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1. Introduction

Most of the kinetic energy in atmospheric and oceanic circulations is tied up in

flows that are dominated by rotational effects and that evolve slowly compared to

a pendulum day (the time it takes a pendulum to complete one circuit, which is

one sidereal day at 30◦ latitude). These include all the major ocean currents, from

the thermohaline circulation to mesoscale ocean eddies; and the major atmospheric

circulation systems ranging from synoptic-scale disturbances to planetary wave and

other major elements of the general circulation. For the purposes of this course, we

mean to distinguish circulations such as these from comparatively fast circulations

such as internal inertia-gravity waves, and sound waves, convection, and three-

dimensional turbulence. As we shall see, there is strong evidence that there does

not exist an exact means of separating slow, rotationally dominated circulations

from the faster ones; nor can it be assumed that there is no interaction between

them. Nevertheless, it is usually possible to distinguish between observations of

these two classes of circulation. In the course, we use the term quasi-balanced to

refer to flows in which most of the kinetic energy is tied up in motions for which

the hydrostatic approximation is valid and in which horizontal pressure gradients

are nearly balanced by centrifugal accelerations. A more formal working definition

of quasi-balanced flows is those flows most of whose salient characteristics can be

derived from the instantaneous potential vorticity distribution together with certain

balance approximations and boundary conditions. Even this definition lacks rigor for

2



reasons we shall explore in due course, but it serves our purpose admirably in many

ways, most especially as it stresses the central importance of potential vorticity in

the description of the dynamics of quasi-balance flows.

The first part of this course will develop the conservation and invertibility

principles that we will then use in the second part to describe the dynamics of

quasi-balanced flows in the atmosphere and oceans. In doing so, we assume that

you have taken a graduate-level course in geophysical fluid dynamics that covers the

fundamental fluid laws at the level, say, of Joseph Pedlosky’s book on the subject.

You will find that the text entitled Atmosphere-Ocean Dynamics, by Adrian Gill

(Academic Press, 1982) makes a nice companion to this course, though we will not

by any means cover the same material in the same order. An essential reference

is “On the use and significance of isentropic potential vorticity maps” by B. F.

Hoskins, M. E. McIntyre, and A. W. Robertson, published in the Quarterly Journal

of the Royal Meteorological Society, 111, 1985, 877–946.

We begin with an elementary review of basic principles, followed by a derivation

of various sets of filtered equations that will be used in the remainder of the course.
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2. Fundamental balance and conservations principles for

quasi-balanced flow

A. Hydrostatic balance

We shall assume throughout the course that quasi-balanced flows are very nearly

hydrostatic. In local Cartesian coordinates, the vertical momentum equation is

dw

dt
= −α∂p

∂z
− g + 2Ωu cosϕ+

u2 + v2

a
+ Fz, (2.1)

where w is the vertical velocity, α is the specific volume, p is pressure, z is the

upward vertical distance, g is the effective acceleration of gravity (which includes

centripetal terms owing to the Earth’s rotation), Ω is the angular velocity of the

Earth’s rotation, u is the zonal velocity, ϕ is the latitude, v is the meridional

velocity, a is the mean radius of the earth and Fz is the vertical component of the

acceleration owing to friction. The hydrostatic approximation is valid when the

particle acceleration, Coriolis acceleration, and friction are all small compared to

gravity:

α
∂p

∂z
� −g. (2.2)
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1. Application to the atmosphere

The atmosphere is well approximated by an ideal gas, whose specific volume is

related to temperature, pressure, and water substance by

α =
RdTv

p
, (2.3)

where Rd is the gas constant of dry air, p is the total pressure, and Tv is the virtual

temperature, defined

Tv = T

(
1 + r/ε

1 + rt

)
, (2.4)

where T is the absolute temperature, r is the mass mixing ratio of water vapor,

and rt is the mass mixing ratio of all water substance. The mass mixing ratios are

defined as the mass of substance per unit mass of air exclusive of all water substance.

The total water mixing ratio, rt, includes condensed as well as vapor-phase water.

The quantity ε is the ratio of the molecular weight of water to the mean molecular

weight of dry air and has a value of 0.622.

Substituting (2.3) into (2.2) gives

RdTv
∂ ln p
∂z

= −g. (2.5)

Integrating this results in

p = p0 exp
[−g0zg

RdT v

]
, (2.6)

where g0 is a standard value of g and

zg ≡ 1
g0

∫ z

0

g dz
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is the geopotential height. In the troposphere, the fractional change of g with altitude

is small and so zg is nearly equal to z. For the purposes of this course, we will always

use z to mean geopotential height and take g as the acceleration of gravity at sea

level.

In (2.6), T v is the mean virtual temperature, defined

T v ≡ 1
ln p0

p

∫ p0

p

Tv
dp

p
. (2.7)

If the virtual temperature is constant with pressure, as is nearly true in the lower

stratosphere, then (2.6) shows that pressure decreases exponentially with altitude.

In the atmosphere, it is common to use pressure as the independent vertical

coordinate, rather than altitude. In this coordinate system, (2.2) is usually written

∂ϕ

∂p
= −α, (2.8)

where ϕ is the geopotential, defined

ϕ ≡
∫ z

0

g dz, (2.9)

where g is in this instance the full effective gravitational acceleration. Using (2.3)

and (2.7), (2.8) can be integrated to yield

ϕ = RdT v ln
p0

p
. (2.10)

Also, the physical distance between two fixed pressure surfaces, often referred to as

the thickness, is

∆zg =
RdT̃v

g
ln
p2

p1
, (2.11)
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where in this case

T̃v ≡ 1
ln p2

p1

∫ p2

p1

Tv
dp

p
. (2.12)

2. Application to the ocean

A convenient density variable to use in the ocean is σ, defined

σ ≡ (ρ− 1) × 103, (2.13)

where ρ is the density in g cm−3. In general, σ (or ρ) is a function of pressure,

temperature, and salinity:

σ = σ(s, T, p).

The equation of state for sea water is not as simple as its atmospheric counter-

part. It may be written approximately as

α =
c1 + c2T + c3T

2 − c4S − c5TS

p+ c6 + c7T − c8T 2 + c9S
, (2.14)

with α in cm3 g−1, p in bars, T in ◦C, and S in 0/00 (grams of dissolved substance

per kilogram of sea water). The constants in (2.14) are

c1 = 1752.73,

c2 = 11.01,

c3 = 0.0639,

c4 = 3.9986,

c5 = 0.0107
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c6 = 5880.9,

c7 = 37.592,

c8 = 0.34395,

c9 = 2.2524.

In the ocean, it is conventional to define z as positive downward, so the hydrostatic

equation may be written

∂p

∂z
= ρg. (2.15)

Since ρ is nearly constant, the vertical pressure gradient in the ocean is nearly equal

to 1 db m−1, where db stands for decibar.

3. Equations of motion

For the purposes of this course, we will, for the most part, use the hydrostatic,

horizontal equations of motion in local Cartesian coordinates. The full equations

may be written (cf. Holton, 1992)

du

dt
− uv tanϕ

a
+
uw

a
= −α∂p

∂x
+ 2Ω sinϕv − 2Ω cosϕw + Fx, (3.1)

dv

dt
+
u2 tanϕ

a
+
vw

a
= −α∂p

∂y
− 2Ω sinϕu+ Fy, (3.2)

where u and v are the eastward and northward velocity components, and Fx and

Fy are the components of frictional acceleration in the eastward and northward

directions.
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A scale analysis of these momentum equations (cf. Holton, 1992) shows that the

centrifugal terms on the left sides of (3.1) and (3.2) are very small compared to the

other terms, as is the Coriolis acceleration term involving w in (3.1). Thus, for the

purposes of forming simplified equations for developing conceptual understanding

of quasi-balanced flows, we shall drop these terms henceforth, and write (3.1) and

(3.2) as

du

dt
= −α∂p

∂x
+ fv + Fx, (3.3)

dv

dt
= −α∂p

∂y
− fu+ Fy, (3.4)

where f is the Coriolis parameter, defined

f ≡ 2Ω sinϕ. (3.5)

In the atmosphere, it is usually convenient to write (3.3) and (3.4) in pressure

coordinates:

du

dt
= −∂ϕ

∂x
+ fv + Fx, (3.6)

dv

dt
= −∂ϕ

∂y
− fu+ Fy, (3.7)

in which horizontal gradients are understood to be taken at constant pressure.

9



Figure 3.1

5. Circulation

A key integral conservation property of fluids is the circulation. For convenience,

we derive Kelvin’s circulation theorem in an inertial coordinate system and later

transform back to Earth coordinates.

In inertial coordinates, the vector form of the momentum equation may be

written

dV
dt

= −α∇p− gk̂ + F, (4.1)

where k̂ is the unit vector in the z direction and F represents the vector frictional

acceleration.

Now define a material curve that, however, is constrained to lie at all times on

a surface along which some state variable, which we shall refer to for now as s, is

a constant. (A state variable is a variable that can be expressed as a function of

temperature and pressure.) The picture we have in mind is shown in Figure 3.1.
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The arrows represent the projection of the velocity vector onto the s surface,

and the curve is a material curve in the specific sense that each point on the curve

moves with the vector velocity, projected onto the s surface, at that point.

Now the circulation is defined as

C ≡
∮

V · dl, (4.2)

where dl is an incremental length along the curve and V is the vector velocity. The

integral is a closed integral around the curve. Differentiation of (4.2) with respect

to this gives

dC

dt
=
∮
dV
dt

· dl +
∮

V · dl
dt
. (4.3)

Since the curve is a material curve,

dl
dt

= dV,

so the integrand of the last term in (4.3) can be written as a perfect derivative and

so the term itself vanishes. Thus

dC

dt
=
∮
dV
dt

· dl,

and substituting (4.1) results in

dC

dt
=
∮

[−α∇p+ F] · dl. (4.4)

The gravity term vanishes because it can be expressed as the derivative of a poten-

tial, and so vanishes when integrated on a closed curve.
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Now since α is a state variable (neglecting its dependence on water vapor or,

in the ocean, salinity, for the time being), it can be written as a function of s and

p:

α = α(s, p),

But because ∇p in (4.4) must be a gradient at constant s (since the material

curve is chosen to lie on an s surface), the pressure term in (4.4) can be written

−
∮
α∇p · dl =

∫
∇ζ · dl = 0,

where

ζ ≡
∫ p

0

α(s0, p)dp′,

and s0 is the particular value of s characterizing the s surface in question. Thus

(4.4) becomes

dC

dt
=
∮

F · dl. (4.5)

Thus the only process that changes the circulation around a closed material curve

on an s surface is friction.

Using the definition of circulation, (4.2), and Stokes’s theorem, (4.5) can be

written alternatively as

d

dt

∫ ∫
A

(∇× V) · n̂dA =
∫ ∫

A

(∇× F ) · n̂dA, (4.6)

where now the integrals are over the area enclosed by the material curve, and n̂ is

a unit vector orthogonal to the s surface.
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In either of its two forms, (4.5) or (4.6), the Circulation Theorem expresses a

fluid analog of angular momentum conservation. If the curve happens to be a circle,

then the circulation can be seen to be the angular momentum per unit mass of an

infinitesimal ring centered on that circle (multiplied by 2π).

Now in a local coordinate system fixed to the rotating earth, the absolute

velocity (which appears in (4.5) and (4.6)) is related to the Earth-relative velocity,

Vr, by

∇× V = ∇×Vr + 2ΩΩΩ, (4.7)

where ΩΩΩ is the vector angular velocity of the Earth’s rotation. Substituting (4.7)

into (4.6) gives

d

dt

∫ ∫
[∇× Vr + 2ΩΩΩ] · n̂dA =

∫ ∫
(∇×F) · n̂dA. (4.8)

This is the form of the Circulation Theorem that we shall most often refer to. It

implies that on a surface along which some state variable is constant, the relative

vorticity (∇×Vr) will increase if

1. The area enclosed by the material curve decreases (implying convergence).

2. The curve is displaced southward or is tilted, such that ΩΩΩ · n̂ decreases.

Henceforth, we shall assume Earth-relative coordinates and drop the subscript

r in (4.8).

It is worth noting that the dependence of specific volume, α, on water vapor

in the atmosphere and on salinity in the ocean can be accounted for in forming the
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circulation theorem, by a suitable choice of variables. In the atmosphere, a good

choice of variables is the virtual potential temperature, defined

θv ≡ Tv

(
p0

p

)κ

, (4.9)

where Tv is given by (2.4), p0 is a reference pressure (usually 1000 MBA), and κ

is Rd/cpd, where Rd is the gas constant for dry air, and cpd is the heat capacity at

constant pressure of dry air. It can be shown that θv is very nearly conserved in

reversible adiabatic transformations. Moreover, as is clear from (2.3) and (4.9),

α =
RdTV

p
= Rdθvp

κ−1p−κ
0 , (4.10)

and on a surface along which θv is constant,

α∇p = cpdθvp
−κ
0 ∇pκ,

so that once again, ∮
α∇p · dl = 0,

when the curve lies on a surface of constant θv.

Similarly, in the ocean, we can write

α = σ(s, T, p)G(p), (4.11)

where σ is the potential density and is a function of salinity, temperature, and

pressure. The potential density is the density sea water would have if brought

reversibly to some reference pressure. Clearly, from (4.11), the pressure gradient
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term also vanishes when integrated around a closed material curve on a surface

along which σ is constant.

While the Circulation Theorem is useful for envisioning changes in fluid vor-

ticity, it is an integral theorem and thus cannot be used as part of a closed system

of equations describing the detailed evolution of fluid flow. We therefore proceed

to develop a conserved scalar, called the potential vorticity, using the Circulation

Theorem as a starting point.

5. Potential vorticity

Consider two closed material curves on two adjacent surfaces along which some state

variable (e.g. σ or θv) is a constant, as illustrated in Figure 5.1. We will suppose

that the area enclosed by the curves is infinitesimal, as is the distance between the

two s surfaces, and that the curves are connected by material walls so as to form a

material volume, which is material only in the sense that points on its surface move

with the component of the total fluid velocity projected onto s surfaces, as with the

derivation of the Circulation Theorem. Thus, material may leave or enter the ends

of the material volume, but not the sides.

The amount of mass contained in the volume is

δM = ρ δA δn, (5.1)

where ρ is the fluid density and δn is the distance between adjacent s surfaces.

15



Figure 5.1

Since n lies in the direction of ∇s,

δn =
dn

ds
δs, (5.2)

where δs = s2 − s1 is the difference between the values of s on the two surfaces.
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Using (5.1) and (5.2), the incremental area, δA, may be written

δA =
1
ρδs

ds

dn
δM. (5.3)

Using this, the Circulation Theorem in the form (4.8), with the integrals taken

over the infinitesimal areas, can be written

d

dt

[
(∇× V + 2ΩΩΩ) · n̂ 1

ρδs

ds

dn
δM

]
= (∇×F) · n̂ 1

ρδs

ds

dn
δM. (5.4)

Given that the direction of n̂ is the same as that of ∇s, and that δs is by definition

a fixed increment in s, (5.4) may be re-expressed

d

dt
[α(∇×V + 2ΩΩΩ) · ∇s δM ] = α(∇× F) · ∇s δM. (5.5)

The variability of δM can now be related to sources and sinks of s, since clearly if

fluid is entering or leaving through the ends of the volume, which lie on surfaces of

constant s, then there must be sources or sinks of s.

The rate of mass flow across each end of the cylinder is

ρ
ds

dt

dn

ds
δA,

so that the rate of change of mass in the cylinder is the convergence of the flux:

d

dt
δM = − d

dn

[
ρ
ds

dt

dn

ds
δA δn

]
= −ρδA δn ∂

∂s

ds

dt
= −δM ∂

∂s

ds

dt
. (5.6)

Using this in (5.5) gives

d

dt
[α(∇×V + 2ΩΩΩ) · ∇s] =

α(∇×F) · ∇s+ α(∇× V + 2ΩΩΩ) · ∇SD

dt
.

