the block is momentarily at rest. Its downward 
acceleration is g. The downward acceleration of the piston is ω 2A. Therefore, if ω 2A > g, 
the block will separate from the piston. 
 
(b) Express the acceleration of the 
small block: 
 

tAa ωω sin2−=  
 

For gA 32 =ω and A = 15 cm: gtga −=−= ωsin3  

 
Solve for t: 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= −−

3
1sin

33
1sin1 11

g
At

ω
 

 
Substitute numerical values and 
evaluate t: ( ) s0243.0

3
1sin

m/s81.93
m15.0 1

2 == −t  

 
113  ••  
Picture the Problem The plunger and ball are moving with their maximum speed as they 
pass through their equilibrium position (x = 0). Once it has passed its equilibrium 
position, the acceleration of the plunger becomes negative; therefore it begins to slow 
down and the ball, continuing with speed vs, separates from the plunger. We can find this 
separation speed by equating it to the maximum speed of the plunger. Application of 
conservation of energy to the motion of the plunger will allow us to express the distance 
at which the plunger comes momentarily to rest. 
 
(a) The ball will leave the plunger 
when the plunger is moving with its 
maximum speed; i.e., at its 
equilibrium position: 
 

0=x  

(b) Express the speed of the ball 
upon separation in terms of the 
maximum speed of the plunger: 
 

ωω 0maxs xAvv ===  
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The angular frequency is given by: 

pb mm
k
+

=ω  

 
Substitute to obtain: 
 

pb
0s mm

kxv
+

=  

 
(c) Apply conservation of energy to 
the plunger: 
  

0si,sf,if =−+− UUKK  

or, because Kf = Ui = 0, 
02

f2
12

sp2
1 =+− kxvm  

 
Solve for xf: 

s
p

f v
k

m
x =  

 
Substitute for vs and simplify to obtain: 

pb

p
0f mm

m
xx

+
=  

 
114  ••  
Picture the Problem Applying Newton’s 2nd law to the box as it is about to slip will 
allow us to express µs in terms of the maximum acceleration of the platform which, in 
turn, depends on the amplitude and angular frequency of the oscillatory motion. 
 
(a) Apply ∑ = xx maF  to the box 

as it is about to slip: 
 

maxmaxs, maf =  

Apply ∑ = 0yF  to the box: 0n =− mgF  

 
Use nsmaxs, Ff µ=  to eliminate 

maxs,f and nF between the two 

equations: 

maxs mamg =µ  

and 

g
amax

s =µ  

 
Relate the maximum acceleration of 
the oscillator to its amplitude and 
angular frequency: 
 

2
max ωAa =  

 

Substitute for amax : 
gT
A

g
A

2

22

s
4πωµ ==  
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Substitute numerical values and 
evaluate µs: 

( )
( ) ( ) 52.2

m/s9.81s8.0
m0.44

22

2

s ==
πµ  

 
(b) Solve the equation derived 
above for Amax: 2

2
s

2
s

max 4π
µ

ω
µ gTgA ==  

 
Substitute numerical values and 
evaluate Amax: 

( )( )( )

cm36.6
4

s0.8m/s9.810.4
2

22

max

=

=
π

A
 

 
115  •••  
Picture the Problem In (b), we can use the condition Fnet = dU/dx = 0 for stable 
equilibrium to find the value of x = x0 at stable equilibrium. In (c) and (d), we can simply 
follow the outline provided in the problem statement. In (e), we can obtain the frequency 

from 
m
kf

π2
1

= using the value for k from the potential function. 

 
(a) A graph of U(x) follows: 

0
1
2
3
4
5
6
7
8
9

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x /a

U
/U

0

 
 

(b) Express the condition for equilibrium: 0==
dx
dUF  

 
Differentiate U with respect to x: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎥⎦

⎤
⎢⎣
⎡ −=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=

2

2
0

20

0

11
x
a

a
U

x
a

a
U

x
a

a
xU

dx
d

dx
dU
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Set this derivative equal to zero and 
solve for x: 
 

01 2
0

2
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

x
a

a
U

 

and 
ax =0 or 1=α  

 
(c) Express U(x0 + ε): ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++=

⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

=+

aa
xaa

xU

x
a

a
xUxU

ε
ε

ε
εε

0

0
0

0

0
00

1
 

or, because x0 = a, 

( )

