
9

MINIMUM COST FLOWS: BASIC
ALGORITHMS

Chapter OutlbJe

9.1 Introduction
9.2 Applications
9.3 Optimality Conditions
9.4 Minimum Cost Flow Duality

... men must walk, at least, before they dance.
-Alexander Pope

9.5 Relating Optimal Flows to Optimal Node Potentials
9.6 Cycle-Canceling Algorithm and the Integrality Property
9.7 Successive Shortest Path Algorithm
9.8 Primal-Dual Algorithm
9.9 Out -of-Kilter Algorithm
9. 10 Relaxation Algorithm
9.11 Sensitivity Analysis
9.12 Summary

9.1 INTRODUCTION

The minimum cost flow problem is the central object of study in this book. In the
last five chapters, we have considered two special cases of this problem: the shortest
path problem and the maximum flow problem. Our discussion has been multifaceted:
(1) We have seen how these problems arise in application settings as diverse as
equipment replacement, project planning, production scheduling, census rounding,
and analyzing round-robin tournaments; (2) we have developed a number of algo
rithmic approaches for solving these problems and studied their computational com
plexity; and (3) we have shown connections between these problems and more gen
eral problems in combinatorial optimization such as the minimum cut problem and
a variety of min-max duality results. As we have seen, it is easy to understand the
basic nature of shortest path and maximum flow problems and to develop core
algorithms for solving them; nevertheless, designing and analyzing efficient algo
rithms is a very challenging task, requiring considerable ingenuity and considerable
insight concerning both basic algorithmic strategies and their implementations.

As we begin to study more general minimum cost flow problems, we might ask
ourselves a number of questions.

294

1. How much more difficult is it to solve the minimum cost flow problem than
its shortest path and maximum flow specializations?

2. Can we use some of the same basic algorithmic strategies, such as label-setting
and label-correcting methods, and the many variants of the augmenting path
methods (e.g., shortest augmenting paths, scaling methods) for solving mini
mum cost flow problems?

3. The shortest path problem and the maximum flow problem address different
components of the overall minimum cost flow problem: Shortest path problems
consider arc flow costs but no flow capacities; maximum flow problems con
sider capacities but only the simplest cost structure. Since the minimum cost
flow problem combines these problem ingredients, can we somehow combine
the material that we have examined for shortest path and maximum flow prob
lems to develop optimality conditions, algorithms, and underlying theory for
the minimum cost flow problem?

In this and the next two chapters, we provide (partial) answers to these ques
tions. We develop a number of algorithms for solving the minimum cost flow prob
lem. Although these algorithms are not as efficient as those for the shortest path
and maximum flow problems, they still are quite efficient, and indeed, are among
the most efficient algorithms known in applied mathematics, computer science, and
operations research for solving large-scale optimization problems.

We also show that we can develop considerable insight and useful tools and
methods of analysis by drawing on the material that we have developed already.
For example, in order to give us a firm foundation for developing algorithms for
solving minimum cost flow problems, in Section 9.3 we establish optimality con
ditions for minimum cost flow problems based on the notion of node potentials
associated with the nodes in the underlying network. These node potentials are
generalizations of the concept of distance labels that we used in our study of shortest
path problems. Recall that we were able to use distance labels to characterize optimal
shortest paths; in addition, we used the distance label optimality conditions as a
starting point for developing the basic iterative label-setting and label-correcting
algorithms for solving shortest path problems. We use the node potential in a similar
fashion for minimum cost flow problems. The connection with shortest paths is much
deeper, however, than this simple analogy between node potentials and distance
labels. For example, we show how to interpret and find the optimal node potentials
for a minimum cost flow problem by solving an appropriate shortest path problem:
The optimal node potentials are equal to the negative of the optimal distance labels
from this shortest path problem.

In addition, many algorithms for solving the minimum cost flow problem com
bine ingredients of both shortest path and maximum flow algorithms. Many of these
algorithms solve a sequence of shortest path problems with respect to maximum
flow-like residual networks and augmenting paths. (Actually, to define the residual
network, we consider both cost and capacity considerations.) We consider four such
algorithms in this chapter. The cycle-canceling algorithm uses shortest path com
putations to find augmenting cycles with negative flow costs; it then augments flows
along these cycles and iteratively repeats these computations for detecting negative

Sec. 9.1 Introduction 295

cost cycles and augmenting flows. The successive shortest path algorithm incre
mentally loads flow on the network from some source node to some sink node, each
time selecting an appropriately defined shortest path. The primal-dual and out-of
kilter algorithms use a similar algorithmic strategy: at every iteration, they solve a
shortest path problem and augment flow along one or more shortest paths. They
vary, however, in their tactics. The primal-dual algorithm uses a maximum flow
computation to augment flow simultaneously along several shortest paths. Unlike
all the other algorithms, the out-of-kilter algorithm permits arc flows to violate their
flow bounds. It uses shortest path computations to find flows that satisfy both the
flow bounds and the cost and capacity based optimality conditions.

The fact that we can implement iterative shortest path algorithms in so many
ways demonstrates the versatility that we have in solving minimum cost flow prob
lems. Indeed, as we shall see in the next two chapters, we have even more versatility.
Each of the algorithms that we discuss in this chapter is pseudopolynomial for prob
lems with integer data. As we shall see in Chapter to, by using ideas such as scaling
of the problem data, we can also develop polynomial-time algorithms.

Since minimum cost flow problems are linear programs, it is not surprising to
discover that we can also use linear programming methodologies to solve minimum
cost flow problems. Indeed, many of the various optimality conditions that we have
introduced in previous chapters and that we consider in this chapter are special cases
of the more general optimality conditions of linear programming. Moreover, we can
interpret many of these results in the context of a general theory of duality for linear
programs. In this chapter we devel()p these duality results for minimum cost flow
problems. In Chapter 11 we study the application of the key algorithmic approach
from linear programming, the simplex method, for the minimum cost flow problem.
In this chapter we consider one other algorithm, known as the relaxation algorithm,
for solving the minimum cost flow problem.

To begin our discussion of the minimum cost flow problem, we first consider
some additional applications, which help to show the importance of this problem in
practice. Before doing so, however, let us set our notation and some underlying
definitions that we use throughout our discussion.

Notation and Assumptions

Let G == (N, A) be a directed network with a cost Cu and a capacity Uu associated
with every arc (i, j) E A. We associate with each node i E N a number b(i) which
indicates its supply or demand depending on whether b(i) > 0 or b(i) < O. The
minimum cost flow problem can be stated as follows:

subject to

Minimize z(x) L cijxij (9.ta)

L Xu
{j: (i.j)EA}

(i.j)EA

L Xji = b(i) for all i E N,
{j:(j.i)EA}

for all (i, j) E A.

(9.tb)

(9.1c)

Let C denote the largest magnitude of any arc cost. Further, let U denote the

296 Minimum Cost Flows: Basic Algorithms Chap. 9

largest magnitude of any supply/demand or finite arc capacity. We assume that the
lower bounds lij on arc flows are all zero. We further make the following assumptions:

Assumption 9.1. All data (cost, supply/demand. and capacity) are integral.

As noted previously, this assumption is not really restrictive in practice because
computers work with rational numbers which we can convert to integer numbers
by mUltiplying by a suitably large number.

Assumption 9.2. The network is directed.

We have shown in Section 2.4 that we can always fulfill this assumption by
transforming any undirected network into a directed network.

Assumption 9.3. The supplies/demands at the nodes satisfy the condition
LiEN b(i) = ° and the minimum cost flow problem has a feasible solution.

We can determine whether the minimum cost flow problem has a feasible so
lution by solving a maximum flow problem as follows. Introduce a source node s*
and a sink node t*. For each node i with b(i) > 0, add a "source" arc (s*, i) with
capacity b(i), and for each node i with b(i) < 0, add a "sink" arc (i, t*) with capacity
- b(i). Now solve a maximum flow problem from s* to t*. If the maximum flow
saturates all the source arcs, the minimum cost flow problem is feasible; otherwise.
it is infeasible. For the justification of this method, see Application 6.1 in Section
6.2.

Assumption 9.4. We assume that the network G contains an uncapacitated
directed path (i.e., each arc in the path has infinite capacity) between every pair
of nodes.

We impose this condition, if necessary, by adding artificial arcs (l, j) and
(j, 1) for eachj E N and assigning a large cost and infinite capacity to each of these
arcs. No such arc would appear in a minimum cost solution unless the problem
contains no feasible solution without artificial arcs.

Assumption 9.5. All arc costs are nonnegative.

This assumption imposes no loss ·of generality since the arc reversal transfor
mation described in Section 2.4 converts a minimum cost flow problem with negative
arc lengths to those with nonnegative arc lengths. This transformation, however,
requires that all arcs have finite capacities. When some arcs are uncapacitated, we
assume that the network contains no directed negative cost cycle of infinite capacity.
If the network contains any such cycles, the optimal value of the minimum cost flow
problem is unbounded; moreover, we can detect such a situation by using the search
algorithm described in Section 3.4. In the absence of a negative cycle with infinite
capacity, we can make each uncapacitated arc capacitated by setting its capacity
equal to B, where B is the sum of all arc capacities and the supplies of all supply
nodes; we justify this transformation in Exercise 9.36.

Sec. 9.1 Introduction 297

Residual Network

Our algorithms rely on the concept of residual networks. The residual network G(x)
corresponding to a flow x is defined as follows. We replace each arc (i, j) E A by
two arcs (i, j) and (j, 0. The arc (i, j) has cost Cij and residual capacity rij = Uij -
xv' and the arc (j, i) has cost Cji = - cij and residual capacity rji = Xij. The residual
network consists only of arcs with positive residual capacity.

9.2 APPLICATIONS

Minimum cost flow problems arise in almost all industries, including agriculture,
communications, defense, education, energy, health care, manufacturing, medicine,
retailing, and transportation. Indeed, minimum cost flow problems are pervasive in
practice. In this section, by considering a few selected applications that arise in
distribution systems planning, medical diagnosis, public policy, transportation, man
ufacturing, capacity planning, and human resource management, we give a passing
glimpse of these applications. This discussion is intended merely to introduce several
important applications and to illustrate some of the possible uses of minimum cost
flow problems in practice. Taken together, the exercises in this chapter and in Chap
ter 11 and the problem descriptions in Chapter 19 give a much more complete picture
of the full range of applications of minimum cost flows.

Application 9.1 Distribution Problems

A large class of network flow problems centers around shipping and distribution
applications. One core model might be best described in terms of shipments from
plants to warehouses (or, alternatively, from warehouses to retailers). Suppose that
a firm has p plants with known supplies and q warehouses with known demands. It
wishes to identify a flow that satisfies the demands at the warehouses from the
available supplies at the plants and that minimizes its shipping costs. This problem
is a well-known special case of the minimum cost flow problem, known as the trans
portation problem. We next describe in more detail a slight generalization of this
model that also incorporates manufacturing costs at the plants.

A car manufacturer has several manufacturing plants and produces several car
models at each plant that it then ships to geographically dispersed retail centers
throughout the country. Each retail center requests a specific number of cars of each
model. The firm must determine the production plan of each model at each plant
and a shipping pattern that satisfies the demands of each retail center and minimizes
the overall cost of production and transportation.

We describe this formulation through an example. Figure 9.1 illustrates a sit
uation with two manufacturing plants, two retailers, and three car models. This model
has four types of nodes: (1) plant nodes, representing various plants; (2) plant/model
nodes, corresponding to each model made at a plant; (3) retailer/model nodes, cor
responding to the models required by each retailer; and (4) retailer nodes corre
sponding to each retailer. The network contains three types of arcs.

1. Production arcs. These arcs connect a plant node to a plant/model node; the
cost of this arc is the cost of producing the model at that plant. We might place

298 Minimum Cost Flows: Basic Algorithms Chap. 9

Plant
lOdes

Plant/model
nodes

Retailer/model
nodes

Retailer Figure 9.1 Production-distribution
nodes model.

lower and upper bounds on these arcs to control for the minimum and maximum
production of each particular car model at the plants.

2. Transportation arcs. These arcs connect plant/model nodes to retailer/model
nodes; the cost of such an arc is the total cost of shipping one car from the
manufacturing plant to the retail center. Any such arc might correspond to a
complex distribution channel with, for example, three legs: (a) a delivery from
a plant (by truck) to a rail system; (b) a delivery from the rail station to another
rail station elsewhere in the system; and (c) a delivery from the rail station to
a retailer (by a local delivery truck). The transportation arcs might have lower
or upper bounds imposed on their flows to model contractual agreements with
shippers or capacities imposed on any distribution channel.

3. Demand arcs. These arcs connect retailer/model nodes to the retailer nodes.
These arcs have zero costs and positive lower bounds which equal the demand
of that model at that retail center.

Clearly, the production and shipping schedules for the automobile company
correspond in a one-to-one fashion with the feasible flows in this network model.
Consequently, a minimum cost flow would yield an optimal production and shipping
schedule.

Application 9.B Reconstruoting the Left Ventriole from
X-ray Projections

This application describes a network flow model for reconstructing the three
dimensional shape of the left ventricle from biplane angiocardiograms that the medical
profession uses to diagnose heart diseases. To conduct this analysis, we first reduce
the three-dimensional reconstruction problem into several two-dimensional prob
lems by dividing the ventricle into a stack of parallel cross sections. Each two
dimensional cross section consists of one connected region of the left ventricle.

SIC. 9.2 Applications 299

During a cardiac catheterization, doctors inject a dye known as Roentgen contrast
agent into the ventricle; by taking x-rays of the dye, they would like to determine
what portion of the left ventricle is functioning properly (Le., permitting the flow of
blood). Conventional biplane x-ray installations do not permit doctors to obtain a
complete picture of the left ventricle; rather, these x-rays provide one-dimensional
projections that record the total intensity of the dye along two axes (see Figure 9.2).
The problem is to determine the distribution of the cloud of dye within the left
ventricle and thus the shape of the functioning portion of the ventricle, assuming
that the dye mixes completely with the blood and fills the portions that are functioning
properly.

X-ray ---.
projection

X-ray
projection

~

Cumulative
intensity

(a)

CumuLative
intensity

Observable

Observable
intensities ~

0000000000000000
000000 111 0004
00000 006

o 0 8
8
8

o 0 8
o 0 9

1111111 0008
0000000000000000
0000000000000000

intensities ---. 0 0 0 2 2 6 7 8 8 8 8 6 4 0 0

(b)

Figure 9.2 Using x-ray projections to measure a left ventricle.

We can conceive of a cross section of the ventricle as a p x r binary matrix:
a 1 in a position indicates that the corresponding segment allows blood to flow and
a 0 indicates that it does not permit blood to flow. The angiocardiograms give the
cumulative intensity of the contrast agent in two planes which we can translate into
row and column sums of the binary matrix. The problem is then to construct the
binary matrix given its row and column sums. This problem is a special case of the
feasible flow problem that we discussed in Section 6.2.

