
6 

MAXIMUM FLOWS: BASIC IDEAS 

Chapter Outline 

6.1 Introduction 
6.2 Applications 
6.3 Flows and Cuts 

You get the maxxfor the minimum at T. J. Maxx.* 
-Advertisement for a clothing store. 

6.4 Generic Augmenting Path Algorithm 
6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem 
6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem 
6.7 Flows with Lower Bounds 
6.8 Summary 

6.1 INTRODUCTION 

The maximum flow problem and the shortest path problem are complementary. They 
are similar because they are both pervasive in practice and because they both arise 
as subproblems in algorithms for the minimum cost flow problem. The two problems 
differ, however, because they capture different aspects of the minimum cost flow 
problem: Shortest path problems model arc costs but not arc capacities; maximum 
flow problems model capacities but not costs. Taken together, the shortest path 
problem and the maximum flow problem combine all the basic ingredients of network 
flows. As such, they have become the nuclei of network optimization. Our study of 
the shortest path problem in the preceding two chapters has introduced us to some 
of the basic building blocks of network optimization, such as distance labels, opti
mality conditions, and some core strategies for designing iterative solution methods 
and for improving the performance of these methods. Our discussion of maximum 
flows, which we begin in this chapter, builds on these ideas and introduces several 
other key ideas that reoccur often in the study of network flows. 

The maximum flow problem is very easy to state: In a capacitated network, 
we wish to send as much flow as possible between two special nodes, a source node 
s and a sink node t, without exceeding the capacity of any arc. In this and the 
following two chapters, we discuss a number of algorithms for solving the maximum 
flow problem. These algorithms are of two types: 
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1. Augmenting path algorithms that maintain mass balance constraints at every 
node of the network other than the source and sink nodes. These algorithms 
incrementally augment flow along paths from the source node to the sink node. 

2. Preflow-push algorithms that flood the network so that some nodes have ex
cesses (or buildup of flow). These algorithms incrementally relieve flow from 
nodes with excesses by sending flow from the node forward toward the sink 
node or backward toward the source node. 

We discuss the simplest version of the first type of algorithm in this chapter 
and more elaborate algorithms of both types in Chapter 7. To help us to understand 
the importance of the maximum flow problem, we begin by describing several ap
plications. This discussion shows how maximum flow problems arise in settings as 
diverse as manufacturing, communication systems, distribution planning, matrix 
rounding, and scheduling. 

We begin our algorithmic discussion by considering a generic augmenting path 
algorithm for solving the maximum flow problem and describing an important special 
implementation of the generic approach, known as the labeling algorithm. The la
beling algorithm is a pseudopolynomial-time algorithm. In Chapter 7 we develop 
improved versions of this generic approach with better theoretical behavior. The 
correctness of these algorithms rests on the renowned max-flow min-cut theorem of 
network flows (recall from Section 2.2 that a cut is a set of arcs whose deletion 
disconnects the network into two parts). This central theorem in the study of network 
flows (indeed, perhaps the most significant theorem in this problem domain) not only 
provides us with an instrument for analyzing algorithms, but also permits us to model 
a variety of applications in machine and vehicle scheduling, communication systems 
planning, and several other settings, as maximum flow problems, even though on 
the surface these problems do not appear to have a network flow structure. In Section 
6.6 we describe several such applications. 

The max-flow min-cut theorem establishes an important correspondence be
tween flows and cuts in networks. Indeed, as we will see, by solving a maximum 
flow problem, we also solve a complementary minimum cut problem: From among 
all cuts in the network that separate the source and sink nodes, find the cut with 
the minimum capacity. The relationship between maximum flows and minimum cuts 
is important for several reasons. First, it embodies a fundamental duality result that 
arises in many problem settings in discrete mathematics and that underlies linear 
programming as well as mathematical optimization in general. In fact, the max-flow 
min-cut theorem, which shows the equivalence between the maximum flow and 
minimum cut problems, is a special case of the well-known strong duality theorem 
of linear programming. The fact that maximum flow problems and minimum cut 
problems are equivalent has practical implications as well. It means that the theory 
and algorithms that we develop for the maximum flow problem are also applicable 
to many practical problems that are naturally cast as minimum cut problems. Our 
discussion of combinatorial applications in the text and exercises of this chapter and 
our discussion of applications in Chapter 19 features several applications of this 
nature. 
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Notatioll-. and Assumptions 

We consider a capacitated network G = (N, A) with a nonnegative capacity uij 
associated with each arc (i,j) EA. Let V = max{uij:(i,j) E A}. As before, the arc 
adjacency list A(i) = {(i, k):(i, k) E A} contains all the arcs emanating from node 
i. To define the maximum flow problem, we distinguish two special nodes in the 
network G: a source node s and a sink node t. We wish to find the maximum flow 
from the source node s to the sink node t that satisfies ,!he arc capacities and mass 
balance constraints at all nodes. We can state the problem formally as follows. 

Maximize v 

subject to 

~ Xij - ~ Xji = 
{j:(i,j)EA} {j:(j.i)EA} 

for i = s, 
for all i E N - {s and t} 
for i = t 

for each (i, j) E A. 

(6.1a) 

(6.1b) 

(6.1c) 

We refer to a vector x = {Xij} satisfying (6.1b) and (6.1c) as a flow and the 
corresponding value of the scalar variable v as the value of the flow . We consider 
the maximum flow problem subject to the following assumptions. 

Assumption 6.1. The network is directed. 

As explained in Section 2.4, we can always fulfill this assumption by trans
forming any undirected network into a directed network. 

Assumption 6.2. All capacities are nonnegative integers. 

Although it is possible to relax the integrality assumption on arc capacities for 
some algorithms, this assumption is necessary for others. Algorithms whose com
plexity bounds involve V assume integrality of the data. In reality, the integrality 
assumption is not a restrictive assumption because all modem computers store ca
pacities as rational numbers and we can always transform rational numbers to integer 
numbers by multiplying them by a suitably large number. 

Assumption 6.3. The network does not contain a directed path from node s 
to node t composed only of infinite capacity arcs. 

Whenever every arc on a directed path P from s to t has infinite capacity, we 
can send an infinite amount of flow along this path, and therefore the maximum flow 
value is unbounded. Notice that we can detect the presence of an infinite capacity 
path using the search algorithm described in Section 3.4. 

Assumption 6.4. Whenever an arc (i, j) belongs to A, arc (j, i) also belongs 
toA. 

This assumption is nonrestrictive because we allow arcs with zero capacity. 
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Assumption 6.5. The network does not contain parallel arcs (i.e., two or more 
arcs with the same tail and head nodes). 

This assumption is essentially a notational convenience. In Exercise 6.24 we 
ask the reader to show that this assumption imposes no loss of generality. 

Before considering the theory underlying the maximum flow problem and al
gorithms for solving it, and to provide some background and motivation for studying 
the problem, we first describe some applications. 

6.2 APPLICATIONS 

The maximum flow problem, and the minimum cut problem, arise in a wide variety 
of situations and in several forms. For example, sometimes the maximum flow prob
lem occurs as a subproblem in the solution of more difficult network problems, such 
as the minimum cost flow problem or the generalized flow problem. As we will see 
in Section 6.6, the maximum flow problem also arises in a number of combinatorial 
applications that on the surface might not appear to be maximum flow problems at 
all. The problem also arises directly in problems as far reaching as machine sched
uling, the assignment of computer modules to computer processors, the rounding of 
census data to retain the confidentiality of individual households, and tanker sched
uling. In this section we describe a few such applications; in Chapter 19 we discuss 
several other applications. 

Application 6.1 Feasible Flow Problem 

The feasible flow problem requires that we identify a flow x in a network G "" 
(N, A) satisfying the following constraints: 

~ Xij - ~ Xji "" b(i) for i EN, (6.2a) 
{j:(i,j)EA} {j:(j,i)EA} 

for all (i, j) EA.> (6.2b) 

As before, we assume that ~iEN b(i) "" 0. The following distribution scenario il
lustrates how the feasible flow problem arises in practice. Suppose that merchandise 
is available at some seaports and is desired by other ports. We know the stock of 
merchandise available at the ports, the amount required at the other ports, and the 
maximum quantity of merchandise that can be shipped on a particular sea route. 
We wish to know whether we can satisfy all of the demands by using the available 
supplies. 

We can solve the feasible flow problem by solving a maximum flow problem 
defined on an augmented network as follows. We introduce two new nodes, a source 
node s and a sink node t. For each node i with b(i) > 0, we add an arc (s, i) with 
capacity b(i), and for each node i with b(i) < 0, we add an arc (i, t) with capacity 
- b(i). We refer to the new network as the transformed network. Then we solve a 
maximum flow problem from node s to node t in the transformed network. If the 
maximum flow saturates all the source and sink arcs, problem (6.2) has a feasible 
solution; otherwise, it is infeasible. (In Section 6.7 we give necessary and sufficient 
conditions for a feasible flow problem to have a feasible solution.) 

It is easy to verify why this algorithm works. If x is a flow satisfying (6.2a) 
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and (6.2b), the same flow with Xsi = b(i) for each source arc (s, i) and Xit == -b(i) 
for each sink arc (i, t) is a maximum flow in the transformed network (since it 
saturates all the source and the sink arcs). Similarly, if x is a maximum flow in the 
transformed network that saturates all the source and the sink arcs, this flow in the 
original network satisfies (6.2a) and (6.2b). Therefore, the original network contains 
a feasible flow if and only if the transformed network contains a flow that saturates 
all the source and sink arcs. This observation shows how the maximum flow problem 
arises whenever we need to find a feasible solution in a network. 

Application 6.2 Problem of Representatives 

A town has r residents R I , R2 , ••• , Rr; q clubs CI , C2 , ••• , Cq ; and p political 
parties PI, P2 , ••• , Pp • Each resident is a member of at least one club and can 
belong to exactly one political party. Each club must nominate one of its members 
to represent it on the town's governing council so that the number of council members 
belonging to the political party Pk is at most Uk. Is it possible to find a council that 
satisfies this "balancing" property? 

We illustrate this formulation with an example. We consider a problem with 
r == 7, q == 4, p == 3, and formulate it as a maximum flow problem in Figure 6.1. 
The nodes R I , R2 , ••• , R7 represent the residents, the nodes CI , C2 , ••• , C4 

represent the clubs, and the nodes PI, P 2 , ••• ,P3 represent the political parties. 
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Figure 6.1 System of distinct 
representatives. 
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The network also contains a source node s and a sink node t. It contains an arc (s, 

C) for each node Ci denoting a club, an arc (Ci , R.i) whenever the resident Rj is a 
member of the club Ci , and an arc (Rj , P k ) if the resident Rj belongs to the political 
party Pk • Finally, we add an arc (Pk , t) for each k = 1, ... , 3 of capacity Uk; all 
other arcs have unit capacity. 

We next find a maximum flow in this network. If the maximum flow value 
equals q, the town has a balanced council; otherwise, it does not. The proof of this 
assertion is easy to establish by showing that (1) any flow of value q in the network 
corresponds to a balanced council, and that (2) any balanced council implies a flow 
of value q in the network. 

This type of model has applications in several resource assignment settings. 
For example, suppose that the residents are skilled craftsmen, the club Ci is the set 
of craftsmen with a particular skill, and the political party Pk corresponds to a par
ticular seniori~y class. In this instance, a balanced town council corresponds to an 
assignment of craftsmen to a union governing board so that every skill class has 
representation on the board and no seniority class has a dominant representation. 

Application 6.8 Matrix Rounding Problem 

This application is concerned with consistent rounding of the elements, row sums, 
and column sums of a matrix. We are given a p x q matrix of real numbers D = 

{do}, with row sums CXi and column sums !3j. We can round any real number a to the 
next smaller integer l a J or to the next larger integer r a 1 , and the decision to round 
up or down is entirely up to us. The matrix rounding problem requires that we round 
the matrix elements, and the row and column sums of the matrix so that the sum of 
the rounded elements in each row equals the rounded row sum and the sum of the 
rounded elements in each column equals the rounded column sum. Wf? refer to such 
a rounding as a consistent rounding. 

We shall show how we can discover such a rounding scheme, if it exists, by 
solving a feasible flow problem for a network with nonnegatiVe lower bounds on arc 
flows. (As shown in Section 6.7, we can solve this problem by solving two maximum 
flow problems with zero lower bounds on arc flows.) We illustrate our method using 
the matrix rounding problem shown in Figure 6.2. Figure 6.3 shows the maximum 
flow network for this problem. This network contains a node i corresponding to each 
row i and a node j' corresponding to each column j. Observe that this network 

Row sum 

3.1 6.8 7.3 17.2 

9.6 2.4 0.7 12.7 

3.6 1.2 6.5 11.3 

Column sum 16.3 10.4 14.5 

Figure 6.2 Matrix rounding problem. 
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Figure 6.3 Network for the matrix 
rounding problem. 

contains an arc (i, j') for each matrix element dij, an arc (s, i) for each row sum, 
and an arc (j', t) for each column sum. The lower and the upper bounds of each 
arc (i, j') are ldijJ and r dijl, respectively. It is easy to establish a one-to-one cor
respondence between the consistent roundings of the matrix and feasible flows in 
the corresponding network. Consequently, we can find a consistent rounding by 
solving a maximum flow problem on the corresponding network. 

This matrix rounding problem arises in several application contexts. For ex
ample, the U.S. Census Bureau uses census information to construct millions of 
tables for a wide variety of purposes. By law, the bureau has an obligation to protect 
the source of its information and not disclose statistics that could be attributed to 
any particular person. We might disguise the information in a table as follows. We 
round off each entry in the table, including the row and column sums, either up or 
down to a multiple of a constant k (for some suitable value of k), so that the entries 
in the table continue to add to the (rounded) row and column sums, and the overall 
sum of the entries in the new table adds to a rounded version of the overall sums 
in the original table. This Census Bureau problem is the same as the matrix rounding 
problem discussed earlier except that we need to round each element to a multiple 
of k ;::: 1 instead of rounding it to a multiple of 1. We solve this problem by defining 
the associated network as before, but now defining the lower and upper bounds for 
any arc with an associated real number a as the greatest multiple of k less than or 
equal to a and the smallest multiple of k greater than or equal to a. 

Application 6.4 Scheduling on Uniform Parallel 
Machines 

In this application we consider the problem of scheduling of a set J of jobs on M 
uniform parallel machines. Each job j E J has a processing requirement Pj (denoting 
the number of machine days required to complete the job), a release date rj (rep
resenting the beginning of the day whenjobj becomes available for processing), and 
a due date dj ;::: rj + pj (representing the beginning of the day by which the job must 
be completed). We assume that a machine can work on only one job at a time and 
that each job can be processed by at most one machine at a time. However, we 
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allow preemptions (i.e., we can interrupt ajob and process it on different machines 
on different days). The scheduling problem is to determine a feasible schedule that 
completes all jobs before their due dates or to show that no such schedule exists. 

Scheduling problems like this arise in batch processing systems involving 
batches with a large number of units. The feasible scheduling problem, described 
in the preceding paragraph, is a fundamental problem in this situation and can be 
used as a subroutine for more general scheduling problems, such as the maximum 
lateness problem, the (weighted) minimum completion time problem, and the 
(weighted) maximum utilization problem. 

Let us formulate the feasible scheduling problem as a maximum flow problem. 
We illustrate the formulation using the scheduling problem described in Figure 6.4 
with M = 3 machines. First, we rank all the release and due dates, rj and dj for all 
j, in ascending order and determine P :::; 2 I J I - 1 mutually disjoint intervals of 
dates between consecutive milestones. Let Tk,[ denote the interval that starts at the 
beginning of date k and ends at the beginning of date 1 + 1. For our example, this 
order of release and due dates is 1,3,4,5,7,9. We have five intervals, represented 
by T1,2, T3•3 , T4 ,4, T5•6 , and T7 ,8' Notice that within each interval Tk ,[, the set of 
available jobs (i.e., those released but not yet due) does not change: we can process 
all jobs j with rj :::; k and dj ;::: 1 + 1 in the interval. 

Job (j) 1 2 3 4 

Processing time (pj) 1.5 1.25 2.1 3.6 

Release time (rj) 3 1 3 5 

Due date (dj ) 5 4 7 9 

Figure 6.4 Scheduling problem. 

We formulate the scheduling problem as a maximum flow problem on a bipartite 
network G as follows. We introduce a source node s, a sink node t, a node corre
sponding to eachjobj, and a node corresponding to each interval h,[, as shown in 
Figure 6.5. We connect the source node to every job node j with an arc with capacity 
Pj, indicating that we need to assign Pj days of machine time to job j. We connect 
each interval node h,[ to the sink node t by an arc with capacity (l - k + I)M, 
representing the total number of machine days available on the days from k to I. 
Finally, we connect ajob nodej to every interval node h,[ if rj :::; k and dj ;::: 1 + 1 
by an arc with capacity (I - k + 1) which represents the maximum number of 
machines days we can allot to job j on the days from k to I. We next solve a maximum 
flow problem on this network: The scheduling problem has a feasible schedule if 
and only if the maximum flow value equals ~EJ pj [alternatively, the flow on every 
arc (s, j) is Pj]. The validity of this formulation is easy to establish by showing a 
one-to-one correspondence between feasible schedules and flows of value ~EJ Pj 
from the source to the sink. 
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Figure 6.5 Network for scheduling 
uniform parallel machines. 

Application 6.5 Distributed Computing on a 
Two-Processor Computer 

This application concerns assigning different modules (subroutines) of a program to 
two processors in a way that minimizes the collective costs of interprocessor com
munication and computation. We consider a computer system with two processors; 
they need not be identical. We wish to execute a large program on this computer 
system. Each program contains several modules that interact with each other during 
the program's execution. The cost of executing each module on the two processes 
is known in advance and might vary from one processor to the other because of 
differences in the processors' memory, control, speed, and arithmetic capabilities. 
Let Ui and f3i denote the cost of computation of module i on processors 1 and 2, 
respectively. Assigning different modules to different processors incurs relatively 
high overhead costs due to interprocessor communication. Let cij denote the inter
processor communication cost if modules i andj are assigned to different processors; 
we do not incur this cost if we assign modules i and j to the same processor. The 
cost structure might suggest that we allocate two jobs to different processors-we 
need to balance this cost against the communication costs that we incur by allocating 
the jobs to different processors. Therefore, we wish to allocate modules of the pro
gram on the two processors so that we minimize the total cost of processing and 
interprocessor communication. 

We formulate this problem as a minimum cut problem on an undirected network 
as follows. We define a source node s representing processor 1, a sink node t rep
resenting processor 2, and a node for every module of the program. For every node 
i, other than the source and sink nodes, we include an arc (s, i) of capacity f3i and 
an arc (i, t) of capacity Ui. Finally, if module i interacts with module j during program 
execution, we include the arc (i, j) with a capacity equal to Cij' Figures 6.6 and 6.7 
give an example of this construction. Figure 6.6 gives the data for this problem, and 
Figure 6.7 gives the corresponding network. 

We now observe a one-to-one correspondence between s-t cuts in the network 

174 Maximum Flows: Basic Ideas Chap. 6 



i 1 2 

rti 6 5 

J3i 4 10 

(a) 

2 

0 5 

{Cij} = 2 5 0 

3 0 6 

4 0 2 

(b) 

Processor 1 

3 

10 

3 

3 

0 

6 

0 

1 

4 

4 

8 

4 

0 

2 

1 

0 

Program 
modules 

Figure 6.6 Data for the distributed 
computing model. 

, 

Processor 2 

Figure 6.7 Network for the distributed computing model. 

and assignments of modules to the two processors; moreover, the capacity of a cut 
equals the cost of the corresponding assignment. To establish this result, let AI and 
A2 be an assignment of modules to processors 1 and 2, respectively. The cost of this 
assignment is LiEAI a; + LiEA213i + LUJ)EAIXA2 Cij' The s-t cut corresponding to 
this assignment is ({s} U At. {t} U A2)' The approach we used to construct the 
network implies that this cut contains an arc (i, t) for every i E AI of capacity ai, 
an arc (s, i) for every i E A2 of capacity 13;, and all arcs (i, j) with i E A I and j E 
A2 with capacity Cij' The cost of the assignment Al and A2 equals the capacity of 
the cut ({s} U At. {t} U A2)' (We suggest that readers verify this conclusion using 
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the example given in Figure 6.7 with Al = {I, 2} and A2 = {3, 4}.) Consequently, 
the minimum s-t cut in the network gives the minimum cost assignment of the 
modules to the two processors. 

Application 6.6 Tanker Scheduling Problem 

A steamship company has contracted to deliver perishable goods between several 
different origin-destination pairs. Since the cargo is perishable, the customers have 
specified precise dates (i.e., delivery dates) when the shipments must reach their 
destinations. (The cargoes may not arrive early or late.) The steamship company 
wants to determine the minimum number of ships needed to meet the delivery dates 
of the shiploads. 

To illustrate a modeling approach for this problem, we consider an example 
with four shipments; each shipment is a full shipload with the characteristics shown 
in Figure 6.8(a). For example, as specified by the first row in this figure, the company 
must deliver one shipload available at port A and destined for port C on day 3. Figure 
6.8(b) and (c) show the transit times for the shipments (including allowances for 
loading and unloading the ships) and the return times (without a cargo) between the 
ports. 

Ship- Desti- Delivery 
ment Origin nation date 

1 

2 

3 

4 

PortA Port e 
PortA Port e 
Port B PortD 

Port B Port e 
(a) 

3 

8 

3 

6 

e DAB 

Am eGLJ 
BGLJ DGQ 

(b) (c) 

Figure 6.S Data for the tanker 
scheduling problem: (a) shipment 
characteristics; (b) shipment transit 
times; (c) return times. 

We solve this problem by constructing a network shown in Figure 6.9(a). This 
network contains a node for each shipment and an arc from node i to node j if it is 
possible to deliver shipmentj after completing shipment i; that is, the start time of 
shipmentj is no earlier than the delivery time of shipment i plus the travel time from 
the destination of shipment i to the origin of shipment j. A directed path in this 
network corresponds to a feasible sequence of shipment pickups and deliveries. The 
tanker scheduling problem requires that we identify the minimum number of directed 
paths that will contain each node in the network on exactly one path. 

We can transform this problem to the framework of the maximum flow problem 
as follows. We split each node i into two nodes if and i" and add the arc (if, i"). We 
set the lower bound on each arc (if, i"), called the shipment arc, equal to I so that 
at least one unit of flow passes through this arc. We also add a source node sand 
connect it to the origin of each shipment (to represent putting a ship into service), 
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(a) 

