Auxiliar 10: Teoría de la Medida

Profesor: Jaime San Martín Auxiliares: Mauro Escobar - Felipe Subiabre 26 de octubre de 2010

P1. Distribución normal multivariada

Se define la densidad de una variable aleatoria normal multivariada $N(\mu, \Sigma)$, donde $\mu \in \mathbb{R}^n$ y Σ es una matriz de $n \times n$ simétrica y definida positiva, como

$$f: \mathbb{R}^n \to \mathbb{R}_+, \quad f(x) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)}$$

- a) Pruebe que f define una densidad de probabilidad respecto a la medida de Lebesgue dx en \mathbb{R}^n , i.e. que $\mathbb{P}(A) := \int_A f(x) dx$ es una medida de probabilidad sobre \mathbb{R}^n
- b) Sea $X \in \mathbb{R}^n$ un vector aleatorio de componentes independientes que sigue una distribución $N(\mu, \Sigma)$ (observe que cada componente de X es una variable aleatoria independiente de las demás). Demuestre que $\mathbb{E}(X) = \mu$, donde la esperanza del vector X se entiende como el vector cuyas componentes son las esperanzas de las variables aleatorias correspondientes.
- c) Se define la matriz de varianzas-covarianzas de X como $M := \mathbb{E}((X \mu)(X \mu)^t)$. Demuestre que $M = \Sigma$.

P2. Teorema de Sard, versión débil

Sea $A \subseteq \mathbb{R}^m$ un abierto, $f: A \to \mathbb{R}^n$ una función de clase \mathcal{C}^1 , y sea

$$C := \{x \in A : f'(x) \text{ es de rango menor que } n.\}$$

El objetivo de este problema es probar que si $m \leq n$, entonces f(C) es de medida nula (observe que si m = n, entonces $C = \{x \in A : |f'(x)| = 0\}$). Para ello:

a) Demuestre que si $R \subseteq \mathbb{R}^n$ es un rectángulo y $f: R \to \mathbb{R}^n$ es de clase \mathcal{C}^1 tal que $\left|\frac{\partial f_i}{\partial x_i}\right| \leq M$ para todo $i, j \leq n, x \in \text{int}(R)$, entonces

$$\forall x, y \in R, \|f(x) - f(y)\| \le n^2 M \|x - y\|$$

- b) Muestre que si $A \subseteq \mathbb{R}^n$ y \mathcal{O} es un recubrimiento abierto de A, entonces existe una sucesión $(U_n)_{n\in\mathbb{N}}\subseteq\mathcal{O}$ que recubre A.
- c) Pruebe lo pedido para m=n, y muestre que esto implica el resultado para $m\leq n.$
- d) Concluya que en el teorema de cambio de variables la hipótesis $|\phi'(x)| > 0 \ \forall x \in \Omega$ es innecesaria.

P3. a) Decimos que $A, B \subseteq \mathbb{R}^2$ son congruentes si existe una rotación en ángulo α

$$T_{\alpha} : \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto T_{\alpha} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

tal que $B = T_{\alpha}(A)$. Pruebe que si A, B son congruentes, entonces A es medible si y sólo si B lo es, y en ese caso $\mu(A) = \mu(B)$, donde μ es la medida de Lebesgue en \mathbb{R}^2 . Sea $C = \bigcup_{n \in \mathbb{N}} A_n, \ n \neq m \implies A_n \cap A_m = \emptyset$ y A_n, A_m son congruentes para todo n, m.

Pruebe que los A_n son todos no medibles.

b) $E \subseteq \mathbb{R}^n$ se dice especial si

$$\bigcup_{l \in \mathbb{Z}^n} (l+E) = \mathbb{R}^n \land \forall l \neq l' \in \mathbb{Z}^n \ (l+E) \cap (l'+E) = \emptyset$$

- (i) Pruebe que $D = [0, 1)^n$ es especial.
- (ii) Sea $D_l = l + D$, $l \in \mathbb{Z}^n$. Supongamos que E es especial, considere $E_l = -l + E \cap D_l$ y pruebe que $\bigcup_{l \in \mathbb{Z}^n} E_l = D$. Deduzca que si E es medible entonces $\mu(E) = 1$.