Typically, the number of feasible solutions for such problems are quite large;
and these solutions might differ substantially. To constrain the feasible solutions,
we might use certain facts from our experience that indicate that a solution is more
likely to contain certain segments rather than others. Alternatively, we can use a
priori information: for example, after some small time interval, the cross sections
might resemble cross sections determined in a previous examination. Consequently,
we might attach a probability pij that a solution will contain an element (i, j) of the
binary matrix and might want to find a feasible solution with the largest possible
cumulative probability. This problem is equivalent to a minimum cost flow problem.

300 Minimum Cost Flows: Basic Algorithms Chap. 9

Application 9.3 Racial Balancing of Schools

In Application 1.10 in Section 1.3 we formulated the racial balancing of schools as
a multicommodity flow problem. We now consider a related, yet important situation:
seeking a racial balance of two ethnic communities (blacks and whites). In this case
we show how to formulate the problem as a minimum cost flow problem.

As in Application 1.10, suppose that a school district has S schools. For the
purpose of this formulation, we divide the school district into L district locations
and let hi and Wi denote the number of black and white students at location i. These
locations might, for example, be census tracts, bus stops, or city blocks. The only
restrictions on the locations is that they be finite in number and that there be a single
distance measure dij that reasonably approximates the distance any student at lo
cation i must travel if he or she is assigned to school j. We make the reasonable
assumption that we can compute the distances dij before assigning students to
schools. School j can enroll Uj students. Finally, let p denote a lower bound and p
denote an upper bound on the percentage of black students assigned to each school
(we choose these numbers so that school j has same percentage of blacks as does
the school district). The objective is to assign students to schools in a manner that
maintains the stated racial balance and minimizes the total distance traveled by the
students.

We model this problem as a minimum cost flow problem. Figure 9.3 shows the
minimum cost flow network for a three-location, two-school problem. Rather than
describe the general model formally, we merely describe the model ingredients for
this figure. In this formulation we model each location i as two nodes Ii and Ii and
each school j as two nodes s; and sJ. rhe decision variables for this problem are

Sec. 9.2

Arc costs Arc lower and
upper bounds

~
Arc capacities

1

Figure 9.3 Network for the racial balancing of schools.

Applications 301

the number of black students assigned from location ito schoolj (which we represent
by an arc from node Ii to node sJ) and the number of white students assigned from
location ito schoolj (which we represent by an arc from node l'/ to node sJ). These
arcs are uncapacitated and we set their per unit flow cost equal to dij. For each j,
we connect the nodes sJ and sJ to the school node Sj. The flow on the arcs (sJ, Sj)

and (sJ, Sj) denotes the total number of black and white students assigned to school
j. Since each school must satisfy lower and upper bounds on the number of black
students it enrolls, we set the lower and upper bounds of the arc (sJ, Sj) equal to
(pujt jjUj). Finally, we must satisfy the constraint that school j enrolls at most Uj

students. We incorporate this constraint in the model by introducing a sink node t
and joining each school node j to node t by an arc of capacity Uj. As is easy to verify,
this minimum cost flow problem correctly models the racial balancing application.

Application 9.4 Optimal Loading of a Hopping
Airplane

A small commuter airline uses a plane, with a capacity to carry at most p passengers,
on a "hopping flight," as shown in Figure 9.4(a). The hopping flight visits the cities
1, 2, 3, ... , n, in a fixed sequence. The plane can pick up passengers at any node
and drop them off at any other node. Let bij denote the number of passengers avail
able at node i who want to go to node j, and let f ij denote the fare per passenger
from node ito nodej. The airline would like to determine the number of passengers
that the plane should carry between the various origins to destinations in order to
maximize the total fare per trip while never exceeding the plane capacity.

302

CD-..... ·0r----+·~ ~
be;) b(j)

(a)

~I--_C-,<-ij _or_U~jj--.,;.~(j)

o P~j7
Capacity

(b)

Figure 9.4 Formulating the hopping plane flight problem as a minimum cost flow
problem.

Minimum Cost Flows: Basic Algorithms Chap. 9

Figure 9.4(b) shows a minimum cost flow formulation of this hopping plane
flight problem. The network contains data for only those arcs with nonzero costs
and with finite capacities: Any arc without an associated cost has a zero cost; any
arc without an associated capacity has an infinite capacity. Consider, for example,
node I. Three types of passengers are available at node I, those whose destination
is node 2, node 3, or node 4. We represent these three types of passengers by the
nodes 1-2, 1-3, and 1-4 with supplies b 12 , b 13 , and b 14 • A passenger available at
any such node, say 1-3, either boards the plane at its origin node by flowing through
the arc 0-3, I), and thus incurring a cost of - f13 units, or never boards the plane
which we represent by the flow through the arc (1-3, 3). In Exercise 9.13 we ask
the reader to show that this formulation correctly models the hopping plane appli
cation.

Application 9.~ Scheduling with Deferral Costs

In some scheduling applications. jobs do not have any fixed completion times, but
instead incur a deferral cost for delaying their completion. Some of these scheduling
problems have the following characteristics: one of q identical processors (machines)
needs to process each of p jobs. Each job j has a fixed processing time o.j that does
not depend on which machine processes the job, or which jobs precede or follow
the job. Job j also has a deferral cost Cj(T) , which we assume is a monotonically
nondecreasing function of T, the completion time of the job. Figure 9.5(a) illustrates
one such deferral cost function. We wish to find a schedule for the jobs, with com
pletion times denoted by Tl, T2 •••• , Tp , that minimizes the total deferral cost
~-l Cj(Tj)' This scheduling problem is difficult if the jobs have different processing
times, but can be modeled as a minimum cost flow problem for situations with
uniform processing times (i.e., o.j = 0. for each j = I, ... ,p).

i
Deferral
cost c, (T)

Sec. 9.2

Completion time T -..

(a)

b(j) b(j)

(Z)~--~S~;--~.~~

Figure 9.5 Formulating the scheduling problem with deferral costs.

Applications

-q

-q

-q

303

Since the deferral costs are monotonically nondecreasing with time, in some
optimal schedule the machines will process the jobs one immediately after another
(i.e., the machines incur no idle time). As a consequence, in some optimal schedule
the completion of each job will be ko. for some constant k. The first job assigned to
every machine will have a completion time of a units, the second job assigned to
every machine will have a completion time of 20. units, and so on. This observation
allows us to formulate the scheduling as a minimum cost flow problem in the network
shown in Figure 9.5(b).

Assume, for simplicity, that r = plq is an integer. This assumption implies that
we will assign exactly r jobs to each machine. (There is no loss of generality in
imposing this assumption because we can add dummy jobs so that plq becomes an
'integer.) The network has p job nodes, 1, 2, ... , p, each with 1 unit of supply; it
also has r position nodes, T, 2, ... , r, each with a demand of q units, indicating
that the position has the capability to process q jobs. The flow on each arc (j, i) is
1 or 0, depending on whether the schedule does or does not assign job j to the ith
position of some machine. If we assign job j to the ith position on any machine, its
completion time is io. and its deferral cost is ciio.). Therefore, arc (j, i) has a cost
of cj(io.). Feasible schedules' correspond, in a one-to-one fashion, with feasible flows
in the network and both have the same cost. Consequently, a minimum cost flow
will prescribe a schedule with the least possible deferral cost.

Application 9.6 Linear Programs with Consecutive 1 's
in Columns

Many linear programming problems of the form

Minimize ex

subject to

.:Ax ~ b,

x ~ 0,

have a special structure that permits us to solve the problem more efficiently than
general-purpose linear programs. Suppose that the p x q matrix constraint matrix
.:A is a 0-1 matrix satisfying the property that all of the l' s in each column appear
consecutively (i.e., with no intervening zeros). We show how to transform this prob
lem into a minimum cost flow problem. We illustrate our transformation using the
following linear programming example:

Minimize cx (9.2a)

subject to

(9.2b)

x ~ o. (9.2c)

304 Minimum Cost Flows: Basic Algorithms Chap. 9

We first bring each constraint in (9.2b) into an equality form by introducing a
"surplus" variable Yi for each row i in (9.2b). We then add a redundant row 0 . x +
o . Y = 0 to the set of constraints. These changes produce the following equivalent
formulation of the linear program:

Minimize ex (9.3a)

subject to

[1
1 0 1 1 -1 0 0

-Il[: 1 [:!J
1 0 0 1 0 -1 0
1 1 0 0 0 0 -1
1 1 0 0 0 0 0
0 0 0 0 0 0 0

(9.3b)

x ~ O. (9.3c)

We next perform the following elementary row operation for each i = p, p -
1, ... , 1, in the stated order: We subtract the ith constraint in (9.3b) from the
(i + l)th constraint. These operations create the following equivalent linear program:

Minimize ex (9.4a)

subject to

[J
1 0 1 1 -1 0 0

-!l[: 1 [=l}
0 0 -1 0 1 -1 0
0 1 0 -1 0 1 -1
0 0 0 0 0 0 1

-1 -1 0 0 0 0 0

(9.4b)

x ~ O. (9.4c)

Notice that in this form the constraints (9.4b) clearly define the mass balance
constraints of a minimum cost flow problem because each column contains one + 1
and one - 1. Also notice that the entries in the right-hand-side vector sum to zero,
which is a necessary condition for feasibility. Figure 9.6 gives the minimum cost
flow problem corresponding to this linear program.

Figure 9.6 Formulating a linear
program with consecutive ones as a
minimum cost flow problem.

We have used a specific numerical example to illustrate the transformation of
a linear program with consecutive l's into a minimum cost flow problem. It is easy
to show that this transformation is valid in general as well. For a linear program
with p rows and q columns, the corresponding network has p + 1 nodes, one cor
responding to each row, as well as one extra node that corresponds to an additional

Sec. 9.2 Applications 305

"null row." Each column .st1.k in the linear program that has consecutive l' s in rows
ito j becomes an arc (i, j + 1) of cost Ck. Each surplus variable Yi becomes an arc
(i + 1, i) of zero cost. Finally, the supply/demand of a node i is b(i) - b(i - 1).

Despite the fact that linear programs with consecutive 1 's might appear to be
very special, and even contrived, this class of problems arises in a surprising number
of applications. We illustrate the range of applications with three practical examples.
We leave the formulations of these applications as minimum cost flow problems as
exercises to the reader.

Optimal capacity scheduling. A vice-president of logistics of a large man
ufacturing firm must contract for d(i) units of warehousing capacity for the time
periods i = 1, 2, ... , n. Let Cij denote the cost of acquiring 1 unit of capacity at
the beginning of period i, which is available for possible use throughout periods i,
i + 1, ... , j - 1 (assume that we relinquish this warehousing capacity at the
beginning of period j). The vice~president wants to know how much capacity to
acquire, at what times, and for how many subsequent periods, to meet the firm's
requirements at the lowest possible cost. This optimization problem arises because
of possible savings that the firm might accrue by undertaking long-term leasing con
tracts at favorable times, even though these commitments might create excess ca
pacity during some periods.

Employment scheduling. The vice-president of human resources ofa large
retail company must determine an employment policy that properly balances the
cost of hiring, training, and releasing short-term employees, with the expense of
having idle employees on the payroll for time periods when demand is low. Suppose
that the company knows the minimum labor requirement dj for each period j =
1, ... , n. Let Cij denote the cost of hiring someone at the beginning of period i and
releasing him at the end of period j - 1. The vice-president would like to identify
an employment policy that meets the labor requirements and minimizes the cost of
hiring, training, and releasing employees.

Equipment replacement. A job shop must periodically replace its capital
equipment because of machine wear. As a machine ages, it breaks down more fre
quently and so becomes more expensive to operate. Furthermore, as a machine
ages, its salvage value decreases. Let Cij denote the cost of buying a particularly
important machine at the beginning of period i, plus the cost of operating the machine
over the periods i, i + 1, ... ,j - 1, minus the salvage cost of the machine at the
beginning of period j. The equipment replacement problem attempts to obtain a
replacement plan that minimizes the total cost of buying, selling, and operating the
machine over a planning horizon of n years, assuming that the job shop must have
at least 1 unit of this machine in service at all times.

9.3 OPT1MALITY CONDITIONS

In our discussion of shortest path problems in Section 5.2, we saw that a set of
distance labels d(i) defines shortest path distances from a specified node s to every
other node in the network if and only if they represent distances along some paths

306 Minimum Cost Flows: Basic Algorithms Chap. 9

from node s and satisfy the following shortest path optimality conditions:

d(j) :s d(i) + Cij for all (i, j) E A. (9.5)

These optimality conditions are useful in several respects. First, they give us
a simple validity check to see whether a given set of distance labels does indeed
define shortest paths. Similarly, the optimality conditions provide us with a method
for determining whether or not a given set of paths, one from node s to every other
node in the network, constitutes a set of shortest paths from node s. We simply
compute the lengths of these paths and see if these distances satisfy the optimality
conditions. In both cases, the optimality conditions provide us with a "certificate"
of optimality, that is, an assurance that a set of distance labels or a set of paths is
optimal. One nice feature of the cettificate is its ease of use. We need not invoke
any complex algorithm to certify that a solution is optimal; we simply check the
optimality conditions. The optimality conditions are also valuable for other reasons;
as we saw in Chapter 5, they can suggest algorithms for solving a shortest path
problem: For example, the generic label-correcting algorithm uses the simple idea
of repeatedly replacing d(j) by d(i) + Cij if d(j) > d(i) + cij for some arc (i, j).
Finally, the optimality conditions provide us with a mechanism for establishing the
validity of algorithms for the shortest path problem. To show that an algorithm
correctly finds the desired shortest paths, we verify that the solutions they generate
satisfy the optimality conditions.

These various uses of the shortest path optimality conditions suggest that sim
ilar sets of conditions might be valuable for designing and analyzing algorithms for
the minimum cost flow problem. Accordingly, rather than launching immediately
into a discussion of algorithms for solving the minimum cost flow problem, we first
pause to describe a few different optimality conditions for this problem. All the
optimality conditions that we state have an intuitive network interpretation and are
rather direct extensions of their shortest path counterparts. We will consider three
different (but equivalent) optimality conditions: (1) negative cycle optimality con
ditions, (2) reduced cost optimality conditions, and (3) complementary slackness
optimality conditions.

Negative Cyole Optimality Conditions

The negative cycle optimality conditions stated next are a direct consequence of the
flow decomposition property stated in Theorem 3.5 and our definition of residual
networks given at the end of Section 9.1.