( )[ ]1
0

00

11

1

11

−+++=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++=+

ββ

ε
εε

U

a
a

UxU
 

where
a
εβ =  

 
(d) Expand ( ) 11 −+ β to obtain: ( ) ( ) ( )( )

2

21

1

...
12

21111

ββ

βββ

+−≈

+
×
−−

+−+=+ −

 

 
Substitute in U(x0 + ε): ( ) [ ]

[ ]

2

2

0

2

2

00

2
0

2
00

constant

2

2

11

a
U

a
UU

U

UxU

ε

ε

β

βββε

+=

+=

+=

+−++=+

 

 
(e) Express the potential energy of a 
simple harmonic oscillator: 
 

2
2
1constant εkU +=  

If the particle whose potential energy 
is given in part (d) is to undergo 
simple harmonic motion: 
 

2
02

a
Uk =  
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Express the frequency of the simple 
harmonic motion, substitute for k, and 
simplify to obtain: 
 

m
U

a

ma
U

m
kf

0

2
0

2
2
1

2
2
1

2
1

π

ππ

=

==
 

 
116  •••  
Picture the Problem Let m represent the mass of the cylindrical drum, R its radius, and k 
the stiffness constant of the spring. We can find the angular frequency of the oscillations 
by equating the maximum kinetic energy of the drum and the maximum energy stored in 
the spring. We can then express the frequency of the system in terms of its angular 
frequency. The application of Newton’s 2nd law, under on-the-verge-of-sliding conditions, 
together with the introduction of the oscillator’s total energy, will lead us to an expression 
for the minimum value of the coefficient of static friction. 
 
(a) Express the frequency of 
oscillation of the system for small 
displacements from equilibrium: 
 

π
ω
2

=f                                  (1) 

 

Express the kinetic energy of the 
drum and simplify to obtain: 

( )
2

4
3

2
2
1

2
2

2
1

2
1

2
2
12

2
1

mv

mv
R
vmR

mvIK

=

+⎟
⎠
⎞

⎜
⎝
⎛=

+= ω

 

 
Apply conservation of energy to 
obtain: 
 

2
2
12

max4
3

max kAmvK ==  

 

Substitute Aω for vmax: ( ) 2
2
12

4
3 kAAm =ω  

 
Solve for ω: 

m
k

3
2

=ω  

 
Substitute in equation (1) to obtain: 

m
kf

3
2

2
1
π

=  

 
Substitute numerical values and 
evaluate f: 

( )
( ) Hz36.3

kg63
N/m40002

2
1

==
π

f  

 
(b) Apply ∑ = 0xF  to the drum to 0maxs, =− fkA  

or 
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establish the condition that governs 
slipping: 
 

0ns =− FkA µ  

 

Using Fn = mg, solve for µs: 
mg
kA

=sµ                              (2) 

 
Express the oscillator’s total energy 
in terms of the amplitude of its 
motion: 
 

EkkAkAE 22
2
1 =⇒=  

 

Substitute in equation (2) to obtain: 

mg
Ek2

s =µ  

 
Substitute numerical values and 
evaluate µs: 

( )( )
( )( ) 40.3

m/s9.81kg6
N/m4000J52

2s ==µ  

 
*117 •••  
Picture the Problem The pictorial representation shows the two blocks connected by the 
spring and displaced from their equilibrium positions.  We can apply Newton’s 2nd law to 
each of these coupled oscillators and solve the resulting equations simultaneously to 
obtain the differential equation of motion of the coupled oscillators. We can then 
compare this differential equation and its solution to the differential equation of motion 
of the simple harmonic oscillator and its solution to show that the oscillation frequency is 

( ) 21µω k= where µ = m1m2/(m1 + m2) is the reduced mass of the system. 
 