/ 

Shipment 1 
~~~j; •.•.•.•.•.•.•.•.•.•.•................... 

/ --
/ --

~~:~------------
" " 3 

Shipment 2 

(b) 

Figure 6.9 Network formulation of the tanker scheduling problem: (a) network offeasible 
sequences of two consecutive shipments; (b) maximum flow model. 

and we add a sink node t and connect each destination node to it (to represent taking 
a ship out of service). We set the capacity of each arc in the network to value 1. 
Figure 6.9(b) shows the resulting network for our example. In this network, each 
directed path from the source s to the sink t corresponds to a feasible schedule for 
a single ship. As a result, a feasible flow of value v in this network decomposes into 
schedules of v ships and our problem reduces to identifying a feasible flow of min
imum value. We note that the zero flow is not feasible because shipment arcs have 
unit lower bounds. We can solve this problem, which is known as the minimum 
value problem, using any maximum flow algorithm (see Exercise 6.18). 

6.8 FLOWS AND CUTS 

In this section we discuss some elementary properties of flows and cuts. We use 
these properties to prove the max-flow min-cut theorem to establish tKe correctness 
of the generic augmenting path algorithm. We first review some of our previous 
notation and introduce a few new ideas. 

Residual network. The concept of residual network plays a central role in 
the development of all the maximum flow algorithms we consider. Earlier in Section 
2.4 we defined residual networks and discussed several of its properties. Given a 
flow x, the residual capacity rij of any arc (i, j) E A is the maximum additional flow 
that can be sent from node i to node j using the arcs (i, j) and (j, 0. [Recall our 
assumption from Section 6.1 that whenever the network contains arc (i, j), it also 
contains arc (j, i).] The residual capacity rij has two components: (1) Uij - Xij, the 
unused capacity of arc (i, j), and (2) the current flow Xji on arc (j, i), which we can 
cancel to increase the flow from node i to node j. Consequently, rij = Uij - Xij + 
Xji. We refer to the network G(x) consisting of the arcs with positive residual ca
pacities as the residual network (with respect to the flow x). Figure 6.10 gives an 
example of a residual network. 

s-t cut. We now review notation about cuts. Recall from Section 2.2 that a 
cut is a partition of the node set N into two subsets Sand S = N - S; we represent 
this cut using the notation [S, S]. Alternatively, we can define a cut as the set of 
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el-_(x...:..ij,_U-=-ij)_ .. ·W .I-__ T-=-ij_ .......... 

(3,4) 

Source (2,3) Sink 

(0,1) 

(a) (b) 

Figure 6.10 Illustrating a residual network: (a) original network G with a flow x; 
(b) residual network G(x). 

arcs whose endpoints belong to the different subsets Sand 8. We refer to a cut as 
an s-t cut if s E Sand t E 8. We also refer to an arc (i,j) with i E S andj E 8 as 
a forward arc of the cut, and an arc (i,j) with i E 8 andj E S as a b~ckward arc 
of the cut [S, 8]. Let (S, 8) denote the set offorward arcs in the cut, and let (8, S) 
denote the set of backward arcs. For example, in Figure 6.11, the dashed arcs con
stitute an s-t cut. For this cut, (S, 8) = {(1, 2), (3,4), (5, 6)}, and (8, S) = {(2, 3), 
(4, 5)}. 

Source Sink 

Figure 6.11 Example of an s-t cut. 

Capacity of an s-t cut. We define the capacity u [S, 8] of an s-t cut [S, 8] 
as the sum of the capacities of the forward arcs in the cut. That is, 

u[S,8] = L Uij. 
(i,j)E(S,S) 

Clearly, the capacity of a cut is an upper bound on the maximum amount of 
flow we can send from the nodes in S to the nodes in 8 while honoring arc flow 
bounds. 

Minimum cut. We refer to an s-t cut whose capacity is minimum among 
all s-t cuts as a minimum cut. 

Residual c~acity of an s-t cut. We define the residual capacity r[S, 8] 
of an s-t cut [S, S] as the sum of the residual capacities of forward arcs in the cut. 
That is, 
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r[S, S] = ~ rij. 
(iJ)E(S,S) 

Flow across an s-t cut. Let x be a flow in the network. Adding the mass 
balance constraint (6.1b) for the nodes in S, we see that 

v = ~ [ ~ Xij - ~ Xji] . 
iES {j:(i,j)EA} {j:(j,i)EA} 

We can simplify this expression by noting that whenever both the nodes p and 
q belong to Sand (p, q) E A, the variable Xpq in the first term within the brackets 
(for node i = p) cancels the variable - Xpq in the second term within the brackets 
(for node j = q). Moreover, if both the nodes p and q belong to S, then Xpq does 
not appear in the expression. This observation implies that 

v = ~ Xii - ~ Xii' 
(i,j)E(S,S) (i,j)E(S,S) 

(6.3) 

The first expression on the right-hand side of (6.3) denotes the amount of flow 
from the .nodes in S to nodes in S, and the second expression denotes the amount 
of flow returning from the nodes in S to the nodes in S. Therefore, the right-hand 
side denotes the total (net) flow across the cut, and (6.3) implies that the flow across 
any s-t cut [S, S] equals v. Substituting Xii S Uii in the first expression of (6.3) and 
Xij ?: 0 in the second expression shows that 

v S ~ Uij = u[S, S]. 
(i,j)E(S,S) 

(6.4) 

This expression indicates that the value of any flow is less than or equal to the 
capacity of any s-t cut in the network. This result is also quite intuitive. Any flow 
from node s to node t must pass through every s-t cut in the network "(because any 
cut divides the network into two disjoint components), and therefore the value of 
the flow can never exceed the capacity of the cut. Let us formally record this result. 

Property 6.1. The value of any flow is less than or equal to the capacity of 
any cut in the network. 

This property implies that if we discover a flow X whose value equals the 
capacity of some cut [S, S], then X is a maximum flow and the cut [S, S] is a minimum 
cut. The max-flow min-cut theorem, proved in the next section, states that some 
flow always has a flow value equal to the capacity of some cut. 

We next restate Property 6.1 in terms of the residual capacities. Suppose that 
x is a flow of value v. Moreover, suppose that that x' is a flow of value v + ilv for 
some ilv ?: O. The inequality (6.4) implies that 

v + ilv S ~ uii' 
(i,j)E(S,S) 

Subtracting (6.3) from (6.5) shows that 

ilv S ~ (uii - Xii) + ~ Xij' 
(iJ)E(S,S) (i,j)E(S,S) 
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We now use Assumption 6.4 to note that we can rewrite LU,j)E(S,S) xij as 

LU,j)E(S,S) Xji. Consequently, 

6.v $ L (uij - Xij + Xji) = L rij. 
U,j)E(S,S) (S,S) 

The following property is now immediate. 

Property 6.2. For any flow x of value v in a network, the additional flow that 
can be sent from the source node s to the sink node t is less than or equal to the 
residual capacity of any s-t cut. 

6.4 GENERIC AUGMENTING PATH ALGORITHM 

In this section, we describe one of the simplest and most intuitive algorithms for 
solving the maximum flow problem. This algorithm is known as the augmenting path 
algorithm. 

We refer to a directed path from the source to the sink in the residual network 
as an augmenting path. We define the residual capacity of an augmenting path as 
the minimum residual capacity of any arc in the path. For example, the residual 
network in Figure 6. lO(b) , contains exactly one augmenting path 1-3-2-4, and the 
residual capacity of this path is 3 = min{r13, r32, r24} = min{l, 2, I} = 1. Observe 
that, by definition, the capacity 3 of an augmenting path is always positive. Con
sequently, whenever the network contains an augmenting path, we can send addi
tional flow from the source to the sink. The generic augmenting path algorithm is 
essentially based on this simple observation. The algorithm proceeds by identifying 
augmenting paths and augmenting flows on these paths until the network contains 
no such path. Figure 6.12 describes the generic augmenting path algorithm. 

algorithm augmenting path; 
begin 

x: = 0; 
while G(x) contains a directed path from node s to node t do 
begin 

identify an augmenting path P from node s to node t; 
l\ : = min{rlj : (i, j) E P}; 
augment l\ units of flow along P and update G(x); 

end; 
end; 

Figure 6.12 Generic augmenting path algorithm. 

We use the maximum flow problem given in Figure 6.13(a) to illustrate the 
algorithm. Suppose that the algorithm selects the path 1-3-4 for augmentation. The 
residual capacity of this path is 3 = min{r13, r34} = min{4, 5} = 4. This augmentation 
reduces the residual capacity of arc (1, 3) to zero (thus we delete it from the residual 
network) and increases the residual capacity of arc (3, 1) to 4 (so we add this arc 
to the residual network). The augmentation also decreases the residual capacity of 
arc (3, 4) from 5 to 1 and increases the residual capacity of arc (4, 3) from 0 to 4. 
Figure 6.13(b) shows the residual network at this stage. In the second iteration, 
suppose that the algorithm selects the path 1-2-3-4. The residual capacity of this 

180 Maximum Flows: Basic Ideas Chap. 6 



.I--__ '_ij -----..~. 

4 5 4 

4 

Source 3 Sink 3 

2 2 

(a) (b) 

5 4 5 

2 

2 

(c) (d) 

Figure 6.13 Illustrating the generic augmenting path algorithm: (a) residual network 
for the zero flow; (b) network after augmenting four units along the path 1-3-4; (c) 
network after augmenting one unit along the path 1-2-3-4; (d) network after aug
menting one unit along the path 1-2-4. 

path is 8 = min{2, 3, I} = 1. Augmenting 1 unit of flow along this path yields the 
residual network shown in Figure 6. 13(c). In the third iteration, the algorithm aug
ments 1 unit of flow along the path 1-2-4. Figure 6. 13(d) shows the corresponding 
residual network. Now the residual network contains no augmenting path, so the 
algorithm terminates. 

Relationship between the Original and Residual 
Networks 

In implementing any version of the generic augmenting path algorithm, we have the 
option of working directly on the original network with the flows Xij, or maintaining 
the residual network G(x) and keeping track of the residual capacities rij and, when 
the algorithm terminates, recovering the actual flow variables Xij' To see how we 
can use either alternative, it is helpful to understand the relationship between arc 
flows in the original network and residual capacities in the residual network. 

First, let us consider the concept of an augmenting path in the original network. 
An augmenting path in the original network G is a path P (not necessarily directed) 
from the source to the sink with Xij < Uij on every forward arc (i, j) and xij > 0 on 
every backward arc (i, j). It is easy to show that the original network G contains 
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Source 

an augmenting path with respect to a flow x if and only if the residual network G(x) 
contains a directed path from the source to the sink. 

Now suppose that we update the residual capacities at some point in the al
gorithm. What is the effect on the arc flows Xij? The definition of the residual capacity 
(Le., rij = Uij - Xij + Xji) implies that an additional flow of 3 units on arc (i, j) in 
the residual network corresponds to (1) an increase in Xij by 3 units in the original 
network, or (2) a decrease in Xji by 3 units in the original network, or (3) a convex 
combination of (l) and (2). We use the example given in Figure 6.14(a) and the 
corresponding residual network in Figure 6.14(b) to illustrate these possibilities. 
Augmenting 1 unit of flow on the path 1-2-4-3-5-6 in the network produces the 
residual network in Figure 6. 14(c) with the corresponding arc flows shown in Figure 
6. 14(d). Comparing the solution in Figure 6. 14(d) with that in Figure 6. 14(a), we find 
that the flow augmentation increases the flow on arcs (1, 2), (2, 4), (3, 5), (5, 6) and 
decreases the flow on arc (3, 4). 

Finally, suppose that we are given values for the residual capacities. How 
should we determine the flows Xij? Observe that since rij = Uij - Xij + Xji, many 
combinations of Xij and Xji correspond to the same value of rij. We can determine 

(0,2) 
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(1,2) 

(1,2) Sink 

(0,2) 

(a) (b) 

(1,2) 

(1,2) 

Figure 6.14 The effect of augmentation on flow decomposition: (a) original network with 
a flow x; (b) residual network for flow x; (c) residual network after augmenting one unit 
along the path 1-2-4-3-5-6; (d) flow in the original network after the augmentation. 
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one such choice as follows. To highlight this choice, let us rewrite rij = Uij - Xij + 
Xji as Xij - Xji = uij - rij. Now, if uij 2:: rij, we set Xij = uij - rij and Xji = 0; otherwise, 
we set Xij = 0 and Xji = rij - Uij. 

Effect of Augmentation on Flow Decomposition 

To obtain better insight concerning the augmenting path algorithm, let us illustrate 
the effect of an augmentation on the flow decomposition on the preceding example. 
Figure 6.15(a) gives the decomposition of the initial flow and Figure 6.15(b) gives 
the decomposition of the flow after we have augmented 1 unit of flow on the path 
1-2-4-3-5-6. Although we augmented 1 unit of flow along the path 1-2-4-3-5-6, 
the flow decomposition contains no such path. Why? 

(a) (b) 

Figure 6.15 Flow decomposition of the solution in (a) Figure 6. 14(a) and (b) Figure 6. 14(d). 

The path 1-3-4-6 defining the flow in Figure 6. 14(a) contains three segments: 
the path up to node 3, arc (3, 4) as a forward arc, and the path up to node 6. We 
can view this path as an augmentation on the zero flow. Similarly, the path 1-2-4-
3-5-6 contains three segments: the path up to node 4, arc (~,4) as a backward arc, 
and the path up to node 6. We can view the augmentation on the path 1-2-4-3-5-
6 as linking the initial segment of the path 1-3-4-6 with the last segment of the 
augmentation, linking the last segment of the path 1-3-4-6 with the initial segment 
of the augmentation, and canceling the flow on arc (3, 4), which then drops from 
both the path 1-3-4-6 and the augmentation (see Figure 6.16). In general, we can 
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(a) (b) 

Figure 6.16 The effect of augmentation on flow decomposition: (a) the two aug
mentations PI-P2-P3 and QI-Q2-Q3; (b) net effect of these augmentations. 
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view each augmentation as "pasting together" segments of the current flow decom
position to obtain a new flow decomposition. 

6.5 LABEUNG ALGORITHM AND THE MAX-FLOW 
MIN-CUT THEOREM 

In this section we discuss the augmenting path algorithm in more detail. In Our 
discussion of this algorithm in the preceding section, we did not discuss some im
portant details, such as (1) how to identify an augmenting path or show that the 
network contains no such path, and (2) whether the algorithm terminates in finite 
number of iterations, and when it terminates, whether it has obtained a maximum 
flow. In this section we consider these issues for a specific implementation of the 
generic augmenting path algorithm known as the labeling algorithm. The labeling 
algorithm is not a polynomial-time algorithm. In Chapter 7, building on the ideas 
established in this chapter, we describe two polynomial-time implementations of this 
algorithm. 

The labeling algorithm uses a search technique (as described in Section 3.4) to 
identify a directed path in G(x) from the source to the sink. The algorithmfans out 
from the source node to find all nodes that are reachable from the source along a 
directed path in the residual network. At any step the algorithm has partitioned the 
nodes in the network into two groups: labeled and unlabeled. Labeled nodes are 
those nodes that the algorithm has reached in the fanning out process and so the 
algorithm has determined a directed path from the source to these nodes in the 
residual network; the unlabeled nodes are those nodes that the algorithm has not 
reached as yet by the fanning-out process. The algorithm iteratively selects a labeled 
node and scans its arc adjacency list (in the residual network) to reach and label 
additional nodes. Eventually, the sink becomes labeled and the algorithm sends the 
maximum possible flow on the path from node s to node t. It then erases the labels 
and repeats this process. The algorithm terminates when it has scanned all the labeled 
nodes and the sink remains unlabeled, implying that the source node is not connected 
to the sink node in the residual network. Figure 6.17 gives an algorithmic description 
of the labeling algorithm. 

Correctness of the Labeling Algorithm and Related 
Results 

To study the correctness of the labeling algorithm, note that in each iteration (i.e., 
an execution of the whole loop), the algorithm either performs an augmentation or 
terminates because it cannot label the sink. In the latter case we must show that the 
current flow x is a maximum flow. Suppose at this stage that S is the set of labeled 
nodes and 8 =.N - S is the set of unlabeled nodes. Clearly, s E Sand t E 8. Since 
the algorithm cannot label any node in 8 from any node in S, rij = 0 for each 
(i,j) E (S, 8). Furthermore, since rij = (Uij - Xij) + Xji, Xij :5 Uij and Xji;::: 0, the con
dition rij = 0 implies that xij = Uij for every arc (i, j) E (S, 8) and xij = 0 for 
every arc (i, j) E (8, S). [Recall our assumption that for each arc (i, j) E A, 
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algorithm labeling; 
begin 

label node t; 
while t is labeled do 
begin 

unlabel all nodes; 
set pred(j) : = 0 for each j E N; 
label node s ~nd set LIST: = {s}; 
while LIST #00r t is unlabeled do 
begin 

remove a node i from LIST; 
for each' arc (i, j) in the residual network emanating from node i do 

if rij> 0 and node j is unlabeled then set pred( j): = i, label node j, and 
add j to LIST; 

end; 
if t is labeled then augment 

end; 
end; 

procedure augment; 
begin 

use the predecessor labels to trace back from the sink to the source to 
obtain an augmenting path P from node s to node t; 

I) : = min{rij : (i, j) E P}; 
augment I) units of flow along P and update the residual capacities; 

end; 

Figure 6.17 Labeling algorithm. 

(j, i) E A.] Substituting these flow values in (6.3), we find that 

v = L Xij

(ij)E(S,S) 
L_ Xij = 

(i.j)E(S,S) 

L uij = u[S, 8]. 
(i,j)E(S,S) 

This discussion shows that the value of the current flow x equals the capacity 
of the cut [S, 8]. But then Property 6.1 implies that x is ,fl. maximum flow and 
[S, 81 is a minimum cut. This conclusion establishes the correctness of the labeling 
algorithm and, as a by-product, proves the following max-flow min-cut theorem. 

Theorem 6.3 (Max-Flow Min-Cut Theorem). The maximum value of the flow 
from a source node s to a sink node t in a capacitated network equals the minimum 
capacity among all s-t cuts. • 

The proof of the max-flow min-cut theorem shows that when the labeling al
gorithm terminates, it has also discovered a minimum cut. The labeling algorithm 
also proves the following augmenting path theorem. 

Theorem 6.4 (Augmenting Path Theorem). A flow x* is a maximum flow if and 
only if the residual network G(x*) contains no augmenting path. 

Proof If the residual network G(x*) contains an augmenting path, clearly the 
flow x* is not a maximum flow. Conversely, if the residual network G(x*) contains 
no augmenting path, the set of nodes S labeled by the labeling algorithm defines an 
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s-t cut [S, 8J whose capacity equals the flow value, thereby implying that the flow 
must be maximum. • 

The labeling algorithm establishes one more important result. 

Theorem 6.5 (Integrality Theorem). If all arc capacities are integer, the max
imum flow problem has an integer maximum flow. 

Proof This result follows from an induction argument applied to the number 
of augmentations. Since the labeling algorithm starts with a zero flow and all arc 
capacities are integer, the initial residual capacities are all integer. The flow aug
mented in any iteration equals the minimum residual capacity of some path, which 
by the induction hypothesis is integer. Consequently, the residual capacities in the 
next iteration will again be integer. Since the residual capacities rij and the arc ca
pacities Uij are all integer, when we convert the residual capacities into flows by the 
method described previously, the arc flows xij will be integer valued as well. Since 
the capacities are integer, each augmentation adds at least one unit to the flow value. 
Since the maximum flow cannot exceed the capacity of any cut, the algorithm will 
terminate in a finite number of iterations. • 

The integrality theorem does not imply that every optimal solution of the max
imum flow problem is integer. The maximum flow problem may have noninteger 
solutions and, most often, has such solutions. The integrality theorem shows that 
the problem always has at least one integer optimal solution. 

Complexity of the Labeling Algorithm 

To study the worst-case complexity of the labeling algorithm, recall that in each 
iteration, except the last, when the sink cannot be labeled, the algorithm performs 
an augmentation. It is easy to see that each augmentation requires Oem) time because 
the search method examines any arc or any node at most once. Therefore, the 
complexity of the labeling algorithm is Oem) times the number of augmentations. 
How many augmentations can the algorithm perform? If all arc capacities are integral 
and bounded by a finite number U, the capacity of the cut (s, N - {s}) is at most 
nU. Therefore, the maximum flow value is bounded by nU. The labeling algorithm 
increases the value of the flow by at least 1 unit in any augmentation. Consequently, 
it will terminate within nU augmentations, so O(nmU) is a bound on the running 
time of the labeling algorithm. Let us formally record this observation. 

Theorem 6.6. 
O(nmU) time. 

The labeling algorithm solves the maximum flow problem in 

• 
Throughout this section, we have assumed that each arc capacity is finite. In 

some applications, it will be convenient to model problems with infinite capacities 
on some arcs. If we assume that some s-t cut has a finite capacity and let U denote 
the maximum capacity across this cut, Theorem 6.6 and, indeed, all the other results 
in this section remain valid. Another approach for addressing situations with infinite 
capacity arcs would be to impose a capacity on these arcs, chosen sufficiently large 
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as to not affect the maximum flow value (see Exercise 6.23). In defining the residual 
capacities and developing algorithms to handle situations with infinite arc capacities, 
we adopt this approach rather than modifying the definitions of residual capacities. 

Drawbacks of the Labeling Algorithm 

The labeling algorithm is possibly the simplest algorithm for solving the maximum 
flow problem. Empirically, the algorithm performs reasonably well. However, the 
worst-case bound on the number of iterations is not entirely satisfactory for large 
values of U. For example, if U = 2n, the bound is exponential in the number of 
nodes. Moreover, the algorithm can indeed perform this many iterations, as the 
example given in Figure 6.18 illustrates. For this example, the algorithm can select 
the augmenting paths s-a-b-t and s-b-a-t alternatively 1()6 times, each time aug
menting unit flow along the path. This example illustrates one shortcoming of the 
algorithm. 

(a) (b) (c) 

Figure 6.18 Pathological example of the labeling algorithm: (a) residual network for the 
zero flow; (b) network after augmenting unit flow along the path s-a-b-t; (c) network after 
augmenting unit flow along the path s-b-a-t. 

A second drawback of the labeling algorithm is that if the capacities are irra
tional, the algorithm might not terminate. For some pathological instances of the 
maximum flow problem (see Exercise 6.48), the labeling algorithm does not ter
minate, and although the successive flow values converge, they converge to a value 
strictly less than the maximum flow value. (Note, however, that the max-flow min
cut theorem holds even if arc capacities are irrational.) Therefore, if the labeling 
algorithm is guaranteed to be effective, it must select augmenting paths carefully. 

A third drawback of the labeling algorithm is its "forgetfulness." In each it
eration, the algorithm generates node labels that contain information about aug
menting paths from the source to other nodes. The implementation we have described 
erases the labels as it moves from one iteration to the next, even though much of 
this information might be valid in the next iteration. Erasing the labels therefore 
destroys potentially useful information. Ideally, we should retain a label when we 
can use it profitably in later computations. 

In Chapter 7 we describe several improvements of the labeling algorithm that 
overcomes some or all of these drawbacks. Before discussing these improvements, 
we discuss some interesting implications of the max-flow min-cut theorem. 
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6.6 COMBINATORIAL IMPLICATIONS OF THE MAX-FLOW 
MIN-CUT THEOREM 

As we noted in Section 6.2 when we discussed several applications of the maximum 
flow problem, in some applications we wish to find a minimum cut in a network, 
which we now know is equivalent to finding a maximum flow in the network. In 
fact, the relationship between maximum flows and minimum cuts permits us to view 
many problems from either of two dual perspectives: a flow perspective or a cut 
perspective. At times this dual perspective provides novel insight about an under
lying problem. In particular, when applied in various ways, the max-flow min-cut 
theorem reduces to a number of min-max duality relationships in combinatorial the
ory. In this section we illustrate this use of network flow theory by developing several 
results in combinatorics. We might note that these results are fairly deep and dem
onstrate the power of the max-flow min-cut theorem. To appreciate the power of 
the max-flow min-cut theorem, we would encourage the reader to try to prove the 
following results without using network flow theory. 

Network Connectivity 

We first study some connectivity issues about networks that arise, for example, in 
the design of communication networks. We first define some notation. We refer to 
two directed paths from node s to node t as arc disjoint if they do not have any arc 
in common. Similarly, we refer to two directed paths from node s to node t as node 
disjoint if they do not have any node in common, except the source and the sink 
nodes. Given a directed network G = (N, A) and two specified nodes sand t, we 
are interested in the following two questions: (1) What is the maximum number of 
arc-disjoint (directed) paths from node s to node t; and (2) what is the minimum 
number of arcs that we should remove from the network so that it contains no 
directed paths from node s to node t? The following theorem shows that these two 
questions are really alternative ways to address the same issue. 

Theorem 6.7. The maximum number of arc-disjoint paths from node s to node 
t equals the minimum number of arcs whose removal from the network disconnects 
all paths from node s to node t. 

Proof Define the qlpacity of each arc in the network as equal to 1. Consider 
any feasible flow x of value v in the resulting unit capacity network. The flow de
composition theorem (Theorem 3.5) implies that we can decompose the flow x into 
flows along paths and cycles. Since flows around cycles do not affect the flow value, 
the flows on the paths sum to v. Furthermore, since each arc capacity is 1, these 
paths are arc disjoint and each carries 1 unit of flow. Consequently, the network 
contains v arc-disjoint paths from s to t. 

Now consider any s-t cut [S, S] in the network. Since each arc capacity is 1, 
the capacity of this cut is I (S, S) I (i.e., it equals the number of forward arcs in the 
cut). Since each path from node s to node t contains at least one arc in (S, S), the 
removal of the arcs in (S, S) disconnects all the paths from node s to node t. Con
sequently, the network contains a disconnecting set of arcs of cardinality equal 

188 Maximum Flows: Basic Ideas Chap. 6 



to the capacity of any s-t cut [S, S]. The max-flow min-cut theorem immediately im
plies that the maximum number of arc-disjoint paths from s to t equals the 
minimum number of arcs whose removal will disconnect all paths from node s to 
node t. 

• 
We next discuss the node-disjoint version of the preceding theorem. 

Theorem 6.8. The maximum number of node-disjoint paths from node s to 
node t equals the minimum number of nodes whose removal from the network dis
connects all paths from nodes s to node t. 

Proof. Split each node i in G, other than sand t, into two nodes i' and i" and 
add a "node-splitting" arc (i', i") of unit capacity. All the arcs in G entering node 
i now enter node i' and all the arcs emanating from node i now emanate from node 
i". Let G' denote this transformed network. Assign a capacity of 00 to each arc in 
the network except the node-splitting arcs, which have unit capacity. It is easy to 
see that there is one-to-one correspondence between the arc-disjoint paths in G' and 
the node-disjoint paths in G. Therefore, the maximum number of arc-disjoint paths 
in G' equals the maximum number of node-disjoint paths in G. 

As in the proof of Theorem 6.7, flow decomposition implies that a flow of v 
units from node s to node t in G' decomposes into v arc-disjoint paths each carrying 
unit flow; and these v arc-disjoint paths in G' correspond to v node-disjoint paths 
in G. Moreover, note that any s-t cut with finite capacity contains only node-splitting 
arcs since all other arcs have infinite capacity. Therefore, any s-t cut in G' with 
capacity k corresponds to a set of k nodes whose removal from G destroys all paths 
from node s to node t. Applying the max-flow min-cut theorem to G' and using the 
preceding observations establishes that the maximum number of node~disjoint paths 
in G from node s to node t equals the minimum number of nodes whose removal 
from G disconnects nodes sand t. • 

Matchings and Covers 

We next state some results about matchings and node covers in a bipartite network. 
For a directed bipartite network G = (Nt U Nz, A) we refer to a subset A' ~ A as 
a matching if no two arcs in A' are incident to the same node (i.e., they do not have 
any common endpoint). We refer to a subset N' ~ N = NI U Nz as a node cover 
if every arc in A is incident to one of the nodes in N'. For illustrations of these 
definitions, consider the bipartite network shown in Figure 6.19. In this network the 
set of arcs {(1, I'), (3, 3'), (4, 5'), (5, 2')} is a matching but the set of arcs {(I, 2'), 
(3, I'), (3, 4')} is not because the arcs'(3, I') and (3, 4') are incident to the same 
node 3. In the same network the set of nodes {I, 2', 3, 5'} is a node cover, but the 
set of nodes {2', 3', 4, 5} is not because the arcs (1, I'), (3, 1');-and (3, 4') are not 
incident to any node in the set. 

Theorem 6.9. In a bipartite network G = (Nt U N z, A), the maximum car
dinality of any matching equals the minimum cardinality of any node cover of G. 
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Figure 6.19 Bipartite network. 

Proof Augment the network by adding a source node s and an arc (s, i) of 
unit capacity for each i E Nt. Similarly, add a sink node t and an arc (j, t) of unit 
capacity for eachj E N 2 • Denote the resulting network by G'. We refer to the arcs 
in A as original arcs and the additional arcs as artificial arcs . We set the capacity 
of each artificial arc equal to 1 and the capacity of each original arc equal to 00. 

Now consider any flow x of value v from node s to node t in the network G'. 
We can decompose the flow x into v paths of the form s-i-j-t each carrying 1 unit 
of flow. Thus v arcs of the original network have a positive flow. Furthermore, these 
arcs constitute a matching, for otherwise the flow on some artificial arc would exceed 
1 unit. Consequently, a flow of value v corresponds to a matching of cardinality v. 
Similarly, a matching of cardinality v defines a flow of value v. 

We next show that any node cover H of G = (Nt U N 2 , A) defines an s-t cut 
of capacity 1 H 1 in G'. Given the node cover H, construct a set of arcs Q as follows: 
For each i E H, if i E Nt. add arc (s, i) to Q, and if i E N 2 , add arc (i, t) to Q. 
Since H is a node cover, each directed path from node s to node t in G' contains 
one arc in Q; therefore, Q is a valid s-t cut of capacity 1 HI. 

We now show the converse result; that is, for a given s-t cut Q of capacity k 
in G', the network G contains a node cover of cardinality k. We first note that the 
cut Q consists solely of artificial arcs because the original arcs have infinite capacity. 
From Q we construct a set H of nodes as follows: if (s, i) E Q and (i, t) E Q, we 
add ito H. Now observe that each original arc (i,j) defines a directed path s-i-j
tin G'. Since Q is an s-t cut, either (s, i) E Q or (j, t) E Q or both. By the preceding 
construction, either i E H or j E H or both. Consequently, H must be a node cover. 
We have thus established a one-to-one correspondence between node covers in G 
and s-t cuts in G'. 

The max-flow min-cut theorem implies that the maximum flow value equals 
the capacity of a minimum cut. In view of the max-flow min-cut theorem, the 
preceding observations imply that the maximum number of independent arcs in 
G equals the minimum number of nodes in a node cover of G. The theorem thus 
follows. • 
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Figure 6.20 gives a further illustration of Theorem 6.9. In this figure, we have 
transformed the matching problem of Figure 6.19 into a maximum flow problem, 
and we have identified the minimum cut. The minimum cut consists of the arcs 
(s, 1), (s, 3), (2', t) and (5', t). Correspondingly, the set {t, 3, 2', 5'} is a mini
mum cardinality node cover, and a maximum cardinality matching is (1, I'), (2, 2'), 
(3, 3') and (5, 5'). 

Figure 6.20 Minimum cut for the maximum flow problem defined in Figure 6.19. 

As we have seen in the discussion throughout this section, the max-flow min
cut theorem is a powerful tool for establishing a number of results in the field of 
combinatorics. Indeed, the range of applications of the max-flow min-cut theorem 
and the ability of this theorem to encapsulate so many subtle duality (Le., max-min) 
results as special cases is quite surprising, given the simplicity of the labeling al
gorithm and of the proof of the max-flow min-cut theorem. The wide range of ap
plications reflects the fact that flows and cuts, and the relationship between them, 
embody central combinatorial results in many problem domains within applied math
ematics. 

6.7 FLOWS WITH LOWER BOUNDS 

In this section we consider maximum flow problems with nonnegative lower bounds 
imposed on the arc flows; that is, the flow on any arc (i, j) E A must be at least 
lij ;::: O. The following formulation models this problem: 

Maximize v 

subject to 

Sec. 6.7 

L xij - L Xji = { ~ 
{j:(i,i)EA} {i:U,i)EA} - V 

-, 

for i = s, 
for all i E N - {s, t}, 
for i = t, 

lij :5 Xij :5 Uij for each (i, j) EA. 
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In previous sections we studied a special case of this problem with only zero 
lower bounds. Whereas the maximum flow problem with zero lower bounds always 
has a feasible solution (since the zero flow is feasible), the problem with nonnegative 
lower bounds could be infeasible. For example, consider the maximum flow problem 
given in Figure 6.21. This problem does not have a feasible solution because arc 
(1, 2) must carry at least 5 units of flow into node 2 and arc (2, 3) can remove at 
most 4 units of flow; therefore, we can never satisfy the mass balance constraint of 
node 2. 

Source ~.:.·.1.' •... c.:.Vr--_(_5_, 1_0_) _~~ (2, 4) (J!Jf;::. ~ .Vf!!jlr------•• ~ Sink 
Figure 6.21 Maximum flow problem 
with no feasible solution. 

As illustrated by this example, any maximum flow algorithm for problems with 
nonnegative lower bounds has two objectives: (1) to determine whether the problem 
is feasible, and (2) if so, to establish a maximum flow. It therefore comes as no 
surprise that most algorithms use a two-phase approach. The first phase determines 
a feasible flow if one exists, and the second phase converts a feasible flow into a 
maximum flow. We shall soon see that the problem in each phase essentially reduces 
to solving a maximum flow problem with zero lower bounds. Consequently, it is 
possible to solve the maximum flow problem with nonnegative lower bounds by 
solving two maximum flow problems, each with zero lower bounds. For conve
nience, we consider the second phase prior to the first phase. 

Determining a Maximum Flow 

Suppose that we have a feasible flow x in the network. We can then modify any 
maximum flow algorithm designed for the zero lower bound case to obtain a max
imum flow. In these algorithms, we make only one modification: We define the 
residual capacity of an arc (i,j) as rij = (Uij ---:- Xij) + (Xji - Iji ); the first term in this 
expression denotes the maximum increase in flow from node i to node j using the 
remaining capacity of arc (i, j), and the second term denotes the maximum increase 
in flow from node ito nodej by canceling the existing flow on arc (j, i). Notice that 
since each arc flow is within its lower and upper bounds, each residual capacity is 
nonnegative. Recall that the maximum flow algorithm described in this chapter (and 
the ones described in Chapter 7) works with only residual capacities and does not 
need arc flows, capacities, or lower bounds. Therefore we can use any of these 
algorithms to establish a maximum flow in the network. These algorithms terminate 
with optimal residual capacities. From these residual capacities we can construct 
maximum flow in a large number of ways. For example, through a change of variables 
we can reduce the computations to a situation we have considered before. For all 
arcs (i, j), let uij = Uij - lij, rij = rij' and xij = xij - lij. The residual capacity for 
arc (i,j) is rij = (uij - xij) + (Xji - Iji). Equivalently, rij = uij - xij + XJi. Similarly, 
rii = Uii - XJi + xij. If we compute the x' values in terms of r' and u ' , we obtain 
the same expression as before, i.e., xij max(uij - rij, 0) and Xii = max(uii -
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rij, 0). Converting back into the original variables, we obtain the following formulae: 

xij = lij + max(uij - rij - lij, 0), 

Xji = Iji + max(Uji - rji - Iji , 0). 

We now show that the solution determined by this modified procedure solves 
the maximum flow problem with nonnegative lower bounds. Let x denote a feasible 
flow in G with value equal to v. Moreover, let [S, S] denote an s-t cut. We define 
the capacity of an s-t cut [ S, S] as 

U[S, S] = L uij - L_ lij. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.7) 

The capacity of the cut denotes the maximum amount of "net" flow that can be 
sent out of the node set S. We next use equality (6.3), which we restate for con
venience. 

v = L Xij - L_ xij. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.8) 

Substituting xij :5 uij in the first summation and lij :5 xij in the second summation of 
this inequality shows that . 

V :5 L Uij - ~ lij = u[S, S]. 
(i,j)E(S,S) (iJ)E(S,S) 

(6.9) 

Inequality (6.9) indicates that the maximum flow value is less than or equal to the 
capacity of any s-t cut. At termination, the maximum flow algorithm obtains an 
s-t cut [S, S] with rij = 0 for every arc (i,j) E (S, S). Let x denote the corresponding 
flow with value equal to v. Since rij = (uij - xij) + (Xji - 0i), the conditions Xij :5 

Uij and Iji :5 5 i imply that Xij = uij and Xji = Iji . COEsequently, xij = Uij for every arc 
(i, j) E (S, S) and xij = lij for every arc (i, j) E (S, S). Substituting these values in 
(6.8), we find that 

v = u[S, S] = L uij - L-lij. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.10) 

In view of inequality (6.9), equation (6.10)jmplies that [S, S] is a minimum s-t cut 
and x is a maximum flow. As a by-pro<jluct of this result, we have proved a gener
alization of the max-flow min-cut theorem for problems with nonnegative lower 
bounds. 

Theorem 6.10 (Generalized Max-Flow Min-Cut Theorem). If the capacity of an 
s-t cut [S, S] in a network with both lower and upper bounds on arc flows is defined 
by (6.7), the maximum value of flow from node s to node t equals the minimum 
capacity among all s-t cuts. • 

Establishing a Feasible Flow 

We now address the issue of determining a feasible flow in the network. We first 
transform the maximum flow problem into a circulation problem by adding an arc 
(t, s) of infinite capacity. This arc carries the flow sent from node s to node t back 
to node s. Consequently, in the circulation formulation of the problem, the outflow 
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of each node, including nodes sand t, equals its flow. Clearly, the maximum flow 
problem admits a feasible flow if and only if the circulation problem admits a feasible 
flow. Given the possibility of making this transformation, we now focus our intention 
on finding a feasible circulation, and characterizing conditions when an arbitrary 
circulation problem, with lower and upper bounds of flows, possesses a feasible 
solution. 

The feasible circulation problem is to identify a flow x satisfying the following 
constraints: 

L xij - L Xji = 0 for all i E N, (6.11a) 
{j:(iJ)EA} {j:(j,i)EA} 

for all (i, j) EA. (6. 11 b) 

By replacing Xij = xij + Lij in constraints (6.11a) and (6.11b), we obtain the following 
transformed problem: 

L xij- L Xji = b(i) for all i E N, (6. 12a) 
{j:(i,j)EA} {j:(j,i)EA} 

o ~ xij ~ uij - lij for all (i, j) E A, (6. 12b) 

with supplies/demands b(·) at the nodes defined by 

b(i) = L 0i - L Lij. 
{j: (j, i)EA} {j: (i,j)EA} 

Observe that LiEN b(i) = 0 since each lij occurs twice in this expression, once with 
a positive sign and once with a negative sign. The feasible circulation problem is 
then equivalent to determining whether the transformed problem has a solution x' 
satisfying (6.12). ' 

Notice that this problem is essentially the same as the feasible flow problem 
discussed in Application 6.1. In discussing this application we showed that by solving 
a maximum flow problem we either determine a solution satisfying (6.12) or show 
that no solution satisfies (6.12). If xij is a feasible solution of (6.12), xij = xij + lij is 
a feasible solution of (6.11). 

Characterizing a Feasible Flow 

We next characterize feasible circulation problems (i.e., derive the necessary and 
sufficiency conditions for a circulation problem to possess a feasible solution). Let 
S be any set of nodes in the network. By summing the mass balance constraints of 
the nodes in S, we obtain the expression 

L Xij - L_ Xij = O. 
(i,j)E(S,S) (i,j)E(S,S) 

(6.13) 

U sing the inequalities Xij ~ Uij in the first term of (6.13) and the inequalities Xij ? lij 
in the second term, we find that 

L_ lij ~ L uij. 
(iJ)E(S,S) (i,j)E(S,S) 

(6.14) 

The expression in (6.14), which is a necessary condition for feasibility, states that 

194 Maximum Flows: Basic Ideas Chap. 6 



the maximum amount of flow that we can send out from a set S of nodes must be 
at least as large as the minimum amount of flow that the nodes in S must receive. 
Clearly, if a set of nodes must receive more than what the other nodes can send 
them, the network has no feasible circulation. As we will see, these conditions are 
also sufficient for ensuring feasibility [i.e., if the network data satisfies the conditions 
(6.14) for every set S of nodes, the network has a feasible circulation that satisfies 
the flow bounds on all its arcs]. 

We give an algorithmic proof for the sufficiency of condition (6.14). The al
gorithm starts with a circulation x that satisfies the mass balance and capacity con
straints, but might violate some of the lower bound constraints. The algorithm grad
ually converts this circulation into a feasible flow or identifies a node set S that 