Theorem 9.1 (Negative Cycle Optimality Conditions). A feasible solution x* is
an optimal solution of the minimum cost flow problem if and only if it satisfies the
negative cycle optimality conditions: namely, the residual network G(x*) contains
no negative cost (directed) cycle.

Proof. Suppose that x is a feasible flow and that G(x) contains a negative cycle.
Then x cannot be an optimal flow, since by augmenting positive flow along the cycle
we can improve the objective function value. Therefore, if x* is an optimal flow,
then G(x*) cannot contain a negative cycle. Now suppose that x* is a feasible flow

Sec. 9.3 Optimality Conditions 307

and that G(x*) contains no negative cycle. Let XO be an optimal flow and x* oF- xO.
The augmenting cycle property stated in Theorem 3.7 shows that we can decompose
the difference vector XO - x* into at most m augmenting cycles with respect to the
flow x* and the sum of the costs of flows on these cycles equals CXO - cx*. Since
the lengths of all the cycles in G(x*) are nonnegative, CXO - cx* 2: 0, or CXO 2: cx*.
Moreover, since XO is an optimal flow, CXO ::; cx*. Thus cxo = cX*, and x* is also
an optimal flow. This argument shows that if G(x*) contains no negative cycle, then
x* must be optimal, and this conclusion completes the proof of the theorem .•

Reduced Cost Optimality Conditions

To develop our second and third optimality conditions, let us make one observation.
First, note that we can write the shortest path optimality conditions in the following
equivalent form:

ci = cij + d(i) - d(j) 2: 0 for all arcs (i, j) E A. (9.6)

This expression has the following interpretation: ci is an optimal "reduced cost"
for arc (i, j) in the sense that it measures the cost of this arc relative to the shortest
path distances d(i) and d(j). Notice that with respect to the optimal distances, every
arc in the network has a nonnegative reduced cost. Moreover, since d(j) = d(i) +
Cij, if arc (i, j) is on a shortest path connecting the source node s to any other node,
the shortest path uses only zero reduced cost arcs. Consequently, once we know
the optimal distances, the problem is very easy to solve: We simply find a path from
node s to every other node that uses only arcs with zero reduced costs. This inter
pretation raises a natural question: Is there a similar set of conditions for more general
minimum cost flow problems?

Suppose that we associate a real number 7T(i), unrestricted in sign, with each
node i E N. We refer to 7T(i) as the potential of node i. We show in Section 9.4 that
7T(i) is the linear programming dual variable corresponding to the mass balance con
straint of node i. For a given set of node potentials 7T, we define the reduced cost
of an arc (i, j) as clJ = cij - 7T(i) + 7T(j). These reduced costs are applicable to the
residual network as well as the original network. We define the reduced costs in the
residual network just as we did the costs, but now using clJ in place of cij' The
following properties will prove to be useful in our subsequent developments in this
and later chapters.

Property 9.2
(a) For any directed path P from node k to node I, LU,j)EP clJ = LU,j)EP cij -

7T(k) + 7T(l).
(b) For any directed cycle W, LU,j)EW clJ = LU,j)EW Cij'

The proof of this property is similar to that of Property 2.5. Notice that this
property implies that the node potentials do not change the shortest path between
any pair of nodes k and I, since the potentials increase the length of every path by
a constant amount 7T(l) - 7T(k). This property also implies that if W is a negative
cycle with respect to cij as arc costs, it is also a negative cycle with respect to clJ

308 Minimum Cost Flows: Basic Algorithms Chap. 9

as arc costs. We can now provide an alternative form of the negative cycle optimality
conditions, stated in terms of the reduced costs of the arcs.

Theorem 9.3 (Reduced Cost Optimality Conditions). A feasible solution x* is an
optimal solution of the minimum cost flow problem if and only if some set of node
potentials 'IT satisfy the following reduced cost optimality conditions:

cij ;::: 0 for every arc (i, j) in G(x*). (9.7)

Proof. We shall prove this result using Theorem 9.1. To show that the negative
cycle optimality conditions is equivalent to the reduced cost optimality conditions,
suppose that the. solution x* satisfies the latter conditions. Therefore, L(i,j)EW

cij ;::: 0 for every directed cycle W in G(x*). Consequently, by Property 9.2(b),
L(i,j)EW cij = LU,j)EW Cij ;::: 0, so G(x*) contains no negative cycle.

To show the converse, assume that for the solution x*, G(x*) contains no
negative cycle. Let dO denote the shortest path distances from node 1 to all other
nodes in G(x*). Recall from Section 5.2 that if the network contains no negative
cycle, the distance labels d(·) are well defined and satisfy the conditions d(j) :S

dU) + cij for all U, j) in G(x*). We can restate these inequalities as cij - (- dU» +
(- d(j» ;::: 0, or cij ;::: 0 if we define 'IT = - d. Consequently, the solution x* satisfies
the reduced cost optimality conditions. •

In the preceding theorem we characterized an optimal flow x as a flow that
satisfied the conditions cij ;::: for all U, j) in G(x) for some set of node potentials 'IT.
In the same fashion, we could define "optimal node potentials" as a set of node
potentials 'IT that satisfy the conditions cij ;::: 0 for all (i, j) in G(x) for some feasible
flow x.

We might note that the reduced cost optimality conditions have a convenient
economic interpretation. Suppose that we interpret Cij as the cost of transporting 1
unit of a commodity from node i to node j through the arc U, j), and we interpret
flU) = - 'IT(i) as the cost of obtaining a unit of this commodity at node i. Then
c ij + fl(i) is the cost of the commodity at node j if we obtain it at node i and transport
it to nodej. The reduced cost optimality condition, Cij - 'lTU) + 'IT(j) ;::: 0, or equiv
alently, fl(j) :S Cij + fl(i), states that the cost of obtaining the commodity at node
j is no more than the cost of the commodity if we obtain it at node i and incur the
transportation cost in sending it from node i toj. The cost at nodej might be smaller
than Cij + flU) because there might be a more cost-effective way to transport the
commodity to node j via other nodes.

Complementary Slackness Optimality Conditions

Both Theorems 9.1 and 9.3 provide means for establishing optimality of solutions
to the minimum cost flow problem by formulating conditions imposed on the residual
network; we shall now restate these conditions in terms of the original network.

Theorem 9.4 (Complementary Slackness Optimality Conditions). A feasible so
lution x* is an optimal solution of the minimum cost flow problem if and only if for
some set of node potentials 'IT, the reduced costs andflow values satisfy thefollowing
complementary slackness optimality conditions for every arc U, j) E A:

Sec. 9.3 Optimality Conditions 309

If eij > 0, then xt = o.
If 0 < Xu < Uij, then eij = o.
If eij < 0, then xt = Uij.

(9.8a)

(9.8b)

(9.8c)

Proof. We show that the reduced cost optimality conditions are equivalent to
(9.8). To establish this result, we first prove that if the node potentials 1T and the
flow vector X satisfy the reduced cost optimality conditions, then they must satisfy
(9.8). Consider three possibilities for any arc (i, j) EA.

Case 1. If e'{f > 0, the residual network cannot contain the arc (j, i) because
eX = -eij < 0 for that arc, contradicting (9.7). Therefore, Xu = O.

Case 2. If 0 < xt < Uij, the residual network contains both the arcs (i, j) and
(j, i). The reduced cost optimality conditions imply that eij ;::: 0 and eX ;::: O. But
since eX = - eij, these inequalities imply that eij = eX = o.

Case 3. If eij < 0, the residual network cannot contain the arc (i, j) because
eij < 0 for that arc, contradicting (9.7). Therefore, xt = Uij.

We have thus shown that if the node potentials 1T and the flow vector X satisfy
the reduced cost optimality conditions, they also satisfy the complementary slack
ness optimality conditions. In Exercise 9.28 we ask the reader to prove the converse
result: If the pair (x, 1T) satisfies the complementary slackness optimality conditions,
it also satisfies the reduced cost optimality conditions. . •

Those readers familiar with linear programming might notice that these con
ditions are the complementary slackness conditions for a linear programming prob
lem whose variables have upper bounds; this association explains the choice of the
name complementary slackness.

9.4 MINIMUM COST FLOW DUALITY

When we were introducing shortest path problems with nonnegative arc costs in
Chapter 4, we considered a string model with knots representing the nodes of the
network and with a string of length eij connecting the ith and jth knots. To solve
the shortest path problem between a designated source node s and sink node t, we
hold the string at the knots sand t and pull them as far apart as possible. As we
noted in our previous discussion, if d(i) denotes the distance from the so.urce node
s to node i along the shortest path and nodes i andj are any two nodes on this path,
then d(i) + eij;::: d(j). The shortest path distances might satisfy this inequality as
a strict inequality if the string from node i to node j is not taut. In this string solution,
since we are pulling the string apart as far as possible, we are obtaining the optimal
shortest path distance between nodes sand t by solving a maximization problem.
We could cast this problem formally as the following maximization problem:

Maximize d(t) - d(s) (9.9a)

subject to

d(j) - d(i) ::5 eij for all (i, j) EA. (9.9b)

310 Minimum Cost Flows: Basic Algorithms Chap. 9

In this formulation, d(s) = O. As we have noted in Chapter 4, if d is any vector
of distance labels satisfying the constraints of this problem and the path P defined
ass - i1 - i2 - ... ik - t is any path from node s to node t, then

dUl) - des) ::S Csi)

d(i2) - d(il) ::S Cili2

d(t) - dUk) ::S Cikt,

so by adding these inequalities and using the fact that des) = 0, we see that

This result shows that if d is any feasible vector to the optimization problem
(9.9), then d(t) is a lower bound on the length of any path from node s to node t
and therefore is a lower bound on the shortest distance between these nodes. As
we see from the string solution, if we choose the distance labels d(·) appropriately
(as the distances obtained from the string solution), d(t) equals the shortest path
distance.

This discussion shows the connection between the shortest path problem and
a related maximization problem (9.9). In our discussion of the maximum flow prob
lem, we saw a similar relationship, namely, the max-flow min-cut theorem, which
tells us that associated with every maximum flow problem is an associated min
imization problem. Moreover, since the maximum flow equals the minimum cut, the
optimal value of these two associated problems is the same. These two results'are
special cases of a more general property that applies to any minimum cost flow
problem, and that we now establish.

For every linear programming problem, which we subsequently refer to as a
primal problem, we can associate another intimately related linear programming
problem, called its dual. For example, the objective function value of any feasible
solution of the dual is less than or equal to the objective function of any feasible
solution of the primal. Furthermore, the maximum objective function value of the
dual equals the minimum objective function of the primaL This duality theory is
fundamental to an understanding of the theory of linear programming. In this section
we state and prove these duality theory results for the minimum cost flow problem.

While forming the dual of a (primal) linear programming problem, we associate
a dual variable with every constraint of the primal except for the nonnegativity
restriction on arc flows. For the minimum cost flow problem stated in (9.1), we
associate the variable 7r(i) with the mass balance constraint of node i and the variable
aij with the capacity constraint of arc (i, j). In terms of these variables, the dual
minimum cost flow problem can be stated as follows:

Maximize w(7r, a) = 2: b(i)7r(i) - 2: uijaij (9. lOa)
iEN (i,j)EA

subject to
7r(i) - 7r(j) - aij ::S C ij for all (i, j) E A, (9. lOb)

for all (i,j) E A and 7r(j) unrestricted for allj E N. (9.10c)

Sec. 9.4 Minimum Cost Flow Duality 311

Note that the shortest path dual problem (9.9) is a special case ofthis model:
For the shortest path problem, b(s) = 1, b(t) = -1, and b(i) = 0 otherwise. Also,
since the shortest path problem contains no arc capacities, we can eliminate the aij
variables. Therefore, if we let d(i) = - 7T(i), the dual minimum cost flow problem
(9.10) becomes the shortest path dual problem (9.9).

Our first duality result for the general minimum cost flow problem is known
as the wedk duality theorem.

Theorem 9.5 (Weak Duality Theorem). Let z(x) denote the objective function
value of some feasible solution x of the minimum cost flow problem and let w(7T, a)
denote the objective function value of some feasible solution (7T, a) of its dual. Then
W(7T, a) ::5 z(x).

Proof We multiply both sides of (9 . lOb) by Xij and sum these weighted in
equalities for all (i, j) E A, obtaining

L (7T(i) - 7T(j))Xij - L aijxij::5 L cijxij. (9.11)
(i,j)EA (i,j)EA (i,j)EA

Notice that cx - c"'x = L(i,j)EA (7T(i) - 7T(j))Xij [because cij = Cij - 7T(i) +
7T(j)]. Next notice that Property 2.4 in Section 2.4 implies that cx - c"'x equals
LiEN b(i)7T(i). Therefore, the first term on the left-hand side of (9.11) equals
LiEN b(i)7T(i). Next notice that replacing Xij in the second term on the left-hand side
of (9.11) by Uij preserves the inequality because Xij ::5 Uij and au ;::: O. Consequently,

L b(i)7T(i) - L aijuij::5 L CijXij. (9.12)
iEn (i,j)EA (i,j)EA

Now notice that the left-hand side of (9.12) is the dual objective W(7T, a)
and the right-hand side is the primal objective, so we have established the
lemma. •

The weak duality theorem implies that the objective function value of any dual
feasible solution is a lower bound on the 6bjectiv~ function value of any primal
feasible solution. One consequence of this result is immediate: If some dual solution
(7T, a) and a primal solution x have the same objective function value, (7T, a) must
be an optimal solution of the dual problem and x must b.¢ al}. qptimal solution of the
primal problem (why?). Can we always find such solutions? The strong duality theo-
rem, to be proved next, answers this question in the affirmative. •

We first eliminate the dual variables aij's from ~!1e dual formation (9.10) using
some properties of the optimal solution. Defining the reduced cost, as before, as
cij = Cij - 7T(i) + 7T(j), we can rewrite the constraint (9. lOb) as

aij;::: -cij. (9.13)

The coefficient associated with the variable aij in the dual objective (9. lOa) is
-Uij, and we wish to maximize the objective function value. Consequently, in any
optimal solution we would assign the smallest possible value to aij. This observation,
in view of (9.lOc) and (9.13), implies that

aij = max{O, - cij}. (9.14)

312 Minimum Cost Flows: Basic Algorithms Chap. 9

We have thus shown that if we know optimal values for the dual variables 7r(i),
we can compute the optimal values of the variables aij using (9.14). This construction
permits us to eliminate the variables aij from the dual formulation. Substituting (9.14)
in (9. lOa) yields .

Maximize w(7r) = L b(i)'Tr(i) - L max{O, - cij}Uij. (9.15)
iEN (i,j)EA

The dual problem reduces to finding a vector 7r that optimizes (9.15). Weare
now in a position to prove the strong duality theorem. (Recall that our blanket
assumption, Assumption 9.3, implies that the minimum cost flow problem always
has a solution.) ,

Theorem 9.6 (Strong Duality Theorem). For any choice of problem data, the
minimum cost flow problem always has a solution x* and the dual minimum cost
flow problem has a solution 7r satisfying the property that z(x*) = w(7r).

