
NETWORK FLOWS 

Theory, Algorithms, 
and Applications 

BA VINDRA K. AHUJA 
Department of Industrial & Management Engineering 
Indian Institute of Technology, Kanpur 

THOMAS L. MAGNANT! 
Sloan School of Management 
Massachusetts Institute of Technology, Cambridge 

JAMES B. ORLIN 
Sloan School of Management 
Massachusetts Institute of Technology, Cambridge 

PRENTICE HALL, Upper Saddle River, New Iersey 07458 



Library of Congress Cataloging-in-Publication Data 

Ahuja, Ravindra K. (date) 
Network flows: theory, algorithms, and applications I Ravindra K. 

Ahuja, Thomas L. Magnantl. James B. Orlin. 
p. cm. 

Includes bibliographical references and index. 
ISBN 0-13-6J7S49-X 
I. Network analysis (Planning) 2. Mathematical optimization. 

I. Magnanti, Thomas L. II. Orlin. James B .. (datel. III. Title. 
TS7.SS.A37 1993 
6SS.4'032-dc20 

Acquisitions editor: Pete Janzow 
Production editor: Merrill Peterson 
Cover designer: Design Source 
Prepress buyer: Linda Behrens 
Manufacturing buyer: David Dickey 
Editorial assistant: Phyllis Morgan 

92-26702 
CIP 

The author and publisher of this book have used their best efforts in preparing this book. These effort! 
include the development, research, and testing of the theories and programs to determine their 
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with 
regard to these programs or the documentation contained in this book. The author and publisher shaH 
not be liable in any event for incidental or consequential damages in connection with, or arising out of 
the furnishing, performance, or use of these Drograms. 

C 1993 by Prentice-Hall, Inc. 
Upper Saddle River. New Jeney 074S8 

All rights reserved. No part of this book may be 
reproduced, in any form or by any means, 
without permission in writing from the publisher. 

Printed in the United States of America 

16 17 18 19 

ISBN 0-13-617S49-X 

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London 
PRENTICE-HALL OF AUSTRALIA PrY. LIMITED, Sydney 
PRENTICE-HALL CANADA INC., Toronto 
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico 
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi 
PRENTICE-HALL OF JAPAN, INC., Tokyo 
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro 



Ravi dedicates this book to his spiritual master, 
Revered Sri Ranaji Saheb. 

Tom dedicates this book to his favorite network, 
Beverly and Randy. 

Jim dedicates this book to Donna, 
who inspired him in so many ways. 

Collectively, we offer this book as a tribute 
to Lester Ford and Ray Fulkerson, whose pioneering research 

and seminal text in network flows have been an enduring 
inspiration to us and to a generation 

of researchers and practitioners. 





CONTENTS 

PREFACE, xl 

1 INTRODUCTION, 1 

1.1 Introduction, 1 
1.2 Network Flow Problems, 4 
1.3 Applications, 9 
1.4 Summary, 18 

Reference Notes, 19 
Exercises, 20 

2 PATHS, TREES, AND CYCLES, 23 
2.1 Introduction, 23 
2.2 Notation and Definitions, 24 
2.3 Network Representations, 31 
2.4 Network Transformations, 38 
2.5 Summary, 46 

Reference Notes, 47 
Exercises, 47 

3 ALGOlUTHM DESIGN AND ANALYSIS, ~3 
3.1 Introduction, 53 
3.2 Complexity Analysis, 56 
3.3 Developing Polynomial-Time Algorithms, 66 
3.4 Search Algorithms, 73 
3.5 Flow Decomposition Algorithms, 79 
3.6 Summary, 84 

Reference Notes, 85 
Exercises, 86 

4 SHORTEST PA THS: LABEL-SETTING ALGOBITHMS, 93 
4.1 Introduction, 93 
4.2 Applications, 97 
4.3 Tree of Shortest Paths, 106 
4.4 Shortest Path Problems in Acyclic Networks, 107 
4.5 Dijkstra's Algorithm, 108 
4.6 Dial's Implementation, 113 
4.7 Heap Implementations, 115 
4.8 Radix Heap Implementation, 116 

v 



4.9 Summary, 121 
Reference Notes, 122 
Exercises, 124 

15 SHORTEST PATHS: LABEL-COBBECTING ALGOBITHMS, 133 
5.1 Introduction, 133 
5.2 Optimality Conditions, 135 
5.3 Generic Label-Correcting Algorithms, 136 
5.4 Special Implementations of the Modified Label-Correcting Algorithm, 141 
5.5 Detecting Negative Cycles, 143 
5.6 All-Pairs Shortest Path Problem, 144 
5.7 Minimum Cost-to-Time Ratio Cycle Problem, 150 
5.8 Summary, 154 

Reference Notes, 156 
Exercises, 157 

8 MAXIMUM FLOWS: BABIC IDEAS, 188 
6.1 Introduction, 166 
6.2 Applications, 169 
6.3 Flows and Cuts, 177 
6.4 Generic Augmenting Path Algorithm, 180 
6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem, 184 
6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem, 188 
6.7 Flows with Lower Bounds, 191 
6.8 Summary, 196 

Reference Notes, 197 
Exercises, 198 

7 MAXIMUM FLOWS: POLYNOMIAL ALGOBITHMB, 207 
7.1 Introduction, 207 
7.2 Distance Labels, 209 
7.3 Capacity Scaling Algorithm, 210 
7.4 Shortest Augmenting Path Algorithm, 213 
7.5 Distance Labels and Layered Networks, 221 
7.6 Generic Preflow-Push Algorithm, 223 
7.7 FIFO Preflow-Push Algorithm, 231 
7.8 Highest-Label Preflow-Push Algorithm, 233 
7.9 Excess Scaling Algorithm, 237 
7.10 Summary, 241 

Reference Notes, 241 
Exercises, 243 

8 MAXIMUM FLOWS: ADDITIONAL TOPICS, 2lJO 

8.1 Introduction, 250 
8.2 Flows in Unit Capacity Networks, 252 
8.3 Flows in Bipartite Networks, 255 
8.4 Flows in Planar Undirected Networks, 260 
8.5 Dynamic Tree Implementations, 265 

vi Contents 



8.6 Network Connectivity, 273 
8.7 All-Pairs Minimum Value Cut Problem, 277 
8.8 Summary, 285 

Reference Notes, 287 
Exercises, 288 

9 MINIMUM COST FLOWS: BABIC ALGOBITHMS, 294 
9.1 Introducti"on, 294 
9.2 Applications, 298 
9.3 Optimality Conditions, 306 
9.4 Minimum Cost Flow Duality, 310 
9.5 Relating Optimal Flows to Optimal Node Potentials, 315 
9.6 Cycle-Canceling Algorithm and the Integrality Property, 317 
9.7 Successive Shortest Path Algorithm, 320 
9.8 Primal-Dual Algorithm, 324 
9.9 Out-of-Kilter Algorithm, 326 
9.10 Relaxation Algorithm, 332 
9.11 Sensitivity Analysis, 337 
9.12 Summary, 339 

Reference Notes, 341 
Exercises, 344 

10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS, 8lJ7 
10.1 Introduction, 357 
10.2 Capacity Scaling Algorithm, 360 
10.3 Cost Scaling Algorithm, 362 
10.4 Double Scaling Algorithm, 373 
10.5 Minimum Mean Cycle-Canceling Algorithm, 376 
10.6 Repeated Capacity Scaling Algorithm, 382 
10.7 Enhanced Capacity Scaling Algorithm, 387 
10.8 Summary, 395 

Reference Notes, 396 
Exercises, 397 

11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGO.RlTHMS, 402 
11.1 Introduction, 402 
11.2 Cycle Free and Spanning Tree Solutions, 405 
11.3 Maintaining a Spanning Tree Structure, 409 
11.4 Computing Node Potentials and Flows, 411 
11. 5 Network Simplex Algorithm, 415 
11.6 Strongly Feasible Spanning Trees, 421 
11.7 Network Simplex Algorithm for the Shortest Path Problem, 425 
11.8 Network Simplex Algorithm for the Maximum Flow Problem, 430 
11.9 Related Network Simplex Algorithms, 433 
11.10 Sensitivity Analysis, 439 
11.11 Relationship to Simplex Method, 441 
11.12 U nimodularity Property, 447 
11.13 Summary, 450 

Reference Notes, 451 
Exercises, 453 

Contents vii 



12 ABSIGNMENTSANDMATCHINGS, 481 
12.1 Introduction, 461 
12.2 Applications, 463 
12.3 Bipartite Cardinality Matching Problem, 469 
12.4 Bipartite Weighted Matching Problem, 470 
12.S Stable Marriage Problem, 473 
12.6 Nonbipartite Cardinality Matching Problem, 475 
12.7 Matchings and Paths, 494 
12.8 Summary, 498 

Reference Notes, 499 
Exercises, 501 

13 MINIMUM SPANNING TREES, 1510 
13.1 Introduction, 510 
13.2 Applications, 512 
13.3 Optimality Conditions, 516 
13.4 Kruskal's Algorithm, 520 
13.S Prim's Algorithm, 523 
13.6 Sollin's Algorithm, 526 
13.7 Minimum Spanning Trees and Matroids, 528 
13.8 Minimum Spanning Trees and Linear Programming, 530 
13.9 Summary, 533 

Reference Notes, 535 
Exercises, 536 

14 CONVEX COST FLOWS, 1543 
14.1 Introduction, 543 
14.2 Applications, 546 
14.3 Transformation to a Minimum Cost Flow Problem, 551 
14.4 Pseudopolynomial-Time Algorithms, 554 
14.S Polynomial-Time Algorithm, 556 
14.6 Summary, 560 

Reference Notes, 561 
Exercises, 562 

15 GENEBALIZED FLOWS, 1588 
IS.1 Introduction, 566 
IS.2 Applications, 568 
15.3 Augmented Forest Structures, 572 
IS.4 Determining Potentials and Flows for an Augmented Forest Structure, 577 
IS.S Good Augmented Forests and Linear Programming Bases, 582 
IS.6 Generalized Network Simplex Algorithm, 583 
IS.7 Summary, 591 

Reference Notes, 591 
Exercises, 593 

viii Contents 



16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION, 698 
16.1 Introduction, 598 
16.2 Problem Relaxations and Branch and Bound, 602 
16.3 Lagrangian Relaxation Technique, 605 
16.4 Lagrangian Relaxation and Linear Programming, 615 
16.5 Applications of Lagrangian Relaxation, 620 
16.6 Summary, 635 

Reference Notes, 637 
Exercises, 638 

17 MULTICOMMODITY FLOWS, 849 
17.1 Introduction, 649 
17.2 Applications, 653 
17.3 Optimality Conditions, 657 
17.4 Lagrangian Relaxation, 660 
17.5 Column Generation Approach, 665 
17.6 Dantzig-Wolfe Decomposition, 671 
17.7 Resource-Directive Decomposition, 674 
17.8 Basis Partitioning, 678 
17.9 Summary, 682 

Reference Notes, 684 
Exercises, 686 

18 COMPUTATIONAL TESTING OF ALGOlUTHMS, 896 
18.1 Introduction, 695 
18.2 Representative Operation Counts, 698 
18.3 Application to Network Simplex Algorithm, 702 
18.4 Summary, 713 

Reference Notes, 713 
Exercises, 715 

19 ADDITIONAL APPLICATIONS, 717 

19.1 Introduction, 717 
19.2 Maximum Weight Closure of a Graph, 719 
19.3 Data Scaling, 725 
19.4 Science Applications, 728 
19.5 Project Management, 732 
19.6 Dynamic Flows, 737 
19.7 Arc Routing Problems, 740 
19.8 Facility Layout and Location, 744 
19.9 Production and Inventory Planning, 748 
19.10 Summary, 755 

Reference Notes, 759 
Exercises, 760 

Contents Ix 



APPENDIX A DATA STBUCTUBES, 78~ 

A.I Introduction, 765 
A.2 Elementary Data Structures, 766 
A.3 d-Heaps, 773 
A.4 Fibonacci Heaps, 779 

Reference Notes, 787 

APPENDIX B Nf/I-COMPLETENESS, 788 
B.I Introduction, 788 
B.2 Problem Reductions and Transformations, 790 
B.3 Problem Classes r;p, ,Nr;p, ,Nr;p-Complete, and ,Nr;p-Hard, 792 
B.4 Proving ,Nr;p-Completeness Results, 796 
B.5 Concluding Remarks, 800 

Reference Notes, 801 

APPENDIX C LINEAR PROGRAMMING, 802 
C.I Introduction, 802 
C.2 Graphical Solution Procedure, 804 
C.3 Basic Feasible Solutions, 805 
C.4 Simplex Method, 810 
C.S Bounded Variable Simplex Method, 814 
C.6 Linear Programming Duality, 816 

Reference Notes, 820 

BEFEBENCES, 821 

INDEX, 840 

x Contents 



1 

INTRODUCTION 

ClJapter Outline 

1.1 Introduction 

Begin at the beginning ... and go on till you come to the end: 
then stop. 

-Lewis Carroll 

1.2 Network Flow Problems 
1.3 Applications 
1.4 Summary 

1.1 INTRODUCTION 

Everywhere we look in our daily lives, networks are apparent. Electrical and power 
networks bring lighting and entertainment into our homes. Telephone networks per
mit us to communicate with each other almost effortlessly within our local com
munities and across regional and international borders. National highway systems, 
rail networks, and airline service networks provide us with the means to cross great 
geographical distances to accomplish our work, to see our loved ones, and to visit 
new places and enjoy new experiences. Manufacturing and distribution networks 
give us access to life's essential foodstock and to consumer products. And computer 
networks, such as airline reservation systems, have changed the way we share in
formation and conduct our business and personal lives. 

In all of these problem domains, and in many more, we wish to move some 
entity (electricity, a consumer product, a person or a vehicle, a message) from one 
point to another in an underlying network, and to do so as efficiently as possible, 
both to provide good service to the users of the network and to use the underlying 
(and typically expensive) transmission facilities effectively. In the most general 
sense, this objective is what this book is all about. We want to learn how to model 
application settings as mathematical objects known as network flow problems and 
to study various ways (algorithms) to solve the resulting models. 

Network flows is a problem domain that lies at the cusp between several fields 
of inquiry, including applied mathematics, computer science, engineering, manage
ment, and operations research. The field has a rich and long tradition, tracing its 
roots back to the work of Gustav Kirchhof and other early pioneers of electrical 
engineering and mechanics who first systematically analyzed electrical circuits. This 
early work set the foundations of many of the key ideas of network flow theory and 
established networks (graphs) as useful mathematical objects for representing many 
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physical systems. Much of this early work was descriptive in nature, answering such 
questions as: If we apply a set of voltages to a given network, what will be the 
resulting current flow? The set of questions that we address in this book are a bit 
different: If we have alternative ways to use a network (i.e., send flow), which 
alternative will be most cost-effective? Our intellectual heritage for answering such 
questions is much more recent and can be traced to the late 1940s and early 1950s 
when the research and practitioner communities simultaneously developed optimi
zation as an independent field of inquiry and launched the computer revolution, 
leading to the powerful instruments we know today for performing scientific and 
managerial computations. 

For the most part, in this book we wish to address the following basic questions: 

1. Shortest path problem. What is the best way to traverse a network to get from 
one point to another as cheaply as possible? 

2. Maximum flow problem. If a network has capacities on arc flows, how can we 
send as much flow as possible between two points in the network while honoring 
the arc flow capacities? 

3. Minimum cost flow problem. If we incur a cost per unit flow on a network with 
arc capacities and we need to send units of a good that reside at one or more 
points in the network to one or more other points, how can we send the material 
at minimum possible cost? 

In the sense of traditional applied and pure mathematics, each of these problems 
is trivial to solve. It is not very difficult (but not at all obvious for the later two 
problems) to see that we need only consider a finite number of alternatives for each 
problem. So a traditional mathematician might say that the problems are well solved: 
Simply enumerate the set of possible solutions and choose the one that is best. 
Unfortunately, this approach is far from pragmatic, since the number of possible 
alternatives can be very large-more than the number of atoms in the universe for 
many practical problems! So instead, we would like to devise algorithms that are in 
a sense "good," that is, whose computation time is small, or at least reasonable, 
for problems met in practice. One way to ensure this objective is to devise algorithms 
whose running time is guaranteed not to grow very fast as the underlying network 
becomes larger (the computer science, operations research, and applied mathematics 
communities refer to the development of algorithms with such performance guar
antees as worst-case analysis). Developing algorithms that are good in this sense is 
another major theme throughout this book, and our development builds heavily on 
the theory of computational complexity that began to develop within computer sci
ence, applied mathematics, and operations research circles in the 1970s, and has 
flourished ever since. 

The field of computational complexity theory combines both craftsmanship and 
theory; it builds on a confluence of mathematical insight, creative algorithm design, 
and the careful, and often very clever use of data structures to devise solution meth
ods that are provably good in the sense that we have just mentioned. In the field of 
network flows, researchers devised the first, seminal contributions of this nature in 
the 1950s before the field of computational complexity theory even existed as a 
separate discipline as we know it today. And throughout the last three decades, 
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researchers have made a steady stream of innovations that have resulted in new 
solution methods and in improvements to known methods. In the past few years, 
however, researchers have made contributions to the design and analysis of network 
flow algorithms with improved worst-case performance guarantees at an explosive, 
almost dizzying pace; moreover, these contributions were very surprising: Through
out the 1950s, 1960s, and 1970s, network flows had evolved into a rather mature 
field, so much so that most of the research and practitioner communities believed 
that the core models that we study in this book were so very well understood that 
further innovations would be hard to come by and would be few and far between. 
As it turns out, nothing could have been further from the truth. 

Our presentation is intended to reflect these new developments; accordingly, 
we place a heavy emphasis on designing and analyzing good algorithms for solving 
the core optimization models that arise in the context of network flows. Our intention 
is to bring together and synthesize the many new contributions concerning efficient 
network flow algorithms with traditional material that has evolved over the past four 
decades. We have attempted to distill and highlight some of the essential core ideas 
(e.g., scaling and potential function arguments) that underlie many of the recent 
innovations and in doing so to give a unified account of the many algorithms that 
are now available. We hope that this treatment will provide our readers not only 
with an accessible entree to these exciting new developments, but also with an 
understanding of the most recent and advanced contributions from the literature. 
Although we are bringing together ideas and methodologies from applied mathe
matics, computer science, and operations research, our approach has a decidedly 
computer science orientation as applied to certain types of models that have tra
ditionally arisen in the context of managing a variety of operational systems (the 
foodstuff of operations research). 

We feel that a full understanding of network flow algorithms and a full appre
ciation for their use requires more than an in-depth knowledge of good algorithms 
for core models. Consequently, even though this topic is our central thrust, we also 
devote considerable attention to describing applications of network flow problems. 
Indeed, we feel that our discussion of applications throughout the text, in the ex
ercises, and in a concluding chapter is one of the major distinguishing features of 
our coverage. 

We have not adopted a linear programming perspective throughout the book, 
however, because we feel there is much to be gained from a more direct approach, 
and because we would like the material we cover to be readily accessible to readers 
who are not optimization specialists. Moreover, we feel that an understanding of 
network flow problems from first principles provides a useful concrete setting from 
which to draw considerable insight about more general linear programs. 

Similarly, since several important variations of the basic network flow problems 
are important in practice, or in placing network flows in the broader context of the 
field of combinatorial optimization, we have also included several chapters on ad
ditional topics: assignments and matchings, minimum spanning trees, models with 
convex (instead of linear) costs, networks with losses and gains, and multicommodity 
flows. In each of these chapters we have not attempted to be comprehensive, but 
rather, have tried to provide an introduction to the essential ideas of the topics. 

The Lagrangian relaxation chapter permits us to show how the core network 
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models arise in broader problem contexts and how the algorithms that we have 
developed for the core models can be used in conjunction with other methods to 
solve more complex problems that arise frequently in practice. In particular, this 
discussion permits us to introduce and describe the basic ideas of decomposition 
methods for several important network optimization models-constrained shortest 
paths, the traveling salesman problem, vehicle routing problem, multicommodity 
flows, and network design. 

Since the proof of the pudding is in the eating, we have also included a chapter 
on some aspects of computational testing of algorithms. We devote much of our 
discussion to devising the best possible algorithms for solving network flow prob
lems, in the theoretical sense of computational complexity theory. Although the 
theoretical model of computation that we are using has proven to be a valuable guide 
for modeling and predicting the performance of algorithms in practice, it is not a 
perfect model, and therefore algorithms that are not theoretically superior often 
perform best in practice. Although empirical testing of algorithms has traditionally 
been a valuable means for investigating algorithmic ideas, the applied mathematics, 
computer science, and operations research communities have not yet reached a 
consensus on how to measure algorithmic performance empirically. So in this chapter 
we not only report on computational experience with an algorithm we have pre
sented, but also offer some thoughts on how to measure computational performance 
and compare algorithms. 

1.2 NETWORK FLOW PROBLEMS 

In this section we introduce the network flow models we study in this book, and in 
the next section we present several applications that illustrate the practical impor
tance of these models. In both the text and exercises throughout the remaining 
chapters, we introduce many other applications. In particular, Chapter 19 contains 
a more comprehensive summary of applications with illustrations drawn from several 
specialties in applied mathematics, engineering, lpgistics, manufacturing, and the 
physical sciences. 

Minimum Cost Flow Problem 

The minimum cost flow model is the most fundamental of all network flow problems. 
Indeed, we devote most of this book to the minimum cost flow problem, special 
cases of it, and several of its generalizations. The problem is easy to state: We wish 
to determine a least cost shipment of a commodity through a network in order to 
satisfy demands at certain nodes from available supplies at other nodes. This model 
has a number of familiar applications: the distribution of a product from manufac
turing plants to warehouses, or from warehouses to retailers; the flow of raw material 
and intermediate goods through the various machining stations in a production line; 
the routing of automobiles through an urban street network; and the routing of calls 
through the telephone system. As we will see later in this chapter and in Chapters 
9 and 19, the minimum cost flow model also has many less transparent applications. 

In this section we present a mathematical programming formulation of the 
minimum cost flow problem and then describe several of its specializations and 

4 Introduction Chap. 1 



variants as well as other basic models that we consider in later chapters. We assume 
our readers are familiar with the basic notation and definitions of graph theory; those 
readers without this background might consult Section 2.2 for a brief account of this 
material. 

Let G = (N, A) be a directed network defined by a set N of n nodes and a 
set A of m directed arcs. Each arc (i, j) E A has an associated cost Cij that denotes 
the cost per unit flow on that arc. We assume that the flow cost varies linearly with 
the amount of flow. We also associate with each arc (i, j) E A a capacity Uij that 
denotes the maximum amount that can flow on the arc and a lower bound lij that 
denotes the minimum amount that must flow on the arc. We associate with each 
node i E N an integer number b(i) representing its supply/demand. If b(i) > 0, node 
i is a supply node; if b(i) < 0, node i is a demand node with a demand of - b(i); and 
if b(i) = 0, node i is a transshipment node. The decision variables in the minimum 
cost flow problem are arc flows and we represent the flow on an arc (i,}) E A by 
Xij. The minimum cost flow problem is an optimization model formulated as follows: 

Minimize 2 CijXij 
(i,j)EA 

subject to 

2 Xij - 2 Xj; = b(i) 
{j:(i,j)EA} {j:(j,i)EA} 

for all (i,}) E A, 

(l.la) 

for all i E N, (l.Ib) 

(l.Ic) 

where 27= 1 b(i) = O. In matrix form, we represent the minimum cost flow problem 

as follows: 

Minimize cx 

subject to 
Xx = b, 

I :5 X :5 U. 

(l.2a) 

(l.2b) 

(l.2c) 

In this formulation, X is an n x m matrix, called the node-arc incidence matrix 
of the minimum cost flow problem. Each column X ij in the matrix corresponds to 
the variable Xij. The column X ij has a + 1 in the ith row, a -1 in the jth row; the 
rest of its entries are zero. 

We refer to the constraints in (l.Ib) as mass balance constraints. The first 
term in this constraint for a node represents the total outflow of the node (i.e., the 
flow emanating from the node) and the second term represents the total inflow of 
the node (i.e., the flow entering the node). The mass balance constraint states that 
the outflow minus inflow must equal the supply/demand of the node. If the node is 
a supply node, its outflow exceeds its innow; if the node is a demand node, its inflow 
exceeds its outflow; and if the node is a transshipment node, its outflow equals its 
inflow. The flow must also satisfy the lower bound and capacity constraints (1.1 c), 
which we refer to asflow bound constraints. The flow bounds typically model phys
ical capacities or restrictions imposed on the flows' operating ranges. In most ap
plications, the lower bounds on arc flows are zero; therefore, if we do not state 
lower bounds for any problem, we assume that they have value zero. 
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In most parts of the book we assume that the data are integral (i.e., all arc 
capacities, arc costs, and supplies/demands of nodes are integral). We refer to this 
assumption as the integrality assumption. The integrality assumption is not restric
tive for most applications because we can always transform rational data to integer 
data by mUltiplying them by a suitably large number. Moreover, we necessarily need 
to convert irrational numbers to rational numbers to represent them on a computer. 

The following special versions of the minimum cost flow problem playa central 
role in the theory and applications of network flows. 

Shortest path problem. The shortest path problem is perhaps the simplest 
of all network flow problems. For this problem we wish to find a path of minimum 
cost (or length) from a specified source node s to another specified sink node t, 
assuming that each arc (i, j) E A has an associated cost (or length) Cij' Some of the 
simplest applications of the shortest path problem are to determine a path between 
two specified nodes of a network that has minimum length, or a path that takes least 
time to traverse, or a path that has the maximum reliability. As we will see in our 
later discussions, this basic model has applications in many different problem do
mains, such as equipment replacement, project scheduling, cash flow management, 
message routing in communication systems, and traffic flow through congested cities. 
If we set b(s) = 1, b(t) = - 1, and b(i) = 0 for all other nodes in the minimum 
cost flow problem, the solution to the problem will send 1 unit of flow from node s 
to node t along the shortest path. The shortest path problem also models situations 
in which we wish to send flow from a single-source node to a single-sink node in an 
uncapacitated network. That is, if we wish to send v units of flow from node s to 
node t and the capacity of each arc of the network is at least v, we would send the 
flow along a shortest path from node s to node t. If we want to determine shortest 
paths from the source node s to every other node in the network, then in the minimum 
cost flow problem we set b(s) = (n - 1) and b(i) = - 1 for all other nodes. [We 
can set each arc capacity Uij to any number larger than (n - 1).] The minimum cost 
flow solution would then send unit flow from node s to every other node i along a 
shortest path. 

Maximum flow problem. The maximum flow problem is in a sense a com
plementary model to the shortest path problem. The shortest path problem models 
situations in which flow incurs a cost but is not restricted by any capacities; in 
contrast, in the maximum flow problem flow incurs no costs but is restricted by flow 
bounds. The maximum flow problem seeks a feasible solution that sends the max
imum amount of flow from a specified source node s to another specified sink node 
t. If we interpret uijas the maximum flow rate of arc (i,j), the maximum flow problem 
identifies the maximum steady-state flow that the network can send from node s to 
node t per unit time. Examples of the maximum flow problem include determining 
the maximum steady-state flow of (1) petroleum products in a pipeline network, (2) 
cars in a road network, (3) messages in a telecommunication network, and (4) elec
tricity in an electrical network. We can formulate this problem as a minimum cost 
flow problem in the following manner. We set b(i) = 0 for all i E N, Cij = 0 for all 
(i, j) E A, and introduce an additional arc (t, s) with cost C ts = - 1 and flow bound 
U ts = 00. Then the minimum cost flow solution maximizes the flow on arc (t, s); but 
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since any flow on arc (t, s) must travel from node s to node t through the arcs in A 
[since each b(i) = 0], the solution to the minimum cost flow problem will maximize 
the flow from node s to node t in the original network. 

Assignment problem. The data of the assignment problem consist of two 
equally sized sets Nt and N z (i.e., / Nt / = / N z /), a collection of pairs A ~ Nt x 
N z representing possible assignments, and a cost cij associated with each element 
(i, j) E A. In the assignment problem we wish to pair, at minimum possible cost, 
each object in Nt with exactly one object in N z. Examples of the assignment problem 
include assigning people to projects, jobs to machines, tenants to apartments, swim
mers to events in a swimming meet, and medical school graduates to available in
ternships. The assignment problem is a minimum cost flow problem in a network 
G = (Nt U N 2 , A) with b(i) = 1 for all i E N l , b(i) = -1 for all i E N 2 , and 
uij = 1 for all (i, j) E A. 

Transportation problem. The transportation problem is a special case of 
the minimum cost flow problem with the property that the node set N is partitioned 
into two subsets NJ and N z (of possibly unequal cardinality) so that (1) each node 
in Nl is a supply node, (2) each node N z is a demand node, and (3) for each arc 
(i,j) inA, i E Nt andj E N z. The classical example of this problem is the distribution 
of goods from warehouses to customers. In this context the nodes in N 1 represent 
the warehouses, the nodes in N2 represent customers (or, more typically, customer 
zones), and an arc (i, j) in A represents a distribution channel from warehouse i to 
customer j. 