 

 
 
Apply ∑ = aF rr

m  to the block 
whose mass is m1 and solve for its 
acceleration: 
 

( ) 2
1

2

11121 dt
xdmamxxk ==−  

or 

( )21
1

2
1

2

1 xx
m
k

dt
xda −==  

 
Apply ∑ = aF rr

m  to the block 
whose mass is m2 and solve for its 

( ) 2
2

2

12221 dt
xdmamxxk ==−−  



Chapter 14    
 

 

1136 

acceleration: 
 

or 

( )12
2

2
2

2

2 xx
m
k

dt
xda −==  

 
Subtract the first equation from the 
second to obtain: 

( ) x
mm

k
dt

xd
dt

xxd
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−==

−

21
2

2

2
12

2 11

 
  where x = x2 − x1 
 

The reduced mass of the system is: 
 

21

111
mm

+=
µ

or 
21

21

mm
mm
+

=µ  

 
Substitute to obtain: 
 xk

dt
xd

µ
−=2

2

                           (1) 

 
Compare this differential equation 
with the differential equation of the 
simple harmonic oscillator: 
 

x
m
k

dt
xd

−=2

2

 

The solution to this equation is: ( )δω += txx cos0  

where 
m
k

=ω  

 
Express the solution to equation (1): ( )δω += txx cos0  

where 
µ

ω k
=  

 
118 ••   
Picture the Problem We can use ( ) 21µω k= and µ = m1m2/(m1 + m2) from Problem 
117 to find the spring constant for the HCl molecule. 
 
Use the result of Problem 118 to 
relate the oscillation frequency to 
the spring constant and reduced 
mass of the HCl molecule: 
 

µ
ω k
=  

Solve for k to obtain: 2µω=k  
 

Express the reduced mass of the 
HCl molecule: 
 21

21

mm
mm
+

=µ  

 
Substitute to obtain: 

21

2
21

mm
mm

k
+

=
ω
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Express the masses of the hydrogen 
and Cl atoms: 

m1 = 1 amu = 1.67×10-27 kg 
and 
m2 = 35.45 amu = 5.92×10-26 kg 
 

Substitute numerical values and evaluate k: 
 

( )( )( ) N/m1.13
kg1092.5kg1067.1

s10969.8kg1092.5kg1067.1
2627

21-132627

=
×+×

×××
= −−

−−

k  

 
119 ••  
Picture the Problem In Problem 117, we derived an expression for the oscillation 
frequency of a spring-and-two-block system as a function of the stiffness constant of the 
spring and the reduced mass of the two blocks. We can solve this problem, assuming that 
the "spring constant" does not change, by using the result of Problem 117 and the reduced 
mass of a deuterium atom and a Cl atom in the equation for the oscillation frequency. 
 
Use the result of Problem 117 to 
relate the oscillation frequency to 
the spring constant and reduced 
mass of the HCl molecule: 
 

µ
ω k
=  

Express the reduced mass of the 
HCl molecule: 
 21

21

mm
mm
+

=µ  

Express the masses of the deuterium 
and Cl atoms: 

m1 = 2 amu = 3.34×10-27 kg 
and 
m2 = 35.45 amu = 5.92×10-26 kg 
 

Evaluate the reduced mass of the 
molecule: 
 

( )( )

kg1016.3
kg1092.5kg1034.3
kg1092.5kg1034.3

27

2627

2627

−

−−

−−

×=

×+×
××

=µ
 

 
Substitute numerical values and 
evaluate ω: 

rad/s106.44

kg103.16
N/m1.13

13

27-

×=

×
=ω

 

 
120 •••  
Picture the Problem The pictorial representation shows the block moving from right to 
left with an instantaneous displacement x from its equilibrium position. The free-body 
diagram shows the forces acting on the block during the half-cycles that it moves from 
right to left.  When the block is moving from left to right, the directions of the kinetic 
friction force and the restoring force exerted by the spring are reversed. We can apply 
Newton’s 2nd law to these motions to obtain the differential equations given in the 
problem statements and then use their solutions to plot the graph called for in (c). 
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(a) Apply xx maF =∑ to the block 
while it is moving to the left to 
obtain: 
 

2

2

k dt
xdmkxf =−  

Using  fk = µkFn =µkmg, eliminate fk 
in the differential equation of 
motion: 
 

mgkx
dt

xdm k2

2

µ+−=  

or 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

k
mgxk

dt
xdm k
2

2 µ
 

 

Let 
k
mgx k

0
µ

=  to obtain: ( )02

2

xxk
dt

xdm −−=  

or 

x'x'
m
k

dt
x'd 2
2

2

ω−=−=  

provided x′ = x − x0 and 

2
kk

0 ω
µµ g

k
mgx ==  

 
The solution to the differential 
equation is: 
 

( )δω += t'xx' cos0  
and its derivative is 

( )δωω +−= t'xv' sin0  
 

The initial conditions are: 
 