(5.7)
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This known at Ertel’s Theorem and states that the quantity

α(∇× V + 2ΩΩΩ) · ∇s

is conserved following the fluid flow, in the absence of friction or sources or sinks of

s.

It is customary to use θ as the relevant state variable in the atmosphere, al-

though it is more accurate to use θv, since it accounts for the dependence of density

of water vapor. We shall therefore define the potential vorticity, for atmospheric

applications, as

qa ≡ α(∇× V + 2ΩΩΩ) · ∇θv, (5.8)

and in the ocean, we will use potential density, σ, for s:

qo ≡ α(∇× V + 2ΩΩΩ) · ∇σ. (5.9)

Thus, according to (5.7), the conservation equations for qa and qo are

dqa
dt

= α(∇×F) · ∇θv + α(∇× V + 2ΩΩΩ) · ∇dθv

dt
, (5.10)

and

dqo
dt

= α(∇×F) · ∇σ + α(∇× V + 2ΩΩΩ) · dσ
dt
. (5.11)
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In the atmosphere, potential vorticity is conserved in the absence of friction or

sources of θv; it is conserved in the ocean in the absence of friction or sources of σ.

Returning to Figure 5.1, it is seen that in the absence of sources or sinks of

s, the drawing together of the two s surfaces implies, by mass conservation, that

the volume expands laterally as it is squashed; by the Circulation Theorem, the

absolute vorticity must decrease. This is precisely what (5.7) indicates. Potential

vorticity can be thought of as that vorticity a fluid column would have if it were

stretched or squashed to some reference depth.

Volume conservation of potential vorticity

The integral of potential vorticity over a finite mass of fluid is conserved even in

the presence of friction or sources of σ or θv, as long as those effects vanish at the

boundaries of that mass of fluid. The potential vorticity tendency integrated over

a fixed (material) mass is

∫ ∫ ∫
dq

dt
ρ dx dy dz =

d

dt

∫ ∫ ∫
qρ dx dy dz.

We can take the time derivative outside the integral because mass is conserved.

Using (5.7)

d

dt

∫ ∫ ∫
ρq dx dy dz =

∫ ∫ ∫ [
(∇× F) · ∇s+ (∇× V + 2ΩΩΩ) · ∇ds

dt

]
dx dy dz.

(5.12)

Since the divergence of the curl of any vector vanishes, and since ΩΩΩ is a constant
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vector, (5.12) can be rewritten

d

dt

∫ ∫ ∫
ρq dx dy dz =

∫ ∫ ∫
∇ ·
[
s(∇× F) +

ds

dt
(∇× V + 2ΩΩΩ)

]
dx dy dz

=
∫ ∫ [

s(∇× F) +
ds

dt
(∇× V + 2ΩΩΩ)

]
· n̂ dA,

(5.13)

where the last integral is over the entire surface bounding the volume and n̂ is a

unit vector normal to that surface. (We have used the divergence theorem here.)

Thus, the mass integral of q is conserved if there are no sources of s or friction on

the boundaries of the fluid mass.

6. Invertibility

The potential vorticity, q, is in general a function of the distributions of 5 variables:

the three velocity components, density, and either θv or σ. In quasi-balanced flows,

it is possible to reduce this dependence to one that relies on a single variable, from

which all of the others can be derived. The relationship between q and this single

variable is usually through an elliptic, second-order differential equation. Under

these circumstances, the spatial distribution of q can be inverted, given certain

boundary conditions, to yield the distribution of velocity and mass. This property

of q and of quasi-balanced flows is known as invertibility.

We shall explore various balance approximations in some detail later, but now

let’s have a quick look at how the dependence of q on 5 variables may be reduced

to a dependence on 1 under some conditions.

First, let’s expand the definition of potential vorticity out into its various com-
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ponents. For the atmosphere, (5.8) expands to

qa = α

[(
f +

∂v

∂x
− ∂u

∂y

)
∂θv

∂z
+
(
∂u

∂z
− ∂w

∂x

)
∂θv

∂y
+
(
∂w

∂y
− ∂v

∂z

)
∂θv

∂x

]
. (6.1)

From mass continuity, w scales at most according to

∂w

∂z
∼ 0

(
∂u

∂x
+
∂v

∂y

)
,

or

w ∼ 0
(
u0
H

L

)
, (6.2)

where H and L are typical vertical and horizontal scales over which the flow varies,

and u0 is a typical horizontal velocity scale. (Note that in most geophysical flows,

the flow is quasi-nondivergent, so actually w � 0
(
u0

H
L

)
.) Thus, in terms that

appear in (6.1), like

∂u

∂z
− ∂w

∂x
,

the order of the term is

u0

H

(
1 − H2

L2

)
.

Since, for virtually all flows we will be interested in, H/L � 1, the contribution

of w to the potential vorticity is utterly negligible. So (6.1) may be accurately

approximated by

qa � α

[(
f +

∂v

∂x
− ∂u

∂y

)
∂θv

∂z
+
∂u

∂z

∂θv

∂y
− ∂v

∂z

∂θv

∂x

]
. (6.3)

Now if we employ the hydrostatic approximation, (2.2), it follows that

α
∂A

∂z
� −g ∂A

∂p
,
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for any quantity A. Using this in (6.3) gives

qa � −g
[(
f +

∂v

∂x
− ∂u

∂y

)
∂θv

∂p
+
∂u

∂p

∂θv

∂y
− ∂v

∂p

∂θv

∂x

]
, (6.4)

This can be re-expressed in θv coordinates as

qa � −g
(
∂p

∂θv

)−1
(
f +

(
∂v

∂x

)
θv

−
(
∂u

∂y

)
θv

)
. (6.5)

Now suppose that the flow is, to a good approximation, hydrostatic and geo-

stropheICC. In θv coordinates, the hydrostatic and geostrophic relations are ex-

pressed in terms of the Montgomery streamfunction:

M ≡ cpdTv + gz. (6.6)

These relations are:

Hydrostatic:

cpd

(
p

p0

)κ

=
∂M

∂θv
, (6.7)

Geostrophic:

fug = −
(
∂M

∂y

)
θv

,

fvg =
(
∂M

∂x

)
θv

.

(6.8)

Substituting these into (6.5) gives

qa � −gp−1
0 c

1
κ

pdκ

(
f +

1
f
∇2M

)[(
∂M

∂θv

) 1
κ−1

∂2M

∂θ2
v

]−1

. (6.9)

Then qa is a function of M alone, and this function is a nonlinear and usually

elliptic one. (It is always elliptic when 1
f ∇2M + f has the same sign as qa, and
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Figure 7.1

∂M/∂θv > 0.) When it is elliptic, (6.9) can be inverted to find M, and therefore

ug, vg, and p, given the distribution of qa and certain boundary conditions.

We will be developing somewhat simpler invertibility relationships for potential

vorticity. The essential elements in all of these are the definition of potential vortic-

ity, coupled with balance approximations that link the instantaneous distribution

of velocity to that of mass.

7. Potential vorticity and invertibility in the shallow water equations

Consider a layer of strictly incompressible fluid on a level surface, as illustrated

in Figure 7.1. The mean depth of the fluid is H with perturbations to the depth

denoted by η.

Since the fluid is incompressible, mass continuity gives

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (7.1)

We shall assume that all the motions of interest are hydrostatic, so that inte-
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gration of the hydrostatic equation gives

p = p0 + ρg(H + η − z), (7.2)

where p0 is the atmospheric pressure and ρ is the fluid density. At the surface of

the fluid,

w =
dη

dt
. (7.3)

The inviscid momentum equations may be written, with the aid of (7.2), as

du

dt
= −g ∂η

∂x
+ fv, (7.4)

dv

dt
= −g ∂η

∂y
− fu. (7.5)

Note from (7.2) that the horizontal pressure gradient acceleration is independent of

depth in the fluid, as reflected in (7.4) and (7.5). So (7.4) and (7.5) show that if

at the initial time, u and v are independent of depth, they will remain so forever.

We shall assume that u and v are depth-independent. This means that the mass

continuity equation, (7.1), can be integrated over the local depth of the fluid to give

(H + η)
(
∂u

∂x
+
∂v

∂y

)
+
dη

dt
= 0, (7.6)

in which we have applied (7.3).

Given that u and v are independent of depth, (7.4) and (7.5) may be expressed

in the alternative form

∂u

∂t
− (f + ζ)v = −∂B

∂x
, (7.7)

∂v

∂t
+ (f + ζ)u = −∂B

∂y
, (7.8)
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where ζ is the relative vorticity,

ζ ≡ ∂v

∂x
− ∂u

∂y
, (7.9)

and B is the Bernoulli function:

B ≡ gη +
1
2
(u2 + v2). (7.10)

If B is eliminated by cross differentiating (7.7) and (7.8), the result is a vorticity

equation:

dζ

dt
+ (f + ζ)

(
∂u

∂x
+
∂u

∂y

)
= 0, (7.11)

showing that vertical stretching is the only source of vorticity in the shallow water

system.

Now the horizontal divergence,

∂u

∂x
+
∂v

∂y
,

may be eliminated between (7.6) and (7.11) to arrive at the shallow water potential

vorticity equation:

dq

dt
= 0, (7.12)

with

q ≡ f + ζ

H + η
. (7.13)

If the flow velocity and η are related by some condition, then clearly (7.12), (7.13)

constitute a closed system.
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One example in which q and v are strictly related to one another is steady

flow. First, note that the mass continuity equation, (7.6), can be written in the

alternative form

∂

∂x
[u(H + η)] +

∂

∂y
[v(H + η)] = 0, (7.14)

in the case of steady flow. Then we may define a mass streamfunction, ψ, such that

u(H + η) ≡ −∂ψ
∂y

,

v(H + η) ≡ ∂ψ

∂x
,

(7.15)

which clearly satisfies (7.14).

Now the steady forms of the momentum equations, (7.7) and (7.8), are

(f + ζ)v =
∂B

∂x
, (7.16)

(f + ζ)u = −∂B
∂y

, (7.17)

or using (7.15) and (7.13),

q
∂ψ

∂x
=
∂B

∂x
, (7.18)

q
∂ψ

∂y
=
∂B

∂y
. (7.19)

At the same time, the steady form of the potential vorticity equation, (7.12),

is

u
∂q

∂x
+ v

∂q

∂y
= 0. (7.20)

Multiplying (7.20) by H + η and using (7.15) gives

−∂ψ
∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
= 0,

26



or

J(q, ψ) = 0, (7.21)

where J is the Jacobian operator. The direct implication of (7.21) is that q = q(ψ).

Given this conclusion, it is clear from (7.18) and (7.19) that B = B(ψ). Thus if q(ψ)

is known, then B(ψ) can be found from (7.18) and (7.19), and (7.10) and (7.13) can

then be solved for η, u, and v. This is an example of inversion, and for this case it

is exact.

In time-dependent flows, it is necessary to make an approximation to the mo-

mentum equations to recover invertibility. The most commonly used approximation

in geophysical flows is to assume that the horizontal divergence, or its time ten-

dency, is small compared to the vertical component of vorticity; this approximation

filters sound waves and inertia-gravity waves from the equations.

We start by differentiating (7.4) with respect to x and (7.5) with respect to y

and summing the result to arrive at the divergence equation:

dD

dt
= −g∇2η + (f + ζ)ζ − βu− S2, (7.22)

where

D ≡ ∂u

∂x
+
∂v

∂y
,

ζ ≡ ∂v

∂x
− ∂u

∂y
,

β ≡ df

dy
,

and
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S2 ≡
(
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2

.

S is the net deformation in the flow.

The nonlinear balance equation is obtained by making the approximation

|dD
dt

| � |(f + ζ)ζ|, (7.23)

so that

g∇2η � (f + ζ)ζ − βu− S2. (7.24)

This relates the instantaneous distribution of η to the instantaneous distribution of

velocity in the system.

Now to be consistent with the approximation (7.23), the velocities that appear

on the right side of (7.24) should be dominated by their nondivergent components,

allowing us to rewrite (7.24) as

g∇2η � (f + ∇2ψ)∇2ψ + β
∂ψ

∂y
− 2

(
∂2ψ

∂y∂x

)2

−
(
∂2ψ

∂y2

)2

−
(
∂2ψ

∂x2

)2

, (7.25)

where ψ is now the velocity streamfunction, defined such that

u = −∂ψ
∂y

,

v =
∂ψ

∂x
.

(7.26)

At the same time, the potential vorticity equation (7.12) with (7.13) can be

written

∂q

∂t
= −J(ψ, q). (7.27)
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The two equations (7.27) and (7.24) constitute a closed system for ψ and η. Po-

tential vorticity is just advected around, according to (7.27), and at each time the

streamfunction and depth η can be found from (7.25) and

q =
f + ∇2ψ

H + η
. (7.28)

It should be mentioned here that the approximation (7.23) does not imply that

w = 0 from mass continuity; it is simply a scaling approximation appropriate to

the divergence equation. In fact, the system of equations (7.27), (7.28), and (7.25)

directly imply a nonzero horizontal divergence, because in general the evolution

of the system will give a nonzero charge in f + ∇2ψ, the vorticity. But from the

vorticity equation, (7.11), vorticity can only change if there is nonzero divergence.

Thus the divergence and the vertical velocity can be diagnosed by solving (7.11)

once the time rate of change of vorticity is known (or by solving (7.6) once the time

rate of change of η is known.) This is why the system is referred to as a quasi-

balanced system: Exact balance is degenerate in the sense that the evolution of the

flow cannot be calculated.

In summary, a suitable balance approximation allows one to calculate the evo-

lution of a quasi-balanced flow according to this schema:

1. Prescribe initial flow and/or η that satisfies the balance condition (7.25, in this

case).

2. Calculate the distribution of q using its definition (7.28).

3. Find q at the next time step by solving the potential vorticity equation, (7.27).
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4. Invert the q distribution using the definition of q and a balance condition (7.28

and 7.25, in this case) to find the velocity and mass distribution. (Note, how-

ever, that boundary conditions must be prescribed to carry out the inversion.)

5. Go back to 3.

Note that this scheme is highly analogous to the solution of the vorticity equation

for strictly two-dimensional flow:

∂ζ

∂t
= −J(ψ, ζ), (7.29)

ζ = ∇2ψ. (7.30)

Here again, vorticity is simply advected around by the flow, and the flow is recovered

at each time step by inverting (7.30) subject to boundary conditions. The difference

is that the system (7.29), (7.30) for two-dimensional flow is exact, while quasi-

balance systems like (7.25), (7.27), and (7.28) rely on a balance approximation like

(7.23). But clearly, the evolution of quasi-balanced flows is strongly analogous to

the evolution of two-dimensional flows.

Illustration of balance and invertibility principles: the Rossby adjustment problem

Consider a two-dimensional slab of incompressible fluid, which at time t = 0 has a

rectangular cross section (Figure 7.2). The fluid is contained on an f plane (f =

constant). At time t = 0, the fluid is released and allowed to evolve in time. We

will approximate the flow as inviscid. What happens?
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Figure 7.2

Clearly, the fluid will spread horizontally under the influence of gravity, ac-

quiring velocities in the y direction through Coriolis accelerations. Gradually, the

Coriolis accelerations acting on these velocities in the y direction will begin to bal-

ance the pressure gradient accelerations in the x direction.

We can find steady, two-dimensional solutions of the shallow water equations

by assuming that potential vorticity is conserved and by solving the x-momentum

equations for steady flow. This is a state toward which the system presumably

evolves.