Circulation problem. The circulation problem is a minimum cost flow prob
lem with only transshipment nodes; that is, b(i) = 0 for all i E N. In this instance 
we wish to find a feasible flow that honors the lower and upper bounds lij and Uij 

imposed on the arc flows Xij' Since we never introduce any exogenous flow into the 
network or extract any flow from it, all the flow circulates around the network. We 
wish to find the circulation that has the minimum cost. The design of a routing 
schedule of a commercial airline provides one example of a circulation problem. In 
this setting, any airplane circulates among the airports of various cities; the lower 
bound lij imposed on an arc (i, j) is 1 if the airline needs to provide service between 
cities i and j, and so must dispatch an airplane on this arc (actually, the nodes will 
represent a combination of both a physical location and a time of day so that an arc 
connects, for example, New York City at 8 A.M. with Boston at 9 A.M.). 

In this book, we also study the following generalizations of the minimum cost 
flow problem. 

Convex cost flow problems. In the minimum cost flow problem, we assume 
that the cost of the flow on any arc varies linearly with the amount of flow. Convex 
cost flow problems have a more general cost structure: The cost is a convex function 
of the amount of flow. Flow costs vary in a convex manner in numerous problem 
settings, including (1) power losses in an electrical network due to resistance, (2) 
congestion costs in a city transportation network, and (3) expansion costs of a com
munication network. 
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Generalized flow problems. In the minimum cost flow problem, arcs con
serve flows (Le., the flow entering an arc equals the flow leaving the arc). In gen
eralized flow problems, arcs might "consume" or "generate" flow. If Xij units of 
flow enter an arc (i, j), then jJ.ijXij units arrive at node j; jJ.ij is a positive multiplier 
associated with the arc. If 0 < jJ.ij < I, the arc is lossy, and if I < jJ.ij < 00, the arc 
is gainy. Generalized network flow problems arise in several application contexts: 
for example, (I) power transmission through electric lines, with power lost with 
distance traveled, (2) flow of water through pipelines or canals that lose water due 
to seepage or evaporation, (3) transportation of a perishable commodity, and (4) 
cash management scenarios in which arcs represent investment opportunities and 
multipliers represent appreciation or depreciation of an investment's value. 

Multicommodity flow problems. The minimum cost flow problem models 
the flow of a single commodity over a network. Multicommodity flow problems arise 
when several commodities use the same underlying network. The commodities may 
either be differentiated by their physical characteristics or simply by their origin
destination pairs. Different commodities have different origins and destinations, and 
commodities have separate mass balance constraints at each node. However, the 
sharing of the common arc capacities binds the different commodities together. In 
fact, the essential issue addressed by the multicommodity flow problem is the al
location of the capacity of each arc to the individual commodities in a way that 
minimizes overall flow costs. Multicommodity flow problems arise in many practical 
situations, including (I) the transportation of passengers from different origins to 
different destinations within a city; (2) the routing of nonhomogeneous tankers (non
homogeneous- in terms of speed, carrying capability, and operating costs); (3) the 
worldwide shipment. of different varieties of grains (such as corn, wheat, rice, and 
soybeans) from countries that produce grains to those that consume it; and (4) the 
transmission of messages in a communication network between different origin
destination pairs. 

Other Models 

In this book we also study two other important network models: the minimum span
ning tree problem and the matching problem. Although these two models are not 
flow problems per se, because of their practical and mathematical significance and 
because of their close connection with several flow problems, we have included 
them as part of our treatment of network flows. 

Minimum spanning tree problem. A spanning tree is a tree (i.e., a con
nected acyclic graph) that spans (touches) all the nodes of an undirected network. 
The cost of a spanning tree is the sum of the costs (or lengths) of its arcs. In the 
minimum spanning tree problem, we wish to identify a spanning tree of minimum 
cost (or length). The applications of the minimum spanning tree problem are varied 
and include (1) constructing highways or railroads spanning several cities; (2) laying 
pipelines connecting offshore drilling sites, refineries, and consumer markets; (3) 
designing local access networks; and (4) making electric wire connections on a con
trol panel. 
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Matching problems. A matching in a graph G = (N, A) is a set of arcs 
with the property that every node is incident to at most one arc in the set; thus a 
matching induces a pairing of (some 00 the nodes in the graph using the arcs in A. 
In a matching, each node is matched with at most one other node, and some nodes 
might not be matched with any other node. The matching problem seeks a matching 
that optimizes some criteria. Matching problems on a bipartite graphs (i.e., those 
with two sets of nodes and with arcs that join only nodes between the two sets, as 
in the assignment and transportation problems) are called bipartite matching prob
lems, and those on nonbipartite graphs are called nonbipartite matching problems. 
There are two additional ways of categorizing matching problems: cardinality match
ing problems, which maximize the number of pairs of nodes matched, and weighted 
matching problems, which maximize or minimize the weight of the matching. The 
weighted matching problem on a bipartite graph is also known as the assignment 
problem. Applications of matching problems arise in matching roommates to hostels, 
matching pilots to compatible airplanes, scheduling airline crews for available flight 
legs, and assigning duties to bus drivers. 

1.3 APPLICATIONS 

Networks are pervasive. They arise in numerous application settings and in many 
forms. Physical networks are perhaps the most common and the most readily iden
tifiable classes of networks; and among physical networks, transportation networks 
are perhaps the most visible in our everyday lives. Often, these networks model 
homogeneous facilities such as railbeds or highways. But on other occasions, they 
correspond to composite entities that model, for example, complex distribution and 
logistics decisions. The traditional operations research "transportation problem" is 
illustrative. In the transportation problem, a shipper with inventory of goods at its 
warehouses must ship these goods to geographically dispersed retail centers, each 
with a given customer demand, and the shipper would like to meet these demands 
incurring the minimum possible transportation costs. In this setting, a transportation 
link in the underlying network might correspond to a complex distribution channel 
with, for example, a trucking shipment from the warehouse to a railhead, a rail 
shipment, and another trucking leg from the destination rail yard to the customer's 
site. 

Physical networks are not limited to transportation settings; they also arise in 
several other disciplines of applied science and engineering, such as mathematics, 
chemistry, and electrical, communications, mechanical, and civil engineering. When 
physical networks occur in these different disciplines, their nodes, arcs, and flows 
model many different types of physical entities. For example, in a typical commu
nication network, nodes will represe'nt telephone exchanges and'transmission facil
ities, arcs will denote copper cables or fiber optic links, and flow would signify the 
transmission of voi~e messages or of data. Figure 1",1 shows some typical associations 
for the nodes, arcs, and flows in a variety of physical networks. 

Network flow problems also arise in surprising ways for problems that on the 
surface might not appear to involve networks at all. Sometimes these applications 
are linked to a physical entity, and at other times they are not. Sometimes the nodes 
and arcs have a temporal dimension that models activities that take place over time. 
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Physical analog of 
Applications nodes Physical analog of arcs Flow 

Communication Telephone exchanges, Cables, fiber optic Voice messages, data, 
systems computers, links, microwave video transmissions 

transmission relay links 
facilities, satellites 

Hydraulic systems Pumping stations, Pipelines Water, gas, oil, 
reservoirs, lakes hydraulic fluids 

Integrated computer Gates, registers, Wires Electrical current 
circuits processors 

Mechanical systems Joints Rods, beams, springs Heat, energy 

Transportation Intersections, airports, Highways, railbeds, Passengers, freight, 
systems rail yards airline routes vehicles, operators 

Figure 1.1 Ingredients of some common physical networks. 

Many scheduling applications have this flavor. In any event, networks model a va
riety of problems in project, machine, and crew scheduling; location and layout 
theory; warehousing and distribution; production planning and control; and social, 
medical, and defense contexts. Indeed, these various applications of network flow 
problems seem to be more widespread than are the applications of physical networks. 
We present many such applications throughout the text and in the exercises; Chapter 
19, in particular, brings together and summarizes many applications. In the following 
discussion, to set a backdrop for the next few chapters, we describe several sample 
applications that are intended to illustrate a range of problem contexts and to be 
suggestive of how network flow problems arise in practice. This set of applications 
provides at least one example of each of the network models that we introduced in 
the preceding section. 

Application 1.1 Reallocation of Housing 

A housing authority has a number of houses at its disposal that it lets to tenants. 
Each house has its own particular attributes. For example, a house might or might 
not have a garage, it has a certain number of bedrooms, and its rent falls within a 
particular range. These variable attributes permit us to group the house into several 
categories, which we index by i = 1, 2, ... , n. 

Over a period of time a number of tenants will surrender their tenancies as 
they move or choose to live in alternative accommodations. Furthermore, the re
quirements of the tenants will change with time (because new families arrive, children 
leave home, incomes and jobs change, and other considerations). As these changes 
occur, the housing authority would like to relocate each tenant to a house of his or 
her choice category. While the authority can often accomplish this objective by 
simple exchanges, it will sometimes encounter situations requiring multiple moves: 
moving one tenant would replace another tenant from a house in a different category, 
who, in turn, would replace a tenant from a house in another category, and so on, 
thus creating a cycle of changes. We call such a change a cyclic change. The decision 
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problem is to identify a cyclic change, if it exists, or to show that no such change 
exists. 

To solve this problem as a network problem, we first create a relocation graph 
G whose nodes represent various categories of houses. We include arc (i, j) in the 
graph whenever a person living in a house of category i wishes to move to a house 
of category j. A directed cycle in G specifies a cycle of changes that will satisfy the 
requirements of one person in each of the categories contained in the cycle. Applying 
this method iteratively, we can satisfy the requirements of an increasing number of 
persons. 

This application requires a method for identifying directed cycles in a network, 
if they exist. A well-known method, known as topological sorting, will identify such 
cycles. We discuss topological sorting in Section 3.4. In general, many tenant reas
signments might be possible, so the relocation graph G might contain several cycles. 
In that case the authority's management would typically want to find a cycle con
taining as few arcs as possible, since fewer moves are easier to handle administra
tively. We can solve this problem using a shortest path algorithm (see Exercise 5.38). 

Applioation 1.2 Assortment of Struotural Steel Beams 

In its various construction projects, a construction company needs structural steel 
beams of a uniform cross section but of varying lengths. For each i = 1, ... , n, 
let D; > 0 denote the demand of the steel beam of length L;, and assume that LJ < 
L2 < '" < Ln. The company could meet its needs by maintaining and drawing upon 
an inventory of stock containing exactly Di units of the steel beam of length L;. It 
might not be economical to carry an the demanded lengths in inventory, however, 
because of the high cost of setting up the inventory facility to store and handle each 
length. In that case, if the company needs a beam oflength L; not carried in inventory, 
it can cut a beam of longer length down to the desired length. The cutting operation 
will typically produce unusable steel as scrap. Let K; denote the cost for setting up 
the inventory facility to handle beams of length L j , and let C; denote the cost of a 
beam of length L;. The company wants to determine the lengths of beams to be 
carried in inventory so that it will minimize the total cost of (1) setting up the in
ventory facility, and (2) discarding usable steel lost as scrap. 

We formulate this problem as a shortest path problem as follows. We construct 
a directed network G on (n + 1) nodes numbered 0, 1, 2, ... , n; the nodes in this 
network correspond to various beam lengths. Node 0 corresponds to a beam of length 
zero and node n corresponds to the longest beam. For each node i, the network 
contains a directed arc to every node j = i + 1, i + 2, ... , n. We interpret the 
arc (i, j) as representing a storage strategy in which we hold beams of length Lj in 
inventory and use them to satisfy the demand of all the beams of lengths L; + J , 

Li+2' .•• , Lj • The cost Cij of the arc (i, j) is 
j 

Cij = Kj + Cj L. D k· 
k=i+ J 

The cost of arc (i, j) has two components: (1) the fixed cost Kj of setting up 
the inventory facility to handle beams of length Lj , and (2) the cost of using beams 
oflength L j to meet the demands of beams of lengths L;+ 1, ••• ,Lj • A directed path 
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from node 0 to node n specifies an assortment of beams to carry in inventory and 
the cost of the path equals the cost associated with this inventory scheme. For 
example, the path 0-4-6-9 corresponds to the situation in which we set up the 
inventory facility for handling beams of lengths L4 , L6 , and L9. Consequently, the 
shortest path from node 0 to node n would prescribe the least cost assortment of 
structural steel beams. 

Application 1.8 Tournament Problem 

Consider a round-robin tournament between n teams, assuming that each team plays 
against every other team c times. Assume that no game ends in a draw. A person 
claims that ai for 1 :s i :s n denotes the number of victories accrued by the ith team 
at the end of the tournament. How can we determine whether the given set of non
negative integers at, 0.2, ..• , an represents a possible winning record for the n 
teams? 

Define a directed network G = (N, A) with node set N = {I, 2, ... , n} and 
arc set A = {(i, j) E N x N: i < j}. Therefore, each node i is connected to the nodes 
i + 1, i + 2, ... , n. Let Xij for i < j represent the number of times team i defeats 
teamj. Observe that the total number of times team i beats teams i + 1, i + 2, ... , 
n is ~{j:(i,j)EA} Xij. Also observe that the number of times that team i beats a team 
j < i is c - Xji. Consequently, the total number of times that team i beats teams 1, 
2, ... , i-I is (i - l)c - ~{j:(j,i)EA} Xji' The total number of wins of team i must 
equal the total number of times it beats the teams 1, 2, ... , n. The preceding 
observations show that 

L Xij
{j:(i,j)EA} 

L Xji = (X; - (i - l)c 
{j:(j,i)EA} 

for all i E N. (1.3) 

In addition, a possible winning record must also satisfy the following lower 
and upper bound conditions: 

for all (i, j) E A. (1.4) 

This discussion shows that the record a; is a possible winning record if 
the constraints defined by (1.3) and (1.4) have a feasible solution x. Let b(i) = 
(X; - (i - l)c. Observe that the expressions LiEN(Xi and LiEN(i - l)c are both 
equal to cn(n - 1)/2, which is the total number of games played. Consequently, 
LiE~(i) = O. The problem of finding a feasible solution of a network flow system 

like (1.3) and (1.4) is called a feasible flow problem and can be solved by solving a 
maximum flow problem (see Section 6.2). 

Application 1.4 Leveling Mountainous Terrain 

This application was inspired by a common problem facing civil engineers when they 
are building road networks through hilly or mountainous terrain. The problem con
cerns the distribution of earth from high points to low points of the terrain to produce 
a leveled roadbed. The engineer must determine a plan for leveling the route by 
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specifying the number of truckloads of earth to move between various locations 
along the proposed road network. 

We first construct a terrain graph: it is an undirected graph whose nodes rep
resent locations with a demand for earth (low points) or locations with a supply of 
earth (high points). An arc of this graph represents an available route for distributing 
the earth, and the cost of this arc represents the cost per truckload of moving earth 
between the two points. (A truckload is the basic unit for redistributing the earth.) 
Figure 1.2 shows a portion of the terrain graph. 

5 Figure 1.2 Portion of the terrain graph. 

A leveling plan for a terrain graph is a flow (set of truckloads) that meets the 
demands at nodes (levels the low points) by the available supplies (by earth obtained 
from high points) at the minimum cost (for the truck movements). This model is 
clearly a minimum cost flow problem in the terrain graph. 

Application 1. IS Rewiring of Typewriters 

For several years, a company had been using special electric typewriters to prepare 
punched paper tapes to enter data into a digital computer. Because the typewriter 
is used to punch a six-hole paper tape, it can prepare 26 = 64 binary hole/no-hole 
patterns. The typewriters have 46 characters, and each punches one of the 64 pat
terns. The company acquired a new digital computer that uses a different coding 
hole/no-hole patterns to represent characters. For example, using 1 to represent a 
hole and 0 to represent a no-hole, the letter A is 111100 in the code for the old 
computer and 011010 in the code for the new computer. The typewriter presently 
punches the former and must be modified to punch the latter. 

Each key in the typewriter is connected to a steel code bar, so changing the 
code of that key requires mechanical changes in the steel bar system. The extent of 
the changes depends on how close the new and old characters are to each other. 
For the letter A, the second, third, and sixth bits are identical in the old and new 
codes and no changes need be made for these bits; however, the first, fourth, and 
fifth bits are different, so we would need to make three changes in the steel code 
bar connected to the A-key. Each change involves removing metal at one place and 
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adding metal at another place. When a key is pressed, its steel code bar activates 
six cross-bars (which are used by all the keys) that are connected electrically to six 
hole punches. If we interchange the fourth and fifth wires of the cross-bars to the 
hole punches (which is essentially equivalent to interchanging the fourth and fifth 
bits of all characters in the old code), we would reduce the number of mechanical 
changes needed for the A-key from three to one. However, this change of wires 
might increase the number of changes for some of the other 45 keys. The problem, 
then, is how to optimally connect the wires from the six cross-bars to the six punches 
so that we can minimize the number of mechanical changes on the steel code bars. 

We formulate this problem as an assignment problem as follows. Define a 
network G = (NJ U N 2, A) with node sets NJ = {I, 2, ... , 6} and N2 = {I', 
2', ... , 6'}, and an arc set A = NJ x N 2; the cost of the arc (i, j') E A is the 
number of keys (out of 46) for which the ith bit in the old code differs from the jth 
bit in the new code. Thus if we assign cross-bar i to the punch j, the number of 
mechanical changes needed to print the ith bit of each symbol correctly is Cij' Con
sequently, the minimum cost assignment will minimize the number of mechanical 
changes. 

Application 1.6 Pairing Stereo Speakers 

As a part of its manufacturing process, a manufacturer of stereo speakers must pair 
individual speakers before it can sell them as a set. The performance of the two 
speakers depends on their frequency response. To measure the quality of the pairs, 
the company generates matching coefficients for each possible pair. It calculates 
these coefficients by summing the absolute differences between the responses of the 
two speakers at 20 discrete frequencies, thus giving a matching coefficient value 
between 0 and 30,000. Bad matches yield a large coefficient, and a good pairing 
produces a low coefficient. 

The manufacturer typically uses two different objectives in pairing the speak
ers: (1) finding as many pairs as possible whose matching coefficients do not exceed 
a specification limit, or (2) pairing speakers within specification limits to minimize 
the total sum of the matching coefficients. The first objective minimizes the number 
of pairs outside specification, and so the number of speakers that the firm must sell 
at a reduced price. This model is an application of the nonbipartite cardinality match
ing problem on an undirected graph: the nodes of this graph represent speakers and 
arcs join two nodes if the matching coefficients of the corresponding speakers are 
within the specification limit. The second model is an application of the nonbipartite 
weighted matching problem. 

Application 1.7 Measuring Homogeneity of Bimetallio 
Objects 

This application shows how a minimum spanning tree problem can be used to de
termine the degree to which a bimetallic object is homogeneous in composition. To 
use this approach, we measure the composition of the bimetallic object at a set of 
sample points. We then construct a network with nodes corresponding to the sample 
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points and with an arc connecting physically adjacent sample points. We assign a 
cost with each arc (i, j) equal to the product of the physical (Euclidean) distance 
between the sample points i and j and a homogeneity factor between 0 and 1. This 
homogeneity factor is 0 if the composition of the corresponding samples is exactly 
alike, and is 1 if the composition is very different; otherwise, it is a number between 
o and 1. Note that this measure gives greater weight to two points if they are different 
and are far apart. The cost of the minimum spanning tree is a measure of the ho
mogeneity of the bimetallic object. The cost of the tree is 0 if all the sample points 
are exactly alike, and high cost values imply that the material is quite nonhomo
geneous. 

Application 1.8 Electrical Networks 

The electrical network shown in Figure 1.3 has eight resistors, two current sources 
(at nodes 1 and 6), and one current sink (at node 7). In this network we wish to 
determine the equilibrium current flows through the resistors. A popular method for 
solving this problem is to introduce a variable Xi} representing the current flow on 
the arc (i, j) of the electrical network and write a set of equilibrium relationships 
for these flows; that is, the voltage-current relationship equations (using Ohm's law) 
and the current balance equations (using Kirchhofs law). The solution of these 
equations gives the arc currents Xi}. An alternative, and possibly more efficient ap
proach is to formulate this problem as a convex cost flow problem. This formulation 
uses the well-known result that the equilibrium currents on resistors are those flows 
for which the resistors dissipate the least amount of the total power supplied by the 
voltage sources (i.e., the electric current follows the path of least resistance). Ohm's 
law shows that a resistor of resistance 'i; dissipates ,;;xri watts of power. Therefore, 
we can obtain the optimal currents by solving the following convex cost flow prob
lem: 

Minimize ~ rijxt 
(i,j)EA 

subject to 

~ Xi)- ~ Xji = b(i) 
{j: (i,j)EA} {j:(j,i)EA} 

for each node i EN, 

for each arc (i,j) E A. 

In this model b(i) represents the supply/demand of a current source or sink. 

Figure 1.3 Electrical network. 
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The formulation of a set of equilibrium conditions as an equivalent optimization 
model is a poweIful idea in the physical sciences, dating from the last century, which 
has become known as so-called variational principles. The term "variational" arises 
because the equilibrium conditions are the "optimality conditions" for the equivalent 
optimization model that tell us that we cannot improve the optimal solution by vary
ing (hence the term "variational") the optimal solution to this optimization model. 

Application 1.9 Determining an Optimal Energy Policy 

As part of their national planning effort, most countries need to decide on an energy 
policy (i.e., how to utilize the available raw materials to satisfy their energy needs). 
Assume, for simplicity, that a particular country has four basic raw materials: crude 
oil, coal, uranium, and hydropower; and it has four basic energy needs: electricity, 
domestic oil, petroleum, and gas. The country has the technological base and in
frastructure to convert each raw material into one or more energy forms. For ex
ample, it can convert crude oil into domestic oil or petrol, coal into electricity, and 
so on. The available technology base specifies the efficiency and the cost of each 
conversion. The objective is to satisfy, at the least possible cost of energy conversion, 
a certain annual consumption level of various energy needs from a given annual 
production of raw materials. 

Figure 1.4 shows the formulation of this problem as a generalized network flow 
problem. The network has three types of arcs: (1) source arcs (s, i) emanating from 
the source node s, (2) sink arcs (j, t) entering the sink node t, and (3) conversion 
arcs (i, j). The source arc (s, i) has a capacity equal to the availability a(i) of the 
raw material i and a flow multiplier of value 1. The sink arc (j, t) has capacity equal 
to the demand ~(j) of type j energy need and flow mUltiplier of value 1. Each con
version arc (i, j) represents the conversion of raw material i into the energy form j; 
the mUltiplier of this arc is the efficiency of the conversion (i.e., units of energy j 
obtained from 1 unit of raw material i); and the cost of the arc (i, j) is the cost of 
this conversion. In this model, since a(i) is an upper bound on the use of raw material 

Crude oil Electricity 

4 

~a(i) --. 
;=1 

Hydropower Gas 

Figure 1.4 Energy problem as a generalized network flow problem. 
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i, ~:= I <x(i) is an upper bound on the flow out of node s. Similarly, :L: = I J3(i) is a 
lower bound on the flow into node t. In Exercise 15.29, we show how to convert 
this problem into a standard form without bounds on supplies and demands. 

Application 1.10 Racial Balancing of Schools 

In 1968, the U.S. Supreme Court ruled that all school systems in the country should 
begin admitting students to schools on a nondiscriminatory basis and should employ 
faster techniques to promote desegregated schools across the nation. This decision 
made it necessary for many school systems to develop radically different procedures 
for assigning students to schools. Since the Supreme Court did not specify what 
constitutes an acceptable racial balance, the individual school boards used their own 
best judgments to arrive at acceptable criteria on which to base their desegregation 
plans. This application describes a multicommodity flow model for determining an 
optimal assignment of students to schools that minimizes the total distance traveled 
by the students, given a specification of lower and upper limits on the required racial 
balance in each school. 

Suppose that a school district has S schools and school j has capacity Uj. For 
the purpose of this formulation, we divide the school district into L popUlation cen
ters. These locations might, for example, be census tracts, bus stops, or city blocks. 
The only restriction on the population centers is that they be finite in number and 
that a single distance measure reasonably approximates the distance any student at 
center i must travel if he or she is assigned to school j. Let Sik denote the available 
number of students of the kth ethnic group at the ith population center. The objective 
is to assign students to schools in a way that achieves the desired ethnic composition 
for each school and minimizes the total distance traveled by the students. Each 
school j has the ethnic requirement that it must enroll at least ljk and no more than 
Ujk students from the kth ethnic group. 

We can model this problem as a multi commodity flow problem on an appro
priately defined network. Figure 1.5 shows this network representation for a problem 
with three population centers and three schools. This network has one node for each 
popUlation center and for each school as well as a "source" and a "sink" node for 
each ethnic group. The flow commodities represent the students of different ethnic 
groups. The students of the kth ethnic group flow from source ak to sink ek via 
population center and school nodes. We set the upper bound on arc (ak, bi ) con
necting the kth ethnic group source node and the ith population center equal to Sik 

and the cost of the arc (b i , Cj) connecting the ith popUlation center and jth school 
equal to f ij, the distance between that population center and that school. By setting 
the capacity of the arc (Cj, dj ) equal to Uj, we ensure that the total number of students 
(of all ethnic groups) allocated to thejth school does not exceed the maximum student 
population for this school. The students of all ethnic groups must share the capacity 
of each school. Finally, we incorporate constraints on the ethnic compositions of 
the schools by setting the lower and upper bounds on the arc (dj , ek) equal to ljk and 
Ujk. It is fairly easy to verify that the multicommodity flow problem models the racial 
balancing problem, so a minimum multicommodity flow will specify an optimal as
signment of students to the schools. 
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Figure I.S Formulating the racial balancing problem as a multicommodity flow prob
lem. 

1.4 SUMMABY 

In this chapter we introduced the network flow problems that we study in this book 
and described a few scenarios in which these problems arise. We began by giving 
a linear programming formulation of the minimum cost flow problem and identifying 
several special cases: the shortest path problem, the maximum flow problem, the 
assignment problem, the transportation problem, and the circulation problem. We 
next described several generalizations of the minimum cost flow problem: the convex 
cost flow problem, the generalized network flow problem, and the multicommodity 
flow problem. Finally, we described two other important network models: the min
imum spanning tree problem and the matching problem. Although these two prob
lems are not network flow problems per se, we have included them in this book 
because they are closely related to several network flow problems and because they 
arise often in the context of network optimization. 

Networks are pervasive and arise in numerous application settings. Physical 
networks, which are the most readily identifiable classes of networks, arise in many 
applications in many different types of systems: communications, hydraulic, me
chanical, electronic, and transportation. Network flow problems also arise in sur
prising ways in optimization problems that on the surface might not appear to involve 
networks at all. We described several of these "indirect" applications of network 
flow problems, in such problem settings as urban housing, production planning, 
electrical networks, racial balancing, leveling mountainous terrain, evaluating tour
naments, matching stereo speakers, wiring typewriters, assessing the homogeneity 
of physical materials, and energy planning. The applications we have considered 
offer only a brief glimpse of the wide-ranging practical importance of network flows; 
although our discussion of applications in this chapter is limited, it does provide at 
least one example of each of the network models that we have introduced in this 
chapter. 
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REFERENCE NOTES 

The study of network flow models predates the development of linear programming. 
The first studies in this problem domain, conducted by Kantorovich [1939], Hitch
cock [1941], and Koopmans [1947], considered the transportation problem, a special 
case of the minimum cost flow problem. These studies provided insight into the 
problem structure and yielded algorithmic approaches. Interest in the network flow 
problems grew with the advent of the simplex method by Oantzig in 1947, who also 
specialized this algorithm for the transportation problem (see Oantzig [1951]). 

During the 1950s, researchers began to exhibit increasing interest in the min
imum cost flow problem and its specializations-the shortest path problem, the 
maximum flow problem, and the assignment problem-mainly because of the im
portance of these models in real-world applications. Soon researchers developed 
special algorithms for solving these problems. Dantzig, Ford, and Fulkerson pi
oneered these efforts. Whereas Oantzig focused on the simplex-based methods, Ford 
and Fulkerson developed primal-dual combinatorial algorithms. The landmark 
books by Oantzig [1962] and Ford and Fulkerson [1962] present thorough discussions 
of these early contributions. 

In the years following this groundbreaking work, network flow problems and 
their generalizations emerged as major research topics in thousands of papers and 
numerous text and reference books. The following books summarize developments 
in the field and serve as a guide to the literature: 

1. Flows in Networks (Ford and Fulkerson [1962]) 
2. Programming, Games and Transportation Networks (Berge and Ghouila-Houri 

[1962]) 
3. Finite Graphs and Networks (Busacker and Saaty [1965]) 
4. Network Flow, Transportation and Scheduling (Iri [1969]) 
5. Integer Programming and Network Flows (Hu [1969]) 
6. Communication, Transmission, and Transportation Networks (Frank and 

Frisch [1971]) 
7. Flows in Transportation Networks (Potts and Oliver [1972]) 
8. Graph Theory: An Algorithmic Approach (Christophides [1975]) 
9. Flow Algorithms (Adel'son-Vel'ski, Oinics, and Karzanov [1975]) 

10. Graph Theory with Applications (Bondy and Murty [1976]) 
11. Combinatorial Optimization: Networks and Matroids (Lawler [1976]) 
12. Optimization Algorithms for Networks and Graphs (Minieka [1978]) 
13. Graph Algorithms (Even [1979]) 
14. Algorithms for Network Programming (Kennington and Helgason [1980]) 
15. Network Flow Programming (Jensen and Barnes [1980]) 
16. Fundamentals of Network Analysis (Phillips and Garcia-Oiaz [1981]) 
17. Combinatorial Optimization: Algorithms and Complexity (Papadimitriou and 

Steiglitz [1982]) 
18. Discrete Optimization Algorithms (Syslo, Oeo, and Kowalik [1983]) 
19. Data Structures and Network Algorithms (TaIjan [1983]) 
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20. Graphs and Algorithms (Gondran and Minoux [1984]) 
21. Network Flows and Monotropic Optimization (Rockafellar [1984]) 
22. Linear Programming and Network Models (Gupta [1985]) 
23. Programming in Networks and Graphs (Derigs [1988]) 
24. Linear Programming and Network Flows, 2nd ed. (Bazaraa, Jarvis, and Sherali 

[1990]) 

As an additional source of references, the reader might consult the bibliogra
phies on network optimization prepared by Golden and Magnanti [1977], Ahuja, 
Magnanti, and Orlin [1989, 1991], Bazaraa, Jarvis, and Sherali [1990], and the ex
tensive set of references on integer programming compiled by researchers at the 
University of Bonn (Kastning [1976], Hausman [1978], and Von Randow [1982, 
1985]). 