Proof. We prove this theorem using the complementary slackness optimality
conditions (9.8). Let x* be an optimal solution of the minimum cost flow problem.
Theorem 9.4 implies that x* together with some vector 7r of node potentials satisfy
the complementary slackness optimality conditions. We claim that this solution sat
isfies the condition

- cijxij = max{O, - cij}Uij for every arc (i, j) EA. (9.16)

To establish this result, consider the following three cases: (1) cij > 0, (2)
cij = 0, and (3) cij < 0. The complementary slackness conditions (9.8) imply that
in the first two cases, both the left -hand side and right -hand side of (9.16) are zero,
and in the third case both sides equal - cijUij.

Next consider the dual objective (9.15). Substituting (9.16) in (9.15) yields

w(7r) = L b(i)7r(i) + L cijxt = L Cijxt = z(x*).
iEN (i,j)EA (i,j)EA

The second last inequality follows from Property 2.4. This result is the conclusion
of the theorem. •

The proof of this theorem shows that any optimal solution x* of the minimum
cost flow problem always· has an associated dual solution 7r satisfying the condition
z(x*) = w(7r). Needless to say, the solution 7r is an optimal solution of the dual
minimum cost flow problem since any larger value of the dual objective would con
tradict the weak duality theorem stated in Theorem 9.5.

In Theorem 9.6 we showed that the complementary slackness optimality con
ditions implies strong duality. We next prove the converse result: namely, that strong
duality implies Jhe complementary slackness optimality conditions.

Theorem 9.7. If x is a feasible flow and 7r is an (arbitrary) vector satisfying
the property that z(x) = w(7r), then the pair (x, 7r) satisfies the complementary
slackness opti;nality conditions.

Sec. 9.4 Minimum Cost Flow Duality 313

Proof. Since z(x) = W(1T),

L CijXij = L b(i)1T(i)
(i,j)EA iEN

L max{O, - cij}Uij.
(i,j)EA

(9.17)

Substituting the result of Property 2.4 in (9.17) shows that

L max{O, - cij}Uij = L - cijxij. (9.18)
(i,j)EA (i,j)EA

Now observe that both the sides have m terms, and each term on the left-hand
side is nonnegative and its value is an upper bound on the corresponding term on
the right-hand side (because max{O, -cij} 2:: -cij and Uij 2:: xij)' Therefore, the two
sides can be equal only when

max{O, - cij}Uij = - cijXij for every arc (i, j) EA. (9.19)

Now we consider three cases.

(a) cij> O. In this case, the left-hand side of (9.19) is zero, and the right-hand
side can be zero only if Xij = O. This conclusion establishes (9.8a).

(b) 0 < Xij < Uij. In this case, cij = 0; otherwise, the right-hand side of (9.19)
is negative. This conclusion establishes (9.8b).

(c) c; < O. In this case, the left-hand side of (9.19) is - cijUij and therefore,
Xij = Uij. This conclusion establishes (9.8c).

These results complete the proof of the theorem. •
The following result is an easy consequence of Theorems 9.6 and 9.7.

Property 9.S. If X* is an optimal solution of the minimum cost flow problem,
and 1T is an optimal solution of the dual minimum cost flow problem, the pair
(x*, 1T) satisfies the complementary slackness optimality conditions (9.8).

Proof Theorem 9.6 implies that z(x*)
the pair (x*, 1T) satisfies (9.8).

W(1T) and Theorem 9.7 implies that

•
One important implication of the minimum cost flow duality is that it permits

us to solve linear programs that have at most one + 1 and at most one - 1 in each
row as minimum cost flow problems. Linear programs with this special structure
arise in a variety of situations; Applications 19.10, 19.11, 19.18, and Exlercises 9.9
and 19.18 provide a few examples.

Before examining the situation with at most one + 1 and at most one - 1 in
each row, let us consider a linear program that has at most one + 1 and at most one
- 1 in each column. We assume, without any loss of generality, that each constraint
in the linear program is in equality form, because we can always bring the linear
program into this form by introducing slack or surplus variables. (Observe that col
umn corresponding the slack or surplus variables will also have one + 1 or one -1.)
If each column has exactly one + 1 and exactly one - 1, clearly the linear program
is a minimum cost flow problem. Otherwise, we can augment this linear program
by adding a redundant equality constraint which is the negative of the sum of all the

314 Minimum Cost Flows: Basic Algorithms Chap. 9

original constraints. (The new constraint corresponds to a new node that acts as a
repository to deposit any excess supply or a source to fulfill any deficit demand from
the other nodes.) The augmented linear program contains exactly one + 1 and exactly
one -1 in each column and the right-hand side values sum to zero. This model is
clearly an instance of the minimum cost flow problem.

We now return to linear programs (in maximization form) that have at most
one + 1 and at most one - 1 in each row. We allow a constraint in this linear program
to be in any form: equality or inequality. The dual of this linear program contains
at most one + 1 and at most one - 1 in each column, which we have already shown
to be equivalent to a minimum cost flow problem. The variables in the dual problem
will be nonnegative, nonpositive, or unrestricted, depending on whether they cor
respond to a less than or equal to, a greater than or equal to, or an equality constraint
in the primal. A nonnegative variable xij defines a directed arc (i, j) in the resulting
minimum cost flow formulation. To model any unrestricted variable xij, we replace
it with two nonnegative variables, which is equivalent to introducing two arcs (i, j)
and (j, i) of the same cost and capacity as this variable. The following theorem
summarizes the preceding discussion.

Theorem 9.9. Any linear program that contains (a) at most one + 1 and at
most one -1 in each column, or (b) at most one + 1 and at most one -1 in each
row, can be transformed into a minimum cost flow problem. •

Minimum cost flow duality has several important implications. Since almost
all algorithms for solving the primal problem also generate optimal node potentials
7T(i) and the variables aij, solving the primal problem almost always solves both the
primal and dual problems. Similarly, solving the dual problem typically solves the
primal problem as well. Most algorithms for solving network flow problems explicitly
or implicitly use properties of dual variables (since they are the node potentials that
we have used at every turn) and of the dual linear program. In particular, the dual
problem provides us with a certificate that if we can find a feasible dual solution
that has the same objective function value as a given primal soiution, we know from
the strong duality theorem that the primal solution must be optimal, without making
additional calculations and without considering other potentially optimal primal so
lutions. This certification procedure is a very powerful idea in network optimization,
and in optimization in general. We have used it at many points in our previous
developments and will see it many times again.

. For network flow problems, the primal and dual problems are closely related
via the basic shortest path and maximum flow problems that we have studied in
previous chapters. In fact, these relationships help us to understand the fundamental
importance of these two core problems to network flow theory and algorithms. We
develop these relationships in the next section.

9.5 RELATING OPTIMAL FLOWS TO OPTIMAL NODE
POTENTIALS

We next address the following questions: (1) Given an optimal flow, how might we
obtain optimal node potentials? Conversely, (2) given optimal node potentials, how
might we obtain an optimal flow? We show how to solve these problems by solving

Sec. 9.5 Relating Optimal Flows to Optiinal Node Potentials 315

either a shortest path problem or a maximum flow problem. These results point out
an interesting relationship between the minimum cost flow problem and the maxi
mum flow and shortest path problems.

Computing Optimal Node Potentials

We show that given an optimal flow x*, we can obtain optimal node potentials by
solving a shortest path problem (with possibly negative arc lengths). Let G(x*)
denote the residual network with respect to the flow x*. Clearly, G(x*) does not
contain any negative cost cycle, for otherwise we would contradict the optimality
of the solution x*. Let d(·) denote the shortest path distances from node 1 to the
rest of the nodes in the residual network if we use Cij as arc lengths. The distances
dO are well defined because the residual network does not contain a negative cycle.
The shortest path optimality conditions (5.2) imply that

d(j) ::5 d(i) + Cij for all (i, j) in G(x*).

Let 1T = - d. Then we can restate (9.20) as

cij = Cij - 1T(i) + 1T(j) 2:: 0 for all (i, j) in G(x*).

Theorem 9.3 shows that 1T constitutes an optimal set of node potentials.

Obtaining Optimal Flows

(9.20)

. We now show that given a set of optimal node potentials 1T, we can obtain an optimal
solution x* by solving a maximum flow problem. First, we compute the reduced
cost cij of every arc (i, j) E A and then we examine all arcs one by one. We classify
each arc (i, j) in one of the following ways and use these categorizations of the arcs
to define a maximum flow problem.

Case 1: cij > 0
The condition (9.8a) implies that xt must be zero. We enforce this constraint

by setting xt = 0 and deleting arc (i, j) from the network.

Case 2: cij < 0
The condition (9.8c) implies that xu = uij. We enforce this constraint by setting

xt = Uij and deleting arc (i, j) from the network. Since we sent uij units of flow on
arc (i, j), we must decrease b(i) by Uij and increase b(j) by uij.

Case 3: cij = 0
In this case we allow the flow on arc (i, j) to assume any value between 0 and

Uij.

Let G' = (N, A') denote the resulting network and let b' denote the modified
supplies/demands of the nodes. Now the problem reduces to finding a feasible flow
in the network G' that meets the modified supplies/demands of the nodes. As noted
in Section 6.2, we can find such a flow by solving a maximum flow problem defined
as follows. We introduce a source node s, and a sink node t. For each node i with

316 Minimum Cost Flows: Basic Algorithms Chap. 9

b'U) > 0, we add an arc (s, i) with capacity b'U) and for each node i with b'U) <
0, we add an arc U, t) with capacity - b' U). We now solve a maximum flow problem
from node s to t in the transformed network obtaining a maximum flow x*. The
solution xt for all (i, j) E A is an optimal flow for the minimum cost flow problem
in G.

9.6 CYCLE-CANCELING ALGORITHM AND THE
INTEGRALITY PROPERTY

The negative cycle optimality conditions suggests one simple algorithmic approach
for solving the minimum cost flow problem, which we call the cycle-canceling al
gorithm. This algorithm maintains a feasible solution and at every iteration attempts
to improve its objective function value. The algorithm first establishes a feasible
flow x in the network by solving a maximum flow problem (see Section 6.2). Then
it iteratively finds negative cost-directed cycles in the residual network and augments
flows on these cycles. The algorithm terminates when the residual network contains
no negative cost-directed cycle. Theorem 9.1 implies that when the algorithm ter
minates, it has found a minimum cost flow. Figure 9.7 specifies this generic version
of the cycle-canceling algorithm.

algorithm cycle-canceling;
begin

establish a feasible flow x in the network;
while G(x) contain!> a negative cycle do
begin

use some algorithm to identify a negative cycle W;
8 : = min{rij : (i, j) E W};
augment 8 units of flow in the cycle Wand update G(x);

end;
end; Figure 9.7 Cycle canceling algorithm.

We use the example shown in Figure 9.8(a) to illustrate the cycle-canceling
algorithm. (The reader might notice that our example does not satisfy Assumption
9.4; we violate this assumption so that the network is simpler to analyze.) Figure
9.8(a) depicts a feasible flow in the network and Figure 9.8(b) gives the corresponding
residual network. Suppose that the algorithm first selects the cycle 4-2-3-4 whose
cost is - 1. The residual capacity of this cycle is 2. The algorithm augments 2 units
of flow along this cycle. Figure 9.8(c) shows the modified residual network. In the
next iteration, suppose that the algorithm selects the cycle 4-2-1-3-4 whose cost
is -2. The algorithm sends 1 unit of flow along this cycle. Figure 9.8(d) depicts the
updated residual network. Since this residual network contains no negative cycle,
the algorithm terminates.

In Chapter 5 we discussed several algorithms for identifying a negative cycle
if one exists. One algorithm for identifying a negative cycle is the FIFO label
correcting algorithm for the shortest path problem described in Section 5.4; this
algorithm requires O(nm) time. We describe other algorithms for detecting negative
cycles in Sections 11.7 and 12.7.

A by-product of the cycle-canceling algorithm is the following important result.

Sec. 9.6 Cycle-Canceling Algorithm and the Integrality Property 317

b(l) = 4

b(2) =0

b(3) = 0

(a)

(c)

b(4) =-4

(b)

(d)

Figure 9.8 Illustrating the cycle canceling algorithm: (a) network example with a
feasible flow x; (b) residual network G(x); (c) residual network after augmenting 2
units along the cycle 4-2-3-4; (d) residual network after augmenting I unit along the
cycle 4-2-1-3-4.

Theorem 9.10 (Integrality Property). If all arc capacities and supplies/demands
of nodes are integer, the minimum costflow problem always has an integer minimum
cost flow.

Proof. We show this result by performing induction on the number of iterations.
The algorithm first establishes a feasible flow in the network by solving a maximum
flow problem. By Theorem 6.5 the problem has an integer feasible flow and we
assume that the maximum flow algorithm finds an integer solution since all arc
capacities in the network are integer and the initial residual capacities are also in
teger. The flow augmented by the cycle-canceling algorithm in any iteration equals
the minimum residual capacity in the cycle canceled, which by the inductive hy
pothesis is integer. Therefore the modified residual capacities in the next iteration
will again be integer. This conclusion implies the assertion of the theorem. •

Let us now consider the number of iterations that the algorithm performs. For
the minimum cost flow problem, mCU is an upper bound on the initial flow cost

318 Minimum Cost Flows: Basic Algorithms Chap. 9

[since Cij ::5 C and Xij ::5 U for all (i, j) E A] and - mCU is a lower bound on the
optimal flow cost [since Cij ;::: - C and Xij ::5 U for all (i, j) E A]. Each iteration of
the cycle-canceling algorithm changes the objective function value by an amount
(L(i,j)EW cij)8, which is strictly negative. Since we are assuming that all the data of
the problem are integral, the algorithm terminates within O(mCU) iterations and
runs in O(nm2 CU) time.

The generic version of the cycle-canceling algorithm does not specify the order
for selecting negative cycles from the network. Different rules for selecting negative
cycles produce different versions of the algorithm, each with different worse-case
and theoretical behavior. The network simplex algorithm, which is widely considered
to be one of the fastest algorithms for solving the minimum cost flow problem in
practice, is a particular version of the cycle-canceling algorithm. The network sim
plex algorithm maintains information (a spanning tree solution and node potentials)
that enables it to identify a negative cost cycle in O(m) time. However, due to
degeneracy, the algorithm cannot necessarily send a positive amount of flow along
this cycle. We discuss these issues in Chapter 11, where we consider the network
simplex algorithm in more detail. The most general implementation of the network
simplex algorithm does not run in polynomial time. The following two versions of
the cycle-canceling algorithm are, however, polynomial-time implementations.