The potential vorticity, from (7.13), is

q =
f + ∂v

∂x

η +H
, (7.31)

where v is the velocity in the y direction. At t = 0, this is

q =
f

H
, (7.32)

and since q is conserved, it must equal this value at all times. Equating (7.31) and

(7.32) gives

∂v

∂x
= f

η

H
. (7.33)
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The momentum equations in the x direction is

du

dt
= −g ∂η

∂x
+ fv. (7.34)

In steady equilibrium,

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0, (7.35)

since the flow is steady and two-dimensional (∂/∂y = 0) and, we presume, u = 0.

Thus the final state is geostrophically balanced:

g
∂η

∂x
= fv, (7.36)

and eliminating v between (7.34) and (7.36) gives an ordinary differential equation

for η:

g

f

d2η

dx2
− f

H
η = 0. (7.37)

The solution of this equation that satisfies the condition H + η = 0 at x = ±L

(where L is, by definition, the distance from the symmetry axis to which the fluid

spreads) is

η = −H cosh x
LD

cosh L
LD

, (7.38)

where LD is the deformation radius, defined

LD ≡
√
gH

f
. (7.39)

This is an important scale in all quasi-balanced flows.
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Now we can find the scale L to which the fluid spreads by demanding that mass

be conserved: ∫ L

0

(H + η)dx = HL0. (7.40)

The right-hand side of (7.40) is the half-volume of the initial state, while the left

side is the half-volume of the final state.

Performing the integration in (7.40) after substituting (7.38) gives a transcen-

dental equation for L:

L

LD
− tanh

(
L

LD

)
=

L0

LD
. (7.41)

Given L0, this allows us to calculate L. Note that all length scales are now effectively

normalized by the deformation radius.

It is instructive to look at solutions to (7.41) in certain limiting cases:

1. L0/LD � 1: The initial horizontal scale is “large.” Since L > L0, and

lim
x→∞ tanhx = 1, (7.41) becomes

L

LD
− 1 → L0

LD
,

or

L→ L0 + LD. (7.42)

The fluid spreads approximately one deformation radius beyond its initial scale.
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2. L0/LD � 1: The initial horizontal scale is “small.” In this case, if we assume

that L/L0 � 1, the tanh term in (7.41), expanded to second order in L/LD, is

tanh
L

LD
=

L

LD
− 1

3

(
L

LD

)3

+O

(
L

LD

)5

and, therefore,

L→ (3L0)1/3L
2/3
D . (7.43)

The fluid spreads to a scale that represents a geometric average of the defor-

mation radius and the initial scale, weighted toward the former.

It is worth noting that when L0 = LD, the solution to (7.41) is L = 1.96LD,

which is much closer to the large-scale asymptotic limit given by (7.42).

This example is one of geostrophic adjustment in which an initially highly un-

balanced flow adjusts to a balanced state. Note that in the large-scale limit, the

mass distribution hardly changes at all, but the v velocity component undergoes a

large adjustment near the edges of the block. On the other hand, in the limit of

a small-scale initial length, the mass field undergoes a large adjustment while the

velocities remain small.
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8. Quasigeostrophy and Pseudo-potential vorticity

The shallow water system is probably the most simple fluid system that allows for

divergent flow and inertia-gravity waves. Here we develop a simple set of equations

for quasi-balanced flows of a continuously stratified fluid, based on the approxima-

tion that the flow is nearly geostrophic. This system is called the quasi-geostrophic

system.

We begin with the horizontal momentum equation in pressure coordinates:

dV
dt

+ fk̂ × V + ∇ϕ = F, (8.1)

where F is the net acceleration by frictional forces. Geostrophic balance is defined

by the equality of the two middle terms of (8.1), so that the geostrophic wind is

defined

Vg ≡ 1
f
k̂ ×∇ϕ. (8.2)

Using this definition, (8.1) may be rewritten

dV
dt

+ fk̂ × (V −Vg) − F = 0, (8.3)

or, equivalently,

V = Vg +
1
f
k̂ × dV

dt
− 1
f
k̂ × F. (8.4)

We will use (8.4) to investigate the relative magnitudes of the terms in the horizontal

momentum equations. For this purpose, we shall approximate frictional acceleration

as

F � −V/τf , (8.5)
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where τf is a time scale associated with frictional damping. We also define a La-

grangian time scale, τττ , which can be thought of as a typical time scale over which

a sample of fluid accelerates in a given flow. We replace the dimensional time, t, in

(8.4) by a nondimensional time t∗:

t→ τt∗, (8.6)

resulting in the scaled version of (8.4):

V = Vg +R0k̂ × dV
dt

+RF k̂ × V, (8.7)

where R0 is the Rossby number, defined

R0 ≡ 1
fτ
, (8.8)

and RF is a nondimensional measure of friction:

RF ≡ 1
fτf

. (8.9)

Note that because f varies with latitude, both R0 and RF vary with time.

An expansion of (8.7) in terms of the geostrophic wind alone can be made by

substituting V as given by (8.7) into the terms involving V on the right side of the

same equation, resulting in

V = Vg +R0k̂ × dVg

dt
+RF k̂ × Vg −R2

0

d2V
dt2

−R0RF
dV
dt

−R2
FV −R0

dV
dt

dR0

dt
.
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By repeating the procedure, this may be written

V = Vg +R0k̂ × dVg

dt
+RF k̂ ×Vg −R2

0

d2Vg

dt2

−R0RF
dVg

dt
−R2

F Vg −R0
dVg

dt

dR0

dt

+O(R3
0) +O(R3

F ),

(8.10)

assuming that dR0
dt is no larger than R0.

If R0 < 1 and RF < 1, we might expect that the series (8.10) converges. The

order zero approximation (8.10) is just geostrophic balance:

V � Vg,

while the order 1 approximation is called the geostrophic momentum approximation.

Writing the order 1 approximation to (8.10) in dimensional form results in

dVg

dt
+ fk̂ × (V − Vg) −F � 0, (8.11)

where it must be remembered that F has been assumed to be at most order R0.

The approximation (8.11) is called the geostrophic momentum approxima-

tion because it consists in replacing the inertia of the actual wind by that of the

geostrophic wind. This approximation is one component of a system of approximate

relations.

The second fundamental approximation to the momentum equations is to ap-

proximation advection by geostrophic advection. The full geostrophic momentum

term may be expanded to

dVg

dt
=
∂Vg

∂t
+ (Vg + Va) · ∇Vg + ω

∂Vg

∂p
, (8.12)
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where Va is the ageostrophic part of the wind field, and

ω ≡ dp

dt
(8.13)

is called the pressure velocity (or just “omega”) and is proportional to the vertical

component of velocity.

By (8.10), it is clear that

|Va|
|Vg| ∼ O(R0);

moreover, we have already shown (by definition!) that
∣∣∣dVg

dt

∣∣∣ is O(R0) compared to

fk̂ ×V, so that to be consistent with the order of approximation, we need to drop

the term Va that appears in (8.13). In addition, the mass continuity equation in

hydrostatic, pressure coordinates is

∇ ·V +
∂ω

∂p
= 0, (8.14)

which can also be written as

∇ · Vg + ∇ · Va +
∂ω

∂p
= 0. (8.15)

From the definition of geostrophic wind, (8.2),

∇ · Vg = − β

f2

∂ϕ

∂x
= −β

f
vg, (8.16)

where vg is the meridional component of the geostrophic wind, and

β ≡ df

dy
. (8.17)
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Comparing (8.16) to (8.15), it will be seen that if

βLy

f
<∼ 0(R0), (8.18)

then ∣∣∣∣ ω∆p
∣∣∣∣<∼ R0

∣∣∣∣Vg

L

∣∣∣∣ , (8.19)

where Ly is a typical meridional scale over which the flow varies, L is an overall

horizontal scale of flow variation, and ∆p is a pressure scale over which ω varies.

If (8.19) is met, then we can also neglect the term involving ω in (8.12), which

becomes

dVg

dt
� ∂Vg

∂t
+ Vg · ∇Vg.

Using this in (8.11) gives us the quasi-geostrophic momentum equation:

∂Vg

∂t
+ Vg · ∇Vg + fk̂ × (V −Vg) − F = 0. (8.20)

The accuracy of (8.20) depends both on the smallness of R0 and on condition (8.18).

The final element of this series of approximations is made to the thermodynamic

equation, which may be written

∂ ln θ
∂t

+ V · ∇ ln θ + ω
∂ ln θ
∂p

= Q̇, (8.21)

where for atmospheric applications, θ is the potential temperature and

Q̇ =
Ḣ

cpT
,
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where Ḣ is the heating and cp is the heat capacity at constant pressure. For the

ocean, θ is the potential density and Q is its source, divided by the potential density

itself.

It may at first seem that the approximation to (8.21) that is consistent with

the approximation we made to the momentum equation is to drop the ageostrophic

advection and the term involving ω in (8.21), but this is not the case because in

rotating stratified flows, the vertical gradient of θ scales very differently from its

horizontal gradient. To see this, let’s compare the magnitude of the horizontal and

vertical advection terms in (8.21). The magnitude of the horizontal advection is

approximately

|V · ∇ ln θ| �
∣∣∣∣vg

∂ ln θ
∂y

∣∣∣∣ =
∣∣∣∣fg vg

∂ug

∂z

∣∣∣∣ , (8.22)

where we have used the thermal wind equation, and ug is a typical geostrophic

velocity scale. The magnitude of the vertical advection term is

∣∣∣∣ω∂ ln θ
∂p

∣∣∣∣ ∼
∣∣∣∣R0ug

N2h

gL

∣∣∣∣ , (8.23)

where we have used the hydrostatic relation, the scaling relation (8.19), h is a typical

vertical scale of variation of the flow, and N is the buoyancy (or Brünt-Väisälä)

frequency, defined

N2 ≡ g
∂ ln θ
∂z

. (8.24)

Now the ratio of the magnitudes of the vertical and horizontal advection terms in
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the thermodynamic equation is

R ≡ R0
N2h

f
∂ug

∂z L
. (8.25)

As we will see shortly, the deformation radius in quasi-geostrophic flows is

LD = h
N

f
,

so if L scales with LD in (8.25),

R � R0Ri
1/2,

where Ri is the Richardson number,

Ri ≡ N2(
∂ug

∂z

)2 .

In both the atmosphere and the ocean, Ri is an order one quantity, because the

Richardson number is quite large. For this reason, we must retain the vertical

advection term in (8.21), and for consistency, we expand ln θ as

ln θ = ln θ(p) + ln θ′(x, y, p, t), (8.26)

with the scaling relation

∂ ln θ′

∂p
= O(R0)

∂ ln θ
∂p

. (8.27)

Then (8.21) is approximated by

∂ ln θ′

∂t
+ Vg · ln θ′ + ω

∂ ln θ
∂p

= Q̇. (8.28)
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(Note that Q is permitted to be order 1.)

Summary of quasi-geostrophic system:

The quasi-geostrophic equations may be summarized:

DgVg + fk̂ × (V − Vg) = F, (8.29)

Dgθ + ω
dθ

dp
= Q̇, (8.30)

∇∇∇ · V +
∂ω

∂p
= 0, (8.31)

Vg =
1
f
k̂ ×∇ϕ, (8.32)

∂ϕ

∂p
=

{
−R

p

(
p
p0

)R/cp

θ atmosphere,
−Gσ ocean.

(8.33)

In this set, the geostrophic operator is defined

Dg ≡ ∂

∂t
+ Vg · ∇∇∇,

and F is assumed to be of order R0. In (8.33) G is a function of p that depends on

the equation of state for sea water, and θ, σ, and ϕ (except where overbarred) are

deviations from the basic state values of those quantities.
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9. Quasi-geostrophic potential vorticity

The quasi-geostrophic system is at once more manageable and more intuitive if it

is cast in the form of a potential vorticity conservation law and an invertibility

principle. The potential vorticity conservation law can be obtained by combining a

vorticity equation with the thermodynamic equation. The former can be obtained

by taking the curl of (8.29), with the result

Dgζg + βvg − f0
∂ω

∂p
− k̂ · ∇ × F = 0, (9.1)

where

ζg ≡ ∂vg

∂x
− ∂ug

∂y
=

1
f0

∇2ϕ+O(R0) (9.2)

is the geostrophic relative vorticity. Note that each of the terms in (9.1) is now of

O(R0), and that to be consistent with this, we have replaced the variable f with a

mean value in (9.1) and we also need to drop the O(R0) term in (9.2). The β term

in (9.1) should also be replaced by a mean value. Thus to O(R0), (9.1) becomes

the quasi-geostrophic vorticity equation:

Dg∇2ϕ+ β0
∂ϕ

∂x
− f2

0

∂ω

∂p
− k̂f0∇×F = 0. (9.3)

The thermodynamic equation, (8.30), is first cast in a slightly different form

by substituting (8.33) and dividing through by dθ/dp, with the result

Dg
1
S
∂ϕ

∂p
+ ω =

−αQ̇
Sθ (9.4)
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with

S ≡



−α

θ

dθ
dp atmosphere,

−α
σ

dσ
dp

ocean,
(9.5)

with α given by the appropriate equation of state.

Note that (9.3) and (9.4) are functions of the variables ϕ and ω alone, given the

distributions of Q and F. We can form a predictive equation in the single variable

ϕ by eliminating ω between the two equations. To do this, first take the derivative

of (9.4) in p:

∂

∂p
Dg

1
S
∂ϕ

∂p
+
∂ω

∂p
= − ∂

∂p

αQ

Sθ . (9.6)

Now note that expanding the left side of (9.6) gives

∂

∂p
Dg

1
S
∂ϕ

∂p
= Dg

∂

∂p

(
1
S
∂ϕ

∂p

)
+
∂Vg

∂p
· ∇ 1

S
∂ϕ

∂p

= Dg
∂

∂p

(
1
S
∂ϕ

∂p

)
+

1
S
∂Vg

∂p
· ∇∂ϕ

∂p
.

(9.7)

(The S can be taken outside because it is a function of p alone.) But since

∇ϕ = −fk̂ × Vg,

(9.7) can be written

∂

∂p
Dg

1
S
∂ϕ

∂p
= Dg

∂

∂p

(
1
S
∂ϕ

∂p

)
− f

S
∂Vg

∂p
·
(
k̂ × ∂Vg

∂p

)

= Dg
∂

∂p

(
1
S
∂ϕ

∂p

)
.

Thus (9.6) can be re-expressed as

Dg
∂

∂p

(
1
S
∂ϕ

∂p

)
+
∂ω

∂p
= − ∂

∂p

αQ

Sθ . (9.8)
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Multiplying this by f0, dividing (9.3) by f0, and adding the result gives

Dg

[
1
f0

∇2ϕ+
∂

∂p

(
f0
S
∂ϕ

∂p

)]
+ β0vg = k̂ · ∇ × F− f0

∂

∂p

αQ

S . (9.9)

This can be written in a slightly different form by noting that vg = Dgy:

Dgqp = k̂ · ∇ × F− f0
∂

∂p

αQ

S , (9.10)

where

qp ≡ 1
f0

∇2ϕ+ β0y +
∂

∂p

(
f0
S
∂ϕ

∂p

)
(9.11)

is the pseudo potential vorticity.

Note that, in contrast the Ertel’s potential vorticity, qp is conserved follow-

ing the geostrophic motion (or pressure surfaces). Also note that the invertibility

relation (9.11) is a linear three-dimensional elliptic equation for ϕ. Given certain

boundary conditions, (9.10) and (9.11) constitute a closed system for ϕ, and the

geostrophic wind and temperature (or density) perturbation can be recovered from

(8.32) and (8.33).

Once again, there is a strong analogy with two-dimensional inviscid fluid dy-

namics, governed by

dη

dt
= 0, (9.12)

η = ∇2ψ, (9.13)
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where ψ is the streamfunction of the two-dimensional flow. The difference lies

in two places: Whereas (9.13) is exact, (9.11) relies on the quasi-geostrophic ap-

proximation, and contains a three-dimensional elliptic operator rather than a two-

dimensional operator.

