Clase Auxiliar N°5: Cálculo Estocástico

Profesor: Joaquín Fontbona Auxiliares: Clara Fittipaldi - Gonzalo Mena

27 de septiembre de 2010

P1. Algunas propiedades de (sobre) martingalas

- a) Sea $X=(X_n)$ proceso adaptado e integrable. Probar que X es martingala si y sólo si $\forall \tau$ tiempo de parada acotado se tiene $\mathbb{E}(X_\tau)=\mathbb{E}(X_0)$
- b) Sea $X=(X_n)$ una sobremartingala tal que $\mathbb{E}(X_n)$ es constante. Pruebe que X es una martingala
- **P2.** Sean (Y_n) i.i.d $Y_1 \sim \mathcal{N}(0, \sigma^2)$. Sean $\mathcal{F}_0 = \{\emptyset, \Sigma\}, \mathcal{F}_n = \sigma(Y_1, \dots, Y_n), X_0 = 0, X_{n+1} = Y_{n+1} + X_n$. Recordar que $\mathbb{E}(e^{uY_1}) = e^{\frac{u^2\sigma^2}{2}}, \forall u \in \mathbb{R}$
 - a) Sea para $u \in \mathbb{R}$ fijo $Z_n^u = exp(uX_n \frac{nu^2\sigma^2}{2})$. Muestre que Z_n^u es una martingala
 - b) Muestre que para cada u el proceso Z_n^u converge casi seguramente a una variable aleatoria finita. ¿Para qué valores se u hay convergencia en L^1 ?. ¿Es Z_n^u regular ??
- **P3.** Sea Y_n secuencia de variables aleatorias i.i.d positivas con $\mathbb{E}(Y_1) = 1$, $\mathcal{F}_0 = \{\emptyset, \Sigma\}$, $\mathcal{F}_n = \sigma(Y_1 \dots Y_n)$, $X_0 = 1$, $X_n = \prod_{i=1}^n Y_i$
 - a) Muestre que X_n es una martingala con respecto a (\mathcal{F}_n) y deduzca que $\sqrt{X_n}$ es una supermartingala
 - b) Suponga que $\prod_{i=1}^{\infty} \mathbb{E}(\sqrt{Y_i}) = 0$. Estudiar la convergencia de $(\sqrt{X_n})$ y de (X_n) ¿Es (X_n) regular?
 - c) Suponga que $\prod_{i=1}^{\infty} \mathbb{E}(\sqrt{Y_i}) > 0$. Demuestre que $(\sqrt{X_n})$ es de Cauchy L^2 y deduzca que X_n es regular
- **P4.** Sean (Y_n) i.i.d a valores en \mathbb{Z} con $\mathbb{E}(Y_1) = m < 0, \mathbb{P}(Y_1 = 1) > 0, \mathbb{P}(Y_1 \ge 2) = 0$. Sean $X_0 = 0, X_{n+1} = Y_{n+1} + X_n$.

El objetivo de lo sucesivo es encontrar la distribución de la variable aleatoria

$$W = \sup_{i \in \mathbb{N}} X_i$$

Para $\lambda \geq 0$ sea $M(\lambda) = \mathbb{E}(e^{\lambda Y_1})$ y $\Psi(\lambda) = \log(M(\lambda))$

- a) Verifique que $W < \infty$ c.s.
- b) Muestre que Ψ es finita, convexa, $\Psi(\lambda) \to \infty$ cuando $\lambda \to \infty$ y que $\Psi'(0+) < 0$. Deduzca que existe un único $\lambda_0 > 0$ tal que $\Psi(\lambda_0) = 0$
- c) Para el λ_0 de la parte anterior pruebe que $Z_n = e^{\lambda_0 X_n}$ es una martingala y que $Z_n \to 0$ c.s.
- d) para $k\in\mathbb{N}, k\geq 0$ y $\tau_k=\inf\{n:X_n\geq k\}$ Muestre que

$$\lim_{n \to \infty} Z_{n \wedge \tau_k} = e^{\lambda_0 k} \mathbb{1}_{\tau_k < \infty}$$

e) Calcule $\mathbb{P}(\tau_k < \infty)$ y la distribución de W. Encuentre dicha ley de forma específica para el caso $\mathbb{P}(Y_1 = 1) = p < \frac{1}{2}, \mathbb{P}(Y_1 = -1) = 1 - p$

Es decir, ¿existe $Z^u \in L^1$ tal que $Z_n^u = \mathbb{E}(Z^u | \mathcal{F}_n)$?