( ) 00 xxx' −= and ( ) 00 =v'  

Apply these conditions to obtain: ( ) 00 cos0 xx'xx' −== δ  
and 
( ) 0sin0 0 =−= δω 'xv'  

 
Solve these equations 
simultaneously to obtain: 
 

0=δ and 00 xx'x −=  
and 

( ) txxx' ωcos0−=       
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or 
 ( ) 00 cos xtxxx +−= ω             (1) 

 
(b) Apply aF rr

m=∑ to the block 
while it is moving to the right to 
obtain: 
 

2

2

k dt
xdmkxf =−−  

Using  fk = µkFn =µkmg, eliminate fk 
in the differential equation of 
motion: 
 

mgkx
dt

xdm k2

2

µ−−=  

or 

⎟
⎠
⎞

⎜
⎝
⎛ +−=

k
mgxk

dt
xdm k
2

2 µ
 

 

Let 
k
mgx k

0
µ

= to obtain: ( )02

2

xxk
dt

xdm +−=  

or 

x"x"
m
k

dt
x"d 2
2

2

ω−=−=  

provided x″ = x + x0 and 

2
kk

0 ω
µµ g

k
mgx == . 

 
The solution to the differential 
equation is: 
 

( )δω += t"xx" cos0  
and its derivative is 

( )δωω +−= t"xv" sin0  
 

The initial conditions are: 
 

( ) 00 xxx" += and ( ) 00 =v"  

Apply these conditions to obtain: ( ) 00 cos0 xx"xx" +== δ  
and 
( ) 0sin0 0 =−= δω "xv"  

 
Solve these equations 
simultaneously to obtain: 
 

0=δ and 00 xx"x +=  
and 

( ) txxx" ωcos0+=       
or 
 ( ) 00 cos xtxxx −+= ω            (2) 

 
(c) A spreadsheet program to calculate the position of the oscillator as a function of time 
(equations (1) and (2)) is shown below. The constants used in the position functions (x0 = 
1 m and T = 2 s were used for simplicity) and the formulas used to calculate the positions 
are shown in the table. After each half-period, one must compute a new amplitude for the 
oscillation, using the final value of the position from the last half-period.  
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Cell Content/Formula Algebraic Form 
B1 1 x0 
B2 10 A 
C7 C6 + 0.1 t + ∆t 
D7 ($B$2−$B$1)*COS(PI()*C7)+$B$1 ( ) 00 cos xtxA +− π  

D17 (ABS($D$6+$B$1))*COS(PI()*C17)−$B$1 
00 cos xtxx −+ π  

D27 (ABS($D$6−$B$1))*COS(PI()*C27)+$B$1 
00 cos xtxx +− π  

D37 (ABS($D$36+$B$1))*COS(PI()*C37)−$B$1
00 cos xtxx −+ π  

D47  ($D$46−$B$1)*COS(PI()*C47)+$B$1 ( ) 00 cos xtxx +− π   
 

 A B C D 
1 x0= 1 m  
2 A= 10   
3     
4   t x 
5   (s) (m) 
6   0.0 10.00
7   0.1 9.56 
8   0.2 8.28 
9   0.3 6.29 
10   0.4 3.78 
     

53   4.7 0.41 
54   4.8 0.19 
55   4.9 0.05 
56   5.0 0.00  

 
The graph shown below was plotted using the data from columns C (t) and  
D (x). cycles.-half fiveafter  ceasesblock   theofmotion   that theNote  

 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5

t (s)

x  
(m

)
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121  •••  
Picture the Problem The diagram shows the half-cylinder displaced from its equilibrium 
position through an angle θ. The frequency of its motion will be found by expressing the 
mechanical energy E in terms of θ and dθ/dt. For small θ we will obtain an equation of 

the form .
2

2
12

2
1 ⎟

⎠
⎞

⎜
⎝
⎛+=

dt
dIE θκθ  Differentiating both sides of this equation with respect 

to time will lead to 
dt
d

dt
dI θθκθ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 2

2

0 , an equation that must be valid at all times. 

Because the situation of interest to us requires that dθ/dt is not always equal to zero, we 

have 2

2

0
dt
dI θκθ +=  or 02

2

=+ θκθ
Idt

d
, the differential equation of simple harmonic 

motion with .2 Iκω =  The distance from O to the center of mass D, where, from 

Problem 8-39, D = (4/3π)R, and the distance from the contact point C to the center of 
mass is r. Finally, we’ll take the potential energy to be zero where θ  is zero and assume 
that there is no slipping. 
 