violates condition (6.14). 

With respect to a flow x, we refer to an arc (i, j) as infeasible if xij < lij and 
feasible if lij :5 xij. The algorithm selects an infeasible arc (p, q) and attempts to 
make it feasible by increasing the flow on this arc. The mass balance constraints 
imply that in order to increase the flow on the arc, we must augment flow along one 
or more cycles in the residual network that contain arc (p, q) as a forward arc. We 
define the residual network G(x) with respect to a flow x the same way we defined 
it previously except that we set the residual capacity of any infeasible arc (i, j) to 
the value Uij - Xij' Any augmenting cycle containing arc (p, q) as a forward arc 
must consist of a directed path in the residual network G(x) from node q to node p 
plus the arc (p, q). We can use a labeling algorithm to identify a directed path from 
node q to node p. 

We apply this procedure to one infeasible arc at a time, at each step decreasing 
the infeasibility of the arcs until we either identify a feasible flow or the labeling 
algorithm is unable to identify a directed path from node q to node p for some 
infeasible arc (p, q). We show that in the latter case, the maximum flow problem 
must be infeasible. Let S be the set of nodes labeled by the last applicafion of the 
labeling algorithm. Clearly, q E Sand pES == N - S. Since the labeling algorithm 
cannot label any node not in S, every arc (i, j) from S to S has-a residual capacity 
of value zero. Therefore, Xij = Uij for every arc (i, j) E (S, S) and Xij :5 lij for every 
arc (i,j) E (S, S). Also observe that (p, q) E (S, S) and Xpq < lpq. Substituting these 
values in (6.13), we find that 

L_ lij> L Uij, 
(i,j)E(S,S) (i,j)E(S,S) 

contradicting condition (6.14), which we have already shown is necessary for fea
sibility. We have thus established the following fundamental theorem. 

Theorem 6.11 (Circulation Feasibility Conditions). A circulation problem with 
nonnegative lower bounds on arc flows is feasible if and only if for every set S of 
nodes 

k lij :5 L Uij. 
(iJ)E(S,S) (i,j)E(S,S) • 

Note that the proof ofthis theorem specifies a one pass algorithm, starting with 
the zero flow, for finding a feasible solution to any circulation problem whose arc 
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upper bounds Uij are all nonnegative. In Exercise 6.7 we ask the reader to specify 
a one pass algorithm for any situation (i.e., even when some upper bounds are 
negative). 

A by-product of Theorem 6.11 is the following result, which states necessary 
and sufficiency conditions for the existence of a feasible solution for the feasible 
flow problem stated in (6.2). (Recall that a feasible flow problem is the feasibility 
version of the minimum cost flow problem.) We discuss the proof of this result in 
Exercise 6.43. 

Theorem 6.12. The feasible flow problem stated in (6.2) has a feasible 
solution if and only iffor every subset S ~ N, b(S) u[S, S] :5 0, where b(S) = 
LiES b(i). • 

6.B SUMMARY 

In this chapter we studied two closely related problems: the maximum flow problem 
and the minimum cut problem. Mter illustrating a variety of applications of these 
problems, we showed that the maximum flow and the minimum cut problems are 
closely related of each other (in fact, they are dual problems) and solving the max
imum flow problem also solves the minimum cut problem. We began by showing 
that the value of any flow is less than or equal to the capacity of any cut in the 
network (i.e., this is a "weak duality" result). The fact that the value of some flow 
equals the capacity of some cut in the network (i.e., the "strong duality" result) is 
a deeper result. This result is known as the max-flow min-cut theorem. We establish 
it by specifying a labeling algorithm that maintains a feasible flow x in the network 
and sends additional flow along directed paths from the source node to the sink node 
in the residual network G(x). Eventually, G(x) contains no directed path from the 
source to the sink. At this point, the value of the flow x equals the capacity of some 
cut [S, S] in the network. The weak duality result implies that x is a maximum flow 
and [S, S] is a minimum cut. Since the labeling algorithm maintains an integer flow 
at every step (assuming integral capacity data), the optimal flow that it finds is 
integral. This result is a special case of a more general network flow integrality result 
that we establish in Chapter 9. The labeling algorithm runs in O(nmU) time. This 
time bound is not attractive from the worst-case perspective. In Chapter 7 we develop 
two polynomial-time implementations of the labeling algorithm. 

The max-flow min-cut theorem has far-reaching implications. It allows us to 
prove several important results in combinatorics that appear difficult to prove using 
other means. We proved the following results: (1) the maximum number of arc
disjoint (or node-disjoint) paths connecting two nodes sand t in a network equals 
the minimum number of arcs (or nodes) whose removal from the network leaves no 
directed path from node s to node t; and (2) in a bipartite network, the maximum 
cardinality of any matching equals the minimum cardinality of any node cover. In 
the exercises we ask the reader to prove other implications of the max-flow min-cut 
theorem. 

To conclude this chapter we studied the maximum flow problem with non
negative lower bounds on arc flows. We can solve this problem using a two-phase 
approach. The first phase determines a feasible flow if one exists, and the second 
phase converts this flow into a maximum flow; in both phases we solve a maximum 
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flow problem with zero lower bounds. We also described a theoretical result for 
characterizing when a maximum flow problem with nonnegative lower bounds has 
a feasible solution. Roughly speaking, this characterization states that the maximum 
flow problem has a feasible solution if and only if the maximum possible outflow of 
every cut is at least as large as the minimum required inflow for that cut. 

REFERENCE NOTES 

The seminal paper of Ford and Fulkerson [1956a] on the maximum flow problem 
established the celebrated max-flow min-cut theorem. Fulkerson and Dantzig [1955], 
and Elias, Feinstein, and Shannon [1956] independently established this result. Ford 
and Fulkerson [1956a] and Elias et al. [1956] solved the maximum flow problem by 
augmenting path algorithms, whereas Fulkerson and Dantzig [1955] solved it by 
specializing the simplex method for linear programming. The labeling algorithm that 
we described in Section 6.5 is due to Ford and Fulkerson [1956a]; their classical 
book, Ford and Fulkerson [1962], offers an extensive treatment of this algorithm. 
Unfortunately, the labeling algorithm runs in pseudopolynomial time; moreover, as 
shown by Ford and Fulkerson [1956a], for networks with arbitrary irrational arc 
capacities, the algorithm can perform an infinite sequence of augmentations and 
might converge to a value different from the maximum flow value. Several improved 
versions of the labeling algorithm overcome this limitation. We provide citations to 
these algorithms and to their improvements in the reference notes of Chapter 7. In 
Chapter 7 we also discuss computational properties of maximum flow algorithms. 

In Section 6.6 we studied the combinatorial implications of the max-flow min
cut theorem. Theorems 6.7 and 6.8 are known as Menger's theorem. Theorem 6.9 
is known as the Konig-Egervary theorem. Ford and Fulkerson [1962] discuss these 
and several additional combinatorial results that are provable using the max-flow 
min-cut theorem. 

In Section 6.7 we studied the fe~sibility of a network flow problem with non
negative lower bounds imposed on tHe arc flows. Theorem 6.11 is due to Hoffman 
[1960], and Theorem 6.12 is due to Gale [1957]. The book by Ford and Fulkerson 
[1962] discusses these and some additional feasibility results extensively. The al
gorithm we have presented for identifying a feasible flow in a network with non
negative lower bounds is adapted from this book. 

The applications of the maximum flow problem that we described in Section 
6.2 are adapted from the following papers: 

1. Feasible flow problem (Berge and Ghouila-Houri [1962]) 
2. Problem of representatives (Hall [1956]) 
3. Matrix rounding problem (Bacharach [1966]) 
4. Scheduling on uniform parallel machines (Federgruen and Groenevelt [1986]) 
5. Distributed computing on a two-processor model (Stone [1977]) 
6. Tanker scheduling problem (Dantzig and Fulkerson [1954]) 

Elsewhere in this book we describe other applications of the maximum flow 
problem. These applications include: (1) the tournament problem (Application 1.3, 
Ford and Johnson [1959]), (2) the police patrol problem (Exercise 1.9, Khan [1979]), 
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(3) nurse staff scheduling (Exercise 6.2, Khan and Lewis [1987]), (4) solving a system 
of equations (Exercise 6.4, Lin [1986]), (5) statistical security of data (Exercises 6.5, 
Application 8.3, Gusfield [1988J, Kelly, Golden, and Assad [19901), (6) the minimax 
transportation problem (Exercise 6.6, Ahuja [1986J), (7) the baseball elimination 
problem (Application 8.1, Schwartz [1966]), (8) network reliability testing (Appli
cation 8.2, Van Slyke and Frank [1972]), (9) open pit mining (Application 19.1, 
Johnson (19681), (10) selecting freight handling terminals (Application 19.2, Rhys 
[1970J), (11) optimal destruction of military targets (Application 19.3, Orlin [1987J), 
(12) the flyaway kit problem (Application 19.4, Mamer and Smith [1982]), (13) max
imum dynamic flows (Application 19.12, Ford and Fulkerson [1958aJ), and (14) 
models for building evacuation (Application 19.13, Chalmet, Francis, and Saunders 
(19821). 

Two other interesting applications of the maximum flow problem are preemp
tive scheduling on machines with different speeds (Martel [1982]), and the multi
facility rectilinear distance location problem (Picard and Ratliff [1978]). The following 
papers describe additional applications or provide additional references: McGinnis 
and Nuttle [1978J, Picard and Queyranne [1982J, Abdallaoui [1987J, Gusfield, Martel, 
and Fernandez-Baca [1987J, Gusfield and Martel [1989], and Gallo, Grigoriadis, and 
TaIjan [1989J. 

EXERCISES 

6.1. Dining problem. Several families go out to dinner together. To increase their social 
interaction, they would like to sit at tables so that no two members of the same family 
are at the same table. Show how to formulate finding a seating arrangement that meets 
this objective as a maximum flow problem. Assume that the dinner contingent has p 
families and that the ith family has a(i) members. Also assume that q tables are available 
and that the jth table has a seating capacity of b(j). 

6.2. Nurse staff scheduling (Khan and Lewis [1987]). To provide adequate medical service 
to its constituents at a reasonable cost, hospital administrators must constantly seek 
ways to hold staff levels as low as possible while maintaining sufficient staffing to 
provide satisfactory levels of health care. An urban hospital has three departments: the 
emergency room (department 1), the neonatal intensive care nursery (department 2), 
and the orthopedics (department 3). The hospital has three work shifts, each with dif
ferent levels of necessary staffing for nurses. The hospital would like to identify the 
minimum number of nurses required to meet the following three constraints: (1) the 
hospital must allocate at least 13, 32, and 22 nurses to the three departments (over all 
shifts); (2) the hospital must assign at least 26, 24, and 19 nurses to the three shifts 
(over all departments); and (3) the minimum and maximum number of nurses allocated 
to each department in a specific shift must satisfy the following limits: 

Department 

2 3 

1 (6,8) (11, 12) (7, 12) 

Shift 2 (4,6) (11, 12) (7, 12) 

3 (2,4) (10, 12) (5, 7) 
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Suggest a method using maximum flows to identify the minimum number of nurses 
required to satisfy all the constraints. 

6.3. A commander is located at one node p in a communication network G and his sub
ordinates are located at nodes denoted by the set S. Let uij be the effort required to 
eliminate arc (i, j) from the network. The problem is to determine the minimal effort 
required to block all communications between the commander and his subordinates. 
How can you solve this problem in polynomial time? 

6.4. Solving a system of equations (Lin [1986]). Let F = {fij} be a given p x q matrix and 
consider the following system of p + q equations in the (possibly fractional) variables 
Y: 

q 

~ JuYij = Ui, 
j~l 

p 

~ fijYij = Vi> 
i=I 

1:5i:5p, (6. 15a) 

1:5j:5q. (6. 15b) 

In this system Ui 2: 0 and Vj 2: 0 are given constants satisfying the condition ~f~ 1 Ui = 
D~l Vj. 

(a) Define a matrix D = {dij} as follows: dij = 0 if fij = 0, and dij = 1 if Ju # O. Show 
that (6.15) has a feasible solution if and only if the following system of p + q 
equations has a feasible solution x: 

q 

~ dijxij = Ui, 
j~l 

p 

~ dijxij= Vj, 
;=1 

1 :5 i :5 p, (6.16a) 

1 :5 j :5 q. (6. 16b) 

(b) Show how to formulate the problem of identifying a feasible solution of the system 
(6.16) as a feasible circulation problem (i.e., identifying a circulation in some net
work with lower and upper boundsjmposed on the arc flows). [Hint: The network 
has a node i for the ith row in (&16a), a node] for thejth row in (6-:16b), and one 
extra node s.] ( 

6.5. Statistical security of data (Kelly, Golden, and Assad [1990]' and Gusfield [1988]). The 
U.S. Census Bureau produces a variety of tables from its census data. Suppose that it 
wishes to produce a p X q table D = {dij} of nonnegative integers. Let r(i) denote the 
sum of the matrix elements in the ith row and let c(j) denote the sum of the matrix 
elements in thejth column. Assume that each sum r(i) and c(j) is strictly positive. The 
Census Bureau often wishes to disclose all the row and column sums along with some 
matrix elements (denoted by a set Y) and yet suppress the remaining elements to ensure 
the confidentiality of privileged information. Unless it exercises care, by disclosing the 
elements in Y, the Bureau might permit someone to deduce the exact value of one or 
more of the suppressed elements. It is possible to deduce a suppressed element dij if 
only one value of dij is consistent with the row and column sums and the disclosed 
elements in Y. We say that any such suppressed element is unprotected. Describe a 
polynomial-time algorithm for identifying all the unprotected elements of the matrix 
and their values. 

6.6. Minimax transportation problem (Ahuja [1986]). Suppose that G = (N, A) is an un
capacitated transportation problem (as defined in Section 1.2) and that we want to find 
an integer flow x that minimizes the objective function max{cijxij:(i,j) E A} among all 
feasible integer flows. 
(a) Consider a relaxed version of the minimax transportation problem: Given a param

eter A, we want to know whether some feasible flow satisfies the condition 
max{cijxij:(i, j) E A} :5 A. Show how to solve this problem as a maximum flow 
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Source 

problem. [Hint: Use the condition max{cijxij:(i,j) E A} ~ A to formulate the prob
lem as a feasible flow problem.] 

(b) Use the result in part (a) to develqp a polynomial-time algorithm for solving the 
minimax transportation problem. What is the running time of your algorithm? 

6.7. Consider a generalization of the feasible flow problem discussed in Application 6.1. 
Suppose that the flow bounds constraints are lij ~ xij ~ uij instead of 0 ~ xij ~ Uij for 
some nonnegative lij. How would you solve this generalization of the feasible flow 
problem as a single maximum flow problem? 

6.8 Consider a generalization of the problem that we discussed in Application 6.2. Suppose 
that each club must nominate one of its members as a town representative so that the 
number of representatives belonging to the political party Pk is between Ik and Uk. 

Formulate this problem as a maximum flow problem with nonnegative lower bounds 
on arc flows. 

6.9. In the example concerning the scheduling of uniform parallel machines (Application 
6.4), we assumed that the same number of machines are available each day. How would 
you model a situation when the number of available machines varies from day to day? 
Illustrate your method on the example given in Application 6.4. Assume that three 
machines are available on days 1, 2,4, and 5; two machines on days 3 and 6; and four 
machines on the rest of the days. 

6.10. Can you solve the police patrol problem described in Exercise 1.9 using a maximum 
flow algorithm. If so, how? 

6.11. Suppose that we wish to partition an undirected graph into two components with the 
minimum number of arcs between the components. HoW, would you solve this problem? 

6.12. Consider the network shown in Figure 6.22(a) together with the feasible flow x (8iven 
in the figure. 
(a) Specify four s-t cuts in the network, each containing four forward arcs. List the 

capacity, residual capacity, and the flow across each cut. 
(b) Draw the residual network for the network given in Figure 6.22(a) and list four 

augmenting paths from node s to node t. 

Sink Source Sink 

(a) 

Figure 6.22 Examples for Exercises 6.12 and 6.13. 

6.13. Solve the maximum flow problem shown in Figure 6.22(b) by the labeling algorithm, 
augmenting flow along the longest path in the residual network (i.e., the path containing 
maximum number of arcs). Specify the residual network before each augmentation. 
After every augmentation, decompose the flow into flows along directed paths from 
node s to node t. Finally, specify the minimum cut in the network obtained by the 
labeling algorithm. 
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6.14. Use the labeling algorithm to establish a maximum flow in the undirected network shown 
in Figure 6.23. Show the residual network at the end of each augmentation and specify 
the minimum cut that the algorithm obtains when it terminates. 

3 4 

Source Sink 

3 2 
Figure 6.23 Example for Exercise 
6.14. 

6.15. Consider the network given in Figure 6.24; assume that each arc has capacity 1. 
(a) Compute the maximum number of arc-disjoint paths from the source node to the 

sink node. (You might do so by inspection.) 
(b) Enumerate all s-t cuts in the network. For each s-t cut [S, 3t list the node partition 

and the sets of forward and backward arcs. 
(c) Verify that the maximum number of arc-disjoint paths from node s to node t equals 

the minimum number of forward arcs in an s-t cut. 

Source 

Figure 6.24 Example for Exercise 
6.15. 

6.16. Consider the matrix rounding problem given below (see Application 6.3). We want to 
round each element in the matrix, and also the row and column sums, to the nearest 
multiple of 2 so that the sum of the rounded elements in each row equals the rounded 
row sum and the sum of the rounded elements in each column equals the rounded 
column sum. Formulate this problem as a maximum flow problem and solve it. 

Row sum 

7.5 6.3 15.4 29.2 

3.9 9.1 3.6 16.6 

15.0 5.5 21.5 42.0 

Column sum 26.4 20.9 40.5 

6.17. Formulate the following example of the scheduling problem on uniform parallel ma
chines that we discussed in Application 6.4 as a maximum flow problem. Solve the 
problem by the labeling algorithm, assuming that two machines are available each day. 
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Task 

1 

2 

3 

4 

5 

6 

7 

8 

Job (j) 1 2 3 4 

Processing time (pJ 2.5 3.1 5.0 1.8 
(in days) 

Release time (r) 1 5 0 2 

Due date (dj ) 3 7 6 5 

6.18. Minimum flow problem. The minimumjlow problem is a close relative of the maximum 
flow problem with nonnegative lower bounds on arc flows. In the minimum flow prob
lem, we wish to send the minimum amount of flow from the source to the sink, while 
satisfying given lower and upper bounds on arc flows. 
(a) Show how to solve the minimum flow problem by using two applications of any 

maximum flow algorithm that applies to problems with zero lower bounds on arc 
flows. (Hint: First construct a feasible flow and then convert it into a minimum 
flow.) 

(b) Prove the following min-jlow max-cut theorem. Let the jloor (or lower bound ibn 
the cut capacity) of an s-t cut (S, S] be defined as L(iJ)E(S,S) lij - L(i.j)E(S.S) Uij. 

Show that the minimum value of all the flows from node s to node t equals the 
maximum floor of all s-t cuts. 

6.19. Machine setup problem. A job shop needs to perform eight tasks on a particular day. 
Figure 6.25(a) shows the start and end times of each task. The workers must perform 

Start End 2 3 4 5 6 7 
time time 

1 :00 P.M. 1 :30 P.M. - 60 10 25 30 20 15 

6:00 P.M. 8:00 P.M. 2 10 - 40 55 40 5 30 

10:00 P.M. 11 :00 P.M. 3 65 30 - 0 45 30 20 

4:00 P.M. 5:00 P.M. 4 0 50 35 - 20 15 10 

4:00 P.M. 7:00 P.M. 5 20 24 40 50 - 15 5 

12:00 noon 1 :00 P.M. 6 10 8 9 35 12 - 30 

2:00 P.M. 5:00 P.M. 7 15 30 6 18 15 30 -

11 :00 P.M. 12:00 midnight 8 20 35 15 12 75 13 25 

(a) (b) 

Figure 6.25 Machine setup data: (a) task start and end times; (b) setup times in 
transforming between tasks. 

8 

40 

35 

5 

20 

23 

30 

10 

-
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these tasks according to this schedule so that exactly one worker performs each task. 
A worker cannot work on two jobs at the same time. Figure 6.25(b) shows the setup 
time (in minutes) required for a worker to go from one task to another. We wish to 
find the minimum number of workers to perform the tasks. Formulate this problem as 
a minimum flow problem (see Exercise 6.18). 

6.20. Show how to transform a maximum flow problem having several source nodes and 
several sink nodes to one with only one source node and one sink node. 

6.21. Show that if we add any number of incoming arcs, with any capacities, to the source 
node, the maximum flow value remains unchanged. Similarly, show that if we add any 
number of outgoing arcs, with any capacities, at the sink node, the maximum flow value 
remains unchanged. 

6.22. Show that the maximum flow problem with integral data has a finite optimal solution 
if and only if the network contains no infinite capacity directed path from the source 
node to the sink node. 

6.23. Suppose that a network has some infinite capacity arcs but no infinite capacity paths 
from the source to the sink. Let A 0 denote the set of arcs with finite capacities. Show 
that we can replace the capacity of each infinite capacity arc by a finite number M 2: 

L(iJ)EAO uij without affecting the maximum flow value. 

6.24. Suppose that you want to solve a maximum flow problem containing parallel arcs, but 
the maximum flow code you own cannot handle parallel arcs. How would you use the 
code to solve your maximum flow problem? 

6.25. Networks with node capacities. In some networks, in addition to arc capacities, each 
node i, other than the source and the sink, might have an upper bound, say wei), on 
the flow that can pass through it. For example, the nodes might be airports with limited 
runway capacity for takeoff and landings, or might be switches in a communication 
network with a limited number of ports. In these networks we are interested in deter
mining the maximum flow satisfying/150th the arc and node capacities. Transform this 
problem to the standard maximum flow problem. From the perspective of worst-case 
complexity, is the maximum flow problem with upper bounds on nodes more difficult 
to solve than the standard maximum flow problem? 

6.26. Suppose that a maximum flow network contains a node, other than the_source node, 
with no incoming arc. Can we delete this node without affecting the maximum flow 
value? Similarly, can we delete a node, other than the sink node, with no outgoing arc? 

6.27. Suppose that you are asked to solve a maximum flow problem In a directed network 
subject to the absolute value flow bound constraints - Uij 5 Xij 5 uij imposed on some 
arcs (i, j). How would you solve this problem? 

6.28. Suppose that a maximum flow is available. Show how you would find a minimum cut 
in Oem) additional time. Suppose, instead, that a minimum cut is available. Could you 
use this cut to obtain a maximum flow faster than applying a maximum flow algorithm? 

6.29. Painted network theorem. Let G be a directed network with a distinguished arc (s, t). 
Suppose that we paint each arc in the network as green, yellow, or red, with arc 
(s, t) painted yellow. Show that the painted network satisfies exactly one of the fol
lowing two cases: (1) arc (s, t) is contained in a cycle of yellow and green arcs in which 
all yellow arcs have the same direction but green arcs can have arbitrary directions; 
(2) arc (s, t) is contained in a cut of yellow and red arcs in which all yellow arcs have 
the same direction but red arcs can have arbitrary directions. 

6.30. Show that if Xij = Uij for some arc (i, j) in every maximum flow, this arc must be a 
forward arc in some minimum cut. 

6.31. An engineering department consisting of p faculty members, F\, Fz, ... ,Fp , will offer 
p courses, Cb Cz, ... , Cp , in the coming semester and each faculty member will teach 
exactly one course. Each faculty member ranks two courses he (or she) would like to 
teach, ranking them according to his (or her) preference. 
(a) We say that a course assignment is afeasible assignment if every faculty member 
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teaches a course within his (or her) preference list. How would you determine 
whether the department can find a feasible assignment? (For a related problem see 
Exercise 12.46.) 

(b) A feasible assignment is said to be k-feasible if it assigns at most k faculty members 
to their second most preferred courses. For a given k, suggest an algorithm for 
determining a k-feasible assignment. 

(c) We say that a feasible assignment is an optimal assignment if it maximizes the 
number of faculty members assigned to their most preferred course. Suggest an 
algorithm for determining an optimal assignment and analyze its complexity. [Hint: 
Use the algorithm in part (b) as a subroutine.] 

6.32. Airline scheduling problem. An airline has p flight legs that it wishes to service by the 
fewest possible planes. To do so, it must determine the most efficient way to combine 
these legs into flight schedules. The starting time for flight i is ai and the finishing time 
is bi. The plane requires rij hours to return from the point of destination of flight i to 
the point of origin of flight j. Suggest a method for solving this problem. 

6.33. A flow x is even if for every arc (i, j) E A, xij is an even number; it is odd if for every 
(i, j) E A, xij is an odd number. Either prove that each of the following claims are true 
or give a counterexample for them. 
(a) If all arc capacities are even, the network has an even maximum flow. 
(b) If all arc capacities are odd, the network has an odd maximum flow. 

6.34. Which of the following claims are true and which are false. Justify your answer eith&'r 
by giving a proof or by constructing a counterexample. 
(a) If Xij is a maximum flow, either xij = 0 or Xji = 0 for every arc (i, j) EA. 
(b) Any network always has a maximum flow x for which, for every arc (i, j) E A, 

either Xij = 0 or Xji = o. 
(c) If all arcs in a network have different capacities, the network has a unique minimum 

cut. 
(d) In a directed network, if we replace each directed arc by an undirected arc, the 

maximum flow value remains unchanged. 
(e) If we multiply each arc capacity by a positive number A, the minimum cut remains 

unchanged. 
(f) If we add a positive number A to each arc capacity, the minimum cut remains 

unchanged. 

6.35. (a) Suppose that after solving a maximum flow problem you realize that you have 
underestimated the capacity of an arc (p, q) by k units. Show that the labeling 
algorithm can reoptimize the problem in O(km) time. 

(b) Suppose that instead of underestimating the capacity of the arc (p, q), you had 
overestimated its capacity by k units. Can you reoptimize the problem in O(km) 
time? . 

6.36. (a) Construct a family of networks with the number of s-t cuts growing exponentially 
with n. 

(b) Construct a family of networks with the number of minimum cuts growing expo
nentially with n. 

6.37. (a) Given a maximum flow in a network, describe an algorithm for determining 
the minimum cut [S, S] with the property that for every other minimum cut [R, R], 
R~ S. _ 

(b) Describe an algorithm for determiningJ:he minimum cut [S, S] with the property 
that for every other minimum cut [R, R], S ~ R. 

(c) Describe an algorithm for determining whether the maximum flow problem has a 
unique minimum cut. 

6.38. Let [S, S] and [T, T] be two s-t cuts in the directed network G. Show that the cut 
capacity function u[. ,.] is submodular, that is, u[S, S] + u[T, n ~ u[SUT, Sun + 
u[SnT, SnT]. (Hint: Prove this result by case analysis.) 

6.39. Show that if [S, S] and [T, T] are both minimum cuts, so are [SUT, SUT] and [SnT, 
SnT]. 
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6.40. Suppose that we know a noninteger maximum flow in a directed network with integer 
arc capacities. Suggest an algorithm for converting this flow into an integer maximum 
flow. What is the running time of your algorithm? (Hint: Send flows along cycles.) 

6.41. Optimal coverage of sporting events. A group of reporters want to cover a set of sporting 
events in an olympiad. The sports events are held in several stadiums throughout a 
city. We known the starting time of each event, its duration, and the stadium where it 
is held. We are also given the travel times between different stadiums. We want to 
determine the least number of reporters required to cover the sporting events. How 
would you solve this problem? 

6.42. In Section 6.7 we showed how to solve the maximum flow problem in directed networks 
with nonnegative lower bounds by solving two maximum flow problems with zero lower 
flow bounds. Try to generalize this approach for undirected networks in which the flow 
on any arc (i, j) is permitted in either direction, but whichever direction is chosen the 
amount of flow is at least lij. If you succeed in developing an algorithm, state the 
algorithm along with a proof that it correctly solves the problem; if you do not succeed 
in developing an algorithm state reasons why the generalization does not work. 

6.43. Feasibility of the feasible flow problem (Gale [1957]). Show that the feasible flow problem, 
discussed in Application 6.1, has a feasible solution if and only if for every subset 
S ~ N, b(S) - u[S, S] ~ O. (Hint: Transform the feasible flow problem into a circulation 
problem with nonzero lower bounds and use the result of Theorem 6.11.) 

6.44. Prove Theorems 6.7 and 6.8 for undirected networks. 

6.45. Let N+ and N- be two nonempty disjoint node sets in G. Describe a method for 
determining the maximum number of arc-disjoint paths from N+ to N- (i.e., each path 
can start at any node in N+ and can end at any node in N-). What is the implication 
of the max-flow min-cut theorem in th;(case? (Hint: Generalize the statement of Theo-
rem 6.7.) \ 

6.46. Consider a 0-1 matrix H with n) rows and nz columns. We refer to a row or a column 
of the matrix H as a line. We say that a set of 1 's in the matrix H is independent if no 
two of them appear in the same line. We also say that a set of lines in the matrix is a 
cover of H if they include (Le., "cover") all the 1 's in the matrix. Show that the max
imum number of independent l' s equals the minimum number oflines in a cover. (Hint: 
Use the max-flow min-cut theorem on an appropriately defined network.) 

6.47. In a directed acyclic network G, certain arcs are colored blue, while others are colored 
red. Consider the problem of covering the blue arcs by directed paths, which can start 
and end at any node (these paths can contain arcs of any color). Show that the minimum 
number of directed paths needed to cover the blue arcs is equal to the maximum number 
of blue arcs that satisfy the property that no two of these arcs belong to the same path. 
Will this result be valid if G contains directed cycles? (Hint: Use the min-flow max
cut theorem stated in Exercise 6.18.) 

6.48. Pathological example for the labeling algorithm. In the residual network G(x) corre
sponding to a flow x, we define an augmenting walk as a directed walk from node s to 
node t that visits any arc at most once (it might visit nodes multiple times-in particular, 
an augmenting walk might visit nodes s and t multiple times.) 
(a) Consider the network shown in Figure 6.26(a) with the arcs labeled a, b, c and d; 

note that one arc capacity is irrational. Show that this network contains an infinite 
sequence of augmenting walks whose residual capacities sum to the maximum flow 
value. (Hint: Each augmenting walk of the sequence contains exactly two arcs from 
node s to node t with finite residual capacities.) 

(b) Now consider the network shown in Figure 6.26(b). Show that this network contains 
an infinite sequence of augmenting walks whose residual capacities sum to a value 
different than the maximum flow value. 

(c) Next consider the network shown in Figure 6.26(c); in addition to the arcs shown, 
the network contain an infinite capacity arc connecting each node pair in the set 
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Figure 6.26 A subgraph of a pathological instance for labeling algorithm. The fall graph 
contains an infinite capacity are connecting each pair of nodes i and j as well as each pair 
of nodes i' and j'. 

{I, 2,3, 4} and each node pair in the set {I', 2' ,3', 4'}. Show that each augmenting 
walk in the solution of part (b) corresponds to an augmenting path in Figure 6.26(c). 
Conclude that the labeling algorithm, when applied to a maximum flow problem 
with irrational capacities, might perform an infinite sequence of augmentations and 
the terminal flow value might be different than the maximum flow value. 
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7 

MAXIMUM FLOWS: POLYNOMIAL 
ALGORITHMS 

Every day, in every way, I am getting better and better. 
-Emile Coue 

Chapter Outline 

7.1 Introduction 
7.2 Distance Labels 
7.3 Capacity Scaling Algorithm 
7.4 Shortest Augmenting Path Algorithm 
7.5 Distance Labels and Layered Networks 
7.6 Generic Preflow-Push Algorithm 
7.7 FIFO Preflow-Push Algoritqm 
7.8 Highest Label Preflow-Push A.igorithm 
7.9 Excess Scaling Algorithm 
7.10 Summary 

7.1 INTRODUCTION 

The generic augmenting path algorithm that we discussed in Chapter 6 is a powerful 
tool for solving maximum flow problems. Not only is it guaranteed to solve any 
maximum flow problem with integral capacity data, it also provides us with a con
structive tool for establishing the fundamental max-flow min-cut theorem and there
fore for developing many useful combinatorial applications of network flow theory. 

As we noted in Chapter 6, however, the generic augmenting path algorithm 
has two significant computational limitations: (1) its worst-case computational com
plexity of O(nmU) is quite unattractive for problems with large capacities; and (2) 
from a theoretical perspective, for problems with irrational capacity data, the al
gorithm might converge to a nonoptimal solution. These limitations suggest that the 
algorithm is not entirely satisfactory, in theory. Unfortunately, the algorithm is not 
very satisfactory in practice as well: On very large problems, it can require too much 
solution time. 

Motivated by a desire to develop methods with improved worst-case com
plexity and empirical behavior, in this chapter we study several refinements of the 
generic augmenting path algorithm. We also introduce and study another class of 
algorithms, known as pre flow-push algorithms, that have recently emerged as the 
most powerful techniques, both theoretically and computationally, for solving max
imum flow problems. 
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Before describing these algorithms and analyzing them in detail, let us pause 
to reflect briefly on the theoretical limits of maximum flow algorithms and to intro
duce the general solution strategies employed by the refined augmenting path al
gorithms that we consider in this chapter. Flow decomposition theory shows that, 
in principle, we might be able to design augmenting path algorithms that are capable 
of finding a maximum flow in no more than m augmentations. For suppose that x 
is an optimal flow and XO is any initial flow (possibly the zero flow). By the flow 
decomposition property (see Section 3.5), we can obtain x from XO by a sequence 
of (1) at most m augmentations on augmenting paths from node s to node t, plus (2) 
flows around augmenting cycles. If we define x' as the flow vector obtained from 
XO by sending flows along only the augmenting paths, x' is also a maximum flow 
(because flows around augmenting cycles do not change the flow value into the sink 
node). This observation demonstrates a theoretical possibility of finding a maximum 
flow using at most m augmentations. Unfortunately, to apply this flow decomposition 
argument, we need to know a· maximum flow. As a consequence, no algorithm 
developed in the literature achieves this theoretical bound of m augmentations. 
Nevertheless, it is possible to improve considerably on the O(nU) bound on the 
number of augmentations required by the generic augmenting path algorithm. 

How might we attempt to reduce the number of augmentations or even eliminate 
them altogether? In this chapter we consider three basic approaches: 

1. Augmenting in "large" increments of flow 
2. Using a combinatorial strategy that limits the type of augmenting paths we can 

use at each step 
3. Relaxing the mass balance constraint at intermediate steps of the algorithm, 

and thus not requiring that each flow change must be an augmentation that 
starts at the source node and terminates at the sink node 

Let us now consider each of these approaches. As we have seen in Chapter 
6, the generic augmenting path algorithm could be slow because it might perform a 
large number of augmentations, each carrying a small amount of flow. This obser
vation suggests one natural strategy for improving the augmenting path algorithm: 
Augment flow along a path with a large residual capacity so that the number of 
augmentations remains relatively small. The maximum capacity augmenting path 
algorithm uses this idea: It always augments flow along a path with the maximum 
residual capacity. In Section 7.3 we show that this algorithm performs O(m log U) 
augmentations. A variation of this algorithm that augments flows along a path with 
a sufficiently large, but not necessarily maximum residual capacity also performs 
O(m log U) augmentations and is easier to implement. We call this algorithm the 
capacity scaling algorithm and describe it in Section 7.3. 

Another possible strategy for implementing and improving the augmenting path 
algorithm would be to develop an approach whose implementation is entirely in
dependent of the arc capacity data and relies on a combinatorial argument for its 
convergence. One such approach would be somehow to restrict the choice of aug
menting paths in some way. In one such approach we might always augment flow 
along a "shortest path" from the source to the sink, defining a shortest path as a 
directed path in the residual network consisting of the fewest number of arcs. If we 
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augment flow along a shortest path, the length of any shortest path either stays the 
same or increases. Moreover, within m augmentations, the length of the shortest 
path is guaranteed to increase. (We prove these assertions in Section 7.4.) Since no 
path contains more than n - 1 arcs, this result guarantees that the number of aug
mentations is at most (n - 1)m. We call this algorithm the shortest augmenting path 
algorithm and discuss it in Section 7.4. 

The preflow-push algorithms use the third strategy we have identified: They 
seek out "shortest paths" as in the shortest augmenting path algorithm, but do not 
send flow along paths from the source to the sink. Instead, they send flows on 
individual arcs. This "localized" strategy, together with clever rules for imple
menting this strategy, permits these algorithms to obtain a speed-up not obtained 
by any augmenting path algorithm. We study these preflow-push algorithms in Sec
tions 7.6 through 7.9. 

The concept of distance labels is an important construct used to implement the 
shortest augmenting path algorithm and the preflow-push algorithms that we consider 
in this chapter. So before describing the improved algorithms, we begin by discussing 
this topic. 

7.2 DISTANCE LABELS 

A distance function d: N ~ Z+ U {O} with respect to the residual capacities rij is a 
function from the set of nodes to the set of nonnegative integers. We say that a 
distance function is valid with respect to a flow x if it satisfies the following two 
conditions: 

d(t) = 0; (7.1) 

d(i) ~ d(j) + 1 for every arc (i, j) in the residual network G(x). (7.2) 

We refer to d(i) as the distance label of node i and conditions (7.1) and (7.2) 
as the validity conditions. The following properties show why the distance labels 
might be of use in designing network flow algorithms. 

Property 7.1. If the distance labels are valid, the distance label d(i) is a lower 
bound on the length of the shortest (directed) path from node i to node t in the 
residual network. 

To establish the validity of this observation, let i il i2 - ... - ik 
h+ 1 = t be any path of length k from node i to node t in the residual network. The 
validity conditions imply that 

Sec. 7.2 

d(ik) ~ d(ik+l) + 1 = d(t) + 1 = 1, 

d(ik-I) ~ d(ik) + 1 ~ 2, 

d(ik-2) ~ d(ik-I) + 1 ~ 3, 
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Property 7.2. If d(s) 2: n, the residual network contains no directed path from 
the source node to the sink node. 

The correctness of this observation follows from the facts that d(s) is a lower 
bound on the length of the shortest path from s to t in the residual network, and 
therefore no directed path can contain more than (n - 1) arcs. Therefore, if 
d(s) 2: n, the residual network contains no directed path from node s to node t. 

We now introduce some additional notation. We say that the distance labels 
are exact if for each node i, d(i) equals the length of the shortest path from node i 
to node t in the residual network. For example, in Figure 7.1, if node 1 is the source 
node and node 4 is the sink node, then d = (0,0,0,0) is a valid vector of distance 
label, and d = (3, 1, 2, 0) is a vector of exact distance labels. We can determine 
exact distance labels for all nodes in O(m) time by performing a backward breadth
first search of the network starting at the sink node (see Section 3.4). 

Figure 7.1 Residual network. 

Admissible Arcs and Admissible Paths 

We say that an arc (i, j) in the residual network is admissible if it satisfies the 
condition that d(i) = d(j) + 1; we refer to all other arcs as inadmissible. We also 
refer to a path from node s to node t consisting entirely of admissible arcs as an 
admissible path. Later, we use the following property of admissible paths. 

Property 7.3. An admissible path is a shortest augmenting path from the 
source to the sink. 

Since every arc (i,j) in an admissible path P is admissible, the residual capacity 
of this arc and the distance labels of its end nodes satisfy the conditions (1) rij > 0, 
and (2) d(i) = d(j) + 1. Conditiori (1) implies that P is an augmenting path and 
condition (2) implies that if P contains k arcs, then d(s) = k. Since d(s) is a lower 
bound on the length of any path from the source to the sink in the residual network 
(from Property 7.1), the path P must be a shortest augmenting path. 

7.3 CAPACITY.SCALING ALGORITHM 

We begin by describing the maximum capacity augmenting path algorithm and noting 
its computational complexity. This algorithm always augments flow along a path 
