ROCK BREAKAGE: EXPLOSIVES 731

0, = 0.144 [6.13 (T, — 298) + 2.99/2 (10~ 3\(T,* —298?%) —
0.81/3 (10” °\(T,* — 298%)]

The sum is equal to —61,393 cal/mole, and the cubic form (Eq.
9.2.1.7) becomes

0 =22.137 T, + 0.00516 T,> — 5.13 (10" ") T° — 68365

The solution to the cubic equation has three roots (determined
graphically or solved numerically), one of which lies between
reasonable values of 2000 to 5000°K. The graphical solution
gives the explosion temperature for ANFO as 2204°K.

Detonation Pressure: The equation of state for explosive
gases produced by detonations must define the temperature-
pressure-volume relationships at high temperatures and pres-
sures. Many equations of state for nonideal gas pressure calcula-
tions are proposed (Cook, 1958; Fickett and Davis, 1979; Mader,
1979; Johansson and Persson, 1970). These solutions require the
use of large hydrodynamic computer codes and the knowledge
of empirically derived constants from high-pressure experiments.
A simple expression used to estimate pressure is the covolume
equation of state:

P(V,—a)=nRT (9.2.1.9)
where V, is specific volume of the explosive (inverse of p explo-
sive density), 7 is explosion temperature in °K, » is the number
of gas moles, and R is the gas constant, 82.06 cm’-atm/mole-°K.
Covolume ¢ is a measure of the actual volume of gas molecules.
Pressure is thus related to the inverse of P — ¢, or free volume.

Experimental values of a are given by Cook (1958) as a function
of p and approximated by,

a = e %% x 10° cm’/kg (9.2.1.10)

Example 9.2.1.8. Calculate the detonation pressure for
ANFO.

Solution.
Given 1 kg of ANFO mixture,
n = 43.285 mole
T = 2204 °K
p =085
o = 711.8 cm’/kg (from Eq. 9.2.1.9)
V, = (1000 g/kg)/(p) = 1176.5 cm’/kg
(43.285 moles)(82.06 cm’-atm/mole-"K)(2204°K)(14.7 psi-atm)
(1176.5 cm®/kg — 711.8 cm*/kg)
= 0.247 x 10° psi (1.7 GPa)

Pressure, P =

(9.2.1.11)

For explosives that are not oxygen balanced such as TNT,
experimental data for » are required and vary widely among

experimentalists. Cook (1958) among others gives experimental
data for TNT.

Example 9.2.1.9. Calculate the detonation pressure for TNT.

Solution.
Given 1 kg of TNT,

n = 23 moles

T = 4100°K
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Fig. 9.2.1.6. Generalized stress vs. time for radial and tangential
components of stress at two distances A from the borehole center
(a, = original borehole radius).

p = 1.59
P = 1.1 x 10° psi (7.57 GPa)

which agrees with experimental results.

9.2.1.3 Blasting Practices

The use of explosives to break rock requires the proper
selection of explosives and blasting devices, the careful design of
borehole patterns, loading characteristics, and delay blasting
sequence, and the control of ground vibration, airblast, and fly-
rock. Efficient blast designs produce the desired particle size
distributions and placement of muckpiles for ease of rock re-
moval and handling.

Rock Breakage Using Explosives: There are a number of
theories used to describe rock fragmentation by blasting (Winzer
and Ritter, 1980; Anon., 1987a). Two broad areas of breakage
mechanisms include (1) the role of stress waves generated from
the explosive detonation (shock) force, and (2) the role of bore-
hole pressures created by the detonation gas products.

Effect of Stress Waves—The theoretical treatment of explo-
sively generated stress waves is given by Kutter and Fairhurst
(1971), Rinehart (1975), and Mohanty (1985). Upon detonation
within a borehole, a shock wave is generated and travels into the
rock, quickly decaying in peak pressure amplitude and dispersing
in shape as the wave travels away from the borehole. The cylin-
drically divergent wave carries both a radial and tangential stress
component whose stress time histories are shown, idealized, in
Fig. 9.2.1.6. The response of the rock adjacent to the borehole