Augmenting flow in a negative cycle with maximum improvement.
Let x be any feasible flow and let X* be an optimal flow. The improvement in the

objective function value due to an augmentation along a cycle W is
-(L(i,j)EW cd (min{rij : (i, j) E W}). We observed in the proof of Theorem).7
in Section 3.5 that X* equals x plus the flow on at most m augmenting cycles with
respect to x, and improvements in cost due to flow augmentations on these aug
menting cycles sum to cx - cx*. Consequently, at least one of these augmenting
cycles with respect to x must decrease the objective function value by at least
(cx - cx*)/m. Consequently, if the algorithm always augments flow along a cycle
giving the maximum possible improvement, then Theorem 3.1 implies that the
method would obtain an optimal flow within O(m 10g(mCU)) iterations. Finding a
maximum improvement cycle is difficult (i.e., it is a XQ/l-complete problem), but a
modest variation of this approach yields a polynomial-time algorithm for the mini
mum cost flow problem. We provide a reference for this algorithm in the reference
notes.

Augmenting flow along a negative cycle with minimum mean cost.
We define the mean cost of a cycle as its cost divided by the number of arcs it

contains. A minimum mean cycle is a cycle whose mean cost is as small as possible.
It is possible to identify a minimum mean cycle in O(nm) or O(Vn m 10g(nC)) time
(see the reference notes of Chapter 5). Researchers have shown that if the cycle
canceling algorithm always augments flow along a minimum mean cycle, it performs
O(min{nm 10g(nC), nm2 log n}) iterations. We describe this algorithm in Section
10.5.

Sec. 9.6 Cycle-Canceling Algorithm and the Integrality Property 319

9.7 SUCCESSIVE SHORTEST PATH ALGORITHM

The cycle-canceling algorithm maintains feasibility of the solution at every step and
attempts to achieve optimality. In contrast, the successive shortest path algorithm
maintains optimality of the solution (as defined in Theorem 9.3) at every step and
strives to attain feasibility. It maintains a solution x that satisfies the nonnegativity
and capacity constraints, but violates the mass balance constraints of the nodes. At
each step, the algorithm selects a node s with excess supply (Le., supply not yet
sent to some demand node) and a node t with unfulfilled demand and sends flow
from s to t along a shortest path in the residual network. The algorithm terminates
when the current solution satisfies all the mass balance constraints.

To describe this algorithm as well as several later developments, we first in
troduce the concept of pse udo./low s. A pseudo./low is a function x: A -i> R + satisfying
only the capacity and nonnegativity constraints; it need not satisfy the mass balance
constraints. For any pseudoflow x, we define the imbalance of node i as

e(i) = b(i) + ~ Xji - ~ xij for all i E N.
{j:(j.i)EA} {j:(i.j)EA}

If e(i) > 0 for some node i, we refer to e(i) as the excess of node i; if e(i) <
0, we call - e(i) the node's deficit. We refer to a node i with e(i) = 0 as balanced.
Let E and D denote the sets of excess and deficit nodes in the network. Notice that
~iEN e(i) = ~iEN b(i) = 0, and hence ~iEE e(i) = - ~iED e(i). Consequently,
if the network contains an excess node, it must also contain a deficit node. The
residual network corresponding to a pseudoflow is defined in the same way that we
define the residual network for a flow.

U sing the concept of pseudoflow and the reduced cost optimality conditions
specified in Theorem 9.3, we next prove some results that we will use extensively
in this and the following chapters.

Lemma 9.11. Suppose that a pseudo./low (or a./low) x satisfies the reduced
cost optimality conditions with respect to some node potentials 1T. Let the vector d
represent the shortest path distances from some node s to all other nodes in the
residual network G(x) with cij as the length of an arc (i, j). Then the following
properties are valid:

(a) The pseudo./low x also satisfies the reduced cost optimality condi~ions with re
spect to the node potentials 1T' = 1T - d.

(b) The reduced costs clY are zero for all arcs (i, j) in a shortest path from node s
to every other node.

Proof Since x satisfies the reduced cost optimality conditions with respect to
1T, cij 2:: 0 for every arc (i, j) in G(x). Furthermore, since the vector d represents
shortest path distances with cij as arc lengths, it satisfies the shortest path optimality
conditions, that is,

d(j) :5 d(i) + cij for all (i, j) in G(x). (9.21)

Substituting cij = cij - 1T(i) + 1T(j) in (9.21), we obtain d(j) :5 d(i) + Cij
:- 1T(i) + 1T(j). Alternatively, Cij - (1T(i) - d(i» + (1T(j) - d(j» 2:: 0, or cij' 2:: O.
This conclusion establishes part (a) of the lemma.

320 Minimum Cost Flows: Basic Algorithms Chap. 9

Consider next a shortest path from node s to some node I. For each arc (i, j)
in this path, d(j) = d(i) + c7J. Substituting c7J = Clf - 7r(i) + 7r(j) in this equation,
we obtain c7J' = o. This conclusion establishes part (b) of the lemma. •

The following result is an immediate corollary of the preceding lemma.

Lemma 9.12. Suppose that a pseudoflow (or a flow) x satisfies the reduced
cost optimality conditions and we obtain x' from x by sending flow along a shortest
path from node s to some other node k; then x' also satisfies the reduced cost
optimality conditions.

Proof Define the potentials 7r and 7r ' as in Lem~a 9.11. The proof of Lemma
9.11 implies that for every arc (i, j) in the shortest path P from node s to the node
k, c7J' = o. Augmenting flow on any such arc might add its reversal (j, i) to the
residual network. But since cij'= 0 for each arc (i, jY E P, cJf' = 0 and the arc
(j, i) also satisfies the reduced cost optimality conditions. These results establish
the lemma. •

We are now in a position to describe the successive shortest path algorithm.
The node potentials playa very important role in this algorithm. Besides using them
to prove the correctness of the algorithm, we use them to maintain nonnegative arc
lengths so that we can solve the shortest path problem more efficiently. Figure 9.9
gives a formal statement of the successive shortest path atgorithm.

We illustrate the successive shortest path algorithm on the same numerical
example we used to illustrate the cycle canceling algorithm. Figure 9.1O(a) shows
the initial residual network. Initially, E = {I} and D = {4}. Therefore, in the'first
iteration, s = 1 and t = 4. The shortest path distances d (with respect to the reduced
costs) are d = (0, 2, 2, 3) and the shortest path from node 1 to node 4 is 1-3-4.
Figure 9.10(b) shows the updated node potentials and reduced costs, and Figure
9.10(c) shows the solution after we have augmented min{e(1),-e(4), r13, r34} =
min{4, 4, 2, 5} = 2 units of flow along the path 1-3-4. In the second iteration, k =

Sec. 9.7

algorithm successive shortest path;
begin

x: = 0 and 'IT : = 0;
e(i) : = b(i) for all i E N;
initialize the sets E: = {i : e(i) > O} and D : = {i : e(i) < O};
while E¥ 8do
begin

select a node k E E and a node 1 E D;
determine shortest path distances d(j) from node s to all

other nodes in G(x) with respect to the reduced costs c1J;
let P denote a shortest path from node k to node I;
update 'IT : = 'IT- d;
1) : = min[e(k). - e(l). min{rij : (i, j) E P}];
augment 1) units of flow along the path P;
update x, G(x), E, D, and the reduced costs;

end;
end;

Figure 9.9 Successive shortest path algorithm,

Successive Shortest Path Algorithm 321

e(l) = 4
'!T(l) = 0

e(l) = 2
'!T(l) = 0

e(2) = 0
'!T(2) =-2

e(3) =0
'!T(3) =-2

eel) =4
'!T(l) = 0

(b)

e(2) = 0
'!T(2) =-2

e(3) = 0
'!T(3) =-3

(d)

~~ ____ ~_~_r_ij) ____ •• I~

e(2) =0
'!T(2) = 0

e(3) = 0
'!T(3) = 0

(a)

e(4) =-4
'!T(4) =-3

e(4) =-2
'!T(4) =-4

e(l) = 2
'!T(l) = 0

eel) = 0
'!T(l) = 0

e(4) =-4
'!T(4) = 0

e(2) = 0
'!T(2) =-2

e(3) = 0
'!T(3) =-2

(c)

e(2) = 0
'!T(2) =-2

e(3) = 0
'!T(3) =-3

(e)

Figure 9.10 Illustrating the successive shortest path algorithm: (a) initial residual
network for x = 0 and '!T = 0; (b) network after updating the potentials '!T; (c) network
after augmenting 2 units along the path 1-3-4; (d) network after updating the poten
tials '!T; (e) network after augmenting 2 units along the path 1-2-3-4.

e(4) =-2
'!T(4) =-3

e(4) = 0
'!T(4) =-4

1, I = 4, d = (0, 0, 1, 1) and the shortest path from node 1 to node 4 is 1-2-3-4.
Figure 9.1O(d) shows the updated node potentials and reduced costs, and Figure
9.1O(e) shows the solution after we have augmented min{e(1), - e(4), Y12, Y23, Y34} =

min{2, 2, 4, 2, 3} = 2 units offlow. At the end of this iteration, all imbalances become
zero and the algorithm terminates.

322 Minimum Cost Flows: Basic Algorithms Chap. 9

We now justify the successive shortest path algorithm. To initialize the algo
rithm, we set x = 0, which is a feasible pseudoflow. For the zero pseudoflow x,
G(x) = G. Note that this solution together with 1T = 0 satisfies the reduced cost
optimality conditions because cij = cij;::: 0 for every arc (i,j) in the residual network
G(x) (recall Assumption 9.5, which states that all arc costs are nonnegative). Observe
that as long as any node has a nonzero imbalance, both E and D must be nonempty
since the total sum of excesses equals the total sum of deficits. Thus until all nodes
are balanced, the algorithm always succeeds in identifying an excess node k and a
deficit node I. Assumption 9.4 implies that the residual network contains a directed
path from node k to every other node, including node I. Therefore, the shortest path
distances d(·) are well defined. Each iteration ofthe algorithm solves a shortest path
problem with nonnegative arc lengths and strictly decreases the excess of some node
(and, also, the deficit of some other node). Consequently, if U is an upper bound
on the largest supply of any node, the algorithm would terminate in at most nU
iterations. If S(n, m, C) denotes the time taken to solve a shortest path problem
with nonnegative arc lengths, the overall complexity of this algorithm is O(nUS(n,
m, nC)). [Note that we have used nC rather than C in this expression, since the
costs in the residual network are bounded by nC.] We refer the reader to the reference
notes of Chapter 4 for the best available value of S(n, m, C).

The successive shortest path algorithm requires pseudopolynomial time to
solve the minimum cost flow problem since it is polynomial in n, m and the largest
supply U. This algorithm is, however, polynomial time for the assignment problem,
a special case of the minimum cost flow problem, for which U = 1. In Chapter 10,
using scaling techniques, we develop weakly and strongly polynomial-time versions
of the successive shortest path algorithm. In Section 14.5 we generalize this approach
even further, developing a polynomial-time algorithm for the convex cost flow prob
lem.

We now suggest some practical improvements to the successive'shortest path
algorithm. As stated, this algorithm selects an excess node k, uses Dijkstra's algo
rithm to identify shortest paths from node k to all other nodes, and augments flow
along a shortest path from node k to some deficit node I. In fact, it is not necessary
to determine a shortest path from node k to all nodes; a shortest path from node k
to one deficit node 1 is sufficient. Consequently, we could terminate Dijkstra's al
gorithm whenever it permanently labels the first deficit node I. At this point we might
modify the node potentials in the following manner:

(.) = {1T(i) - d(i)
1T I 1T(i) - d(l)

if node i is permanently labeled
if node i is temporarily labeled.

In Exercise 9.47 we ask the reader to show that with this choice of the modified
node potentials, the reduced costs of all the arcs in the residual network remain
nonnegative and the reduced costs of the arcs along the shortest path from node k
to node 1 are zero. Observe that we can alternatively modify the node potentials in
the following manner:

Sec. 9.7

(.) = {1T(i) - d(i) + d(l)
1T I 1T(i)

if node i is permanently labeled
if node i is temporarily labeled.

Successive Shortest Path Algorithm 323

This scheme for updating node potentials is the same as the previous scheme
except that we add d(l) to all of the node potentials (which does not affect the reduced
cost of any arc). An advantage of this scheme is that the algorithm spends no time
updating the potentials of the temporarily labeled nodes.

9.8 PRIMAL-DUAL ALGORITHM

The primal-dual algorithm for the minimum cost flow problem is similar to the
successive shortest path algorithm in the sense that it also maintains a pseudoflow
that satisfies the reduced cost optimality conditions and gradually converts it into
a flow by augmenting flows along shortest paths. In contrast, instead of sending flow
along one shortest path at a time, it solves a maximum flow problem that sends flow
along all shortest paths.

The primal-dual algorithm generally transforms the minimum cost flow prob
lem into a problem with a single excess node and a single deficit node. We transform
the problem into this form by introducing a source node s and a sink node t. For
each node i with b(i) > 0, we add a zero cost arc (s, i) with capacity b(i), and for
each node i with b(i) < 0, we add a zero cost arc (i, t) with capacity - b(i). Finally,
we set b(s) = L{iEN:b(i}>O} b(i), bet) = -b(s), and b(i) = 0 for all i E N. It is
easy to see that a minimum cost flow in the transformed network gives a minimum
cost flow in the original network. For simplicity of notation, we shall represent the
transformed network as G = (N, A), which is the same representation that we used
for the original network.

The primal-dual algorithm solves a maximum flow problem on a subgraph of
the residual network G(x), called the admissible network, which we represent as
Gt(x). We define the admissible network GO(x) with respect to a pseudoflow x that
satisfies the reduced cost optimality conditions for some node potentials 'iT; the ad
missible network contains only those arcs in G(x) with a zero reduced cost. The
residual capacity of an arc in GO(x) is the same as that in G(x). Observe that every
directed path from node s to node tin GO(x) is a shortest path in G(x) between the
same pair of nodes (see Exercise 5.20). Figure 9.11 formally describes the primal
dual algorithm on the transformed network.

324

algorithm primal-dual;
begin

x: = 0 and 'IT : = 0;
e(s) : = b(s) and e(t) : = b(t);
while e(s) > 0 do
begin

determine shortest path distances d(·) from node s to all other nodes in G(x) with
respect to the reduced costs c1J;

update 'IT : = 'IT - d;
define the admissible network GO(x);
establish a maximum flow from node s to node tin GO(x);
update e(s) , e(t), and G(x);

end;
end;

Figure 9.11 Primal-dual algorithm.