with the maximum residual capacity. Let x be any flow and let v be its flow value. 
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As before, let v* be the maximum flow value. The flow decomposition property (i.e., 
Theorem 3.5), as applied to the residual network G(x), implies that we can find m 
or fewer directed paths from the source to the sink whose residual capacities sum 
to (v* - v). Thus the maximum capacity augmenting path has residual capacity at 
least (v* - v)/m. Now consider a sequence of 2m consecutive maximum capacity 
augmentations starting with the flow x. If each of these augmentations augments at 
least (v* - v)/2m units of flow, then within 2m or fewer iterations we will establish 
a maximum flow. Note, however, that if one of these 2m consecutive augmentations 
carries less than (v* - v)/2m units of flow, then from the initial flow vector x, we 
have reduced the residual capacity of the maximum capacity augmenting path by a 
factor of at least 2. This argument shows that within 2m consecutive iterations, the 
algorithm either establishes a maximum flow or reduces the residual capacity of the 
maximum capacity augmenting path by a factor of at least 2. Since the residual 
capacity of any augmenting path is at most 2U and is at least 1, after O(m log U) 
iterations, the flow must be maximum. (Note that we are essentially repeating the 
argument used to establish the geometric improvement approach discussed in Sec
tion 3.3.) 

As we have seen, the maximum capacity augmentation algorithm reduces the 
number of augmentations in the generic labeling algorithm from O(nU) to 
O(m log U). However, the algorithm performs more computations per iteration, 
since it needs to identify an augmenting path with the maximum residual capacity, 
not just any augmenting path. We now suggest a variation of the maximum capacity 
augmentation algorithm that does not perform more computations per iteration and 
yet establishes a maximum flow within O(m log U). Since this algorithm scales the 
arc capacities implicitly, we refer to it as the capacity scaling algorithm. 

The essential idea underlying the capacity scaling algorithm is conceptually 
quite simple: We augment flow along a path with a sufficiently large residual ca
pacity, instead of a path with the maximum augmenting capacity because we can 
obtain a path with a sufficiently large residual capacity fairly easily-in O(m) time. 
To define the capacity scaling algorithm, let us introduce a parameter ~ and, with 
respect to a given flow x, define the ~-residual network as a network containing arcs 
whose residual capacity is at least ~. Let G(x, ~) denote the ~-residual network. 
Note that G(x, 1) = G(x) and G(x, ~) is a subgraph of G(x). Figure 7.2 illustrates 
this definition. Figure 7.2(a) gives the residual network G(x) and Figure 7.2(b) gives 
the ~-residual network G(x, ~) for ~ = 8. Figure 7.3 specifies the capacity scaling 
algorithm. 

Let us refer to a phase of the algorithm during which ~ remains constant as a 
scaling phase and a scaling phase with a specific value of ~ as a ~-scaling phase. 
Observe that in a ~-scaling phase, each augmentation carries at least ~ units of flow. 
The algorithm starts with ~ = 2l1og UJ and halves its value in every scaling phase 
until ~ = 1. Consequently, the algorithm performs 1 + Llog UJ = O(1og U) scaling 
phases. In the last scaling phase, ~ = 1, so G(x, ~) = G(x). This result shows that 
the algorithm terminates with a maximum flow. 

The efficiency of the algorithm depends on the fact that it performs at most 
2m augmentations per scaling phase. To establish this result, consider the flow at 
the end of the ~-scaling phase. Let x' be this flow and let v' denote its flow value. 
Furthermore, let S be the set of nodes reachable from node s in G(x', Ll). Since 
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Figure 7.2 Illustrating the a-residual network: (a) residual network G(x); (b) a-re
sidual network G(x, a) for a = 8. 

algorithm capacity scaling; 
begin 

x: = 0; 
a : = 2 Llog UJ ; 

while a;:;,: 1 do 
begin 

while G(x, a) contains a path from node s to node tdo 
begin 

identify a path Pin G(x, a); 
& : = min{r/j : (i. j) E P}; 
augment & units of flow along P and update G(x. a); 

end; 
a : = /)./2; 

end; 
end; 

Figure 7.3 Capacity scaling algorithm. 

8 

G(x' , a) contains no augmenting path from the source to the sink, t E S. Therefore, 
[S, S] forms an s-t cut. The definition of S implies that the residual capacity of 
every arc in [S, S] is strictly less than a, so the residual capacity of the cut [S, S] 
is at most m a. Consequently, v* - v' ~ ma (from Property 6.2). In the next scaling 
phase, each augmentation carries at least a/2 units of flow, so this scaling phase 
can perform at most 2m such augmentations. The labeling algorithm described in 
Section 6.5 requires O(m) time to identify an augmenting path, and updating the a
residual network also requires O(m) time. These arguments establish the following 
result. 

Theorem 7.4. The capacity scaling algorithm solves the maximum flow prob-
lem within O(m log U) augmentations and runs in O(m2 10g U) time. • 

It is possible to reduce the complexity of the capacity scaling algorithm even 
further-to O(nm log U)-using ideas of the shortest augmenting path algorithm, 
described in the next section. 
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7.4 SHORTEST AUGMENTING PATH ALGORITHM 

The shortest augmenting path algorithm always augments flow along a shortest path 
from the source to the sink in the residual network. A natural approach for imple
menting this approach would be to look fOJ: shortest paths by performing a breadth 
first search in the residual network. If the labeling algorithm maintains the set L of 
labeled nodes as a queue, then by examining the labeled nodes in a first-in, first-out 
order, it would obtain a shortest path in the residual network (see Exercise 3.30). 
Each of these iterations would require O(m) steps in the worst case, and (by our 
subsequent observations) the resulting computation time would be O(nm 2

). Unfor
tunately, this computation time is excessive. We can improve it by exploiting the 
fact that the minimum distance from any node i to the sink node t is monotonically 
nondecreasing over all augmentations. By fully exploiting this property, we can 
reduce the average time per augmentation to O(n). 

The shortest augmenting path algorithm proceeds by augmenting flows along 
admissible paths. It constructs an admissible path incrementally by adding one arc 
at a time. The algorithm maintains a partial admissible path (i.e., a path from s to 
some node i consisting solely of admissible arcs) and iteratively performs advance 
or retreat operations from the last node (i.e., the tip) of the partial admissible path, 
which we refer to as the current node. If the current node i has (i.e., is incident to) 
an admissible arc (i, j), we perform an advance operation and add arc (i, j) to the 
partial admissible path; otherwise, we perform a retreat operation and backtrack 
one arc. We repeat these operations until the partial admissible path reaches the 
sink node at which time we perform an augmentation. We repeat this process until 
the flow is maximum. Before presenting a formal description of the algorithm, we 
illustrate it on the numerical example given in Figure 7.4(a). 

We first compute the initial distance labels by performing the backward 
breadth-first search of the residual network starting at the sink node. The numbers 
next to the nodes in Figure 7.4(a) specify these values of the distance labels. In this 
example we adopt the convention of selecting the arc (i, j) with the smallest value 
ofj whenever node i has several admissible arcs. We start at the source node with 
a null partial admissible path. The source node has several admissible arcs, so we 
perform an advance operation. This operation adds the arc (1, 2) to the partial ad
missible path. We store this path using predecessor indices, so we set pred(2) = 1. 
Now node 2 is the current node and the algorithm performs an advance operation 
at node 2. In doing so, it adds arc (2, 7) to the partial admissible path, which now 
becomes 1-2-7. We also set pred(7) = 2. In the next iteration, the algorithm adds 
arc (7, 12) to the partial admissible path obtaining 1-2-7-12, which is an admissible 
path to the sink node. We perform an augmentation of value min{rI2' r27, r7,12} = 
min{2, 1, 2} = 1, and thus saturate the arc (2, 7). Figure 7.4(b) specifies the residual 
network at this stage. 

We again start at the source node with a null partial admissible path. The 
algorithm adds the arc (1, 2) and node 2 becomes the new current node. Now we 
find that node 2 has no admissible arc. To create new admissible arcs, we must in
crease the distance label of node 2. We thus increase d(2) to the value min{d(j) + 
1 : (i, j) E A(i) and rij> O} = min{d(1) + I} = 4. We refer to this operation as 
a relabel operation. We will later show that a relabel operation preserves the validity 
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Figure 7.4 Illustrating the shortest augmenting path algorithm. 

conditions imposed upon the distance labels. Observe that the increase in d(2) causes 
arc (1, 2) to become inadmissible. Thus we delete arc (1, 2) from the partial admissible 
path which again becomes a null path. In the subsequent operations, the algorithm 
identifies the admissible paths 1-3-8-12,1-4-9-12, 1-5-10-12, and 1-6-11-12 and 
augments unit flows on these paths. We encourage the reader to carry out the details 
of these operations. Figures 7.5 and 7.6 specify the details of the algorithm. 

Correctness of the Algorithm 

In our analysis of the shortest augmenting path algorithm we first show that it cor
rectly solves the maximum flow problem. 

Lemma 7.5. The shortest augmenting path algorithm maintains valid distance 
labels at each step. Moreover, each relabel (or, retreat) operation strictly increases 
the distance label of a node. 
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algorithm shortest augmenting path; 
begin 

x: = 0; 
obtain the exact distance labels d(/); 
i: = s; 
while d(s) < n do 
begin 

if i has an admissible arc then 
begin 

advance(i); 
if i = t then augment and set i = s 

end 
else retreat(i) 

end; 
end; 

procedure advance(i); 
begin 

Figure 7.5 Shortest augmenting path algorithm. 

let (i, j) be an admissible arc in A(i); 
pred(j) : = i and i: = j; 

end; 

(a) 

procedure retreat(i); 
begin 

d(i) : = min{d(j) + 1 : (i, j) E A(/) and rij> O}; 
if i ¥- s then i: = pred(/); 

end; 

(b) 

procedure augment; 
begin 

using the predecessor indices identify an augmenting 
path P from the source to the sink; 
& : = min{rjj : (i, j) E P}; 
augment & units of flow along path P; 

end; 

(c) 

Figure 7.6 Procedures of the shortest augmenting path algorithm. 

Proof We show that the algorithm maintains valid distance labels at every 
step by performing induction on the number of augment and relabel operations. (The 
advance operation does not affect the admissibility of any arc because it does not 
change any residual capacity or distance label.) Initially, the algorithm constructs 
valid distance labels. Assume, inductively, that the distance labels are valid prior 
to an operation (i.e., they satisfy the validity conditions). We need to check whether 
these conditions remain valid (a) after an augment operation, and (b) after a relabel 
operation. 
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(a) Although a flow augmentation on arc (i, j) might remove this arc from the 
residual network, this modification to the residual network does not affect the validity 
of the distance labels for this arc. An augmentation on arc (i, j) might, however, 
create an additional arc (j, i) with rji > 0 and therefore also create an additional 
inequality d(j) ~ d(i) + 1 that the distanceJabels must satisfy. The distance labels 
satisfy this validity condition, though, since d(i) = d(j) + 1 by the admissibility 
property of the augmenting path. 

(b) The relabel operation modifies d(i); therefore, we must show that each 
incoming and outgoing arc at node i satisfies the validity conditions with respect to 
the new distance labels, say d'(i). The algorithm performs a relabel operation at 
node i when it has no admissible arc; that is, no arc (i, j) E A(i) satisfies the conditions 
d(i) = d(j) + 1 and rij > O. This observation, in light of the validity condition 
d(i) ~ d(j) + 1, implies that d(i) < d(j) + 1 for all arcs (i, j) E A with a positive 
residual capacity. Therefore, d(i) < min{d(j) + 1 : (i, j) E A(i) and rij > O} = d'(i), 
which is the new distance label after the relabel operation. We have thus shown that 
relabeling preserves the validity condition for all arcs emanating from node i, and 
that each relabel operation strictly increases the value of d(i). Finally, note that 
every incoming arc (k, z) satisfies the inequality d(k) ~ d(i) + 1 (by the induction 
hypothesis). Since d(i) < d'(i), the relabel operation again preserves validity cone 
dition for arc (k, i). • 

The shortest augmenting path algorithm terminates when d(s) :2: n, indicating 
that the network contains no augmenting path from the source to the sink (from 
Property 7.2). Consequently, the flow obtained at the end of the algorithm is a 
maximum flow. We have thus proved the following theorem. 

Theorem 7.6. The shortest augmenting path algorithm correctly computes a 
maximum flow. • 

Complexity of the Algorithm 

We now show that the shortest augmenting path algorithm runs in O(n2m) time. We 
first describe a data structure used to select an admissible arc emanating from a 
given node. We call this data structure the current-arc data structure. Recall that 
we used this data structure in Section 3.4 in our discussion of search algorithms. 
We also use this data structure in almost all the maximum flow algorithms that we 
describe in subsequent sections. Therefore, we review this data structure before 
proceeding. 

Recall that we maintain the arc list A (i) which contains ali the arcs emanating 
from node i. We can arrange the arcs in these lists arbitrarily, but the order, once 
decided, remains unchanged throughout the algorithm. Each node i has a current 
arc, which is an arc in A (i) and is the next candidate for admissibility testing. Initially, 
the current arc of node i is the first arc in A(i). Whenever the algorithm attempts 
to find an admissible arc emanating from node i, it tests whether the node's current 
arc is admissible. If not, it designates the next arc in the arc list as the current arc. 
The algorithm repeats this process until either it finds an admissible arc or reaches 
the end of the arc list. 
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Consider, for example, the arc list of node 1 in Figure 7.7. In this instance, 
A(1) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. Initially, the current arc of node 1 is arc 
(1,2). Suppose that the algorithm attempts to find an admissible arc emanating from 
node 1. It checks whether the node's current arc, arc (1, 2), is admissible. Since it 
is not, the algorithm designates arc (1, 3) as the current arc of node 1. The arc 
(1,3) is also inadmissible, so the current arc becomes arc (1, 4), which is admissible. 
From this point on, arc (1, 4) remains the current arc of node 1 until it becomes 
inadmissible because the algorithm has increased the value of d(4) or decreased the 
value of the residual capacity of arc (1, 4) to zero. 

d(i) d(j) 
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Figure 7.7 Selecting admissible arcs 
emanating from a node. 

Let us consider the situation when the algorithm reaches the €nd of the arc 
list without finding any admissible arc. Can we say that AU) has no admissible arc? 
We can, because it is possible to show that if an arc U,j) is iI;tadmissible in previous 
iterations, it remains inadmissible until dU) increases (see Exercise 7.13). So if we 
reach the end of the arc list, we perform a relabel operation and again set the current 
arc of node i to be the first arc in A(i). The relabel operation also examines each 
arc in AU) once to compute the new distance label, which is same as the time it 
spends in identifying admissible arcs at node i in one scan of the arc list. We have 
thus established the following result. 

Property 7.7. If the algorithm relabels any node at most k times, the 
total time spent in finding admissible arcs and relabeling the nodes is 
O(k LiEN 1 AU) I) = O(km). 

We shall be using this result several times in this and the following chapters. 
We also use the following result in several places. 

Lemma 7.8. If the algorithm relabels any node at most k times, the algorithm 
saturates arcs (i.e., reduces their residual capacity to zero) at most kml2 times. 

Sec. 7.4 Shortest Augmenting Path Algorithm 217 



Proof. We show that between two consecutive saturations of an arc (i,j), both 
d(i) and d(j) must increase by at least 2 units. Since, by our hypothesis, the algorithm 
increases each distance label at most k times, this result would imply that the al
gorithm could saturate any arc at most k/2 times. Therefore, the total number of arc 
saturations would be kml2, which is the assertion of the lemma. 

Suppose that an augmentation saturates an arc (i, j). Since the arc (i, j) is 
admissible, 

d(i) = d(j) + 1. (7.3) 

Before the algorithm saturates this arc again, it must send flow back from node 
j to node i. At this time, the distance lfibels d'(i) and d'(j) satisfy the equality 

d'(j) = d'(i) + 1. (7.4) 

In the next saturation of arc (i, j), we must have 

d"(i) = d"(j) + 1. (7.5) 

Using (7.3) and (7.4) in (7.5), we see that 

d"(i) = d"(j) + 1 2:: d'(j) + 1 = d'(i) + 2 2:: d(i) + 2. 

The inequalities in this expression follow from Lemma 7.5. Similarly, it is 
possible to show that d"(j) 2:: d(j) + 2. As a result, between two consecutive sat
urations of the arc (i, j), both d(i) and d(j) increase by at least 2 units, which is the 
conclusion of the lemma. • 

Lemma 7.9. 
(a) In the shortest augmenting path algorithm each distance label increases at most 

n times. Consequently, the total number of relabel operations is at most n2. 
(b) The number of augment operations is at most nml2. 

Proof Each relabel operation at node i increases the value of d(i) by at least 
1 unit. After the algorithm has relabeled node i at most n times, d(i) 2:: n. From this 
point on, the algorithm never again selects node i during an advance operation since 
for every node k in the partial admissible path, d(k) < d(s) < n. Thus the algorithm 
relabels a node at most n times and the total number of relabel operations is bounded 
by n2

• In view of Lemma 7.8, the preceding result implies that the algorithm saturates 
at most nml2 arcs. Since each augmentation saturates at least one arc, we imme-
diately obtain a bound of nml2 on the number of augmentations. • 

Theorem 7.10. The shortest augmenting path algorithm runs in O(n2m) time. 

Proof Using Lemmas 7.9 and 7.7 we find that the total effort spent in finding 
admissible arcs and in relabeling the nodes is O(nm). Lemma 7.9 implies that the 
total number of augmentations is O(nm). Since each augmentation requires O(n) 
time, the total effort for the augmentation operations is O(n2 m). Each retreat op
eration relabels a node, so the total number of retreat operations is O(n2). Each 
advance operation adds one arc to the partial admissible path, and each retreat 
operation deletes one arc from it. Since each partial admissible path has length at 
most n, the algorithm requires at most O(n2 + n2m) advance operations. The first 
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term comes from the number of retreat (relabel) operations, and the second term 
from the number of augmentations. The combination of these bounds establishes 
the theorem. • 

A Practical Improvement 

The shortest augmenting path algorithm terminates when d(s) :2: n. This termination 
criteria is satisfactory for the worst-case analysis but might not be efficient in prac
tice. Empirical investigations have revealed that the algorithm spends too much time 
relabeling nodes and that a major portion of this effort is performed after the al
gorithm has established a maximum flow. This happens because the algorithm does 
not know that it has found a maximum flow. We next suggest a technique that is 
capable of detecting the presence of a minimum cut and so the existence of a max
imum flow much before the label of node s satisfies the condition des) :2: n. Incor
porating this technique in the shortest augmenting path algorithm improves its per
formance substantially in practice. 

We illustrate this technique by applying it to the numerical example we used 
earlier to illustrate the shortest augmenting path algorithm. Figure 7.8 gives the 
residual network immediately after the last augmentation. Although the flow is now 
a maximum flow, since the source is not connected to the sink in the residual net
work, the termination criteria of d(l) :2: 12 is far from being satisfied. The reader 
can verify that after the last augmentation, the algorithm would increase the distance 
labels of nodes 6, 1,2, 3,4,5, in the given order, each time by 2 units. Eventually, 
d(1) :2: 12 and the algorithm terminates. Observe that the node set S of the minimum 
cut [S, S] equals {6, 1, 2, 3,4, 5}, and the algorithm increases the distance labels of 
all the nodes in S without performing any augmentation. The technique we describe 
essentially detects a situation like this one. 

To implement this approach, we maintain an n-dimensional aoditional array, 
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Figure 7.8 Bad example for the shortest augmenting path algorithm. 
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numb, whose indices vary from 0 to (n - O. The value numb(k) is the number of 
nodes whose distance label equals k. The algorithm initializes this array while com
puting the initial distance labels using a breadth first search. At this point, the positive 
entries in the array numb are consecutive [i.e., the entries numb(O), numb(1), ... , 
numb(l) will be positive up to some index 1 and the remaining entries will all be 
zero]. For example, the numb array for the distance labels shown in Figure 7.8 is 
numb(O) = 1, numb(1) = 5, numb(2) = 1, numb(3) = 1, numb(4) = 4 and the 
remaining entries are zero. Subsequently, whenever the algorithm increases the dis
tance label of a node from k\ to k2' it subtracts 1 from numb(k\), adds 1 to numb(k2) 
and checks whether numb(k\) = O. If numb(kd does equal zero, the algorithm ter
minates. As seen earlier, the shortest augmenting path algorithm augments unit flow 
along the paths 1-2-7-12, 1-3-8-12, 1-4-9-12, 1-5-10-12, and 1-6-11-12. Atthe 
end of these augmentations, we obtain the residual network shown in Figure 7.8. 
When we continue the shortest augmenting path algorithm from this point, it con
structs the partial admissible path 1-6. Next it relabels node 6 and its distance label 
increases from 2 to 4. The algorithm finds that numb(2) = 0 and it terminates. 

To see why this termination criterion works, let S = {i E N:d(i) > k\} and 
S = {i E N:d(i) < k\}. It is easy to verify that s E Sand t E S. Now consider the 
s-t cut [S, S]. The definitions of the s~ts Sand S imply that d(i) > d(j) + 1 for all 
(i,j) E [S, S]. The validity condition (7.2) implies that rij = 0 for each arc (i,j) E 
[S, S]. Therefore, [S, S] is a minimum cut and the current flow is a maximum flow. 

Application to Capacity Scaling Algorithm 

In the preceding section we described an O(m2 log U) time capacity scaling algo
rithm for the maximum flow problem. We can improve the running time of this 
algorithm to O(nm log U) by using the shortest augmenting path as a subroutine in 
the capacity scaling algorithm. Recall that the capacity scaling algorithm performs 
a number of A-scaling phases and in the A-scaling phase sends the maximum possible 
flow in the A-residual network G(x, A), using the labeling algorithm as a subroutine. 
In the improved implementation, we use the shortest augmenting path algorithm to 
send the maximum possible flow from node s to node t. We accomplish this by 
defining the distance labels with respect to the network G(x, A) and augmenting 
flow along the shortest augmenting path in G(x, A). Recall from the preceding section 
that a scaling phase contains O(m) augmentations. The complexity analysis of the 
shortest augmenting path algorithm implies that if the algorithm is guaranteed to 
perform O(m) augmentations, it would run in O(nm) time because the time for 
augmentations reduces from O(n2m) to O(nm) and all other operations, as before, 
require O(nm) time. These observations immediately yield a bound of O(nm log U) 
on the running time of the capacity scaling algorithm. 

Further Worst-Case Improvements 

The idea of augmenting flows along shortest paths is intuitively appealing and easy 
to implement in practice. The resulting algorithms identify at most O(nm) augmenting 
paths and this bound is tight [i.e., on particular examples these algorithms perform 
o'(nm) augmentations]. The only way to improve the running time of the shortest 
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augmenting path algorithm is to perform fewer computations per augmentation. The 
use of a sophisticated data structure, called dynamic trees, reduces the average time 
for each augmentation from O(n) to O(log n). This implementation of the shortest 
augmenting path algorithm runs in O(nm log n) time, and obtaining further improve
ments appears quite difficult except in very dense networks. We describe the dy
namic tree implementation of the shortest augmenting path algorithm in Section 8.5. 

7.5 DISTANCE LABELS AND LAYERED NETWORKS 

Like the shortest augmenting path algorithm, several other maximum flow algorithms 
send flow along shortest paths from the source to the sink. Dinic's algorithm is a 
popular algorithm in this class. This algorithm constructs shortest path networks, 
called layered networks, and establishes blocking flows (to be defined later) in these 
networks. In this section we point out the relationship between layered networks 
and distance labels. By developing a modification of the shortest augmenting path 
algorithm that reduces to Dinic' s algorithm, we show how to use distance labels to 
simulate layered networks. 

With respect to a given flow x, we define the layered network V as follows. 
We determine the exact distance labels din G(x). The layered network consists of 
those arcs (i, j) in G(x) satisfying the condition d(i) = d(j) + 1. For example, 
consider the residual network G(x) given in Figure 7.9(a). The number beside each 
node represents its exact distance label. Figure 7.9(b) shows the layered network 
of G(x). Observe that by definition every path from the source to the sink in the 
layered network V is a shortest path in G(x). Observe further that some arc in V 
might not be contained in any path from the source to the sink. For example, in 
Figure 7.9(b), arcs (5, 7) and (6, 7) do not lie on any path in V from the source to 
the sink. Since these arcs do not participate in any flow augmentation, we typically 
delete them from the layered network; doing so gives us Figure 7. 9( c). In"the resulting 
layered network, the nodes are partitioned into layers of nodes Yo, VI, V2 , ••• , 

VI; layer k contains the nodes whose distance labels equal k. Furthermore, for every 
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Figure 7.9 Forming layered networks: (a) residual network; (b) corresponding layered net
work; (c) layered network after deleting redundant arcs. 
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arc (i, j) in the layered network, i E Vk and j E Vk - I for some k. Let the source 
node have the distance labell. 

Dinie's algorithm proceeds by augmenting flows along directed paths from the 
source to the sink in the layered network. The augmentation of flow along an arc 
(i, j) reduces the residual capacity of arc (i, j) and increases the residual capacity 
of the reversal arc (j, i); however, each arc of the layered network is admissible, 
and therefore Dinie's algorithm does not add reversal arcs to the layered network. 
Consequently, the length of every augmenting path is des) and in an augmenting 
path every arc (i, j) has i E Vk and j E Vk - I for some k. The latter fact allows us 
to determine an augmenting path in the layered network, on average, in O(n) time. 
(The argument used to establish the O(n) time bound is the same as that used in our 
analysis of the shortest augmenting path algorithm.) Each augmentation saturates 
at least one arc in the layered network, and after at most m augmentations the layered 
network contains no augmenting path. We call the flow at this stage a blocking flow. 
We have shown that we can establish a blocking flow in a layered network in O(nm) 
time. 

When a blocking flow x has been established in a network, Dinie's algorithm 
recomputes the exact distance labels, forms a new layered network, and repeats 
these computations. The algorithm terminates when as it is forming the new layered 
networks, it finds that the source is not connected to the sink. It is possible to show 
that every time Dinie's algorithm forms a new layered network, the distance label 
of the source node strietly increases. Consequently, Dinie's algorithm forms at most 
n layered networks and runs in O(n2 m) time. 

We now show how to view Dinie's algorithm as a somewhat modified version 
of the shortest augmenting path algorithm. We make the following three modifica
tions to the shortest augmenting path algorithm. 

Modification 1. In operation retreat(i), we do not change the distance label of 
node i, but subsequently term node i as blocked. A blocked node has no ad
missible path to the sink node. 
Modification 2. We define an arc (i, j) to be admissible if d(i) = d(j) + 1, 
rij> 0, and node j is not blocked. 
Modification 3. When the source node is blocked, by performing a backward 
breadth-first search we recompute the distance labels of all nodes exactly. 

We term the computations within two successive recomputations of distance 
labels as occurring within a single phase. We note the following facts about the 
modified shortest augmenting path algorithm.-

1. At the beginning of a phase, when the algorithm recomputes the distance labels 
d('), the set of admissible arcs defines a layered network. 

2. Each arc (i, j) in the admissible path satisfies d(i) = d(j) + 1; therefore, arc 
(i, j) joins two successive layers of the layered network. As a result, every 
admissible path is an augmenting path in the layered network. 

3. Since we do not update distance labels within a phase, every admissible path 
has length equal to des). 
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4. The algorithm performs at most m augmentations within a phase because each 
augmentation causes at least one arc to become inadmissible by reducing its 
residual capacity to zero, and the algorithm does not create new admissible 
arcs. 

5. A phase ends when the network contains no admissible path from node s to 
node t. Hence, when the algorithm recomputes distance labels at the beginning 
of the next phase, d(s) must increase (why?). 

The preceding facts show that the modified shortest augmenting path algorithm 
essentially reduces to Dinic's algorithm. They also show that the distance labels are 
sufficiently powerful to simulate layered networks. Further, they are simpler to 
understand than layered networks, easier to manipulate, and lead to more efficient 
algorithms in practice. Distance labels are also attractive because they are generic 
solution approaches that find applications in several different algorithms; for ex
ample, the generic preflow-push algorithm described next uses distance labels, as 
does many of its variants described later. 

tl 

7.6 GENERIC PREFLOW-PUSH ALGORITHM 

We now study a class of algorithms, known as pre flow-push algorithms, for solving 
the maximum flow problem. These algorithms are more general, more powerful, and 
more flexible than augmenting path algorithms. The best preflow-push algorithms 
currently outperform the best augmenting path algorithms in theory as well as in 
practice. In this section we study the generic preflow-push algorithm. In the following 
sections we describe special implementations of the generic approach with improved 
worst-case complexity. 

The inherent drawback of the augmenting path algorithms is the computation
ally expensive operation of sending flow along a path, which requires O(n) time in 
the worst case. Preflow-push algorithms do not suffer from this drawback and obtain 
dramatic improvements in the worst-case complexity. To understand this point bet
ter, consider the (artificially extreme) example shown in Figure 7.10. When applied 
to this problem, any augmenting path algorithm would discover 10 augmenting paths, 
each of length 10, and would augment 1 unit of flow along each of these paths. 
Observe, however, that although all of these paths share the same first eight arcs, 
each augmentation traverses all of these arcs. If we could have sent 10 units of flow 
from node 1 to node 9, and then sent 1 unit of flow along 10 different paths of length 
2, we would have saved the repetitive computations in traversing the common set 
of arcs. This is the essential idea underlying the preflow-push algorithms. 

Augmenting path algorithms send flow by augmenting along a path. This basic 
operation further decomposes into the more elementary operation of sending flow 
along individual arcs. Thus sending a flow of 8 units along a path of k arcs decomposes 
into k basic operations of sending a flow of 8 units along each of the arcs of the path. 
We shall refer to each of these basic operations as a push. The preflow-push algo
rithms push flows on individual arcs instead of augmenting paths. 

Because the preflow-push algorithms push flows along the individual arcs, these 
algorithms do not satisfy the mass balance constraints (6.1b) at intermediate stages. 
In fact, these algorithms permit the flow entering a node to exceed the flow leaving 
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Figure 7.10 Drawback of the augmenting path algorithm. 

the node. We refer to any such solution as a preflow. More formally, a preflow is 
a function x: A ~ R that satisfies the flow bound constraint (6.tc) and the following 
relaxation of (6.tb). 

L Xji - L Xij ;::: 0 for all i E N - {s, t}. 
{j:(j,i)EA} {j:(i,j)E:A} 

The preflow-push algorithms maintain a preflow at each intermediate stage. 
For a given preflow x, we define the excess of each node i E N as 

e(i) = L Xji - L xij' 
U:(j,i)EA} U:(i,j)EA} 

In a preflow, e(i) ;::: 0 for each i E N - {s, t}. Moreover, because no arc emanates 
from node t in the preflow push algorithms, e(t) ;::: 0 as well. Therefore node s is 
the only node with negative excess. 

We refer to a node with a (strictly) positive excess as an active node and adopt 
the convention that the source and sink nodes are never active. The augmenting 
path algorithms always maintain feasibility of the solution and strive toward opti
mality. In contrast, preflow-push algorithms strive to achieve feasibility. In a 
preflow-push algorithm, the presence of active nodes indicates that the solution is 
infeasible. Consequently, the basic operation in this algorithm is to select an active 
node and try to remove its excess by pushing flow to its neighbors. But to which 
nodes should the flow be sent? Since ultimately we want to send flow to the sink, 
we push flow to the nodes that are closer to sink. As in the shortest augmenting 
path algorithm, we measure closeness with respect to the current distance labels, 
so sending flow closer to the sink is equivalent to pushing flow on admissible arcs. 
Thus we send flow only on admissible arcs. If the active node we are currently 
considering has no admissible arc, we increase its distance label so that we create 
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at least one admissible arc. The algorithm terminates when the network contains no 
active node. The preflow-push algorithm uses the subroutines shown in Figure 7.11. 

procedure preprocess; 
begin 

x: = 0; 
compute the exact distance labels d(i); 
xsi: = usi for each arc (s, j) E A(s); 
drs) : = n; 

end; 

(a) 

procedure pushlrelabel(i); 
begin 

if the network contains an admissible arc (i, J) then 
push II : = min{e(i), fJi} units of flow from node i to node j 

else replace d(i) by min{d(j) + 1 : (i, J) E A(i) and rli> O}; 
end; 

(b) 

Figure 7.11 Subroutines of the preflow-push algorithm. 

A push of 8 units from node i to node j decreases both e(i) and rij by 8 units 
and increases both e(j) and rji by 8 units. We say that a push of 8 units of flow on 
an arc (i, j) is saturating if 8 = rij and is nonsaturating otherwise. A nonsaturating 
push at node i reduces e(i) to zero. We refer to the process of increasing the distance 
label of a node as a relabel operation. The purpose of the relabel operation is to 
create at least one admissible arc on which the algorithm can perform. further pushes. 

The generic version of the preflow-push algorithm (Figure 7.12) combines the 
subroutines just described. 

algorithm preflow-push; 
begin 

preprocess; 
while the network contains an active node do 
begin 

select an active node i; 
pushlrelabel(i); 

end; 
end; 

Figure 7.12 Generic preflow-push 
algorithm. 

It might be instructive to visualize the generic preflow-push algorithm in terms 
of a physical network: Arcs represent flexible water pipes, nodes represent joints, 
and the distance function measures how far nodes are above the ground. In this 
network we wish to send water from the source to the sink. In addition, we visualize 
flow in an admissible arc as water flowing downhill. Initially, we move the source 
node upward, and water flows to its neighbors. In general, water flows downhill 
towards the sink; however, occasionally flow becomes trapped locally at a node that 
has no downhill neighbors. At this point we move the node upward, and again water 
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flows downhill toward the sink. Eventually, no more flow can reach the sink. As 
we continue to move nodes upward, the remaining excess flow eventually flows back 
toward the source. The algorithm terminates when all the water flows either into 
the sink or flows back to the source. 

The preprocessing operation accomplishes several important tasks. First, it 
gives each node adjacent to node s a positive excess, so that the algorithm can begin 
by selecting some node with a positive excess. Second, since the preprocessing 
operation saturates all the arcs incident to node s, none of these arcs is admissible 
and setting d(s) = n will satisfy the validity condition (7.2). Third, since d(s) = n, 
Property 7.2 implies that the residual network contains no directed path from node 
s to node t. Since distance labels are nondecreasing, we also guarantee that in sub
sequent iterations the residual network will never contain a directed path from node 
s to node t, and so we will never need to push flow from node s again. 

To illustrate the generic preflow-push algorithm, consider the example given 
in Figure 7. 13 (a). Figure 7. 13 (b) specifies the preflow determined by the preprocess 
operation. 

Iteration 1. Suppose that the algorithm selects node 2 for the push/relabel 
operation. Arc (2, 4) is the only admissible arc and the algorithm performs a 
push of value 8 = min{e(2), r24} = min{2, 1} = 1. This push is saturating. 
Figure 7. 13 (c) gives the residual network at this stage. 
Iteration 2. Suppose that the algorithm again selects node 2. Since no admissible 
arc emanates from node 2, the algorithm performs a relabel operation and gives 
node 2 a new distance label d(2) = min{d(3) + 1, d(1) + I} = min{2, 5} = 
2. The new residual network is the same as the one shown in Figure 7.13(c) 
except that d(2) = 2 instead of 1. 
Iteration 3. Suppose that this time the algorithm selects node 3. Arc (3, 4) is 
the only admissible arc emanating from node 3, the algorithm performs a push 
of value 8 = min{e(3), r34} = min{4, 5} = 4. This push is nonsaturating. Figure 
7. 13 (d) gives the residual network at the end of this iteration. 
Iteration 4. The algorithm selects node 2 and performs a nonsaturating push 
of value 8 = min{l, 3} = 1, obtaining the residual network given in Figure 
7.13(e). 
Iteration 5. The algorithm selects node 3 and performs a saturating push of 
value 8 = min{l, 1} = Ion arc (3,4), obtaining the residual network given in 
Figure 7.13(0. 

Now the network contains no active node and the algorithm terminates. The 
maximum flow value in the network is e(4) = 6. 

Assuming that the generic preflow-push algorithm terminates, we can easily 
show that it finds a maximum flow. The algorithm terminates when the excess resides 
at the source or at thl! sink, implying that the current preflow is a flow. Since 
d(s) = n, the residual network contains no path from the source to the sink. This 
condition is the termination criterion of the augmenting path algorithm, and the 
excess residing at the sink is the maximum flow value. 
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Figure 7.13 Illustrating the generic preflow-push algorithm. 

Complexity of the Algorithm 

e(2) = 2 
d(2) = I 

e(4) = 5 
d(4)=O 

e(4) = 6 
d(4)=O 

To analyze the complexity of the algorithm, we begin by establishing one important 
result: distance labels are always valid and do not increase "too many" times. The 
first of these conclusions follows from Lemma 7.5, because, as in the shortest aug
menting path algorithm, the preflow-push algorithm pushes flow only on admissible 
arcs and relabels a node only when no admissible arc emanates from it. The second 
conclusion follows from the following lemma. 

Lemma 7.11. At any stage of the pre flow-push algorithm, each node i with 
positive excess is connected to node s by a directed path from node i to node s in 
the residual network. 
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Proof. Notice that for a preflow x, e(s) :::; 0 and e(i) ;::: 0 for all i E N - is}. 
By the flow decomposition theorem (see Theorem 3.5), we can decompose any 
preflow x with respect to the original network G into nonnegative flows along (1) 
paths from node s to node t, (2) paths from node s to active nodes, and (3) flows 
around directed cycles. Let i be an active node relative to the preflow x in G. The 
flow decomposition of x must contain a path P from node s to node i, since the paths 
from node s to node t and the flows around cycles do not contribute to the excess 
at node i. The residual network contains the reversal of P (P with the orientation 
of each arc reversed), so a directed path from node i to node s. • 

This lemma implies that during a relabel operation, the algorithm does not 
minimize over an empty set. 

Lemma 7.12. For each node i E N, d(i) < 2n. 

Proof The last time the algorithm relabeled node i, the node had a positive 
excess, so the residual network contained a path P of length at most n - 2 from 
node i to node s. The fact that d(s) = n and that d(k) :::; d(l) + 1 for every arc 
(k, I) in the path P implies that d(i) :::; d(s) + I P I < 2n. • 

Since each time the algorithm relabels node i, d(i) increases by at least 1 unit, 
we have established the following result. 

Lemma 7.13. Each distance label increases at most 2n times. Consequently, 
the total number of relabel operations is at most 2n2

• • 

Lemma 7.14. The algorithm performs at most nm saturating pushes. 

Proof This result follows directly from Lemmas 7.12 and 7.8. • 

In view of Lemma 7.7, Lemma 7.13 implies that the total time needed to identify 
admissible arcs and to perform relabel operations is O(nm). We next count the 
number of non saturating pushes performed by the algorithm. 

Lemma 7.15. The generic prejlow-push algorithm performs O(n 2m) nonsat
urating pushes. 

Proof. We prove the lemma using an argument based on potential functions 
(see Section 3.2). Let] denote the set of active nodes. Consider the potential function 
