
ISE 532: Network Flows

1: Introduction, Notation, and First Algorithms

Lecturer: Fernando Ordóñez

1 Introduction to Network Flows

Networks arise in many applications in everyday life: The Internet, traffic networks, logistic

networks, supply chains, etc. In Network Flows we consider optimization problems over a

given network. The notation to represent the network is by no means unique.

For example consider the following network, or directed graph, or digraph, or graph:

A.M.O alternate

G = (N,A) G = (V,E)

Node set N = {1, 2, 3, 4} Vertex set V = {1, 2, 3, 4}
Arc set A = Edge set E =

{(1, 2), (1, 3), (3, 2), (3, 4), (4, 1)} {1− 2, 1− 3, 3− 2, 3− 4, 4− 1}

A network will have integer numbers associated with the nodes and arcs of the graph above.

The cost per unit flow cij , capacity uij , and lower bound lij can be associated to arc (i, j).

A supply/demand b(i) can be associated to node i ∈ N . If b(i) > 0 it is a supply node, if

b(i) < 0 it is a demand node, and if b(i) = 0 it is a transshipment node.

Some classic optimization problems on networks are:

• Minimum cost flow problem. Given a network with capacities and costs on its arcs,

and that a certain amount of flow has to be transported from sources/supply nodes to

sinks/demand nodes in the network. What is the least expensive way to transport the

1

flow? Let xij be the flow on arc (i, j), the problem can be expressed by the following

linear program:

min
∑

(i,j)∈A

cijxij

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = b(i) for all i ∈ N

lij ≤ xij ≤ uij for all (i, j) ∈ A .

• Shortest path problem. What is the shortest way to go from a specified node s to a

specified node t in a network. How do we write this as a minimum cost flow problem?

• Maximum flow problem. Given a network with arc capacities. How much flow can be

sent from a specified source/supply node s to a specified sink/demand node t?

This problem can be represented by

max v

s.t.
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = b(i) for all i ∈ N

lij ≤ xij ≤ uij for all (i, j) ∈ A ,

where

b(i) =

v if i = s

−v if i = t

0 if i 6= s, t .

How can we transform this problem to a minimum cost flow problem?

2

• Assignment problem. We partition the set of nodes into two equally sized sets N1 and

N2 and define a collection of pairs A ⊆ N1×N2 representing the possible assignments,

each with an associated cost cij . We want to find the set of assignments of minimum

total cost that associates each node in N1 to a node in N2. This is a particular case

of the minimum cost flow problem.

• Circulation problem. A special case of minimum cost flow problem where there are

no supply or demand nodes. In other words b(i) = 0 for all i ∈ N . We obtain the

minimum cost feasible circulation of flow on the network.

• Minimum spanning tree problem. A spanning tree is a tree (i.e. a connected acyclic

graph) that spans (reaches) all the nodes of an undirected network. The cost of a

spanning tree is the sum of the costs of all the arcs in the tree. In the minimum

spanning tree problem we wish to identify the spanning tree of minimum cost.

• Matching problem. A matching in a network G = (N,A) is a set of arcs with the

property that every node in N is incident to at most one arc in the matching. In a

matching every node is matched to at most one other node, and some nodes might

not be matched with any other node. We look for the matching that has maximum

cardinality or maximum weight.

3

• Traveling Salesman Problem. Starting from node 1 design a tour that visits all nodes

2, . . . , n exactly once and returns to 1 with minimum total cost.

2 Applications

2.1 Hopping airplane problem

A small commuter airline uses a plane, with a capacity to carry at most p passengers, on

a hopping flight. This hopping flight visits the cities 1, 2, . . . , n in a fixed sequence. The

plane can pick up passengers at any node and drop them at any other node. Let bij denote

the passengers at node i that are going to node j, and let fij denote the fare per passenger

from node i to node j. Set up a minimum cost flow problem that will determine the number

of passengers to pick up at every city in order to maximize revenue on the hopping plane.