Minimum Cost Flows: Basic Algorithms Chap. 9

To illustrate the primal-dual algorithm, we consider the numerical example
shown in Figure 9. 12(a). Figure 9. 12(b) shows the transformed network. The shortest
path computation yields the vector d = (0, 0, 0, 1, 2, 1) whose components are in

2 -2 o o

4

2 -2 o o
(a) (b)

'IT(2) = 0 'IT(4) = 1

e(s) =4
'IT(s) = 0

e(t) =-4
'IT(t) = 1

Sec. 9.8

'IT(3) = 0 'IT(5) = 2

(c)

e(s) = 4 e(t) =-4

(d)

Figure 9.12 Illustrating the primal-dual algorithm: (a) example network; (b) trans
formed network; (c) residual network after updating the node potentials; (d) admis
sible network.

Primal-Dual Algorithm

-4

325

the order s, 1, 2, 3, 4, t. Figure 9.12(c) shows the modified node potentials and
reduced costs and Figure 9. 12(d) shows the admissible network at this stage in the
computations. When we apply the maximum flow algorithm to the admissible net
work, it is able to send 2 units of flow from node s to node t. Observe that the
admissible network contained two paths from node s to node t and the maximum
flow computation saturates both the paths. The successive shortest path algorithm
would have taken two iterations to send the 2 units offlow. As the reader can verify,
the second iteration of the primal-dual algorithm also sends 2 units of flow from
node s to node t, at which point it converts the pseudoflow into a flow and terminates.

The primal-dual algorithm guarantees that the excess of node s strictly de
creases at each iteration, and also assures that the node potential of the sink strictly
decreases from one iteration to the next. The second observation follows from the
fact that once we have established a maximum flow in GO(x), the residual network
G(x) contains no directed path from node s to node t consisting entirely of arcs with
zero reduced costs. Consequently, in the next iteration, when we solve the shortest
path problem, d(t) 2: 1. These observations give a bound of min{nU, nC} on the
number of iterations since initially e(s) ::5 nU, and the value of no node potential
can fall below - nC (see Exercise 9.25). This bound on the number of iterations is
better than that of the successive shortest path algorithm, but, of course, the al
gorithm incurs the additional expense of solving a maximum flow problem at every
iteration. If S(n, m, C) and M(n, m, U) denote the solution times of shortest path
and the maximum flow algorithms, the primal-dual algorithm has an overall com
plexity of O(min{nU, nCHS(n, m, nC) + M(n, m, U)}).

In concluding this discussion, we might comment on why this algorithm is
known as the primal-dual algorithm. This name stems from linear programming
duality theory. In the linear programming literature, the primal-dual algorithm al
ways maintains a dual feasible solution 1T and a primal solution that might violate
some supply/demand constraints (i.e., is primal infeasible), so that the pair satisfies
the complementary slackness conditions. For a given dual feasible solution, the
algorithm attempts to decrease the degree of primal infeasibility to the minimum
possible level. [Recall that the algorithm solves a maximum flow problem to reduce
e(s) by the maximum amount.] When no further reduction in the primal infeasibility
is possible, the algorithm modifies the dual solution (i.e., node potentials in the
network flow context) and again tries to minimize primal infeasibility. ;rhis primal
dual approach is applicable to several combinatorial optimization problems and also
to the general linear programming problem. Indeed, this primal-dual solution strat
egy is one of the most popular approaches for solving specially structured problems
and has often yielded fairly efficient and intuitively appealing algorithms.

9.9 OUT-OF-KILTER ALGORITHM

The successive shortest path and primal-dual algorithms maintain a solution that
satisfies the reduced cost optimality conditions and the flow bound constraints but
violates the mass balance constraints. These algorithms iteratively modify arc flows
and node potentials so that the flow at each step comes closer to satisfying the mass
balance constraints. However, we could just as well have developed other solution
strategies by violating other constraints at intermediate steps. The out-of-kilter al-

326 Minimum Cost Flows: Basic Algorithms Chap. 9

gorithm, which we discuss in this section, satisfies only the mass balance constraints,
so intermediate solutions might violate both the optimality conditions and the flow
bound restrictions. The algorithm iteratively modifies flows and potentials in a way
that decreases the infeasibility of the solution (in a way to be specified) and, si
multaneously, moves it closer to optimality. In essence, the out-of-kilter algorithm
is similar to the successive shortest path and primal-dual algorithms because its
fundamental step at every iteration is solving a shortest path problem and augmenting
flow along a shortest path.

To describe the out-of-kilter algorithm, we refer to the complementary slack
ness optimality conditions stated in Theorem 9.4. For ease of reference, let us restate
these conditions.

If Xij = 0, then elJ 2: O.

If 0 < xij < Uij, then elJ = O.

If xij = Uij, then elJ ::5 0,

(9.22a)

(9.22b)

(9.22c)

The name out-of-kilter algorithm reflects the fact that arcs in the network either
satisfy the complementary slackness optimality conditions (are in-kilter) or do not
(are out-oj-kilter). The so-called kilter diagram is a convenient way to represent
these conditions. As shown in Figure 9.13, the kilter diagram of an arc (i, j) is the
collection of all points (Xij, elJ) in the two-dimensional plane that satisfy the optimality
conditions (9.22). The condition 9.22(a) implies that elJ 2: 0 if xij = 0; therefore, the
kilter diagram contains all points with zero xij-coordinates and nonnegative
elJ-coordinates. Similarly, the condition 9.22(b) yields the horizontal segment of the
diagram, and condition 9.22(c) yields the other vertical segment of the diagram. Each
arc has its own kilter diagram.

i
cij

o

Figure 9.13 Kilter diagram for arc (i, j).

Notice that for every arc (i, j), the flow Xij and reduced cost elJ define a point
(xij' elJ) in the two-dimensional plane. If the point (Xij, elJ) lies on the thick lines in
the kilter diagram, the arc is in-kilter; otherwise, it is out-of-kilter. For instance, the
points B, D, and E in Figure 9.14 are in-kilter, whereas the points A and Care out
of-kilter. We define the kilter number kij of each arc (i, j) in A as the magnitude of
the change in Xij required to make the arc an in-kilter arc while keeping elJ fixed.

Sec. 9.9 Out-oj-Kilter Algorithm 327

E

0

c1
uij

D

xij~

Figure 9.14 Examples of in-kilter and
out-of-kilter arcs.

Therefore, in accordance with conditions (9.22a) and (9.22c), if elJ > 0, then k =
1 Xij I. and if elJ < 0, then kij = 1 Uij - Xij I. If elJ = 0 and Xij > Uij, then kij = Xij -
Uij. If elJ = 0 and xij < 0, then kij = - Xij' The kilter number of any in-kilter arc is
zero. The sum K = ~(i,j)EA kij of all kilter numbers provides us with a measure of
how far the current solution is from optimality; the smaller the value of K, the closer
the current solution is to being an optimal solution.

In describing the out-of-kilter algorithm, we begin by making a simplifying
assumption that the algorithm starts with a feasible flow. At the end of this section
we show how to extend the algorithm so that it applies to situations when the initial
flow does not satisfy the arc flow bounds (we also consider situations with nonzero
lower bounds on arc flows).

To describe the out-of-kilter algorithm, we will work on the residual network;
in this setting, the algorithm iteratively decreases the kilter number of one or more
arcs in the residual network. To do so, we must be able to define the kilter number
of the arcs in the residual network G(x). We set the kilter number kij of an arc
(i, j) in the following manner:

kij = {O
rij

if elJ ~ O.
if elJ < O.

(9.23)

This definition of the kilter number of an arc in the residual network is con
sistent with our previous definition: It is the change in flow (or, equivalently, the
residual capacity) required so that the arc satisfies its optimality condition [which,
in the case of residual networks, is the reduced cost optimality condition (9.7)]. An
arc (i, j) in the residual network with elJ ~ 0 satisfies its optimality condition (9.7),
but an arc (i, j) with elJ < 0 does not. In the latter case, we must send rij units of
flow on the arc (i, j) so that it drops out of the residual network and thus satisfies
its optimality condition ..

The out-of-kilter algorithm maintains a feasible flow x and a set of node po
tentials 'IT. We could obtain a feasible flow by solving a maximum flow problem (as
described in Section 6.2) and start with 'IT = O. Subsequently, the algorithm maintains
all of the in-kilter arcs as in-kilter arcs and successively transforms the out-of-kilter
arcs into in-kilter arcs. The algorithm terminates when all arcs in the residual network
become in-kiiter. Figure 9.15 gives a formal description of the out-of-kilter algorithm.

328 Minimum Cost Flows: Basic Algorithms Chap. 9

algorithm out-ot-kilter;
begin

71": = 0;
establish a feasible flow x in the network;
define the residual network G(x) and compute the kilter numbers of arcs;
while the network contains an out-of-kilter arc do
begin

select an out-of-kilter arc (p, q) in G(x);
define the length of each arc (i, J) in G(x) as max{O, cJJ};
let d(·) denote the shortest path distances from node qto all other nodes in

G(x) - {(q, p)} and let P denote a shortest path from node q to node p;
update 7I"'(i) : = 7I"(i) - d(i) for all i E N;
if cp~ < 0 then
begin

end;
end;

end;

W: = P U {(p, q)};
/) : = min{rij : (i, j) E W};
augment /) units of flow along W;
update x, G(x) , and the reduced costs;

Figure 9.15 Out-of-kilter algorithm.

We now discuss the correctness and complexity of the out-of-kilter algorithm.
The correctness argument of the algorithm uses the fact that kilter numbers of arcs
are nonincreasirig. Two operations in the algorithm affect the kilter numbers of arcs:
updating node potentials and augmenting flow along the cycle W. In the next two
lemmas we show that these operations do not increase the kilter number of any arc.

Lemma 9.13. Updating the node potentials does not inerease the kilter num
ber of any are in the residual network.

Proof Let 'IT and .'IT' denote the node potentials in the out-of-kilter algorithm
before and after the update. The definition of the kilter numbers from (9.23) implies
that the kilter number of an arc (i, j) can increase only if eij ~ 0 and eij' < O. We
show that this cannot ,happen. Consider any arc (i,j) with eij ~ o. We wish to show
that eij' ~ o. Since e;q < 0, (i, j) ¥- (p, q). Since the distances dO represent the
shortest path distances with max{O, eij} as the length of arc (i, j), the shortest path
distances satisfy the following shortest path optimality condition (see Section 5.2):

d(j) ~ d(i) + max{O, eij} = d(i) + eij.

The equality in this expression is valid because, by assumption, eij ~ o. The pre
ceding expression shows that

eij + d(i) - d(j) ~ eij' ~ 0,

so each arc in the residual network with a nonnegative reduced cost has a nonnega
tive reduced cost after the potentials update, which implies the conclusion of the
lemma. •

Sec. 9.9 Out-of-Kilter Algorithm 329

Lemma 9.14. Augmenting flow along the directed cycle W = P U {(p, q)}
does not increase the kilter number of any arc in the residual network and strictly
decreases the kilter number of the arc (p, q).

Proof Notice that the flow augmentation can change the kilter number of only
the arcs in W = P U {(p, q)} and their reversals. Since P is a shortest path in the
residual network with max{O, cij} as the length of arc (i, j),

d(j) = d(i) + max{O, cij} 2": d(i) + cij for each arc (i, j) E P,

which, using 'IT' = 'IT - d and the definition cij = Cij - 'IT(i) + 'IT(j), implies that

cij' ::; 0 for each arc (i, j) E P.

Since the reduced cost of each arc (i, j) in P with respect to 'IT' is nonpositive,
the condition (9.23) shows that sending additional flow does not increase the arc's
kilter number, but might decrease it. The flow augmentation might add the reversals
of arcs in P, but since cij' ::; 0, the reversal of this arc (j, i) has eft' 2": 0, and therefore
arc (j, i) is an in-kilter arc.

Finally, we consider arc (p, q). Recall from the algorithm description in Figure
9.15 that we augment flow along the arc (p, q) only if it is an out-of-kilter arc (i.e.,
c;~ < 0). Since augmenting flow along the arc (p, q) decreases its residual capacity,
the augmentation decreases this arc's kilter number. Since c;;; > 0, arc (q, p) remains
an in-kilter arc. These conclusions complete the proof of the lemma. •

The preceding two lemmas allow us to obtain a pseudopolynomial bound on
the running time of the out-of-kilter algorithm. Initially, the kilter number of an arc
is at most U; therefore, the sum of the kilter numbers is at most mU. At each
iteration, the algorithm selects an arc, say (p, q), with a positive kilter number and
either makes it an in-kilter arc during the potential update step or decreases its kilter
number by the siIbsequent flow augmentation. Therefore, the sum of kilter numbers
decreases by at least 1 unit at every iteration. Consequently, the algorithm terminates
within O(mU) iterations. The dominant computation within each iteration is solving
a shortest path problem. Therefore, if S(n, m, C) is the time requireq to solve a
shortest path problem with nonnegative arc lengths, the out-of-kilter algorithm runs
in O(mU S(n, m, nC» time.

How might we modify the algorithm to handle situations when the arc flows
do not necessarily satisfy their flow bounds? In examining this case we consider the
more general problem setting by allowing the arcs to have nonzero lower bounds.
Let lij denote the lower bound on the flow on arc (i, j) EA. In this case, the com
plementary slackness optimality conditions become:

If xij = lij, then cij 2": O.

If lij < Xij < Uij, then cij = o.
If Xij = Uij, then cij ::; O.

(9. 24a)

(9.24b)

(9.24c)

The thick lines in Figure 9.16 define the kilter diagram for this case. Consider
arc (i, j). If the point (Xij, clJ) lies on the thick line in Figure 9.16, the arc is an in
kilter arc; otherwise it is an out-of-kilter arc. As earlier, we define the kilter number

330 Minimum Cost Flows: Basic Algorithms Chap. 9

i
A

B

c

.F

E

Figure 9.16 Kilter diagram for an arc
(i, j) with a nonzero lower bound.

of an arc (i, j) in A as the magnitude of the change in Xij required to make the arc
an in-kilter arc while keeping cij fixed. Since arcs might violate their flow bounds,
six types of out-of-kilter arcs are possible, which we depict by points A, B, C, D,
E, and F in Figure 9.16. For example, the kilter numbers of arcs with coordinates
depicted by the points A and Dare (lij - Xij) and (Xij - Uij), respectively.

To describe the algorithm for handling these situations, we need to determine
how to form the residual network G(x) for a flow x violating its lower and upper
bounds. We consider each arc (i, j) in A one by one and add arcs to the residual
network G(x) in the following manner:

1. lij S Xij S Uij. If Xij < Uij, we add the arc (i, j) with a residual capacity Uij - Xij
and with a cost Cij. If Xij > lij, we add the arc (j, i) with a residual capacity
Xij - lij and with a cost - Cij. We call these arcs feasible arcs.

