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ENTREGA: LUNES 14 DE DICIEMBRE, 2009

Problem 1.
Consider the Liouville-Gelfand problem{∆u+ λeu = 0 in Ω

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain in RN with smooth boundary and λ > 0.

a) Prove that there exists λ∗ such that (1) has a minimal classical solution for
all 0 ≤ λ < λ∗ and has no solution if λ > λ∗.

You can use the sub and supersolution method. Show that for λ > 0 small (1)
has a classical solution. Then, if for λ̄ > 0 (1) has a classical solution show that for
all 0 ≤ λ ≤ λ̄ there is a classical solution. Prove also that for λ > 0 large there is
no solution.

b) Given a bounded function u : Ω→ R and a fixed λ > 0 consider the eigenvalue
problem {∆φ+ λeuφ+ µφ = 0 in Ω

φ = 0 on ∂Ω,

Verify that the eigenvalues µ for which there is a nontrivial solution form a sequence
µ1 < µ2 ≤ . . .→∞. The eigenvalue µ1 is simple and the associated eigenfunction
is of constant sign. We call µ1 the principal eigenvalue.

For 0 ≤ λ < λ∗ let uλ be the minimal solution of (1). Show that if 0 ≤ λ < λ∗

and u = uλ then µ1 > 0. Prove also the converse: if u is a classical solution of (1)
for some λ > 0 and the linearization at u has a nonnegative principal eigenvalue,
then u is the minimal solution of (1).

For the last part suppose that u is a classical solution for some λ > 0. Then
u ≥ uλ. Multiply the equation satisfied by u−uλ by u−uλ and integrate. Then use
u−uλ as a test function in the Rayleigh quotient that gives the principal eigenvalue
of the linearization at uλ. Recall that eu is convex.

c) Assume now Ω is the unit ball in R2. Then all solutions of (1) are radially
symmetric (by the result of Gidas, Ni, Nirenberg, 1979). Find the value λ∗ and
show that for all 0 < λ < λ∗ (1) has exactly 2 solutions. Describe the behavior of
the solutions as λ→ 0.

To do this, consider the family of functions

wµ(r) = log
8µ

(µ+ r2)2
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where µ > 0 is a parameter. Compute ∆wµ. You may use that for any given α ∈ R
the initial value probelm

u′′ +
1
r
u′ + λeu = 0 r ∈ (0, 1)

u(0+) = α, u′(0+) = 0

has unique solution.

d) Assume now Ω ⊂ R2 is a bounded domain, with smooth boundary. Consider
the functional

J(u) =
1
2

∫
Ω

|∇u|2 − λ
∫

Ω

eu, u ∈ H1
0 (Ω).

Verify that J : H1
0 (Ω) → R is C1, that its critical points are weak solutions of (1)

and that J satisfies the Palais-Smale condition. Using Lp and Schauder estimates
verify that weak solutions are classical.

For this it is convenient that you find and state the Trudinger-Moser inequality
in 2 dimensional domains.

e) Let 0 < λ < λ∗. Prove that the minimal solution uλ is a local minimum of
the functional J . Using this show that there exists at least another solution of (1).

f) Assume now that Ω ⊆ RN with N ≥ 3 and is starshaped. Prove in this case
that for λ > 0 small the only classcial solution of (1) is the minimal one.

Suppose that v is another classical solution, so v ≥ uλ. Let w = v−uλ. Multiply
the equation satisfied by w by x · ∇w.

Problem 2. (The Hilbert transform) Let f ∈ C∞0 (R) and consider the following
harmonic extension of f to the upper half plane

u(x, t) = Pt ∗ f(x), x ∈ R, t > 0

where

Pt(x) =
1
π

t

t2 + x2
x ∈ R, t > 0.

Let v be the harmonic conjugate of u such that v(x, t) → 0 as |(x, t)| → ∞. One
can show that v is given by v(x, t) = Qt ∗ f(x) where

Qt(x) =
1
π

x

t2 + x2
x ∈ R, t > 0.

The Hilbert transform of f ∈ C∞0 (R) is then defined as

Hf(x) = lim
t↓0

Qt ∗ f(x).

a) Verify that for f ∈ C∞0 (R), one has

Hf(x) =
1
π

lim
ε↓0

∫
|y−x|>ε

f(y)
x− y

dy ≡ 1
π
p.v.

1
x
∗ f(x).

Prove also that if f ∈ C∞0 (R) then

Ĥf(ξ) = −i sign(ξ) f̂(ξ).

Deduce that H is bounded from L2(R) into L2(R).
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b) Let K ∈ L1
loc(RN \ {0}) be such that it defines a tempered distribution in

RN . Assume that
K̂ ∈ L∞

and that K satisfies the Hörmander condition∫
|x|>2|y|

|K(x− y)−K(x)| dx ≤ C ∀y ∈ RN .

Show that there exists C such that∣∣{x ∈ RN/ |K ∗ f(x)| ≥ λ }
∣∣ ≤ C

λ
‖f‖L1 ∀λ > 0

for all f ∈ C∞0 (RN ). Deduce that for all 1 < p <∞ there is Cp such that

‖K ∗ f‖Lp ≤ Cp‖f‖Lp .

c) Show that if K ∈ C1(RN \ {0}) and

|∇K(x)| ≤ C

|x|N+1

then K satisfied the Hörmander conditions.

d) Deduce that for 1 < p <∞ there is Cp > 0 such that

‖Hf‖Lp(R) ≤ Cp‖f‖Lp(R).