The inversion of elliptic operators like (9.11) or (9.13) encompasses the principle

of action at a distance: A localized distribution of vorticity, or potential vorticity,

yields a more global distribution of wind and temperature. Solutions of both (9.11)

and (9.13), because they are linear operators, are linearly superposable. One useful

technique for carrying out the inversion is using the method of Green’s functions.

For a point vortex in a two-dimensional flow, the solution of

∇2ψ = Aδ(r),

where r is the radius from the source and A is the amplitude, is

ψ = − A

2π
ln r,

so that the tangential velocity, ∂ψ/∂r, decays away from the point source as 1/r.

The action-at-a-distance principle is very analogous to the relationship between

point changes and electric fields in electrostatics.

An analogous relation holds for the relationship between qp and ϕ, as given by

(9.11). To see this, let us first divide the qp field according to

qp = q′p + βy,
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so that, from (9.11),

q′p =
1
f0

∇2ϕ+
∂

∂p

(
f0
S
∂ϕ

∂p

)
. (9.14)

In the special case that S is constant (equal to S0), (9.14) becomes

q′p =
1
f0

∇2ϕ+
f0
S
∂2ϕ

∂p2
. (9.15)

Now suppose we scale the horizontal distances in the system by

x, y → S
1/2
0 f−1

0 ∆p(x, y), (9.16)

where ∆p is some pressure scale, and scale pressure by ∆p as well:

p→ (∆p)p. (9.17)

Then (9.15), with the new independent variables, can be written

S0∆p2

f0
q′p = ∇2

3ϕ, (9.18)

where the notation ∇2
3 is used to indicate the three-dimensional Laplacian oper-

ator. A three-dimensional point potential vortex of amplitude Af0/(S0(∆p)2) is

associated with the geopotential distribution

ϕ = − A

4πr
, (9.19)

showing that the pressure distribution falls off inversely with radius from the source.

The geostrophic velocities and temperatures fall off as 1/r2 in the horizontal and
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vertical directions, respectively, and form dipole fields oriented horizontally and

vertically, respectively.

Note that the inversion of both (9.11) and (9.13) results in streamfunction

anomalies of the opposite sign of the vorticity anomalies (or of the opposite sign of

q′p/f0, in the quasi-geostrophic case).

We now have in hand the core elements of a mode of thinking about the dy-

namics of quasi-balanced flows: the twin principles of potential vorticity conserva-

tion and invertibility. In the simplest balance approximation, quasi-geostrophy, the

quantity that is conserved (to order Rossby number) is the pseudo potential vortic-

ity, given by (9.11), and this is a linear elliptic function of the perturbation, ϕ, of

the geopotential from its basic state value. Pseudo potential vorticity is conserved,

according to (9.10), following the geostrophic flow on pressure surfaces (as opposed

to the actual, three-dimensional flow).
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10. An example

Let us now turn to a specific example of the application of “potential vorticity”

thinking, both as a mathematical physics framework and as a way of conceptualiz-

ing quasi-balanced dynamics. In this example, we shall linearize the conservation

equation (9.10) about a state of constant mean flow and constant north-south gra-

dient of pseudo potential vorticity, and look for strictly two-dimensional inviscid

modal solutions of the linear equations.

This basic state is illustrated in Figure 10.1a. We divide the pseudo potential

vorticity and flow fields into mean and perturbation parts, according to

qp = βy + q′p, (10.1)

V = u0ı̂ + V′ (10.2)

and substitute these into the conservation equation (9.10), neglecting friction and

heating. This results in the equation

(
∂

∂t
+ u0

∂

∂x

)
q′p + v′β + V′ · ∇q′p = 0. (10.3)

We now seek solutions to (10.3) under the special circumstance that |V′| � |u0|

and |q′p| � βy. In this case, the quadric term (the last term) in (10.3) may be

neglected in comparison to the other terms, and (10.3) thus may be approximated

by (
∂

∂t
+ u0

∂

∂x

)
q′p + βv′ = 0. (10.4)
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Figure 10.1a

Also, according to (10.1) and (9.11), q′p is given by

q′p =
1
f0

∇2ϕ+
∂

∂p

(
f0
S
∂ϕ

∂p

)
, (10.5)

while v′ in (10.4) is given by the geostrophic relation

v′ =
1
f0

∂ϕ

∂x
. (10.6)

We now confine ourselves to strictly two-dimensional perturbations (so that I can

sketch the fields on a piece of paper) of a modal character:

ϕ′ = Aeik(x−ct)+ily , (10.7)

where A is some undetermined amplitude, k and l are wavenumbers in the ı̂ and ̂

directions, respectively, and c is a phase speed in the ı̂ direction. Substitution of

(10.7) into (10.5) and (10.6), and using (10.4) yields a dispersion relation:

c = u0 − β

k2 + l2
. (10.8)
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Figure 10.1b

These represent plane waves travelling westward with respect to the background flow

if β is positive. These are called Rossby waves. Their dynamics can be visual-

ized with the aid of Figure 10.1b. Northward perturbations of the qp contours are

associated with negative perturbations of qp, while southward deflections produce

positive qp perturbations. By invertibility, these are associated with actual vor-

ticity perturbations of the same sign, and geopotential (pressure) perturbations of

the opposite sign. The geostrophic flow associated with these perturbations (see

Figure 10.1b) acts to advect qp in quadrature with the qp perturbations, with the

advection lagging the anomaly by 1/4 wave cycle. This shows that the wave must

move westward relative to any background flow that may be present.
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11. Boundary conditions

This last example is particularly simple and in fact represents the same solution that

would have been obtained using the linearized form of the exact two-dimensional

equations (9.12) and (9.13). By assuming infinitely periodic solutions, we did not

have to worry about applying boundary conditions when we inverted (10.5). But

in general, it will be necessary to apply boundary conditions. A particular problem

arises in applying conditions at horizontal boundaries at the top and/or bottom of

fluid systems. Here, the standard Neumann or Dirichlet conditions would amount

to a specification of either the geopotential, ϕ, or ∂ϕ/∂p, which is proportional

to temperature by the hydrostatic equation. Specifying ϕ at the surface would

eliminate one of the important signals we are actually interested in predicting: at-

mospheric surface pressure and the geopotential height of the sea surface. Moreover,

specifying temperature also negates the prediction of an important quantity. There-

fore, typically we choose to actually solve a predictive equation for temperature at

a horizontal boundary. Assuming that ω = 0 on such a boundary, the appropriate

dynamical boundary condition is (9.4):

Dg
∂ϕ

∂p
=

−αQ̇
θ

. (11.1)

We shall see that much of the dynamics of atmospheric and oceanic quasi-balanced

circulations enters through the dynamical boundary conditions (11.1).

But how should we think about the boundary conditions when inverting (10.5)?

The Green’s functions approach works well with strict Neumann or Dirichlet con-
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ditions because image points can be used. But dynamical boundary conditions like

(11.1) usually give space- and time-varying boundary conditions. But a trick bor-

rowed from electrostatics is again useful: We replace the actual boundary tempera-

ture perturbation with a zero value, but add point “charges” of potential vorticity

just inside the boundary, in analogy to the concept of bound charge. To see how

this works, let us integrate (10.5) from a lower boundary at pressure p0 to a short

distance above the boundary:

∫ p0

p0−ε

q′p dp =
∫ p0

p0−ε

1
f0

∇2ϕdp+
f0
S
∂ϕ

∂p

∣∣∣∣∣
p0

p0−ε

. (11.2)

Now in the limit of ε→ 0, all the terms in (11.2) vanish because they are nonsingular.

But suppose we artificially replace the actual temperature perturbation, ∂ϕ/∂p, by

zero at the boundary. Then (11.2) becomes

∫ p0

p0−ε

q′p dp = −f0S
∂ϕ

∂p

∣∣∣∣∣
p0−ε

, (11.3)

so that (11.2) can only be satisfied in this case if q′p behaves like a delta function

near the boundary.

From this development it follows that inverting (10.5) with an inhomogeneous

boundary condition on temperature is equivalent to inverting it with a homogeneous

boundary condition on temperature but inserting a delta function q′p anomaly next

to the boundary. From (11.3) and the hydrostatic equation (8.33), this delta func-
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tion is

q′p = δ(p0 − p) ×




f0
S0

R
p0
θ′
∣∣∣∣∣
p0

atmosphere

f0
S0
G0σ

′
∣∣∣∣∣
p0

ocean,

(11.4)

where δ is the delta function. This equivalence is valid at a lower boundary. At an

upper boundary, a similar development leads to

q′p = δ(p− pt) ×




− f0
St

R
pt

(
pt

p0

)R/cp

θ′
∣∣∣∣∣
pt

atmosphere

− f0
St
Gtσ

′
∣∣∣∣∣
pt

ocean,

(11.5)

where pt is the pressure on the upper boundary. Note the minus signs in (11.5).

This device is of enormous conceptual significance, because it tells us that

boundary temperature anomalies behave like delta function qp anomalies just inside

the boundary. In the case of a lower boundary, the temperature anomalies behave

like delta function qp anomalies of the same sign, whereas at upper boundaries they

behave like qp anomalies of the opposite sign.
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Figure 12.1

12. Eady edge waves

A specific example illustrating the importance of dynamical boundary conditions is

a subspecies of Rossby wave, called the Eady edge wave. Suppose we have a flow of

a quasi-geostrophic fluid in a semi-infinite domain, as illustrated in Figure 12.1a.
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This fluid, we shall suppose, has constant pseudo potential vorticity and static

stability, S, and no sources or sinks of qp, so that

q′p = 0

everywhere, for all time. Then (10.5) becomes

1
f0

∇2ϕ+
f0
S
∂2ϕ

∂p2
= 0. (12.1)

Now suppose that at the lower boundary, the temperature consists of a (negative,

shall we say) north-south temperature gradient plus superimposed perturbations:

θ = θyy + θ′, (12.2)

where θy is the mean temperature gradient and that the wind consists of a zonal

flow plus perturbations to it:

V = u0ı̂ + V′. (12.3)

The dynamical boundary condition, (11.1), becomes, after assuming that the per-

turbations are small and neglecting quadratic terms in the perturbation variables,

(
∂

∂t
+ u0

∂

∂x

)
∂ϕ

∂p
+ γ

∂ϕ

∂x
= 0 at p = p0, (12.4)

where we have used the geostrophic wind relation (10.6), and

γ ≡ −θyR/f0p0, (12.5)

using (8.33). (Had we used an example from the ocean, γ would have been −Gσy

evaluated at a suitable pressure level.)
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For simplicity, we shall assume that the temperature perturbations vanish at

the top of the fluid, so that

∂ϕ

∂p
= 0 at p = 0. (12.6)

Since the fluid is semi-infinite, we are entitled to look for model solutions that

are periodic in x, y, and time, so let

ϕ = ϕ̂(p)eik(x−ct)+ily , (12.7)

where k, l, and c have the same meanings as before. Substituting (12.7) into (12.1),

(12.4) and (12.6) gives

d2ϕ̂

dp2
− S
f2
0

(k2 + l2)ϕ̂ = 0, (12.8)

subject to the boundary conditions

(u0 − c)
dϕ̂

dp
+ γϕ̂ = 0 on p = p0, (12.9)

dϕ̂

dp
= 0 on p = pt. (12.10)

The system comprised of (12.8)–(12.10) is a closed eigenvalue problem with the

solution

ϕ̂ = A cosh(rp), (12.11)

where A is an arbitrary amplitude, with

r2 ≡ S
f0

(k2 + l2). (12.12)
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This can only satisfy the lower boundary condition (12.9) if

c = u0 +
γ

r
ctnh(rp0), (12.13)

with r given by (12.12). Provided γ is positive (which, form (12.5), implies a nega-

tive temperature gradient), the waves will travel eastward relative to the background

flow. Note that, like Rossby waves, the relative phase speed increases without bound

as the horizontal wavelength becomes large. It is also clear from (12.11) that the

wave amplitude decreases more or less exponentially upward (i.e., with decreasing

pressure). The wave is three-dimensional, but trapped at the lower boundary. Note

that all the time dependence is in the lower boundary condition, (12.9).

The wave dynamics are conceptualized in Figure 12.1b. Where the isotherms

are deflected northward, the temperature perturbation is positive, and vice versa; in-

vertibility sees those temperature perturbations as potential vorticity perturbations

of the same sign, so that positive vorticity is associated with positive θ perturba-

tions. The associated geostrophic flow, illustrated in Figure 12.1b, is in quadrature

with θ in such a way that the wave propagates eastward relative to any background

flow. Remember that there are no qp perturbations in the interior of the fluid in

the example, and that the boundary temperature anomalies act like delta function

qp anomalies, so the wave is evanescent with height away from the boundary. That

is why the wave is called an edge wave.
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13. The superposition principle

In the quasi-geostrophic system, the relationship between qp anomalies and ϕ

anomalies is linear, so that distributions of ϕ associated with individual anoma-

lies of qp can be superposed to form the full ϕ field associated with the full qp

distribution. The hydrostatic and geostrophic relations are also linear, so that per-

turbations of velocity and temperature also just superpose linearly. But energy, on

the other hand, is a quadratic, and thus does not superpose linearly. This has im-

portant implications for energy transformations in quasi-balanced flows in general,

and quasi-geostrophic flow, in particular. To see some of these implications, first

form an energy integral for quasi-geostrophic flows. The equation for kinetic energy

can be obtained by taking the dot product of the geostrophic flow vector, Vg, with

the quasi-geostrophic momentum equation (8.29) with the result

(
∂

∂t
+ Vg · ∇

)
1
2
|Vg|2 = −fVg · k̂ ×V + Vg ·F, (13.1)

where we have made use of the vector identity

A · k̂ ×A = 0,

for any vector A. By using the geostrophic relation (8.32) in (13.1), the latter may

be written

(
∂

∂t
+ Vg · ∇

)
1
2
|Vg|2 = −V · ∇ϕ+ F · Vg

= −∇ · (Vϕ) − ϕ
∂ω

∂p
+ F · Vg, (13.2)
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where we have made use of the mass continuity equation, (8.31). This is the quasi-

geostrophic kinetic energy equation.

An equation for potential and internal energy can be formed by multiplying

(9.4) by ∂ϕ/∂p:

(
∂

∂t
+ Vg · ∇

)
1

2S
(
∂ϕ

∂p

)2

+ ω
∂ϕ

∂p
= −∂ϕ

∂p
α
Q̇

Sθ . (13.3)

An equation for total energy associated with perturbations can be formed by sum-

ming (13.2) and (13.3):

(
∂

∂t
+ Vg · ∇

)[
1
2
|Vg|2 +

1
2

1
S
(
∂ϕ

∂p

)2
]

= −∇·(Vϕ)− ∂

∂p
(ωϕ)+F ·Vg − ∂ϕ

∂p
α
Q̇

Sθ .

(13.4)

Energy is locally changed by a divergence of the flux (by the actual wind) of per-

turbation geopotential, by heating and by friction.

We next integrate (13.4) over a three-dimensional volume defined in such a way

that there is no net flux of geopotential or energy itself across its boundaries. This

integration (after applying the divergence theorem) then results in

∫
v

∂Ep

∂t
dV =

∫
v

(
F · Vg − ∂ϕ

∂p
α
Q̇

Sθ

)
, (13.5)

where Ep is the pseudo energy, defined

Ep ≡ 1
2
|Vg|2 +

1
2S
(
∂ϕ

∂p

)2

. (13.6)

This shows that the integral of Ep over a suitably defined volume is conserved in

the absence of heating and friction.