2. xij < lij. In this case we add the arc (i,j) with a residual capacity Oij - Xij) and
with a cost Cij. We refer to this arc as a lower-infeasible arc.

3. Xij > uij. In this case we add the arc (j, i) with a residual capacity (Xij - uij)
and with a cost -Cij. We refer to this arc as an upper-infeasible arc.

We next define the kilter numbers of arcs in the residual network. For feasible
arcs in the residual network, we define their kilter numbers using (9.23). We define
the kilter number kij of a lower-infeasible or an upper-infeasible arc (i, j) as the
change in its residual capacity required to restore its feasibility as well as its opti
mality. For instance, for a lower-infeasible arc (i, j) (1) if cij 2': 0, then kij = (lij -
Xij); and (2) if cij < 0, then kij = (uij - Xij). Note that

1. Lower-infeasible and upper-infeasible arcs have positive kilter numbers.
2. Sending additional flow on lower-infeasible and upper-infeasible arcs in the

residual network decreases their kilter numbers.

The out-of-kilter algorithm for this case is same as that for the earlier case.
The algorithmic description given in Figure 9.15 applies to this case as well except
that at the beginning of the algorithm we need not establish a feasible flow in the
network. We can initiate the algorithm with x ° as the starting flow. We leave

Sec. 9.9 Out-of-Kilter Algorithm 331

the justification of the out -of-kilter algorithm for this case as an exercise to the reader
(see Exercise 9.26).

9.10 RELAXATION ALGORITHM

All the minimum cost flow algorithms we have discussed so far-the cycle-canceling
algorithm, the successive shortest path algorithm, the primal-dual algorithm, and
the out-of-kilter algorithm-are classical in the sense that researchers developed
them in the 1950s and 1960s as network flow area was emerging as an independent
field of scientific investigation. These algorithms have several common features: (1)
they repeatedly apply shortest path algorithms, (2) they run in pseudopolynomial
time, and (3) their empirical running times have proven to be inferior to those of the
network simplex algorithm tailored for the minimum cost flow problem (we discuss
this algorithm in Chapter 11). The relaxation algorithm we examine in this section
is a more recent vintage minimum cost flow algorithm; it is competitive or better
than the network simplex algorithm for some classes of networks. Interestingly, the
relaxation algorithm is also a variation of the successive shortest path algorithm.
Even though the algorithm has proven to be efficient in practice for many classes
of problems, its worst-case running time is much poorer than that of every minimum
cost flow algorithm discussed in this chapter.

The relaxation algorithm uses ideas from Lagrangian relaxation, a well-known
technique used for solving integer programming problems. We discuss the Lagran
gian relaxation technique in more detail in Chapter 16. In the Lagrangian relaxation
technique, we identify a set of constraints to be relaxed, multiply each such constraint
by a scalar, and subtract the product from the objective function. The relaxation
algorithm relaxes the mass balance constraints of the nodes, mUltiplying the mass
balance constraint for node i by an (unrestricted) variable 7r(i) (called, as usual, a
node potential) and subtracts the resulting product from the objective function. These
operations yield the following relaxed problem:

w(7r) = minimize [~ CijXij +
x (ij)EA (9.25a)

~ 7r(i) {- ~ Xij + ~ Xji + b(i)}]
iEN {j:(i,j)EA} {j:(j,i)EA}

subject to

for all (i, j) EA. (9.25b)

For a specific value of the vector 7r of node potentials, we refer to the relaxed
problem as LR(7r) and denote its objective function value by w(7r). Note that the
optimal solution of LR(7r) is a pseudoflow for the minimum cost flow problem since
it might violate the mass balance constraints. We can restate the objective function
of LR(1T) in the following equivalent way:

w(7r) = minimize [~ CijXij + ~ 7r(i)e(i)].
x (iJ)EA iEN

(9.26)

332 Minimum Cost Flows: Basic Algorithms Chap. 9

In this expression, as in our earlier discussion, e(i) denotes the imbalance of
node i. Let us restate the objective function (9.25a) of the relaxed problem in another
way. Notice that in the second term of (9.25a), each flow variable Xij appears twice:
once with a coefficient of -7r(i) and the second time with a coefficient of 7r(j).
Therefore, we can write (9.25a) as follows:

w(7r) = minimize [L (Cij - 7r(i) + 7r(j»xij + L 7r(i)b(i)] ,
x (i,j)EA iEN

or, equivalently,

W(7r) = minimize [L cijxij + ,.L
EN

7r(Ob(i)].
x (i,j)EA

(9.27)

In the subsequent discussion, we refer to the objective function of LR(7r) as
(9.26) or (9.27), whichever is more convenient. For a given vector 7r of node po
tentials, it is very easy to obtain an optimal solution x of LR(7r): In light of the
formulation (9.27) of the objective function, (1) if cij > 0, we set Xij = 0; (2) if
cij < 0, we set Xij = uij; and (3) if cij = 0, we can set xij to any value between °
and Uij. The reSUlting solution is a pseudoflow for the minimum cost flow problem
and satisfies the reduced cost optimality conditions. We have therefore established
the following result.

Property 9.15. If a pseudo flow x of the minimum cost flow problem satisfies
the reduced cost optimality conditions for some 7r, then x is an optimal solution of
LR(7r).

Let z* denote the optimal objective function value of the minimum cost flow
problem. As shown by the next lemma, the value z* is intimately.related to the
optimal objective value w(7r) of the relaxed problem LR(7r).

Lemma 9.16
(a) For any node potentials 7r, w(7r) :5 z*.
(b) For some choice of node potentials 7r*, w(7r*) = z*.

Proof Let x* be an optimal solution of the minimum cost flow problem with
objective function value z*. Clearly, for any vector 7r of node potentials, X* is a
feasible solution ofLR(7r) and its objective function value in LR(7r) is also z*. There
fore, the minimum objective function value of LR(7r) will be less than or equal to
z*. We have thus established the first part of the lemma.

To prove the second part, let 7r* be a vector of node potentials that together
with X* satisfies the complementary slackness optimality conditions (9.8). Property
9.15 implies that X* is an optimal solution of LR(7r*) and w(7r*) = cx* = z*. This
conclusion completes the proof of the lemma. •

Notice the similarity between this result and the weak duality theorem (i.e.,
Theorem 9.5) for the minimum cost flow problem that we have stated earlier in this
chapter. The similarity is more than incidental, since we can view the Lagrangian
relaxation solution strategy as a dual linear programming approach that combines

Sec. 9.10 Relaxation Algorithm 333

some key features of both the primal and dual linear programs. Moreover, we can
view the dual linear program itself as being generated by applying Lagrangian re
laxation.

The relaxation algorithm always maintains a vector of node potentials 'IT and
a pseudoflow x that is an optimal solution of LR('IT). In other words, the pair (x, 'IT)
satisfies the reduced cost optimality conditions. The algorithm repeatedly performs
one of the following two operations:

1. Keeping 'IT unchanged, it modifies x to x' so that x' is also an optimal solution
of LR('IT) and the excess of at least one node decreases.

2. It modifies 'IT to 'IT' and x to x' so that x' is an optimal solution of LR('IT') and
w('IT') > w('IT).

If the algorithm can perform either of the two operations, it gives priority to
the second operation. Consequently, the primary objective in the relaxation algo
rithm is to increase w('IT) and the secondary objective is to reduce the infeasibility
of the pseudoflow x while keeping w('IT) unchanged. We point out that the excesses
at the nodes might increase when the algorithm performs the second operation. As
we show at the end of this section, these two operations are sufficient to guarantee
finite convergence of the algorithm. For a fixed value of w('IT), the algorithm con
sistently reduces the excesses of the nodes by at least one unit, and from Lemma
9.16 the number of increases in w('IT), each of which is at least 1 unit, is finite.

We now describe the relaxation algorithm in more detail. The algorithm per
forms major iterations and, within a major iteration, it performs several minor it
erations. Within a major iteration, the algorithm selects an excess node s and grows
a tree rooted at node s so that every tree node has a nonnegative imbalance and
every tree arc has zero reduced cost. Each minor iteration adds an additional node
to the tree. A major iteration ends when the algorithm performs either an augmen
tation or increases w('IT).

Let S denote the set of nodes spanned by the tree at some stage.and let 8 =
N - S. The set S defines a cut which we denote by [S, 8]. As in earlier chapters,
we let (S, 8) denote the set offorward arcs in the cut and (8, S) the set of backward
arcs [all in G(x)]. The algorithm maintains two variables e(S) and r('IT, S), defined
as follows:

e(S) = L e(i),
iES

r('IT, S) = L rij.
(i,j)E(S,S) and cij ~O

Given the set S, the algorithm first checks the condition e(S) > r('IT, S). If the
current solution satisfies this condition, the algorithm can increase w('IT) in the fol
lowing manner. [We illustrate this method using the example shown in Figure
9.17(a).] The algorithm first increases the flow on zero reduced cost arcs in (S, 8)
so that they become saturated (i.e., drop out of the residual network). The flow
change does not alter the value of w('IT) because the change takes place on arcs with
zero reduced costs. However, the flow change decreases the total imbalance of the

334 Minimum Cost Flows: Basic Algorithms Chap. 9

s

e(i) e(j)
~I--_(c,"--;;,---,rij,-.)~.~

(0, 2)

(0,3)

(2,4)

(3,2)

(a)

(3,2)

(b)

(c)

s
-1

4

-2

0

o

o

Figure 9.17 Illustrating the relaxation algorithm: (a) solution at some stage;
(b) solution after modifying the flow; (c) solution after modifying the potentials.

nodes by the amount r(1T, S); but since e(S) > r(1T, S), the remaining imbalance
e(S) - r(1T, S) is still positive [see Figure 9.17(b)].

At this point all the arcs in (S, S) have (strictly) positive reduced cost. The
algorithm next computes the minimum reduced cost of an arc in (S, S), say a, and
increases the potential of every node i E S by a> 0 units [see Figure 9. 17(c)]. The

Sec. 9.10 Relaxation Algorithm 335

formulation (9.26) of the Lagrangian relaxation objective function implies that this
updating of the node potentials does not change its first term but increases the second
term by (e(S) - r(-rr, S»ex units. Therefore, this operation increases w('lT) by
(e(S) - r('IT, S»ex units, which is strictly positive. Increasing the potentials of nodes in
S by ex decreases the reduced costs of all the arcs in (S, 8) by ex units, increases the
reduced costs of all arcs in (8, S) by ex units, and does not change the remaining
reduced costs. Although increasing the reduced costs does not change the reduced
cost optimality conditions, decreasing the reduced costs might. Notice, however,
that before we change the node potentials, cij 2: ex for all (i,j) E (S, 8); therefore,
after the change, cij' 2: 0, so the algorithm preserves the optimality conditions. This
completes one major iteration.

We next study situations in which e(S) ::; r('lT, S). Since r('lT, S) 2: e(S) > 0,
at least one arc (i, j) E (S, 8) must have a zero reduced cost. If e(j) 2: 0, the
algorithm adds nodej to S, completes one minor iteration, and repeats this process.
If e(j) < 0, the algorithm augmertts the maximum possible flow along the tree path
from node s to node j. Notice that since we augment flow along zero residual cost
arcs, we do not change the objective function value of LR('lT). The augmentation
reduces the total excess of the nodes and completes one major iteration of the al
gorithm.

Figures 9.18 and 9.19 give a formal description of the relaxation algorithm.
It is easy to see that the algorithm terminates with a minimum cost flow. The

algorithm terminates when all of the node. imbalances have become zero (i.e., the
solution is a flow). Because the algorithm maintains the reduced cost optimality
conditions at every iteration, the terminal solution is a minimum cost flow.

We now prove that for problems with integral data, the algorithm terminates
in a finite number of iterations. Since each minor iteration adds a node to the set S,
within n minor iterations the algorithm either executes adjust-flow or executes adjust
potentials. Each call of the procedure adjust-flow decreases the excess of at least
one node by at least 1 unit; therefore, the algorithm can perform a finite number of
executions of the adjust-flow procedure within two consecutive calls of the adjust
potential procedure. To bound the executions of the adjust-potential procedure, we
notice that (1) initially, w('lT) = 0; (2) each call of this procedure strictly increases

336

algorithm relaxation;
begin

x ; = 0 and 71" ; = 0;
while the network contains a node s with e(s) > 0 do
begin

S; = {s};
if e(S) > r(7I", S) then adjust-potential;
repeat

select an arc (i, j) E (S, Si in the residual network with clJ = 0;
if e(j) ;;;,; 0 then set pred(j) : = i and add node j to S;

until e(j) < 0 or e(S) > r(7I", S);
if e(S) > r(7I", S) then adjust-potential
else adjust-flow;

end;
end;

Figure 9.18 Relaxation algorithm.

Minimum Cost Flows: Basic Algorithms Chap. 9

procedure adjust-potential;
begin

for every arc (i, j) E (S, S) with cij = 0 do send rij units of flow on the arc (i, j);
compute a : = min{cij : (i, j) E (S, Si and rij> O};
for every node i E S do -rr(i) : = -rr(i) + a;

end;

(8)

procedure adjust-flow;
begin

trace the predecessor indices to identify the directed path P from node s to node j;
/) : = min[e(s), - e(j), min{rlj : (i, j) E P}j;
augment /) units of flow along P, update imbalances and residual capacities;

end;

(b)

Figure 9.19 Procedures of the relaxation algorithm.

w('lT) by at least 1 unit; and (3) the maximum possible value of w('lT) is mCU. The
preceding arguments establish that the algorithm performs finite number of itera
tions. In Exercise 9.27 we ask the reader to obtain a worst-case bound on the total
number of iterations; this time bound is much worse than those of the other minimum
cost flow algorithms discussed in earlier sections.

Notice that the relaxation algorithm is a type of shortest augmenting path al
gorithm; indeed, it bears some resemblance to the successive shortest path algorithm
that we considered in Section 9.7. Since the reduced cost of every arc in the residual
network is nonnegative, and since every arc in the tree connecting the nodes in S
has a zero reduced cost, the path P that we find in the adjust-flow procedure of the
relaxation algorithm is a shortest path in the residual network. Therefore, the se
quence of flow adjustments that the algorithm makes is a set of flow augmentations
along shortest augmenting paths. The relaxation algorithm differs from the succes
sive shortest augmenting path algorithm, however, because it uses "intermediate"
information to make changes to the node potentials as it fans out and constructs the
tree containing the nodes S. This use of intermediate information might explain why
the relaxation algorithm has performed much better empirically than the successive
shortest path algorithm.