<I> = ~iEI d(i). Since I ] I < n, and d(i) < 2n for all i E ], the initial value of <I> 
(after the preprocess operation) is at most 2n2

• At the termination of the algorithm, 
<I> is zero. During the pushlrelabel(i) operation, one of the following two cases must 
apply: 

Case 1. The algorithm is unable to find an admissible arc along which it can 
push flow. In this case the distance label of node i increases by E ;::: 1 units. This 
operation increases <I> by at most E units. Since the total increase in d(i) for each 
node i throughout the execution of the algorithm is bounded by 2n, the total increase 
in <I> due to increases in distance labels is bounded by 2n2

• 
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Case 2. The algorithm is able to identify an arc on which it can push flow, so 
it performs a saturating push or a non saturating push. A saturating push on arc 
(i, j) might create a new excess at node j, thereby increasing the number of active 
nodes by 1, and increasing <I> by d(j), which could be as much as 2n per saturating 
push, and so 2n2 m over all saturating pushes. Next note that a nonsaturating push 
on arc (i, j) does not increase 1 I I. The nonsaturating push will decrease <I> by d(i) 
since i becomes inactive, but it simultaneously increases <I> by d(j) = d(i) - 1 if 
the push causes node j to become active, the total decrease in <I> being of value 1. 
ff node j was active before the push, <I> decreases by an amount d(i). Consequently, 
net decrease in <I> is at least 1 unit per non saturating push. 

We summarize these facts. The initial value of <I> is at most 2n2 and the max
imum possible increase in <I> is 2n2 + 2n2 m. Each nonsaturating push decreases <I> 
by at least 1 unit and <I> always remains nonnegative. Consequently, the algorithm 
can perform at most 2n2 + 2n 2 + 2n2 m = 0(n2m) non saturating pushes, proving 
the lemma. • 

Finally, we indicate how the algorithm keeps track of active nodes for the push/ 
relabel operations. The algorithm maintains a set LIST of active nodes. It adds to 
LIST those nodes that become active following a push and are not already in LIST, 
and deletes from LIST nodes that become inactive following a nonsaturating push. 
Several data structures (e.g., doubly linked lists) are available for storing LIST so 
that the algorithm can add, delete, or select elements from it in 0(1) time. Conse
quently, it is easy to implement the preflow-push algorithm in 0(n2 m) time. We 
have thus established the following theorem. 

Theorem 7.16. The generic preflow-push algorithm runs in 0(n2m) time . 

• 
Several modifications to the generic preflow-push algorithm might improve its 

empirical performance. We define a maximum preflow as a preflow with the max
imum possible flow into the sink. As stated, the generic preflow-push algorithm 
performs push/relabel operations at active nodes until all the excess reaches the sink 
node or returns to the source node. Typically, the algorithm establishes a maximum 
preflow long before it establishes a maximum flow; the subsequent push/relabel 
operations increase the distance labels of the active nodes until they are sufficiently 
higher than n so they can push their excesses back to the source node (whose distance 
label is n). One possible modification in the preflow-push algorithm is to maintain 
a set N' of nodes that satisfy the property that the residual network contains no 
path from a node in N' to the sink node t. Initially, N' = {s} and, subsequently, 
whenever the distance label of a node is greater than or equal to n, we add it to N'. 
Further, we do not perform push/relabel operations for nodes in N' and terminate 
the algorithm when all nodes in N - N' are inactive. At termination, the current 
preflow x is also an optimal preflow. At this point we convert the maximum preflow 
x into a maximum flow using any of the methods described in Exercise 7.11. Em
pirical tests have found that this two-phase approach often substantially reduces the 
running times of preflow push algorithms. 

One sufficient condition for adding a nodej to N' is d(j) ;::: n. Unfortunately, 
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this simple approach is not very effective and does not substantially reduce the 
running time of the algorithm. Another approach is to occasionally perform a reverse 
breadth-first search of the residual network to obtain exact distance labels and add 
all those nodes to N' that do not have any directed path to the sink. Performing this 
search occasionally, that is, after an relabel operations for some constant a, does 
not effect the worst-case complexity of the preflow-push algorithm (why?) but im
proves the empirical behavior of the algorithm substantially. 

A third approach is to letnumb(k) denote the number of nodes whose distance 
label is k. As discussed in Section 7.4, we can update the array numb(·) in 0(1) steps 
per relabel operation. Moreover, whenever numb(k') = 0 for some k', any node j 
with d(j) > k' is disconnected from the set of nodes i with d(i) < k' in the residual 
network. At this point, we can increase the distance labels of each of these nodes 
to n and the distance labels will still be valid (why?). Equivalently, we can add any 
node j with d(j) > k' to the set N'. The array numb(·) is easy to implement, and 
its use is quite effective in practice. 

Specific Implementations of Generic Prenow-Push 
Algorithm 

The running time of the generic preflow-push algorithm is comparable to the bound 
of the shortest augmenting path algorithm. However, the preflow-push algorithm 
has several nice features: in particular, its flexibility and its potential for further 
improvements. By specifying different rules for selecting active nodes for the push! 
relabel operations, we can derive many different algorithms, each with different 
worst-case complexity than the generic version of the algorithm. The bottleneck 
operation in the generic preflow-push algorithm is the number of nonsaturating 
pushes and many specific rules for examining active nodes can produce substantial 
reductions in the number of nonsaturating pushes. We consider the following three 
implementations. 

1. FIFO pre flow-push algorithm. This algorithm examines the active nodes in the 
first-in, first-out (FIFO) order. We shall show that this algorithm runs in 0(n 3

) 

time. 
2. Highest-label pre flow-push algorithm. This algorithm always pushes from an 

active node with the highest value of the distance label. We shall show that 
this algorithm runs in 0(n2 m 112) time. Observe that this time is better than 
0(n3) for all problem densities. 

3. Excess scaling algorithm. This algorithm pushes flow from a node with suf
ficiently large excess to a node with sufficiently small excess. We shall show 
that the excess scaling algorithm runs in O(nm + n2 log U) time. For problems 
that satisfy the similarity assumption (see Section 3.2), this time bound is better 
than that of the two preceding algorithms. 

We might note that the time bounds for all these preflow-push algorithms are 
tight (except the excess scaling algorithm); that is, for some classes of networks the 
generic preflow-push algorithm, the FIFO algorithm, and the highest-label preflow
push algorithms do perform as many computations as indicated by their worst-case 
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time bounds. These examples show that we cannot improve the time bounds of these 
algorithms by a more clever analysis. 

7.7 FIFO PREFLOW-PUSH ALGORITHM 

eO) ;-20 
dO); 3 

Before we describe the FIFO implementation of the preflow-push algorithm, we 
define the concept of a node examination. In an iteration, the generic preflow-push 
algorithm selects a node, say node i, and performs a saturating push or a nonsatu
rating push, or relabels the node. If the algorithm performs a saturating push, then 
node i might still be active, but it is not mandatory for the algorithm to select this 
node again in the next iteration. The algorithm might select another node for the 
next push/relabel operation. However, it is easy to incorporate the rule that whenever 
the algorithm selects an active node, it keeps pushing flow from that node until either 
the node's excess becomes zero or the algorithm relabels the node. Consequently, 
the algorithm might perform several saturating pushes followed either by a non
saturating push or a relabel operation. We refer to this sequence of operations as a 
node examination. We shall henceforth assume that every preflow-push algorithm 
adopts this rule for selecting nodes for the push/relabel operation. 

The FIFO preflow-push algorithm examines active nodes in the FIFO order. 
The algorithm maintains the set LIST as a queue. It selects a node i from the front 
of LIST, performs pushes from this node, and adds newly active nodes to the rear 
of LIST. The algorithm examines node i until either it becomes inactive or it is 
relabeled. In the latter case, we add node i to the rear of the queue. The algorithm 
terminates when the queue of active nodes is empty. 

We illustrate the FIFO preflow-push algorithm using the example shown in 
Figure 7.14(a). The preprocess operation creates an excess of 10 units at each of 
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Figure 7.14 Illustrating the FIFO preflow-push algorithm. 
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the nodes 2 and 3. Suppose that the queue of active nodes at this stage is LIST = 
{2, 3}. The algorithm removes node 2 from the queue and examines it. Suppose that 
it performs a saturating push of 5 units on arc (2, 4) and a nonsaturating push of 5 
units on arc (2, 5) [see Figure 7.14(b)]. As a result of these pushes, nodes 4 and 
5 become active and we add these nodes to the queue in this order, obtaining 
LIST = {3, 4, 5}. The algorithm next removes node 3 from the queue. While ex
amining node 3, the algorithm performs a saturating push of 5 units on arc (3, 5), 
followed by a relabel operation of node 3 [see Figure 7.14(c)]. The algorithm adds 
node 3 to the queue, obtaining LIST = {4, 5, 3}. We encourage the reader to complete 
the solution of this example. 

To analyze the worst-case complexity of the FIFO preflow-push algorithm, we 
partition the total number of node examinations into different phases. The first phase 
consists of node examinations for those nodes that become active during the pre
process operation. The second phase consists of the node examinations of all the 
nodes that are in the queue after the algorithm has examined the nodes in the first 
phase. Similarly, the third phase consists of the node examinations of all the nodes 
that are in the queue after the algorithm has examined the nodes in the second phase, 
and so on. For example, in the preceding illustration, the first phase consists of the 
node examinations of the set {2, 3}, and the second phase consists of the node 
examinations of the set {4, 5, 3}. Observe that the algorithm examines any node at 
most once during a phase. 

We will now show that the algorithm performs at most 2n2 + n phases. Each 
phase examines any node at most once and each node examination performs at most 
one nonsaturating push. Therefore, a bound of2n2 + n on the total number of phases 
would imply a bound of O(n3

) on the number of non saturating pushes. This result 
would also imply that the FIFO preflow-push algorithm runs in O(n3) time because 
the bottleneck operation in the generic preflow-push algorithm is the number of 
nonsaturating pushes. 

To bound the number of phases in the algorithm, we consider the total change 
in the potential function <I> = max{d(i): i is active} over an entire phase. By the "total 
change" we mean the difference between the initial and final values of the potential 
function during a phase. We consider two cases. 

Case 1. The algorithm performs at least one relabel operation during a phase. 
Then <I> might increase by as much as the maximum increase in any distance label. 
Lemma 7.13 implies that the total increase in <I> over all the phases is at most 2n2 • 

Case 2. The algorithm performs no relabel operation during a phase. In this 
case the excess of every node that was active at the beginning of the phase moves 
to nodes with smaller distance labels. Consequently, <I> decreases by at least 1 unit. 

Combining Cases 1 and 2, we find that the total number of phases is at most 
2n2 + n; the second term corresponds to the initial value of <I>, which could be at 
most n. We have thus proved the following theorem. 

Theorem 7.17. The FIFO pre flow-push algorithm runs in O(n3 ) time .• 
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7.8 HIGHEST-LABEL PREFLOW-PUSH ALGORITHM 

The highest-label preflow-push algorithm always pushes flow from an active node 
with the highest distance label. It is easy to develop an O(n 3

) bound on the number 
of nonsaturating pushes for this algorithm. Let h* = max{d(i):i is active}. The 
algorithm first examines nodes with distance labels equal to h * and pushes flow to 
nodes with distance labels equal to h* - 1, and these nodes, in tum, push flow to 
nodes with distance labels equal to h* - 2, and so on, until either the algorithm 
relabels a node or it has exhausted all the active nodes. When it has relabeled a 
node, the algorithm repeats the same process. Note that if the algorithm does not 
relabel any node during n consecutive node examinations, all the excess reaches the 
sink (or the source) and the algorithm terminates. Since the algorithm performs at 
most 2n2 relabel operations (by Lemma 7.13), we immediately obtain a bound of 
O(n3

) on the number of node examinations. Since each node examination entails at 
most one nonsaturating push, the highest-label preflow-push algorithm performs 
O(n3

) nonsaturating pushes. (In Exercise 7.20 we consider a potential function ar
gument that gives the same bound on the number of non saturating pushes.) 

The preceding discussion is missing one important detail: How do we select a 
node with the highest distance label without expending too much effort? We use the 
following data structure. For each k = 1, 2, ... , 2n - 1, we maintain the list 

LIST(k) = {i:i is active and d(i) = k}, 

in the form of either linked stacks or linked queues (see Appendix A). We define a 
variable level that is an upper bound on the highest value of k for which LIST(k) is 
nonempty. To determine a node with the highest distance label, we examine the lists 
LIST(level), LIST(level-l), ... , until we find a nonempty list, say LIST(p). We 
set level equal to p and select any node in LIST(p). Moreover, if the distance label 
of a node increases while the algorithm is examining it, we set level equal to the 
new distance label of the node. Observe that the total increase in level is at most 
2n2 (from Lemma 7.13), so the total decrease is at most 2n2 -+ n. Consequently, 
scanning the lists LISt(level), LIST(level-l), ... ,in order to find the first nonempty 
list is not a bottleneck operation. 

The highest-label preflow-push algorithm is currently the most efficient method 
for solving the maximum flow problem in practice because it performs the least 
number of non saturating pushes. To illustrate intuitively why the algorithm performs 
so well in practice, we consider the maximum flow problem given in Figure 7.1S(a). 
The preprocess operation creates an excess of 1 unit at each node 2,3, ... , n - 1 
[see Figure 7.1S(b»). The highest-label preflow-push algorithm examines nodes 2, 
3, ... , n - 1, in this order and pushes all the excess to the sink node. In contrast, 
the FIFO preflow-push algorithm might perform many more pushes. Suppose that 
at the end of the preprocess operation, the queue of active nodes is LIST = {n -
1, n - 2, ... , 3, 2}. Then the algorithm would examine each of these nodes in the 
first phase and would obtain the solution depicted in Figure 7.1S(c). At this point, 
LIST = {n - 1, n - 2, ... , 4, 3}. It is easy to show that overall the algorithm 
would perform n - 2 phases and use (n - 2) + (n - 3) + ... + 1 = n(rr) 
nonsaturating pushes. 
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Figure 7.15 Bad example for the FIFO 
preflow-push algorithm: (a) initial 
residual network; (b) network after the 
preprocess operation; (c) network after 
one phase of the FIFO preflow-push 
algorithm. 

Although the preceding example is rather extreme, it does illustrate the ad
vantage in pushing flows from active nodes with the highest distance label. In our 
example the FIFO algorithm selects an excess and pushes it all the way to the sink. 
Then it selects another excess and pushes it to the sink, and repeats this process 
until no node contains any more excess. On the other hand, the highest-label preflow
push algorithm starts at the highest level and pushes all the excess at this level to 
the next lower level and repeats this process. As the algorithm examines nodes with 
lower and lower distance labels, it accumulates the excesses and pushes this ac
cumulated excess toward the sink. Consequently, the highest-label preflow-push 
algorithm avoids repetitive pushes on arcs carrying a small amount of flow. 

This nice feature of the highest-label preflow-push algorithm also translates 
into a tighter bound on the number of non saturating pushes. The bound of O(n3) on 
the number of non saturating pushes performed by the algorithm is rather loose and 
can be improved by a more clever analysis. We now show that the algorithm in fact 
performs O(n2 m Il2) nonsaturating pushes. The proof of this theorem is somewhat 
complex and the reader can skip it without any loss of continuity. 

At every state of the preflow-push algorithm, each node other than the sink 
has at most one current arc which, by definition, must be admissible. We denote 
this collection of current arcs by the set F. The set F has at most n - 1 arcs, has 
at most one outgoing arc per node, and does not contain any cycle (why?). These 
results imply that F defines ajorest, which we subsequently refer to as the current 
forest. Figure 7.16 gives an example of a current forest. Notice that each tree in the 
forest is a rooted tree, the root being a node with no outgoing arc. 

Before continuing, let us introduce some additional notation. For any node 
i E N, we let D(i) denote the set of descendants of that node in F (we refer the 
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Figure 7.16 Example of a current
forest. 

reader to Section 2.2 for the definition of descendants in a rooted tree). For example, 
in Figure 7.16, D(1) = {I}, D(2) = {2}, D(3) = {I, 3, 4}, D(4) = {4}, and D(5) = 
{I, 2, 3, 4, 5}. Notice that distance label of the descendants of any node i will be 
higher than d(i). We refer to an active node with no active descendants (other than 
itself) as a maximal active node. In Figure 7.16 the nodes 2, 4, and 8 are the only 
maximal active nodes. Let H denote the set of maximal active nodes. Notice that 
two maximal active nodes have distinct descendants. Also notice that the highest
label preflow-push algorithm always pushes flow from a maximal active node. 

We obtain the time bound of O(n2m Il2) for the highest-label preflow-push al
gorithm using a potential function argument. The argument relies on a parameter K, 
whose optimal value we select later. Our potential function is <I> = LiEH <I>(i), with 
<I>(i) defined as <I>(i) = max{O, K + 1 - 1 D(i) I}. Observe that for any node i, <I>(i) 
is at most K [because 1 D(i) 1 ;::: 1]. Also observe that <I> changes whenever the set 
H of maximal active nodes changes or 1 D(i) 1 changes for a maximal active node i. 

We now study the effect of various operations performed by the preflow-push 
algorithm on the potential function <I>. As the algorithm proceeds, it changes the set 
of current arcs, performs saturating and non saturating pushes; and relabels nodes. 
All these operations have an effect on the value of <I>. By observing the consequence 
of all these operations on <I>, we will obtain a bound on the number of nonsaturating 
pushes. 

First, consider a nonsaturating push on an arc (i, j) emanating from a maximal 
active node i. Notice that a nonsaturating push takes place on a current arc and does 
not change the current forest; it simply moves the excess from node i to node j [see 
Figure 7. 17(a) for a nonsaturating push on the arc (3, 4)]. As a result of the push, 
node i becomes inactive and nodej might become a new maximal active node. Since 
1 D(j) 1 > 1 D(i) I, this push decreases <I>(i) + <I>(j) by at least 1 unit if 1 D(i) 1 :5 K 
and does not change <I>(i) + <I>(j) otherwise. 

Now consider a saturating push on the arc (i, j) emanating from a maximal 
active node i. As a result of the push, arc (i, j) becomes inadmissible and drops out 
of the current forest [see Figure 7. 17(b) for a saturating push on the arc (1,3)]. Node 
i remains a maximal active node and node j might also become a maximal active 
node. Consequently, this operation might increase <I> by upto K units. 

Next consider the relabeling of a maximal active node i. We relabel a node 
when it has no admissible arc; therefore, no current arc emanates from this node. 
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Figure 7.17 (a) Nonsaturating push on arc (d, 4); (b) saturating push on arc (I, 3); (c) relabel 
of node 5; (d) addition of the arc (3, 5) to the forest. 

As a consequence, node i must be a root node in the current forest. Moreover, since 
node i is a maximal active node, none of its proper descendants can be active. After 
the algorithm has relabeled node i, all incoming arcs at node i become inadmissible; 
therefore, all the current arcs entering node i will no longer belong to the current 
forest [see Figure 7 .17( c)]. Clearly, this change cannot create any new maximal active 
nodes. The relabel operation, however, decreases the number of descendants of 
node i to one. Consequently, <p(i) can increase by at most K. 

Finally, consider the introduction of new current arcs in the current forest. 
The addition of new arcs to the forest does not create any new maximal active nodes. 
It might, in fact, remove some maximal active nodes and increase the number of 
descendants of some nodes [see Figure 7. 17(d)]. In both cases the potential <P does 
not increase. We summarize the preceding discussion in the form of the following 
property. 

Property 7.18 
(a) A nonsaturating push from a maximal active node i does not increase <P; it 

decreases <P by at least 1 unit if I D(i) I :5 K. 
(b) A saturating push from a maximal active node i can increase <P by at most K 

units. 
(c) The relabeling of a maximal active node i can increase <P by at most K units. 
(d) Introducing current arcs does not increase <P. 

For the purpose of worst-case analysis, we define the concept of phases. A 
phase consists of the sequence of pushes between two consecutive relabel opera
tions. Lemma 7.13 implies that the algorithm contains O(n2) phases. We call a phase 
cheap if it performs at most 2nlK non saturating pushes, and expensive otherwise. 
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Clearly, the number of non saturating pushes in cheap phases is at most O(n2 . 
2n1K) = O(n3IK). To obtain a bound on the non saturating pushes in expensive 
phases, we use an argument based on the potential function <P. 

By definition, an expensive phase performs at least 2nlK nonsaturating pushes. 
Since the network can contain at most nlK nodes with K descendants or more, at 
least nlK non saturating pushes must be from nodes with fewer than K descendants. 
The highest-label preflow-push algorithm always performs push/relabel operation on 
a maximal active node; consequently, Property 7.18 applies. Property 7 .18( a) implies 
that each of these nonsaturating pushes produces a decrease in <P of at least 1. So 
Properties 7. 18(b) and (c) imply that the total increase in <P due to saturating pushes 
and relabels is at most O(nmK). Therefore, the algorithm can perform O(nmK) 
nonsaturating pushes in expensive phases. 

To summarize this discussion, we note that cheap phases perform O(n3IK) 
non saturating pushes and expensive phases perform O(nmK) nonsaturating pushes. 
We obtain the optimal value of K by balancing both terms (see Section 3.2), that is, 
when both the terms are equal: n31K = nmK or K = nlmll2. For this value of K, 
the number of nonsaturating pushes is O(n 2m 1f2

). We have thus established the 
following result. 

Theorem 7.19. The highest-label prejlow-push algorithm performs O(n2m 112) 
nonsaturating pushes and runs in the same time. • 

7.9 EXCESS SCALING ALGORITHM 

The generic preflow-push algorithm allows flow at each intermediate step to violate' 
the mass balance equations. By pushing flows from active nodes, the algorithm 
attempts to satisfy the mass balance equations. The function emax = max{ e(i): i is 
an active node} provides one measure of the infeasibility of a preflow:'Note that 
during the execution of the generic algorithm, we would observe no particular pattern 
in the values of emax , except that emax eventually decreases to value O. In this section 
we develop an excess scaling technique that systematically reduces the value of emax 

to o. 
The excess scaling algorithm is similar to the capacity scaling algorithm we 

discussed in Section 7.3. Recall that the generic augmenting path algorithm performs 
O(nU) augmentations and the capacity scaling algorithm reduces this number to 
O(m log U) by assuring that each augmentation carries a "sufficiently large" amount 
of flow. Similarly, in the generic preflow-push algorithm, non saturating pushes car
rying small amount of flow bottleneck the algorithm in theory. The excess scaling 
algorithm assures that each nonsaturating push carries a "sufficiently large" amount 
of flow and so the number of non saturating pushes is "sufficiently small." 

Let A denote an upper bound on emax ; we refer to this bound as the excess 
dominator. We refer to a node with e(i) ;::: A/2 ;::: emax/2 as a node with large excess, 
and as a node with small excess otherwise. The excess sc~ling algorithm always 
pushes flow from a node with a large excess. This choice assures that during non
saturating pushes, the algorithm sends relatively large excess closer to the sink. 

The excess scaling algorithm also does not allow the maximum excess to in
crease beyond A. This algorithmic strategy might prove to be useful for the following 
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reason. Suppose that several nodes send flow to a single nodej, creating a very large 
excess. It is likely that node j cannot send the accumulated flow closer to the sink, 
and thus the algorithm will need to increase its distance label and return much of 
its excess back to the nodes it came from. Thus pushing too much flow to any node 
is also likely to be a wasted effort. 

The two conditions we have discussed-that each non saturating push must 
carry at least A./2 units of flow and that no excess should exceed A.-imply that we 
need to select the active nodes for push/relabel operations carefully. The following 
selection rule is one that assures that we achieve these objectives. 

Node Selection Rule. Among all nodes with a large excess, select a node with 
the smallest distance label (breaking ties arbitrarily). 

We are now in a position to give, in Figure 7.18, a formal description of the 
excess scaling algorithm. 

The excess scaling algorithm uses the same push/relabel(i) operation as the 
generic preflow-push algorithm, but with one slight difference. Instead of pushing 
8 = min{e(i), rij} units of flow, it pushes 8 = min{e(i), rij, A. - e(j)} units. This 
change ensures that the algorithm permits no excess to exceed A. . 

The algorithm performs a number of scaling phases with the value of the excess 
dominator A. decreasing from phase to phase. We refer to a specific scaling phase 
with a particular value of A. as a A.-scaling phase. Initially, A. = 2 r1og u1. Since the 
logarithm is of base 2, V:5 A. :5 2V. During the A.-scaling phase, A./2 < emax :5 A.; 
the value of emax might increase or decrease during the phase. When emax :5 A./2, 
we begin a new scaling phase. After the algorithm has performed rlog V1 + 1 scaling 
phases, emax decreases to value 0 and we obtain the maximum flow. 

Lemma 7.20. The algorithm satisfies the following two conditions: 
(a) Each nonsaturating push sends at least A./2 units offlow. 
(b) No excess ever exceeds A.. 

Proof Consider a non saturating push on arc (i,j). Since arc (i,j) is admissible, 
d(j) < d(i). Moreover, since node i is a node with the smallest distance label among 
all nodes with a large excess, e(i) ~ A./2 and e(j) < A. 12. Since this push is non-

algorithm excess scaling; 
begin 

preprocess; 
a: = 2r109 u 1; 

while a ~ 1 do 
begin (a-scaling phase) 

while the network contains a node i with a large excess do 
begin 

among all nodes with a large excess, select a node i with 
the smallest distance label; 
perform push/relabel(i) while ensuring that no node excess exceeds a; 

end; 
a: = a/2; 

end; 
end; 

Figure 7.18 Excess scaling algorithm. 
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saturating, it sends min{e (i) , A - e(j)} ;::: A/2 units of flow, proving the first part 
of the lemma. This push operation increases the excess of only node j. The new 
excess of node j is e(j) + min {e(i), A - e(j)} :5 e(j) + {A - e(j)} :5 A. So all 
the node excesses remain less than or equal to A. This proves the second part of 
the lemma. • 

Lemma 7.21. The excess scaling algorithm performs O(n2) nonsaturating 
pushes per scaling phase and O(n2 log U) pushes in total. 

Proof Consider the potential function <I> = LiEN e(i)d(i)1 A. Using this po

tential function, we will establish the first assertion ofthe lemma. Since the algorithm 
performs O(log U) scaling phases, the second assertion is a consequence of the first. 
The initial value of <I> at the beginning of the A-scaling phase is bounded by 2n2 

because e(i) is bounded by A and d(i) is bounded by 2n. During the push/relabel(i) 
operation, one of the following two cases must apply: 

Case 1. The algorithm is unable to find an admissible arc along which it can 
push flow. In this case the distance label of node i increases by E ;::: 1 units. This 
relabeling operation increases <I> by at most E units because e(i) :5 A. Since for each 
i the total increase in d(i) throughout the running of the algorithm is bounded by 2n 
(by Lemma 7.13), the total increase in <I> due to the relabeling of nodes is bounded 
by 2n2 in the A-scaling phase (actually, the increase in <I> due to node relabelings is 
at most 2n2 over all scaling phases). 

Case 2. The algorithm is able to identify an arc on which it can push flow, so 
it performs either a saturating or a nonsaturating push. In either case, <I> decreases. 
A nonsaturating push on arc (i, j) sends at least A/2 units of flow from node ito 
nodej and since d(j) = d(i) - 1, after this operation decreases <I> by at least l unit. 
Since the initial value of <I> at the beginning of a A-scaling phase is at most 2n 2 and 
the increases in <I> during this scaling phase sum to at most 2n 2 (from Case 1), the 
number of non saturating pushes is bounded by Sn2

• • 

This lemma implies a bound of O(nm + n2 log U) on the excess scaling al
gorithm since we have already seen that all the other operations-such as saturating 
pushes, relabel operations, and finding admissible arcs-require O(nm) time. Up to 
this point we have ignored the method needed to identify a node with the minimum 
distance label among nodes with excess more than A/2. Making this identification 
is easy if we use a scheme similar to the one used in the highest-label preflow-push 
algorithm in Section 7.S to find a node with the highest distance label. We maintain 
the lists LIST(k) = {i E N:e(i) > A/2 and d(i) = k}, and a variable level that is a 
lower bound on the smallest index k for which LIST(k) is nonempty. We identify 
the lowest-indexed nonempty list by starting at LIST(level) and sequentially scanning 
the higher-indexed lists. We leave as an exercise to show that the overall effort 
needed to scan the lists is bounded by the number of pushes performed by the 
algorithm plus O(n log U), so these computations are not a bottleneck operation. 
With this observation we can summarize our discussion as follows. 

Theorem 7.22. The excess scaling algorithm runs in O(nm + n2 log U) time . 

• 
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Algorithm Running time Features 

Labeling algorithm O(nmU) I. Maintains a feasible flow and augments flows along 
directed paths in the residual network from node s 
to node t. 

2. Easy to implement and very flexible. 
3. Running time is pseudopolynomial: the algorithm is 

not very efficient in practice. 

Capacity scaling algorithm O(nm log U) I. A special implementation of the labeling algorithm. 
2. Augments flows along paths from node s to node t 

with sufficiently large residual capacity. 
3. Unlikely to be efficient in practice. 

Successive shortest path O(n2m) I. Another special implementation of the labeling al-
algorithm gorithm. 

2. Augments flows along shortest directed paths from 
node s to node t in the residual network. 

3. Uses distance labels to identify shortest paths from 
node s to node t. 

4. Relatively easy to implement and very efficient in 
practice. 

Generic preflow-push O(n2m) I. Maintains a pseudoflow; performs push/relabel op-
algorithm erations at active nodes. 

2. Very flexible; can examine active nodes in any 
order. 

3. Relatively difficult to implement because an effi-
cient implementation requires the use of several 
heuristics. 

FIFO preflow-push O(n3) I. A special implementation of the generic preflow-
algorithm . push algorithm. 

2. Examines active nodes in the FIFO order. 
3. Very efficient in practice. 

Highest-label preflow-push O(n2Vm) I. Another special implementation of the generic 
algorithm preflow-push algorithm. 

2. Examines active nodes with the highest distance 
label. 

3. Possibly the most efficient maximum flow algorithm 
in practice. 

Excess scaling algorithm O(nm + n2 log U) I. A special implementation of the generic preflow-
push algorithm. 

2. Performs push/relabel operations at nodes with suf-
ficiently large excesses and, among these nodes, se-
lectsa node with the smallest distance label. 

3. Achieves an excellent running time without using 
sophisticated data structures. 

Figure 7.19 Summary of maximum flow algorithms. 
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7.10 SUMMARY 

Building on the labeling algorithm described in Chapter 6, in this chapter we de
scribed several polynomial-time algorithms for the maximum flow problem. The 
labeling algorithm can perform as many as n U augmentations because each aug
mentation might carry a small amount of flow. We studied two natural strategies for 
reducing the number of augmentations and thus for improving the algorithm's running 
time; these strategies lead to the capacity scaling algorithm and the shortest aug
menting path algorithm. One inherent drawback ofthese augmenting path algorithms 
is the computationally expensive operation of sending flows along paths. These al
gorithms might repeatedly augment flows along common path segments. The 
preflow-push algorithms that we described next overcome this drawback; we can 
conceive of them as sending flows along several paths simultaneously. In our de
velopment we considered both a generic implementation and several specific im
plementations of the preflow-push algorithm. The FIFO and highest-label preflow
push algorithms choose the nodes for pushing/relabeling in a specific order. The 
excess scaling algorithm ensures that the push operations, and subsequent augmen
tations, do not carry small amounts of flow (with "small" defined dynamically 
throughout the algorithm). Figure 7.19 summarizes the running times and basic fea
tures of these algorithms. 

REFERENCE NOTES 

The maximum flow problem is distinguished by the long succession of research 
contributions that have improved on the worst-case complexity of the best known 
algorithms. Indeed, no other network flow problem has witnessed as many incre
mental improvements. The following discussion provides a brief survey of selective 
improvements; Ahuja, Magnanti, and Orlin [1989, 1991] give a more complete survey 
of the developments in this field. 

The labeling algorithm of Ford and Fulkerson [1956a] runs in pseudopolynomial 
time. Edmonds and Karp [1972] suggested two polynomial-time implementations of 
this algorithm. The first implementation, which augments flow along paths with the 
maximum residual capacity, performs Oem log U) iterations. The second imple
mentation, which augments flow along shortest paths, performs O(nm) iterations 
and runs in O(nm2) time. Independently, Dinic [1970] introduced a concept of short
est path networks (in number of arcs), called layered networks, and obtained an 
O(n 2 m)-time algorithm. Until this point all maximum flow algorithms were aug
menting path algorithms. Karzanov [1974] introduced the first preflow-push algo
rithm on layered networks; he obtained an O(n 3

) algorithm. Shiloach and Vishkin 
[1982] described another O(n 3

) preflow-push algorithm for the maximum flow prob
lem, which is a precursor of the FIFO preflow-push algorithm that we described in 
Section 7.7. 

The capacity scaling described in Section 7.3 is due to Ahuja and Orlin [1991]; 
this algorithm is similar to the bit-scaling algorithm due to Gabow [1985] that we 
describe in Exercise 7.19. The shortest augmenting path algorithm described in Sec
tion 7.4 is also due to Ahuja and Orlin [1991]; this algorithm can be regarded as a 
variant of Dinic's [1970] algorithm and uses distance labels instead of layered net
works. 
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Researchers obtained further improvements in the running times of the max
imum flow algorithms by using distance labels instead oflayered networks. Goldberg 
[1985] first introduced distance labels; by incorporating them in the algorithm of 
Shiloach and Vishkin [1982], he obtained the O(n3 )-time FIFO implementation that 
we described in Section 7.7. The generic preflow-push algorithm and its highest
label preflow-push implementation that we described in Sections 7.8 are due to 
Goldberg and Tarjan [1986]. Using a dynamic tree data structure developed by Slea
tor and Tarjan [1983], Goldberg and Tarjan [1986] improved the running time of the 
FIFO implementation to O(nm log(n 2Im)). Using a clever analysis, Cheriyan and 
Maheshwari [1989] show that the highest-label preflow-push algorithm in fad runs 
in O(n2 Vm) time. Our discussion in Section 7.7 presents a simplified proof of 
Cheriyan and Maheshwari approach. Ahuja and Orlin [1989] developed the excess 
scaling algorithm described in Section 7.9; this algorithm runs in O(nm + n210g V) 
time and obtains dramatic improvements over the FIFO and highest-label preflow
push algorithms without using sophisticated data structures. Ahuja, Orlin, and Tarjan 
[1989] further improved the excess scaling algorithm and obtained several algorithms: 
the best time bound of these algorithms is O(nm log(n Ylog Vim + 2)). 

Cheriyan and Hagerup [1989] proposed a randomized algorithm for the max
imum flow problem that has an expected running time of O(nm) for all m ;::: n log2n. 
Alon [1990] developed a nonrandomized version of this algorithm and obtained a 
(deterministic) maximum flow algorithm that runs in (1) O(nm) time for all m = 
!l(n S/3 log n), and (2) O(nm log n) time for all other values of nand m. Cheriyan, 
Hagerup, and Mehlhorn [1990] obtained an O(n 3/10g n) algorithm for the maximum 
flow problem. Currently, the best available time bounds for solving the maximum 
flow problem are due to Alon [1990], Ahuja, Orlin, and Tarjan [1989], and Cheriyan, 
Hagerup, and Mehlhorn [1990]. 

Researchers have also investigated whether the worst-case bounds of the max
imum flow algorithms are "tight" (i.e., whether algorithms achieve their worst-case 
bounds for some families of networks). Galil [1981] constructed a family of networks 
and showed that the algorithms of Edmonds and Karp [1972], Dinic [1970], Karzanov 
[1974], and a few other maximum flow algorithms achieve their worst-case bounds. 
Using this family of networks, it is possible to show that the shortest augmenting 
path algorithm also runs in !l(n 2m) time. Cheriyan and Maheshwari [1989] have 
shown that the generic preflow-push algorithm and its FIFO and the highest-label 
preflow-push implementations run in !l(n 2m), !l(n 3

), and !l(n 2 ym) times, respec
tively. Thus the worst-case time bounds of these algorithms are tight. 

Several computational studies have assessed the empirical behavior of maxi
mum flow algorithms. Among these, the studies by Imai [1983], Glover, Klingman, 
Mote, and Whitman [1984], Derigs and Meier [1989], and Ahuja, Kodialam, Mishra, 
and Orlin [1992] are noteworthy. These studies find that preflow-push algorithms 
are faster than augmenting path algorithms. Among the augmenting path algorithms, 
the shortest augmenting path algorithm is the fastest, and among the preflow-push 
algorithms, the performance of the highest-label preflow-push algorithm is the most 
attractive. 
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Source 

EXERCISES 

7.1. Consider the network shown in Figure 7.20. The network depicts only those arcs with 
a positive capacity. Specify the residual network with respect to the current flow and 
compute exact distance labels in the residual network. Next change the arc flows (with
out changing the flow into the sink) so that the exact distance label of the source node 
(1) decreases by 1 unit; (2) increases by 1 unit. 

Source • Sink 

Figure 7.20 Example for Exercise 7.1. 

7.2. Using the capacity scaling algorithm described in Section 7.3, find a maximum flow in 
the network given in Figure 7.21(b). 

~ ______ U~ij_. __ ~.~~ 

Source Sink 
}-----------...... f1itflF) Sink 

3 

(a) (b) 

Figure 7.21 Examples for Exercises 7.2, 7.3, 7.5, and 7.6. 

7.3. Using the shortest augmenting path algorithm, solve the maximum flow problem shown 
in Figure 7.21(a). 

7.4. Solve the maximum flow problem shown in Figure 7.22 using the generic preflow-push 
algorithm. Incorporate the following rules to maintain uniformity of your computations: 
(1) Select an active node with the smallest index. [For example, if nodes 2 and 3 are 
active, select node 2.] (2) Examine the adjacency list of any node in the increasing 
order of the head node indices. [For example, if A(1) = {(1, 5), (1, 2), (1, 7)}, then 
examine arc (1, 2) first.] Show your computations on the residual networks encountered 
during the intermediate iterations of the algorithm. 
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10 

Source 

30 

Figure 7.22 Example for Exercise 7.4. 

7.5. Solve the maximum flow problem shown in Figure 7.21(a) using the FIFO preflow-push 
algorithm. Count the number of saturating and non saturating pushes and the number 
of relabel operations. Next, solve the same problem using the highest-label preflow
push algorithm. Compare the number of saturating pushes, nonsaturating pushes, and 
relabel operations with those of the FIFO preflow-push algorithm. 

7.6. Using the excess scaling algorithm, determine a maximum flow in the network given 
in Figure 7.21(b). 

7.7. Most vital arcs. We define a most vital arc of a network as an arc whose deletion causes 
the largest decrease in the maximum flow value. Either prove the following claims or 
show through counterexample that they are false. 
(a) A most vital arc is an arc with the maximum value of uij. 
(b) A most vital arc is an arc with the maximum value of Xij. 
(c) A most vital arc is an arc with the maximum value of xij among arcs belonging to 

some minimum cut. 
(d) An arc that does not belong to some minimum cut cannot be a most vital arc. 
(e) A network might contain several most vital arcs. 

7.S. Least vital arcs. A least vital arc in a network is an arc whose deletion causes the least 
decrease in the maximum flow value. Either prove the following claims or show that 
they are false. 