60



We can now show that Ep is related to an integral of the pseudo potential

vorticity. Begin with the perturbation pseudo potential vorticity defined by (9.14),

multiply it by −ϕ and integrate the result over a control volume on whose lateral

sides either ϕ or its normal gradient vanishes:

−
∫

v

ϕq′pdV = − 1
f0

∫
v

ϕ

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
dV − f0

∫
v

ϕ
∂

∂p

(
1
S
∂ϕ

∂p

)
dV. (13.7)

We next integrate the two terms on the right side of (13.7) by parts and use the

geostrophic relations to get

−
∫

v

ϕq′pdV = f0

∫
v

(
|Vg|2 +

1
S
(
∂ϕ

∂p

)2
)
dV

− 1
f0

∫
v

[
∂

∂x

(
ϕ
∂ϕ

∂x

)
+

∂

∂y

(
ϕ
∂ϕ

∂y

)]
dV − f0

∫
A

1
Sϕ

∂ϕ

∂p

∣∣∣∣∣
p0

pt

dA,

(13.8)

where the last integral is over the horizontal areas bounding the top and bottom of

the control volume.

By our assumption that either ϕ or its normal gradient vanishes at the lateral

boundaries of the volume, the second term on the right side of (13.8) vanishes, and

combining the last term on the right with the left side of (13.8) gives

−
∫

v

ϕ

[
q′p − f0

S
∂ϕ

∂p
δ(p0 − p) +

f0
S
∂ϕ

∂p
δ(p− pt)

]
= 2f0

∫
v

Ep dV, (13.9)

where we have substituted (13.6).

Note that using the arguments presented in section 11, the left side of (13.9) is

simply the integral of the product of ϕ with the pseudo potential vorticity, including
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the effective delta functions at horizontal boundaries that result when there are

temperature perturbations there. This integral is proportional to the pseudo energy

of the system.

A general conclusion that can be reached with the aid of (13.9) is that bringing

together like-signed potential vorticity anomalies (or their equivalent delta functions

in the form of boundary θ′ anomalies) entails an increase in the energy associated

with the anomalies. An example will suffice to show why this follows. Suppose we

have two delta function qp anomalies in an infinite domain, separated by a great

distance, as in the top of Figure 13.1. Let us suppose that each delta function has

an amplitude of 1 in some suitably normalized three-dimensional coordinates.

Now the inversion of the elliptic relationship between q′p and ϕ will result in a

field of ϕ that decays away from each of the two point potential vortices. Let us

suppose that ϕ has been normalized in such a way that its value at the location of

the point potential vortex is −1. Let us also suppose that the two vortices are so

far apart that, for all practical purposes, the amplitude of the part of ϕ associated

with one point potential vortex is zero at the location of the other point potential

vortex. In that case, the integral at the left of (13.9) will have the value of 4π

associated with each vortex, or 8π total.

Suppose that these two point potential vortices are brought together by some

process and combined into a single point potential vortex, as at the bottom of Figure

13.1. Now there are 2 units of q′p in the combined vortex, and the amplitude of ϕ
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Figure 13.1

at the location of the combined vortex is thus −2. This gives 16π energy units,

according to (13.9)—double what was there before!

Thus it takes a source of energy (from, say, the background flow) to rearrange

potential vorticity into more compact masses, for which the energy anomaly is

greater. For a given mass of potential vorticity, the maximum energy is achieved

when the potential vorticity is concentrated in a sphere, in a coordinate system

scaled by the deformation radius. The minimum energy content occurs when the
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potential vorticity is distributed in an infinitely long thread of zero thickness.

14. The secondary circulation

The quasi-geostrophic system in which pseudo potential vorticity is advected by

the geostrophic flow and inverted to obtain the geostrophic flow, geopotential, and

temperature perturbation, does not require for its solution explicit knowledge of

the secondary circulation, including ω and the ageostrophic flow; but the existence

of changing temperature and vorticity fields implies the existence of a secondary

circulation.

To see this, suppose we have solved the advection and inversion equations for

qp at two different times separated by a small time increment, ∆t. Then the quasi-

geostrophic vorticity equation (9.3) directly implies that

f0
∂ω

∂p
= Vg · ∇∇∇(ζg + βy) +

ζg|t+∆t
t

∆t
− k̂ · ∇ × F. (14.1)

This means that wherever the evolution of the qp field implies a change of absolute

vorticity following the flow, stretching (and/or friction) is implied.

As an example, suppose that a weak positive qp anomaly is embedded in a

shear flow, as shown in Figure 14.1, which is deliberately placed in a coordinate

system moving with the qp anomaly.

Following a sample of air as it moves with the geostrophic wind (and assuming

that the qp anomaly is not so strong that it appreciably deflects the background

geostrophic trajectories), the absolute vorticity first increases and then decreases,
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Figure 14.1

implying stretching and then shrinking of vertical columns. From this, the distri-

bution of ω can be inferred.

Alternatively, one can solve a diagnostic equation for ω by eliminating the

local time tendency terms from the quasi-geostrophic vorticity and thermodynamic

equations. To do this, operate on (9.4) by S times the ∇2 operator, and on (9.3)

by ∂/∂p and subtract one from the other. The result may be written

(
f2
0

∂2

∂p2
+ S∇2

)
ω = f0

∂

∂p
[Vg · ∇∇∇ηg]−∇2

[
Vg · ∇∇∇∂ϕ

∂p

]
− α

θ
∇2Q̇−f0 ∂

∂p
(k̂ ·∇∇∇×F).

(14.2)

This is the “classical” form of the quasi-geostrophic ω equation. Vertical velocity is
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associated with vertically varying geostrophic advection of vorticity and horizontal

Laplacians of the geostrophic temperature advection, as well as with friction and

heating. The non-Galilean invariant parts of the right side of (14.1) cancel, so that

this is perhaps not the most useful form of the equation. A somewhat improved

form may be obtained by noting from (9.11) that

ηg = qp − f0
∂

∂p

(
1
S
∂ϕ

∂p

)
. (14.3)

Substitution of this into (14.1) results, after some rearrangement of terms, in(
f2
0

∂2

∂p2
+ S∇2

)(
ω − 1

SVg · ∇∇∇θ′
)

= f0
∂

∂p
(Vg · ∇∇∇qp) − α

θ
∇2Q̇− f0

∂

∂p

[
k̂ · ∇∇∇× F

]
.

(14.4)

The adiabatic quantity on the right side of (14.4) is just the variation with altitude

of the geostrophic advection of pseudo potential vorticity, while the elliptic operator

on the left now acts on the sum of ω and the geostrophic temperature advection.

Unfortunately, the boundary conditions in inverting the elliptic operator are now

inhomogeneous, since Vg · ∇θ′ may be nonzero on the boundaries. This can be

“fixed” by the method of “bound charge,” as before, so that (14.3) may be rewritten(
f2
0

∂2

∂p2
+ S∇2

)(
ω − 1

SVg · ∇∇∇θ′
)

= f0
∂

∂p

[
Vg · ∇∇∇

(
qp + δ(p0 − p)

f0
S θ

′ − δ(p− pt)
f0
S θ

′
)]

− α2∇2Q− f0
∂

∂p

[
k̂ · ∇∇∇×F

]
,

(14.5)

where it is understood that ω− 1
SVg ·∇θ′ is forced to be zero on horizontal bound-

aries when inverting (14.5). Once again we see that the system is forced by changes

in qp, and θ′ at the boundaries.
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15. Higher-order balance systems

The quasi-geostrophic system is adequate for very low Rossby number and Froude

number flows, such as characterize the ocean even at the “mesoscale” (O(100 km)).

The low Rossby-Froude number approximation in the atmosphere is not as good,

and the quasi-geostrophic equations do not work as well, quantitatively. Higher-

order balance approximations are needed for an accurate diagnosis of quasi-balanced

dynamical processes in the atmosphere, or for numerical weather prediction, if we

were to use a quasi-balanced system. (For various reasons, balanced equations have

been abandoned as a basis for NWP and the full set of “primitive,” or hydrostatic,

equations are used.)

One basis of higher-order balance systems involves approximating the horizon-

tal divergence as small compared to the vertical component of vorticity in a fluid

flow. This approximation also leads to a system in which the velocity field is in-

stantaneously related to the mass distribution.

Begin with the hydrostatic approximation to the momentum equations in pres-

sure coordinates:

∂V
∂t

+ V · ∇V + ω
∂V
∂p

= −∇ϕ− fk̂ ×V + F. (15.1)

Now operate on the above with the horizontal divergence operator, ∇∇∇2. The result

may be written

dD

dt
= −∇2ϕ+ (f + ζ)ζ − βu− ∂ω

∂x

∂u

∂p
− ∂ω

∂y

∂v

∂p
− S2 +∇∇∇2 · F, (15.2)
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where D is the horizontal divergence, ∇∇∇2 ·V, ζ is the vertical component of vorticity,

and

S2 ≡
(
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2

, (15.3)

β ≡ df

dy
.

If we assume that ∣∣∣∣dDdt
∣∣∣∣� |(f + ζ)ζ| , (15.4)

then (15.2 may be approximated by the nonlinear balance equation:

∇2ϕ = (f + ζ)ζ − βu− S2 − ∂ω

∂x

∂u

∂p
− ∂ω

∂y

∂v

∂p
+∇∇∇2 ·F. (15.5)

Unlike the geostrophic relations, (15.5) represents the geopotential field as a non-

linear function of the velocity distribution. Note that we have assumed that the

total derivative of D is small compared to all the terms in (15.5).

At the same time, the hydrostatic approximation to Ertel’s potential vorticity

is

q = −g
[
(f + ζ)

∂θ

∂p
− ∂v

∂p

∂θ

∂x
+
∂u

∂p

∂θ

∂y

]
, (15.6)

and conservation of potential vorticity is governed by (cf. 5.10)

∂q

∂t
= −V · ∇∇∇q − ω

∂q

∂p
+ α(∇× F) · ∇∇∇θ + α(2ΩΩΩ +∇∇∇× V) · ∇∇∇dθ

dt
. (15.7)

Also, remember that θ is related hydrostatically to ϕ via (8.33), whose atmo-

sphere part we write

π
∂ϕ

∂p
= −θ, (15.8)
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where

π ≡ p

(
p0

p

)R/cp

/R. (15.9)

To this we add the continuity equation

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0. (15.10)

Clearly, the five equations (15.5)–(15.8) and (15.10) contain the six dependent vari-

ables u, v, ω, θ, ϕ, and q and so do not constitute a closed system. Progress can be

made by ordering the flow according to the relative magnitudes of its irrotational

and nondivergent components. We first express the horizontal flow components in

terms of a mass streamfunction, ψ, and a velocity potential, χ:

u = −∂ψ
∂y

+
∂χ

∂x
,

v =
∂ψ

∂x
+
∂χ

∂y
,

(15.11)

where, by (15.10),

∇2χ = −∂ω
∂p
. (15.12)

Using (15.11) and (15.8), the set (15.5)–(15.7) can be written

∇2ϕ = (f + ∇2ψ)∇2ψ + β

(
∂ψ

∂y
− ∂χ

∂x

)
− S2(ψ, χ)

− ∂ω

∂x

∂u

∂p
− ∂ω

∂y

∂v

∂p
+∇∇∇2 · F, (15.13)

q = g

[
(f + ∇2ψ)

∂

∂p

(
π
∂ϕ

∂p

)
− π

∂2ϕ

∂p∂x

∂

∂p

(
∂ψ

∂x
+
∂χ

∂y

)

+ π
∂2ϕ

∂y∂p

∂

∂p

(
∂χ

∂x
− ∂ψ

∂y

)]
, (15.14)
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∂q

∂t
=
(
∂ψ

∂y
− ∂χ

∂x

)
∂q

∂x
−
(
∂ψ

∂x
− ∂χ

∂y

)
∂q

∂y
− ω

∂q

∂p
(15.15)

+ friction and heating.

Consistent with the approximation given by (15.4), we assume that

|χ| < |ψ| . (15.16)

Consider an iterative process in which, in the first step, we take χ (and therefore

ω) to be zero in (15.13)–(15.15). In that case, we have a closed system in the

variables q, ϕ, and ψ, and, given appropriate boundary conditions, we can step

(15.15) forward one time step, then invert the system (15.13)–(15.14) to get ψ and

ϕ at the next time step. This gives us all the fields q, ψ, and ϕ at the beginning

and end of a time step. Now, we introduce another equation, the thermodynamic

equation, which can be written (backwards) in terms of ϕ:

ω
∂

∂p

(
π
∂ϕ

∂p

)
= −π

(
−∂ψ
∂y

+
∂χ

∂x

)
∂2ϕ

∂p∂x
− π

(
∂ψ

∂x
+
∂χ

∂y

)
∂2ϕ

∂p∂y

−π
∆t

∂ϕ

∂p

∣∣∣∣∣
t+∆t

t

−Q,
(15.17)

where ∆t is the time step. Again taking χ to be zero on the right side of (15.17)

we can now solve (15.17) for ω since we know ϕ and ψ at the beginning and end of

the time step. We can then solve (15.12) for an estimate of χ, and start the whole

time step over again, this time with a nonzero estimate for χ. This gives us new

estimates of q, ψ, and ϕ at the end of the time step and therefore, from (15.17),

new estimate of ω and χ. Although no formal proof has been developed that shows
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that the iteration converges, it seems to in practice. Experience shows that this

method of solution of the equations describes atmospheric motions very well.

The ability of a system like this one to describe quite accurately atmospheric

and oceanic flows raises an important philosophical question: Can general flows be

separated into quasi-balanced parts, uniquely associated with the potential vorticity

distribution, and everything that is left over after the balanced part is accounted

for (e.g., inertia-gravity waves, three-dimensional turbulence)? The precise answer

seems to be “no”; there will always be some interaction between the quasi-balanced

and unbalanced flow components that render their separation imprecise. Nonethe-

less, these interactions are usually (but not always) weak in geophysical fluid flows,

and so it is useful to talk about these components separately. Our working defini-

tion of quasi-balanced flow is flow uniquely associated with and calculable from the

potential vorticity distribution.

16. Rossby waves

We have seen that the existence of potential vorticity gradients supports the prop-

agation of a special class of waves known as Rossby waves. These waves are the

principal means by which information is transmitted through quasi-balanced flows

and it is therefore fitting to examine their properties in greater depth. We begin by

looking at the classical problem of barotropic Rossby wave propagation on a sphere

and continue with quasi-geostrophic Rossby waves in three dimensions.
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a. Barotropic Rossby waves on a sphere

The vorticity equation for barotropic disturbances to fluid at rest on a rotating

sphere is

dη

dt
= 0, (16.1)

where

η ≡ 2Ω sinϕ+ ζ.

Here ζ is the relative vorticity in the z direction. Now the equation of mass conti-

nuity for two-dimensional motion on a sphere may be written

1
a

[
∂u

∂λ
+

∂

∂ϕ
(v cosϕ)

]
= 0, (16.2)

where u and v are the eastward and northward velocity components, λ and ϕ are

longitude and latitude, and a is the (mean) radius of the earth. Using (16.2) we

may define a velocity streamfunction ψ such that

u = −1
a

∂ψ

∂ϕ
,

and (16.3)

v =
1

a cosϕ
∂ψ

∂λ
.

The Eulerian expansion of (16.1) can be written

∂η

∂t
+

u

a cosϕ
∂η

∂λ
+
v

a

∂η

∂ϕ
= 0,

or using (16.3),

∂η

∂t
+

1
a2 cosϕ

[
∂ψ

∂λ

∂η

∂ϕ
− ∂ψ

∂ϕ

∂η

∂λ

]
= 0. (16.4)

72



We next linearize (16.4) about the resting state (u = v = 0), for which η = 2Ω sinϕ,

giving

∂η′

∂t
+

2Ω
a2

∂ψ′

∂λ
= 0, (16.5)

where the primes denote departures from the basic state.