Since the applications of network flow models are so pervasive, no single source 
provides a comprehensive account of network flow models and their impact on 
practice. Several researchers have prepared general surveys of selected application 
areas. Notable among these are the papers by Bennington [1974], Glover and Kling
man [1976], Bodin, Golden, Assad, and Ball [1983], Aronson [1989], and Glover, 
Klingman, and Phillips [1990]. The book by Gondran and Minoux [1984] also de
scribes a variety of applications of network flow problems. In this book we describe 
or cite over 150 selected applications of network flow problems. We provide the 
references for these problems in the reference notes given at the end of Chapters 
4,6,9, 12, 13, 14, 15, 16, 17, and 19. We have adapted many of these applications 
from the paper of Ahuja, Magnanti, Orlin, and Reddy [1992]. 

The applications we present in Section 1.3 are adapted from the following 
references: 

1. Reallocation of housing (Wright [1975]) 
2. Assortment of structural steel beams (Frank [1965]) 
3. Tournament problem (Ford and Johnson [1959]) 
4. Leveling mountainous terrain (Farley [1980]) 
5. Rewiring of typewriters (Machol [1961]) 
6. Pairing stereo speakers (Mason and Philpott [1988]) 
7. Measuring homogeneity of bimetallic objects (Shier [1982]) 
8. Electrical networks (Hu [1966]) 
9. Determining an optimal energy policy (Gondran and Minoux [1984]) 

10. Racial balancing of schools (Clarke and Surkis [1968]) 

EXERCISES 

1.1. Formulate the following problems as circulation problems: (1) the shortest path prob
lem; (2) the assignment problem; and (3) the transportation problem. 

1.2. Consider a variant of the transportation problem for which (1) the sum of demands 
exceeds the sum of supplies, and (2) we incur a penalty Pi for every unit of unfulfilled 
demand at demand nodej. Formulate this problem as a standard transportation problem 
with total supply equal to total demand. 
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1.3. In this exercise we examine a generalization of Application 1.2, concerning assortment 
of structural steel beams. In the discussion of that application, we assumed that if we 
must cut a beam of length 5 units to a length of 2 units, we obtain a single beam of 
length 2 units; the remaining 3 units have no value. However, in practice, from a beam 
of length 5 we can cut two beams of length 2; the remaining length of 1 unit will have 
some scrap value. Explain how we might incorporate the possibility of cutting mUltiple 
beam lengths (of the same length) from a single piece and assigning some salvage value 
to the scrap. Assume that the scrap has a value of r3 per unit length. 

1.4. Large-scale personnel assignment. A recurring problem in the U.S. armed forces is ef
ficient distribution and utilization of skilled personnel. Each month thousands of in
dividuals in the U.S. military vacate jobs, and thousands of personnel become available 
for assignment. Each job has particular characteristics and skill requirements, while 
each person from the pool of available personnel has specific skills and preferences. 
Suppose that we use this information to compute the utility (or desirability) dij of each 
possible assignment of a person to a job. The decision problem is to assign personnel 
to the vacancies in a way that maximizes the total utility of all the assignments. Explain 
how to formulate this problem as a network flow problem. 

1.5. Dating problem. A dating service receives data from p men and p women. These data 
determine what pairs of men and women are mutually compatible. Since the dating 
service's commission is proportional to the number of dates it arranges, it would like 
to determine the maximum number of compatible couples that can be formed. Formulate 
this problem as a matching problem. 

1.6. Pruned chessboard problem. A chessboard consists of 64 squares arranged in eight rows 
and eight columns. A domino is a wooden or plastic piece consisting of two squares 
joined on a side. Show that it is possible to fully cover the chessboard using 32 dominos 
(i.e., each domino covers two squares of the board, no two dominos overlap, and some 
domino covers each square). A pruned board is a chessboard with some squares re
moved. 
(a) Suppose that we want to know whether it is possible to fully cover a pruned board, 

and if not, to find the maximum number of dominos we can place on the pruned 
board so that each domino covers two squares and no two dominos overlap. For
mulate this problem as a bipartite cardinality matching problem. 

(b) Suppose that we prune only two diagonally opposite corners of the chessboard. 
Show that we cannot cover the resulting board with 31 dominos. 

1.7. Paragraph problem. The well-known document processing program TeX uses an op
timization procedure to decompose a paragraph into several lines so that when lines 
are left- and right-adjusted, the appearance of the paragraph wiH be the most attractive. 
Suppose that a paragraph consists of n words and that each word is assigned a sequence 
number. Let Cij denote the attractiveness of a line if it begins with the word i and ends 
with the word} - 1. The program TeX uses formulas to compute the value of each Cij. 

Given the cu,'s, show how to formulate the problem of decomposing the paragraph into 
several lines of text in order to maximize the total attractiveness (of all lines) as a 
shortest path problem. 

1.8. Seat-sharing problem. Several families are planning a shared car trip on scenic drives 
in the White Mountains, New Hampshire. To minimize the possibility of any quarrels, 
they want to assign individuals to cars so that no two members of a family are in the 
same car. Formulate this problem as a network flow problem. 

1.9. Police patrol problem (Khan [1979]). A police department in a small city consists of 
three precincts denoted PI, Pz, and P3. Each precinct is assigned a number of patrol 
cars equipped with two-way radios and first-aid equipment. The department operates 
with three shifts. Figure 1.6(a) and (b) shows the minimum and maximum number of 
patrol cars needed in each shift. Administrative constraints require that (1) shifts 1, 2, 
and 3 have, respectively, at least cars 10, 20, and 18 cars available; and (2) precincts 
Ph P2, and P3 are, respectively, allocated at least 10, 14, and 13 cars. The police de
partment wants to determine an allocation of patrol units that will meet all the require-
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Shift Shift Shift Shift Shift Shift 
I 2 3 1 2 3 

PI 2 4 3 PI 3 7 5 

P2 3 6 5 P2 5 7 10 

P3 5 7 6 P3 8 12 10 

(a) (b) 

Figure 1.6 Patrol car requirements: (a) minimum required per shift; (b) maximum 
required per shift. 

ments with the fewest possible units committed to the field. Formulate this problem 
as a circulation problem. 

1.10. Forest scheduling problem. Paper and wood products companies need to define cutting 
schedules that will maximize the total wood yield of their forests over some planning 
period. Suppose that a company with control of p forest units wants to identify the 
best cutting schedule over a planning horizon of k years. Forest unit i has a total acreage 
of aj units, and studies that the company has undertaken predict that this unit will have 
wij tons of woods available for harvesting in the jth year. Based on its prediction of 
economic conditions, the company believes that it should harvest at least Ij tons of 
wood in year j. Due to the availability of equipment and personnel, the company can 
harvest at most Uj tons of wood in year j. Formulate the problem of determining a 
schedule with maximum wood yield as a network flow problem. 
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PATHS, TREES, AND CYCLES 

Cbapter Outline 

2.1 Introduction 
2.2 Notation and Definitions 
2.3 Network Representations 
2.4 Network Transformations 
2.5 Summary 

S.l INTRODUCTION 

I hate definitions. 
-Benjamin Disraeli 

Because graphs and networks arise everywhere and in a variety of alternative forms, 
several professional disciplines have contributed important ideas to the evolution of 
network flows. This diversity has yielded numerous benefits, including the infusion 
of many rich and varied perspectives. It has also, however, imposed costs: For 
example, the literature on networks and graph theory lacks unity and authors have 
adopted a wide variety of conventions, customs, and notation. If we so desired, we 
could formulate network flow problems in several different standard forms and could 
use many alternative sets of definitions and terminology. We have chosen to adopt 
a set of common, but not uniformly accepted, definitions: for example, arcs and 
nodes instead of edges and vertices (or points). We have also chosen to use models 
with capacitated arcs and with exogenous supplies and demands at the nodes. The 
circulation problem we introduced in Chapter 1, without exogenous supplies and 
demands, is an alternative model and so is the capacitated transportation problem. 
Another special case is the uncapacitated network flow problem. In Chapter 1 we 
viewed each of these models as special cases of the minimum cost network flow 
problem. Perhaps somewhat surprisingly, we could have started with any of these 
models and shown that all the others were special cases. In this sense, each of these 
models offers another way to capture the mathematical essence of network flows. 

In this chapter we have three objectives. First, we bring together many basic 
definitions of network flows and graph theory, and in doing so, we set the notation 
that we will be using throughout this book. Second, we introduce several different 
data structures used to represent networks within a computer and discuss the relative 
advantages and disadvantages of each of these structures. In a very real sense, data 
structures are the life blood of most network flow algorithms, and choosing among 
alternative data structures can greatly influence the efficiency of an algorithm, both 
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in practice and in theory. Consequently, it is important to have a good understanding 
of the various available data structures and an idea of how and when to use them. 
Third, we discuss a number of different ways to transform a network flow problem 
and obtain an equivalent model. For example, we show how to eliminate flow bounds 
and formulate any model as an uncapacitated problem. As another example, we 
show how to formulate the minimum cost flow problem as a transportation problem 
(i.e., how to define it over a bipartite graph). This discussion is of theoretical interest, 
because it establishes the equivalence between several alternative models and there
fore shows that by developing algorithms and theory for any particular model, we 
will have at hand algorithms and theory for several other models. That is, our results 
enjoy a certain universality. This development is also of practical value since on 
various occasions throughout our discussion in this book we will find it more con
venient to work with one modeling assumption rather than another-our discussion 
of network transformations shows that there is no loss in generality in doing so. 
Moreover, since algorithms developed for one set of modeling assumptions also 
apply to models formulated in other ways, this discussion provides us with one very 
reassuring fact: We need not develop separate computer implementations for every 
alternative formulation, since by using the transformations, we can use an algorithm 
developed for anyone model to solve any problem formulated as one of the alter
native models. 

We might note that many of the definitions we introduce in this chapter are 
quite intuitive, and much of our subsequent discussion does not require a complete 
understanding of all the material in this chapter. Therefore, the reader might simply 
wish to skim this chapter on first reading to develop a general overview of its content 
and then return to the chapter on an "as needed" basis later as we draw on the 
concepts introduced at this point. 

2.2 NOTATION AND DEFINITIONS 

In this section we give several basic definitions from graph theory and present some 
basic notation. We also state some elementary properties of graphs. We begin by 
defining directed and undirected graphs. 

Directed Graphs and Networks: A directed graph G = (N, A) consists of a set N of nodes 
and a set A of arcs whose elements are ordered pairs of distinct nodes. Figure 2.1 gives 
an example of a directed graph. For this graph, N= {t, 2, 3,4,5,6, 7} and A = {(l, 
2), (l, 3), (2, 3), (2,4), (3, 6), (4, 5), (4, 7), (5, 2), (5, 3), (5, 7), (6, 7)}. A directed network 
is a directed graph whose nodes and/or arcs have associated numerical values (typically, 

Figure 2.1 Directed graph. 
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costs, capacities, and/or supplies and demands). In this book we often make no dis
tinction between graphs and networks, so we use the terms "graph" and "network" 
synonymously. As before, we let n denote the number of nodes and m denote the number 
of arcs in G. 

Undirected Graphs and Networks: We define an undirected graph in the same manner as we 
define a directed graph except that arcs are unordered pairs of distinct nodes. Figure 
2.2 gives an example of an undirected graph. In an undirected graph, we can refer to 
an arc joining the node pair i and j as either (i, j) or (j, i). An undirected arc (i, j) can 
be regarded as a two-way street with flow permitted in both directions: either from 
node ito nodej or from nodej to node i. On the other hand, a directed arc (i,j) behaves 
like a one-way street and permits flow only from node i to node j. 

Figure 2.2 Undirected graph. 

In most of the material in this book, we assume that the underlying network 
is directed. Therefore, we present our subsequent notation and definitions for di
rected networks. The corresponding definitions for undirected networks should be 
transparent to the reader; nevertheless, we comment briefly on some definitions for 
undirected networks at the end of this section. 

Tails and Heads: A directed arc (i, j) has two endpoints i andj. We refer to node i as the tail 
of arc (i, j) and node j as its head. We say that the arc (i, j) emanates from node i and 
terminates at nodej. An arc (i,j) is incident to nodes i andj. The arc (i,j) is an outgoing 
arc of node i and an incoming arc of node j. Whenever an arc (i, j) E A, we say that 
node j is adjacent to node i. 

Degrees: The indegree of a node is the number of incoming arcs of that node and its outdegree 
is the number of its outgoing arcs. The degree of a node is the sum of its indegree and 
outdegree. For example, in Figure 2.1, node 3 has an indegree of 3, an outdegree of 1, 
and a degree of 4. It is easy to see that the sum of indegrees of all nodes equals the 
sum of outdegrees of all nodes and both are equal to the number of arcs m in the network. 

Adjacency List: The arc adjacency list AU) of a node i is the set of arcs emanating from that 
node, that is, A(i) = {(i,j) E A: j EN}. The node adjacency list AU) is the set of nodes 
adjacent to that node; in this case, A(i) = {j E N: (i,j) E A}. Often, we shall omit the 
terms "arc" and "node" and simply refer to the adjacency list; in all cases it will be 
clear from context whether we mean arc adjacency list or node adjacency list. We 
assume that arcs in the adjacency list A(i) are arranged so that the head nodes of arcs 
are in increasing order. Notice that I A(i) I equals the outdegree of node i. Since the 
sum of all node outdegrees equals m, we immediately obtain the following property: 

Property 2.1. LiEN I A(i) I = m. 

Multiarcs and Loops: Multiarcs are two or more arcs with the same tail and head nodes. A 
loop is an arc whose tail node is the same as its head node. In most of the chapters in 
this book, we assume that graphs contain no multiarcs or loops. 
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Subgraph: A graph G' = (N', A') is a subgraph of G = (N, A) if N' ~ N and A 1 ~ A. We 
say that G' = (N', A ') is the subgraph of G induced by N' if A 1 contains each arc of 
A with both endpoints in N'. A graph G ' = (N', A') is a spanning subgraph of G = 
(N, A) if N' = N and A 1 ~ A. 

Walk: A walk in a directed graph G = (N, A) is a subgraph of G consisting of a sequence 
of nodes and arcs i. - al - i2 - a2 - ... - ir- I - ar-I - ir satisfying the property 
that for aliI ::s; k ::s; r - 1, either ak = (h, h+ d E A or ak = (ik+ I, h) E A. Alternatively, 
we shall sometimes refer to a walk as a set of (sequence of) arcs (or of nodes) without 
any explicit mention of the nodes (without explicit mention of arcs). We illustrate this 
definition using the graph shown in Figure 2.1. Figure 2.3(a) and (b) illustrates two 
walks in this graph: 1-2-5-7 and 1-2-4-5-2-3. 

I 3 

(a) (b) 

Figure 2.3 Examples of walks. 

Directed Walk: A directed walk is an "oriented" version of a walk in the sense that for any 
two consecutive nodes hand h+ Ion the walk, (h, h+ dE A. The walk shown in Figure 
2.3(a) is not directed; the walk shown in Figure 2.3(b) is directed. 

Path: A path is a walk without any repetition of nodes. The walk shown in Figure 2.3(a) is 
also a path, but the walk shown in Figure 2.3(b) is not because it repeats node 2 twice. 
We can partition the arcs of a path into two groups: forward arcs and backward arcs. 
An arc (i, j) in the path is aforward arc if the path visits node i prior to visiting node 
j, and is a backward arc otherwise. For example, in the path shown in Figure 2.3(a), 
the arcs (1, 2) and (5, 7) are forward arcs and the arc (5, 2) is a backward arc. 

Directed Path: A directed path is a directed walk without any repetition of nodes. In other 
words, a directed path has no backward arcs. We can store a path (or a directed path) 
easily within a computer by defining a predecessor index pred( j) for every node 
j in the path. If i and j are two consecutive nodes on the path (along its orientation), 
predU) = i. For the path 1-2-5-7 shown in Figure 2.3(a), pred(7) = 5, pred(5) = 2, 
pred(2) = 1, and pred(1) = O. (Frequently, we shall use the convention of setting the 
predecessor index of the initial node of a path equal to zero to indicate the beginning 
of the path.) Notice that we cannot use predecessor indices to store a walk since a 
walk may visit a node more than once, and a single predecessor index of a node cannot 
store the multiple predecessors of any node that a walk visits more than once. 

Cycle: A cycle is a path;, - i2 - ... - ir together with the arc (in id or (i" ir)' We shall 
often refer to a cycle using the notation i l - ;2 - ... - ir - it. Just as we did for paths, 
we can define forward and backward arcs in a cycle. In Figure 2.4(a) the arcs (5, 3) 
and (3, 2) are forward arcs and the arc (5, 2) is a backward arc of the cycle 2-5-3. 
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Directed Cycle: A directed cycle is a directed path i l - i2 - ... - ir together with the arc 
(ir, it>. The graph shown in Figure 2.4(a) is a cycle, but not a directed cycle; the graph 
shown in Figure 2.4(b) is a directed cycle. 

~ .

.......•.•. ':.: •... I ... ' •. ' ... : •.•.. '.'.' ..• : .•..••. '...... ............ ~(i: ... : .•. : .•..•• ,1 ...••. : •....... : .•. ' ....•• ' •...• '. ~ .. ,... ~ 

:1: .. !~ 

<a) <b) Figure 1.4 Examples of cycles. 

Acyclic Graph: A graph is a acyclic if it contains no directed cycle. 

Connectivity: We will say that two nodes i and j are connected if the graph contains at least 
one path from node i to node j. A graph is connected if every pair of its nodes is 
connected~ otherwise, the graph is disconnected. We refer to the maximal connected 
subgraphs of a disconnected network as its components. For instance, the graph shown 
in Figure 2.5(a) is connected, and the graph shown in Figure 2.5(b) is disconnected. 
The latter graph has two components consisting of the node sets {I, 2, 3, 4} and {5, 6}. 
In Section 3.4 we describe a method for determining whether a graph is connected or 
not, and in Exercise 3.41 we discuss a method for identifying all components of a graph. 

<a) (b) 

Figure 1.S (a) Connected and (b) disconnected graphs. 

Strong Connectivity: A connected graph is strongly connected if it contains at least one directed 
path from every node to every other node. In Figure 2.5(a) the component [see Figure 
2.5(b») defined on the node set {l, 2, 3, 4} is strongly connected; the component defined 
by the node set {5, 6} is not strongly connected because it contains no directed path 
from node 5 to node 6. In Section 3.4 we describe a method for determining whether 
or not a graph is strongly connected. 

Cut: A cut is a partition of the node set N into two parts, Sand 5 = N - S. Each cut defines 
a set of arcs consisting of those arcs that have one endpoint in S and another endpoint 
in 5. Therefore, we refer to this set of arcs as a cut and represent it by the notation 
[S, 51. Figure 2.6 illustrates a cut with S = {l, 2, 3} and 5 = {4, 5, 6, 7}. The set of 
arcs in this cut are {(2, 4), (5, 2), (5, 3), (3, 6)}. 
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Figure 2.6 Cut. 

s-t Cut: ~n s-t cut is defined with respect to two disti~uished nodes sand t, and is a cut 
[S, S] satisfying the property that s E Sand t E S. For instance, if s = 1 and t = 6, 
the cut depicted in Figure 2.6 is an s-t cut; but if s = 1 and t = 3, this cut is not an 
s-t cut. 

Figure 2.7 Example of two trees. 

Tree. A tree is a connected graph that contains no cycle. Figure 2.7 shows two examples of 
trees. 

A tree is a very important graph theoretic concept that arises in a variety of 
network flow algorithms studied in this book. In our subsequent discussion in later 
chapters, we use some of the following elementary properties of trees. 

Property 2.2 
(a) A tree on n nodes contains exactly n - 1 arcs. 
(b) A tree has at least two leaf nodes (i.e., nodes with degree O. 
(c) Every two nodes of a tree are connected by a unique path. 

Proof. See Exercise 2.13. 

Forest: A graph that contains no cycle is a forest. Alternatively, a forest is a collection of 
trees. Figure 2.8 gives an example of a forest. 
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Figure 2.8 Forest. 

Subtree: A connected subgraph of a tree is a subtree. 
Rooted Tree: A rooted tree is a tree with a specially designated node, called its root; we 

regard a rooted tree as though it were hanging from its root. Figure 2.9 gives an instance 
of a rooted tree; in this instance, node 1 is the root node. 

Figure 2.9 Rooted tree. 

We often view the arcs in a rooted tree as defining predecessor-successor (or 
parent-child) relationships. For example, in Figure 2.9, node 5 is the predecessor 
of nodes 6 and 7, and node 1 is the predecessor of nodes 2, 4, and 5. Each node i 
(except the root node) has a unique predecessor, which is the next node on the 
unique path in the tree from that node to the root; we store the predecessor of node 
i using a predecessor index pred(i). If j = pred(i), we say that node j is the pred
ecessor of node i and node i is a successor of node j. These predecessor indices 
uniquely define a rooted tree and also allow us to trace out the unique path from 
any node back to the root. The descendants of a node i consist of the node itself, 
its successors, successors of its successors, and so on. For example, in Figure 2.9 
the node set {5, 6, 7, 8} is the set of descendants of node 5. We say that a node is 
an ancestor of all of its descendants. For example, in the same figure, node 2 is an 
ancestor of itself and node 3. 

In this book we occasionally use two special type of rooted trees, called a 
directed in-tree and a directed out-tree. 

Directed·Out· Tree: A tree is a directed out-tree routed at node s if the unique path in the tree 
from node s to every other node is a directed path. Figure 2.1O(a) shows an instance 
of a directed out-tree rooted at node 1. Observe that every node in the directed out
tree (except node 1) has indegree 1. 
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<a) (b) 

Figure 2.10 Instances of directed out-tree and directed in-tree. 

Directed-In-Tree: A tree is a directed in-tree routed at node s if the unique path in the tree 
from any node to node s is a directed path. Figure 2.1O(b) shows an instance of a directed 
in-tree rooted at node 1. Observe that every node in the directed in-tree (except node 
1) has outdegree 1. 

Spanning Tree: A tree T is a spanning tree of G if T is a spanning subgraph of G. Figure 2.11 
shows two spanning trees of the graph shown in Figure 2.1. Every spanning tree of a 
connected n-node graph G has (n - 1) arcs. We refer to the arcs belonging to a spanning 
tree T as tree arcs and arcs not belonging to T as nontree arcs. 

2 

<a) (b) 

Figure 2.11 Two spanning trees of the network in Figure 2.1. 

Fundamental Cycles: Let T be a spanning tree of the graph G. The addition of any nontree 
arc to the spanning tree T creates exactly one cycle. We refer to any such cycle as a 
fundamental cycle of G with respect to the tree T. Since the network contains m -
n + 1 nontree arcs, it has m - n + 1 fundamental cycles. Observe that if we delete 
any arc in a fundamental cycle, we again obtain a spanning tree. 

Fundamental Cuts: Let T be a spanning tree of the graph G. The deletion of any tree arc of 
the spanning tree T produces a disconnected graph containing two subtrees Tl and T2 • 

Arcs whose endpoints belong to the different subtrees constitute a cut. We refer to any 
such cut as a fundamental cut of G with respect to the tree T. Since a spanning tree 
contains n - 1 arcs, the network has n - 1 fundamental cuts with respect to any tree. 
Observe that when we add any arc in the fundamental cut to the two subtrees Tl and 
T2 , we again obtain a spanning tree. 

30 Paths, Trees, and Cycles Chap. 2 



Bipartite Graph: A graph G = (N, A) is a bipartite graph if we can partition its node set into 
two subsets NJ and N2 so that for each arc (i,}) in A either (i) i E NJ and} E N 2, or 
(ii) i E N2 and} EN]. Figure 2.12 gives two examples of bipartite graphs. Although it 
might not be immediately evident whether or not the graph in Figure 2.12(b) is bipartite, 
if we define NJ = {l, 2, 3, 4} and N2 = {5, 6, 7, 8}, we see that it is. 

11---------~ 

~--------------~ 2 

(8) (b) 
Figure 2.12 Examples of bipartite 
graphs. 

Frequently, we wish to discover whether or not a given graph is bipartite. 
Fortunately, there is a very simple method for resolving this issue. We discuss this 
method in Exercise 3.42, which is based on the following well-known characteri
zation of bipartite graphs. 

Property 2.3. A graph G is a bipartite graph if and only if every cycle in G 
contains an even number of arcs. 

Proof See Exercise 2.21. 

Definitions for undirected networks. The definitions for directed net
works easily translate into those for undirected networks. An undirected arc (i, j) 
has two endpoints, i and j, but its tail and head nodes are undefined. If the network 
contains the arc (i, j), node i is adjacent to node j, and node j is adjacent to node i. 
The arc adjacency list (as well as the node adjacency list) is defined similarly except 
that arc (i, j) appears in A (i) as well as A(j). Consequently, LiEN I AU) I = 2m. 

The degree of a node is the number of nodes adjacent to node i. Each of the graph 
theoretic concepts we have defined so far-walks, paths, cycles, cuts and trees
has essentially the same definition for undirected networks except that we do not 
distinguish between a path and a directed path, a cycle and a directed cycle, and so 
on. 

'.8 NETWORK REPRESENTATIONS 

The performance of a network algorithm depends not only on the algorithm, but also 
on the manner used to represent the network within a computer and the storage 
scheme used for maintaining and updating the intermediate results. By representing 
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a network more cleverly and by using improved data structures, we can often im
prove the running time of an algorithm. In this section we discuss some popular 
ways of representing a network. In representing a network, we typically need to 
store two types of information: (1) the network topology, that is, the network's node 
and arc structure; and (2) data such as costs, capacities, and supplies/demands as
sociated with the network's nodes and arcs. As we will see, usually the scheme we 
use to store the network's topology will suggest a natural way for storing the as
sociated node and arc information. In this section we describe in detail represen
tations for directed graphs. The corresponding representations for undirected net
works should be apparent to the reader. At the end of the section, however, we 
briefly discuss representations for undirected networks. 

Node-Arc Incidence Matrix 

The node-arc incidence matrix representation, or simply the incidence matrix rep
resentation, represents a network as the constraint matrix of the minimum cost flow 
problem that we discussed in Section 1.2. This representation stores the network as 
an n x m matrix .N which contains one row for each node of the network and one 
column for each arc. The column corresponding to arc (i,}) has only two nonzero 
elements: It has a + 1 in the row corresponding to node i and a-I in the row 
corresponding to node}. Figure 2.14 gives this representation for the network shown 
in Figure 2.13. 

0) (ell' u) ·0 
(15,40) 

2 

(25,30) 

(45, 10) 
(35,50) 

(35,50) 

3 
(25,20) Figure 2.13 Network example. 

(I, 2) (I, 3) (2, 4) (3, 2) (4, 3) (4, 5) (5, 3) (5, 4) 

0 0 0 0 0 0 

2 -I 0 -I 0 0 0 0 

3 0 -1 0 -1 0 -1 0 

4 0 0 -I 0 0 -1 

5 0 0 0 0 0 -1 

Figure 2.14 Node-arc incidence matrix of the network example. 

32 Paths, Trees, and Cycles Chap. 2 



The node-arc incidence matrix has a very special structure: Only 2m out of 
its nm entries are nonzero, all of its nonzero entries are + 1 or - 1, and each column 
has exactly one + 1 and one -1. Furthermore, the number of + 1 's in a row equals 
the outdegree of the corresponding node and the number of - 1 's in the row equals 
the indegree of the node. 

Because the node-arc incidence matrix .N' contains so few nonzero coefficients, 
the incidence matrix representation of a network is not space efficient. More efficient 
schemes, such as those that we consider later in this section would merely keep 
track of the nonzero entries in the matrix. Because of its inefficiency in storing the 
underlying network topology, use of the node-arc incidence matrix rarely produces 
efficient algorithms. This representation is important, however, because it represents 
the constraint matrix of the minimum cost flow problem and because the node-arc 
incidence matrix possesses several interesting theoretical properties. We study some 
of these properties in Sections 11.11 and 11.12. 

Node-Node Adjacenoy Matrix 

The node-node adjacency matrix representation, or simply the adjacency matrix 
representation, stores the network as an n x n matrix 71f. = {hu}. The matrix has a 
row and a column corresponding to every node, and its ijth entry hu equals 1 if 
(i, j) E A and equals 0 otherwise. Figure 2.15 specifies this representation for the 
network shown in Figure 2.13. If we wish to store arc costs and capacities as well 
as the network topology, we can store this information in two additional n x n 
matrices, <f6 and OU. 