2.2 Assortment of Structural Steel Beams

A construction company needs structural steel beams of a uniform cross section but of

varying lengths. For each i = 1, . . . , n let Di > 0 denote the demand of the steel beam

of length Li. Assume L1 < L2 < . . . < Ln. Given that there exists a cost to set up an

inventory for each beam length, it can be economical not to carry an inventory of all beam

lengths. When a length not in inventory is needed, a longer beam can be cut to the desired

length. The remainder length will be discarded as unusable steel scrap. Assume that Ki is

the cost to set up inventory of beams of length Li, and Ci is the cost of a beam of length

Li.

Model this problem as a shortest path network problem that will determine the lengths of

beams that must be carried in inventory in order to minimize inventory costs.

4

2.3 Machine Set-up Costs

Assume that we want to schedule n jobs in a machine. We incur in a set-up cost of cij if

we schedule job j right after job i. What problem do we solve in order to determine the

job schedule with least total set-up cost.

3 Notation and Definitions

To illustrate the following definitions consider the following network

• Directed graphs and networks: A directed graph is a set of nodes N = {1, 2, . . . , n}
and a set of arcs which are ordered pairs of distinct nodes. For example, for the graph

above

N =

A =

A directed network is a directed graph whose nodes and/or arcs have associated

numerical values (capacities, costs, and/or supplies and demands).

5

• Undirected graphs and networks: An undirected graph is a set of nodes N =

{1, 2, . . . , n} and a set of edges which are pairs of distinct nodes. The only difference

with a directed graph is that the edges do not have a direction. Flow can traverse the

edge both ways.

• Degrees: The indegree of a node is the number of incoming arcs, and its outdegree

is the number of its outgoing arcs. The degree of a node is the sum of its indegree

and outdegree.

For example, node 5 in the graph above has

indegree = , outdegree = , and degree = .

Show that the sum of indegrees of all nodes = sum of outdegrees of all nodes = number

of arcs in the graph.

• Adjacency list: The arc adjacency list A(i) is the set of arcs emanating from node

i, that is A(i) = {(i, j) ∈ A | j ∈ N}. The node adjacency list A(i) is the set of nodes

that are adjacent to node i, that is A(i) = {j ∈ N | (i, j) ∈ A}.

Note that
∑
i∈N
|A(i)| = m.

• Subgraph: A graph G′ = (N ′, A′) where N ′ ⊆ N and A′ ⊆ A.

Draw the subgraph G′ induced by N ′ = {1, 2, 5, 6}.

Draw a spanning subgraph of G.

6

• Walk, Directed walk: A walk is a subgraph formed by a sequence of nodes and

arcs i1, a1, i2, a2, . . . , ar−1, ir such that for 1 ≤ k ≤ r − 1 either ak = (ik, ik+1) ∈ A or

ak = (ik+1, ik) ∈ A. In a directed walk ak = (ik, ik+1) ∈ A for every 1 ≤ k ≤ r − 1.

For example:

• Path, Directed path: A path (directed path) is a walk (directed walk) that does

not repeat nodes. For example:

• Cycle, Directed cycle: A cycle (directed cycle) is a path (directed path) with the

additional arc (ir, i1) or (i1, ir) (only (ir, i1) if directed). For example:

• Connectivity, Strong Connectivity: Nodes i and j are connected if there exists

a path from i to j. A graph G is connected if every pair of nodes in the graph are

connected, otherwise the graph is disconnected. A graph is strongly connected if from

every node there is a directed path to every other node in the graph.

Draw a connected graph that is not strongly connected.

7

Draw a disconnected graph with a strongly connected component.

• Cut: A cut is a partition of the set N into two parts S and S̄ = N − S. The set of

arcs from S to S̄ is denoted by [S, S̄].

• Tree, Forest, Subtree: A tree is a connected graph that contains no cycle. A forest

is a graph that contains no cycle, a possibly disconnected graph with every connected

component a tree. A subtree is a connected subgraph of a tree.

Proposition 1. 1. A tree on n nodes contains exactly n− 1 arcs.