In spherical coordinates,

η′ = ζ ′ = k̂ · ∇ × V′

=
1

a2 cos2 ϕ

[
∂2ψ′

∂λ2
+ cosϕ

∂

∂ϕ

(
cosϕ

∂ψ′

∂ϕ

)]
.

(16.6)

Let’s look for modal solutions of the form

ψ′ = Ψ(ϕ)eim(λ−σt),

where m is the zonal wavenumber and σ is an angular phase speed. Using this and

(16.6) in (16.5) gives

d2Ψ
dϕ2

− tanϕ
dΨ
dϕ

−
[
2Ω
σ

+
m2

cos2 ϕ

]
Ψ = 0. (16.7)

This can be transformed into canonical form by transforming the independent vari-

able using

µ ≡ sinϕ,

yielding

(1 − µ2)
d2Ψ
dµ2

− 2µ
dΨ
dµ

−
[
2Ω
σ

+
m2

1 − µ2

]
Ψ = 0. (16.8)

The only solutions of (16.8) that are bounded at the poles (µ = ±1) have the form

Ψ = APn
m, (16.9)
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Table 16.1. Meridional Structure of Pn
m(ϕ) Rossby Waves on a Sphere

m

0 1 2 3

1 sinϕ cosϕ – –

n 2 1
2
(3 sin2 ϕ− 1) −3 sinϕ cosϕ 3 cos2 ϕ –

3 3
2

sinϕ(5 sin2 ϕ− 3) −9
2
(5 sin2 ϕ− 1) cosϕ 45 sinϕ cos3 ϕ −45 cos3 ϕ

where Pn
m is an associated Legendre function of degree n and order m, with n > m.

The angular frequency must satisfy

σ =
−2Ω

n(n+ 1)
. (16.10)

As in the case of barotropic Rossby waves in a fluid at rest on a β plane, spherical

Rossby waves propagate westward. Their zonal phase speed is given by

c = a cosϕσ = −2Ωa
cosϕ

n(n+ 1)
. (16.11)

The first few associated Legendre functions are given in Table 16.1. The lowest order

modes, for which m = 0, are zonally symmetric and have zero frequency. These

are just east-west flows that do not perturb the background vorticity gradient and

thus are not oscillatory. The lowest order wave mode, for which n = m = 1, has an

angular frequency of −Ω and is therefore stationary relative to absolute space. This

zonal wavenumber 1 mode has maximum amplitude on the equator and decays

as cosϕ toward the poles. Modes of greater values of n have increasingly fine

meridional structure.
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17. Quasi-geostrophic Rossby waves

Baroclinic flows can also support Rossby wave propagation. This is most easily

described using quasi-geostrophic theory. We begin by looking at the behavior of

small perturbations to a zonal background flow that varies only in the meridional

and vertical directions. Beginning with the definition of pseudo-potential vorticity

(9.11), we let ϕ and qp be represented by zonally invariant background fields plus

perturbations to them:
ϕ = ϕ(y, p) + ϕ′(x, y, p, t)

qp = qp(y, p) + q′p(x, y, p, t)
(17.1)

We next linearize the adiabatic, frictionless form of the conservation equation for

qp (9.10) using (17.1):

∂q′p
∂t

+ ug

∂q′p
∂x

+ v′g
∂qp

∂y
= 0, (17.2)

where

ug = − 1
f

∂ϕ

∂y
,

v′g =
1
f

∂ϕ′

∂x
.

(17.3)

We also note from the definition of pseudo-potential vorticity (9.11), that

∂qp

∂y
=

1
f0

∇2 ∂ϕ

∂y
+ β0 +

∂

∂p

f0
S
∂

∂p

∂ϕ

∂y

= β − ∂2u

∂y2
− ∂

∂p

f2
0

S
∂u

∂p
.

(17.4)

Thus the meridional gradient of background pseudo-potential vorticity depends on

β, the meridional gradient of the vorticity of the zonal wind, and a measure of the

curvature of the vertical profile of the mean zonal wind.
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Using the second of the geostrophic relations in (17.3) as well as the definition

of pseudo-potential vorticity, (9.11), the linearized conservation relation (17.2) may

be written

(
∂

∂t
+ ug

∂

∂x

)[
1
f0

∇2ϕ′ +
∂

∂p

f0
S
∂ϕ′

∂p

]
+

1
f0

∂qp

∂y

∂ϕ′

∂x
= 0. (17.5)

We will examine solutions of (17.5) in the special case that the stratification is

constant, S = constant. We will also assume that the background zonal wind, ug,

and the associated gradient of background pseudo-potential vorticity given by (17.4)

are slowly varying compared to the structures of perturbations to the flow. If this

is the case, we can make the W.K.B. approximation and represent modal solutions

to (17.5) as

ϕ′ = Φeik(x−ct)+i
∫ y

l(y′,p)dy′+i
∫ p

m(y,p′)dp′
, (17.6)

where l(y, ρ) and m(y, p) are slowly varying functions of latitude and pressure.

Substituting (17.6) into (17.5) gives a dispersion relation:

c = ug − ∂qp/∂y

k2 + l2 + f2
0
S m

2
. (17.7)

Comparing this to the strictly barotropic dispersion relation (10.8) shows the strong

similarity between barotropic and baroclinic waves. The main differences are that

in the baroclinic case, the meridional gradient of potential (rather than actual)

vorticity serves as the refractive index for Rossby waves, and the vertical structure

contributes to the dispersion properties of the waves.
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The wave frequency, which remains invariant along the ray paths followed by

the wave energy as long as the background flow is considered to be steady, is given

by

ω = kc = kug − k(∂qp/∂y)

k2 + l2 + f2
0
S m

2
. (17.8)

Letting ki ≡ (k, l,m), the three components of the group velocity are given by

cgi
=
∂ω

∂ki
=

[(
ug +

qpy

r4

(
k2 − l2 − f2

0

S m2

))
,
2klqpy

r4
,
2kmf2

0
S qpy

r4

]
, (17.9)

where

qpy ≡ ∂qp

∂y
,

r2 ≡ k2 + l2 +
f2
0

S m2.

It is of some interest to compare these group velocities to the phase speeds, which

are given by

cr ≡ ω

ki
=
[(
ug − qpy

r2

)
,−k

l

qpy

r2
,− k

m

qpy

r2

]

=

[(
cgx

− 2
k2qpy

r4

)
,−1

2
r2

l2
cgy,−1

2
S
f2
0

r2

m2
cgp

] (17.10)

Thus, for quasi-geostrophic Rossby waves, the flow-relative group velocity in the

meridional and vertical directions is of opposite sign from the phase speeds in those

directions.

As quasi-geostrophic Rossby waves disperse in three dimensions, the associated

wave numbers evolve following the vector group velocity, according to the relation-

ship for the refraction of wave energy:

dki

dt
= − ∂ω

∂xi
, (17.11)
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where the total derivative indicates the rate of change following the group velocity:

dki

dt
=
∂ki

∂t
+ cgj

∂ki

∂xj
.

Using (17.8), the evolution of wavenumber (17.11) is

dki

dt
=

[
0, k

(
−∂ug

∂y
+
∂2qp/∂y

2

r2

)
, k

(
−∂ug

∂ρ
+
∂2qp/∂y∂p

r2

)]
. (17.12)

The interaction between Rossby waves and the background flow is of great

interest, because in quasi-balanced flows these waves are responsible for conveying

information from one place to another. An elegant way of quantifying the interaction

between quasi-geostrophic Rossby waves and the background state on which they

are assumed to propagate is through the examination of Eliassen-Palm fluxes. The

Eliassen-Palm theory is derived as follows.

Since quasi-geostrophic flow on an f plane is nondivergent, we may write the

conservation equation for pseudo-potential vorticity, (9.10), in the form

∂qp
∂t

= − ∂

∂x
(ugqp) − ∂

∂y
(vgqp). (17.13)

Consider now the time rate of change of zonal mean pseudo-potential vorticity. First

define a zonal average operator { }, such that for any scalar A,

{A} ≡ 1
L

∫ L

0

Adx, (17.14)

where L is the distance around a latitude circle. Applying this operator to (17.13)

gives

∂

∂t
{qp} = − ∂

∂y
{vgqp}. (17.15)
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Now let
vg = {vg} + v′g,

qp = {qp} + q′p,

where v′g is the local, instantaneous departure of vg from {vg}, but since

vg =
1
f0

∂ϕ

∂x
,

{vg} = 0. Thus (17.15) becomes

∂

∂t
{qp} = − ∂

∂y
{v′gq′p}. (17.16)

The time rate of change of zonal mean pseudo-potential vorticity is equal to the

convergence of the meridional eddy flux of pseudo-potential vorticity.

Using the definitions of qp and vg,

q′p =
1
f0

∇2ϕ′ +
∂

∂p

f0
S
∂ϕ′

∂p
,

v′g =
1
f0

∂ϕ′

∂x
,

where ϕ′ is the departure of ϕ from its zonal average, we can write

v′gq
′
p =

1
f2
0

[
∂ϕ′

∂x

∂2ϕ′

∂x2
+
∂ϕ′

∂x

∂2ϕ′

∂y2

]
+
∂ϕ′

∂x

∂

∂p

1
S
∂ϕ′

∂p

=
1
f2
0

[
1
2
∂

∂x

(
∂ϕ′

∂x

)2

+
∂

∂y

(
∂ϕ′

∂x

∂ϕ′

∂y

)
− 1

2
∂

∂x

(
∂ϕ′

∂y

)2
]

+
∂

∂p

(
∂ϕ′

∂x

1
S
∂ϕ′

∂p

)
− 1

2S
∂

∂x

(
∂ϕ′

∂p

)2

.

(17.17)

Taking the zonal average of this gives

{v′gq′p} =
1
f2
0

∂

∂y

{
∂ϕ′

∂x

∂ϕ′

∂y

}
+

∂

∂p

{
∂ϕ′

∂x

1
S
∂ϕ′

∂p

}
. (17.18)
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Using the geostrophic relations and the hydrostatic relation (15.8), this may be

written

{v′gq′p} = − ∂

∂y
{u′gv′g} −

∂

∂p

{
f0
Sπ v

′
gθ

′
}

(17.19)

≡ ∇ · F,

where F is the Eliassen-Palm flux, given by

F ≡ −{u′gv′g}ĵ −
{
f0
Sπ v

′
gθ

′
}
p̂, (17.20)

with ĵ and p̂ unit vectors in y and p. Thus the northward component of the Eliassen-

Palm flux is the geostrophic northward eddy flux of zonal (geostrophic) momentum,

while the vertical component of the EP flux is the geostrophic northward eddy heat

flux.

The utility of the Eliassen-Palm flux lies in its role as a source of wave activity.

This is a measure of the variance of pseudo-potential vorticity, and is defined as

A ≡ 1
2
q′

2

p

qpy

. (17.21)

We can form an equation for wave activity by multiplying (17.2), modified to take

into account dissipation, by q′p and taking the zonal average of the result:

∂

∂t

1
2
{q′2p } +

∂qp

∂y
{v′q′p} = {Dq′p}. (17.22)

Now letting

qpy ≡ ∂qp

∂y
,
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and noting that qpy is not a function of time or longitude, divide (17.22) through

by qpy:

∂

∂t

{
1
2
q′

2

p

qpy

}
+ {v′q′p} =

{
D
q′p
qpy

}
,

or using (17.21) and (17.19),

∂A
∂t

+ ∇ · F = D, (17.23)

where

D ≡
{

D
q′p
qpy

}
.

In the absence of dissipation of pseudo-potential vorticity, the rate of change of wave

activity is proportional to the divergence of the Eliassen-Palm flux. Conversely, in

a steady flow, creation or dissipation of wave activity is signified by a nonzero

divergence of the Eliassen-Palm flux.

In the case of plane waves, the Eliassen-Palm flux may be interpreted as the

flux of wave activity along wave ray paths, traveling at the group velocity. This is

shown as follows:

First, using the definitions of wave activity (17.21) and pseudo-potential vor-

ticity (9.11) and the modal decomposition (17.6), we have

A =
1

2qpy

{[
1
f0

(k2 + l2) +
f0
S m

2

]2
Φ2e2ik(x−ct)+2i

∫
y

l dy′+2i
∫

p
m dp′

}

=
1

4qpy

Φ2

[
1
f0

(k2 + l2) +
f0
S m

2

]2
e2i
∫

y
l dy′+2i

∫
p

m dp′
.

(17.24)
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On the other hand, using (17.6) in the definition of the Eliassen-Palm flux vector,

(17.20), together with the usual geostrophic and hydrostatic relations, gives

F =
[

1
2f2

0

klΦ2e2i
∫ y

l dy′+2i
∫ p

m dp′
]
ĵ +

[
1
2
mk

S Φ2e2i
∫ y

l dy′+2i
∫ p

m dp

]
p̂. (17.25)

Now comparing (17.25) to (17.24), and using the group velocity relations (17.9)

together with the definition of wave activity, (17.25), shows that

Fi = cgi
A. (17.26)

Thus, for individual plane waves, the Eliassen-Palm flux is just the product of

the Rossby wave group velocity and the wave activity. This does not hold for

disturbances consisting of more than one plane wave, or nonmodal disturbances, as

will be discussed in Chapter (?). Later on, we will find that the Eliassen-Palm flux

is very useful for diagnosing the sources and sinks of Rossby waves from atmospheric

observations.
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18. Barotropic instability

Consider an inviscid barotropic flow governed by the barotropic vorticity equation

dη

dt
= 0, (18.1)

where

η = ∇2ψ (18.2)

and ψ is the streamfunction. There exists a class of exact solutions of (18.1) char-

acterized by
ψ = ψ(y),

η =
d2ψ

dy2
.

These are just zonal flows that vary meridionally. We have seen that flows with

cross-stream variations of η can support Rossby waves. Now consider a class of

jet-like flows that look like the example shown in Figure 18.1, where there is an

extremum in the vorticity. In the example given, there is a maximum of vorticity in

the center of the domain, with westward flow to the north and eastward flow to the

south. The meridional gradient of vorticity is negative to the north of the vorticity

maximum, and positive to the south, so that barotropic Rossby waves propagate

eastward, relative to the flow, to the north; and westward, relative to the flow, to

the south.

Now consider perturbing the flow in Figure 18.1 in the manner shown in Figure

18.2:
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Figure 18.1

This particular deformation of the background vorticity contours produces pos-

itive perturbations of vorticity along a southwest-northeast axis. The sense of the

perturbation flow associated with these vorticity anomalies is also illustrated in

Figure 18.2. Note the follow major points:
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Figure 18.2

1. The local advection of the background gradient of vorticity by the flow as-

sociated with the northern perturbation is such as to propagate it eastward

relative to the background flow, which is toward the west. Thus the intrinsic

propagation is opposite to the background flow.

2. The local advection of the background vorticity by the flow associated with

the southern vorticity anomaly is such as to propagate the anomaly westward

relative to the background flow, which is toward the east. Again, the intrinsic

propagation is opposite to the background flow.

3. In the vicinity of the southern vorticity anomaly, the advection of the back-

ground vorticity by the flow associated with the northern vorticity anomaly

is such as to amplify the southern vorticity anomaly. The same goes for the

northern vorticity anomaly.

There are two critical aspects of this scenario. The first is that the difference in
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the intrinsic phase speeds of the two anomalies is compensated by the different ad-

vections of the anomalies by the background flow, creating the possibility that the

anomalies can be phase locked with one another. The second is that the anomalies

can be mutually amplifying; i.e., each anomaly amplifies the other anomaly. These

two aspects are critical to the process called barotropic instability. In the follow-

ing section, we find analytic solutions to a particular example of a barotropically

unstable flow.
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Figure 18.3

18.1 the Rayleigh problem

Consider the barotropic flow whose variation in y is illustrated in Figure 18.3.