The adjacency matrix has n 2 elements, only m of which are nonzero. Conse
quently, this representation is space efficient only if the network is sufficiently dense; 
for sparse networks this representation wastes considerable space. Nevertheless, 
the simplicity of the adjacency representation permits us to use it to implement most 
network algorithms rather easily. We can determine the cost or capacity of any arc 
(i, j) simply by looking up the ijth element in the matrix <f6 or OU. We can obtain the 
arcs emanating from node i by scanning row i: If the jth element in this row has a 
nonzero entry, (i, j) is an arc of the network. Similarly, we can obtain the arcs 
entering node j by scanning columnj: If the ith element of this column has a nonzero 
entry, (i,j) is an arc of the network. These steps permit us to identify all the outgoing 
or incoming arcs of a node in time proportional to n. For dense networks we can 
usually afford to spend this time to identify the incoming or outgoing arcs, but for 

2 3 4 , 
0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 
Figure 2.1S Node-node adjacency 

5 0 0 0 matrix of the network example. 
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sparse networks these steps might be the bottleneck operations for an algorithm. 
The two representations we discuss next permit us to identify the set of outgoing 
arcs A(i) of any node in time proportional to 1 A(i) I. 

Adjacency Lists 

Earlier we defined the arc adjacency list A(i) of a node i as the set of arcs emanating 
from that node, that is, the set of arcs (i, j) E A obtained as j ranges over the nodes 
of the network. Similarly, we defined the node adjacency list of a node i as the set 
of nodes j for which (i, j) E A. The adjacency list representation stores the node 
adjacency list of each node as a singly linked list (we refer the reader to Appendix 
A for a description of singly linked lists). A linked list is a collection of cells each 
containing one or more fields. The node adjacency list for node i will be a linked 
list having 1 A (i) 1 cells and each cell will correspond to an arc (i, j) EA. The cell 
corresponding to the arc (i, j) will have as many fields as the amount of information 
we wish to store. One data field will store nodej. We might use two other data fields 
to store the arc cost Cij and the arc capacity Uij. Each cell will contain one additional 
field, called the link, which stores a pointer to the next cell in the adjacency list. If 
a cell happens to be the last cell in the adjacency list, by convention we set its link 
to value zero. 

Since we need to be able to store and access n linked lists, one for each node, 
we also need an array of pointers that point to the first cell in each linked list. We 
accomplish this objective by defining an n-dimensional array, first, whose element 
first(i) stores a pointer to the first cell in the adjacency list of node i. If the adjacency 
list of node i is empty, we set first(i) = O. Figure 2.16 specifies the adjacency list 
representation of the network shown in Figure 2. 13. 

In this book we sometimes assume that whenever arc (i,j) belongs to a network, 
so does the reverse arc (j, i). In these situations, while updating some information 
about arc (i, j), we typically will also need to update information about arc (j, i). 
Since we will store arc (i, j) in the adjacency list of node i and arc (j, i) in the 
adjacency list of node j, we can carry out any operation on both arcs efficiently if 
we know where to find the reversal (j, i) of each arc (i,j). We can access both arcs 

2 

3 

4 

5 
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-+--+1'31251201 I .14 (35150( 0 1 Figure 2.16 Adjacency list 
representation of the network example. 
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easily if we define an additional field, mate, that contains a pointer to the cell con
taining data for the reversal of each arc. The mate of arc (i, j) points to the cell of 
arc (j, i) and the mate of arc (j, i) points to the cell of arc (i, j). 

Forward and Reverse Star Representations 

The forward star representation of a network is similar to the adjacency list rep
resentation in the sense that it also stores the node adjacency list of each node. But 
instead of maintaining these lists as linked lists, it stores them in a single array. To 
develop this representation, we first associate a unique sequence number with each 
arc, thus defining an ordering of the arc list. We number the arcs in a specific order: 
first those emanating from node 1, then those emanating from node 2, and so on. 
We number the arcs emanating from the same node in an arbitrary fashion. We then 
sequentially store information about each arc in the arc list. We store the tails, heads, 
costs, and capacities of the arcs in four arrays: tail, head, cost, and capacity. So if 
arc (i, j) is arc number 20, we store the tail, head, cost, and capacity data for this 
arc in the array positions tail(20), head(20), cost(20), and capacity(20). We also main
tain a pointer with each node i, denoted by point(i), that indicates the smallest
numbered arc in the arc list that emanates from node i. [If node i has no outgoing 
arcs, we set point(i) equal to point(i + 1).] Therefore, the forward star representation 
will store the outgoing arcs of node i at positions point(i) to (point(i + 1) - 1) in 
the arc list. Ifpoint(i) > point(i + 1) - 1, node i has no outgoing arc. For consistency, 
we set point(l) = 1 and point(n + 1) = m + 1. Figure 2. 17(a) specifies the forward 
star representation of the network given in Figure 2.13. 

The forward star representation provides us with an efficient means for de
termining the set of outgoing arcs of any node. To determine, simultaneously, the 
set of incoming arcs of any node efficiently, we need an additional data structure 
known as the reverse star representation. Starting from a forward star representa
tion, we can create a reverse star representation as follows. We examine the nodes 
i = 1 to n in order and sequentially store the heads, tails, costs, and capacities of 
the incoming arcs at node i. We also maintain a reverse pointer with each node i, 
denoted by rpoint(i), which denotes the first position in these arrays that contains 
information about an incoming arc at node i. [If node i has no incoming arc, we set 
rpoint(i) equal to rpoint(i + 1).] For sake of consistency, we set rpoint(l) = 1 
and rpoint(n +.1) = m + 1. As before, we store the incoming arcs at node i at posi
tions rpoint(i) to (rpoint(i + 1) - 1). This data structure gives us the representation 
shown in Figure 2.17(b). 

Observe that by storing both the forward and reverse star representations, we 
will maintain a significant amount of duplicate information. We can avoid this du
plication by storing arc numbers in the reverse star instead of the tails, heads, costs, 
and capacities of the arcs. As an illustration, for our example, arc (3, 2) has arc 
number 4 in the forward star representation and arc (1, 2) has an arc number 1. So 
instead of storing the tails, cos~s, and capacities of the arcs, we simply store arc 
numbers; and once we know the arc numbers, we can always retrieve the associated 
information from the forward star representation. We store arc Qumbers in an array 
trace of size m. Figure 2.18 gives the complete trace array of our example. 

In our discussion of the adjacency list representation, we noted that sometimes 
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45 10 
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45 60 

25 20 

35 50 

rpoint 

I 

I 2 

3 3 

6 4 

8 5 

9 6 

Figure 2.17 (a) Forward star and (b) re
verse star representations of the network 
example. 

while updating data for an arc (i, j), we also need to update data for its reversal 
(j, i). Just as we did in the adjacency list representation, we can accomplish this 
task by defining an array mate of size m, which stores the arc number of the reversal 
of an arc. For example, the forward star representation shown in Figure 2.17(a) 
assigns the arc number 6 to arc (4, 5) and assigns the arc number 8 to arc (5, 4). 
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3 

4 

5 

6 

point tail head cost capacity trace rpoint 

1 1 2 25 30 4 1 

3 2 1 3 35 50 1 2 1 

4 3 2 4 15 40 2 3 3 

5 4 3 2 45 10 5 4 6 

7 5 4 3 15 30 7 5 8 

9 6 4 5 45 60 8 6 9 

7 5 3 25 20 3 7 

8 5 4 35 50 6 8 

Fll1lre 2.18 Compact forward and reverse star representation of the network ex
ample. 
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4 

5 
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Therefore, if we were using the mate array, we would set mate(6) = 8 and mate(8) 
= 6. 

Comparison of Forward Star and Adjacenoy List 
Bepresentations 

The major advantage of the forward star representation is its space efficiency. It 
requires less storage than does the adjacency list representation. In addition, it is 
much easier to implement in languages such as FORTRAN that have no natural 
provisions for using linked lists. The major advantage of adjacency list representation 
is its ease of implementation in languages such as Pascal or C that are able to ma
nipulate linked lists efficiently. Further, using an adjacency list representation, we 
can add or delete arcs (as well as nodes) in constant time. On the other hand, in the 
forward star representation these steps require time proportional to m, which can 
be too time consuming. 

Storing Parallel Arcs 

In this book we assume that the network does not contain parallel arcs; that is, no 
two arcs have the same tail and head nodes. By allowing parallel arcs, we encounter 
some notational difficulties, since (i, j) will not specify the arc uniquely. For networks 
with parallel arcs, we need more complex notation to specify arcs, arc costs, and 
capacities. This difficulty is merely notational, however, and poses no problems 
computationally: both the adjacency list representation and the forward star rep
resentation data structures are capable of handling parallel arcs. If a node i has two 
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outgoing arcs with the same head node but (possibly) different costs and capacities, 
the linked list of node i will contain two cells corresponding to these two arcs. 
Similarly, the forward star representation allows several entries with the same tail 
and head nodes but different costs and capacities. 

Representing Undirected Networks 

We can represent undirected networks using the same representations we have just 
described for directed networks. However, we must remember one fact: Whenever 
arc (i, j) belongs to an undirected network, we need to include both of the pairs 
(i,j) and (j, i) in the representations we have discussed. Consequently, we will store 
each arc (i, j) of an undirected network twice in the adjacency lists, once in the list 
for node i and once in the list for node j. Some other obvious modifications are 
needed. For example, in the node-arc incidence matrix representation, the column 
corresponding to arc (i, j) will have + 1 in both rows i and j. The node-node ad
jacency matrix will have + 1 in position hij and h j ; for every arc (i, j) E A. Since 
this matrix will be symmetric, we might as well store half of the matrix. In the 
adjacency list representation, the arc (i, j) will be present in the linked lists of both 
nodes i and j. Consequently, whenever we update information for one arc, we must 
update it for the other arc as well. We can accomplish this task by storing for each 
arc the address of its other occurrence in an additional mate array. The forward star 
representation requires this additional storage as well. Finally, observe that undi
rected networks do not require the reverse star representation. 

2.4 NETWORK TRANSFORMATIONS 

Frequently, we require network transformations to simplify a network, to show 
equivalences between different network problems, or to state a network problem in 
a standard form required by a computer code. In this section, we describe some of 
these important transformations. In describing these transformations, we assume 
that the network problem is a minimum cost flow problem as formulated in Section 
1.2. Needless to say, these transformations also apply to special cases of the min
imum cost flow problem, such as the shortest path, maximum flow, and assignment 
problems, wherever the transformations are appropriate. We first recall the for
mulation of the minimum cost flow problem for convenience in discussing the net
work transformations. 

Minimize L CijXij 
(i,j)EA 

subject to 

L xij-
{j: (i.j)EA} 

38 

(2.1a) 

L Xji = b(i) for all i E N, (2.1b) 
{j:(J.;)EA} 

for all (i, j) E A. (2.1c) 
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Undirected Aros to Directed Aros 

Sometimes minimum cost flow problems contain undirected arcs. An undirected arc 
(i, j) with cost Cij 2: 0 and capacity Uij permits flow from node i to node j and also 
from node j to node i; a unit of flow in either direction costs C ij, and the total flow 
(i.e., from node ito nodej plus from nodej to node i) has an upper bound Uij. That 
is, the undirected model has the constraint Xij + Xji :s Uij and the term CijXij + CijXji 

in the objective function. Since the cost Cij 2: 0, in some optimal solution one of Xu 

and Xji will be zero. We refer to any such solution as non-overlapping. 
For notational convenience, in this discussion we refer to the undirected arc 

(i, j) as {i, j}. We assume (with some loss of generality) that the arc flow in either 
direction on arc {i, j} has a lower bound of value 0; our transformation is not valid if 
the arc flow has a nonzero lower bound or the arc cost Cij is negative (why?). To 
transform the undirected case to the directed case, we replace each undirected arc 
{"~ j} by two directed arcs, (i, j) and (j, i), both with cost Cij and capacity Uij. To 
establish the correctness of this transformation, we show that every non-overlapping 
flow in the original network has an associated flow in the transformed network with 
the same cost, and vice versa. If the undirected arc {i, j} carries ex units of flow from 
node i to node j, in the transformed network Xij :::; ex and Xji :::; O. If the undirected 
arc {i, j} carries ex units of flow from node j to node i, in the transformed network 
Xij :::; 0 and Xji :::; ex. Conversely, if Xij and Xji are the flows on arcs (i, j) and (j, i) 
in the directed network, Xij - Xji or Xji - Xij is the associated flow on arc {i, j} in 
the undirected network, whichever is positive. If Xij - Xji is positive, the flow from 
node i to node j on arc {i, j} equals this amount. If Xji - Xij is positive, the flow from 
nodej to node i on arc {i,j} equals Xj; - Xij. In either case, the flow in the opposite 
direction is zero. If Xji - Xij is zero, the flow on arc {i, j} is O. 

Removing Nonzero Lower Bounds 

If an arc (i, j) has a nonzero lower bound lij on the arc flow Xij, we replace Xij by 
xij + lij in the problem formulation. The flow bound constraint then becomes lij :s 
xi.; + lij :S Uij, or 0 :S x~· :S (uij - lij). Making this substitution in the mass balance 
constraints decreases b(i) by lij units and increases b(j) by lij units [recall from 
Section 1.2 that the flow variable Xij appears in the mass balance constraint (2.1b) 
of only nodes i and j]. This substitution changes the objective function value by a 
constant that we can record separately and then ignore when solving the problem. 
Figure 2.19 illustrates this transformation graphically. We can view this transfor
mation as a two-step flow process: We begin by sending lij units of flow on 
arc (i, j), which decreases b(i) by lij units and increases b(j) by lij units, and 
then we measure (by the variable xI;) the incremental flow on the arc beyond the 
flow value lij. 

bU) b(J,) b(i) -I'j ( I ) b(i) +, lij 
Ci)1---("';C'}-' u....,;.'i_) _.~(j) -+ Q)_ Cij, u:j- ij Cl) Figure 2.t9 Removing nonzero lower 

" Xi} xij bounds. 
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Arc Reversal 

The arc reversal transformation is typically used to remove arcs with negative costs. 
Let Uu denote the capacity of the arc (i, j) or an upper bound on the arc's flow if 
the arc is uncapacitated. In this transformation we replace the variable Xu by Uu -
Xji. Doing so replaces the arc (i, j), which has an associated cost cu, by the arc 
(j, i) with an associated cost - Cu. As shown in Figure 2.20, the transformation has 
the following network interpretation. We first send Uu units of flow on the arc (which 
decreases b(i) by Uu units and increases b(j) by Uu units) and then we replace arc 
(i, j) by arc (j, i) with cost - Cu. The new flow Xji measures the amount of flow we 
"remove" from the "full capacity" flow of uu. 

Removing Arc Capacities 

Figure 1.10 Arc reversal 
transformation. 

If an arc (i, j) has a positive capacity Ui.h we can remove the capacity, making the 
arc uncapacitated, by using the following idea: We introduce an additional node so 
that the capacity constraint on arc (i, j) becomes the mass balance constraint of the 
new node. Suppose that we introduce a slack variable Sij 2! 0, and write the capacity 
constraint Xu s Uu in an equality form as Xu + Su = uu. Multiplying both sides of 
the equality by - 1, we obtain 

-Xu - Su = -uu (2.2) 

We now treat constraint (2.2) as the mass balance constraint of an additional 
node k. Observe that the flow variable Xij now appears in three mass balance con
straints and Sij in only one. By subtracting (2.2) from the mass balance constraint 
of node j (which contains the flow variable Xu with a negative sign), we assure that 
each of Xu and Su appears in exactly two constraints-in one with a positive sign 
and in the other with a negative sign. These algebraic manipulations correspond to 
the network transformation shown in Figure 2.21. 

b(i) 
(cjj• U jj) 

b{j) b(i) 
(clj.oo) 

-Ujj (0. 00) 
b(j)+u ij 

-+ 
X;j Xij S;J 

Figure 1.21 Transformation for removing an arc capacity. 

To see the relationships between the flows in the original and transformed 
networks, we make the following observations. If Xij is the flow on arc (i, j) in the 
original network, the corresponding flow in the transformed network is Xlk = Xu and 
XJk = Uu - Xu. Notice that both the flows X and x' have the same cost. Similarly, 
a flow Xik, XJk in the transformed network yields a flow Xu = Xik of the same cost in 
the original network. Furthermore, since Xlk + X}k = Uu and xlk and X}k are both 
nonnegative, Xu = Xlk S Uu. Therefore, the flow Xu satisfies the arc capacity, and 
the transformation does correctly model arc capacities. 
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Suppose that every arc in a given network G = (N, A) is capacitated. If we 
apply the preceding transformation to every arc, we obtain a bipartite uncapacitated 
network G' (see Figure 2.22 for an illustration). In this network (1) each node ion 
the left corresponds to a node i E N of the original network and has a supply equal 
to b(i) + L{k:(k.i)EA}Uki' and (2) each node i-j on the right corresponds to an arc 
(i,j) E A in the original network and has a demand equal to Uij; this node has exactly 
two incoming arcs, originating at nodes i and j from the left. Consequently, the 
transformed network has (n + m) nodes and 2m arcs. 

b(i) b(j) 

(lr--_(_c'J_' u_ij_> _~. (j) 

o 
(8) 

-20 

b(i) b(j) 

(D_----=ciJ_. ~.(f) 

(b) 

Figure 2.22 Transformation for 
removing arc capacities: (a) original 
network; (b) transformed network with 
uncapacitated arcs. 

At first glance we might be tempted to believe that this technique for removing 
arc capacities would be unattractive computationally since the transformation sub
stantially increases the number of nodes in the network. However, on most occasions 
the original and transformed networks have algorithms with the same complexity, 
because the transformed network possesses a special structure that permits us to 
design more efficient algorithms. 

Node Splitting 

The node splitting transformation splits each node i into two nodes i' and i" cor
responding to the node's output and input functions. This transformation replaces 
each original arc (i, j) by an arc (i', j") of the same cost and capacity. It also adds 
an arc (i", i') of zero cost and with infinite capacity for each i. The input side of 
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node i (i.e., node i") receives all the node's inflow, the output side (i.e., node i') 
sends all the node's outflow, and the additional arc (i", i') carries flow from the input 
side to the output side. Figure 2.23 illustrates the resulting network when we carry 
out the node splitting transformation for all the nodes of a network. We define the 
supplies/demands of nodes in the transformed network in accordance with the fol
lowing three cases: 

1. If b(i) > 0, then b(i") = b(i) and b(i') = O. 
2. If b(i) < 0, then bU") = 0 and b(i') = b(i). 

3. If b(i) = 0, then b(i') = b(i") = o. 

It is easy to show a one-to-one correspondence between a flow in the original 
network and the corresponding flow in the transformed network; moreover, the flows 
in both networks have the same cost. 

The node splitting transformation permits us to model numerous applications 
in a variety of practical problem domains, yet maintain the form of the network flow 
model that we introduced in Section 1.2. For example, we can use the transformation 
to handle situations in which nodes as well as arcs have associated capacities and 
costs. In these situatior ,each flow unit passing through a node i incurs a cost Cj 

and the maximum flow that can pass through the node is Uj. We can reduce this 
problem to the standard' 'arc flow" form of the network flow problem by performing 
the node splitting transformation and letting Ci and Uj be the cost and capacity of arc 

42 

6 1 

3 

b(i) b(j) 

(0 e
'j ·0 

0 
4 

4 

5 

3 r-----~~( 5 

o -8 
(a) 

3 

o 0 6 

(b) 

Figure 2.23 Node splitting transformation: (a) original network; (b) transformed net
work. 
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(i", i'). We shall study more applications of the node splitting transformation in 
Sections 6.6 and 12.7 and in several exercises. 

Working with Reduoed Costs 

In many of the network flow algorithms discussed in this book, we measure the cost 
of an arc relative to "imputed" costs associated with its incident nodes. These 
imputed costs typically are intermediate data that we compute within the context 
of an algorithm. Suppose that we associate with each node i E N a number 7f(i), 
which we refer to as the potential of that node. With respect to the node potentials 
1T = (1T(1), 1T(2), ... , 1T(n», we define the reduced cost cij of an arc (i, j) as 

cij = Cij - 1T(i) + 7f(j). (2.3) 

In many algorithms discussed later, we often work with reduced costs cij 
instead of the actual costs Cij' Consequently, it is important to understand the 
relationship between the objective functions z(7f) = ~(i.j)EA cijXij and z(O) = 

LU.})EA CijXij. Suppose, initially, that 7f = 0 and we then increase the node potential 
of node k to 7f(k). The definition (2.3) of reduced costs implies that this change 
reduces the reduced cost of each unit of flow leaving node k by 7f(k) and increases 
the reduced cost of each flow unit entering node k by 7f(k). Thus the total decrease 
in the objective function equals 7f(k) times the outflow of node k minus the inflow 
of node k. By definition (see Section 1.2), the outflow minus inflow equals the supply/ 
demand of the node. Consequently, increasing the potential of node k by 7f(k) de
creases the objective function value by 7f(k)b(k) units. Repeating this argument 
iteratively for each node establishes that 

z(O) - z(7f) = ~ 7f(i)b(i) = 7fb. 
iEN 

For a given node potential 7f, 7fb is a constant. Therefore, a flow that minimizes 
z(7f) also minimizes z(O). We formalize this result for easy future reference. 

Property 2.4. Minimum cost flow problems with arc costs Cij or cij have the 
same optimal solutions. Moreover, z(7f) = z(O) - 7fb. 

We next study the effect of working with reduced costs on the cost of cycles 
and paths. Let W be a directed cycle in G. Then 

~ cij = ~ (Cij - 7f(i) + 7f(j», 
(i.}}E W (i.})E W 

~ Cij + ~ (7f(j) - 7f(i», 
(i,})E W (i,})E W 

::: ~ Cij' 
(i,}}E W 

The last equality follows from the fact that for any directed cycle W, the expres
sion L(i,}}EW (7f(j) - 7f(i» sums to zero because for each node i in the cycle W, 

1T(i) occurs once with a positive sign and once with a negative sign. Similarly, if P 
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is a directed path from node k to node I, then 

L cll = L (cij - 7T(i) + 7T(j», 
(i,})EP (i,})EP 

L Cij - L (7T(i) - 7T(j», 
(i,})EP (i,J)EP 

L Cij - 7T(k) + 7T(l), 
(i,})EP 

because all 7T(') corresponding to the nodes in the path, other than the terminal nodes 
k and I, cancel each other in the expression L(i,J)EP (7T(i) - 7T(j». We record these 
results for future reference. 

Property 2.5 
(a) For any directed cycle W and for any node potentials 7T, L(i.j)EW cll = 

LU,j)E W Cij. 

(b) For any directed path P from node k to node I and for any node potentials 7T, 

L(i.})EP cll = L(i,)EP cij - 7T(k) + 7T(l). 

Working with Residual Networks 

In designing, developing, and implementing network flow algorithms, it is often 
convenient to measure flow not in absolute terms, but rather in terms of incremental 
flow about some given feasible solution-typically, the solution at some intermediate 
point in an algorithm. Doing so leads us to define a new, ancillary network, known 
as the residual network, that functions as a "remaining flow network" for carrying 
the incremental flow. We show that formulations of the problem in the original 
network and in the residual network are equivalent in the sense that they give a one
to-one correspondence between feasible solutions to the two problems that preserves 
the value of the cost of solutions. 

The concept of residual network is based on the following intuitive idea. Sup
pose that arc (i, j) carries Xu units of flow. Then we can send an additional U;j -
Xu units of flow from node i to node j along arc (i, j). Also notice that we can send 
up to Xu units of flow from node j to node i over the arc (i, j), which amounts to 
canceling the existing flow on the arc. Whereas sending a unit flow from node i to 
node j on arc (i, j) increases the flow cost by Cij units, sending flow from node j to 
node i on the same arc decreases the flow cost by Cij units (since we are saving the 
cost that we used to incur in sending the flow from node i to node j). 

Using these ideas, we define the residual network with respect to a given flow 
XO as follows. We replace each arc (i, j) in the original network by two arcs, (i, j) 
and (j, 0: the arc (i, j) has cost Cij and residual capacity rij = Uij - xij, and the arc 
(j, t) has cost - Cij and residual capacity rJi :: Xu (see Figure 2.24). The residual 
network consists of only the arcs with a positive residual capacity. We use the 
notation G(XO) to represent the residual network corresponding to the flow xO. 

In general, the concept of residual network poses some notational difficulties. 
If for some pair i and j of nodes, the network G contains both the arcs (t, j) and 
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Figure 2.24 Constructing the residual 
network G(xo). 

(j, 0, the residual network may contain two (parallel) arcs from node i to node j 
with different costs and residual capacities, and/or two (parallel) arcs from node j 
to node i with different costs and residual capacities. In these instances, any ref
erence to arc (i, j) will be ambiguous and will not define a unique arc cost and 
residual capacity. We can overcome this difficulty by assuming that for any pair of 
nodes i and j, the graph G does not contain both arc (i, j) and arc (j, i); then the 
residual network will contain no parallel arcs. We might note that this assumption 
is merely a notational convenience; it does not impose any loss of generality, because 
by suitable transformations we can always define a network that is equivalent to 
any given network and that will satisfy this assumption (see Exercise 2.47). However, 
we need not actually make this transformation in practice, since the network rep
resentations described in Section 2.3 are capable of handling parallel arcs. 

We note further that although the construction and use of the residual network 
poses some notational difficulties for the general minimum cost flow problem, the 
difficulties might not arise for some special cases. In particular, for the maximum 
flow problem, the parallel arcs have the same cost (of zero), so we can merge both 
of the parallel arcs into a single arc and set its residual capacity equal to the sum 
of the residual capacities of the two arcs. For this reason, in our discussion of the 
maximum flow problem, we will permit the underlying network to contain arcs join
ing any two nodes in both directions. 

We now show that every flow x in the network G corresponds to a flow x' in 
the residual network G(XO). We define the flow x' ~ 0 as follows: 

xij - xi; = Xi} - xij, (2.4) 

and 

xijxi; = o. (2.5) 

The condition (2.5) implies that xij and xi; cannot both be positive at the same 
time. If Xi} ~ xij, we set xij = (xi) - xij) and xi; = O. Notice that if Xi} :5 Uij, then 
xij :5 Uij - xij = 'ij. Therefore, the flow xij satisfies the flow bound constraints. 
Similarly, if Xv' < xij, we set xb' = 0 and Xl; = xi;· - Xi}. Observe that 0 :5 Xl; :5 xij 
= 'j;, so the flow xi; also satisfies the flow bound constraints. These observations 
show that if x is a feasible flow in G, its corresponding flow x I is a feasible flow in 
G(XO). 

We next establish a relationship between the cost of a flow x in G and the cost 
of the corresponding flow x' in G(XO). Let c' denote the arc costs in the residual 
network. Then for every arc (i, j) E A, cij = cij and ci; = - Cij' For a flow Xi} on 
arc (i, j) in the original network G, the cost of flow on the pair of arcs (i, j) and 
(j, 0 in the residual network G(XO) is cijxij + ci;Xl; = cij(xij - xi;) = Ci}Xij -
Ci}xij; the last equality follows from (2.4). We have thus shown that 

c'x' = cx - cxo. 
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Similarly, we can show the converse result that if x' is a feasible flow in the 
residual network G(XO), the solution given by Xij = (xu - xJ;) + xij is a feasible flow 
in G. Moreover, the costs of these two flows is related by the equality cx = 
c' x' + cxo. We ask the reader to prove these results in Exercise 2.48. We summarize 
the preceding discussion as the following property. 

Property 2.6. A flow x is a feasible flow in the network G if and only if its 
corresponding flow x', defined by Xu - xi; = Xij - xij and xuxi; = 0, is feasible in 
the residual network G(XO). Furthermore, cx = c ' x' + CXO. 

One important consequence of Property 2.6 is the flexibility it provides us. 
Instead of working with the original network G, we can work with the residual 
network G(XO) for some XC: Once we have determined an optimal solution in the 
residual network, we can immediately convert it into an optimal solution in the 
original network. Many of the maximum flow and minimum cost flow algorithms 
discussed in the subsequent chapters use this result. 

2.1S SUMMARY 

In this chapter we brought together many basic definitions of network flows and 
graph theory and presented basic notation that we will use throughout this book. 
We defined several common graph theoretic terms, including adjacency lists, Walks, 
paths, cycles, cuts, and trees. We also defined acyclic and bipartite networks. 

Although networks are often geometric entities, optimization algorithms re
quire computer representations of them. The following four representations are the 
most common: (1) the node-arc incidence matrix, (2) the node-node adjacency 
matrix, (3) adjacency lists, and (4) forward and reverse star representations. Figure 
2.25 summarizes the basic features of these representations. 

Network 
representations Storage space Features 

N ode-arc incidence nm I. Space inefficient 
matrix 2. Too expensive to manipulate 

3. Important because it represents the constraint 
matrix of the minimum cost flow problem 

Node-node kn2 for some constant k I. Suited for dense networks 
adjacency matrix 2. Easy to implement 

Adjacency list kJn + k2m for some I. Space efficient 
constants kJ and kl 2. Efficient to manipulate 

3. Suited for dense as well as sparse networks 

Forward and k3n + k4m for some I. Space efficient 
reverse star constants k3 and k4 2. Efficient to manipulate 

3. Suited for dense as well as sparse networks 

Figure 1.lS Comparison of various network representations. 
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The field of network flows is replete with transformations that allow us to 
transform one problem to another, often transforming a problem that appears to 
include new complexities into a simplified "standard" format. In this chapter we 
described some of the most common transformations: (1) transforming undirected 
networks to directed networks, (2) removing nonzero lower flow bounds (which 
permits us to assume, without any loss of generality, that flow problems have zero 
lower bounds on arc flows), (3) performing arc reversals (which often permits us to 
assume, without any loss of generality, that arcs have nonnegative arc costs), (4) 
removing arc capacities (which allows us to transform capacitated networks to un
capacitated networks), (5) splitting nodes (which permits us to transform networks 
with constraints and/or cost associated with' 'node flows" into our formulation with 
all data and constraints imposed upon arc flows), and (6) replacing costs with reduced 
costs (which permits us to alter the cost coefficients, yet retain the same optimal 
solutions). 