(a) Any arc with xij = 0 in any maximum flow is a least vital arc. 
(b) A least vital arc is an arc with the minimum value of xij in a maximum flow. 
(c) Any arc in a minimum cut cannot be a least vital arc. 

7.9. Indicate which of the following claims are true or false. Justify your answer by giving 
a proof or by constructing a counterexample. 
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(a) If the capacity of every arc in a network is a multiple of IX, then in every maximum 
flow, each arc flow will be a multiple of IX. 

(b) In a network G, if the capacity of every arc increases by IX units, the maximum 
flow value will increase by a multiple of IX. 

(c) Let v* denote the maximum flow value of a given maximum flow problem. Let v' 
denote the flow into the sink node t at some stage of the preflow-push algorithm. 
Then v* - v' S Li is active e(i). 

(d) By the flow decomposition theory, some sequence of at most m + n augmentations 
would always convert any preflow into a maximum flow. 

(e) In the excess scaling algorithm, emax = max{e(i): i is active} is a nonincreasing 
function of the number of push/relabel steps. 

(0 The capacity of the augmenting paths generated by the maximum capacity aug
menting path algorithm is nonincreasing. 

(g) If each distance label d(i) is a lower bound on the length of a shortest path from 
node i to node t in the residual network, the distance labels are valid. 
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7.10. Suppose that the capacity of every arc in a network is a multiple of u and is in the 
range [0, uK] for some integer K. Does this information improve the worst-case com
plexity of the labeling algorithm, FIFO preflow-push algorithm, and the excess scaling 
algorithm? 

7.11. Converting a maximum preflow to a maximum flow. We define a maximum preflow X
O 

as a preflow with the maximum possible flow into the sink. 
(a) Show that for a given maximum preflow xo, some maximum flow x* with the same 

flow value as xo, satisfies the condition that Xu :::s x~ for all arcs (i, j) E A. (Hint: 
Use flow decomposition.) 

(b) Suggest a labeling algorithm that converts a maximum preflow into a maximum 
flow in at most n + m augmentations. 

(e) Suggest a variant of the shortest augmenting path algorithm that would convert a 
maximum preflow into a maximum flow in O(nm) time. (Hint: Define distance labels 
from the source node and show that the algorithm will create at most m arc sat
urations.) 

(d) Suggest a variant of the highest-label preflow-push algorithm that would convert a 
maximum preflow into a maximum flow. Show that the running time of this al
gorithm is O(nm). (Hint: Use the fact that we can delete an arc with zero flow 
from the network.) 

7.12. (a) An arc is upward critical if increasing the capacity ofthis arc increases the maximum 
flow value. Does every network have an upward critical arc? Describe an algorithm 
for identifying all upward critical arcs in a network. The worst-case complexity of 
your algorithm should be substantially better than that of solving m maximum flow 
problems. 

(b) An arc is downward critical if decreasing the capacity of this arc decreases the 
maximum flow value. Is the set of upward critical arcs the same as the set of 
downward critical arcs? If not, describe an algorithm for identifying all downward 
critical arcs; analyze your algorithm's worst-case complexity. 

7.13. Show that in the shortest augmenting path algorithm or in the preflow-push algorithm, 
if an arc (i, j) is inadmissible at some stage, it remains inadmissible until the algorithm 
relabels node i. 

7.14. Apply the generic preflow-push algorithm to the maximum flow problem shown in 
Figure 7.23. Always examine a node with the smallest distance label and break ties in 
favor of a node with the smallest node number. How many saturating and nonsaturating 
pushes does the algorithm perform? 

~ ______ U~ij ____ ~.~I~ 

Figure 7.23 Example for Exercise 7.14. 
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7.15. Apply the FIFO preflow-push algorithm to the network shown in Figure 7.24. Determine 
the number of pushes as a function of the parameters Wand L (correct within a constant 
factor). For a given value of n, what values of Wand L produce the largest number of 
pushes? 

L 

11 1-=L'----.:...1 ~@ L-2 • 
00 

L-2 
}----+ ..... . 

L 00 ® L-1 

Figure 7.24 Example for Exercise 7.15. 

7.16. Apply the highest-label preflow-push algorithm on the network shown in Figure 7.24. 
Determine the number of pushes as a function of the parameters W and L (correct 
within a constant factor). For a given n, what values of Wand L produce the largest 
number of pushes? 

7.17. Describe a more general version of the capacity scaling algorithm discussed in Section 
7.3, one that scales ~ at each scaling phase by a factor of some integer number [3 ~ 2. 
Initially, ~ == [3POg~ U1 and each scaling phase reduces ~ by a factor of [3. Analyze the 
worst-case complexity of this algorithm and determine the optimal value of [3. 

7.1S. Partially capacitated networks (Ahuja and Orlin (1991]). Suppose that we wish to speed 
up the capacity scaling algorithm discussed in Exercise 7.17 for networks with some, 
but not all, arcs capacitated. Suppose that the network G has p arcs with finite capacities 
and [3 == max{2, r m/p 1}. Consider a version of the capacity scaling algorithm that scales 
~ by a factor of [3 in each scaling phase. Show that the algorithm would perform at 
most 2m augmentations per scaling phase. (Hint: At the end of the ~-scaling phase, 
the s-t cut in G(~) contains only arcs with finite capacities.] Conclude that the capacity 
scaling algorithm would solve the maximum flow problem in O(mZ 10gJ3 U) time. Fi
nally, show that this algorithm would run in O(mZ) time if U == O(nk) for some k and 
m == O(nl+E) for some e > O. 

7.19. Bit-scaling algorithm (Gabow [1985]). Let K == rlog U1. In the bit-scaling algorithm for 
the maximum flow problem works, we represent each arc capacity as a K-bit binary 
number, adding leading zeros if necessary to make each capacity K bits long. The 
problem Pk considers the capacity of each arc as the k leading bits. Let xt denote a 
maximum flow and let vt denote the maximum flow value in the problem Pk • The 
algorithm solves a sequence of problems PI, Pz, P3 , ••• , PK , using 2xt-1 as a starting 
solution for the problem Pk • 

(a)· Show that 2xt-1 is feasible for Pk and that vt - 2vt-1 S m. 
(b) Show that the shortest augmenting path algorithm for solving problem Pk , starting 

with 2xt-1 as the initial solution, requires O(nm) time. Conclude that the bit-scaling 
algorithm solves the maximum flow problem in O(nm log U) time. 

7.20. Using the potential function <I> = max{d(i): i is active}, show that the highest-label 
preflow-push algorithm performs O(n3) non saturating pushes. 

7.21. The wave algorithm, which is a hybrid version of the highest-label and FIFO preflow
push algorithms, performs passes over active nodes. In each pass it examines all the 
active nodes in nonincreasing order of the distance labels. While examining a node, it 
pushes flow from a node until either its excess becomes zero or the node is relabeled. 
If during a pass, the algorithm relabels no node, it terminates; otherwise, in the next 
pass, it again examines active nodes in nonincreasing order of their new distance labels. 
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Discuss the similarities and differences between the wave algorithm with the highest 
label and FIFO preflow-push algorithms. Show that the wave algorithm runs in 0(n3) 
time. 

7.22. Several rules listed below are possible options for selecting an active node to perform 
the push/relabel operation in the preflow-push algorithm. Describe the data structure 
and the implementation details for each rule. Obtain the tightest possible bound on the 
numbers of pushes performed by the algorithm and the resulting running time of the 
algorithm. 
(a) Select an active node with the minimum distance label. 
(b) Select an active node with the largest amount of excess. 
(c) Select an active node whose excess is at least 50 percent of the maximum excess 

at any node. 
(d) Select the active node that the algorithm had selected most recently. 
(e) Select the active node that the algorithm had selected least recently. 
(0 Select an active node randomly. (Assume that for any integer k, you can in 0(1) 

steps generate a random integer uniformly in the range [1, k].) 

7.23. In the excess scaling algorithm, suppose we require that each nonsaturating push pushes 
exactly fl/2 units of flow. Show how to modify the push/relabel step to meet this re
quirement. Does this modification change the worst-case running time of the algorithm? 

7.24. In our development in this chapter we showed that the excess scaling algorithm performs 
0(n2 log U*) nonsaturating pushes if u* is set equal to the largest arc capacity among 
the arcs emanating from the source node. However, we can often select smaller values 
of u* and still show that the number of non saturating pushes is 0(n2 log U*). Prove 
that we can also use the following values of u* without affecting the worst-case com
plexity of the algorithm: (1) U* = L(S,j)EA(S) us/I A(s) I; (2) U* = vub

/ 1 A(s) 1 for any 
upper bound vub on the maximum flow value. (Hint: In the first scaling phase, set 
fl = 2r1og V'l and forbid nodes except those adjacent to the source from having exces:; 
more than fl.) , 

7.25. The excess scaling algorithm described in Section 7.9 scales excesses by a factor of 2. 
It starts with the value of the excess dominator fl equal to the smallest p0wer of 2 that 
is greater than or equal to U; in every scaling phase, it reduces fl by a factor of 2. An 
alternative is to scale the excesses by a factor of some integer number 13 ~ 2. This 
algorithm would run as follows. It would start with fl = I3rlOg~ Cll; it would then reduce 
fl by a factor of 13 in every scaling phase. In the fl-scaling phase, we refer to a node 
with an excess of at least fl/13 as a node with a large excess. The algorithm pushes flow 
from a node with a large excess and among these nodes it chooses the node with the 
smallest distance label. The algorithm also ensures that no excess exceeds fl. Determine 
the number of nonsaturating pushes performed by the algorithm as a function of n, 13, 
and U. For what value of 13 would the algorithm perform the least number of non
saturating pushes? 

7.26. For any pair [i, j] E N x N, we define a[i, j] in the following manner: (1) if (i, j) E 
A, then a[i, j] is the increase in the maximum flow value obtained by setting uij = 00; 
and (2) if (i, j) E A, then a[i, j] is the increase in the maximum flow value obtained 
by introducing an infinite capacity arc (i, j) in the network. 
(a) Show that a[i,j]:S a[s,j] and a[i,j]:S a[i, t]. 
(b) Show that a[i, j] = min{a[s, j], a[i, tl}. 
(c) Show that we can compute a[i,j] for all node pairs by solving O(n) maximum flow 

problems. 

7.27. Minimum cut with the fewest number of arcs. Suppose that we wish to identify from 
among all minimum cuts, a minimum cut containing the least number of arcs. Show 
that if we replace Uij by uij = mUij + 1, the minimum cut with respect to the capacities 
uij is a minimum cut with respect to the capacities Uij containing the fewest number of 
arcs. 
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7.28. Parametric network feasibility problem. In a capacitated network G with arc capacities 
uij' suppose that the supply/demands of nodes are linear functions of time T. Let each 
b(i) = b°(i) + Tb*(i) and suppose that ~iEN b°(i) = 0 and ~iEN b*(i) = o. The 
network is currently (i.e., at time ,. = 0) able to fulfill the demands by the existing 
supplies but might not be able to do so at some point in future. You want to determine 
the largest integral value of T up to which the network will admit a feasible flow. How 
would you solve this problem? 

7.29. Source parametric maximum flow problem (Gallo, Grigoriadis, and TaIjan [1989]). In 
the source parametric maximum flow problem, the capacity of every source arc (s, j) 
is a nondecreasing linear function of a parameter h (i.e., Usj = U~j + hut for some 
constant ut <=: 0); the capacity of every other arc is fixed, and we wish to determine 
a maximum flow for p values 0 = hI. h2, . .. , hp of the parameter h. Assume that 
hi :S: h2 :S: ••• :S: hp and p :S: n. As an application of the source-parametric maximum 
flow problem, consider the following variation of Application 6.5. Suppose that pro
cessor 1 is a shared multiprogrammed system and processor 2 is a graphic processor 
dedicated to a single user. Suppose further that we can accurately determine the times 
'required for processing modules on processor 2, but the times for processing modules 
on processor 1 are affected by a general work load on the processor. As the work load 
on processor 1 changes, the optimal distribution of modules between processor 1 and 
2 changes. The source-parametric maximum flow problem determines these distribu
tions for different work loads on processor 1. 

Let MF(h) denote the maximum flow problem for a specific value of h. Let V(h) 
denote the maximum flow value of MF(h) and let [S(h), S(h)] denote an associated 
minimum cut. Clearly, the zero flow is optimal for MF(hl). Given an optimal flow X(hk) 
of MF(hk), we solve MF(hk+l) as follows: With X(hk) ,as the starting flow and the cor
responding distance labels as the initial distance labels, we perform a preprocess step 
by sending additional flow along the source arcs so that they all become saturated. 
Then we apply the FIFO preflow-push algorithm until the network contains no more 
active nodes. We repeat this process until we have solved MF(hp). 
(a) Show that the ending distance labels of MF(hk) are valid distances for MR(hk+ I) 

in the residual network G(X(hk) after the preprocess step. ' 
(b) Use the result in part (a) to show that overall [i.e., in solving all the problems 

MF(hl), MF(h2), ... , MF(hp)1, the algorithm performs O(n2) relabels, O(nm) sat
urating pushes, and O(n3) non saturating pushes. Conclude that the FIFO preflow
push algorithm solves the source parametric maximum flow problem in O(n3) time, 
which is the same time required to solve a single maximum flow problem. 

(c) Show that V(hl) :S: v(h2) :S: ..• :S: v(hp) and some associated minimum cuts satisfy 
the nesting condition SI ~ S2 k ... ~ Sp. 

7.30. Source-sink parametric maximum flow problem. In the source-sink parametric maxi
mum flow problem, the capacity of every source arc is a nondecrensing linear function 
of a parameter h and capacity of every sink arc is a nonincreasing linear function of 
h, and we want to determine a maximum flow for several values of parameter hi, 
h2' ... , hp, for p :S: n, that satisfy the condition 0 = hi < h2 < ... < hp. Show how 
to solve this problem in a total of O(n3) time. (Hint: The algorithm is same as the one 
considered in Exercise 7.29 except that in the preprocess step if some sink arc has flow 
greater than its new capacity, we decrease the flow.) 

7.31. Ryser's theorem. Let Q be a p x p matrix consisting of 0-1 elements. Let u denote 
the vector of row sums of Q and f3 denote the vector of column sums. Suppose that 
the rows and columns are ordered so that UI <=: U2 <=: ••• <=: Up, and f31 <=: f32 <=: ••• <=: f3p. 
(a) Show that the vectors u and f3 must satisfy the following conditions: (1) ~~= I Ui = 
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~~=I f3i and (2) ~~=I min(u;, k) :S: ~~=I f3;, for all k = 1, ... , p. [Hint: 
min(u;, k) is an upper bound on the sum of the first k components of row i.] 
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(b) Given the nonnegative integer vector IX and [3, show how to formulate the problem 
of determining whether some 0-1 matrix Q has a row sum vector IX and a column 
sum vector [3 as a maximum flow problem. Use the max-flow min-cut theorem to 
show that the conditions stated in part (a) are sufficient for the existence of such 
a matrix Q. 
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8 

MAXIMUM FLOWS: ADDITIONAL TOPICS 

Chapter Outline 

8.1 Introduction 
8.2 Flows in Unit Capacity Networks 
8.3 Flows in Bipartite Networks 
8.4 Flows in Planar Undirected Networks 
8.5 Dynamic Tree Implementations 
8.6 Network Connectivity 
8.7 All-Pairs Minimum Value Cut Problem 
8.8 Summary 

8.1 INTRODUCTION 

This was the most unkindest cut of all. 
-Shakespeare in Julius Caeser Act III 

In all scientific disciplines, researchers are always making trade-offs between the 
generality and the specificity of their results. Network flows embodies these con
siderations. In studying minimum cost flow problems, we could consider optimi
zation models with varying degrees of generality: for example, in increasing order 
of specialization, (1) general constrained optimization problems, (2) linear programs, 
(3) network flows, (4) particular network flow models (e.g., shortest path and max
imum flow problems), and (5) the same models defined on problems with specific 
topologies and/or cost structures. The trade-offs in choosing where to study across 
the hierarchy of possible models is apparent. As models become broader, so does 
the range of their applications. As the models become more narrow, available results 
often become refined and more powerful. For example, as shown by our discussion 
in previous chapters, algorithms for shortest path and maximum flow problems have 
very attractive worst-case and empirical behavior. In particular, the computational 
complexity of these algorithms grows rather slowly in the number of underlying 
constraints (i.e., nodes) and decision variables (arcs). For more general linear pro
grams, or even for more general minimum cost flow problems, the best algorithms 
are not nearly as good. 

In considering what class of problems to study, we typically prefer models that 
are generic enough to be rich, both in applications and in theory. As evidenced by 
the coverage in this book, network flows is a topic that meets this criterion. Yet, 
through further specialization, we can develop a number of more refined results. 
Our study of shortest paths and maximum flow problems in the last four chapters 
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has illustrated this fact. Even within these more particular problem classes, we have 
seen the effect of further specialization, which has led to us to discover more efficient 
shortest path algorithms for models with nonnegative costs and for models defined 
on acyclic graphs. In this chapter we carry out a similar program for maximum flow 
problems. We consider maximum flow problems with both (1) specialized data, that 
is, networks with unit capacity arcs, and (2) specialized topologies, namely, bipartite 
and planar networks. 

For general maximum flow problems, the labeling algorithm requires O(nmU) 
computations and the shortest augmenting path algorithm requires O(n 2m) com
putations. When applied to unit capacity networks, these algorithms are guaranteed 
to perform even better. Both require O(nm) computations. We obtain this improve
ment simply because of the special nature of unit capacity networks. By designing 
specialized algorithms, however, we can improve even further on these results. 
Combining features of both the labeling algorithm and the shortest augmenting path 
algorithm, the unit capacity maximum flow algorithm that we consider in this chapter 
requires only O(min{n2/3 m, m3/2 }) computations. 

Network connectivity is an important application context for the unit capacity 
maximum flow problem. The arc connectivity between any two nodes of a network 
is the maximum number of arc-disjoint paths that connect these nodes; the arc con
nectivity of the network as a whole is the minimum arc connectivity between any 
pair of nodes. To determine this important reliability measure of a network, we could 
solve a unit capacity maximum flow problem between every pair of nodes, thus 
requiring O(min{n2/3 m, m3/2}) computations. As we will see in this chapter, by ex
ploiting the special structure of the arc connectivity problem, we can reduce this 
complexity bound considerably-to O(nm). 

For networks with specialized bipartite and planar topologies, we can also 
obtain more efficient algorithms. Recall that bipartite networks are composed oftwo 
node sets, Nl with nl nodes and N2 with n2 nodes. Assume that nl 5,: n2. For these 
problems we develop a specialization of the generic preflow-push algorithm that 
requires O(nT m) instead of O((nl + n2? m) time. Whenever the bipartite network 
is unbalanced in the sense that nl ~ (n! + n2) = n, the new implementation has a 
much better complexity than the general preflow-push algorithm. Planar networks 
are those that we can draw on the plane so that no two arcs intersect each other. 
For this class of networks, we develop a specialized maximum flow algorithm that 
requires only O(n log n) computations. 

In this chapter we also consider two other additional topics: a dynamic tree 
implementation and the all-pairs minimum value cut problem. Dynamic trees is a 
special type of data structure that permits us to implicitly send flow on paths of 
length n in O(log n) steps on average. By doing so we are able to reduce the com
putational requirement of the shortest augmenting path algorithm for maximum flows 
from O(n2m) to O(nm log n). 

In some application contexts, we need to find the maximum flow between every 
pair of nodes in a network. The max-flow min-cut theorem shows that this problem 
is equivalent to finding the minimum cut separating all pairs of nodes. The most 
naive way to solve this problem would be to solve the maximum flow problem 
n(n - 1) times, once between every pair of nodes. Can we do better? In Section 
8.7 we show that how to exploit the relationship of the cut problems between various 
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node pairs to reduce the computational complexity of the all-pairs minimum value 
cut problem considerably in undirected networks. This algorithm requires solving 
only (n - 1) minimum cut problems in undirected networks. Moreover, the tech
niques used in this development extend to a broader class of problems: they permit 
us to solve the all-pairs minimum cut problem for situations when the value of a cut 
might be different than the sum of the arc capacities across the cut. 

The algorithms we examine in this chapter demonstrate the advantage of ex
ploiting special structures to improve on the design of algorithms. This theme not 
only resurfaces on several other occasions in this book, but also is an important 
thread throughout the entire field of large-scale optimization. Indeed, we might view 
the field of large-scale optimization, and the field of network flows for that matter, 
as the study of theory and algorithms for exploiting special problem structure. In 
this sense this chapter is, in its orientation and overall approach, a microcosm of 
this entire book and of much of the field of optimization itself. 

B.2 FLOWS IN UNIT CAPACITY NETWORKS 

Certain combinatorial problems are naturally formulated as zero-one optimization 
models. When viewed as flow problems, these models yield networks whose arc 
capacities are alii. We will refer to these networks as unit capacity networks. 
Frequently, it is possible to solve flow problems on these networks more efficiently 
than those defined on general networks. In this section we describe an efficient 
algorithm for solving the maximum flow problem on unit capacity networks . We 
subsequently refer to this algorithm as the unit capacity maximum flow algorithm. 

In a unit capacity network, the maximum flow value is at most n, since the 
capacity of the s-t cut [{s}, S - {s}] is at most n. The labeling algorithm therefore 
determines a maximum flow within n augmentations and requires O(nm) effort. The 
shortest augmenting path algorithm also solves this problem in O(nm) time since its 
bottleneck operation, which is the augmentation step, requires O(nm) time instead 
of O(n 2m) time. The unit capacity maximum flow algorithm that we describe is a 
hybrid version of these two algorithms. This unit capacity maximum flow algorithm 
is noteworthy because by combining features of both algorithms, it requires only 
o (min{n 2/3 m, m 3/2 }) time, which is consistently better than the O(nm) bound of either 
algorithm by itself. 

The unit capacity maximum flow algorithm is a two-phase algorithm. In the 
first phase it applies the shortest augmenting path algorithm, although not until com
pletion: rather, this phase terminates whenever the distance label of the source node 
satisfies the condition d(s) 2: d* = min{ r2n2/3 1, r m1l21}. Although the algorithm 
might terminate with a nonoptimal solution, the solution is probably nearly-optimal 
(its value is within d* of the optimal flow value). In its second phase, the algorithm 
applies the labeling algorithm to convert this near-optimal flow into a maximum flow. 
As we will see, this two-phase approach works well for unit capacity networks 
because the shortest augmenting path algorithm obtains a near-optimal flow quickly 
(when augmenting paths are "short") but then takes a long time to convert this 
solution into a maximum flow (when augmenting paths become "long"). It so hap
pens that the labeling algorithm converts this near-optimal flow into a maximum 
flow far more quickly than the shortest augmenting path algorithm. 
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Let us examine the behavior of the shortest augmenting path algorithm for 
d* = min{ f2n 2/3 1 , f m 1/21}. Suppose the algorithm terminates with a flow vector x' 

with a flow value equal to Vi. What can we say about v* - Vi? (Recall that v* denotes 
the maximum flow value.) We shall answer this question in two parts: (1) when 
d* = f2n 2/3

1 , and (2) when d* = fm 1l2
1. 

Suppose that d* = f2n 2/31. For each k = 0, 1, 2, ... , d*, let Vk denote the 
set of nodes with a distance label equal to k [Le., Vk = {i E N:d(i) = k}]. We refer 
to Vk as the set of nodes in the kth layer of the residual network. Consider the 
situation when each of the sets VI. V2 , ..• , Vd • is nonempty. It is possible to show 
that each arc (i, j) in the residual network G(x ' ) connects a node in the kth layer 
to a node in the (k + l)th layer for some k, for otherwise d(i) > d(j) + 1, which 
contradicts the distance label validity conditions (7.2). Therefore, for each k = 1, 
2, ... , d*, the set of arcs joining the node sets Vk to Vk - I form an s-t cut in the 
residual network. In case one of the sets, say Vk , is empty, our discussion in Section 
7.4 implies that the cut [S, S] defined by S = Vk + I U Vk+2 U ... U Vd • is a minimum 
cut. 

Note that I VI I + I V2 1 + ... + I vd'l :s; n - 1, because the sink node does 
not belong to any of these sets. We claim that the residual network contains at least 
two consecutive layers Vk and Vk - I , each with at most n ll3 nodes. For if not, every 
alternate layer (say, VI. V3 , Vs, ... ) must contain more than n ll3 nodes and the 
total number of nodes in these layers would be strictly greater than n ll3 d*/2 2: n, 
leading to a contradiction. Consequently, I Vk I :s; nll3 and I Vk - I I :s; n ll3 for some 
of the two layers Vk and Vk - I • The residual capacity of the s-t cut defined by the 
arcs connecting Vk to Vk- I is at most I Vk II Vk- I I :s; n2/3 (since at most one arc of 
unit residual capacity joins any pair of nodes). Therefore, by Property 6.2, v* ~ 
Vi :s; n2/3 :s; d*. 

Next consider the situation when d* = f m1l21. The layers of nodes VI, 
V2 , ••• , V d' define d* s-t cuts in the residual network and these cuts are arc disjoint 
in G(x). The sum of the residual capacities of these cuts is at most m since each arc 
contributes at most one to the residual capacity of any such cut. Thus some s-t cut 
must have residual capacity at most f m 1121. This conclusion proves that v* - v' :s; 
fm 1l21 = d*. 

In both cases, whenever d* = f2n 2/3
1 or d* = f m 1/2

1, we find that the first 
phase obtains a flow whose value differs from the maximum flow value by at most 
d* units. The second phase converts this flow into a maximum flow in O(d*m) time 
since each augmentation requires O(m) time and carries a unit flow. We now show 
that the first phase also requires O( d* m) time. 

In the first phase, whenever the distance label of a node k exceeds d*, this 
node never occurs as an intermediate node in any subsequent augmenting path since 
d(k) < d(s) < d*. So the algorithm relabels any node at most d* times. This ob
servation gives a bound of O(d*n) on the number of retreat operations and a bound 
of O(d*m) on the time to perform the retreat operations. Consider next the aug
mentation time. Since each arc capacity is 1, flow augmentation over an arc im
mediately saturates that arc. During two consecutive saturations of any arc (i, j), 
the distance labels of both the nodes i andj must increase by at least 2 units. Thus 
the algorithm can saturate any arc at most ld*/2J times, giving an O(d*m) bound 
on the total time needed for flow augmentations. The total number of advance op-
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erations is bounded by the augmentation time plus the number of retreat operations 
and is again O(d*m). We have established the following result. 

Theorem 8.1. The unit capacity maximum flow algorithm solves a maximum 
flow problem on unit capacity networks in O(min{n2/3 m , m3/2}) time. • 

The justification of this two-phase procedure should now be clear. If d* 
r2n2/31 :s; m 112, the preceding discussion shows that the shortest augmenting path 
algorithm requires O(n2/3m) computations to obtain a flow within n2/3 of the optimal. 
If we allow this algorithm to run until it achieves optimality [i.e., until d(s) 2: n), 
the algorithm could require an additional O«n - n2/3)m) time to convert this flow 
into an optimal flow. For n = 1000, these observations imply that if the algorithm 
achieves these bounds, it requires 10 percent of the time to send 90 percent of the 
maximum flow and the remaining 90 percent of the time to send 10 percent of the 
maximum flow. (Empirical investigations have observed a similar behavior in prac
tice as well.) On the other hand, the use of labeling algorithm in the second phase 
establishes a maximum flow in O(n2/3 m) time and substantially speeds up the overall 
performance of the algorithm. 

Another special case of unit capacity networks, called unit capacity simple 
networks, also arises in practice and is of interest to researchers. For this class of 
unit capacity networks, every node in the network, except the source and sink nodes, 
has at most one incoming arc or at most one outgoing arc. The unit capacity maximum 
flow algorithm runs even faster for this class of networks. We achieve this improve
ment by setting d* = r n1l21 in the algorithm. 

Theorem 8.2. The unit capacity maximum flow algorithm establishes a max
imumflow in unit capacity simple networks in O(nIl2m) time. 

Proof. Consider the layers of nodes VI, V2, ... , Vd • at the end of the first 
phase. Note first that des) > d* since otherwise we could find yet another aug
mentation in Phase 1. Suppose that layer Vh contains the smallest number of nodes. 
Then I V h I :s; n 112, since otherwise the number of nodes in all layers would be strictly 
greater than n. Let N' be the nodes in N with at most one outgoing arc. We define 
a cut [S, N-S) as follows: S = U:d(j) 2: h} U U:d(j) = hand j EN'}. Since 
des) > d* 2: hand d(t) = 0, [S, N-S) is an s-t cut. Each arc with residual capacity 
in the cut [S, N-S) is either directed into a node in Vh n (N-N') or else it is directed 
from a node in Vh n N'. Therefore, the residual capacity of the cut Q is at most 
I Vh I :s; n1l2. Consequently, at the termination of the first phase, the flow value 
differs from the maximum flow value by at most n1l2 units. Using arguments similar 
to those we have just used, we can now easily show that the algorithm would run 
in O(n l

/
2m) time. • 

The proof of the Theorem 8.2 relies on the fact that only 1 unit of flow can 
pass through each node in the network (except the source and sink nodes). If we 
satisfy this condition but allow some arc capacities to be larger than 1, the unit 
capacity maximum flow algorithm would still require only O(n Il2 m) time. Networks 
with this structure do arise on occasion; for example, we encountered this type of 
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network when we computed the maximum number of node-disjoint paths from the 
source node to the sink node in the proof of Theorem 6.8. Theorem 8.2 has another 
by-product: It permits us to solve the maximum bipartite matching problem in 
O(n"2m) time since we can formulate this problem as a maximum flow problem on 
a unit capacity simple network. We study this transformation in Section 12.3. 

B.8 FLOWS IN BIPARTITE NETWORKS 

A bipartite network is a network G = (N, A) with a node set N partitioned into two 
subsets NJ and N2 so that for every arc (i,j) E A, either (1) i E NJ andj E N 2, or 
(2) i E N2 and j E N J. We often represent a bipartite network using the notation 
G = (NJ U N 2, A). Let nJ = \ NJ \ and n2 = \ N 2 \. Figure 8.1 gives an example 
of a bipartite network; in this case, we can let NJ = {t, 2, 3, 9} and N2 = {4, 5, 6, 
7,8}. 

Figure 8.1 Bipartite network. 

In this section we describe a specialization of the preflow-push algorithms that 
we considered in Chapter 7, but now adapt it to solve maximum flow problems on 
bipartite networks. The worst-case behavior of these special-purpose algorithms is 
similar to those of the original algorithms if the node sets NJ and N2 are of comparable 
size; the new algorithms are considerably faster than the original algorithms, how
ever, whenever one ofthe sets NJ or N2 is substantially larger than the other. Without 
any loss of generality, we assume that nl :::; n2. We also assume that the source node 
belongs to N 2 • [If the source node s belonged to Nt. then we could create a new 
source node s I E N 2, and we could add an arc (s I , s) with capacity M for sufficiently 
large M.] As one example of the type of results we will obtain, we show that the 
specialization ofthe generic preflow-push algorithm solves a maximum flow problem 
on bipartite networks in O(nrm) time. If nl ~ (nl + n2) = n, the new implementation 
is considerably faster than the original algorithm. 

In this section we examine only the generic preflow-push algorithm for bipartite 
networks; we refer to this algorithm as the bipartite pre flow-push algorithm. The 
ideas we consider also apply in a straightforward manner to the FIFO, highest-label 
preflow-push and excess-scaling algorithms and yield algorithms with improved 
worst-case complexity. We consider these improvements in the exercises. 

We first show that a slightly modified version of the generic preflow-push al
gorithm requires less than O(n 2m) time to solve problems defined on bipartite net
works. To establish this result, we change the preprocess operation by setting 
d(s) = 2nl + 1 instead of des) = n. The modification stems from the observation 
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that any path in the residual network can have at most 2nl arcs since every alternate 
node in the path must be in Nl (because the residual network is also bipartite) and 
no path can repeat a node in N 1 • Therefore, if we set d(s) = 2nl + 1, the residual 
network will never contain a directed path from node s to node t, and the algorithm 
will terminate with a maximum flow. 

Lemma 8.3. For each node i E N, d(i) < 4nl + 1. 

Proof The proof is similar to that of Lemma 7.12. 

The following result is a direct consequence of this lemma. 

Lemma 8.4. 

• 

(a) Each distance label increases at most O(nl) times. Consequently, the total num
ber of relabel operations is O(nl (nl + n2)) = O(nln2). 

(b) The number of saturating pushes is O(nlm). 

Proof The proofs are similar to those of Lemmas 7.13 and 7.14. • 

It is possible to show that the results of Lemma 8.4 yield a bound of O«nlm)n) 
on the number of nonsaturating pushes, as well as on the complexity of the generic 
preflow-push algorithm. Instead of considering the details of this approach, we next 
develop a modification of the generic algorithm that runs in O(nIm) time. 

This modification builds on the following idea. To bound the non saturating 
pushes of any preflow-push algorithm, we typically use a potential function defined 
in terms of all the active nodes in the network. If every node in the network can be 
active, the algorithm will perform a certain number of non saturating pushes. How
ever, if we permit only the nodes in Nl to be active, because nl :s; n we can obtain 
a tighter bound on the number of nonsaturating pushes. Fortunately, the special 
structure of bipartite networks permits us to devise an algorithm that always manages 
to keep the nodes in N2 inactive. We accomplish this objective by starting with a 
solution whose only active nodes are in NJ, and by performing pushes of length 2; 
that is, we push flow over two consecutive admissible arcs so that any excess always 
returns to a node in Nl and no node in N2 ever becomes active. 

Consider the residual network of a bipartite network given in Figure 8.2(a), 
with node excesses and distance labels displayed next to the nodes, and residual 
capacities displayed next to the arcs. The bipartite preflow-push algorithm first 
pushes flow from node 1 because it is the only active node in the network. The 
algorithm then identifies an admissible arc emanating from node 1. Suppose that it 
selects the arc (1, 3). Since we want to find a path of length 2, we now look for an 
admissible arc emanating from node 3. The arc (3, 2) is one such arc. We perform 
a push on this path, pushing 8 = min{e(1), r13, rd = min{6, 5, 4} = 4 units. 'This 
push saturates arc (3,2), and completes one iteration of the algorithm. Figure 8:2(b) 
gives the solution at this point. 

In the second iteration, suppose that the algorithm again selects node 1 as an 
active node and arc (1,3) as an admissible arc emanating from this node. We would 
also like to find an admissible arc emanating from node 3, but the network has none. 
So we relabel node 3. As a result of this relabel operation, arc (1, 3) becomes in-
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Figure 8.2 Illustrating the bipartite preflow-flow algorithm. 
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admissible. This operation completes the second iteration and Figure 8.2(b) gives 
the solution at this stage except that d(3) is 3 instead of 1. 

Suppose that the algorithm again selects node 1 as an active node in the third 
iteration. Then it selects the two consecutive admissible arcs (1, 4) and (4, 2), and 
pushes 8 = min{e(1), r14, r42} = min{2, 4, 3} = 2 units of flow over these arcs. This 
push is non saturating and eliminates the excess at node 1. Figure 8.2(c) depicts the 
solution at this stage. 

As we have illustrated in this numerical example, the bipartite'preflow-push 
algorithm is a simple generalization of the generic preflow-push algorithm. The bi
partite algorithm is the same as the generic algorithm given in Figure 7.12 except 
that we replace the procedure pushlrelabel(i) by the procedure given in Figure 8.3. 

procedure bipartite pushlrelabel(i); 
begin 

if the residual network contains an admissible arc (i, j) then 
If the residual network contains an admissible arc (j, k) then 

push 1l = min{e(i), rij, rjk} units of flow over the path i-j-k 
• else replace d(j) by min{d(k) + 1 : (j, k) E A(j) and rjk> O} 

else replace d(i) by min{d(j) + 1 : (i, j) E A(i) and rij> O}; 
end; 

Figure 8.3 Push/relabel operation for bipartite networks. 

Lemma 8.5. The bipartite pre flow-push algorithm performs O(nrm) non
saturating pushes and runs in O(nrm) time. 

Proof. The proof is same as that of Lemma 7.15. We consider the potential 
function <I> = .LiEf d(i) whose index set I is the set of active nodes. Since we allow 
only the nodes in NI to be active, and d(i) :5 4nl for all i E N 1 , the initial value of 
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<I> is at most 4nI. Let us observe the effect of executing the procedure bipartite push! 
relabel(i) on the potential function <I>. The procedure produces one of the following 
four outcomes: (1) it increases the distance label of node i; (2) it increases the distance 
label of a node j E N 2 ; (3) it pushes flow over the arcs (i, j) and (j, k), saturating 
one of these two arcs; or (4) it performs a nonsaturating push. In case 1, the potential 
function <I> increases, but the total increase over all such iterations is only O(nI). 
In case 2, <I> remains unchanged. In case 3, <I> can increase by as much as 4n) + 1 
units since a new node might become active; Lemma 8.4 shows that the total increase 
over all iterations is O(nIm). Finally, a non saturating push decreases the potential 
function by at least 2 units since it makes node i inactive, can make node k newly 
active and d(k) = d(i) - 2. This fact, in view of the preceding arguments, implies 
that the algorithm performs O(nrm) non saturating pushes. Since all the other op
erations, such as the relabel operations and finding admissible arcs, require only 
O(n)m) time, we have established the theorem. • 

We complete this section by giving two applications of the maximum flow 
problem on bipartite networks with n) ~ n2. 

Application 8.1 Baseball Elimination Problem 

At a particular point in the baseball season, each of n + 1 teams in the American 
League, which we number as 0, 1, ... , n, has played several games. Suppose that 
team i has won Wi of the games that it has already played and that gij is the number 
of games that teams i andj have yet to play with each other. No game ends in a tie. 
An avid and optimistic fan of one of the teams, the Boston Red Sox, wishes to know 
if his team still has a chance to win the league title. We say that we can eliminate 
a specific team 0, the Red Sox, if for every possible outcome ofthe unplayed games, 
at least one team will have more wins than the Red Sox. Let Wmax denote Wo plus 
the total number of games team 0 has yet to play, which, in the best of all possible 
worlds, is the number of victories the Red Sox can achieve. Then we cannot eliminate 
team 0 if in some outcome of the remaining games to be played throughout the league, 
Wmax is at least as large as the possible victories of every other team. We want to 
determine whether we can or cannot eliminate team O. 

We can transform this baseball elimination problem into a feasible flow problem 
on a bipartite network with two sets with n) and n2 = O(nf). As discussed in Section 
6.2, we can represent the feasible flow problem as a maximum flow problem, as 
shown in Figure 8.4. The maximum flow network associated with this problem con
tains n team nodes 1 through n, n(n - 1)/2 game nodes of the type i-j for each 
1 :5 i:5 j:5 n, and source node s. Each game node i-j has two incoming arcs (i, i -
j) and (j, i - j), and the flows on these arcs represent the number of victories for 
team i and teamj, respectively, among the additional gij games that these two teams 
have yet to play against each other (which is the required flow into the game node 
i-j). The flow Xsi on the source arc (s, i) represents the total number of additional 
games that team i wins. We cannot eliminate team 0 if this network contains a feasible 
flow x satisfying the conditions 

for all i = 1, ... , n, 
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which we can rewrite as 

b(i) 

Team 
nodes 

o 

Xsi :s; Wmax - Wi 

b(j} 

Game 
nodes 

Figure 8.4 Network formulation of the 
baseball elimination problem. 

for all i = 1, ... , n. 

This observation explains the capacities of arcs shown in the figure. We have 
thus shown that if the feasible flow problem shown in Figure 8.4 admits a feasible 
flow, we cannot eliminate team 0; otherwise, we can eliminate this team and our 
avid fan can turn his attention to other matters. 

Application B.2 Network Reliability Testing 

In many application contexts, we need to test or monitor the arcs ofa network (e.g., 