 
 

Apply conservation of energy to obtain: 
 

( )
2

2
1

⎟
⎠
⎞

⎜
⎝
⎛+−=

+=

dt
dIDhMg

KUE

C
θ

         (1) 

 
From Table 9-1, the moment of 
inertia of a solid cylinder about an 
axis perpendicular to its face and 
through its center is given by: 
 

( ) 22
cylinder solid,0 2

2
1 MRRMI ==  

where M is the mass of the half-cylinder. 
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Express the moment of inertia of the 
half-cylinder about the same axis: 
 

[ ] 22
0cylinderhalf 0, 2

1
2
1 MRMRII ===  

Use the parallel-axis theorem to 
relate Icm to I0: 
 

2
cm0 MDII +=  

 

Substitute for Icm and solve for Icm: 

MDMR

MDII

22

2
0cm

2
1

−=

−=
 

 
Apply the parallel-axis theorem a 
second time to obtain an expression 
for IC: 
 ⎟

⎠
⎞

⎜
⎝
⎛ +−=

+−=

222

222
C

2
1

2
1

rDRM

MrMDMRI
               (2) 

 
Apply the law of cosines to obtain: 
 

θcos2222 RDDRr −+=  
 

Substitute for r2 in equation (2) to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −++−= θθ cos2

2
3cos2

2
1 22222

C R
DMRRDDRDRMI  

 
Substitute for h and  IC in equation (1): 
 

( )
2

2 cos2
2
3

2
1cos1 ⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dt
d

R
DMRMgDE θθθ  

 

Use the small angle approximation 2

2
11cos θθ −≈ to obtain: 

 

[ ]
2

222 2
2
3

2
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−+=

dt
d

R
DMRMgDE θθθ  

 
Because θ 2 << 2, we can neglect the θ 2 in the square brackets to obtain: 
 

2
22 2

2
3

2
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+=

dt
d

R
DMRMgDE θθ  
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Differentiating both sides with respect to time yields: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+= 2

2
2 2

2
30

dt
d

dt
d

R
DMR

dt
dMgD θθθθ , 

02
2
3

2

2
2 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ − θθ gD

dt
d

R
DR , 

and 

0
2

2
32

2

2

=
⎟
⎠
⎞

⎜
⎝
⎛ −

+ θθ

R
DR

gD
dt
d

, 

 the differential equation of simple harmonic motion with 
⎟
⎠
⎞

⎜
⎝
⎛ −

=

R
DR

gD

2
2
32

2ω . 

 
Substitute for D to obtain: 
 

R
g

R
g

⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
169

8

3
8

2
3

3
4

2

π
π

πω  

 
Express the period of the motion in 
terms of ω and simplify to obtain: 

g
R

g
RT

78.7

8
16922

=

⎟
⎠
⎞

⎜
⎝
⎛ −

==
ππ

ω
π

 

 
*122 •••  
Picture the Problem The net force acting on the particle as it moves in the tunnel is the 
x-component of the gravitational force acting on it. We can find the period of the particle 
from the angular frequency of its motion. We can apply Newton’s 2nd law to the particle 
in order to express ω in terms of the radius of the earth and the acceleration due to gravity 
at the surface of the earth.  
 
(a) From the figure we see that: 

x
R

GmM

r
xr

R
GmMFF rx

3
E

E

3
E

Esin

−=

−== θ

 

 
 Because this force is a linear restoring 

force, the motion of the particle is simple 
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harmonic motion. 
 

(b) Express the period of the particle 
as a function of its angular 
frequency: 
 

ω
π2

=T                                  (1) 

 

Apply ∑ = xx maF to the particle: max
R

GmM
=− 3

E

E  

 
Solve for a: xx

R
GMa 2

3
E

E ω−=−=  

where 

2
E

E

R
GM

=ω  

 
Use 2

EE gRGM = to simplify ω: 

E
3
E

2
E

R
g

R
gR

==ω  

 
Substitute in equation (1) to obtain: 

g
R

R
g

T E

E

22 ππ
==  

 
Substitute numerical values and 
evaluate T: 

min4.84

s1006.5
m/s9.81

m106.372 3
2

6

=

×=
×

= πT
 

 
123  •••  
Picture the Problem The amplitude of a damped oscillator decays with time according 

to ( ) .2
0

tmbeAA −=  We can find b/2m from 
2

0
0 2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ω
ωω

m
b' and then substitute in 

the amplitude equation to find the factor by which the amplitude is decreased during each 
oscillation. We’ll use our result from (a), together with the dependence of the energy of 
the oscillator on the square of its amplitude, to find the factor by which its energy is 
reduced during each oscillation. 
 