The last transformation we studied in this chapter permits us to work with 
residual networks, which is a concept of critical importance in the development of 
maximum flow and minimum cost flow algorithms. With respect to an existing flow 
x, the residual network G(x) represents the capacity and cost information in the 
network for carrying incremental flows on the arcs. As our discussion has shown, 
working with residual networks is equivalent to working with the original network. 

REFERENCE NOTES 

The applied mathematics, computer science, engineering, and operations research 
communities have developed no standard notation of graph concepts; different re
searchers and authors use different names to denote the same object (e.g., some 
authors refer to nodes as vertices or points). The notation and definitions we have 
discussed in Section 2.2 and adopted throughout this book are among the most 
popular in the literature. The network representations and transformation that we 
described in Sections 2.3 and 2.4 are part of the folklore; it is difficult to pinpoint 
their origins. The books by Aho, Hopcroft, and Ullman [1974], Gondran and Minoux 
[1984], and Cormen, Leiserson, and Rivest [1990] contain additional information on 
network representations. The classic book by Ford and Fulkerson [1962] discusses 
many transformations of network flow problems. 

EXERCISES 

Note: If any of the following exercises does not state whether a graph is undirected 
or directed, assume either option, whichever is more convenient. 

2.1 Consider the two graphs shown in Figure 2.26. 
(8) List the indegree and outdegree of every node. 
(b) Give the node adjacency list of each node. (Arrange each list in the increasing order 

of node numbers.) 
(c) Specify a directed walk containing six arcs. Also, specify a walk containing eight 

arcs. 
(d) Specify a cycle containing nine arcs and a directed cycle containing seven arcs. 
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" .14-----------( 3 

(a) (b) 

Figure 2.26 Example networks for Exercises 2.1 to 2.4. 

2.2. Specify a spanning tree of the graph in Figure 2.26(a) with six leaves. Specify a cut of 
the graph in Figure 2.26(a) containing six arcs. 

2.3. For the graphs shown in Figure 2.26, answer the following questions. 
(a) Are the graphs acyclic? 
(b) Are the graphs bipartite? 
(c) Are the graphs strongly connected? 

2.4. Consider the graphs shown in Figure 2.26. 
(a) Do the graphs contain a directed in-tree for some root node? 
(b) Do the graphs contain a directed out-tree for some root node? 
(c) In Figure 2.26(a), list all fundamental cycles with respect to the following spanning 

tree T = {(I, 5), (I, 3), (2, 5), (4, 7), (7, 5), (7, 9), (5, 8), (6, 8)}. 
(d) For the spanning tree given in part (c), list all fundamental cuts. Which of these 

are the s-t cuts when s = 1 and t = 9? 
2.S. (a) Construct a directed strongly connected graph with five nodes and five arcs. 

(b) Construct a directed bipartite graph with six nodes and nine arcs. 
(c) Construct an acyclic directed graph with five nodes and ten arcs. 

2.6. Bridges of Konigsberg. The first paper on graph theory was written by Leonhard Euler 
in 1736. In this paper, he started with the following mathematical puzzle: The city of 
Konigsburg has seven bridges, arranged as shown in Figure 2.27. Is it possible to start 
at some place in the city, cross every bridge exactly once, and return to the starting 
place? Either specify such a tour or prove that it is impossible to do so. 

Figure 2.27 Bridges of Konigsberg. 
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2.7. At the beginning of a dinner party, several participants shake hands with each other. 
Show that the participants that shook hands an odd number of times must be even in 
number. 

2.S. Show that in a directed strongly connected graph containing more than one node, no 
node can have a zero indegree or a zero outdegree. 

2.9. Suppose that every node in a directed graph has a positive indegree. Show that the 
graph must contain a directed cycle. 

2.10. Show that a graph G remains connected even after deleting an arc (i, j) if and only if 
arc (i, j) belongs to some cycle in G. 

2.11. Show that an undirected graph G = (N, A) is connected ifand only if for every partition 
of N into subsets NJ and N 2 , some arc has one endpoint in NJ and the other endpoint 
in N 2 • 

2.12. Let dmin denote the minimum degree of a node in an undirected graph. Show that the 
graph contains a path containing at least dmin arcs. 

2.13. Prove the following properties of trees. 
(a) A tree on n nodes contains exactly (n - 1) arcs. 
(b) A tree has at least two leaf nodes (Le., nodes with degree 1). 
(e) Every two nodes of a tree are connected by a unique path. 

2.14. Show that every tree is a bipartite graph. 
2.15. Show that a forest consisting of k components has m = n - k arcs. 
2.16. Let dmax denote the maximum degree of a node in a tree. Show that the tree contains 

at least dmax nodes of degree 1. (Hint: Use the fact that the sum of the degrees of all 
nodes in a tree is 2m = 2n - 2.) 

2.17. Let Q be any cut of a connected graph and T be any spanning tree. Show that Q n T 
is nonempty. 

2.1S. Show that a closed directed walk containing an odd number of arcs contains a directed 
cycle having an odd number of arcs. Is it true that a closed directed walk containing 
an even number of arcs also contains a directed cycle having an even number of arcs? 

2.19. Show that any cycle of a graph G contains an even number of arcs (possibly zero) in 
common with any cut of G. 

2.20. Let dmin denote the minimum degree of a node in an undirected graph G. Show that if 
dmin ~ 2, then G must contain a cycle. 

2.21. (a) Show that in a bipartite graph every cycle contains an even number of arcs. 
(b) Show that a (connected) graph, in which every cycle contains an even number of 

arcs, must be bipartite. Conclude that a graph is bipartite if and only if every cycle 
has an even number of arcs. 

2.22. The k-color problem on an undirected graph G = (N, A) is defined as follows: Color 
all the nodes in N using at most k colors so that for every arc (i, j) E A, nodes i and 
j have a different color. 
(a) Given a world map, we want to color countries using at most k colors so that the 

countries having common boundaries have a different color. Show how to formulate 
this problem as a k-color problem. 

(b) Show that a graph is bipartite if and only if it is 2-colorable (i.e., can be colored 
using at most two colors). 

2.23. Two undirected graphs G = (N, A) and G' = (N', A') are said to be isomorphic if we 
can number the nodes of the graph G so that G becomes identical to G'. Equivalently, 
G is isomorphic to G' if some one-to-one function f maps N onto N' so that (i, j) is 
an arc in A if and only if (f(O, f(j» is an arc in A'. Give several necessary conditions 
for two undirected graphs to be isomorphic. (Hint: For example, they must have the 
same number of nodes and arcs.) 

2.24. (a) List all nonisomorphic trees having four nodes. 
(b) List all nonisomorphic trees having five nodes. (Hint: There are three such trees.) 
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2.25. For any undirected graph G = (N, A), we define its complement GC = (N, A C) as 
follows: If (i, j) E A, then (i, j) e A c, and if (i, j) e A, then (i, j) E A c. Show that if 
the graph G is disconnected, its complement G C is connected. 

2.26. Let G = (N, A) be an undirected graph. We refer to a subset N, ~ N as independent 
if no two nodes in NJ are adjacent. Let J3(G) denote the maximum cardinality of any 
independent set of G. We refer to a subset N2 ~ N as a node cover if each arc in A 
has at least one of its endpoints in N 2 • Let TJ(G) denote the minimum cardinality of 
any node cover G. Show that J3(G) + TJ(G) = n. (Hint: Show that the complement of 
an independent set is a node cover.) 

2.27. Problem of queens. Consider the problem of determining the maximum number of queens 
that can be placed on a chessboard so that none of the queens can be taken by another. 
Show how to transform this problem into an independent set problem defined in Ex
ercise 2.26. 

2.28. Consider a directed graph G = (N, A). For any subset S ~ N, let neighbor(S) denote 
the set of neighbors of S [i.e., neighbor(S) = {j E N:for some i E S, U,j) E A andj 
e S}]. Show that G is strongly connected if and only if for every proper nonempty 
subset SeN, neighbor(S) # 0. 

2.29. A subset N, ~ N of nodes in an undirected graph G = (N, A) is said to be a clique if 
every pair of nodes in N, is connected by an arc. Show that the set N) is a clique in 
G if and only if NJ is independent in its complement G C

• 

2.30. Specify the node-arc incidence matrix and the node-node adjacency matrix for the 
graph shown in Figure 2.28. 

b(;) 
(c,l, u,) 

b(j) 

CD ·0 
-15 

(-2, 10) 
-10 

4 
(5, (0) 

20 (-1,20) (2, (0) 

(3, (0) 

3 5 
5 

(10, (0) 
0 Figure 2.28 Network example. 

2.31. (a) Specify the forward star representation of the graph shown in Figure 2.28. 
(b) Specify the forward and reverse star representations of the graph shown in Figure 

2.28. 
2.32. Let N denote the node-arc incidence matrix of an undirected graph and let NT denote 

its transpose. Let "." denote the operation of taking a product of two matrices. Show 
how to interpret the diagonal elements of N . NT? 

2.33. Let 'M denote the node-node adjacency matrix of a directed network, and let N denote 
the node-arc incidence matrix of this network. Can 'M = N . NT? 

2.34. Let 'M be the node-node adjacency matrix of a directed graph G = (N, A). Let 'MT be 
the transpose of'M, and let GT be the graph corresponding to 'MT. How is the graph 
GT related to G? 
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2.35. Let G be a bipartite graph. Show that we can always renumber the nodes of G so that 
the node-node adjacency matrix 'M of G has the following form: 

o F 

E 0 

2.36. Show that a directed graph G is acyclic if and only if we can renumber its nodes so 
that its node-node adjacency matrix is a lower triangular matrix. 

2.37. Let 'M denote the node-node adjacency matrix of a network G. Define 'Mk = 'M . 'M k- I 

for each k = 2, 3, ... , n. Show that the {ith entry of th~ matrix 'M2 is the number of 
directed paths consisting of two arcs from node ito nodej. Then using induction, show 
that the {ith entry of matrix 'Mk is the number of distinct walks from node i to node j 
containing exactly k arcs. In making this assessment, assume that two walks are distinct 
if their sequences of arcs are different (even if the unordered set of arcs are the same). 

2.38. Let 'M denote the node-node adjacency matrix of a network G. Show that G is strongly 
connected if and only if the matrix ffi defined by ffi = 'M + 'M2 + 'M3 + ... + 'M" has 
no zero entry. 

2.39. Write a pseudocode that takes as an input the node-node adjacency matrix represen
tation of a network and produces as an output the forward and reverse star represen
tations of the network. Your pseudocode should run in O(n 2

) time. 
2.40. Write a pseudocode that accepts as an input the forward star representation ofa network 

and produces as an output the network's node-node adjacency matrix representation. 
2.41. Write a pseudocode that takes as an input the forward star representation of a network 

and produces the reverse star representation. Your pseudocode should run in O(m) 
time. 

2.42. Consider the minimum cost flow problem shown in Figure 2.28. Suppose that arcs 
(1, 2) and (3, 5) have lower bounds equal to 112 = 135 = 5. Transform this problem to 
one where all arcs have zero lower bounds. 

2.43. In the network shown in Figure 2.28, some arcs have finite capacities. Transform this 
problem to one where all arcs are uncapacitated. 

2.44. Consider the minimum cost flow problem shown in Figure 2.28 (note that some arcs 
have negative arc costs). Modify the problem so that all arcs have nonnegative arc 
costs. 

2.45. Construct the residual network for the minimum cost flow problem shown in Figure 
2.28 with respect to the following flow: XI2 = XI3 = X32 = 10 and X24 = X35 = X54 = 
5. 

2.46. For the minimum cost flow problem shown in Figure 2.28, specify a vector 11' of node 
potentials so that eli ~ 0 for every arc (i,j) EA. Compute ex, cll'x, and 11'b for the flow 
given in Exercise 2.45 and verify that ex = cll'x + 11'b. 

2.47. Suppose that a minimum cost flow problem contains both arcs U,j) and (j, i) for some 
pair of nodes. Transform this problem to one in which the network contains either arc 
(i, j) or arc (j, i), but not both. 

2.48. Show that if x' is a feasible flow in the residual network G(XO), the solution given by 
xi} = (xij - xi;) + xij is a feasible flow in G and satisfies ex = c ' x' + cxo. 

2.49. Suppose that you are given a minimum cost flow code that requires that its input data 
be specified so that lij = Uij for no arc (i, j). How would you eliminate such arcs? 
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2.50. Show how to transform a minimum cost flow problem stated in (2.1) into a circulation 
problem. Establish a one-to-one correspondence between the feasible solutions of these 
two problems. (Hint: Introduce two new nodes and some arcs.) 

2.51. Show that by adding an extra node and appropriate arcs, we can formulate any minimum 
cost flow problem with one or more inequalities for supplies and demands (Le., the 
mass balance constraints are stated as "~b(i)" for a supply node i, and/or "';?b(j)" 
for a demand node j) into an equivalent problem with all equality constriants (Le., 
" = b(k)" for all nodes k). 
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3 

ALGORITHM DESIGN AND ANALYSIS 

Numerical precision is the very soul of science. 
-Sir D'Arcy Wentworth Thompson 

CJJapter OutJbJe 

3.1 Introduction 
3.2 Complexity Analysis 
3.3 Developing Polynomial-Time Algorithms 
3.4 Search Algorithms 
3.5 Flow Decomposition Algorithms 
3.6 Summary 

8.1 INTBODUCTION 

Scientific computation is a unifying theme that cuts across many disciplines, in
cluding computer science, operations research, and many fields within applied math
ematics and engineering. Within the realm of computational problem solving, we 
almost always combine three essential building blocks: (1) a recipe, or algorithm, 
for solving a particular class of problems; (2) a means for encoding this procedure 
in a computational device (e.g., a calculator, a computer, or even our own minds); 
and (3) the application of the method to the data of a specific problem. For example, 
to divide one number by another, we might use the iterative algorithm of long di
vision, which is a systematic procedure for dividing any two numbers. To solve a 
specific problem, we could use a calculator that has this algorithm already built into 
its circuitry. As a first step, we would enter the data into storage locations on the 
calculator; then we would instruct the calculator to apply the algorithm to our data. 

Although dividing two numbers is an easy task, the essential steps required to 
solve this very simple problem-designing, encoding, and applying an algorithm
are similar to those that we need to address when solving complex network flow 
problems. We need to deveiop an algorithm, or a mathematical prescription, for 
solving a class of network flow problems that contains our problem-for example, 
to solve a particular shortest path problem, we might use an algorithm that is known 
to solve any shortest path problem with nonnegative arc lengths. Since solving a 
network flow problem typically requires the solution of an optimization model with 
hundreds or thousands of variables, equations, and inequalities, we will invariably 
solve the problem on a computer. Doing so requires that we not only express the 
mathematical steps of the algorithm as a computer program, but that we also develop 
data structures for manipUlating the large amounts of information required to rep-
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resent the problem. We also need a method for entering the data into the computer 
and for performing the necessary operations on it during the course of the solution 
procedure. 

In Chapter 2 we considered the lower-level steps of the computational problem
solving hierarchy; that is, we saw how to represent network data and therefore how 
to encode and manipulate the data within a computer. In this chapter we consider 
the highest level of the solution hierarchy: How do we design algorithms, and how 
do we measure their effectiveness? Although the idea of an algorithm is an old one
Chinese mathematicians in the third century B.C. had already devised algorithms for 
solving small systems of simultaneous equations-researchers did not begin to ex
plore the notion of algorithmic efficiency as discussed in this book in any systematic 
and theoretical sense until the early 1970s. This particular subject matter, known as 
computational complexity theory, provides a framework and a set of analysis tools 
for gauging the work performed by an algorithm as measured by the elementary 
operations (e.g., addition, multiplication) it performs. One major stream of research 
in computational complexity theory has focused on developing performance guar
antees or worst-case analyses that address the following basic question: When we 
apply an algorithm to a class of problems, can we specify an upper bound on the 
amount of computations that the algorithm will require? Typically, the performance 
guarantee is measured with respect to the size of the underlying problem: for ex
ample, for network flow problems, the number n of nodes and the number m of arcs 
in the underlying graph. For example, we might state that the complexity of an 
algorithm for solving shortest path problems with nonnegative arc lengths is 2n2, 
meaning that the number of computations grow no faster than twice the square of 
the number of nodes. In this case we say that the algorithm is "good" because its 
computations are bounded by a polynomial in the problem size (as measured by the 
number of nodes). In contrast, the computational time for a "bad" algorithm would 
grow exponentially when applied to a certain class of problems. With the theoretical 
worst-case bound in hand, we can now assess the amount of work required to solve 
(nonnegative length) shortest path problems as a function of their size. We also have 
a tool for comparing any two algorithms: the one with the smaller complexity bound 
is preferred from the viewpoint of a worst-case analysis. 

Network optimization problems have been the core and influential subject mat
ter in the evolution of computational complexity theory. Researchers and analysts 
have developed many creative ideas for designing efficient network flow algorithms 
based on the concepts and results emerging in the study of complexity theory; at 
the same time, many ideas originating in the study of network flow problems have 
proven to be useful in developing and analyzing a wide variety of algorithms in many 
other problem domains. Although network optimization has been a constant subject 
of study throughout the years, researchers have developed many new results con
cerning complexity bounds for network flow algorithms at a remarkable pace in 
recent years. Many of these recent innovations draw on a small set of common ideas, 
which are simultaneously simple and powerful. 

Our intention in this chapter is to bring together some of the most important 
of these ideas. We begin by reviewing the essential ingredients of computational 
complexity theory, including the definition and computational implications of good 
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algorithms. We then describe several key ideas that appear to be mainstays in the 
development and analysis of good network flow algorithms. One idea is an approx
imation strategy, known as scaling, that solves a sequence of" simple" approximate 
versions of a given problem (determined by scaling the problem data) in such a way 
that the problems gradually become better approximations of the original problem. 
A second idea is a geometric improvement argument that is quite useful in analyzing 
algorithms; it shows that whenever we make sufficient (i.e., fixed percentage) im
provements in the objective function at every iteration, an algorithm is good. 

We also describe some important tools that can be used in analyzing or stream
lining algorithms: (1) a potential function method that provides us with a scalar 
integer-valued function that summarizes the progress of an algorithm in such a way 
that we can use it to bound the number of steps that the algorithm takes, and (2) a 
parameter balancing technique that permits us to devise an algorithm based on some 
underlying parameter and then to s.et the parameter so that we minimize the number 
of steps required by the algorithm. Next, we introduce the idea of dynamic pro
gramming, which is a useful algorithmic strategy for developing good algorithms. 
The dynamic programming technique decomposes the problem into stages and uses 
a recursive relationship to go from one stage to another. Finally, we introduce the 
binary search technique, another well-known technique for obtaining efficient al
gorithms. Binary search performs a search over the feasible values of the objective 
function and solves an easier problem at each search point. 

In this chapter we also describe important and efficient (i.e., good) algorithms 
that we use often within the context of network optimization: search algorithms that 
permit us to find all the nodes in a network that satisfy a particular property. Often 
in the middle of a network flow algorithm, we need to discover all nodes that share 
a particular attribute; for example, in solving a maximum flow problem, we might 
want to find all nodes that are reachable from the designated source node along a 
directed path in the residual network. Search algorithms provide us with a mechanism 
to perform these important computations efficiently. As such, they are essential, 
core algorithms used to design other more complex algorithms. 

Finally, we study network decomposition algorithms that permit us to decom
pose a solution to a network flow problem, formulated in terms of arc flows, into a 
set of flows on paths and cycles. In our treatment of network flow problems, we 
have chosen to use a model with flows defined on arcs. An alternative modeling 
approach is to view all flows as being carried along paths and cycles in the network. 
In this model, the variables are the amount of flow that we send on any path or 
cycle. Although the arc flow formulation suffices for most of the topics that we 
consider in this book, on a few occasions such as our discussion of multicommodity 
flows in Chapter 17, we will find it more convenient to work with a path and cycle 
flow model. Moreover, even if we do not use the path and cycle flow formulation 
per se, understanding this model provides additional insight about the nature of 
network flow problems. The network decomposition algorithms show that the arc 
flow model and the path and cycle flow model are equivalent, so we could use any 
of these models for formulating network flow problems; in addition, these algorithms 
provide us with an efficient computational procedure for finding a set of path and 
cycle flows that is equivalent to any given set of arc flows. 
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3.2 COMPLEXITY ANALYSIS 

An algorithm is a step-by-step procedure for solving a problem. By a problem we 
mean a generic model such as the shortest path problem or the minimum cost flow 
problem. Problems can be subsets of one another: For example, not only does the 
set of all shortest path problems define a problem, but so does the class of all shortest 
path problems with nonnegative arc costs. An instance is a special case of a problem 
with data specified for all the problem parameters. For example, to define an instance 
of the shortest path problem we would need to specify the network topology G = 
(N, A), the source and destination nodes, and the values of the arc costs. An al
gorithm is said to solve a problem P if when applied to any instance of P, the algorithm 
is guaranteed to produce a solution. Generally, we are interested in finding the most 
"efficient" algorithm for solving a problem. In the broadest sense, the notion of 
efficiency involves all the various computing resources needed for executing an 
algorithm. However, in this book since time is often a dominant computing resource, 
we use the time taken by an algorithm as our metric for measuring the "most effi
cient" algorithm. 

Different Complexity Measures 

As already stated, an algorithm is a step-by-step procedure for solving a problem. 
The different steps an algorithm typically performs are (1) assignment steps (such 
as assigning some value to a variable), (2) arithmetic steps (such as addition, sub
traction, mUltiplication, and division), and (3) logical steps (such as comparison of 
two numbers). The number of steps performed (or taken) by the algorithm is said 
to be the sum total of all steps it performs. The number of steps taken by an algorithm, 
which to a large extent determines the time it requires, will differ from one instance 
of the problem to another. Although an algorithm might solve some "good" instances 
of the problem quickly, it might take a long time to solve some "bad" instances. 
This range of possible outcomes raises the question of how we should measure the 
performance of an algorithm so that we can select the "best" algorithm from among 
several competing algorithms for solving a problem. The literature has widely 
adopted three basic approaches for measuring the performance of an algorithm: 
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1. Empirical analysis. The objective of empirical analysis is to estimate how al
gorithms behave in practice. In this analysis we write a computer program for 
the algorithm and test the performance of the program on some classes of 
problem instances. 

2. A verage-case analysis. The objective of average-case analysis is to estimate 
the expected number of steps an algorithm takes. In this analysis we choose 
a probability distribution for the problem instances and using statistical analysis 
derive asymptotic expected running times for the algorithm. 

3. Worst-case analysis. Worst-case analysis provides upper bounds on the number 
of steps that a given algorithm can take on any problem instance. In this analysis 
we count the largest possible number of steps; consequently, this analysis pro
vides a "guarantee" on the number of steps an algorithm will take to solve 
any problem instance. 
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Each of these three performance measures has its relative merits and draw
backs. Empirical analysis has several major drawbacks: (1) an algorithm's perfor
mance depends on the programming language, compiler, and computer used for the 
computational experiments, as well as the skills of the programmer who wrote the 
program; (2) often this analysis is too time consuming and expensive to perform; 
and (3) the comparison of algorithms is often inconclusive in the sense that different 
algorithms perform better on different classes of problem instances and different 
empirical studies report contradictory results. 

Average-case analysis has major drawbacks as well: (1) the analysis depends 
crucially on the probability distribution chosen to represent the problem instances, 
and different choices might lead to different assessments as to the relative merits of 
the algorithms under consideration; (2) it is often difficult to determine appropriate 
probability distributions for problems met in practice; and (3) the analysis often 
requires quite intricate mathematics even for assessing the simplest type of algo
rithm-the analysis typically is extremely difficult to carry out for more complex 
algorithms. Furthermore, the prediction of an algorithm's performance, based on its 
average-case analysis, is tailored for situations in which the analyst needs to solve 
a large number of problem instances; it does not provide information about the 
distribution of outcomes. In particular, although the average-case performance of 
an algorithm might be good, we might encounter exceptions with little statistical 
significance on which the algorithm performs very badly. 

Worst-case analysis avoids many of these drawbacks. The analysis is inde
pendent of the computing environment, is relatively easier to perform, provides a 
guarantee on the steps (and time) taken by an algorithm, and is definitive in the 
sense that it provides conclusive proof that an algorithm is superior to another for 
the worst possible problem instances that an analyst might encounter. Worst-case 
analysis is not perfect, though: One major drawback of worst-case analysis is that 
it permits "pathological" instances to determine the performance of an algorithm, 
even though they might be exceedingly rare in practice. However, the advantages 
of the worst-case analysis have traditionally outweighed its shortcomings, and this 
analysis has become the most popular method for measuring algorithmic perfor
mance in the scientific literature. The emergence of the worst-case analysis as a tool 
for assessing algorithms has also had a great impact on the field of network flows, 
stimulating considerable research and fostering many algorithmic innovations. In 
this book, too, we focus primarily on worst-case analysis. We also try to provide 
insight about the empirical performance, particularly in Chapter 18, since we believe 
that the empirical behavior of algorithms provides important information for guiding 
the use of algorithms in practice. 

Problem Size 

To express the time requirement of an algorithm, we would like to define some 
measure of the "complexity" of the problem instances we encounter. Having a single 
performance measure for all problem instances rarely makes sense since as the 
problem instances become larger, they typically become more difficult to solve (i.e., 
take more time); often the effort required to solve problem instances varies roughly 
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with their size. Hence to measure the complexity of problem instances, we must 
consider the "size" of the problem instance. But what is the size of a problem? 

Before we address this question, let us discuss what is the size of a data item 
whose value is x. We can make one of the two plausible assumptions: (1) assume 
that the size of the data item is x, or (2) assume that the size of the data item is log 
x. Of these, for several reasons the second assumption is more common. The primary 
reason is that log x reflects the way that computers work. Most modern computers 
represent numbers in binary form (i.e., in bits) and store them in memory locations 
of fixed bit size. The binary representation of item x requires log x bits, and hence 
the space required to store x is proportional to log x. 

The size of a network problem is a function of how the problem is stated. For 
a network problem, the input might be in the form of one of the representations 
discussed in Section 2.3. Suppose that we specify the network in the adjacency list 
representation, which is the most space-efficient representation we could use. Then 
the size of the problem is the number of bits needed to store its adjacency list 
representation. Since the adjacency list representation stores one pointer for each 
node and arc, and one data element for each arc cost coefficient and each arc ca
pacity, it requires approximately n log n + m log m + m log C + m log U bits to 
store all of the problem data for a minimum cost network flow problem (recall that 
C represents the largest arc cost and U represents the largest arc capacity). Since 
m ::; n2

, log m :5 log n2 = 2 log n. For this reason, when citing the size of problems 
using a "big 0" complexity notation that ignores constants (see the subsection en
titled "big 0" to follow), we can (and usually do) replace each occurrence of log m 
by the term log n. 

In principle, we could express the running time of an algorithm as a function 
of the problem size; however, that would be unnecessarily awkward. Typically, we 
will express the running time more simply and more directly as a function of the 
network parameters n, m, log C, and log U. 

Worst-Case Complexity 

The time taken by an algorithm, which is also called the running time of the algorithm, 
depends on both the nature and size of the input. Larger problems require more 
solution time, and different problems of the same size typically require different 
solution times due to differences in the data. A time complexity function for an 
algorithm is a function of the problem size and specifies the largest amount of time 
needed by the algorithm to solve any problem instance of a given size. In other 
wor4s, the time complexity function measures the rate of growth in solution time 
as the problem size increases. For example, if the time complexity function of a 
network algorithm is cnm for some constant c ~ 0, the running time needed to solve 
any network problem with n nodes and m arcs is at most cnm. Notice that the time 
complexity function accounts for the dependence of the running time on the problem 
size by measuring the largest time needed to solve any problem instance of a given 
size; at this level of detail in measuring algorithmic performance, the complexity 
function provides a performance guarantee that depends on the appropriate measure 
of the problem's input data. Accordingly, we also refer to the time complexity func
tion as the worst-case complexity (or, simply, the complexity) of the algorithm. We 
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also refer to the worst-case complexity of an algorithm as its worst-case bound, for 
it states an upper bound on the time taken by the algorithm. 

Big 0 Notation 

To define the complexity of an algorithm completely, we need to specify the values 
for one or more constants. In most cases the determination of these constants is a 
nontrivial task; moreover, the determination might depend heavily on the computer, 
and other factors. Consider, for example, the following segment of an algorithm, 
which adds two p x q arrays: 

for i: = 1 to P do 
for j: = 1 to q do 

elj: = ail + bij ; 

At first glance, this program segment seems to perform exactly pq additions 
and the same number of assignments of values to the computer locations storing the 
values of the variables Cij' This accounting, however, ignores many computations 
that the computer would actually perform. A computer generally stores a two
dimensional array of size p x q as a single array of length pq and so would typically 
store the element aij at the location (i - l)q + j of the array a. Thus each time we 
retrieve the value of aij and bij we would need to perform one subtraction, one 
multiplication, and one addition. Further, whenever, the computer would increment 
the index i (or j), it would perform a comparison to determine whether i > p (or 
j> q). Needless to say, such a detailed analysis of an algorithm is very time con
suming and not particularly illuminating. 

The dependence of the complexity function on the constants poses yet another 
problem: How do we compare an algorithm that performs 5n additions and 3n com
parisons with an algorithm that performs n multiplications and 2n subtractions? Dif
ferent computers perform mathematical and logical operations at different speeds, 
so neither of these algorithms might be universally better. 