The flow is piecewise continuous and all the meridional gradient of vorticity

is concentrated in positive and negative delta functions at y = +D and y = −D,

respectively. We will formulate linear equations for small perturbations to this

background state, solve them in each of the three regions, and match the solutions

across the boundaries of the regions at y = ±D.

The linearized momentum equations and mass continuity are as follows. Over-
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bars signify the background state shown in Figure 18.3.

∂u

∂t
+ U

∂u

∂x
+ v

∂U

∂y
= −α0

∂p

∂x
, (18.1)

∂v

∂t
+ U

∂v

∂x
= −α0

∂p

∂y
, (18.2)

∂u

∂x
+
∂v

∂y
= 0. (18.3)

Consider solutions of the form

u = ũ(y)eik(x−ct),

v = ṽ(y)eik(x−ct),

p = p̃(y)eik(x−ct),

where c may be complex. Substitution into (18.1)–(18.3) gives

ik(U − c)ũ+ Uy ṽ = −α0ikp̃, (18.4),

ik(U − c)ṽ = −α0
dp̃

dy
, (18.5)

ikũ+
dṽ

dy
= 0. (18.6)

By cross-differentiating, we can eliminate ũ and p̃ from (18.4)–(18.6) to arrive at a

single O.D.E. in ṽ:

d2ṽ

dy2
− ṽ

(
k2 +

Uyy

U − c

)
= 0. (18.7)

Now note that in the interiors of each of the three regions in Figure 18.1, Uyy = 0,

so (18.7) reduces to

d2ṽ

dy2
− k2ṽ = 0 (18.8)
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within each region. Now we consider boundary conditions for solving (18.8). First

we impose the condition that the solutions remain bounded at y = ±∞:

lim
y→±∞ ṽ = finite.

General solutions of (18.8) that satisfy this condition are:

I: ṽ = Ae−ky

II: ṽ = Be−ky + Ceky

III: ṽ = Feky

(18.9)

Next we apply boundary conditions at the boundaries separating the regions. There

are two fundamental requirements:

a. Fluid displacements must be continuous, and

b. Pressure must be continuous.

The displacement in y, δy, is related to v by

v ≡ d

dt
δy.

Linearizing this about the background state gives

v =
(
∂

∂t
+ U

∂

∂x

)
δy,

and substituting

δy = δ̃yeik(x−ct),

we have

ṽ = ik(U − c)δ̃y.
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Continuity of δ̃y demands that

ṽ

ik(U − c)
is continuous. (18.10)

In the present case, U itself is continuous, so (18.10) implies that ṽ is continuous.

Continuity of pressure implies, through (18.4), that the quantity

ik(U − c)ũ+ Uy ṽ

is continuous, or using (18.6) to eliminate ikũ,

(U − c)
dṽ

dy
− Uy ṽ is continuous. (18.11)

Matching ṽ and the quantity given by (18.11) across each of the two boundaries in

the general solutions (18.9) gives a condition on the relation between the complex

phase speed c and k: (
Dkc

U0

)2

= (Dk − 1)2 − e−2kD. (18.12)

Here we see that c is purely real if (Dk − 1)2 ≥ e−2kD, and purely imaginary if

(Dk− 1)2 < e−2kD. In the former case, examination of (18.12) shows that to order

1/k,

lim
k→∞

c = ±U0

[
1 − 2

kD

]
. (18.13)

Very small-scale perturbations are confined to the delta function vorticity gradients

at y = ±1
2D and move with the mean flow speed at the respective boundaries

between regions, slightly slowed down owing the Rossby propagation effect.
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Figure 18.4

In the opposite limit of small k, we have to expand (18.12) to order k2 to get

lim
k→0

c = ±iU0.

This denotes perturbations that do not propagate but which grow or decay at an

exponential rate given by

σ ≡ kci,

so that

lim
k→0

σ = ±kU0. (18.14)

For small k, the growth rate increases linearly with k.

Exact solutions of (18.12) are displayed in Figure 18.4.

Note the following:

1. c = σ = 0 when Dk = 1.278, corresponding to a wavelength L ≡ 2π
k = 4.92D.
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Figure 18.5a

2. The maximum (minimum) value of σ is ±0.402U0/D occurring when Dk =

0.797 (L = 7.88D).

Thus modal solutions fall into two classes: long waves that are stationary (and

phase locked) and are either amplifying or decaying, and short neutral Rossby

waves swimming upstream. These waves are too short to “feel” each other enough

to become phase locked or mutually amplifying (or decaying).

The eigenmodes of the velocity streamfunction are shown in Figure 18.5 for

Dk = 0.797, corresponding to the most rapidly growing mode, and for Dk = 2.0,

corresponding to a stable mode on the southern vorticity gradient delta function.

Note the “upshear” tilt of the unstable mode; eigenfunctions of the decaying mode

tilt downshear.
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Figure 18.5b

18.2 Necessary conditions for barotropic instability

Rayleigh developed some general necessary conditions for instability of barotropic

flows. These can also be stated as sufficient conditions for stability.

First suppose we have a barotropic flow U(y) in which the vorticity gradient is

confined to some finite region, so that

lim
y→±∞

d2U

dy2
= 0.

For such a flow, we expect perturbations to vanish at y = ±∞ since the refractive

index for wave propagation, the vorticity gradient, vanishes there.

Now consider modal disturbances to such a flow. These are governed by (18.7),

for the meridional structure of the meridional wind. Now multiply (18.7) through by
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the complex conjugate of ṽ, ṽ∗, and integrate the result through the whole domain:

∫ ∞

−∞

[
ṽ∗
d2ṽ

dy2
− |ṽ|2

(
k2 +

Uyy

U − c

)]
dy = 0 (18.15)

Here we have made use of the fact that

ṽṽ∗ = |ṽ|2,

where |ṽ| is the absolute value of ṽ. Now the first term in the integrand can be

integrated by parts:

∫ ∞

−∞
ṽ∗
d2ṽ

dy2
dy =

∫ ∞

−∞

d

dy

[
ṽ∗
dṽ

dy

]
dy −

∫ ∞

−∞

∣∣∣∣dṽdy
∣∣∣∣
2

dy.

The first term on the right can be integrated exactly, but it vanishes because ṽ → 0

as y → ±∞. Thus ∫ ∞

−∞
ṽ
d2ṽ

dy2
dy = −

∫ ∞

−∞

∣∣∣∣dṽdy
∣∣∣∣
2

dy. (18.16)

Using (18.16), we may write (18.15) as

∫ ∞

−∞

[∣∣∣∣dṽdy
∣∣∣∣
2

+ |ṽ|2
(
k2 +

Uyy

U − c

)]
dy = 0. (18.17)

Remember that c is, in general, complex, so the real and imaginary parts of (18.17)

must both be satisfied. The imaginary part of (18.17) is

ci

∫ ∞

−∞

Uyy

|U − c|2 |ṽ|
2dy = 0, (18.18)

where ci is the imaginary part of c, which is positive for growing disturbances.

The relation (18.18) shows that one of two things must be true: Either
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a. ci = 0, or

b. the integral in (18.18) vanishes.

Thus we may conclude the following:

1. A necessary condition for instability (ci > 0) is that Uyy change sign at least

once within the domain. In other words, the mean state vorticity must have

an extremum in the domain. But note that even if Uyy does change sign, this

is no guarantee that the integral vanishes or that ci > 0. This condition is not

sufficient for instability.

2. If there is no extremum of vorticity within the domain, ci = 0 and this is

therefore a sufficient condition for stability.

Points 1 and 2 are really saying the same thing.

Another theorem, due to Fjøtoft, may be derived by looking at the real part

of (18.17):

∫ ∞

−∞

Uyy(U − cr)
|U − c|2 |ṽ|2dy = −

∫ ∞

−∞

[∣∣∣∣dṽdy
∣∣∣∣
2

+ k2|ṽ|2
]
dy, (18.19)

where cr is the real part of c. Note that for growing disturbances, we are free to add

any multiple of the integral in (18.18) to the left side of (18.19), since the former

vanishes. We choose the multiplying factor to be cr, giving

∫ ∞

−∞

UUyy

|U − c|2 |ṽ|
2dy = −

∫ ∞

−∞

[∣∣∣∣dṽdy
∣∣∣∣
2

+ k2|ṽ|2
]
dy. (18.20)

Since the right-hand side of (18.20) is negative definite, so must the left side. So

fluctuations of U must be negatively correlated with Uyy for growing disturbances.
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Figure 18.6

(Again, this is a necessary but not sufficient condition for instability.) Figure 18.6

shows an example of a flow that the Fjørtoft theorem shows to be stable in spite of

satisfying the Rayleigh necessary condition for instability, and a flow which satisfies

both necessary conditions for instability.
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19. Baroclinic Instability

In two-dimensional barotropic flow, there is an exact relationship between mass

streamfunction ψ and the conserved quantity, vorticity (η) given by η = ∇2ψ. The

evolution of the conserved variable η in turn depends only on the spatial distribution

of η and on the flow, which is derivable from ψ and thus, by inverting the elliptic

relation, from η itself. This strongly constrains the flow evolution and allows one

to think about the flow by following η around and inverting its distribution to get

the flow.

In three-dimensional flow, the vorticity is a vector and is not in general con-

served. The appropriate conserved variable is the potential vorticity, but this is not

in general invertible to find the flow, unless other constraints are provided. One such

constraint is geostrophy, and a simple starting point is the set of quasi-geostrophic

equations which yield the conserved and invertible quantity qp, the pseudo-potential

vorticity.

The same dynamical processes that yield stable and unstable Rossby waves in

two-dimensional flow are responsible for waves and instability in three-dimensional

baroclinic flow, though unlike the barotropic 2-D case, the three-dimensional dy-

namics depends on at least an approximate balance between the mass and flow

fields.
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Figure 19.1

a. The Eady model

Perhaps the simplest example of an instability arising from the interaction of Rossby

waves in a baroclinic flow is provided by the Eady Model, named after the British

mathematician Eric Eady, who published his results in 1949. The equilibrium flow

in Eady’s idealization is illustrated in Figure 19.1. A zonal flow whose velocity

increases with altitude is confined between two rigid, horizontal plates. This flow is

in exact thermal wind balance with an equatorward-directed temperature gradient

and is considered to have constant pseudo potential vorticity, qp, as well as constant

background static stability, S. The flow occurs on an f plane, so β = 0. Evolution

of the flow is taken to be inviscid and adiabatic.

At first blush, it might appear that no interesting quasi-geostrophic dynamics

can occur in this system since there are no spatial gradients of qp and thus no Rossby

waves. But there are temperature gradients on both boundaries, and according to
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the analysis presented in Sections 11 and 12, Eady edge waves—boundary-trapped

Rossby waves—can exist. Eady showed that the two sets of Rossby waves cor-

responding to both boundaries can interact unstably, giving rise to exponential

instability.

Since pseudo potential vorticity is conserved in this problem, and since it is

initially constant, perturbations to it vanish. According to (9.11),

1
f0

∇2ϕ+
f0
S
∂2ϕ

δp2
= 0, (19.1)

which was already derived as (12.1). Here ϕ is now defined as a perturbation to the

background geopotential distribution.

The background zonal flow is specifically defined to be linear in pressure:

du

dp
=

R

f0p0

dθ

dy
= −γ, (19.2)

where u is the background zonal wind, θ is the background potential temperature,

f0 is the Coriolis parameter and R is the gas constant. We introduce γ for notational

convenience. For the ocean, γ would be defined as −Gσy, evaluated at a suitable

pressure level.

Integrating (19.2) in pressure, we get a relationship between the background

zonal velocities at the two boundaries:

u1 − u0 = γ(p0 − p1), (19.3)

where p0 and p1 are the pressures at the two boundaries. The system is Galilean

invariant, so we can add an arbitrary constant to the background zonal flow. We
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choose this so that the background zonal flow at one boundary is equal in magnitude

but opposite in sign to the flow at the other boundary, to wit

u1 =
1
2
γ(p0 − p1) ≡ 1

2
∆u,

u0 = −1
2
γ(p0 − p1) ≡ −1

2
∆u,

(19.4)

where ∆u is the background shear, u1 − u0. From (19.3) we have

∆u = γ∆p, (19.5)

where ∆p ≡ p0 − p1.

To solve (19.1), we need to impose boundary conditions. We take perturbations

to the background to be periodic in the two horizontal directions. In the vertical,

the appropriate boundary conditions are given by (11.1):

(
∂

∂t
+ Vg · ∇

)
θ = 0 on p = p0, p1. (19.6)

As in section 12, we linearize this boundary condition around the background

zonal flow, assuming that perturbations to it are so small that contributions to

(19.6) that are quadratic in the perturbations can be neglected. (Note that (19.6)

is the only equation in Eady’s system that is linearized.) Linearization of (19.6)

gives (
∂

∂t
+ u

∂

∂x

)
θ′ + v′

dθ

dy
= 0 on p = p0, p1. (19.7)

Using the hydrostatic equation for θ′, the geostrophic relation for v′ and (19.2) for

dθ/dy gives (
∂

∂t
+ u

∂

∂x

)
∂ϕ

∂p
+ γ

∂ϕ

∂x
= 0 on p = p0, p1. (19.8)
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Specializing this to the upper and lower boundaries of the Eady model using (19.4)

gives (
∂

∂t
+

1
2
∆u

∂

∂x

)
∂ϕ

∂p
+ γ

∂ϕ

∂x
= 0 on p = p1,(

∂

∂t
− 1

2
∆u

∂

∂x

)
∂ϕ

∂p
+ γ

∂ϕ

∂x
= 0 on p = p0.

(19.9)

Thus the mathematical problem to be solved is given by (19.1) coupled to (19.9),

remembering that we are applying periodic boundary conditions in x and y.

Since (19.1) is a linear elliptic equation with constant coefficients, we look for

solutions in terms of exponential normal modes of the form

ϕ = [A sinh(rp) +B cosh(rp)]eik(x−ct)+ily , (19.10)

where c is a (potentially complex) phase speed, and r, k, and l are wavenumbers in

pressure and in x and y, respectively. From (19.1) we have

r2 =
S
f2
0

(k2 + l2), (19.11)

which shows that the vertical exponential decay scale of the disturbances is related

to a measure of the horizontal scale by the Rossby aspect ratio f0√S .

It proves convenient to nondimensionalize the complex phase speed, c, and the

vertical wavenumber, r, according to

c→ ∆uc,

r → r/∆p.
(19.12)

Making us of these an substituting (19.10) into the two vertical boundary conditions

(19.9) gives the dispersion relation:

c2 =
1
4

+
1
r2

− ctnh(r)
r

. (19.13)
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At first take, it would appear that the time dependence of the normal modes of the

Eady problem is independent of the particular values of the horizontal wavenumbers

k and l, depending only on their combination k2 + l2 through (19.11). But if c has

a nonzero imaginary part, ci, then (19.10) shows that the exponential growth rate

is given by kci, so we shall be concerned about k as well.

Although (19.13) can be easily graphed, it is interesting to explore certain

limiting and special cases. In the small horizontal wavelength limit, we have

lim
r→∞ c2 =

1
4

+
1
r2

− 1
r

=
(

1
2
− 1
r

)2

, (19.14)

whose solution is

c = ±
(

1
2
− 1
r

)
. (19.15)

These are just the solutions of the Eady edge wave problem solved in section

12, in the limit of large r, with the positive root corresponding to the upper bound-

ary. In nondimensional terms, 1
2 corresponds to the background flow at the upper

boundary, while −1
2 corresponds to the background flow at the lower boundary. So

these are small, stable Eady waves at each boundary, swimming upstream. This

is the same as the asymptotic solution of the Eady edge wave at each boundary

independently, given by (12.13), so in this limit, the two edge waves pass each other

like ships in the night, ignorant of each other’s existence.