(a) Express the variation in 
amplitude with time: 
 

( )tmbeAA 2
0

−=                                (1) 
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Relate the damped and undamped 
frequencies of the oscillator: 
 

2

0
0 2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ω
ωω

m
b'                 (14-46) 

 
Solve for mb 2 : 

( )

0

2
02

0

2

0

436.0

9.01'1
2

ω

ω
ω
ωω

=

−=−=
m
b

 

 
Find the period of the damped 
oscillations: 09.0

22
ω
π

ω
π
==

'
T  

 
Substitute in equation (1) with t = T 
to obtain: 
 

( )

0478.0

04.39.0
2436.0

0

0
0

=

== −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ee
A
A ω

πω

 

 
(b) Express the energy of the 
oscillator at time t = 0: 
 

2
02

1
0 kAE =  

Express the energy of the oscillator 
at time t = T: 
 

2
2
1 kAE =  

Divide the second of these 
equations by the first, simplify, and 
substitute to evaluate E/E0: 

( )

00228.0

0477.0 2
2

0
2
0

2

0

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

A
A

A
A

E
E

 

 
124 •••  
Picture the Problem We can differentiate Equation 14-52 twice and substitute x and 
d2x/dt2 in Equation 14-51 to determine the condition that must be satisfied in order for 
Equation 14-52 to be a solution of Equation 14-51. 
 
The differential equation of motion 
is Equation 14-51: 

tFxm
dt
dxb

dt
xdm ωω cos0

2
02

2

=++                

 
Its proposed solution is Equation 
14-52: 
 

( )δω −= tAx cos                                      

 

Obtain the first and second 
derivatives of x: 

( )δωω −−= tA
dt
dx sin  

and 
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( )δωω −−= tA
dt

xd cos2
2

2

 

 
Substitute in the differential equation to obtain: 
 

( ) ( ) ( ) tFtAmtbAtmA ωδωωδωωδωω coscossincos 0
2
0

2 =−+−−−−  

 
Using trigonometric identities, expand ( )δω −tcos  and ( )δω −tsin  to obtain: 

 
( ) ( )

( ) tFttAm
ttbAttmA

ωδωδωω

δωδωωδωδωω

cossinsincoscos
sincoscossinsinsincoscos

0
2
0

2

=++

−−+−
 

 
Factor ( )δωδω sinsincoscos ttmA +  from the first and third terms to obtain: 

 
( )( ) ( ) tFttbAttmA ωδωδωωδωδωωω cossincoscossinsinsincoscos 0

22
0 =−−+−

 
Factor δω coscos t from the first term on the left-hand side of the equation and 

δω cossin t  from the 2nd term: 
 

( )( ) ( )

tF
t
ttbA

t
ttmA

ω
δω
δωδωω

δω
δωδωωω

cos
cossin
sincos1cossin

coscos
sinsin1coscos

0

22
0

=

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +−

 

 
Simplify to obtain: 
 

( )( )( ) ( )

tF
t

tbAttmA

ω
ω
δδωωδωδωωω

cos
tan
tan1cossintantan1coscos

0

22
0

=

⎟
⎠
⎞

⎜
⎝
⎛ −−+−

 

 
Divide both sides of the equation by ( )22

0 ωω −m : 

 

( )( ) ( )( )

( ) t
m

F
t

t
m

bAttA

ω
ωω

ω
δδω

ωω
ωδωδω

cos

tan
tan1cossintantan1coscos

22
0

0

22
0

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

−
−+

 

 
The phase constant for a driven oscillator 
is given by Equation 14-54: 
 

( )22
0

tan
ωω

ωδ
−

=
m

b
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Substitute for δtan : 
 

( ) ( ) ( )( )

( )
( ) t

m
F

t
m

b

t
m

bA
m

bttA

ω
ωωω

ωω
ω

δω
ωω

ω
ωω

ωωδω

cos
tan

1

cossintan1coscos

22
0

0
22

0

22
0

22
0

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

−×

−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

 