We can overcome these difficulties by ignoring the constants in the complexity 
analysis. We do so by using "big 0" notation, which has become commonplace in 
computational mathematics, and replace the lengthy and somewhat awkward expres
sion "the algorithm required cnm time for some constant c" by the equivalent 
expression "the algorithm requires O{nm) time." We formalize this definition as 
follows: 

An algorithm is said to run in O{f(n» time if for some numbers c and no, the 
time taken by the algorithm is at most cf{n) for all n 2: no. 

Although we have stated this definition in terms of a single measure n of a 
problem-size parameter, we can easily incorporate other size parameters m, C, and 
U in the definition. 

The big 0 notation has several implications. The complexity of an algorithm 
is an upper bound on the running time of the algorithm for sufficiently large values 
of n. Therefore, this complexity measure states the asymptotic growth rate of the 
running time. We can justify this feature of the complexity measure from practical 
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considerations since we are more interested about the behavior of the algorithm on 
very large inputs, as these inputs determine the limits of applicability of the algo
rithm. Furthermore, the big 0 notation indicates only the most dominant term in 
the running time, because for sufficiently large n, terms with a smaller growth rate 
become insignificant as compared to terms with a higher growth rate. For example, 
if the running time of an algorithm is lOOn + n2 + 0.OOOln3

, then for all n ~ 100, 
the second term dominates the first term, and for all n ~ 10,000, the third term 
dominates the second term. Therefore, the complexity of the algorithm is O(n3

). 

Another important implication of ignoring constants in the complexity analysis 
is that we can assume that each elementary mathematical operation, such as addition, 
subtraction, mUltiplication, division, assignment, and logical operations, requires an 
equal amount of time. A computer typically performs these operations at different 
speeds, but the variation in speeds can typically be bounded by a constant (provided 
the numbers are not too large), which is insignificant in big 0 notation. For example, 
a computer typically multiplies two numbers by repeated additions and the number 
of such additions are equal to number of bits in the smaller number. Assuming that 
the largest number can have 32 bits, the multiplication can be at most 32 times more 
expensive than addition. These observations imply that we can summarize the run
ning time of an algorithm by recording the number of elementary mathematical op
erations it performs, viewing every operation as requiring an equivalent amount of 
time. 

Similarity Assumption 

The assumption that each arithmetic operation takes one step might lead us to un
derestimate the asymptotic running time of arithmetic operations involving very large 
numbers on real computers since, in practice, a computer must store such numbers 
in several words of its memory. Therefore, to perform each operation on very large 
numbers, a computer must access a number of words of data and thus take more 
than a constant number of steps. Thus the reader should be forewarned that the 
running times are misleading if the numbers are exponentially large. To avoid this 
systematic underestimation of the running time, in comparing two running times, 
we will sometimes assume that both C (i.e., the largest arc cost) and U (i.e., the 
largest arc capacity) are polynomially bounded in n [i.e., C = O(nk) and U = O(nk), 
for some constant k]. We refer to this assumption as the similarity assumption. 

Polynomial- and Exponential-Time Algorithms 

We now consider the question of whether or not an algorithm is "good." Ideally, 
we would like to say that an algorithm is good if it is sufficiently efficient to be 
usable in practice, but this definition is imprecise and has no theoretical grounding. 
An idea that has gained wide acceptance in recent years is to consider a network 
algorithm "good" if its worst-case complexity is bounded by a polynomial function 
of the problem's parameters (Le., it is a polynomial function of n, m, log C, and 
log U). Any such algorithm is said to be a polynomial-time algorithm. Some ex
amples of polynomial-time bounds are O(n 2

), O(nm), O(m + n log C), O(nm 
log(n 21m», and O(nm + n 2 log U). (Note that log n is polynomially bounded because 
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its growth rate is slower than n.) A polynomial-time algorithm is said to be a strongly 
polynomial-time algorithm if its running time is bounded by a polynomial function 
in only nand m, and does not involve log C or log U, and is a weakly polynomial
time algorithm otherwise. Some strongly polynomial time bounds are 0(n 2 m) and 
O(n log n). In principle, strongly polynomial-time algorithms are preferred to weakly 
polynomial-time algorithms because they can solve problems with arbitrary large 
values for the cost and capacity data. 

Note that in this discussion we have said that an algorithm is polynomial time 
if its running time is bounded by a polynomial in the network parameters n, m, log C, 
and log U. Typically, in computational complexity we say that an algorithm is 
polynomial time if its running time is bounded by a polynomial in the problem size, 
in this case n log n + m log m + n log C + m log U; however, it is easy to see that 
the running time of a network problem is bounded by a polynomial in its problem 
size if and only if it is also bounded by a polynomial in the problem parameters. For 
example, if the running time is bounded by n 100, it is strictly less than the problem 
size to the lOOth power. Similarly, if the running time is bounded by the problem 
size to the l00th power, it is less than (n log n + m log m + n log C + m log U)IOO, 
which in turn is bounded by (n2 + m 2 + n log C + m log U)I00, which is a poly
nomial in n, m, log C, and log U. 

An algorithm is said to be an exponential-time algorithm if its worst-case run
ning time grows as a function that cannot be polynomially bounded by the input 
length. Some examples of exponential time bounds are O(nC), 0(2"), O(n !), and 
O(nlog II). (Observe that nC cannot be bounded by a polynomial function of nand 
log C.) We say that an algorithm is a pseudopolynomial-time algorithm if its running 
time is polynomially bounded in n, m, C, and U. The class of pseudopolynomial
time algorithms is an important subclass of exponential-time algorithms. Some ex
amples of pseudo polynomial-time bounds are O(m + nC) and O(mC). For problems 
that satisfy the similarity assumption, pseudopolynomial-time algorithms become 
polynomial-time algorithms, but the algorithms will not be attractive if C and U are 
high-degree polynomials in n. 

There are several reasons for preferring polynomial-time algorithms to expo
nential-time algorithms. Any polynomial-time algorithm is asymptotically superior 
to any exponential-time algorithm, even in extreme cases. For example, n4000 is 
smaller than nO. I log II if n is sufficiently large (i.e., n ~ 2100,(00). Figure 3.1 illustrates 
the growth rates of several typical complexity functions. The exponential complexity 
functions have an explosive growth rate and, in general, they are able to solve only 
small problems. Further, much practical experience has shown that the polynomials 
encountered in practice typically have a small degree, and generally, polynomial
time algorithms perform better than exponential-time algorithms. 

log n nO.5 n2 n3 2n n! 

3.32 3.16 102 103 103 3.6 x 1(f> 
6.64 10.00 ur tW 1.27 x 1030 9.33 x 10m 

9.97 31.62 1(f> 109 1.07 x 10301 4.02 X 102•
567 

13.29 100.00 lOS 10'2 0.99 X 103,010 2.85 X 1035•659 

Figure 3.1 Growth rates of some polynomial and exponential functions. 
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A brief examination of the effects of improved computer technology on algo
rithms is even more revealing in understanding the impact of various complexity 
functions. Consider a polynomial-time algorithm whose complexity is 0(n2). Sup
pose that the algorithm is able to solve a problem of size n) in 1 hour on a computer 
with speed of s) instructions per second. If we increase the speed of the computer 
to S2, then (n2/n.)2 = S2/S) specifies the size n2 of the problem that the algorithm 
can solve in the same time. Consequently, a lOO-fold increase in computer speed 
would allow us to solve problems that are 10 times larger. Now consider an expo
nential-time algorithm with a complexity of 0(2"). As before, let n) and n2 denote 
the problem sizes solved on a computer with speeds S1 and S2 in 1 hour of computation 
time. Then S2/S) = 2"2/2"1. Alternatively, n2 = n) + log(s2/s.). In this case, a 100-
fold increase in computer speed would allow us to solve problems that are only about 
7 units larger. This discussion shows that a substantial increase in computer speed 
allows us to solve problems by polynomial-time algorithms that are larger by a mul
tiplicative factor; for exponential-time algorithms we obtain only additive improve
ments. Consequently, improved hardware capabilities of computers can have only 
a marginal impact on the problem-solving ability of exponential-time algorithms. 

Let us pause to summarize our discussion of polynomial and exponential-time 
algorithms. In the realm of complexity theory, our objective is to obtain polynomial
time algorithms, and within this domain our objective is to obtain an algorithm with 
the smallest possible growth rate, because an algorithm with smaller growth rate is 
likely to permit us to solve larger problems in the same amount of computer time 
(depending on the associated constants). For example, we prefer O(log n) to O(nk) 
for any k > 0, and we prefer 0(n2) to 0(n3). However, running times involving 
more than one parameter, such as O(n m log n) and 0(n 3), might not be comparable. 
If m < n2/log n, then O(n m log n) is superior; otherwise, 0(n3) is superior. 

Can we say that a polynomial-time algorithm with a smaller growth rate would 
run faster in practice, or even that a polynomial-time algorithm would empirically 
outperform an exponential-time algorithm? Although this statement is generally true, 
there are many exceptions to the rule. A classical exception is provided by the 
simplex method and Khachian's "ellipsoid" algorithm for solving linear program
ming problems. The simplex algorithm is known to be an exponential-time algorithm, 
but in practice it runs much faster than Khachian's polynomial-time algorithm. Many 
of these exceptions can be explained by the fact that the worst-case complexity is 
greatly inferior to the average complexity of some algorithms, while for other al
gorithms the worst-case complexity and the average complexity might be compa
rable. As a consequence, considering worst-case complexity as synonymous with 
average complexity can lead to incorrect conclusions. 

Sometimes, we might not succeed in developing a polynomial-time algorithm 
for a problem. Indeed, despite their best efforts spanning several decades, research
ers have been unable to develop polynomial-time alogorithms for a huge collectin of 
important combinatorial problems; all known algorithms for these problems are 
exponential-time algorithms. However, the research community has been able to 
show that most of these problems belong to a class of problems, called ,NCfP-complete 
problems, that are equivalent in the sense that if there exists a polynomial-time 
algorithm for one problem, there exists a polynomial-time algorithm for every other 
,NCfP-complete problem. Needless to say, developing a polynomial-time algorithm 
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for some .N'~-complete problem is one of the most challenging and intriguing is
sues facing the research community; the available evidence suggests that no such 
algorithm exists. We discuss the theory of .N'~-completeness in greater detail in 
Appendix B. 

Big n and Big e Notation 

The big 0 notation that we introduced earlier in this section is but one of several 
convenient notational devices that researchers use in the analysis of algorithms. In 
this subsection we introduce two related notational constructs: the big!l (big omega) 
notation and the big e (big theta) notation. 

Just as the big 0 notation specifies an upper bound on an algorithm's perfor
mance, the big !l notation specifies a lower bound on the running time. 

An algorithm is said to be !l(f(n» if for some numbers e / and no and all n ~ 
no, the algorithm takes at least e'f(n) time on some problem instance. 

The reader should carefully note that the big 0 notation and the big !l notation 
are defined in somewhat different ways. If an algorithm runs in O(f(n» time, every 
instance of the problem of size n takes at most ef(n) time for a constant e. On the 
other hand, if an algorithm runs in !l(f(n» time, some instance of size n takes at 
least e'f(n) time for a constant e'. 

The big e (big theta) notation provides both a lower and an upper bound on 
an algorithm's performance. 

An algorithm is said to be e(f(n» if the algorithm is both O(f(n» and !l(f(n». 

We generally prove an algorithm to be an O(f(n» algorithm and then try to 
see whether it is also an !l(f(n» algorithm. Notice that the proof that the algorithm 
requires O(f(n» time does not imply that it would actually take ef(n) time to solve 
all classes of problems of the type we are studying. The upper bound of ef(n) could 
be "too loose" and might never be achieved. There is always a distinct possibility 
that by conducting a more clever analysis of the algorithm we might be able to 
improve the upper bound of ef(n), replacing it by a "tighter" bound. However, if 
we prove that the algorithm is also !l(f(n», we know that the upper bound of ef(n) 
is "tight" and cannot be improved by more than a constant factor. This result would 
imply that the algorithm can actually achieve its upper bound and no tighter bound 
on the algorithm's running time is possible. 

Potential Functions and Amortized Complexity 

An algorithm typically performs some basic operations repetitively with each op
eration performing a sequence of steps. To bound the running time of the algorithm 
we must bound the running time of each of its basic operations. We typically bound 
the total number of steps associated with an operation using the following approach: 
We obtain a bound on the number of steps per operation, obtain a bound on the 
number of operations, and then take a product of the two bounds. In some of the 
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algorithms that we study in this book, the time required for a certain operation might 
vary depending on the problem data and/or the stage the algorithm is in while solving 
a problem. Although the operation might be easy to perform most of the time, oc
casionally it might be quite expensive. When this happens and we consider the time 
for the operation corresponding to the worst-case situation, we could greatly 
overestimate the running time of the algorithm. In this situation, a more global anal
ysis is required to obtain a "tighter" bound on the running time of the operation. 
Rather than bounding the number of steps per operation and the number of operations 
executed in the algorithm, we should try to bound the total number of steps over 
all executions of these operations. We often carry out this type of worst-case analysis 
using a potential function technique. 

We illustrate this concept on a problem of inserting and removing data from a 
data structure known as a stack (see Appendix A for a discussion of this data struc
ture). On a stack S, we perform two operations: 

push(x, S). Add element x to the top of the stack S. 

popall(S). Pop (i.e., take out) every element of S. 

The operation push(x, S) requires 0(1) time and the operation popall(S) re
quires 0(1 S I) time. Now assume that starting with an empty stack, we perform a 
sequence of n operations in which push and popall operations occur in a random 
order. What is the worst-case complexity of performing this sequence of n opera
tions? 

A naive worst-case analysis of this problem might proceed as follows. Since 
we require at most n push operations, and each push takes 0(1) time, the push 
operations require a total of O(n) time. A popall requires 0(1 S I> time and since 
1 S 1 ~ n, the complexity of this operation is O(n). Since our algorithm can invoke 
at most n popall operations, these operations take a total of 0(n2) time. Conse
quently, a random sequence of n push and popall operations has a worst-case com
plexity of 0(n2). 

However, if we look closely at the arguments we will find that the bound of 
0(n2) is a substantial overestimate of the algorithm's computational requirements. 
A popall operation pops 1 S 1 items from the stack, one by one until the stack becomes 
empty. Now notice that any element that is popped from the stack must have been 
pushed into the stack at some point, and since the number of push operations is at 
most n, the total number of elements popped out of the stack must be at most n. 
Consequently, the total time taken by all popall operations is O(n). We can therefore 
conclude that a random sequence of n push and popall operations has a worst-case 
complexity of O( n ). 

Let us provide a formal framework, using potential functions, for conducting 
the preceding arguments. Potential function techniques are general-purpose tech
niques for establishing the complexity of an algorithm by analyzing the effects of 
different operations on an appropriately defined function. The use of potential func
tions enables us to define an "accounting" relationship between the occurrences of 
various operations of an algorithm so that we can obtain a bound on the operations 
that might be difficult to obtain using other arguments. 

Let <t>(k) = 1 S 1 denote the number of items in the stack at the end of the kth 
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step; for the purpose of this argument we define a step as either a push or a popall 
operation. We assume that we perform the popall step on a nonempty stack; for 
otherwise, it requires 0(1) time. Initially, 4>(0) = O. Each push operation increases 
q,(k) by 1 unit and takes 1 unit of time. Each popall step decreases 4>(k) by at least 
1 unit and requires time proportional to 4>(k). Since the total increase in <f> is at 
most n (because we invoke at most n push steps), the total decrease in 4> is also at 
most n. Consequently, the total time taken by all push and popall steps is O( n). 

This argument is fairly representative of the potential function arguments. Our 
objective was to bound the time for the popalls. We did so by defining a potential 
function that decreases whenever we perform a popall. The potential increases only 
when we perform a push. Thus we can bound the total decrease by the total increase 
in 4>. In general, we bound the number of steps of one type by using known bounds 
on the number of steps of other types. 

The analysis we have just discussed is related to the concept known as am
ortized complexity. An operation is said to be of amortized complexity O(f(n» if 
the time to perform a sequence of k operations is O(kf(n» for sufficiently large k. 
In our preceding example, the worst-case complexity of performing k popalls for 
k ~ n is O(k); hence the amortized complexity of the popall operation is 0(1). 
Roughly speaking, the amortized complexity of an operation is the "average" worst
case complexity of the operation so that the total obtained using this average will 
indeed be an upper bound on the number of steps performed by the algorithm. 

Parameter Balancing 

We frequently use the parameter balancing technique in situations when the running 
time of an algorithm is a function of a parameter k and we wish to determine the 
value of k that gives the smallest running time. To be more specific, suppose that 
the running time of an algorithm is O(f(n, m, k) + g(n, m, k» and we wish to 
determine an optimal value of k. We shall assume that f(n, m, k) ~ 0 and g(n, m, 
k) 2: 0 for all feasible values of k. The optimization problem is easy to solve if the 
functions f(n, m, k) and g(n, m, k) are both either monotonically increasing or 
monotonically decreasing in k. In the former case, we set k to the smallest possible 
value, and in the latter case, we set k to the largest possible value. Finding the 
optimal value of k is more complex if one function is monotonically decreasing and 
the other function is monotonically increasing. So let us assume that f(n, m, k) is 
monotonically decreasing in k and g(n, m, k) is monotonically increasing in k. 

One method for selecting the optimal value of k is to use differential calculus. 
That is, we differentiate f(n, m, k) + g(n, m, k) with respect to k, set the resulting 
expression equal to zero, and solve for k. A major drawback of this approach is that 
finding a value of k that will set the expression to value zero, and so determine the 
optimal value of k, is often a difficult task. Consider, for example, a shortest path 
algorithm (which we discuss in Section 4.7) that runs in time O(m lo~n + nk logkn). 
In this case, choosing the optimal value of k is not trivial. We can restate the al
gorithm's time bound as O«m log n + nk log n)l1og k). The derivative of this expres
sion with respect to k is 

(nk log n log k - m log n - nk log n)/kOog k)2. 
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Setting this expression to zero, we obtain 

m + nk - nk log k = o. 
Unfortunately, we cannot solve this equation in closed form. 

The parameter balancing technique is an alternative method for determining 
the "optimal value" of k and is based on the idea that it is not necessary to select 
a value of k that minimizes f(n, m, k) + g(n, m, k). Since we are evaluating the 
performance of algorithms in terms of their worst-case complexity, it is sufficient 
to select a value of k for which f(n, m, k) + g(n, m, k) is within a constant factor 
of the optimal value. The parameter balancing technique determines a value of k so 
that f(n, m, k) + g(n, m, k) is at most twice the minimum value. 

In the parameter balancing technique, we select k* so that f(n, m, k*) = 
g(n, m, k*). Before giving a justification of this approach, we illustrate it on two 
examples. We first consider the O(m logkn + nk logkn) time shortest path algorithm 
that we mentioned earlier. We first note that m logkn is a decreasing function of k 
and nk logkn is an increasing function of k. Therefore, the parameter balancing tech
nique is appropriate. We set m logk*n = nk* logk*n, which gives k* = min. Con
sequently, we achieve the best running time of the algorithm, O(m logmlnn), by 
setting k = min. 

Our second example concerns a maximum flow algorithm whose running time 
is O«n 3Ik)(log k) + nm(log k». We set 

n3 

-log k* = nm log k*, 
k* 

which gives k* = n2lm. Therefore, the best running time of this maximum flow 
algorithm is O(nm log(n 2Im». In Exercise 3.13 we discuss more examples of the 
parameter balancing technique. 

We now justify the parameter balancing technique. Suppose we select k* so 
that f(n, m, k*) = g(n, m, k*). Let A. * = f(n, m, k*) + g(n, m, k*). Then for any 
k < k*, 

f(n, m, k) + g(n, m, k) ~ f(n, m, k) 2: f(n, m, k*) = A. */2. (3.1) 

The second inequality follows from the fact that the function f(n, m, k) is mono
tonically decreasing in k. Similarly, for any k > k*, 

f(n, m, k) + g(n, m, k) 2: g(n, m, k) 2: g(n, m, k*) = A. */2. (3.2) 

The expressions (3.1) and (3.2) imply that for any k, 

f(n, m, k) + g(n, m, k) 2: A. */2. 

This result establishes the fact that A. * = f(n, m, k*) + g(n, m, k*) is within 
a factor of 2 of the minimum value of f(n, m, k) + g(n, m, k). 

3.3 DEVELOPING POLYNOMIAL-TIME ALGOBITHMS 

Researchers frequently employ four important approaches for obtaining polynomial
time algorithms for network flow problems: (1) a geometric improvement approach, 
(2) a scaling approach, (3) a dynamic programming approach, and (4) a binary search 
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approach. In this section we briefly outline the basic ideas underlying these four 
approaches. 

Geometrio Improvement Approach 

The geometric improvement approach permits us to show that an algorithm runs in 
polynomial time if at every iteration it makes an improvement in the objective func
tion value proportional to the difference between the objective values of the current 
and optimal solutions. Let H be the difference between the maximum and minimum 
objective function values of an optimization problem. For most network problems, 
H is a function of n, m, C, and V. For example, in the maximum flow problem 
H = mV, and in the minimum cost flow problem H = mCV. We also assume that 
the optimal objective function value is integer. 

Theorem 3.1. Suppose that Zk is the objective function value of some solution 
of a minimization problem at the kth iteration of an algorithm and z* is the minimum 
objective function value. Furthermore, suppose that the algorithm guarantees that 
for every iteration k, 

(3.3) 

(i.e., the improvement at iteration k + 1 is at least a times the total possible im
provement) for some constant a with 0 < a < 1 (which is independent of the problem 
data). Then the algorithm terminates in O«(log H)/a) iterations. 

Proof. The quantity (Zk - z*) represents the total possible improvement in 
the objective function value after the kth iteration. Consider a consecutive sequence 
of 2/a iterations starting from iteration k. If each iteration of the algorithm improves 
the objective function value by at least a(zk - z*)/2 units, the algorithm would 
determine an optimal solution within these 2/a iterations. Suppose, instead, that at 
some iteration q + 1, the algorithm improves the objective function value by less 
than a(zk - z*)/2 units. In other words, 

zq - zq + 1 ~ a(zk - z*)/2. (3.4) 

The inequality (3.3) implies that 

a(zq - z*) ~ zq - zq+l. (3.5) 

The inequalities (3.4) and (3.5) imply that 

(zq - z*) ~ (Zk - z*)/2, 

so the algorithm has reduced the total possible improvement (Zk - z*) by a factor 
at least 2. We have thus shown that within 2/a consecutive iterations, the algorithm 
either obtains an optimal solution or reduces the total possible improvement 
by a factor of at least 2. Since H is the maximum possible improvement and 
every objective function value is an integer, the algorithm must terminate within 
O«log H)/a) iterations. • 

We have stated this result for the minimization version of optimization prob
lems. A similar result applies to the maximization problems. 
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The geometric improvement approach might be summarized by the statement 
"network algorithms that have a geometric convergence rate are polynomial-time 
algorithms." To develop polynomial-time algorithms using this approach, we look 
for local improvement techniques that lead to large (i.e., fixed percentage) improve
ments in the objective function at every iteration. The maximum augmenting path 
algorithm for the maximum flow problem discussed in Section 7.3 and the maximum 
improvement algorithm for the minimum cost flow problem discussed in Section 9.6 
provide two examples of this approach. 

Scaling Approach 

Researchers have used scaling methods extensively to derive polynomial-time al
gorithms for a wide variety of network and combinatorial optimization problems. 
Indeed, for problems that satisfy the similarity assumption, the scaling-based al
gorithms achieve the best worst-case running time for most of the network opti
mization problems we consider in this book. 

We shall describe the simplest form of scaling, which we call bit-scaling. In 
the bit-scaling technique, we represent the data as binary numbers and solve a prob
lem P parametrically as a sequence of problems PI, P2 , P3 , ••• , PK : The problem 
PI approximates data to the first most significant bit, the problem P2 approximates 
data to the first two most significant bits, and each successive problem is a better 
approximation, until PK = P. Moreover, for each k = 2, ... ,K, the optimal solution 
of problem P k - I serves as the starting solution for problem P k • The scaling technique 
is useful whenever reoptimization from a good starting solution is more efficient 
than solving the problem from scratch. 

For example, consider a network flow problem whose largest arc capacity has 
value U. Let K = rlog Ul and suppose that we represent each arc capacity as a 
K-bit binary number, adding leading zeros if necessary to make each capacity K 
bits long. Then the problem Pk would consider the capacity of each arc as the k 
leading bits in its binary representation. Figure 3.2 illustrates an example of this type 
of scaling. 

The manner of defining arc capacities easily implies the following property. 

Property 3.2. The capacity of an arc in Pk is twice that in Pk - 1 plus 0 or 1. 

The algorithm shown in Figure 3.3 encodes a generic version of the bit-scaling 
technique. 

This approach is very robust, and variants of it have led to improved algorithms 
for both the maximum flow and minimum cost flow problems. This approach works 
well for these applications, in part, for the following reasons: 

68 

1. The problem PI is generally easy to solve. 
2. The optimal solution of problem Pk - I is an excellent starting solution for prob

lem Pk since Pk - I and Pk are quite similar. Therefore, we can easily reoptimize 
the problem starting from the optimal solution of Pk - 1 to obtain an optimal 
solution of P k • 
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Figure 3.2 Examples of a bit-scaling technique: (a) network with arc capacities; (b) network 
with binary expansions of arc capacities; (c)-(e) problems PI, P2 , and P3 • 

3. The number of reoptimization problems we solve is O(log C) or O(log U). Thus 
for this approach to work, reoptimization needs to be only a little more efficient 
(i.e., by a factor of log C or log U) than optimization. 

Consider, for example, the maximum flow problem. Let Vk denote the maximum 
flow value for problem Pk and let Xk denote an arc flow corresponding to Vk. In the 
problem Pk, the capacity of an arc is twice its capacity in Pk - I plus 0 or 1. If we 
multiply the optimal flow Xk - 1 of P k - I by 2, we obtain a feasible flow for P k. More
over, Vk - 2Vk-1 :$ m because multiplying the flow Xk-I by 2 takes care of the 
doubling of the capacities and the additional 1 's can increase the maximum flow 
value by at most m units (if we add 1 to the capacity of any arc, we increase the 

algorithm bit-scaling; 
begin 

obtain an optimal solution of P1 ; 

for Ie = 2 to K do 
begin 

reoptimize using the optimal solution of Pk.-1 to obtain an optimal solution of Pk.; 
end; 

end; 

Figure 3.3 Typical bit-scaling algorithm. 
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maximum flow from the source to the sink by at most 1). In general, it is easier to 
reoptimize such a maximum flow problem than to solve a general problem from 
scratch. For example, the classical labeling algorithm as discussed in Section 6.5 
would perform the reoptimization in at most m augmentations, requiring O(m 2

) time. 
Therefore, the scaling version of the labeling algorithm runs in O(m2 log U) time, 
improving on the running time O(nmU) of the nonscaling version. The former time 
bound is polynomial and the latter bound is only pseudopolynomial. Thus this simple 
bit-scaling algorithm improves the running time dramatically. 

An alternative approach to scaling considers a sequence of problems PO), 
P(2), ... , P(K), each involving the original data, but in this case we do not solve 
the problem P(k) optimally, but solve it approximately, with an error of ~k' Initially, 
~l is quite large, and it subsequently converges geometrically to O. Usually, we can 
interpret an error of ~k as follows. From the current nearly optimal solution Xk, there 
is a way of modifying some or all of the data by at most ~k units so that the resulting 
solution is optimal. Our discussion of the capacity scaling algorithm for the maximum 
flow problem in Section 7.3 illustrates this type of scaling. 

Dynamic Programming 

Researchers originally conceived of dynamic programming as a stagewise optimi
zation technique. However, for our purposes in this book, we prefer to view it as 
a "table-filling" approach in which we complete the entries of a two-dimensional 
tableau using a recursive relationship. Perhaps the best way to explain this approach 
is through several illustrations. 

Computing Binomial Coefficients 

In many application of combinatorics, for example in elementary probability, we 
frequently wish to determine the number PCq of different combinations of p objects 
taken q at a time for some given values of p and q (p 2: q). As is well known, PCq = 
p!/«p - q)!q!). Suppose that we wish to make this computation using only the 
mathematical operation of addition and using the fact that the combination function 
PCq satisfies the following recursive relationship: 

(3.6) 

To solve this problem, we define a lower triangular table D = {d(i, j)} with p 
rows and q columns: Its entries, which we would like to compute, will be d(i, j) = 
iCj for i 2: j. We will fill in the entries in the table by scanning the rows in the order 
1 through p; when scanning each row i, we scan its columns in the order 1 through 
i. Note that we can start the computations by setting the ith entry d(i, 1) = iC I in 
the first column to value i since there are exactly i ways to select one object from 
a collection of i objects. Observe that whenever we scan the element (i, j) in the 
table, we have already computed the entries i-ICj and i-ICj _ l , and their sum yields 
d(i, j). So we always have the available information to compute the entries in the 
table as we reach them. When we have filled the entire table, the entry d(p, q) gives 
us the desired answer to our problem. 
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Knapsack Problem 

We can also illustrate the dynamic programming approach on another problem, 
known as the knapsack problem, which is a classical model in the operations research 
literature. A hiker must decide which goods to include in her knapsack on a forth
coming trip. She must choose from among p objects: Object i has weight Wi (in 
pounds) and a utility Uj to the hiker. The objective is to maximize the utility of the 
hiker's trip subject to the weight limitation that she can carry no more than W pounds. 
This knapsack problem has the following formulation as an integer program: 

p 

Maximize L UiXi 
i=1 

subject to 
p 

L WiXi:5 W, 
i= ) 

Xi == {O, I} 

(3.7a) 

(3.7b) 

for all i. (3.7c) 

To solve the knapsack problem, we construct a p x W table D whose elements 
d(i, j) are defined as follows: 

d(i, j): The maximum utility of the selected items if we restrict our selection 
to the items 1 through i and impose a weight restriction of j. 