the tracks in a rail network) to ensure that the arcs are in good working condition. 
As a practical illustration, suppose that we wish to test each arc (i, j) E A in an 
undirected communication network G = (N, A) aijtimes; due to resource limitations, 
however, each day we can test at most [3j arcs incident to any communication node 
j E N. The problem is to find a schedule that completes the testing of all the arcs 
in the fewest number of days. 

We solve this problem on a bipartite network G' = ({s} U {t} U N\ U N 2 , A') 
defined as follows: The network contains a node i E N\ for every node i E N in the 
communication network and a node i-j E N2 for every arc (i, j) E A in the com
munication network. Each i-j node has two incoming arcs from the nodes in N\, 
one from node i and the other from nodej; all these arcs have infinite capacity. The 
source node s is connected to every node i E N\ with an arc of capacity A[3h and 
every node i-j E N2 is connected to the sink node t with an arc of capacity aij. The 
reliability testing problem is to determine the smallest integral value of the days A
so that the maximum flow in the network saturates all the sink arcs. We can solve 
this problem by performing binary search on A- and solving a maximum flow problem 
at each search point. In these maximum flow problem, I N\ I = n and I N2 I = m, 
and m can be as large as n(n - 1)/2. 
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8.4 FLOWS IN PLANAR UNDIRECTED NETWORKS 

(a) 

A network is said to be planar if we can draw it in a two-dimensional (Euclidean) 
plane so that no two arcs cross (or intersect each other); that is, we allow the arcs 
to touch one another only at the nodes. Planar networks are an important special 
class of networks that arise in several application contexts. Because of the special 
structure of planar networks, network flow algorithms often run faster on these 
networks than they do on more general networks. Indeed, several network optim
ization problems are NP-complete on general networks (e.g., the maximum cut prob
lem) but can be solved in polynomial time on planar networks. In this section we 
study some properties of planar networks and describe an algorithm that solves a 
maximum flow problem in planar networks in O(n log n) time. In this section we 
restrict our attention to undirected networks. We remind the reader that the undi
rected networks we consider contain at most one arc between any pair i and j of 
nodes. The capacity Uij of arc (i, j) denotes the maximum amount that can flow from 
node i to node j or from node j to node i. 

Figure 8.5 gives some examples of planar networks. The network shown in 
Figure 8.5(a) does not appear to be planar because arcs (1, 3) and (2, 4) cross one 

(b) 

Figure 8.5 Instances of planar networks. 

another at the point D, which is not a node. But, in fact, the network is planar 
because, as shown in Figure 8.5(b), we can redraw it, maintaining the network struc
ture (i.e., node, arc structure), so that the arcs do not cross. For some networks, 
however, no matter how we draw them, some arcs will always cross. We refer to 
such networks as nonplanar. Figure 8.6 gives two instances of non planar networks. 
In both instances we could draw all but one arc without any arcs intersecting; if we 
add the last arc, though, at least one intersection is essential. Needless to say, 
determining whether a network is planar or not a straightforward task. However, 

(a) (b) 
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Figure 8.6 Instances of two non planar 
graphs. 
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researchers have developed very efficient algorithms (in fact, linear time algorithms) 
for testing the planarity of a network. Several theoretical characterizations of planar 
networks are also available. 

Let G = (N, A) be a planar network. A face z of G is a region of the (two
dimensional) plane bounded by arcs that satisfies the condition that any two points 
in the region can be connected by a continuous curve that meets no nodes and arcs. 
It is possible to draw a planar graph in several ways and each such representation 
might have a different set of faces. The boundary of a face z is the set of all arcs 
that enclose it. It is convenient to represent the boundary of a face by a cycle. 
Observe that each arc in the network belongs to the boundary of at most two faces. 
Faces z and z' are said to be adjacent if their boundaries contain a common arc. If 
two faces touch each other only at a node, we do not consider them to be adjacent. 
The network shown in Figure 8.5(b) illustrates these definitions. This network has 
four faces. The boundaries 1-2-3-1, 1-3-4-1, and 2-4-3-2 define the first three 
faces of the network. The fourth face is unbounded and consists of the remaining 
region; its boundary is 1-2-4-1. In Figure 8.5(b) each face is adjacent to every other 
face. The network shown in Figure 8.5(c) is a very special type of planar network. 
It has one unbounded face and its boundary includes all the arcs. 

Next we discuss two well-known properties of planar networks. 

Property 8.6 (Euler's Formula). If a connected planar network has n nodes, 
m arcs, and f faces, then f = m - n + 2. 

Proof. We prove this property by performing induction on the value of f. For 
f = 1, m = n - 1, because a connected graph with just one fa",e (which is the,' 
unbounded face) must be a spanning tree. Now assume, inductively, that Euler's 
formula is valid for every graph with k or fewer faces; we prove that the formula is 
valid for every graph with k + 1 faces. Consider a graph G with k + 1 faces and n 
nodes. We select any arc (i, j) that belongs to two faces, say Zl and Z2 (show that 
the network always contains such an arc!). If we delete this arc from G, the two 
faces Zl and Z2 merge into a single face. The resulting graph G' has m arcs, k faces, 
and n nodes, and by the induction hypothesis, k = m - n + 2. Therefore, if we 
reintroduce the arc (i,j) into G', we see that k + 1 = (m + 1) - n + 2, so Euler's 
formula remains valid. We have thus completed the inductive step and established 
Euler's formula in general. • 

Property 8.7. In a planar network, m < 3n. 

Proof We prove this property by contradiction. Suppose that m 2: 3n. Alter
natively, 

n 2: m/3. (8.1) 

We next obtain a relationship between f and m. Since the network contains 
no parallel arcs, the boundary of each face contains at least three arcs. Therefore, 
if we traverse the boundaries of all the faces one by one, we traverse at least 3f 
arcs. Now notice that we would have traversed each arc in the network at most 
twice because it belongs to the boundaries of at most two faces. These observations 
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show that 3f :5 2m. Alternatively, 

f:5 2m/3. 

Using (8.1) and (8.2) in the formula f = m - n + 2, we obtain 

2 = n - m + f :5 m/3 - m + 2m/3 = 0, 

which is a contradiction. 

(8.2) 

(8.3) 

• 
Property 8.7 shows that every planar graph is very sparse [i.e., m O(n)]. 

This result, by itself, improves the running times for most network flow algorithms. 
For instance, as shown in Section 8.5, the shortest augmenting path algorithm for 
the maximum flow problem, implemented using the dynamic tree data structure, 
runs in O(nm log n) time. For planar networks, this time bound becomes 
O(n2 10g n). We can, in fact, develop even better algorithms by using the special 
properties of planar networks. To illustrate this point, we prove some results that 
apply to planar networks, but not to nonplanar networks. We show that we can 
obtain a minimum cut and a maximum flow for any planar network in O(n log n) 
time by solving a shortest path problem. 

Finding Minimum Cuts Using Shortest Paths 

Planar networks have many special properties. In particular, every connected planar 
network G = (N, A) has an associated "twin" planar network G* = (N*, A *), 
which we refer to as the dual of G. We construct the dual G* for a given graph G 
as follows. We first place a node f* inside each face f of G. Each arc in G has a 
corresponding arc in G*. Every arc (i, j) in G belongs to the boundaries of either 
(1) two faces, say fl and f2; or (2) one face, say fl. In case 1, G* contains the arc 
(if, fn; in case 2, G* contains the loop (if, fn. Figure 8.7, which illustrates this 
construction, depicts the dual network by dashed lines. 

For notational convenience, we refer to the original network G as the primal 
network. The number of nodes in the dual network equals the number of faces in 
the primal network, and conversely, the number of faces in the dual network equals 
the number of nodes in the primal network. Both the primal and dual networks have 
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Figure 8.7 Constructing the dual of a 
planar network. 
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Source 

the same number of arcs. Furthermore, the dual of the dual network is the primal 
network. It is easy to show that a cycle in the dual network defines a cut in the 
primal network, and vice versa. For example, the cycle 4*-1*-2*-4* in the dual 
network shown in Figure 8.7 [with (4*, 1 *) denoting the arc from 4* to 1 * that also 
passes through arc (1, 2)], defines the cut {(2, 1), (2, 3), (2, 4)} in the primal network. 

Our subsequent discussion in this section applies to a special class of planar 
networks known as s-t planar networks. A planar network with a source node s 
and a sink node t is called s-t planar if nodes sand t both lie on the boundary of 
the unbounded face. For example, the network shown in Figure 8.8(a) is s-t planar 
if s = 1 and t = 8; however, it is not s-t planar if (1) s = 1 and t = 6, or (2) s = 
3 and t = 8. 

t* 

-.

+c". /___ ;~§~1' ___ , 

/' "-
/ I ~ 

/ \ 
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I I 

I 

s* ------
(a) (b) 

Figure 8.8 Establishing a relationship between cuts and paths: (a) s-t planar network; 
(b) corresponding dual network. 

We now show how to transform a minimum cut problem on an s-t planar 
network into a shortest path problem. In the given s-t planar network, we first draw 
a new arc joining the nodes sand t so that the arc stays within the unbounded face 
of the network [see Figure 8.8(b)]; this construction creates a new face of the net
work, which we call the additional face, but maintains the network's planarity. We 
then construct the dual of this network; we designate the node corresponding to the 
additional face as the dual source s * and the node corresponding to the unbounded 
face as the dual sink t*. We set the cost of an arc in the dual network equal to the 
capacity of the corresponding arc in the primal network. The dual network contains 
the arc (s*, t*) which we delete from the network. Figure 8.8(b) shows this con
struction: the dashed lines are the arcs in the dual network. It is easy to establish 
a one-to-one correspondence between s-t cuts in the primal network and paths from 
node s~ to node t* in the dual network; moreover, the capacity of the cut equals 
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the cost of the corresponding path. Consequently, we can obtain a minimum s-t cut 
in the primal network by determining a shortest path from node s* to node t* in the 
dual network. 

In the preceding discussion we showed that by solving a shortest path problem 
in the dual network, we can identify a minimum cut in a primal s-t planar network. 
Since we can solve the shortest path problem in the dual network in O(m log n) = 
O(n log n) using the binary heap implementation of Dijkstra's algorithm (see Section 
4.7), this development provides us with an O(n log n) algorithm for identifying a 
minimum cut in a planar network. Notice that this bound is substantially better than 
the one we would obtain for a general network. We now give a generalization of 
this result, obtaining a rather surprising result that the shortest path distances in the 
dual network provide a maximum flow in the primal network. 

Let d(j*) denote the shortest path distance from node s* to nodej* in the dual 
network. Recall from Section 5.2 that the shortest path distances satisfy the following 
conditions: 

d(j*) :5 d(i*) + Ci*j* for each (i*, j*) E A *. (8.4) 

Each arc (i, j) in the primal network corresponds to an arc (i*, j*) in the dual 
network. Let us define a function Xii for each (i, j) E A in the following manner: 

Xii = d(j*) - d(i*). (8.5) 

Note that Xii = -Xji. Now notice that the network G is undirected so that the 
arc setA contains both the arc (i,j) and the arc (j, 0. Hence we can regard a negative 
flow on arc (j, 0 as a positive flow on arc (i, j). Consequently, the flow vector X 

will always nonnegative. 
The expressions (8.5) and (8.4) imply that 

Xii = d(j*) - d(i*) :5 Ci~j*. (8.6) 

Therefore, the flow X satisfies the arc capacity constraints. We next show that 
X also satisfies the mass balance constraints. Each node kin G, except node sand 
node t, defines a cut Q = [{k}, N - {k}] consisting of all of the arcs incident to that 
node. The arcs in G* corresponding to arcs in Q define a cycle, say W*. For example, 
in Figure 8.7, the cycle corresponding to the cut for k = 3 is 1*-2*-3*-4*-1*. 
Clearly, 

(d(j*) - d(i*» = 0, 
(i-,j-)EW· 

because the terms cancel each other. Using (8.5) in (8.7) shows that 

2: Xii = 0, 
(i,j)EQ 

(8.7) 

which implies that inflow equals outflow at node k. Finally, we show that the flow 
X is a maximum flow. Let p* be a shortest path from node s* to node t* in G*. The 
definition of P* implies that 

d(j*) - d(i*) = Ci+j* for each (i*, j*) E P*. (8.8) 
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The arcs corresponding to P* define an s-t cut Q in the primal network. Using 
(8.5) in expression (8.8) and using the fact that Cj"r = Uij, we get 

Xij = Uij for each (i, j) E Q. (8.9) 

Consequently, the flow saturates all the arcs in an s-t cut and must be a maximum 
flow. The following theorem summarizes our discussion. 

Theorem 8.8. It is possible to determine a maximum flow in an s-t planar 
network in O(n log n) time. • 

8.5 DYNAMIC TREE IMPLEMENTATIONS 

A dynamic tree is an important data structure that researchers have used extensively 
to improve the worst-case complexity of several network algorithms. In this section 
we describe the use of this data structure for the shortest augmenting path algorithm. 
We do not describe how to actually implement the dynamic tree data structure; 
rather, we show how to use this data structure as a "black box" to improve the 
computational complexity of certain algorithms. Our objective is to familiarize read
ers with this important data structure and enable them to use it as a black box module 
in the design of network algorithms. 

The following observation serves as a motivation for the dynamic tree structure. 
The shortest augmenting path algoritllm repeatedly identifies a path consisting solely 
of admissible arcs and augments flows on these paths. Each augmentation saturates 
some arcs on this path, and by deleting all the saturated arcs from this path we obtain 
a set of path fragments: sets of partial paths of admissible arcs. The path fragments 
contain valuable information. If w,e reach a node in any of these path fragments 
using any augmenting path, we know that we can immediately extend the augmenting 
path along the path fragment. The standard implementation of the s"hortest aug
menting path algorithm discards this information and possibly regenerates it again 
at future steps. The dynamic tree data structure cleverly stores-these path fragments 
and uses them later to identify augmenting paths quickly. 

The dynamic tree data structure maintains a collection of node-disjoint rooted 
trees, each arc with an associated value, called val. See Figure 8.9(a) for an example 
of the node-disjoint rooted trees. Each rooted tree is a directed in-tree with a unique 
root. We refer to the nodes of the tree by using the terminology of a predecessor
successor (or parent-child) relationship. For example, node 5 is the predecessor 
(parent) of nodes 2 and 3, and nodes 9, 10, and 11 are successors (children) of node 
12. Similarly, we define the ancestors and descendants of a node (see Section 2.2 
for these definitions). For example, in Figure 8.9(a) node 6 has nodes 1,2,3,4,5, 
6 as its descendants, and nodes 2,5, and 6 are the ancestors of node 2. Notice that, 
according to our definitions, each node is its own ancestor and descendant. 

This data structure supports the following six operations: 

find-root(i). Find and return the root of the tree containing node i. 
find-value(i). Find and return the value of the tree arc leaving node i. If i is a 
root node, return the value 00. 
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find-min(i). Find and return the ancestor w of i with the minimum value of find
value(w). In case of a tie, chose the node w closest to the tree root. 

Figure 8.9(b) shows the results of the operations find-root(i), find-value(i), and 
find-min(i) performed for different nodes i. 

change-value(i, val). Add a real number val to the value of every arc along the 
path from node ito find-root(i). For example, if we execute change-value(1, 
3) for the dynamic tree shown in Figure 8.9(a), we add 3 to the values of arcs 
(1,4) and (4, 6) and these values become 6 and 5, respectively. 
link(i, j, val). This operation assumes that i is a tree root and that i andj belong 
to different trees. The operation combines the trees containing nodes i and j 
by making node j the parent of node i and giving arc (i, j) the value val. As an 
illustration, if we perform the operation link (6, 7, 5) on our example, we obtain 
the trees shown in Figure 8.9(c). 
cut(i). Break the tree containing node i into two trees by deleting the arc joining 
node i to its parent and returning the value of the deleted arc. We perform this 
operation when i is not a tree root. For example, if we execute cut(5) on trees 
in Figure 8.9(c), we delete arc (5, 6) and return its value 6. Figure 8.9(d) gives 
the new collection of trees. 

The following important result, which we state without proof, lies at the heart 
of the efficiency of the dynamic tree data structure. 

Lemma 8.9. If z is the maximum tree size (i.e., maximum number of nodes 
in any tree), a sequence of I tree operations, starting with an initial collection of 
singleton trees, requires a total of O(llog(z + l)) time. • 

The dynamic tree implementation stores the values of tree arcs only implicitly. 
If we were to store these values explicitly, the operation change-value on a tree of 
size z might require O(z) time (if this tree happens to be a path), which is compu
tationally excessive for most applications. Storing the values implicitly allows us to 
update the values in only O(log z) time. How the values are actually stored and 
manipulated is beyond the scope of this book. 

How might we use the dynamic tree data structure to improve the computa
tional performance of network flow algorithms. Let us use the shortest augmenting 
path algorithm as an illustration. The following basic idea underlies the algorithmic 
speed-up. In the dynamic tree implementation, each arc in the rooted tree is an 
admissible arc [recall that an arc (i, j) is admissible if rij > 0 and d(i) = d(j) + 1]. 
The value of an arc is its residual capacity. For example, consider the residual 
network given in Figure 8.10(a), which shows the distance labels next to the nodes 
and residual capacities next to the arcs. Observe that in this network, every arc, 
except the arc (12, 13), is admissible; moreover, the residual capacity of every arc 
is 2, except for the arc (12, 14) whose residual capacity is 1. Figure 8.10(b) shows 
one collection of rooted trees for this example. Notice that although every tree arc 
is admissible, every admissible arc need not be in some tree. Consequently, for a 
given set of admissible arcs, many collections of rooted trees are possible. 
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Sink 

Before describing this implementation formally, we first show how the algo
rithm works on our example. It maintains a rooted tree containing the source node 
and progressively expands this tree until it contains the sink node, at which point 
the algorithm performs an augmentation. To grow the tree containing the source, 
the algorithm repeatedly performs link operations. In our example, the algorithm 
starts with the singleton tree To containing only the source node 1 [see Figure 8.1O(b)]. 
It identifies an admissible arc emanating from node 1. Suppose that we select arc 
(1, 2). The algorithm performs the operation link(1, 2, 2), which joins two rooted 
trees, giving us a larger tree Tl containing node 1 [see Figure 8.10(c)]. The algorithm 
then identifies the root of T1 , by performing the operation find-root(1), which iden
tifies node 5. The algorithm tries to find an admissible arc emanating from node 5. 
Suppose that the algorithm selects the arc (5, 6). The algorithm performs the op
eration link(5, 6, 2) and obtains a larger tree T2 containing node 1 [see Figure 8.1.0(d)]. 
In the next iteration, the algorithm identifies node 8 as the root of T2 • Suppose that 
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the algorithm selects arc (8, 10) as the admissible arc emanating from node 8. The 
algorithm performs the operation link(8, 10, 2) and obtains a rooted tree T3 that 
contains both the source and sink nodes [see Figure 8.10(e)]. 

Observe that the unique path from the source to the sink in T3 is an admissible 
path since by construction every arc in a rooted tree is admissible. The residual 
capacity of this path is the minimum value of the arcs in this path. How can we 
determine this value? Recall that the operation find-min(1) would determine an ances
tor of node 1 with the minimum value of find-value, which is node 12 in our example. 
Performing find-value(12) will give us the residual capacity of this path, which is 1 
in this case. We have thus discovered the possibility of augmenting 1 unit of flow 
along the admissible path and that arc (12, 14) is the blocking arc. We perform the 
augmentation by executing change-value(1, -1). This augmentation reduces the re
sidual capacity of arc (12, 14) to zero. The arc (12, 14) now becomes inadmissible 
and we must drop it from the collection of rooted trees. We do so by performing 
cut(12). This operation gives us the collection of rooted trees shown in Figure 8.10(0. 

To better understand other situations that might occur, let us execute the al
gorithm for one more iteration. We apply the dynamic tree algorithm starting with 
the collection of rooted trees given in Figure 8.10(0. Node 12 is the root of the tree 
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containing node 1. But node 12 has no outgoing admissible arc; so we relabel node 
12. This relabeling increases the distance label of node 12 to 3. Consequently, arcs 
(10, 12) and (11, 12) become inadmissible and we must drop them from the collection 
of rooted trees. We do so by performing cut(10) and cut(ll), giving us the rooted 
trees shown in Figure 8.11(a). The algorithm again executes find-root(1) and finds 
node 10 as the root of the tree containing node 1. In the next two operations, the 
algorithm adds arcs (10, 13) and (15, 16); Figure 8.11(b) and 8.11(c) shows the cor
responding trees. 

(a) 

• (b) 

(c) 

~ ,)1"'" 
. \~ 

til' 
m 

• 
"

" " , 

, , 
'\<, 

Figure 8.11 Another augmentation using dynamic trees. 

Figures 8.12 and 8.13 give a formal statement of the algorithm. After offering 
explanatory comments, we consider a worst-case analysis of the algorithm. The 
algorithm is same as the one we presented in Section 7.4 except that it performs the 
procedures advance, retreat, and augment differently using trees. The first two pro
cedures, tree-advance and tree-retreat, are straightforward, but the tree-augment 
procedure requires some explanation. If node p is an ancestor of node s with the 
minimum value of find-value(p) and, among such nodes in the path, it is Closest to 
the sink, then find-value(p) gives the residual capacity of the augmenting path. The 
operation change(s, -8) implicitly updates the residual capacities of all the arcs in 
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algorithm tree-augmenting-path; 
begin 

x: = 0; 
perform a reverse breadth-first search of the residual network 

from node t to obtain the distance labels d(i); 
let T be the collection of all singleton nodes; 
i: = s; 
while d(s) < n do 
begin 

if i has an admissible arc then tree-advance(i) 
else tree-retreat(t); 
if i = t then tree-augment; 

end; 
end; 

Figure 8.12 Dynamic tree implementa
tion of the shortest augmenting path al
gorithm. 

the augmenting path. This augmentation might cause the capacity of more than one 
arc in the path to become zero. The while loop identifies all such arcs, one by one, 
and deletes them from the collection of rooted trees. 

We now consider the worst-case comp!exity of the algorithm. Why is the dy
namic tree implementation more efficient than the original implementation of the 
shortest augmenting path algorithm? The bottleneck operations in the original short
est augmenting path algorithm are the advance and augment operations, which re
quire O(n2 m) time. Each advance operation in the original algorithm adds one arc; 

procedure tree-advance(t); 
begin 

let (i, j) be an admissible arc in A(i); 
Iink(i, j, rij); 
i: = find-root(}); 

end; 

(a) 

procedure tree-retreat(t); 
begin 

d(i) : = min{d(j) + 1 : (i, j) E A(i) and {;j> O}; 
for each tree arc (k, i) do cut(k); 
i: = find-root(s); 

end; 

(b) 

procedure tree-augment; 
begin 

p: = find-min(s); 
8 : = find-va/ue(p); 
change-va/ue(s, -8); 
while find-va/ue(p) = 0 do cut(p) and set p : = find-min(s); 
i: = find-root(s); 

end; 

(c) 
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in contrast, the tree implementation adds a collection of arcs using the link operation. 
Thus the dynamic tree implementation substantially reduces the number of execu
tions of the link operation. Similarly, while augmenting flow, the tree implementation 
augments flow over a collection of arcs by performing the operation change-value, 
thus again substantially reducing the number of required updates. 

We now obtain a bound on the number of times the algorithm performs various 
tree operations. We will show that the algorithm performs each of the tree operations 
O(nm) times. In deriving these bounds, we make use of the results of Lemma 7.9, 
proved in Section 7.4. 

cut(j). The algorithm performs this operation during the tree-retreat and 
tree-augment operations. During the tree-retreat(i) operation, the algorithm might 
perform this operation as many times as the number of incoming arcs at node i. 
Since this operation relabels node i, and we can relabel a node at most n times, these 
operations sum to O(n2

) over all nodes. Furthermore, during the tree-augment op
eration, we perform the cut operation for each arc saturated during an augmentation. 
Since the total number of arc saturations is O(nm), the number of these operations 
sums to O(nm). 

link(i, j, val). Each link operation adds an arc to the collection of rooted 
trees. Observe that if an arc enters a rooted tree, it remains there until a cut operation 
deletes it from the tree. Therefore, the number of link operations is at most (n -1) 
plus the number of cut operations. The term (n - 1) arises because initially the 
collection might contain no arc, and finally, it might contain as many as (n - 1) 
arcs. Consequently, the total number of link operations is also O(nm). Since each 
tree-advance operation performs a link operation, the previous result also implies 
an O(nm) bound on the total number of tree-advance operations. 

change-value(i, val). The algorithm performs this operation once per aug
mentation. Since the number of augmentations is at most nml2, we immediately 
obtain a bound of O(nm) on the number of change-value operations. 

find-value(i) and find-min(i). The algorithm performs each of these two 
operations once per augmentation and once for each arc saturated during the aug
mentation. These observations imply a bound of O(nm) on the number of executions 
of these two operations. 

find-root(i). The algorithm performs this operation once during each exe
cution of the tree-advance, tree-augment, and tree-retreat operations. Since the al
gorithm executes the first two operations O(nm) times and the third operation O(n2) 
times, it executes the find-root operation O(nm) times. 

Using simple arguments, we have now shown that the algorithm performs each 
of the six tree operations O(nm) times. It performs each tree operation on a tree of 
maximum size n. The use of Lemma 8.9 establishes the following important result. 
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Theorem 8.10. The dynamic tree implementation of the shortest augmenting 
path algorithm solves the maximum flow problem in O(nm log n) time. • 

Although this result establishes the theoretical utility of the dynamic tree data 
structure for improving the worst-case complexity of the shortest augmenting path 
algorithm, the practical value of this data structure is doubtful. The dynamic tree 
implementation reduces the time for performing advance and augment operations 
from O(n2 m) to O(nm log n), but simultaneously increases the time of performing 
retreat operations from O(nm) to O(nm log n). Empirical experience shows that the 
retreat operation is one of the bottleneck operations in practice. Since the dynamic 
tree data structure increases the running time of a bottleneck operation, the use of 
this data structure actually slows down the algorithm in practice. Furthermore, this 
data structure introduces substantial overhead (i.e., a large-constant factor of work 
is associated with each tree operation), thus making it of limited practical utility. 

8.6 NETWORK CONNECTIVITY 

The connectivity of a network is an important measure of the network's reliability 
or stability. The arc connectivity of a connected network is the minimum number 
of arcs whose removal from the network disconnects it into two or more components. 
In this section we suggest algorithms for solving the arc connectivity problem on 
undirected networks. The algorithms for solving connectivity problems on directed 
networks are different from those we will be discussing; we consider these algorithms 
in the exercises for this chapter. To conform with this choice of coverage, in this 
section by the term "network" we will invariably mean an undirected (connected) 
network. 

The node connectivity of a network equals the minimum number of nodes whose 
deletion from the network disconnects it into two or more components: We discuss 
issues related to node connectivity in Exercise 8.35. We begin by defining several 
terms. A disconnecting set is a set of arcs whose deletion from the network dis
connects it into two or more components. Therefore, the arc connectivity of a net
work equals the minimum cardinality of any disconnecting set; we refer to this set 
of arcs as a minimum disconnecting set. 

The arc connectivity of a pair of nodes i and j is the minimum number of arcs 
whose removal from the network disconnects these two nodes. We represent the 
pair of nodes i andj by [i, j] and the arc connectivity of this pair by aU, j]. We also 
let a(G) denote the arc connectivity of the network G. Consequently, 

a(G) = min{a[i,j]:[i,j] E N x N}. (8.10) 

We first bring together some elementary facts concerning the arc connectivity 
of a network; we ask the reader to prove these properties in Exercise 8.29. 

Property 8.11. 
(a) a[i, j] = aU, i] for every pair of nodes [i, j]. 
(b) The arc connectivity of a network cannot exceed the minimum degree of nodes 

in the network. Therefore, a(G) :::; LmlnJ. 
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(c) Any minimum disconnecting set partitions the network into exactly two com
ponents. 

(d) The arc connectivity of a spanning tree equals 1. 
(e) The arc connectivity of a cycle equals 2. 

Let 8 denote the minimum degree of a node in the network and let node p be 
a node with degree equal to 8. Property S.l1(b) implies that a.(G) :5 8 :5 lmlnJ. 
Since a minimum disconnecting set partitions the node set into exactly two com
ponents S* C Nand S* = N - S*, we can represent this cut by the notation 
[S*, S*]. We assume, without any loss of generality, that node p E S*. 

Our development in Chapter 6 provides us with a means for determining the 
arc connectivity of a network. Theorem 6.7 states that the minimum number of arcs 
in a network whose removal disconnects a specified pair of source and sink nodes 
equals the maximum number of arc-disjoint paths from the source to the sink. Fur
thermore, the proof of this theorem shows that we can obtain the maximum number 
of arc-disjoint paths from the source to the sink by solving a maximum flow problem 
in a network G whose arcs all have capacity equal to 1. Thus, to determine the arc 
connectivity of a network, we need to solve a unit capacity maximum flow problem 
between every pair of nodes (by varying the source and sink nodes); the minimum 
value among such flows is a.( G). Since solving a unit capacity maximum flow problem 
requires O(min{n2/3m, m 3/2}) time (see Section S.2), this approach produces an al
gorithm running in time O(n2 min{n2/3m, m3/2}). 

We can easily improve on this approach by a factor of n using the following 
idea. Consider a node k E S* and recall that node p E S*. Since the cut [S*, S*] 
disconnects nodes p and k, the minimum cardinality of a set of arcs that will dis-
connect these two nodes is at most / [S*, S*] /. That is, > 

a.[p, k] :5 / [S*, S*] /. (S.l1) 

Next observe that [S*, S*] is a minimum disconnecting set of the network. 
The definition (S.lO) of a.( G) implies that 

a.[p, k] ;::: / [S*, S*] I. (S.12) 

Using (S.l1) and (S.12), we see that 

a.[p, k] 1 [S*, S*] I. (S.13) 

The preceding observations imply that if we compute a.[p,j] for allj, the min
imum among these numbers equals a.(G). To summarize the discussion, we can write 

a.(G) = min{a.[p,j]:j EN - {pH. 

The preceding approach permits us to determine the arc connectivity of 
a network by solving (n - 1) unit capacity maximum flow problems, requiring 
O(min{n5/3m , nm312}) time. We can improve this time bound for sparse networks by 
solving these maximum flow problems using the labeling algorithm described in 
Section 6.5 instead of the specialized unit capacity algorithms described in Section 
S.2. The labeling algorithm will perform at most lmlnJ augmentations to solve each 
maximum flow problem (because the degree of node p is 8 :5 lmlnJ) and would 
require O(m2In) time. This approach requires O(m2) time to solve all the maximum 
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flow problems. Since nm3/2
;::: m 2

, we can determine the arc connectivity ofanetwork 
in O(min{n5/3 m, m 2

}) time. This algorithm is by no means the best algorithm for 
determining the arc connectivity of a network. We next describe an algorithm that 
computes arc connectivity in only O(nm) time. 

Just as the preceding algorithm determines the minimum cardinality of a set 
of arcs between pairs of nodes, the improved algorithm determines the minimum 
cardinality of a set of arcs that disconnects every node in a set S from some node 
k E S; we denote this number by a[S, k]. We can compute a[S, k] using the labeling 
algorithm as follows: We allow the augmentation to start at any node in S but end 
only at node k. When the labeling algorithm terminates, the network contains no 
directed path from any node in S to node k. At this point the set of labeled nodes 
defines a cut in the network and the number of forward arcs in the cut is a[S, k]. 

Our preceding algorithm determines the arc connectivity of a network by com
puting a[p,j] for each nodej E N - {p} and taking the minimum of these numbers. 
The correctness of this approach uses the fact that a( G) equals a[p, j] for some 
choice of the nodes p andj. Our improvea algorithm determines the arc connectivity 
of a network by computing a[S, k] for at most (n - 1) combinations of Sand k and 
taking the minimum of these numbers. The algorithm selects the combinations Sand 
k quite cleverly so that (1) for at least one combination of Sand k, a[S, k] = a(G); 
and (2) the labeling algorithm can compute a[S, k] for every combination in an 
average of O(m) time because most augmentations involve only two arcs. Therefore 
this algorithm determines the arc connectivity of a network in O(nm) time. 

Before describing the algorithm, we first introduce some notation. For any set 
S of nodes, we let neighbor(S) denote the set of nodes in S that are adjacent to some 
node in S, and nonneighbor(S) as the set of nodes in S that are not adjacent to any 
node in S. Consequently, N = S U neighbor(S) U nonneighbor(S). Our improved 
arc connectivity algorithm depends on the following crucial result. 

Lemma 8.12. Let 8 be the minimum node degree of a network G and let 
[S*, S*] denote a minimum disconnecting set of the network. .. Suppose that a( G) :5 

8 - 1. Then for any set S ~ S*, nonneighbor(S) is nonempty. 

Proof We first notice that the maximum number of arcs emanating from nodes 
in S* is 1 S* 1 (I S* 1 - 1) + a(G) because any such arc either has both its endpoints 
in S* or belongs to the minimum disconnecting set. Next notice that the minimum 
number of arcs emanating from the nodes in S* is 8 1 S* 1 because 8 is the minimum 
node degree. Therefore, 

1 S* 1 (I S* 1 - 1) + a(G) ;::: 1 S* 1 8. 

Adding 8 to both the sides of this inequality and simplifying the expression gives 

(I S* 1 - 1)(1 S* 1 - 8) ;::: 8 - a(G) ;::: 1. 

The last inequality in this expression follows from the fact a( G) :5 8 - 1. Notice 
that the inequality (I S* 1 - 1)(1 S* 1 - 8) ;::: 1 implies that both the terms to the left 
are at least one. Thus 1 S* 1 ;::: 8 + 1; that is, the set S* contains at least 8 + 1 
nodes. Since the cut [S*, S*] contains fewer than 8 arcs, at least one of the nodes 
in S* is not adjacent to any node in S*. Consequently, the set nonneighbor(S) must 
be nonempty, which establishes the lemma. • 
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The improved arc connectivity algorithm works as follows. It starts with S = 
{p}, selects a node k E nonneighbor(S), and computes a[S, k]. It then adds node k 
to S, updates the sets neighbor(S) and nonneighbor(S), selects another node k E 
nonneighbor(S) and computes a[S, k]. It repeats this operation until the set non
neighbor(S) is empty. The minimum value of a[S, k], obtained over all the iterations, 
is a( G). Figure 8.14 gives a formal description of this algorithm. 

algorithm arc connectivity; 
begin 

let p be a minimum degree node in the network and 8 be its degree; 
set S* : = {p} and ex' : = 8; 
set S: = {p}; 
initialize neighbor(S) and nonneighbor(S); 
while nonneighbor(S) is nonempty do 
begin 

select a node k E nonneighbor(S); 
compute ex[S, k] using the labeling algorithm for the maximum flow 

problem and let [R, Rj be the corresponding disconnecting cut; 
if ex' > ex[S, k] then set ex' : = ex[S, k] and [S*, 81 : = [R, Rj; 
add node kto S and update neighbor(S), nonneighbor(S); 

end; 
end; 

Figure 8.14 Arc connectivity algorithm. 

To establish the correctness of the arc connectivity algorithm, let [S*, S*] 
denote the minimum disconnecting set. We consider two cases: when a(G) = 8 and 
when a(G) :5 8 - 1. If a(G) = 8, the algorithmic description in Figure 8.14 implies 
that the algorithm would terminate with [p, N - {p}] as the minimum disconnecting 
set. Now suppose a(G):5 8 - 1. During its execution, the arc connectivity algorithm 
determines a[S, k] for different combinations of Sand k; we need to show that at 
some iteration, a(S, k) would equal a(G). We establish this result by proving that 
at some iteration, S ~ S* and k E S*, in which case a[S, k] = a(G) because the 
cut [S*, S*] disconnects every node in S from node k. Notice that initially S* contains 
S (because both start with p as their only element), and finally it does not because, 
from Lemma 8.9, as long as S* contains S, nonneighbor(S) is nonempty and the 
algorithm can add nodes to S. Now consider the last iteration for which S ~ S*. 
At this iteration, the algorithm selects a node k that must be in S* because S U 
{k} Cl. S*. But then a[S, k] = a(G) because the cut [S*, S*] disconnects S from 
node k. This conclusion shows that the arc connectivity algorithm correctly solves 
the connectivity problem. 

We next analyze the complexity of the arc connectivity algorithm. The algo
rithm uses the labeling algorithm described in Section 6.5 to compute a[S, k]; sup
pose that the labeling algorithm examines labeled nodes in the first-in, first-out order 
so that it augments flow along shortest paths in the residual network. Each aug
menting path starts at a node in S, terminates at the node k, and is one of two types: 
Its last internal node is in neighbor(S) or it is in nonneighbor(S). All augmenting 
paths of the first type are of length 2; within an iteration, we can find any such path 
in a total of O(n) time (why?), so augmentations of the first type require a total of 
O(n2

) time in all iterations. Detecting an augmenting path of the second type requires 
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O(m) time; it is possible to show, however, that in all the applications of the labeling 
algorithm in various iterations, we never encounter more than n such augmenting 
paths. To see this, consider an augmenting path of the second type which contains 
node I E nonneighbor(S) as the last internal node in the path. At the end of this 
iteration, the algorithm will add node k to S; as a result, it adds node I to neighbor(S); 
the node will stay there until the algorithm terminates. So each time the algorithm 
performs an augmentation of the second type, it moves a node from the set non
neighbor(S) to neighbor(S). Consequently, the algorithm performs at most n aug
mentations of the second type and the total time for these augmentations will be 
O(nm). The following theorem summarizes this discussion. 

Theorem 8.13. In O(nm) time the arc connectivity algorithm correctly de-
termines the arc connectivity of a network. • 

8.7 ALL-PAIRS MINIMUM VALUE CUT PROBLEM 

In this section we study the all-pairs minimum value cut problem in undirected 
network, which is defined in the following manner. For a specific pair of nodes i 
and j, we define an [i, j] cut as a set of arcs whose deletion from the network 
disconnects the network into two components Sij and Sij so that nodes i andj belong 
to different components (i.e., if i E Sij, thenj E Sij; and if i E Sij, thenj E Sij). We 
refer to this [i, j] cut as [Sij, Sij] and say that this cut separates nodes i and j. We 
associate with a cut [Sij, Sij], a value that is a function of arcs in the cut. A minimum 
[i, j] cut is a cut whose value is minimum among all [i, j] cuts. We let [st, St] 
denote a minimum value [i, j] cut and let v[i, j] denote its value. The all-pairs niin
imum value cut problem requires us to determine for all pairs of nodes i and j, a 
minimum value [i, j] cut [S t, S t] and its value v[i, j]., 

The definition of a cut implies that if [Sij, Sij] is an [i,j] cut, it is also a [j, i] 
cut. Therefore, v[i,j] = v[j, i] for all pairs i andj of nodes. This observation implies 
that we can solve the all-pairs minimum value cut problem by invoking n(n - 1)/2 
applications of any algorithm for the single pair minimum value cut problem. We 
can, however, do better. In this section we show that we can solve the all-pairs 
minimum value cut problem by invoking only (n - 1) applications of the single-pair 
minimum value cut problem. 

We first mention some specializations of the all-pairs minimum value cut prob
lem on undirected networks. If we define the value of a cut as its capacity (i.e., the 
sum of capacities of arcs in the cut), the all-pairs minimum value cut problem would 
identify minimum cuts (as defined in Chapter 6) between all pairs of nodes. Since 
the minimum cut capacity equals the maximum flow value, we also obtain the max