2. A tree has at least two leaf nodes (i.e. nodes with degree 1).

3. Every two nodes of a tree are connected by a unique path.

proof:

• Bipartite Graph: A graph G = (N,A) is bipartite if we can partition N into N1

and N2 such that for every (i, j) ∈ A either i ∈ N1 and j ∈ N2 or i ∈ N2 and j ∈ N1.

Draw a bipartite graph.

8

4 Complexity Analysis

All the network problems discussed so far can be solved by enumerating all possible solutions

and picking the one with the optimal objective function value. This procedure will be usually

unpractical, since the number of possible solutions can be astronomical.

Example What is the running time of the following algorithm that adds two m×n matrices:

for i = 1 to m do

for j = 1 to n do

c(i, j) = a(i, j) + b(i, j)

Additions

Assignments

Comparisons

Look up cost

Some simplifications to determine algorithmic complexity:

• Ignore constants in the running time.

• Running times are stated in terms of relevant problem parameters.

• Use worst-case analysis.

• All arithmetic operations are assumed to take one step.

• Assume a Random Access Machine (RAM). Can use arrays, and select any element

of an array in 1 step.

• All numbers are integral.

Revisit complexity of sum of matrices.

For network flow problems on G = (N,A), the relevant problem parameters are

n := |N | number of nodes

m := |A| number of arcs

U upper bound on arc flow capacities

C upper bound on cost coefficients

9

4.1 Complexity of Algorithms

An algorithm to solve an instance of a network flow problem runs in

• pseudo-polynomial time iterations are bounded by a polynomial in n, m, U, C.

• polynomial time iterations are bounded by a polynomial in n,m, logU , and logC.

• strongly polynomial time iterations are bounded by a polynomial in n and m.

Exponential growth

Function

n 10 100 1000

n log n

n3

106n8

2n

5 Graph Search

Breadth First Search Algorithm.

Input: A Directed graph G = (N,A), and a starting node s ∈ N .

Output: An set of nodes that can be reached from s.

Define Arrays: Reachable[n], Prior[n].

Set Reachable[s] = yes and Reachable[j] = no for all j ∈ N − {s}. LIST = {s}
while LIST != empty do

select f the first node from LIST

find j ∈ A(f) such that Reachable[j] == no

if j exists then

Reachable[j] = yes, Prior[j] = f , add j to LIST.

else remove f from LIST

end

What is the output of this algorithm? Its complexity? What is the complexity to find all

connected components?

10

fernando
Stamp

fernando
Stamp

fernando
Text Box
en mins, 2 GHz

Depth First Search Algorithm.

Set Reachable[s] = yes and Reachable[j] = no for all j ∈ N − {s}. LIST = {s}
while LIST != empty do

select l the last node from LIST

find j ∈ A(l) such that Reachable[j] == no

if j exists then

Reachable[j] = yes, Prior[j] = l, add j to LIST.

else remove l from LIST

end

What is the output of this algorithm? Its complexity? What is the complexity to find all

connected components?

6 Flow Decomposition

Any feasible flow on a network can be decomposed into the sum of flows around cycles plus

the sum of flows from nodes with supply to nodes with demand.

Consider the following network and circulation:

Flow decomposition algorithm

1. Locate a cycle C with positive flow using depth first search

2. Determine max flow through the cycle

3. Remove flow through the cycle from network

Complexity? Why can we start this algorithm?

11

Lemma 2. If a directed graph has no node with indegree 0, then there is a directed cycle.

proof:

How do we adapt the previous algorithm to consider general flows?

6.1 Application of Flow decomposition

Consider the problem of finding a shortest path from node 1 to all other nodes. Assume all

arc costs are non-negative.

In order to tackle this problem, solve

min ctx

s.t. Nx =

{
n− 1 if i = 1

−1 if i 6= 1

x ≥ 0 .

12

7 Network Transformations

7.1 Removing Nonzero Lower Bounds

7.2 Arc Reversal

7.3 Removing Arc Capacities

13

7.4 Node Splitting

7.5 Residual Networks

14