Clearly, our objective is to determine d(p, W). We determine this value by 
computing d(i, j) for increasing values of i and, for a fixed value of i, for increasing 
values ofj. We now develop the recursive relationship that would allow us to compute 
d(i,j) from those elements of the tableau that we have already computed. Note that 
any solution restricted to the items 1 through i, either (1) does not use item i, or (2) 
uses this item. In case (1), d(i, j) = d(i - 1, j). In case (2), d(i, j) = Ui + d(i -
1, j - Wi) for the following reason. The first term in this expression represents the 
value of including item i in the knapsack and the second term denotes the optimal 
value obtained by allocating the remaining capacity of j - Wi among the items 1 
through i-I. W e have thus shown that 

d(i, j) = max{d(i - 1, j), Ui + d(i - 1, j - Wi)}. 

When carrying out these computations, we also record the decision corre
sponding to each d(i, j) (i.e., whether Xi = 0 or Xi == 1). These decisions allow us 
to construct the solution for any d(i, j), including the desired solution for d(p, W). 

In both these illustrations of dynamic programming, we scanned rows of the 
table in ascending order and for each fixed row, we scanned columns in ascending 
order. In general, we could scan the rows and columns of the table in either ascending 
or descending order as long as the recursive relationship permits us to determine 
the entries needed in the recursion from those we have already computed. 

To conclude this brief discussion, we might note that much of the traditional 
literature in dynamic programming views the problem as being composed of' 'stages" 
and "states" (or possible outcomes within each state). Frequently, the stages cor-
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respond to points in time (this is the reason that this topic has become known as 
dynamic programming). To reconceptualize our tabular approach in this stage and 
state framework, we would view each row as a stage and each column within each 
row as a possible state at that stage. For both the binomial coefficient and knapsack 
applications that we have considered, each stage corresponds to a restricted set of 
objects (items): In each case stage i corresponds to a restricted problem containing 
only the first i objects. In the binomial coefficient problem, the states are the number 
of elements in a subset of the i objects; in the knapsack problem, the states are the 
possible weights that we could hold in a knapsack containing only the first i items. 

Binary Search 

Binary search is another popular technique for obtaining polynomial-time algorithms 
for a variety of network problems. Analysts use this search technique to find, from 
among a set of feasible solutions, a solution satisfying "desired properties." At every 
iteration, binary search eliminates a fixed percentage (as the name binary implies, 
typically, 50 percent) of the solution set, until the solution set becomes so small that 
each of its feasible solutions is guaranteed to be a solution with the desired properties. 

Perhaps the best way to describe the binary search technique is through ex
amples. We describe two examples. In the first example, we wish to find the tele
phone number of a person, say James Morris, in a phone book. Suppose that the 
phone book contains p pages and we wish to find the page containing James Morris's 
phone number. The following "divide and conquer" search strategy is a natural 
approach. We open the phone book to the middle page, which we suppose is page 
x. By viewing the first and last names on this page, we reach one of the following 
three conclusions: (1) page x contains James Morris's telephone number, (2) the 
desired page is one of pages 1 through x-I, or (3) the desired page is one of pages 
x + 1 to p. In the second case, we would next turn to the middle of the pages 1 
through x-I, and in the third case, we would next turn to the middle of the pages 
x + 1 through p. In general, at every iteration, we maintain an interval [a, b] of 
pages that are guaranteed to contain the desired phone number. Our next trial page 
is the middle page of this interval, and based on the information contained on this 
page, we eliminate half of the pages from further consideration. Clearly, after 
O(log p) iterations, we will be left withjust one page and our search would terminate. 
If we are fortunate, the search would terminate even earlier. 

As another example, suppose that we are given a continuous function f(x) 
satisfying the properties that f(O) < 0 and f(1) > O. We want to determine an interval 
of size at most E > 0 that contains a zero of the function, that is, a value of x for 
which f(x) = 0 (to within the accuracy of the computer we are using). In the first 
iteration, the interval [0, 1] contains a zero of the function f(x), and we evaluate 
the function at the midpoint of this interval, that is, at the point 0.5. Three outcomes 
are possible: (1) f(0.5) = 0, (2) f(0.5) < 0, and (3) f(0.5) > O. In the first case, we 
have found a zero x and we terminate the search. In the second case, the continuity 
property of the function f(x) implies that the interval [0.5, 1] contains a zero of the 
function, and in the third case the interval [0, 0.5] contains a zero. In the second 
and third cases, our next trial point is the midpoint of the resulting interval. We 
repeat this process, and eventually, when the interval size is less than E, we dis-
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continue the search. As the reader can verify, this method will terminate within 
o (log( 1/ e» iterations. 

In general, we use the binary search technique to identify a desired value of 
a parameter among an interval of possible values. The interval [I, u] is defined by 
a lower limit I and an upper limit u. In the phone book example, we wanted to 
identify a page that contains a specific name, and in the zero value problem we 
wanted to identify a value of x in the range [0, 1] for which f(x) is zero. At every 
iteration we perform a test at the midpoint (l + u)/2 of the interval, and determine 
whether the desired parameter lies in the range [I, (l + u)/2] or in the range [(I + 
u)/2, u]. In the former case, we reset the upper limit to (l + u)/2, and in the latter 
case, we reset the lower limit to (l + u)/2. We might note that eliminating one-half 
of the interval requires that the problem satisfy certain properties. For instance, in 
the phone book example, we used the fact that the names in the book are arranged 
alphabetically, and in the zero-value problem we used the fact that the function f(x) 
is continuous. We repeat this process with the reduced interval and keep reapplying 
the procedure until the interval becomes so small that it contains only points that 
are desired solutions. If W max denotes the maximum (i.e., starting) width of the 
interval (i.e., u - l) and Wmin denotes the minimum width of the interval, the binary 
search technique required o (log( wmax/Wmin» iterations. 

In most applications of the binary search technique, we perform a single test 
and eliminate half of the feasible interval. The worst-case complexity of the technique 
remains the same, however, even if we perform several, but a constant number, of 
tests at each step and eliminate a constant portion (not necessarily 50 percent) of 
the feasible interval (in Exercise 3.23 we discuss one such application). Although 
we typically use the binary search technique to perform a search over a single pa
rameter, a generalized version of the method would permit us to search over multiple 
parameters. 

8.4 SEARCH ALGORITHMS 

Search algorithms are fundamental graph techniques that attempt to find all the nodes 
in a network satisfying a particular property. Different variants of search algorithms 
lie at the heart of many maximum flow and minimum cost flow algorithms. The 
applications of search algorithms include (1) finding all nodes in a network that are 
reachable by directed paths from a specific node, (2) finding all the nodes in a network 
that can reach a specific node t along directed paths, (3) identifying all connected 
components of a network, and (4) determining whether a given network is bipartite. 
To illustrate some of the basic ideas of search algorithms, in this section we discuss 
only the first two of these applications; Exercises 3.41 and 3.42 consider the other 
two applications. 

Another important application of search algorithms is to identify a directed 
cycle in a network, and if the network is acyclic, to reorder the nodes 1, 2, ... , n 
so that for each arc (i, j) E A, i < j. We refer to any such order as a topological 
ordering. Topological orderings prove to be essential constructs in several appli
cations, such as project scheduling (see Chapter 19). They are also useful in the 
design of certain algorithms (see Section 10.5). We discuss topological ordering later 
in this section. 
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To illustrate the basic ideas of search algorithms, suppose that we wish to find 
all the nodes in a network G = (N, A) that are reachable along directed paths from 
a distinguished node s, called the source. A search algorithm fans out from the source 
and identifies an increasing number of nodes that are reachable from the source. At 
every intermediate point in its execution, the search algorithm designates all the 
nodes in the network as being in one of the two states: marked or unmarked. The 
marked nodes are known to be reachable from the source, and the status of unmarked 
nodes has yet to be determined. Note that if node i is marked, node j is unmarked, 
and the network contains the arc (i, j), we can mark node j; it is reachable from 
source via a directed path to node i plus arc (i,j). Let us refer to arc (i,j) as admissible 
if node i is marked and node j is unmarked, and refer to it as inadmissible otherwise. 
Initially, we mark only the source node. Subsequently, by examining admissible 
arcs, the search algorithm will mark additional nodes. Whenever the procedure 
marks a new node j by examining an admissible arc (i, j), we say that node i is a 
predecessor of nodej [i.e., pred( j) = iJ. The algorithm terminates when the network 
contains no admissible arcs. 

The search algorithm traverses the marked nodes in a certain order. We recorci 
this traversal order in an array order: the entry order(i) is the order of node i in the traversal. 
Figure 3.4 gives a formal description of the search algorithm. In the algorithmic 
description, LIST represents the set of marked nodes that the algorithm has yet to 
examine in the sense that some admissible arcs might emanate from them. When 
the algorithm terminates, it has marked all the nodes in G that are reachable from 
s via a directed path. The predecessor indices define a tree consisting of marked 
nodes. We call this tree a search tree. Figure 3.5(b) and (c), respectively, depict two 
search trees for the network shown in Figure 3.5(a). 

To identify admissible arcs, we need to be able to access the arcs of the network 
and determine whether or not they connect a marked and unmarked node. To do 
so we must design a data structure for storing the arcs and assessing the status of 
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algorithm search; 
begin 

unmark all nodes in N; 
mark node s; 
pred(s): = 0; 
next: = 1; 
order(s): = s; 
LIST: = {s} 
while LIST :F 0do 
begin 

select a node; in LIST; 
If node i is incident to an admissible arc (i, j) then 
begin 

end 

mark node j; 
pred( j): = i; 
next: = next + 1; 
order( j): = next; 
add node j to LIST; 

el.e delete node i from LIST; 
end; 

end; Figure 3.4 Search algorithm. 
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Figure 3.5 Two search trees of a network. 

their incident nodes. In later chapters, too, we need the same data structure to 
implement maximum flow and minimum cost flow algorithms. We use the current
arc data structure, defined as follows, for this purpose. We maintain with each node 
i the adjacency list A (i) of arcs emanating from it (see Section 2.2 for the definition 
of adjacency list). For each node i, we define a current arc (i, j), which is the next 
candidate arc that we wish to examine. Initially, the current arc of node i is the first 
arc in A(i). The search algorithm examines the list A (i) sequentially: At any stage, 
if the current arc is inadmissible, the algorithm designates the next arc in the arc 
list as the current arc. When the algorithm reaches the end of the arc list, it declares 
that the node has no admissible arc. Note that the order in which the algorithm 
examines the nodes depends on how we have arranged the arcs in the arc adjacency 
lists A(i). We assume here, as well as elsewhere in this book, that we have ordered 
the arcs in AU) in the increasing order of their head nodes [i.e., if (i, j) and (i, k) 
are two consecutive arcs in AU), thenj < k]. 

It is easy to show that the search algorithm runs in O(m + n) = O(m) time. 
Each iteration of the while loop either finds an admissible arc or does not. In the 
former case, the algorithm marks a new node and adds it to LIST, and in the latter 
case it deletes a marked node from LIST. Since the algorithm marks any node at 
most once, it executes the while loop at most 2n times. Now consider the effort 
spent in identifying the admissible arcs. For each node i, we scan the arcs in A(i) 
at most once. Therefore, the search algorithm examines a total of ~jEN I A(i) I 
m arcs, and thus terminates in O(m) time. 
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The algorithm, as described, does not specify the manner for examining the 
nodes or for adding the nodes to LIST. Different rules give rise to different search 
techniques. Two data structures have proven to be the most popular for maintaining 
LIST -a queue and a stack (see Appendix A for a discussion of these data struc
tures)-and they give rise to two fundamental search strategies: breadth-first search 
and depth-first search. 

Breadth-First Search 

If we maintain the set LIST as a queue, we always select nodes from the front of 
LIST and add them to the rear. In this case the search algorithm selects the marked 
nodes in a first-in, first-out order. Ifwe define the distance of a node i as the minimum 
number of arcs in a directed path from node s to node i, this kind of search first 
marks nodes with distance 1, then those with distance 2, and so on. Therefore, this 
version of search is called a breadth-first search and the resulting search tree is a 
breadth-first search tree. Figure 3.5(b) specifies the breadth-first search tree for the 
network shown in Figure 3.5(a). In subsequent chapters we use the following prop
erty of the breadth-first search tree whose proof is left as an exercise (see Exercise 
3.30). 

Property 3.3. In the breadth-first search tree, the tree path from the source 
node s to any node i is a shortest path (i.e., contains the fewest number of arcs 
among all paths joining these two nodes). 

Depth-First Search 

If we maintain the set LIST as a stack, we always select the nodes from the front 
of LIST and also add them to the front. In this case the search algorithm selects the 
marked node in a last-in, first-out order.- This algorithm performs a deep probe, 
creating a path as long as possible, and backs up one node to initiate a new probe 
when it can mark no new node from the tip of the path. Consequently, we call this 
version of search a depth-j'irst search and the resulting tree a depth-first search tree. 
The depth-first traversal of a network is also called its preorder traversal. Figure 
3.5(c) gives the depth-first search tree for the network shown in Figure 3.5(a). 

In subsequent chapters we use the following property of the depth-first search 
tree, which can be easily proved using induction arguments (see Exercise 3.32). 

Property 3.4 
(a) If node j is a descendant C!f node i and j =1= i, then order(j) > orderU). 
(b) All the descendants of any node are ordered consecutively in sequence. 

Reverse Search Algorithm 

The search algorithm described in Figure 3.4 allows us to identify all the nodes in 
a network that are reachable from a given node s by directed paths. Suppose that 
we wish to identify all the nodes in a network from which we can reach a given node 
t along directed paths. We can solve this problem by using the algorithm we have 
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just described with three slight changes: (1) we initialize LIST as LIST = {t}; (2) 
while examining a node, we scan the incoming arcs of the node instead of its outgoing 
arcs; and (3) we designate an arc (i,j) as admissible if i is unmarked andj is marked. 
We subsequently refer to this algorithm as a reverse search algorithm. Whereas the 
(forward) search algorithm gives us a directed out-tree rooted at node s, the reverse 
search algorithm gives us a directed in-tree rooted at node t. 

Deter.mining Strong Connectivity 

Recall from Section 2.2 that a network is strongly connected if for every pair of 
nodes i and j, the network contains a directed path from node i to node j. This 
definition implies that a network is strongly connected if and only if for any arbitrary 
node s, every node in G is reachable from s along a directed path and, conversely, 
node s is reachable from every other node in G along a directed path. Clearly, we 
can determine the strong connectivity of a network by two applications of the search 
algorithm, once applying the (forward) search algorithm and then the reverse search 
algorithm. 

We next consider the problem of finding a topological ordering of the nodes 
of an acyclic network. We will show how to solve this problem by using a minor 
modification of the search algorithm. 

Topological Ordering 

Let us label the nodes of a network G = (N, A) by distinct numbers from 1 through 
n and represent the labeling by an array order [i.e., order(i) gives the label of node 
i]. We say that this labeling is a topological ordering of nodes if every arc joins 
a lower-labeled node to a higher-labeled node. That is, for every arc (i, j) E A, 
order(i) < order(j). For example, for the network shown in Figure 3.6(a), the labeling 
shown in Figure 3.6(b) is not a topological ordering because (5, 4) is an arc and 
order(5) > order(4). However, the labelings shown in Figure 3.6(c) and (d) are to
pological orderings. As shown in this example, a network might have several to
pological orderings. 

Some networks cannot be topologically ordered. For example, the network 
shown in Figure 3.7 has no such ordering. This network is cyclic because it contains 
a directed cycle and for any directed cycle W we can never satisfy the condition 
order(i) < order(j) for each (i, j) E W. Indeed, acyclic networks and topological 
ordering are closely related. A network that contains a directed cycle has no to
pological ordering, and conversely, we shall show next that a network that does not 
contain any negative cycle can be topologically ordered. This observation shows 
that a network is acyclic if an only if it possesses a topological ordering of its nodes. 

By using a search algorithm, we can either detect the presence of a directed 
cycle or produce a topological ordering of the nodes. The algorithm is fairly easy 
to describe. In the network G, select any node of zero indegree. Give it a label of 
1, and then delete it and all the arcs emanating from it. In the remaining subnetwork 
select any node of zero indegree, give it a label of 2, and then delete it and all arcs 
emanating from it. Repeat this process until no node has a zero indegree. At this 
point, if the remaining subnetwork contains some nodes and arcs, the network G 
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Figure 3.6 Topological ordering of nodes. 

Figure 3.7 Network without a 
topological ordering of the nodes. 

contains a directed cycle (see Exercise 3.38). Otherwise, the network is acyclic and 
we have assigned labels to all the nodes. Now notice that whenever we assign a 
label to a node at an iteration, the node has only outgoing arcs and they all must 
necessarily point to nodes that will be assigned higher labels in subsequent iterations. 
Consequently, this labeling gives a topological ordering of nodes. 

We now describe an efficient implementation of this algorithm that runs in 
O(m) time. Figure 3.8 specifies this implementation. This algorithm first computes 
the indegrees of all nodes and forms a set LIST consisting of all nodes with zero 
indegrees. At every iteration we select a node i from LIST, for every arc (i, j) E 
A(i) we reduce the indegree of node j by 1 unit, and if indegree of node j becomes 
zero, we add node j to the set LIST. [Observe that deleting the arc (i, j) from the 
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algorithm topological ordering; 
begin 

for all i E N do indegree(I): = 0; 
for all (i, j) E A do indegree( j): = indegree( j) + 1; 
LIST: = 0; 
next: = 0; 
for all i E N do 

If indegree(l) = 0 then LIST: = LIST u {I}; 
while LIST ~ 0do 
begin 

select a node i from LIST and delete it; 
next: = next+ 1; 
order(l): = next; 
for all (i, j) E A( I) do 
begin 

indegree( j): = indegree( j) - 1; 
If indegree(j) = 0 then LIST: = LIST U {j}; 

end; 
end; 
If next < n then the network contains a directed cycle 
else the network is acyclic and the array order gives a topological order of nodes; 

end; 

Figure 3.8 Topological ordering algorithm. 

network is equivalent to decreasing the indegree of node j by 1 unit.] Since the 
algorithm examines each node and each arc of the network DO) times, it runs in 
O(m) time. 

'.IS FLOW DECOMPOSITION ALGORITHMS 

In formulating network flow problems, we can adopt either of two equivalent mod
eling approaches: We can define flows on arcs (as discussed in Section 1.2) or define 
flows on paths and cycles. For example, the arc flow shown in Figure 3.9(a) sends 
7 units of flow from node 1 to node 6. Figure 3.9(b) shows a path and cycle flow 

4 units 

~ 
6 

3 units 
(b) 

Figure 3.9 Two ways to express flows in a network: (a) using arc flows; (b) using path and 
cycle flows. 

Sec. 3.5 Flow Decomposition Algorithms 79 



corresponding to this arc flow: In the path and cycle flow, we send 4 units along 
the path 1-2-4-6, 3 units along the path 1-3-5-6, and 2 units along the cycle 2-
4-5-2. Throughout most of this book, we use the arc flow formulation; on a few 
occasions, however, we need to use the path and cycle flow formulation or results 
that stem from this modeling perspective. In this section we develop several con
nections between these two alternative formulations. 

In this discussion, by an "arc flow" we mean a vector x = {xu} that satisfies 
the following constraints: 

~ Xij- ~ Xji = -e(i) for all i E N, (3.Sa) 
{j:(i.j)EA} {j:(j.i)EA} 

for all (i, j) E A. (3.Sb) 

where ~7= 1 e(i) = O. Notice that in this model we have replaced the supply/demand 
b(i) of node i by another term, - e(i); we refer to e(i) as the node's imbalance. We 
have chosen this alternative modeling format purposely because some of the max
imum flow and minimum cost flow algorithms described in this book maintain a 
solution that satisfies the flow bound constraints, but not necessarily the supply/ 
demand constraints. The term e(i) represents the inflow minus outflow of node i. If 
the inflow is more than outflow, e(i) > 0 and we say that node i is an excess node. 
If inflow is less than the outflow, e(i) < 0 and we say that node i is a deficit node. 
If the inflow equals outflow, we say that node i is a balanced node. Observe that if 
e = - b, the flow x is feasible for the minimum cost flow problem. 

In the arc flow formulation discussed in Section 1.2, the basic decision variables 
are flows Xij on the arcs (i, j) EA. The path and cycle flow formulation starts with 
an enumeration of all directed paths P between any pair of nodes and all directed 
cycles W of the network. We let r;p denote the collection of all paths and OW the 
collection of all cycles. The decision variables in the path and cycle flow formulation 
are f(P), the flow on path p, and f( W), the flow on cycle W; we define these variables 
for every directed path P in r;p and every directed cycle W in OW. 

Notice that every set of path and cycle fows uniquely determines arc flows in 
a natural way: The flow Xij on arc (i, j) equals the sum of the flows f(P) and f( W) 
for all paths P and cycles W that contain this arc. We formalize this observation by 
defining some new notation: 8ij(P) equals 1 if arc (i, j) is contained in the path P, 
and is 0 otherwise. Similarly, 8ij( W) equals 1 if arc (i, j) is contained in the cycle 
W, and is 0 otherwise. Then 

Xu = ~ 8ij(P)f(P) + ~ 8ij( W)f( W). 
PE'!i> WEW 

Thus each path and cycle flow determines arc flows uniquely. Can we reverse 
this process? That is, can we decompose any arc flow into (i.e., represent it as) path 
and cycle flow? The following theorem provides an affirmative answer to this ques
tion. 

Theorem 3.5 (Flow Decomposition Theorem). Every path and cycle flow has a 
unique representation as nonnegative arc flows. Conversely, every nonnegative arc 
flow x can be represented as a path and cycle flow (though not necessarily uniquely) 
with the following two properties: 
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(a) Every directed path with positive flow connects a deficit node to an excess node. 
(b) At most n + m paths and cycles have nonzero flow; out of these, at most m 

cycles have nonzero flow. 

Proof In the light of our previous observations, we need to establish only the 
converse assertions. We give an algorithmic proof to show how to decompose any 
arc flow x into a path and cycle flow. Suppose that io is a deficit node. Then some 
arc (io, it> carries a positive flow. If il is an excess node, we stop; otherwise, the 
mass balance constraint (3.8a) of node il implies that some other arc (it, i2) carries 
positive flow. We repeat this argument until we encounter an excess node or we 
revisit a previously examined node. Note that one of these two cases will occur 
within n steps. In the former case we obtain a directed path P from the deficit node 
io to some excess node ik , and in the latter case we obtai a a directed cycle W. In 
either case the path or the cycle consists solely of arcs with positive flow. If we 
obtain a directed path, we let f(P) = min{ - e(io), e(ik), min{xij: (i, j) E P}} and 
redefine e(io) = e(io) + f(P), e(ik) = e(ik) - f(P), and Xij = Xij - f(P) for each 
arc (i, j) in P. If we obtain a directed cycle W, we let f( W) = min{xij: (i, j) E W} 
and redefine xij = Xij - f( W) for each (i, j) in W. 

We repeat this process with the redefined problem until all node imbalances 
are zero. Then we select any node with at least one outgoing arc with a positive 
flow as the starting node, and repeat the procedure, which in this case must find a 
directed cycle. We terminate when x = 0 for the redefined problem. Clearly, the 
original flow is the sum of flows on the paths and cycles identified by this method. 
Now observe that each time we identify a directed path, we reduce the excess/deficit 
of some node to zero or the flow on some arc to zero; and each time we identify a 
directed cycle, we reduce the flow on some arc to zero. Consequently, the path and 
cycle representation of the given flow x contains at most n + m directed paths and 
cycles, and at most m of these are directed cycles. • 

Let us consider a flow x for which e(i) = 0 for all i E N. Recall from Section 
1.2 that we call any such flow a circulation. When we apply the flow decomposition 
algorithm to a circulation, each iteration discovers a directed cycle consisting solely 
of arcs with positive flow, and subsequently reduces the flow on at least one arc to 
zero. Consequently, a circulation decomposes into flows along at most m directed 
cycles. 

Property 3.6. A circulation x can be represented as cycle flow along at most 
m directed cycles. 

We illustrate the flow decomposition algorithm on the example shown in Figure 
3.1O(a). Initially, nodes 1 and 5 are deficit nodes. Suppose that the algorithm selects 
node 5. We would then obtain the directed path 5-3-2-4-6 and the flow on this 
path is 3 units. Removing this path flow gives the flow given in Figure 3.IO(b). The 
algorithm selects node 1 as the starting node and obtains the path flow of 2 units 
along the directed path 1-2-4-5-6. In the third iteration, the algorithm identifies a 
cycle flow of 4 units along the directed cycle 5-3-4-5. Now the flow becomes zero 
and the algorithm terminates. 
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Figure 3.10 Illustrating the flow decomposition theorem. 

What is the time required for the flow decomposition algorithm described in 
the proof of Theorem 3.5? In the algorithm, we first construct a set LIST of deficit 
nodes. We maintain LIST as a doubly linked list (see Appendix A for a description 
of this data structure) so that selection of an element as well as addition and deletion 
of an element require 0(1) time. As the algorithm proceeds, it removes nodes from 
LIST. When LIST eventually becomes empty, we initialize it as the set of arcs with 
positive flow. Consider now another basic operation in the flow decomposition al
gorithm: identifying an arc with positive flow emanating from a node. We refer to 
such arcs as admissible arcs. We use the current-arc data structure (described in 
Section 3.4) to identify an admissible arc emanating from a node. Notice that in any 
iteration, the flow decomposition algorithm requires O( n) time plus the time spent 
in scanning arcs to identify admissible arcs. Also notice that since arc flows are 
nonincreasing, an arc found to be inadmissible in one iteration remains inadmissible 
in subsequent iterations. Consequently, we preserve the current arcs of the nodes 
in the current-arc data structure when we proceed from one iteration to the next. 
Since the current-arc data structure requires a total of Oem) time in arc scanning to 
identify admissible arcs and the algorithm performs at most (n + m) iterations, the 
flow decomposition algorithm runs in Oem + (n + m)n) = O(nm) time. 

The flow decomposition theorem has a number of important consequences. As 
one example, it enables us to compare any two solutions of a network flow problem 
in a particularly convenient way and to show how we can build one solution from 
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another by a sequence of simple operations. The augmenting cycle theorem, to be 
discussed next, highlights these ideas. 

We begin by introducing the concept of augmenting cycles with respect to a 
flow x. A cycle W (not necessarily directed) in G is called an augmenting cycle with 
respect to the flow x if by augmenting a positive amount of flow f( W) around the 
cycle, the flow remains feasible. The augmentation increases the flow on forward 
arcs in the cycle Wand decreases the flow on backward arcs in the cycle. Therefore, 
a cycle W is an augmenting cycle in G if Xu < Uu for every forward arc (i, j) and 
xu> 0 for every backward arc (i,j). We next extend the notation of 8u( W) for cycles 
that are not necessarily directed. We define 8u( W) equal to 1 if arc (i, j) is a forward 
arc in the cycle W, 8u(W) equal to -1 if arc (i,j) is a backward arc in the cycle W, 
and equal to 0 otherwise. 

Notice that in terms of residual networks (defined in Section 2.4), each aug
menting cycle W with respect to a flow x corresponds to a directed cycle Win G(x), 
and vice versa. We define the cost of an augmenting cycle Was c(W) = ~(i.j)EW 
cu8u(W). The cost of an augmenting cycle represents the change in the cost of a 
feasible solution if we augment 1 unit of flow along the cycle. The change in flow 
cost for augmenting f(W) units along the cycle W is c(W)f(W). 

We next use the flow decomposition theorem to prove an augmenting cycle 
theorem formulated in terms of residual networks. Suppose that x and XO are any 
two feasible solutions of the minimum cost flow problem. We have seen earlier that 
some feasible circulation Xl in G(XO) satisfies the property that x = XO + Xl. 

Property 3.6 implies that we can represent the circulation Xl as cycle flows f(W1), 

!(W2), ••• , !(Wr), with r :5 m. Notice that each of the cycles WI, W2 , ••• , Wr 
is an augmenting cycle in G(XO). Furthermore, we see that 

~ CuXu = ~ cuxij + ~ CUX & 
(i.j)EA (i.j)EA (i.j)EG(xO) 

r 

~ cuxij + ~ c(Wk)f(Wk). 
(i.j)EA k= I 

We have thus established the following result: 

Theorem 3.7 (Augmenting Cycle Theorem). Let x and XO be any two feasible 
solutions of a network flow problem. Then x equals XO plus the flow on at most m 
directed cycles in G(XO). Furthermore, the cost of x equals the cost of XO plus the 
cost of flow on these augmenting cycles. • 

In Section 9.3 we see that the augmenting cycle theorem permits us to obtain 
the following novel characterization of the optimal solutions of the minimum cost 
flow problem. 