imum flow values between all pairs of nodes. Several other functions defined on a 
cut [Sij, Sij] are plausible, including (1) the number of arcs in the cut, (2) the capacity 
of the cut divided by the number of arcs in the cut, and (3) the capacity of the cut 
divided by I Sij II Sij I· 

We first state and prove an elementary lemma concerning minimum value cuts. 

Lemma 8.14. Let iJ, i2 , ••. , ik be an (arbitrary) sequence of nodes. Then 
v[iJ, h] ;::: min{v[il, i2 ], V[i2, i3 ], ••• , v[ik - J, ik ]}. 
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Proof Let i = i l ,j = ik , and [st, st] be the minimum value [i,j] cut. Consider 
the sequence of nodes ii, i2 , ••• , ik in order and identify the smallest index r 
satisfying the property that ir and ir+ I are in different components of the cut 
cst, st]· Such an index must exist because, by definition, i l = i E Sij and ik == 
JESt. Therefore, cst, st] is also an [in ir+d cut, which implies that the value of 
the minimum value [in ir+ d cut will be no more than the value of the cut 
[st, st]. In other words, 

V[ih ik] ;::: v[ir, ir+ d ;::: min{v[ih i2], V[i2, i3], •.. , V[ik-I, ik]}, (8.14) 

which is the desired conclusion of the lemma. • 

Lemma 8.14 has several interesting implications. Select any three nodes i, j, 
and k of the network and consider the minimum cut values v[i, j], v[j, k], and v[k, i] 
between them. The inequality (8.14) implies that at least two of the values must be 
equal. For if these three values are distinct, then placing the smallest value on 
the left-hand side of (8.14) would contradict this inequality. Furthermore, it is pos
sible to show that one of these values that is not equal to the other two must be the 
largest. Since for every three nodes, two of the three minimum cut values must be 
equal, it is conceivable that many of the n(n - 1)/2 cut values will be equal. Indeed, 
it is possible to show that the number of distinct minimum cut values is at most 
(n - 1). This result is the subject of our next lemma. This lemma requires some 
background concerning the maximum spanning tree problem that we discuss in 
Chapter 13. In an undirected network G, with an associated value (or, profit) for 
each arc, the maximum spanning tree problem seeks a spanning tree T*, from among 
all spanning trees, with the largest sum of the values of its arcs. In Theorem 13.4 
we state the following optimality condition for the maximum spanning tree problem: 
A spanning tree T* is a maximum spanning tree if and only if for every nontree arc 
(k, I), the value of the arc (k, I) is less than or equal to the value of every arc in the 
unique tree path from node k to node I. 

Lemma8.IS. In the n(n - 1)/2 minimum cut values between allpairs of nodes , 
at most (n - 1) values are distinct. 

Proof. We construct a complete undirected graph G ' == (N, A ') with n nodes. 
We set the value of each arc (i, j) E A 1 equal to v[i, j] and associate the cut 
cst, st] with this arc. Let T* be a maximum spanning tree of G' . Clearly, I T* I = 
n - 1. We shall prove that the value of every nontree arc is equal to the value of 
some tree arc in T* and this result would imply the conclusion of the lemma. 

Consider a nontree arc (k, l) of value v[k, I]. Let P denote the unique path in 
T* between nodes k and l. The fact that T* is a maximum spanning tree implies that 
the value of arc (k, I) is less than or equal to the value of every arc (i, j) E P. 
Therefore, 

v[k, I] :5 min[v[i, j]: (i, j) E Pl. (8.15) 

Now consider the sequence of nodes in P that starts at node k and ends at 
node I. Lemma 8.14 implies that 

v[k, I] ;::: min[v[i, j]: (i, j) E Pl. (8.16) 
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The inequalities (8.15) and (8.16) together imply that 

v[k, l] = min[v[i, j]:(i, j) E Pl. 

Consequently, the value of arc (k, I) equals the minimum value of an arc in P, 
which completes the proof of the lemma. • 

The preceding lemma implies that we can store the n(n - 1)/2 minimum cut 
values in the form of a spanning tree T* with a cut value associated with every arc 
in the tree. To determine the minimum cut values v[k, l] between a pair k and I of 
nodes, we simply traverse the tree path from node k to node I; the cut value v[k, I] 
equals the minimum value of any arc encountered in this path. Note that the pre
ceding lemma only establishes the fact that there are at most (n - 1) distinct minimum 
cut values and shows how to store them compactly in the form of a spanning tree. 
It does not, however, tell us whether we can determine these distinct cut values by 
solving (n - 1) minimum cut problems, because the proof of the lemma requires 
the availability of minimum cut values between all node pairs which we do not have. 

Now, we ask a related question. Just as we can concisely store the minimum 
cut values between all pairs of nodes by storing only (n - 1) values, can we also 
store the minimum value cuts between all pairs of nodes concisely by storing only 
(n - 1) cuts? Because the network has at most (n - 1) distinct minimum cut values 
between n(n - 1)/2 pairs of nodes, does it have at most (n - 1) distinct cuts that 
define the minimum cuts between all node pairs? In the following discussion we 
provide an affirmative answer to this question. Consider a pair k and I of nodes. 
Suppose that arc (i, j) is a minimum value arc in the path from node k to node I in 
T*. Our preceding observations imply that v[k, I] = v[i, j]. Also notice that we have 
associated a cut [st, st] of value v[i,j] = v[k, I] with the arc (i,j); this cut separates 
nodes i and j. Is [st, st] a minimum [k, I] cut? It is if [st, st] sepl:).rates nodes k 
and I, and it is not otherwise. If, indeed, [st, St] separates nodes k and I, and if 
the same result is true for every pair of nodes in the network, the cuts associated 
with arcs in T* concisely store minimum value cuts betweeri"aIl pairs of nodes. We 
refer to such a tree T* as a separator tree. In this section we show that every network 
G has a separator tree and that we can construct the separator tree by evaluating 
(n - 1) single-pair minimum cut values. Before we describe this method, we restate 
the definition of the separator tree for easy future reference. 

Separator tree. An undirected spanning tree T*, with a minimum [i, j] cut 
[st, st] of value v[i,j] associated with each arc (i,j), is a separator tree ifit satisfies 
the following property for every nontree arc (k, I): If arc (i, j) is the minimum value 
arc from node k to node I in T* (breaking ties in a manner to be described later), 
[st, st] separates nodes k and l. 

Our preceding discussion shows that we have reduced the all-pairs minimum 
value cut problem to a problem of obtaining a separator tree. Given the separator 
tree T*, we determine the minimum [k, l] cut as follows: We traverse the tree path 
from node k to node I; the cut corresponding to the minimum value in the path 
(breaking ties appropriately) is a minimum [k, I] cut. 

We call a subtree of a separator tree a separator subtree. Our algorithm for 
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constructing a separator tree proceeds by constructing a separator subtree that spans 
an expanding set for nodes. It starts with a singleton node, adds one additional node 
to the separator subtree at every iteration, and terminates when the separator tree 
spans all the nodes. We add nodes to the separator subtree in the order 1, 2, 3, ... , 
n. Let TP -) denote the separator subtree for the node set {I, 2; ... ,p - I} and 
TP denote the separator subtree for the node set {I, 2, ... ,p}. We obtain TP from 
TP -) by adding an arc, say (p, k). The essential problem is to locate the node k 
incident to node p in TP. Once we have located the node k, we identify a minimum 
value cut [S;k, S;k] between nodes p and k, and associate it with the arc (p, k). We 
set the value of the arc (p, k) equal to v[p, k]. ,; 

As already mentioned, our algorithm for constructing the separator tree adds 
arcs to the separator subtree one by one. We associate an index, called an order 
index, with every arc in the separator subtree. The first arc added to the separator 
subtree has order index 1, the second arc added has order in4ex 2, and so on. We 
use the order index to resolve ties while finding a minimum value arc between a 
pair of nodes. As a rule, whether we specify so or not in the subsequent discussion, 
we always resolve any tie in favor of the arc with the least order index (i.e., the arc 
that we added first to the separator subtree). 

Figure 8.15 describes the procedure we use to locate the node k E TP -Ion 
which the arc (p, k) will be incident in TP. 

Note that in every iteration of the locate procedure, Ta ~ Na and T[3 ~ N[3. 
This fact follows from the observation that for every k E T~ and [ E T[3, the arc 
(a., (3) is the minimum value arc in the path from node k to node [ in the separator 
subtree T and, by its definition, the cut must separate node k and node [. 

We illustrate the procedure locate using a numerical example. Consider a nine
node network with nodes numbered 1, 2, 3, ... ,9. Suppose that after five iterations, 
the separator subtree TP -) = r is as shown in Figure 8.16(a). The figure also shows 
the cut associated with each arc in the separator subtree (here we specify only 
S~f3' because we can compute S~f3 by using S~f3 = N - S~f3)' We next consider 
adding node 7 to the subtree. At this point, T = r and the minimum value arc in 
Tis (4, 5). Examining S~5 reveals that node 7 is on die same side of the cut as node 
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procedure /ocate(TP-1, p, k); 
begin 

T: = TP-1; 
while T is not a singleton node do 
begin 

let (n, 13) be the minimum value arc in T (we break ties in favor of the arc with the 
smal~st order index); 

let [~J3' ~J31 be the cut associated with the arc (ix, 13); 
let the arc (n, 13) partition the tree T into the subtrees Ta 

and T~ so th!!.t n E Ta and 13 E T~; 
let the cut [~J3' S*ap] partition the node set N into the 

subsets Na and N~ so that n E Na and 13 E N~; 
If P E Na then set T: = Ta else set T: = T~; 

end; 
set k equal to the Singleton node in T; 

end; 

Figure 8.15 Locate procedure. 

Maximum Flows: Additional Topics Chap. 8 



6 

4 

4; therefore, we updat~ T to be the subtree containing node 4. Figure 8.16(b) shows 
the tree T. Now arc (2, 3) is the minimum value arc in T. Examining S~3 reveals 
that node 7 is on the same side of the cut as node 2; so we update T so that it is the 
subtree containihg ll.pde 2. At this point, the tree T is a singleton, node 2. We set 
k = 2 and terminate the procedure. We next add arc (2, 7) to the separator subtree, 
obtain a minimum value cut between the nodes 7 and 2, and associate this cut with 
the arc (2,7). Let v[7, 2] = 5 and S~2 = {7}. Figure 8.16(c) shows the separator 
subtree spanning the nodes 1 through 7. 

3 

7 

(a) 

\ 

6 

4 

S~3= {l, 8} 

S~3= {2, 7} 

S~4= {l, 2, 3,7, 8} 

S~5= {5} 

S~6= {6, 9} 

(c) 

6 

4 

\ 

3 

7 

Figure 8.16 Illustrating the procedure locate. 

7 

(b) 

S~2= P} 

We are now in a position to prove that the subtree TP is a separator subtree 
spanning the nodes {1, 2, ... , p}. Since, by our inductive hypothesis, TP - I is a 
separator subtree on the nodes {1, 2, ... ,p - 1}, our proof amounts to establishing 
the following result for every node IE {1, 2, ... ,p - 1}: If (i,j) is the minimum 
value arc in TP in the path from node p to node I (with ties broken appropriately), 
the cut [st, st] separates the nodes p and l. We prove this result in the following 
lemma. 

Lemma 8.16. For any node I E TP-I, If(i,j) is the minimum value arc in TP 
in the path from node p to node I (when we break ties in favor of the arc with the 
least order index), [st, st] separates nodes p and I. 

Proof. We consider two possipilities for the arc (i, j). 

Case 1: (i, j) = (p, k). Let P denote the tree path in TP from node k to node 
I. The situation (i,j) = (p, k) can occur only when arc (p, k) is the unique minimum 
value arc in TP in P, for otherwise, the tie will be broken in favor of an arc other 
than the arc (p, k) (why?). Thus 

v[p, k] < v[g, h] for every arc (g, h) E P. (8.17) 
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Next consider any arc (g, h) E P. We claim that both the nodes g and h must 
belong to the same component of the cut [S;k' S;k]; for otherwise, [S;k' S;k] will 
also separate nodes g and h, so v[p, k] ;::: v[g, h], contradicting (8.17). Using this 
argument inductively for all arcs in P, we see that all the nodes in the path P (that 
starts at node k and ends at node l) must belong to the same component of the cut 
[S;k> S;k]. Since the cut [S;k' S;k] separates nodes p and k, it also separates nodes 
p and l. 

Case 2: (i, j) ¥= (p, k). We examine this case using the locate procedure. At 
the beginning of the locate procedure, T = TP - I , and at every iteration the size of 
the tree becomes smaller, until finally, T = {k}. Consider the iteration when T 
contains both the nodes k and I, but in the next iteration the tree does not contain 
node I. Let P denote the path in T from node k to node I in this iteration. It is easy 
to see that the arc (a., (3) selected by the locate procedure in this iteration must belong 
to the path P. By definition, (a., (3) is the minimum value arc in T, with ties broken 
appropriately. Since T contains the path P, (a., (3) is also a minimum value arc in P. 
Now notice from the statement ofthe lemma that arc (i,j) is defined as the minimum 
value arc in P, and since we break the tie in precisely the same manner, (i, j) = 
(a., (3). 

We next show that the cut [S~.B' S~.B] separates node p and node I. We rec
ommend that the reader refers to Figure 8.17 while reading the remainder of the 
proof. Consider the same iteration of the locate procedure considered in the pre
ceding paragraph, and let Trx , N rx , TI3 , NI3 be defined as in Figure 8.15. We have 
observed previously that Trx ~ Nrx and TI3 ~ N 13 • We assume that p E Nrx; a similar 
argument applies when pEN 13' The procedure implies that when pEN rx, we 
set T = Trx , implying that k E Trx ~ N rx . Since the cut [S~.B' S~.B] separates node k 
from node I it also separates node p from node l. The proof of the lemma is 
complete. • 
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Having proved the correctness of the all-pairs minimum cut algorithm, we next 
analyze its running time. The algorithm performs (n - 1) iterations. In each iteration 
it executes the locate procedure and identifies the arc (p, k) to be added to the 
separator subtree. The reader can easily verify that an execution of the locate pro
cedure requires O(n2) time. The algorithm then solves a minimum value cut problem 
and associates this cut and its value with the arc (p, k). The following theorem is 
immediate. 

Theorem 8.17. Solving the all-pairs mmlmum value cut problem requires 
O(n3) time plus the time required to solve (n - 1) instances of the single-pair min-
imum value cut problem. • 

To summarize, we have shown that the all-pairs minimum cut algorithm finds 
the minimum capacity cut separating node i and node j (i.e., with node i on one side 
of the cut and nodej on the other side) for every node pair [i,j]. The max-flow min
cut theorem shows that this algorithm also determines the maximum flow values 
between every pair of nodes. 

Suppose, instead, that we are given a directed graph. Let f[i, j] denote the 
value of the minimum cut from node i to nodej. We cannot use the all-pairs minimum 
cut algorithm to determine f[i, j] for all node pairs [i, j] for the following simple 
reason: The algorithm would determine the minimum value of a cut separating node 
i from node j, and this value is min{f[i, j], fU, i]} because the minimum cut from 
node i to node j separates nodes i and j and so does the minimum cut from node j 
to node i. (We did not face this problem for undirected networks because the min
imum cut from node i to node j is also a minimum cut from node j to node i.) If we 
let v[i, j] = min{f[i, j], fU, i]}, we can use the all-pairs minimum cut algorithm to 
determine v[i, j] for each node pair [i, j]. Moreover, this algorithm relies on eval
uating v[i,j] for only (n - 1) pairs of nodes. Since we can determine v[i,j] by finding 
a maximum flow from node i to nodej and from nodej to node i, we can compute 
v[i, j] for all node pairs by solving (2n - 2) maximum flow problems. 

We complete this section by describing an application of the all-pairs minimum 
value cut problem. 

Application B.3 Maximum and Minimum Arc Flows in 
a Feasible Flow 

Consider the feasible flow problem that we discussed in Application 6.1. Assume 
that the network is uncapacitated and that it admits a feasible flow. For each arc 
(i, j) E A, let Cl..ij denote the minimum arc flow that (i, j) can have in some feasible 
flow, and let J3ij denote the maximum arc flow that (i, j) can have in some feasible 
flow. We will show that we can determine Cl..ij for all node pairs [i, j] by solving at 
most n maximum flow problems, and we can determine l3ij for all node pairs [i, j] 
by an application of the all-pairs minimum value cut problem. 

The problem of determining the maximum and minimum values of the arc flows 
in a feasible flow arises in the context of determining the statistical security of data 
(e.g., census data). Given a two-dimensional table A of size p x q, suppose that we 
want to disclose the row sums r;, the column sums Cj, and a subset of the matrix 
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elements. For security reasons (or to ensure confidentiality of the data), we would 
like to ensure that we have "disguised" the remaining matrix elements (or "hidden" 
entries). We wish to address the following question: Once we have disclosed the 
row and column sums and some matrix elements, how secure are the hidden entries? 
We address a related question: For each hidden element aij, what are the minimum 
and maximum values that aij can assume consistent with the data we have disclosed? 
If these two bounds are quite close, the element aij is not secure. 

We assume that each revealed matrix element has value O. We incur no loss 
of generality in making this assumption since we can replace a nonzero element aij 
by 0, replace ri by ri - aij, and replace Cj by Cj - aij' To conduct our analysis, we 
begin by constructing the bipartite network shown in Figure 8.18; in this network, 
each unrevealed matrix element aij corresponds to an arc from node i to node J. It 
is easy to see that every feasible flow in this network gives values of the matrix 
elements that are consistent with the row and column sums. 

How might we compute the aij values? Let x* be any feasible flow in the 
network (which we can determine by solving a maximum flow problem). In Section 
11.2 we show how to convert each feasible flow into a feasible ~panning tree solution; 
in this solution at most (n - 1) arcs have positive flow. As a consequence, if x* is a 
spanning tree solution, at least (m - n + 1) arcs have zero flow; and therefore, 
aij = 0 for each of these arcs. So we need to find the aij values for only the remaining 
(n - 1) arcs. We claim that we can accomplish this task by solving at most (n -
1) maximum flow problems. Let us consider a specific arc (i, j). To determine the 
minimum flow on arc (i,j), we find the maximum flow from node ito nodej in G(x*) 
when we have deleted arc (i, j). If the maximum flow from node i to node j has 
value k, we can reroute up to k units of flow from node i to node j and reduce the 
flow an arc (i, j) by the same amount. As a result, aij = max{O, xU - k}. 

To determine the maximum possible flow on arc (i, j), we determine the max
imum flow from node j to node i in G(x*). If we can send k units from node j to 
node i in G(x*), then l3ij = k. To establish this result, suppose that the k units consist 
of xij units on arc (j, i) [which is the reversal of arc (i, j)], and k - xij units that 
do not use arc (i,j). Then, to determine the maximum flow on the arc (i,j), we can 
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Figure 8.18 Feasible flow network for ensuring the statistical security of data. 
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send k - xij units of flow from node j to node i and increase the flow in arc (i, j) 
by k - xij, leading to a total of k units. 

Thus, to find 131h we need to compute the maximum flow from node j to node 
i in G(x*) for each arc (i,j) EA. Equivalently, we want to find the minimum capacity 
cut fU, i] from node j to node i in G(x*). As stated previously, we cannot find 
f[i,j] for all node pairs [i,j] in a directed network; but we can determine min{f[i,j], 
fU, i]}. We now use the fact that we need to compute fU, i] when (i, j) E A, in 
which case f[i, j] = 00 (because the network is uncapacitated). Therefore, for each 
arc (i, j) E A, f[i, j] = min{f[i, j], fU, i]}, and we can use the all-pairs minimum 
value cut algorithm to determine all of the l3ij values by solving (2n - 2) maximum 
flow problems. 

B.B SUMMARY 

As we have noted in our study of shortest path problems in our earlier chapters, we 
can sometimes develop more efficient algorithms by restricting the class of networks 
that we wish to consider (e.g., networks with nonnegative costs, or acyclic net
works). In this chapter we have developed efficient special purpose algorithms for 
several maximum flow problems with specialized structure: (1) unit capacity net
works, in which all arcs have unit capacities; (2) unit capacity simple networks, in 
which each node has a single incoming or outgoing arc; (3) bipartite networks; and 
(4) planar networks. We also considered one specialization of the maximum flow 
problem, the problem of finding the maximum number of arc-disjoint paths between 
two nodes in a network, and one generalization of the minimum cut problem, finding 
minimum value cuts between all pairs of nodes. For this last problem we permitted 
ourselves to measure the value of any cut by a function that is more general than 
the sum of the capacities of the arcs in the cut. Finally, we considered one other 
advanced topic: the use of the dynamic trees data structure to efficiently implement 
the shortest augmenting path algorithm for the maximum flow problem. 

Figure 8.19, which summarizes the basic features of the~,e various algorithms, 

Algorithm Ruuning time Features 

Maximum flow O(min{n2/3m, m3/2}) 1. Fastest available algorithm for solving the maxi-
algorithm for unit mum flow problem in unit capacity networks. 
capacity networks 2. Uses two phases: first applies the shortest 

augmenting path algorithm until the distance 
label of node s satisfies the condition des) 2: d* = 

min{ r2n2l31 , r m 1/21 }. At this point, uses the labeling 
algorithm until it establishes a maximum flow. 

3. Easy to implement and is likely to be efficient in 
practice. 

Maximum flow O(nIl2m) 1. Fastest available algorithm for solving the maxi-
algorithm for unit mum flow problem in unit capacity simple net-
capacity simple works. 
networks 2. Same two phase approach as the preceding algo-

rithm, except d* = r n1l21. 

Figure 8.19 Summary of algorithms discussed in this chapter. 
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Algorithm Running time Features 

Bipartite preflow-push O(n~m) 1. Faster approach for solving maximum flow prob-
algorithm lems in bipartite networks satisfying the condition 

nl < n2. 
2. Improved implementation of the generic preflow-

push algorithm discussed in Section 7.6. 
3. Uses "two-arc" push rule in which we always push 

flow from an active node over two consecutive ad-
missible arcs. 

4. As discussed in the exercises, significant further im-
provements are possible if we examine active nodes 
in some specific order. 

Planar maximum flow O(n log n) 1. Highly efficient algorithm for solving the maximum 
algorithm flow problem in s-t planar networks. 

2. Constructs the dual network and solves a shortest 
path problem over it. The shortest path in the dual 
network yields a minimum cut in the original net-
work and the shortest path distances yield a max-
imum flow. 

3. Applicable only to undirected s-t planar networks. 

Dynamic tree O(nm log n) 1. Uses the dynamic tree data structure to implement 
algorithm the shortest augmenting path algorithm for the max-

imum flow problem. 
2. Improves the running time of the shortest augment-

ing path algorithm from O(n2m) to O(nm log n). 
3. Similar, though not as dramatic, improvements can 

be obtained by using this data structure in preflow-
push algorithms. 

4. The dynamic tree data structure is quite sophisti-
cated, has substantial overhead and its practical 
usefulness has not yet been established. 

Arc connectivity O(nm) 1. Fastest available algorithm for obtaining the arc 
algorithm connectivity of a network. 

2. Uses the labeling algorithm for the maximum flow 
problem as a subroutine. 

3. Likely to be very efficient in practice. 
4. Applicable only to undirected networks. 

All-pairs minimum cut O(nM(n. m. U) + n3
) 1. Fastest available algorithm for solving the all-pairs 

algorithm minimum cut problem. (M(n, m, U) is the time 
needed for solving the maximum flow problem on 
a network with n nodes, m arcs, and U as the largest 
arc capacity.) 

2. Determines minimum cuts between all pairs of 
nodes in the network by solving (n - 1) maximum 
flow problems. 

3. Can be used to determine the minimum value cuts 
between all pairs of nodes in the case in which we 
define the value of a cut differently than the capacity 
of the cut. 

4. The O(n3
) term in the worst-case bound can be re-

duced to O(n2) using different data structures. 
5. Applicable to undirected networks only. 

Figure 8.19 (Continued) 



shows that by exploiting specialized structures or advanced data structures, we can 
improve on the running time of maximum flow computations, sometimes dramati
cally. 

REFERENCE NOTES 

We present the reference notes in this chapter separately for each of the several 
topics related to maximum flows that we have studied in this chapter. 

Flows in unit capacity networks. Even and TaIjan [1975] showed that 
Dinic's algorithm solves the maximum flow problem in unit capacity and unit ca
pacity simple networks in O(min{n2J3m, m312 }) and O(nll2m) time, respectively. The 
algorithms we presented in Section 8.2 are due to Ahuja and Orlin [1991]; they use 
similar ideas and have the same running times. Fernandez-Baca and Martel [1989] 
presented and analyzed algorithms for solving more general maximum flow problems 
with "small" integer capacities. 

Flows in bipartite networks. By improving on the running times of Dinic's 
[1970] and Karzanov's [1974] algorithms, Gusfield, Martel, and Fernandez-Baca 
[1987] developed the first specializations of maximum flow algorithms for bipartite 
networks. Ahuja, Orlin, Stein, and TaIjan [1990] provided further improvements and 
showed that it is possible to substitute n) for n in the time bounds of almost all 
preflow-push algorithms to obtain new time bounds for bipartite networks (recall 
that n) is the number of nodes on the smaller side of the bipartite network). This 
result implies that the generic preflow-push algorithm, the FIFO implementation, 
the highest-label implementation, and the excess scaling algorithm can solve the 
maximum flow problem in bipartite networks in O(nrm), O(n)m + nD, O(n)m + 
nrYm), and O(n)m + nr log U) time. Our discussion of the bipartite preflow-push 
algorithm in Section 8.3 is adapted from this paper. We have adapted the baseball 
elimination application from Schwartz [1966], and the network reliability application 
from Van Slyke and Frank [1972]. The paper by Gusfield, Martel, and Fernandez
Baca [1987] describes additional applications of bipartite maximum flow problems. 

Flows in planar networks. In Section 8.4 we discussed the relationship 
between minimum s-t cuts in a network and shortest paths in its dual. Given a planar 
network G, the algorithm of Hopcroft and TaIjan [1974] constructs a planar repre
sentation in O(n) time; from this representation, we can construct the dual network 
in O(n) time. Berge [1957] showed that augmenting flow along certain paths, called 
superior paths, provides an algorithm that finds a maximum flow within n augmen
tations. Itai and Shiloach [1979] described an O(n log n) implementation of this al
gorithm. Hassin [1981] showed how to compute a maximum flow from the shortest 
path distances in the dual network. We have presented this method in our discussion 
in Section 8.4. For faster maximum flow algorithms in planar (but not necessarily 
s-t planar) undirected and directed networks, see Johnson and Venkatesan [1982] 
and Hassin and Johnson [1985]. 
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Dynamic tree implementation. Sleator and TaIjan [1983] developed the 
dynamic tree data structure and used it to improve the worst-case complexity of 
Dinic's algorithm from O(n 2m) to O(nm log n). Since then, researchers have used 
this data structure on many occasions to improve the performance of a range of 
network flow algorithms. Using the dynamic tree data structure, Goldberg and Tarjan 
[1986] improved the complexity of the FIFO preflow-push algorithm (described in 
Section 7.7) from O(n3) to O(nm log (n2/m», and Ahuja, Orlin, and TaIjan [1989] 
improved the complexity of the excess scaling algorithm (described in Section 7.9) 
and several of its variants. 

Network connectivity. Even and TaIjan [1975] offered an early discussion 
of arc connectivity of networks. Some of our discussion in Section 8.6 uses their 
results. The book by Even [1979] also contains a good discussion on node connec
tivity of a network. The O(nm) time arc connectivity algorithm (for undirected net
works) that we presented in Section 8.6 is due to Matula [1987] and is currently the 
fastest available algorithm. Mansour and Schieber [1988] presented an O(nm) al
gorithm for determining the arc connectivity of a directed network. 

All-pairs minimum value cut problem. Gomory and Hu [1961] developed 
the first algorithm for solving the all-pairs minimum cut problem on undirected net
works that solves a sequence of (n - 1) maximum flow problems. Gusfield [1990] 
presented an alternate all-pairs minimum cut algorithm that is very easy to implement 
using a code for the maximum flow problem. Talluri [1991] described yet a third 
approach. The algorithm we described in Section 8.7, which is due to Cheng and 
Hu [1990], is more general since it can handle cases when the value of a cut is defined 
differently than its capacity. Unfortunately, no one yet knows how to solve the all
pairs minimum value cut problem in directed networks as efficiently. No available 
algorithm is more efficient than solving O(n2) maximum flow problems. The appli
cation of the all-pairs minimum value cut problem that we described at the end of 
Section 8.7 is due to Gusfield [1988]. Hu [1974] describes an additional application 
of the all-pairs minimum value cut problem that arises in network design. 

EXERCISES 

8.1 (a) Show that it is always possible to decompose a circulation in a unit capacity network 
into unit flows along arc-disjoint directed cycles. 

(b) Show that it is always possible to decompose a circulation in a simple network into 
unit flows along node-disjoint directed cycles. 

8.2. Let G = (N, A) be a directed network. Show that it is possible to decompose the arc 
set A into an arc-disjoint union of directed cycles if and only if G has a circulation x 
with xij = 1 for every arc (i, j) E A. Moreover, show that we can find such a solution 
if and only if the indegree of each node equals its outdegree. 

8.3. An undirected network is biconnected if it contains two node disjoint paths between 
every pair of nodes (except, of course, at the starting and terminal points). Show that 
a biconnected network must satisfy the following three properties: (1) for every two 
nodes p and q, and any arc (k, I), some path from p to q contains arc (k, I); (2) for 
every three nodes p, q, and r, some path from p to r contains node q; (3) for every 
three nodes p, q, and r, some path from p to r does not contain q. 

8.4. Suppose that you are given a maximum flow problem in which all arc capacities are 
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the same. What is the most efficient method (from the worst-case complexity point of 
view) to solve this problem? 

8.5. Using the unit capacity maximum flow algorithm, establish a maximum flow in the 
network shown in Figure 8.20. 

Figure 8.20 Example for Exercise 8.5. 

8.6. Adapt the unit capacity maximum flow algorithm for unit capacity simple bipartite networks. In 
doing so, try to obtain the best possible running time. Describe your algorithm and analyze its 
worst-case complexity. 

8.7. Consider a generalization of unit capacity networks in which arcs incident to the source 
and the sink nodes can have arbitrary capacities, but the remainder of the arcs have 
unit capacities. Will the unit capacity maximum flow algorithm still solve the problem 
in O(min{n2/3 m, m3/2

}) time, or might the algorithm require more time? Consider a 
further generalization of the problem in which arcs incident to the source, the sink, 
and one other node have arbitrary capacities. What will be the complexity of the unit 
capacity maximum flow algorithm when applied to this problem? 

8.8. We define a class of networks to be small-capacity networks if each arc capacity 
is between 1 and 4. Describe a generalization of the unit capacity maximum flow al
gorithm that would solve the maximum flow problems on small-capacity networks in 
O(min{n2/3 m, m 312

}) time. 
8.9. What is the best possible bound you can obtain on the running time of the generic 

preflow-push algorithm applied to unit capacity networks? 
8.10. Suppose we apply the preflow-push algorithm on a unit capacity simple network with 

the modification that we do not perform push/relabel operations on any node whose 
distance label exceeds n

1/2
. 

(a) Show that the modified preflow-push algorithm terminates within O(n I/2 m) time. 
(b) Show that at the termination of the algorithm, the maximum additional flow that 

can reach the sink is at most n 1/2. 

(e) Can you convert this preflow into a maximum flow in O(n1/2m) time? If yes, then 
how? 

8.11. Let x be a flow in a directed network. Assume that x is not a maximum flow. Let P 
and P' denote two successive shortest paths (i.e., P' is the shortest path after augmenta
tion on path P) and suppose that P' contains at least one arc whose reversal lies in P. 
Show that I P' I ~ I P I + 2. 

8.12. This exercise concerns the baseball elimination problem discussed in Application 8.1. 
Show that we can eliminate team 0 if and only if some nonempty set S of nodes satisfies 
the condition that 

W
max 

<_iE_s ____ ~I-s~Ji~i<~J-~~n----~i~~s~a=nd~J~·~~s~--

(Hint: Use the max-flow min-cut theorem.) 
8.13. Given two n-element arrays (X and ~, we want to know whether we can construct an 

n-node directed graph so that node i has outdegree equal to (X(i) and an indegree equal 
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to ~(i). Show how to solve this problem by solving a maximum flow problem. [Hint: 
Transform this problem to a feasible flow problem, as described in Application 6.1, on 
a complete bipartite graph G = (N1 U N 2, A) with NI = {I, 2, ... , n}, N2 = {l', 
2', ... , n'}, and A = NIx N 2 .] 

8.14. Given an n-node graph G and two n-element arrays (X and ~, we wish to determine 
whether some subgraph G' of G satisfies the property that for each node i, (X(i) and 
~(i) are the outdegree and indegree of node i. Formulate this problem as a maximum 
flow problem. (Hint: The transformation is similar to the one used in Exercise 8.13.) 

8.15. Apply the bipartite preflow-push algorithm to the maximum flow problem given in 
Figure 8.21. Among all the active nodes, push flow from a node with the smallest 
distance label. 

Source " .•• :J'.:'l--...::..::..~,.t ... q ..• ) Sink 
-~-. ... ,.;, 

Figure 8.21 Example for Exercise 8.15. 

8.16. Consider a bipartite network G = (N1 U N 2, A) with nl = I N. I ~ I N21 = n2. Show 
that when applied to this network, the shortest augmenting path algorithm performs 
O(n.(n. + n2» = O(n.n2) relabel steps and O(nlm) augmentations, and runs in 
O(nim) time. 

8.17. Suppose that we wish to find the maximum flow between two nodes in a bipartite 
network G = (N. U N 2, A) with nl = I NI I and n2 = I N21. This exercise considers 
the development of faster special implementations of the generic bipartite preflow-push 
algorithms. 
(8) Show that if the algorithm always pushes flow from an active node with the highest 

distance label, it runs in O(n~ + n.m) time. 
(b) Show that if the algorithm examines active nodes in a FIFO order, it runs in 

O(n~ + nlm) time. 
(c) Develop an excess scaling version of the generic bipartite flow algorithm and show 

that it runs in O(nlm + ni log U) time. 
8.1S. A semi-bipartite network is defined as a network G = (N, A) whose node set N can 

be partitioned into two subsets NI and N2 so that no arc has both of its endpoints in 
N 2 (i. e., we allow arcs with both of their endpoints in N I). Let n. = IN. I. n2 = I N2 1. 
and nl :s n2 . Show how to modify the generic bipartite preflow-push algorithm so that 
it solves the maximum flow problem on semi-bipartite networks in O(nim) time. 

8.19. (8) Prove that the graph shown in Figure 8.6(a) cannot be planar. (Hint: Use Euler's 
formula.) 

(b) Prove that the graph shown in Figure 8.6(b) cannot be planar. (Hint: Use Euler'S 
formula.) 

S.20. Show that an undirected planar network always contains a node with degree at most 
5. 

8.21. Apply the planar maximum flow algorithm to identify a maximum flow in the network 
shown in Figure 8.22. 
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Source 

Figure 8.22 Example for Exercise 8.21. 

8.22. Duals of directed a-t planar networks. We define the dual graph of a directed s-I planar 
network G = (N, A) as follows. We first draw an arc (I, s) of zero capacity, which 
divides the unbounded face into two faces: a new unbounded face and a new bounded 
face. We then place a node f* inside each face f of the primal network G. Let s* and 
1*, respectively, denote the nodes in the dual network corresponding to the new 
bounded face and the new unbounded face. Each arc (i, j) E A lies on the boundary 
of the two faces f I and i2; corresponding to this arc, the dual graph contains two 
oppositely directed arcs (f., f2) and (f2, fd. If arc (i,j) is a clockwise arc in the face 
fJ, we define the cost of arc (fJ, f2) as uij and the cost of (f2, fl) as zero. We define 
arc costs in the opposite manner if arc (i, j) is a counterclockwise arc in the face fl. 
Construct the dual of the s-I planar network shown in Figure 8.20. Next show that 
there is a one-to-one correspondence between s-I cuts in the primal network and di
rected paths from node s· to node t* in the dual network; moreover, show that the 
capacity of the cut equals the cost of the corresponding path. 

8.ll. Show that if G is an s-t planar directed network, the minimum number of arcs in a 
directed path from s to t is equal to the maximum number of arc-disjoint s-I cuts. (Hin/: 
Apply Theorem 6.7 to the dual of G.) 

8.24. Node coloring algorithm. In the node coloring problem, we wish to color the nodes of 
a network so that the endpoints of each arc have a different color. In this exercise we 
discuss an algorithm for coloring a planar undirected graph using at most six colors. 
The algorithm first orders the nodes of the network using the following iterative loop: 
It selects a node with degree at most 5 (from Exercise 8.20, we can always find such 
a node), deletes this node and its incident arcs from the network, and updates the 
degrees of all the nodes affected. The algorithm then examines nodes in the reverse 
order and assigns colors to them. 
(a) Explain how to assign colors to the nodes to create a valid 6-coloring (i.e., the 

endpoints of every arc have a different color). Justify your method. 
(b) Show how to implement the node coloring algorithm so that it runs in O(m) time. 

8.25. Consider the numerical example used in Section 8.5 to illustrate the dynamic tree im
plementation of the shortest augmenting path algorithm. Perform further iterations of 
the algorithm starting from Figure 8.11(c) until you find a maximum flow that has a 
value of 3. 

8.26. Solve the maximum flow problem given in Figure 8.23 by the dynamic tree implemen
tation of the shortest augmenting path algorithm. 
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Source Sink 

Figure 8.23 Example for Exercise 8.26. 

8.27. Show how to use the dynamic tree data structure to implement in O(m log n) time the 
algorithm described in Exercise 7.11 for converting a maximum preflow into a maximum 
flow. 

8.28. In Section 3.5 we showed how we can determine the flow decomposition of any flow 
in O(nm) time. Show how to use the dynamic tree data structure to determine the flow 
decomposition in O(m log n) time. 

8.29. Prove Property 8.11. 
8.30. Compute the arc connectivity for the networks shown in Figure 8.24. Feel free to 

determine the maximum number of arc-disjoint paths between any pairs of nodes by 
inspection. 

(a) (b) 

Figure 8.24 Example for Exercises 8.30 and 8.36. 

8.31. Construct an undirected network whose nodes all have degree at least 3, but whose 
arc connectivity is 2. 

8.32. An undirected network is said to be k-connected if every pair of nodes are connected 
by at least k arc-disjoint paths. Describe an O(m) algorithm for determining whether 
a network is I-connected. Use this algorithm to describe a simple O(knm) algorithm 
for determining whether a network is k-connected. This algorithm should be different 
than those described in Section 8.6. 

8.33. In a directed graph G, we define the arc connectivity, ali, j), of an ordered pair [i, j) 
of nodes as the minimum number of arcs whose deletion from the network eliminates 
all the directed path from node ito nodej. We define the arc connectivity of a network 
Gas a(G) = min{a[i,j):[i,j) EN x N}. Describe an algorithm for determining a(G) 
in O(min{n513 m, m 2

}) time and prove that this algorithm correctly determines the arc 
connectivity of any directed network. (Hint: Let p be a node in G of minimum degree. 
Determine a[p,j] and a[j, p) for allj, and take the minimum of these numbers.) 
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8.34. Arc connectivity of directed networks (Schnorr [1979]). In Exercise 8.33 we showed how 
to determine the arc connectivity a( G) of a directed network G by solving at most 2n 
maximum flow problems. Prove the following result, which would enable us to deter
mine the arc connectivity by solving n maximum flow problems. Let 1, 2, ... , n be 
any ordering of the nodes in the network, and let node (n + 1) = l. Show that 
a(G) = min{a[i, ; + 1]:; = 1, ... , n}. 

8.35. Node connectivity of undirected networks. We define the node connectivity, ~[i, j], of 
a pair [i, j] of nodes in an undirected graph G = (N, A) as the minimum number of 
nodes whose deletion from the network eliminates all directed paths from node i to 
nodej. 
(8) Show that if (i, j) E A, then ~[i, j] is not defined. 
(b) Let H = ([i,j] EN x N:(i,j) e A} and let ~(G) = min{~[i,j]:[i,j] E H} denote 

the node connectivity of a network G. Show that ~(G) :s 2lmlnJ. 
(c) Show that the node connectivity of a network is no more than its arc connectivity. 
(d) A natural strategy for determining the node connectivity of a network would be to 

generalize an arc connectivity algorithm described in Section 8.6. We fix a node p 
and determine ~[P. j] for eachj for which (P. j) ~ A. Using Figure 8.25 show that 
the minimum of these values will not be equal to ~(G). Explain why this approach 
fails for finding node connectivity even though it works for finding arc connectivity. 

Figure 8.25 Example for Exercise 8.35. 

8.36. Solve the all-pairs minimum cut problems given in Figure 8.24. Obtain the separator 
tree for each problem. 
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