 
Simplify to obtain: 
 

( )( ) ( ) t
m

FtA ω
ωω

δδω costan1coscos 22
0

02

−
=+  

 

Use the trigonometric identity 
δ

δ 2
2

cos
1tan1 =+ : 

 

( ) ( ) t
m

FtA ω
ωωδ

δω cos
cos

1coscos 22
0

0
2 −

=  

 
Simplify to obtain: 

( ) t
m

FtA ω
ωω
δω coscoscos 22

0

0

−
=  

 
Thus ( )δω −= tAx cos is a 

solution to Equation 14-51 
provided: 

( )22
0

0 cos
ωω
δ

−
=

m
FA  

 
*125 •••  
Picture the Problem We can follow the step-by-step instructions provided in the 
problem statement to obtain the desired results. 
 
(a) Express the average power 
delivered by a driving force to a 
driven oscillator: 
  

θcosFvP =⋅= vF rr
 

or, because θ is 0°, 
FvP =  

Express F as a function of time: tFF ωcos0=  

 
Express the position of the driven 
oscillator as a function of time: 
 

( )δω −= tAx cos  
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Differentiate this expression with 
respect to time to express the 
velocity of the oscillator as a 
function of time: 
 

( )δωω −−= tAv sin  

Substitute to express the average 
power delivered to the driven 
oscillator: 
 

( ) ( )[ ]
( )δωωω

δωωω

−−=

−−=

ttFA

tAtFP

sincos

sincos

0

0
 

 

(b) Expand ( )δω −tsin  to obtain: ( ) δωδωδω sincoscossinsin ttt −=−  

 
Substitute in your result from (a) 
and simplify to obtain: 

(
)

ttFA
tFA

t
ttFAP

ωωδω
ωδω

δω
δωωω

sincoscos
cossin

sincos
cossincos

0

2
0

0

−
=

−
−=

 

 
(c) Integrate θθ cossin over one 
period to determine θθ cossin : 

0

sin
2
1

2
1

cossin
2
1cossin

2

0

2

2

0

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
= ∫

π

π

θ
π

θθθ
π

θθ d

 

 
Integrate θ2cos over one period to 
determine θ2cos : 

( )

( )
2
10

2
1

2cos
2
1

2cos1
2
1

2
1

cos
2
1cos

2

0
2
1

2

0
2
1

2

0

2

0

22

=+=

⎥
⎦

⎤
⎢
⎣

⎡
+=

⎥
⎦

⎤
⎢
⎣

⎡
+=

=

∫∫

∫

∫

π
π

θθθ
π

θθ
π

θθ
π

θ

ππ

π

π

dd

d

d

 

 
Substitute and simplify to express 
Pav: 

( )
δω

δωδω
ωωδω

ωδω

sin

0cossin
sincoscos

cossin

02
1

002
1

0

2
0av

FA

FAFA
ttFA

tFAP

=

−=

−

=
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(d) Construct a triangle that is 
consistent with 
 

( )22
0

tan
ωω

ωδ
−

=
m

b
: 

  
 

Using the triangle, express sinδ: 

( ) 22222
0

2
sin

ωωω

ωδ
bm

b

+−
=  

 
Using equation 14-53, reduce this 
expression to the simpler form: 

0

sin
F

Abωδ =  

 

(e) Solve 
0

sin
F

Abωδ = for ω: δω sin0

bA
F

=  

 
Substitute in the expression for Pav 
to eliminate ω: 
 

δ2
2

0
av sin

2b
FP =  

Substitute for δsin from (d) to 
obtain Equation 14-55: ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
=

22222
0

2

2
0

2

av 2
1

ωωω
ω

bm
FbP             

 
126  •••       
Picture the Problem We can follow the step-by-step instructions given in the problem 
statement to derive the given results. 
 