In the limit of large wavelength (small r), meaningful solutions require us to

expand the ctnh(r) term in (19.13) to second order, to wit

lim
r→0

rctnh(r) = 1 +
1
2
r2.
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This gives

lim
r→0

c2 = −1
4
,

or

lim
r→0

c = ±1
2
i. (19.16)

Substitution into (19.10) shows that these modes have vanishing phase speed but

grow or decay at an exponential rate given by

σ ≡ kci = ±1
2
k. (19.17)

Thus longwave modes of the Eady model are stationary and grow or decay expo-

nentially in time.

Examination of the dispersion relation (19.13) shows that c2 = 0 for a particular

value of r which turns out to be � 2.4. Also, in the exponential regime at long

wavelength, the quantity c2r2 has an extremum when r = 1.606 corresponding to a

value of rci of 0.3098. From (19.11), we have that

k =

√
r20
S r

2 − l2,

so the maximum growth rate, kci, is given by

(kci)max = 0.3098

√
1 − l2

r2
,

where we have used a suitable nondimensionalization of l. This shows that the maxi-

mum growth rate always occurs for l = 0, i.e., for disturbances that are independent

of y.
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Figure 19.2

The complete solution to (19.13) is graphed in Figure 19.2. For r < 2.4, the

modes are nonpropagating and exponentially growing or decay. For r > 2.4, there

are two neutral propagating roots corresponding to eigenfunctions that maximize

at one or the other boundary—the two Eady edge waves.

Note that the solutions to the Eady problem in Figure 19.2 closely resemble

the solutions of the Rayleigh barotropic instability problem discussed in section

18.1 and shown in Figure 18.4. In fact, the dynamics are essentially the same; the

only difference is one of geometry: whereas the Rossby waves in the barotropic

Rayleigh problem interact laterally, those in the baroclinic Eady problem interact

vertically. But there is no fundamental difference between barotropic and baroclinic

instability, although in the pure barotropic case the disturbance energy is drawn

from the kinetic energy of the mean flow, whereas in the pure baroclinic case it is
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drawn from the potential energy inherent in the background horizontal temperature

gradient.

As in Rayleigh’s problem, the instability of the Eady basic state can be usefully

regarded as resulting from the mutual amplification of phase-locked Rossby waves,

as illustrated in Figure 19.3. If a cold anomaly at the upper boundary is positioned

west of a warm anomaly at the lower boundary, invertibility gives cyclonic circula-

tion at the location of each of the two boundary temperature anomalies, decaying

exponentially away from the boundary. The cyclonic circulation associated with the

upper cold anomaly, projected down the lower boundary gives a poleward flow at

the location of the lower warm anomaly. Advection of the background temperature

gradient leads to a positive temperature tendency there, reinforcing the existing

lower boundary temperature anomaly. Likewise, the cyclonic circulation associated

with the lower warm anomaly, projecting up to the upper boundary, causes a tem-

perature advection that amplifies the upper cold anomaly. Note, however, that there

are small phase shifts between the boundary temperature anomalies and the tem-

perature advection, owing to the circulations induced by the temperature anomalies

at the opposite boundaries. These phase shifts serve to alter the propagation speeds

of the disturbances, keeping them phase-locked.
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Figure 19.3

b. The Charney Model

At the same time Eady was developing his model of baroclinic instability, Jule

Charney, then a graduate student at UCLA, was working on a somewhat different

model, which he ultimately published in 1947. Charney used essentially the quasi-

geostrophic equations, and took as his basic state one of a zonal wind increasing

linearly with altitude, as in the Eady model. But unlike the latter, Charney did

not apply an upper lid, allowing his domain to be semi-infinite, and instead of

having constant pseudo-potential vorticity, he took the background state to have

a constant meridional gradient of qp. Following Charney’s original paper, we here

work in height coordinates, rather than pressure coordinates. One can show that
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in height coordinates, qp is given by

qp =
1
f0

∇2 p

ρ0
+ βy +

f0
ρ

∂

∂z

ρ

ρ0N2

∂p

∂z
, (19.18)

where p is the perturbation of pressure away from the background state, ρ0 is a

constant reference density, ρ(z) is the density distribution of the background state,

and

N2 ≡ g

θ0

dθ

dz
, (19.19)

where θ(z) is the potential temperature of the background state. Note that N has

the units of inverse time and is called the buoyancy frequency, or the Brunt-Vaisälä

frequency.

Charney took N2 = constant and

ρ = ρ0e
−z/H , (19.20)

with H a (constant) density scale height. Then (19.18) becomes

qp =
1
f0

∇2 p

ρ0
+ βy +

f0
N2ρ0

∂2p

∂z2
− f0
HN2ρ0

∂p

∂z
. (19.21)

As mentioned before, Charney took his basic state qp to have a constant meridional

gradient:

dqp

dy
=

1
f0

∇2 1
ρ0

dp

dy
+ β − f0

N2ρ0

∂2

∂z2

dp

dy
− f0
HN2ρ0

∂

∂z

dp

dy
. (19.22)

But, using the geostrophic relation

1
ρ0

dp

dy
= −f0u
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and remembering that Charney took u to be a linear function of z,

dqp

dy
= β +

f2
0

HN2

du

dz
= constant ≡ β̂. (19.23)

Here we use β̂ to denote the constant background pseudo-potential vorticity gradi-

ent. We will also define

Λ ≡ du

dz

and take

u = Λz. (19.24)

Linearizing the pseudo-potential vorticity equation (9.10) about this state gives

(
∂

∂t
+ Λz

)
q′p + v′β̂ = 0, (19.25)

where q′ is the perturbation pseudo-potential vorticity, which from (19.21) is given

by

q′p =
1
f0

∇2 p
′

ρ0
+

f0
N2ρ0

∂2p′

∂z2
− f0
HN2ρ0

∂p′

∂z
. (19.26)

Charney’s lower boundary condition is identical to Eady’s, given that the constant

vertical shear of the background zonal wind must be associated with a constant

background meridional gradient of potential temperature. Making explicit use of

the hydrostatic and thermal wind equation, we have as a lower boundary condition

∂

∂t

∂p′

∂z
− Λ

∂p′

∂x
= 0 on z = 0. (19.27)

Charney applied a wave radiation condition at z → ∞. This asserts that, away from

the origin of the waves, the wave energy propagation must be away from the source.
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In this case, it implies that wave energy must be travelling upward through the top

of the domain. On the other hand, Charney was primarily interested in growing

(unstable) disturbances. Such waves should decay exponentially away from their

source, so

lim
z→∞ p′ = 0, (19.28)

which we apply as an upper boundary condition.

Since the coefficients of (19.26), (19.27), and (19.28) are constant in x, y, and

time, we can look for normal mode solutions of the form

p′ = p̂(z)eik(x−ct)+ily , (19.29)

where c is complex.

Substituting into (19.26) and the boundary conditions (19.27) and (19.28) gives

d2p̂

dz2
− 1
H

dp̂

dz
+
N2

f2
0

[
β2

Λz − c
− k2 − l2]p̂ = 0, (19.30)

c
dp̂

dz
+ Λp̂ = 0 on z = 0, (19.31)

and

p̂ = 0 on z = ∞(for ci > 0). (19.32)

Since (19.3) has a nonconstant coefficient, its solution is not in terms of simple

trigometric functions. Nevertheless, it can be put in a canonical form by a suit-

able substitution of variables, and solutions can be obtained in terms of confluent

hypergeometric functions.
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Figure 19.4

An example of solutions for the complex phase speed c is shown in Figure 19.4,

while an example of eigenfunctions of unstable modes is shown in Figure 19.5.

Once again, the most unstable modes do not vary with y(l = 0). For the

Boussinesq limit (H → ∞), the maximum growth rate is given by

σmax = 0.286
f0
N

Λ, (19.33)

which may be compared to the maximum growth rate in the Eady model of 0.31 f0
N

Λ.

This maximum occurs at a horizontal wavenumber kmax whose inverse is given by

k−1
max = 1.26

f0

β̂N
Λ. (19.34)

Note that the maximum growth rate (19.33) is independent of β̂, but the wavelength

of maximum growth is proportional to β̂−1.

In the Charney model, the surface Eady edge wave, propagating eastward,

interacts unstably with an internal Rossby wave, living on the background qp gra-

dient and travelling westward relative to the flow (as opposed to another Eady
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edge wave, as in the Eady model). As we have seen repeatedly, when looking at

the Rayleigh instability problem (section 18) or the Eady problem (section 19a),

counter-propagating Rossby waves must phase lock for exponential instability. This

requirement determines the horizontal and vertical scales of unstable modes in the

Charney problem, whereas in the Eady model they are determined by the imposed

depth of the system, H.

We can derive the parametric dependence of the wavelength of maximum in-

stability given by (19.34) from the requirement of phase-locking as follows.

First, the Eady edge wave propagates eastward at a rate given approximately

by (12.12) and (12.13) which, specialized to the present problem with l = 0, is

cEady � f0Λ
N

1
k
. (19.35)

Remember that this is just the background zonal wind speed at the altitude of the

Rossby penetration depth, f0/NK. On the other hand, the ground-relative phase

speed of a free internal Rossby wave of zonal wavenumber k is

cRossby � ũ− β̂

k2
, (19.36)

where ũ is some average background wind in the layer containing the Rossby wave.

We assume that ũ scales with the mean wind at the Rossby penetration depth:

ũ � µΛ
f0
Nk

,

where µ is some number, presumably less than unity, so

cRossby � µΛ
f0
Nk

− β̂

k2
. (19.37)
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For phase locking, we equate cEady, given by (19.35), to cRossby, given by (19.37) to

get

k−1 � (1 − µ)
f0
N

Λ

β̂
, (19.38)

which is the same scale as (19.34). Thus the most unstable wave has horizontal (and

therefore vertical) dimensions that allow it to interact optimally with the surface

Eady edge wave.

The vertical scale of the most unstable mode is just the Rossby penetration

depth based on the horizontal scale given by (19.34):

h � f2
0

N2

Λ

β̂
.

For typical atmospheric values of f0, N , Λ, and β̂, this is of order 10 km—

curiously close to the actual height of the tropopause.
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20. The Charney-Stern Theorem

The Eady problem of baroclinic instability described in section 19a was shown to

be remarkably similar to the Rayleigh instability of barotropic flow described in

Chapter 18. Both problems can be described in terms of phase-locked, counter-

propagating Rossby waves. In section 18.2, we presented Rayleigh’s and Fjørtoft’s

theorems for necessary conditions for the instability of phase-locked barotropic

Rossby waves. In 1962, Jule Charney and Melvyn Stern published a generaliza-

tion of these theorems to the case of three-dimensional, quasi-geostrophic flow.

We begin with equation (9.10) for the conservation of pseudo-potential vorticity,

which for an inviscid , adiabatic flow may be written

(
∂

∂t
+ Vg · ∇

)
[
1
f0

∇2ϕ+ βy + f0
∂

∂p

(
1
S
∂ϕ

∂p

)
] = 0. (20.1)

Now consider the case of infinitesimal perturbations to a background zonal flow

that varies only with latitude and altitude:

ϕ = ϕ(y, p) + ϕ′(x, y, p, t),

Vg = u(y, p)̂i+ V′
g(x, y, p, t),

qp = qp(y, p) + q′p(x, y, p, t).

(20.2)

Substituting (20.2) into (20.1) and dropping terms that are quadratic in the per-

turbation variables gives

(
∂

∂t
+ u

∂

∂x

)
[
1
f0

∇2ϕ′ + f0
∂

∂p

(
1
S
∂ϕ′

∂p

)
] + v′g

∂qp

∂y
= 0. (20.3)

113



Charney and Stern looked for modal solutions of the form

ϕ′ = Φ(y, p)eik(x−ct), (20.4)

where Φ is a complex function of y and p and c is a complex phase speed. Substi-

tution of (20.4) into (20.3) gives

∂2Φ
∂y2

+ f2
0

∂

∂p

(
1
S
∂Φ
∂p

)
+ Φ

(
∂qp/∂y

u− c
− k2

)
= 0. (20.5)

As in section 18.2, we multiply by the complex conjugate of Φ and integrate over a

domain that is infinite in y but bounded by rigid plates in p:

∫ ∞

−∞

∫ p0

p1

[
Φ∗ ∂

2Φ
∂y2

+ f2
0 Φ∗ ∂

∂p

(
1
S
∂Φ
∂p

)
+ |Φ|2

(
∂qp

∂y

1
u− c

− k2

)]
dpdy = 0, (20.6)

where p1 and p0 are the pressures at the top and bottom boundary, respectively.

We assume that as y → ±∞, the geopotential perturbations or their meridional

gradients vanish. Integrating (20.6) by parts and making use of this boundary

condition gives

∫ ∞

−∞

∫ p0

p1

{∣∣∣∣∂Φ
∂y

∣∣∣∣
2

+
(
k2 − ∂qp/∂y

u− c

)
|Φ|2 +

f2
0

S
∣∣∣∣∂Φ
∂p

∣∣∣∣
2}
dy dp

+f2
0

∫ ∞

−∞

[
Φ∗

S
∂Φ
∂p

]∣∣∣p0

p1

dy = 0. (20.7)

The last term in (20.7) involves geopotential perturbations at the two bound-

aries. For these, we use the Eady boundary condition given by (11.1). Linearizing

this about the background state and using (20.4) gives

∂Φ
∂p

− α

f0θ(u− c)
∂θ

∂y
Φ = 0 on p = p0, p1. (20.8)
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Substituting this into the last term of (20.7) gives

∫ ∞

−∞

[ ∫ p0

p1

(∣∣∣∂Φ
∂y

∣∣∣2 +
(
k2 − ∂qp/∂y

u− c

)
|Φ|2 +

f2
0

S
∣∣∣∂Φ
∂p

∣∣∣2) dp
−

αf0
∂θ
∂y

θS(u− c)
|Φ|2

∣∣∣p0

p1

]
dy = 0. (20.9)

Since c is in general a complex number, the real and imaginary parts of (20.9) must

be satisfied independently. In particular, the imaginary part of (20.9) is

ci

∫ ∞

−∞

[∫ p0

p1

(
∂qp/∂y

|u− c|2 |Φ|2
)
dp+

αf0
∂θ
∂y

θS|u− c|2 |Φ|2
∣∣∣p0

p1

]
dy = 0 (20.10)

From this expression, it can be seen that for exponentially growing normal

modes (ci > 0), one or more of the following must be true:

1. The meridional gradient of pseudo-potential vorticity, ∂qp∂y, changes sign in

the domain;

2. The meridional temperature gradient, ∂θ/∂y, changes sign along one or both

boundaries;

3. The meridional temperature gradient, ∂θ/∂y, at the lower boundary (p0) has

the same sign as ∂θ/∂y at the upper boundary (p1) and/or the opposite sign

of the interior pseudo potential vorticity gradient, ∂qp/∂y;

4. The meridional temperature gradient, ∂θ/∂y, at the upper boundary (p1) has

the same sign as either or both the meridional temperature gradient at the

lower boundary and the interior potential vorticity gradient.

In the Eady model, ∂qp/∂y = 0 but the temperature gradient has the same sign

at both boundaries, so the Charney-Stern necessary condition is satisfied. In the
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Charney model, there is no temperature gradient at the upper boundary, but the

temperature gradient at the lower boundary has the opposite sign as the interior

pseudo-potential vorticity gradient, β̂, so once again the necessary condition for

instability is satisfied.

The Charney-Stern theorem may be interpreted as the requirement that at

least two, counter-propagating (relative to the background flow) trains of Rossby

waves must be supported by the fluid flow in order the normal mode instability to

occur. One can also derive a Fjørtoft condition by taking the real part of (20.9);

this shows, as in the Rayleigh instability problem, that the background flow must

be configured so that the counter-propagating wave trains can become phase locked.
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