Theorem 3.8 (Negative Cycle Optimality Theorem). A feasible solution x* of the 
minimum cost flow problem is an optimal solution if and only if the residual network 
G(x*) contains no negative cost directed cycle. 
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8.6 SUMMARY 

The design and analysis of algorithms is an expansive topic that has grown in im
portance over the past 30 years as computers have become more central to scientific 
and administrative computing. In this chapter we described several fundamental 
techniques that are widely used for this purpose. Having some way to measure the 
performance of algorithms is critical for comparing algorithms and for determining 
how well they perform. The research community has adopted three basic approaches 
for measuring the performance of an algorithm: empirical analysis, average-case 
analysis, and worst-case analysis. Each of these three performance measures has 
its own merits and drawbacks. Worst-case analysis has become a widely used ap
proach, due in large part to the simplicity and theoretical appeal of this type of 
analysis. A worst-case analysis typically assumes that each arithmetic and logical 
operation requires unit time, and it provides an upper bound on the time taken by 
an algorithm (correct to within a constant factor) for solving any instance of a prob
lem. We refer to this bound, which we state in big 0 notation as a function of the 
problem's size parameters n, m, log C, and log U, as the worst-case complexity of 
the algorithm. This bound gives the growth rate (in the worst case) that the algorithm 
requires for solving successively larger problems. If the worst-case complexity of 
an algorithm is a polynomial function of n, m, log C, and log U, we say that the 
algorithm is a polynomial-time algorithm; otherwise, we say that it is an exponential
time algorithm. Polynomial-time algorithms are preferred to exponential-time al
gorithms because polynomial-time algorithms are asymptotically (i.e., for sufficiently 
large networks) faster than exponential-time algorithms. Among several polynomial
time algorithms for the same problem, we prefer an algorithm with the least order 
polynomial running time because this algorithm will be asymptotically fastest. 

A commonly used approach for obtaining the worst-case complexity of an 
iterative algorithm is to obtain a bound on the number of iterations, a bound on the 
number of steps per iteration, and take the product of these two bounds. Sometimes 
this method overestimates the actual number of steps, especially when an iteration 
might be easy most of the time, but expensive occasionally. In these situations, 
arguments based on potential functions (see Section 3.3) often allow us to obtain a 
tighter bound on an algorithm's required computations. 

In this chapter we described four important approaches that researchers fre
quently use to obtain polynomial-time algorithms for network flow problems: (1) 
geometric improvement, (2) scaling, (3) dynamic programming, and (4) binary search. 
Researchers have recently found the scaling approach to be particularly useful for 
solving network flow problems efficiently, and currently many of the fastest network 
flow algorithms use scaling as an algorithmic strategy. 

Search algorithms lie at the core of many network flow algorithms. We de
scribed search algorithms for performing the following tasks: (1) identifying all nodes 
that are reachable from a specified source node via directed paths, (2) identifying 
all nodes that can reach a specified sink node via directed paths, and (3) identifying 
whether a network is strongly connected. Another important application of search 
algorithms is to determine whether a given directed network is acyclic and, if so, 
to number the nodes in a topological order [i.e., so that i < j for every arc (i, j) E 
A]. This algorithm is a core subroutine in methods for project planning (so called 
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CPM/PERT models) that practitioners use extensively in many industrial settings. 
All of these search algorithms run in O(m) time. Other O(m) search algorithms are 
able (1) to identify whether a network is disconnected and if so to identify all of its 
components, and (2) to identify whether a network is bipartite. We discuss these 
algorithms in the exercises for this chapter. 

We concluded this chapter by studying flow decomposition theory. This theory 
shows that we can formulate flows in a network in two alternative ways: (1) flows 
on arcs, or (2) flows along directed paths and directed cycles. Although we use the 
arc flow formulation throughout most of this book, sometimes we need to rely on 
the path and cycle flow formulation. Given a path and cycle flow, we can obtain the 
corresponding arc flow in a straightforward manner (to obtain the flow on any arc, 
add the flow on this arc in each path and cycle); finding path and cycle flows that 
corresponds to a set of given arc flows is more difficult. We described an O(nm) 
algorithm that permits us to find these path and cycle flows. One important con
sequence of flow decomposition theory is the fact that we can transform any feasible 
flow of the minimum cost flow problem into any other feasible flow by sending flows 
along at most m augmenting cycles. We used this result to derive a negative cycle 
optimality condition for characterizing optimal solutions for the minimum cost flow 
problem. These conditions state that a flow x is optimal if and only if the residual 
network G(x) contains no negative cost augmenting cycle. 

REFERENCE NOTES 

Over the past two decades, worst-case complexity (see Section 3.2) has become a 
very popular approach for analyzing algorithms. A number of books provide ex
cellent treatments of this topic. The book by Garey and Johnson [1979] is an es
pecially good source of information concerning the topics we have considered. Books 
by Aho, Hopcroft, and Ullman [1974], Papadimitriou and Steiglitz [1982], Tarjan 
[1983], and Cormen, Leiserson, and Rivest [1990] provide other valuable treatments 
of this subject matter. 

The techniques used to develop polynomial-time algorithms (see Section 3.3) 
fall within the broad domain of algorithm design. Books on algorithms and data 
structures offer extensive coverage of this topic. Edmonds and Karp [1972] and Dinic 
[1973] independently discovered the scaling technique and its use for obtaining 
polynomial-time algorithms for the minimum cost flow problem. Gabow [1985] pop
ularized the scaling technique by developing scaling-based algorithms for the shortest 
path, maximum flow, assignment, and matching problems. This book is the first that 
emphasizes scaling as a generic algorithmic tool. The geometric improvement tech
nique is a combinatorial analog of linear convergence in the domain of nonlinear 
programming. For a study of linear convergence, we refer the reader to any book 
in nonlinear programming. Dynamic programming, which was first developed by 
Richard Bellman, has proven to be a very successful algorithmic tool. Some im
portant sources of information on dynamic programming are books by Bellman 
[1957], Bertsekas [1976], and Denardo [1982]. Binary search is a standard technique 
in searching and sorting; Knuth [1973b] and many other books on data structures 
and algorithms develop this subject. 

Search algorithms are important subroutines for network optimization algo-
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rithms. The books by Aho, Hopcroft, and Ullman [1974], Even [1979], TaIjan [1983], 
and Cormen, Leiserson, and Rivest [1990] present insightful treatments of search 
algorithms. Ford and Fulkerson [1962] developed flow decomposition theory; their 
book contains additional material on this topic. 

EXERCISES 

3.1. Write a pseudocode that, for any integer n, computes n" by performing at most 2 log 
n multiplications. Assume that multiplying two numbers, no matter how large, requires 
one operation. 

3.2. Compare the following functions for various values of n and determine the approximate 
values of n when the second function becomes larger than the first. 
(a) l000n 2 and 2"/100. 
(b) (log n)3 and no.OOJ • 

(c) 1O,OOOn and 0.ln 2
. 

3.3. Rank the following functions in increasing order of their growth rates. 
(a) 2108 log", n 1, n2 , 2", (1.5)(lOg ,,)2. 

(b) l000(log n)2, 0.005no.oool , log log n, (log n)(log log n). 

3.4. Rank the following functions in increasing order of their growth rates for two cases: 
(1) when a network containing n nodes and m arcs is connected and very sparse [i.e., 
m = O(n)]; and (2) when the network is very dense [i.e., m = O(n2)]. 
(a) n2m 1/2, nm + n2 log n, nm log n, nm log(n2Im). 
(b) n2, m log n, m + n log n, m log log n. 
(c) n 3 log n, (m log n)(m + n log n), nm(log log n)log n. 

3.S. We say that a function f(n) is O(g(n» if for some numbers c and no, f(n) :5 cg(n) for 
all n ~ no. Similarly, we say that a function is O(g( n» if for some numbers c' and no, 
f(n) ~ c' g(n) for infinitely many n ~ no. Finally, we say that a function f(n) is 8(g(n» 
if f(n) = O(g(n» and f(n) = O(g(n». For each of the functions f(n) and g(n) specified 
below, indicate whether f(n) is O(g(n», O(g(n», 8(g(n», or none of these. 

In if n is odd I n if n is even 
(a) f(n) = n2 if n is even; g(n) = n2 if n is odd 

b) f( ) - n if n is odd. () _ n if n is prim~ 
( n - n2 if n is even' g n - n2 if n is not prime 
(c) f(n) = 3 + lI(log n); g(n) = (n + 4)/(n + 3) 

3.6. Are the following statements true or false? 
(a) (log n)l00 = O(nE) for any E > O. 
(b) 2"+ 1 = 0(2"). 
(c) f(n) + g(n) = O(max(f(n), g(n»). 
(d) If f(n) = O(g(n», then g(n) = O(f(n». 

3.7. Let g(n, m) = m logdn, where d = r mIn + 21. Show that for any E > 0, g(n, m) = 
O(m l + tE

). 

3.8. Show that if f(n) = O(g(n» and g(n) = O(h(n», then f(n) = O(h(n». Is it true that 
if f(n) = O(g(n» and g(n) = O(h(n», then f(n) = O(h(n»? Prove or disprove this 
statement. 

3.9. Bubble sort. The bubble sort algorithm is a popular method for sorting n numbers in 
nondecreasing order of their magnitudes. The algorithm maintains an ordered set of the 
numbers {ai, a2, ... , an} that it rearranges through a sequence of several passes over 
the set. In each pass, the algorithm examines every pair of elements (ak' ak + I) for each 
k = 1, ... ,(n.I), and if the pair is out of order (i.e., ak > ak + 1)' it swaps the positions 
of these elements. The algorithm terminates when it makes no swap during one entire 
pass. Show that the algorithm performs at most n passes and runs in 0(n2) time. For 
every n, construct a sorting problem (Le., the initial ordered set of numbers {a., 
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a2, ... ,an} SO that the algorithm performs O(n2) operations. Conclude that the bubble 
sort is a 8(n 2

) algorithm. 
3.10. Bin packing problem. The bin packing problem requires that we pack n items of lengths 

ai, a2, ... , an (assume that each ai :5 1) into bins of unit length using the minimum 
possible number of bins. Several approximate methods, called heuristics, are available 
for solving the bin packing problem. The first-fit heuristic is one of the more popular 
of these heuristics. It works as follows. Arrange items in an arbitrary order and examine 
them one by one in this order. For an item being examined, scan the bins one by one 
and put the item in the bin where it fits first. If an items fits in none of the bins that 
currently contain an item, we introduce a new bin and place the item in it. Write a 
pseudocode for the first-fit heuristic and show that it runs in O(n2) time. For every n, 
construct an instance of the bin packing problem for which your first-fit heuristic runs 
in O(n2) time. Conclude that the first-fit heuristic runs in 8(n 2) time. 

3.11. Consider a queue of elements on which we perform two operations: (1) ;nsert(i), which 
adds an element i to the rear of the queue; and (2) delete(k), which deletes the k frontmost 
elements from the queue. Show that an arbitrary sequence of n insert and delete op
erations, starting with an empty queue, requires a total of O(n) time. 

3.12. An algorithm performs three different operations. The first and second operations are 
executed O( nm) and O( n 2) times respectively and the number of executions of the third 
operation is yet to be determined. These operations have the following impact on an 
appropriately defined potential function <1>: Each execution of operation J increases <I> 

by at most n units, each execution of operation 2 increases <I> by 1 unit, and each 
execution of operation 3 decreases cf> by at least 1 unit. Suppose we know that 1 :5 cf> 
:5 n 2

• Obtain a bound on the number of executions of the third operation. 
3.13. Parameter balancing. For each of the time bounds stated below as a function of the 

parameter k, use the parameter balancing technique to determine the value of k that 
yields the minimum time bound. Also try to determine the optimal value of k using 
differential calculus. 

(a) o(n; + knm) 

(b) o( nk + T) 
(c) 0 (m log n + n k log n) 

log k log k 
3.14. Generalized parameter balancing. In Section 3.3 we discussed the parameter balancing 

technique for situations when the time bound contains two expressions. In this exercise 
we generalize the technique to bounds containing three expressions. Suppose that the 
running time of an algorithm is O(j(n, k) + g(n, k) + h(n, k» and we wish to determine 
the optimal value of k-that is, the value of k producing the smallest possible overall 
time. Assume that for all k, f(n, k), g(n, k), and h(n, k) are all nonnegative, f(n, k) 
is monotonically increasing, and both g(n, k) and h(n, k) are monotonically decreasing. 
Show how to obtain the optimal value of k and prove that your method is valid. Illus
trate your technique on the following time bounds: (I) kn 2 + n 3/k + n 4/k 2; (2) nm/k + 
kn 2 + n 2 logk U. 

3.15. In each of the algorithms described below, use Theorem 3.1 to obtain an upper bound 
on the total number of iterations the algorithm performs. 
(a) Let v* denote the maximum flow value and v the flow value of the current solution 
in a maximum flow algorithm. This algorithm increases the flow value by an amount 
(v* - v)/m at each iteration. How many iterations will this algorithm perform? 
(b) Let z * and z represent the optimal objective function value and objective function 
value of the current solution in an application of the some algorithm for solving the 
shortest path problem. Suppose that this algorithm ensures that each iteration decreases 
the objective function value by at least (z - z*)/2n2. How many iterations will the 
algorithm perform? 
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3.16. Consider a function fen, m), defined inductively as follows: 

fen, 0) = n, f(O, m) = 2m, and 

fen, m) = fen - 1, m) + fen, m - 1) - fen - 1, m - 1). 

Derive the values of fen, m) for all values of n, m :s; 4. Simplify the definition of 
fen, m) and prove your result using inductive arguments. 

3.17. In Section 3.3 we described a dynamic programming algorithm for the 0-1 knapsack 
problem. Generalize this approach so that it can be used to solve a knapsack problem 
in which we can place more than one item of the same type in the knapsack. 

3.18. Shortest paths in layered networks. We say that a directed network G = (N, A) with 
a specified source node s and a specified sink node t is layered if we can partition its 
node set N into k layers N .. N 2 , ••• , Nk so that N, = {s}, Nk = {t}, and for every 
arc (i, j) E A, nodes i and j belong to adjacent layers (i.e., i E NI and j E N 1+, for 
some 1 :s; I:s; k - 1). Suggest a dynamic programming algorithm for solving the shortest 
path problem in a layered network. What is the running time of your algorithm? (Hint: 
Examine nodes in the layers N" N 2 , ••• , Nk. in order and compute shortest path 
distances.) 

3.19. Let G = (N, A) be a directed network. We want to determine whether G contains an 
odd-length directed cycle passing through node i. Show how to solve this problem using 
dynamic programming. [Hint: Define dk(j) as equal to 1 if the network contains a walk 
from node i to node j with exactly k arcs, and as 0 otherwise. Use recursion on k.] 

3.20. Now consider the problem of determining whether a network contains an even-length 
directed cycle passing through node i. Explain why the approach described in Exercise 
3.19 does not work in this case. 

3.21. Consider a network with a length cij associated with each arc (i, j). Give a dynamic 
programming algorithm for finding a shortest walk (Le., of minimum total length) con
taining exactly k arcs from a specified node s to every other node j in a network. Does 
this algorithm work in the presence of negative cycles? [Hint: Define dk(j) as the length 
of the shortest walk from node s to nodej containing exactly k arcs and write a recursive 
relationship for dk(j) in terms of dk-'(j) and Cij's.] 

3.22. Professor May B. Wright suggests the following sorting method utilizing a binary search 
technique. Consider a list of n numbers and suppose that we have already sorted the 
first k numbers in the list (i.e., arranged them in the nondecreasing order). At the 
(k + 1)th iteration, select the (k + l)th number in the list, perform binary search over 
the first k numbers to identify the position of this number, and then insert it to produce 
the sorted list of the first k + 1 elements. Professor Wright claims that this method 
runs in O(n log n) time because it performs n iterations and each binary search requires 
O(log n) time. Unfortunately, Professor Wright's claim is false and it is not possible 
to implement the algorithm in O(n log n) time. Explain why. (Hint: Work out the details 
of this implementation including the required data structures.) 

3.23. Given a convex function f(x) of the form shown in Figure 3.11, suppose that we want 
to find a value of x that minimizes f(x). Since locating the exact minima is a difficult 
task, we allow some approximation and wish to determine a value x so that the interval 
(x - E, X + E) contains a value that minimizes f(x). Suppose that we know that f(x) 

i 
f(x) 

Figure 3.11 Convex function. 
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attains its minimum value in the interval [0, V]. Develop a binary search algorithm for 
solving this problem that runs in o (log( Vie)) time. (Hint: At any iteration when [a, b] 
is the feasible interval, evaluate f(x) at the points (a + b)/4 and 3(a + b)/4, and exclude 
the region [a, (a + b)/4] or [3(a + b)/4, b].) 

3.24. (a) Determine the breadth-first and depth-first search trees with s = 1 as the source 
node for the graph shown in Figure 3.12. 

~------------~ 4 ~------------~. 

3 r-----------~~ 

Figure 3.12 Example for Exercise 3.24. 

(b) Is the graph shown in Figure 3.12 acyclic? If not, what is the minimum number of 
arcs whose deletion will produce an acyclic graph? Determine a topological ordering 
of the nodes in the resulting graph. Is the topological ordering unique? 

3.25. Knight's tour problem. Consider the chessboard shown in Figure 3.13. Note that some 
squares are shaded. We wish to determine a knight's tour, if one exists, that starts at 
the square designated by s and, after visiting the minimum number of squares~ ends at 
the square designated by t. The tour must not visit any shaded square. Formulate this 
problem as a reachability problem on an appropriately defined graph. 

Figure 3.13 Chessboard. 

3.26. Maze problem. Show how to formulate a maze problem as a reachability problem in a 
directed network. Illustrate your method on the maze problem shown in Figure 3.14. 
(Hint: Define rectangular segments in the maze as cords and represent cords by nodes.) 

Start 

l..-______ ..L-_____________ End Figure 3.14 Maze. 
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3.27. Wine division problem. Two men have an 8-gallon jug full of wine and two empty jugs 
with a capacity of 5 and 3 gallons. They want to divide the wine into two equal parts. 
Suppose that when shifting the wine from one jug to another, in order to know how 
much they have transferred, the men must always empty out the first jug or fill the 
second, or both. Formulate this problem as a reachability problem in an appropriately 
defined graph. (Hint: Let a, b, and c. respectively, denote a partitioning of the 8 gallons 
of wine into the jugs of 8. 5, and 3 gallons capacity. Refer to any such partitioning as 
a feasible state of the jugs. Since at least one of the jugs is always empty or full, we 
can define 16 possible feasible states. Suppose that we represent these states by nodes 
and connect two nodes by an arc when we can permissibly move wine from one jug 
to another to move from one state to the other.) 

3.28. Give a five-node network for which a breadth-first traversal examines the nodes in the 
same order as a depth-first traversal. 

3.29. Let T be a depth-first search tree of an undirected graph G. Show that for every nontree 
arc (k, /) in G, either node k is an ancestor of node I in T or node I is an ancestor of 
node k in T. Show by a counterexample that a breadth-first search tree need not satisfy 
this property. 

3.30. Show that in a breadth-first search tree. the tree path from the source node to any node 
i is a shortest path (i.e., contains the fewest number of arcs among all paths joining 
these two nodes). (Hint: Use induction on the number of labeled nodes.) 

3.31. In an undirected graph G = (N. A), a set of nodes 5 C; N defines a clique if for every 
pair of nodes i,} in 5, (i,}) EA. Show that in the depth-first tree of G, all nodes in 
any clique 5 appear on one path. Do all the nodes in a clique 5 appear consecutively 
on the path? 

3.32. Show that a depth-first order of a network satisfies the following properties. 
(a) If node} is a descendant of node i, order(j) > order(i). 
(b) All the descendants of any node are ordered consecutively in the order sequence. 

3.33. Show that a directed network G is either strongly connected or contains a cut [5, 51 
having no arc U.}) with i E 5 and} E S. 

3.34. We define the diameter of a graph as a longest path (i.e., one containing the largest 
number of arcs) in the graph: The path can start and end at any node. Construct a graph 
whose diameter equals the longest path in a depth-first search tree (you can select any 
node as the source node). Construct another graph whose diameter is strictly less than 
the longest path in some depth-first search tree. 

3.35. Transitive closure. A transitive closure of a graph G = (N, A) is a matrix T = {Ti) 
defined as follows: 

if the graph G contains a directed path from node i to node} 
otherwise. 

Give an O(nm) algorithm for constructing the transitive closure of a (possibly cyclic) 
graph G. 

3.36. Let 'Je = {hij} denote the node-node adjacency matrix of a graph G. Consider the 
following set of statements: 

90 

for I: = 1 to n - 1 do 
for k: = 1 to n do 

for j: = 1 to n do 
for i: = 1 to n do 

h,,: = max{h". h,k. hk,}; 

Show that at the end of these computations. the matrix 'Je represents the transitive 
closure of G. 
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3.37. Given the transitive closure of a graph G, describe an O(n2) algorithm for determining 
all strongly connected components of the graph. 

3.38. Show that in a directed network, if each node has indegree at least one, the network 
contains a directed cycle. 

3.39. Show through an example that a network might have several topological orderings of 
its nodes. Show that the topological ordering of a network is unique if and only if the 
network contains a simple directed path passing through all of its nodes. 

3.40. Given two n-vectors (0:(1), 0:(2), ... , o:(n» and (f3(l), f3(2), ... , f3(n», we say that 
0: is lexicographically smaller than ~ (i.e., 0: s; ~) if for the first index k for which 
o:(k) :I: ~(k), o:(k) is less than f3(k). [For example, (2, 4, 8) is lexicographically smaller 
than (2, 5, 1).] Modify the algorithm given in Figure 3.8 so that it gives the lexico
minimum topological ordering of its nodes (i.e., a topological ordering that is lexico
graphically smaller than every other topological ordering). 

3.41. Suggest an O(m) algorithm for identifying all components of a (possibly) disconnected 
graph. Design the algorithm so that it will assign a label 1 to all nodes in the first 
component, a label 2 to all nodes in the second component, and so on. (Hint: Maintain 
a doubly linked list of all unlabeled node.) 

3.42. Consider an (arbitrary) spanning tree T of a graph G. Show how to label each node in 
Tas 0 or 1 so that whenever arc (i,j) is contained in the tree, nodes i and} have different 
labels. Using this result, prove that G is bipartite if and only if for every nontree arc 
(k, I), nodes k and I have different labels. Using this characterization, describe an O(m) 
algorithm for determining whether a graph is bipartite or not. 

3.43. In an acyclic network G = (N, A) with a specified source node s, let o:(i) denote the 
number of distinct paths from node s to node i. Give an O( m) algorithm that determines 
aU) for all i E N. (Hint: Examine nodes in a topological order.) 

3.44. For an acyclic network G with a specified source node s, outline an algorithm that 
enumerates all distinct directed paths from the source node to every other node in the 
network. The running time of your algorithm should be proportional to the total length 
of all the paths enumerated (i.e., linear in terms of the output length.) (Hint: Extend 
your method developed in Exercise 3.43.) 

3.45. In an undirected connected graph G = (N, A), an Euler tour is a walk that starts at 
some node, visits each arc exactly once, and returns to the starting node. A graph is 
Eulerian if it contains an Euler tour. S~ow that in an Eulerian graph, the degree of 
every node is even. Next, show that if every node in a connected graph has an even 
degree, the graph is Eulerian. Establish the second result by describing an O(m) al
gorithm for determining whether a graph is Eulerian and, if so, will construct an Euler 
tour. (Hint: Describe an algorithm that decomposes any graph with only even-degree 
nodes into a collection of arc-disjoint cycles, and then converts the cycles into an Euler 
tour.) 

3.46. Let T be a depth-first search tree of a graph. Let DU) denote an ordered set of de
scendants of the node i E T, arranged in the same order in which the depth-first search 
method labeled them. Define last(i) as the last element in the set DU). Modify the depth
first search algorithm so that while computing the depth-first traversal of the network 
G, it also computes the last index of every node. Your algorithm should run in O(m) 
time. 

3.47. Longest path-in a tree (Handler, 1973). A longest path in an undirected tree T is a path 
containing the maximum number of arcs. The longest path can start and end anywhere. 
Show that we can determine a longest path in T as follows: Select any node i and use 
a search algorithm to find a node k farthest from node i. Then use a search algorithm 
to find a node I farthest from node k. Show that the tree path from node k to node I is 
a longest path in T. (Hint: Consider the midmost node or arc on any longest path in 
the tree depending on whether the path contains an even or odd number or arcs. Need 
the longest path starting from any node j pass through this node or arc?) 
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3.48. Consider the flow given in Figure 3.1S(a). Compute the imbalance eO) for each node 
i E N and decompose the flow into a path and cycle flow. Is this decomposition unique? 

(8) 

(4, 17,20) 

(b) 

Figure 3.1S Examples for Exercises 3.48 and 3.49. 

3.49. Consider the circulation given in Figure 3.1S(b). Decompose this circulation into flows 
along directed cycles. Draw the residual network and use Theorem 3.8 to check whether 
the flow is an optimal solution of the minimum cost flow problem. 

3.50. Consider the circulation shown in Figure 3.16. Show that there are k! distinct flow 
decompositions of this circulation. 

Figure 3.16 Example for Exercise 3.50. 

3.51. Show that a unit flow along directed walk from node i to nodej(i =1= J) containing any arc at most 
once can be decomposed into a directed path from node i to node j plus some arc-disjoint direct
ed cycles. Next, show that a unit flow along a closed directed walk can be decomposed into unit 
flows along arc-disjoint directed cycles. 

3.52. Show that if an undirected connec.ted graph G = (N, A) contains exactly 2k odd-degree 
nodes, the graph contains k arc-disjoint walks PI, P2 , ••• , Pk satisfying the property 
that A = PI U P2 U ... U Pk •. 

3.53. Let G = (N, A) be a connected network in which every arc (i, j) E A has positive 
lower bound IQ > 0 and an infinite upper bound UQ = 00. Show that G contains a feasible 
circulation (Le., a flow in which the inflow equals the outflow for every node) if and 
only if G is strongly connected. 

3.54. Show that a solution x satisfying the flow bound constraints is a circulation if and only 
if the net flow across any cut is zero. 
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Simplex method, 
for bounded variables, 814-15 
for generalized flows, 583-89 
for linear programming, 810-19 
for maximum flows, 430-33 
for minimum cost flows, 415-21 
for shortest paths, 425-30 
generalized upper bounding, 

666-67 
revised, 813-14 

Simplex multipliers 
for linear programs, 808 
for minimum cost flows, 445-46 

Ski instructor's problem, 501 
Small-capacity networks, 289 
SoUin's algorithm, 526-28, 534 
Solving systems of equations, 199 
Sorting, 86, 521, 774, 778 
Spanning subgraph, 26 
Spanning tree, 30 
Spanning tree solutions, 405-09 
Spanning tree structures, 408-09 
Stable marriage problem, 473-75 
Stable matchings, 475 
Stable university admissions, 507 
Stacks 

applications, 64-65 
Statistical security of data, 199, 

283-85 
Steiner tree problem, 642 
Stick percolation problem, 550-51 
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344-45 
Strong connectivity 

algorithm, 77 
definition, 27 

Strong duality theorem 
for linear programs, 818-19 
for minimum cost flows, 312-13 

Strongly feasible solutions, 
421-25, 432, 457, 590 

and perturbation, 457 
Subgradient optimization 

application to multicommodity 
flows, 663-65 

technique, 611-15 
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Subset systems, 528-30 
Subtour breaking constraints, 626 

846 

Successive shortest path 
algorithm 

applications, 360, 437, 471, 556, 
639,701 

basic approach, 320-24, 340 
Succint certificate, 794 
Symmetric difference, 477 
System of difference constraints, 

103-05, 127,726-28 

Tail nodes, 25 
Tanker scheduling problems, 

176-77,347,656 
Telephone operator scheduling, 

105-06, 127 
Teleprocessing design problem, 

632 
Temporarily labeled nodes, 109 
Terminal assignment problem, 346 
Thread index, 410-14, 443-46 
Threshold algorithm, 161 
Time complexity function, 58 
Time-cost trade-off problem, 

735-37 
Time-expanded networks, 737-40 
Topological ordering 

algorithm, 77-79 
applications, 11, 107-08, 

371-72 
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,448-49 
Tournament problem, 12 
Traffic flows, 547 
Tramp steamer problem, 103, 150 
Transfers in communication 

networks, 547-48 
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bounds, 39 
for removing undirected arcs, 

39 
node splitting, 41-43 

Transitive closure, 90, 91 
Transportation problem, 7, 9, 20, 

294 
Travelling salesman problem. See 

TSP 

Tree arcs, 30 
Tree indices, 410-14, 419, 576 
Tree of shortest paths, 106, 139 
Trees, 28-30 
Triangularity property, 443-47 
Triple operation, 147 
Truck scheduling problem, 763 
TSP, 623-25, 643-44, 790-91, 

794,797 

Uncapacitated networks, 40-41 
Undirected networks 

definitions, 25, 31 
representations, 38 
transformation, 39 

Unimodular matrices, 447-49 
Unimodularity property, 447-49 
Union-find operation, 522 
Unique label property, 481-82 
U nit capacity networks 

and bipartite matchings, 469-70 
and minimum cost flows, 399 
and network connectivity, 

188-91, 274 
maximum flows in, 252-55, 

285, 289 
Unstable roommates, 507 

Validity conditions, 209 
Variable splitting, 630 
Variational principle, 16, 547 
Vehicle fleet planning, 344 
Vehicle routing, 625-27, 645-47 
Virtual running times, 707-09 
Vital arcs, 128-29, 244 

Walk,26 
Warehousing problem, 570, 655 
Wave algorithm, 246 
Weak duality theorem 

for Lagrangian relaxation, 606 
for linear programs, 817-18 
for minimum cost flow, 312 

Wine division problem, 90 
Worst-case complexity, 56-66 
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