(a) Express the condition on the 
denominator of Equation 14-55 
when the power input is half  
its maximum value: 
 

( ) 2
0

222222
0

2 2 ωωωω bbm =+−  

and, for a sharp resonance, 

( ) 2
0

2222
0

2 ωωω bm ≈−  

 

Factor the difference of two squares 
to obtain: 

( )( )[ ] 2
0

22
00

2 ωωωωω bm ≈+−  

or 

( ) ( ) 2
0

22
0

2
0

2 ωωωωω bm ≈+−  

 
(b) Use the approximation  
ω + ω0 ≈ 2ω0 to obtain: 
 

( ) ( ) 2
0

22
0

2
0

2 2 ωωωω bm ≈−  
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Solve for ω0 − ω: 
m
b

20 ±=−ωω                      (1) 

 
(c) Using its definition, express Q: 

b
mQ 0ω=  

 
Solve for b: 

Q
mb 0ω=  

 
(d) Substitute for b in equation (1) 
to obtain: Q2

0
0

ωωω ±=−  

 
Solve for ω: 

Q2
0

0
ωωω ±=  

 
Express the two values of ω: 

Q2
0

0
ωωω +=+  

and 

Q2
0

0
ωωω −=−  

 
Remarks: Note that the width of the resonance at half-power 
is ,∆ Qωωωω 0=−= −+ in agreement with Equation 14-49. 
 
127 •••  
Picture the Problem We can find the equilibrium separation for the Morse potential by 
setting dU/dr = 0 and solving for r. The second derivative of U will give the "spring 
constant" for small displacements from equilibrium. In (c), we can use ,µω k=  
where k is our result from (b) and µ is the reduced mass of a homonuclear diatomic 
molecule, to find the oscillation frequency of the molecule. 
 
 (a) A spreadsheet program to calculate the Morse potential as a function of r is shown 
below. The constants and cell formulas used to calculate the potential are shown in the 
table.  
 

Cell Content/Formula Algebraic Form 
B1 5 D 
B2 0.2 β 
C9 C8 + 0.1 r + ∆r 
D8 $B$1*(1−EXP(−$B$2*(C8−$B$3)))^2 ( )[ ]2

01 rreD −−− β   



Oscillations 
 

 

1151

 
 A B C D 

1 D= 5 eV  
2 Beta= 0.2 nm−1  
3 r0= 0.75 nm  
4     
5     
6   r U(r) 
7   (nm) (eV) 
8   0.0 0.13095
9   0.1 0.09637

10   0.2 0.06760
11   0.3 0.04434
12   0.4 0.02629

     
235   22.7 4.87676
236   22.8 4.87919
237   22.9 4.88156
238   23.0 4.88390
239   23.1 4.88618 

 
The graph shown below was plotted using the data from columns C (r) and  
D (U(r)). 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r (nm)

U
 (e

V
)

 
 

(b) Differentiate the Morse potential 
with respect to r  to obtain: 
 

( )[ ]{ }
[ ])(

2

0

0

12

1

rr

rr

eD

eD
dr
d

dr
dU

−−

−−

−−=

−=

β

β

β
 

 
Set this derivative equal to zero for 
extrema: 
 

[ ]  012 )( 0 =−− −− rreD ββ  
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Solve for r to obtain: 
0rr =  

 
Evaluate the second derivative of 
U(r) to obtain: 
 

[ ]{ }
)(2

)(
2

2

0

0

2

12

rr

rr

De

eD
dr
d

dr
Ud

−−

−−

=

−−=

β

β

β

β
 

 
Evaluate this derivative at r = r0: D

dr
Ud

rr

2
2

2

2
0

β=
=

                 (1) 

 
Recall that the potential function for 
a simple harmonic oscillator is: 
 

2
2
1 kxU =  

 

Differentiate this expression twice to 
obtain: 
 

k
dx

Ud
=2

2

 

By comparison with equation (1) we 
have: 
 

Dk 22β=  

(c) Express the oscillation frequency 
of the diatomic molecule: 
 

µ
ω k
=  

where µ is the reduced mass of the 
molecule. 
 

Express the reduced mass of the 
homonuclear diatomic molecule: 
 

22

2

21

21 m
m

m
mm

mm
==

+
=µ  

Substitute and simplify to obtain: 

m
D

m
D ββω 2

2

2 2

==  

 
Remarks: An alternative approach in (b) is the expand the Morse potential in a 
Taylor series 

( ) ( ) ( ) ( ) ( ) ( ) termsorder higher 
2!
1  r'U'rrrU'rrrUrU 0

2
0000 +−+−+=  

to obtain ( )20
2 rrDβU(r) −≈ . Comparing this expression to the energy of a spring-

and-mass oscillator we see that, as was obtained above, Dβk 22= . 
 
 