9.11 SENSITIVITY ANALYSIS

The purpose of sensitivity analysis is to determine changes in the optimal solution
of a minimum cost flow problem resulting from changes in the data (supply/demand
vector or the capacity or cost of any arc). There are two different ways of performing
sensitivity analysis: (1) using combinatorial methods, and (2) using simplex-based
methods from linear programming. Each method has its advantages. For example,
although combinatorial methods obtain better worst-case time bounds for performing
sensitivity analysis, simplex-based methods might be more efficient in practice. In
this section we describe sensitivity analysis using combinatorial methods; in Section

Sec. 9.11 Sensitivity Analysis 337

11.10 we consider a simplex-based approach. For simplicity, we limit our discussion
. to a unit change of only a particular type. In a sense, however, this discussion is

quite general: It is possible to reduce more complex changes to a sequence of the
simple changes we consider. We show that sensitivity analysis for the minimum cost
flow problem essentially reduces to applying shortest path or maximum flow algo
rithms.

Let x* denote an optimal solution of a minimum cost flow problem. Let 1T be
the corresponding node potentials and cij = Cij - 1T(i) + 1T(j) denote the reduced
costs. Further, let d(k, I) denote the shortest distance from node k to node I in the
residual network with respect to the original arc lengths Cij' Since for any directed
path P from node k to node I, Lu,j)EP cij = Lu,j)EP Cij - 1T(k) + 1T(l), d(k, l) equals
the shortest distance from node k to node I with respect to the arc lengths cij plus
[1T(k) - 1T(I)]. At optimality, the reduced costs cij of all arcs in the residual network
are nonnegative. Therefore, we can compute d(k, l) for all pairs of nodes k and I by
solving n single-source shortest path problems with nonnegative arc lengths.

Supply/Demand Sensitivity An8Jysis

We first study changes in the supply/demand vector. Suppose that the supply/demand
of a node k becomes b(k) + 1 and the supply/demand of another node I becomes
b (I) - 1. [Recall from Section 9.1 that feasibility of the minimum cost flow problem
dictates that LiEN b(i) = 0; therefore, we must change the supply/demand values
of two nodes by equal magnitudes, and must increase one value and decrease the
other.] The vector x* is a pseudoflow for the modified problem; moreover, this vector
satisfies the reduced cost optimality conditions. Augmenting 1 unit of flow from node
k to node I along the shortest path in the residual network G(x*) converts this
pseudoflow into a flow. This augmentation changes the objective function value by
d(k, I) units. Lemma 9.12 implies that this flow is optimal for the modified minimum
cost flow problem. We point out that the residual network G(x*) might not contain
any directed path from node k to node I, in which case the modified minimum cost
flow problem is infeasible.

Arc Capacity Sensitivity Analysis

We next consider a change in an arc capacity. Suppose that the capacity of an arc
(p, q) increases by 1 unit. The flow x* is feasible for the modified problem. In
addition, if C;q 2:: 0, it satisfies the reduced cost optimality conditions; therefore, it
is an optimal flow for the modified problem. If C;q < 0, the optimality conditions
dictate that the flow on the arc must equal its capacity . We satisfy this requirement
by increasing the flow on the arc (p, q) by 1 unit, which produces a pseudoflow
with an excess of 1 unit at node q and a deficit of 1 unit at node p. We convert the
pseudoflow into a flow by augmenting 1 unit of flow from node q to node p along
the shortest path in the residual network G(x*), which changes the objective function
value by an amount Cpq + d(q, p). This flow is optimal from our observations
concerning supply/demand sensitivity analysis.

When the capacity of the arc (p, q) decreases by 1 unit and the flow on the
arc is strictly less than its capacity, x* remains feasible, and therefore optimal, for
the modified problem. However, if the flow on the arc is at its capacity, we decrease

338 Minimum Cost Flows: Basic Algorithms Chap. 9

the flow by 1 unit and augment 1 unit of flow from node p to node q along the shortest
path in the residual network. This augmentation changes the objective function value
by an amount -cpq + d(p, q). Observed that the residual network G(x*) might not
contain any directed path from node p to node q, indicating the infeasibility of the
modified problem.

Cost Sensitivity Analysis

Finally, we discuss changes in arc costs, which we assume are integral. We discuss
the case when the cost of an arc (p, q) increases by 1 unit; the case when the cost
of an arc decreases is left as an exercise to the reader (see Exercise 9.50). This
change increases the reduced cost of arc (p, q) by 1 unit as well. If C;q < 0 before
the change, then after the change, the modified reduced cost is nonpositive. Simi
larly, if C;q > 0 before the change, the modified reduced cost is nonnegative after
the change. In both cases we preserve the optimality conditions. However, if
C;q = 0 before the change and Xpq > 0, then after the change the modified reduced
cost is positive and the solution violates the reduced-cost optimality conditions. To
restore the optimality conditions of the arc, we must either reduce the flow on arc
(p, q) to zero or change the potentials so that the reduced cost of arc (p, q) becomes
zero.

We first try to reroute the flow X;q from node p to node q without violating
any of the optimality conditions. We do so by solving a maximum flow problem
defined as follows: (1) set the flow on the arc (p, q) to zero, thus creating an excess
of X;q at node p and a deficit of X;q at node q; (2) designate node p as the source
node and node q as the sink node; and (3) send a maximum of X;q units from the
source to the sink. We permit the maximum flow algorithm, however, to change
flows only on arcs with zero reduced costs since otherwise it would generate a
solution that might violate (9.8). Let VO denote the flow sent from nodep to node q
and XO denote the resulting arc flow. If VO = X;q, then XO denotes a minimum cost
flow of the modified problem. In this case the optimal objective function values of
the original and modified problems are the same.

On the other hand, if VO < X;q, the maximum flow algorithm yields an s-t cut
[S, S] with the properties that pES, q E S, and every forward arc in the cut with
zero reduced cost has flow equal to its capacity and every backward arc in the cut
with zero reduced cost has zero flow . We then decrease the node potential of every
node in S by 1 unit. It is easy to verify by case analysis that this change in node
potentials maintains the complementary slackness optimality conditions and, fur
thermore, decreases the reduced cost of arc (p, q) to zero. Consequently, we can
set the flow on arc (p, q) equal to X;q - VO and obtain a feasible minimum cost flow.
In this case the objective function value of the modified problem is X;q - VO units
more than that of the original problem.

9.12 SUMMARY

The minimum cost flow problem is the central object of study in this book. In this
chapter we began our study of this important class of problems by showing how
minimum cost flow problems arise in several application settings and by considering

Sec. 9.12 Summary 339

Number of
Algorithm iterations Features

Cycle-canceling O(mCU) I. Maintains a feasible flow x at every iteration and augments
algorithm flows along negative cycles in G(x).

2. At each iteration, solves a shortest path problem with ar-
bitrary arc lengths to identify a negative cycle.

3. Very flexible: some rules for selecting negative cycles
leads to polynomial-time algorithms.

Successive shortest O(nU) 1. Maintains a pseudoflow x satisfying the optimality con-
path algorithm ditions and augments flow along shortest paths from excess

nodes to deficit nodes in G(x).
2. At each iteration, solves a shortest path problem with non-

negative arc lengths.
3. Very flexible: by selecting augmentations carefully, we can

obtain several polynomial-time algorithms.

Primal-dual O(min{nU, nC}) 1. Maintains a pseudo flow x satisfying the optimality con-
algorithm ditions. Solves a shortest path problem to update node

potentials and attempts to reduce primal infeasibility by
the maximum amount by solving a maximum flow prob-
lem.

2. At each iteration, solves both a shortest path problem with
nonnegative arc lengths and a maximum flow problem.

3. Closely related to the successive shortest path algorithm:
instead of sending flow along one shortest path, sends flow
along all shortest paths.

Out-of-kilter O(nU) 1. Maintains a feasible flow x at each iteration and attempts
algorithm to satisfy the optimality conditions by augmenting flows

along shortest paths.
2. At each iteration, solves a shortest path problem with non-

negative arc lengths.
3. Can be generalized to solve situations in which the flow x

maintained by the algorithm might not satisfy the flow
bounds on the arcs.

Relaxation See Exercise 9.27 1. Somewhat different from other minimum cost flow algo-
algorithm rithms.

2. Maintains a pseudoflow x satisfying the optimality con-
ditions and modifies arc flows and node potentials so that
a Lagrangian objective function does not decrease and oc-
casionally increllses.

3. With the incorporation of some heuristics, the algorithm
is very efficient in practice and yields the fastest available
algorithm for some classes of minimum cost flow prob-
lems.

Figure 9.20 Summary of pseudopolynomial-time algorithms for the minimum cost
flow problem.

340 Minimum Cost Flows: Basic Algorithms Chap. 9

the simplest pseudopolynomial-time algorithms for solving these problems. These
pseudopolynomial-time algorithms include classical algorithms that are important
because of both their historical significance and because they provide the essential
building blocks and core ideas used in more efficient algorithms. Our algorithmic
development relies heavily upon optimality conditions for the minimum cost flow
problem that we developed and proved in the following equivalent frameworks:
negative cycle optimality conditions, reduced cost optimality conditions, and com
plementary slackness optimality conditions. The negative cycle optimality conditions
state that a feasible flow x is an optimal flow if and only if the residual network G(x)
contains no negative cycle. The reduced cost optimality conditions state that a fea
sible flow x is an optimal flow if and only if the reduced cost of each arc in the
residual network is nonnegative. The complementary slackness optimality conditions
are adaptations of the linear programming optimality conditions for network flows.
As part of this general discussion in this chapter, we also examined minimum cost
flow duality.

We developed several minimum cost flow algorithms: the cycle-canceling, suc
cessive shortest path, primal-dual, out-of-kilter, and relaxation algorithms. These
algorithms represent a good spectrum of approaches for solving the same problem:
Some of these algorithms maintain primal feasible solutions and strive toward op
timality; others maintain primal infeasible solutions that satisfy the optimality con
ditions and strive toward feasibility. These algorithms have some commonalties as
well-they all repeatedly solve shortest path problems. In fact, in Exercises 9.57
and 9.58 we establish a very strong result by showing that the cycle-canceling, suc
cessive shortest path, primal-dual, and out-of-kilter algorithms are all equivalent in
the sense that if initialized properly, they perform the same sequence of augmen
tations. Figure 9.20 summarizes the basic features of the algorithms discussed in
this chapter.

Finally, we discussed sensitivity analysis for the minimum cost flow problem.
We showed how to reoptimize the minimum cost flow problem, after we have made
unit changes in the supply/demand vector or the arc capacities-; by solving a shortest
path problem, and how to handle unit changes in the cost vector by solving a max
imum flow problem. Needless to say, these reoptimization procedures are substan
tially faster than solving the problem afresh if the changes in the problem data are
sufficiently small.

REFERENCE NOTES

In this chapter and in these reference notes we focus on pseudopolynomial-time
nonsimplex algorithms for solving minimum cost flow problems. In Chapter 10 we
provide references for polynomial-time minimum cost flow algorithms, and in Chap
ter 11 we give references for simplex-based algorithms.

Ford and Fulkerson [1957] developed the primal-dual algorithms for the ca
pacitated transportation problem; Ford and Fulkerson [1962] later generalized this
approach for solving the minimum cost flow problem. Jewell [1958], Iri [1960], and
Busaker and Gowen [1961] independently developed the successive shortest path
algorithm. These researchers showed how to solve the minimum cost flow problem
as a sequence of shortest path problems with arbitrary arc lengths. Tomizava [1972]

Chap. 9 Reference Notes 341

and Edmonds and Karp [1972] independently observed that if the computations use
node potentials, it is possible to implement these algorithms so that the shortest path
problems have nonnegative arc lengths.

Minty [1960] and Fulkerson [1961b] independently developed the out-of-kilter
algorithm. Aashtiani and Magnanti [1976] have described an efficient implementation
of this algorithm. The description of the out-of-kilter algorithm presented in Section
9.9 differs substantially from the development found in other textbooks. Our de
scription is substantially shorter and simpler because it avoids tedious case analyses.
Moreover, our description explicitly highlights the use of Dijkstra's algorithm; be
cause other descriptions do not focus on the shortest path computations, they find
an accurate worst-case analysis of the algorithm much more difficult to conduct.

The cycle-canceling algorithm is credited to Klein [1967]. Three special im
plementations of the cycle-canceling algorithms run in polynomial time: the first,
due to Barahona and Tardos [1989] (which, in turn, modifies an algorithm by Wein
traub [1974]), augments flow along (negative) cycles with the maximum possible
improvement; the second, due to Goldberg and Trujan [1988], augments flow along
minimum mean cost (negative) cycles; and the third, due to Wallacher and Zim
merman [1991], augments flow along minimum ratio cycles.

Zadeh [1973a,1973b] described families of minimum cost flow problems on
which each of several algorithms-the cycle-canceling algorithm, successive short
est path algorithm, primal-dual algorithm, and out-of-kilter algorithm-perform an
exponential number of iterations. The fact that the same families of networks are
bad for many network algorithms suggests an interrelationship among the algorithms.
The insightful paper by Zadeh [1979] points out that each of the algorithms we have
just mentioned are indeed equivalent in the sense that they perform the same se
quence of augmentations, which they obtained through shortest path computations,
provided that we initialize them properly and break ties using the same rule.

Bertsekas and Tseng [1988b] developed the relaxation algorithm and conducted
extensive computational investigations of it. A FORTRAN code of the relaxation ,
algorithm appears in Bertsekas and Tseng [1988a]. Their study and those conducted
by Grigoriadis [1986] and Kennington and Wang [1990] indicate that the relaxation
algorithm and the network simplex algorithm (described in Chapter 11) are the two
fastest available algorithms for solving the minimum cost flow problem in practice.
When the supplies/demands at nodes are relatively small, the successive shortest
path algorithm is the fastest algorithm. Previous computational studies conducted
by Glover, Karney, and Klingman [1974] and Bradley, Brown, and Graves [1977]
have indicated that the network simplex algorithm is consistently superior to the
primal-dual and out-of-kilter algorithms. Most of these computational testings have
been done on random network flow problems generated by the well-known computer
program NETGEN, suggested by Klingman, Napier, and Stutz [1974].

The applications of the minimum cost flow problem that we discussed Section
9.2 have been adapted from the following papers:

1. Distribution problems (Glover and Klingman [1976])
2. Reconstructing the left ventricle from x-ray projections (Slump and Gerbrands

[1982])
3. Racial balancing of schools (Belford and Ratliff [1972])

342 Minimum Cost Flows: Basic Algorithms Chap. 9

4. Optimal loading of a hopping airplane (Gupta [1985] and Lawania [1990])
5. Scheduling with deferral costs (Lawler [1964])
6. Linear programming with consecutive l's in columns (Veinott and Wagner

[1962])

Elsewhere in this book we describe other applications of the minimum cost
flow problem. These applications include (1) leveling mountainous terrain (Appli
cation 1.4, Farley [1980]), (2) the forest scheduling problem (Exercise 1.10), (3) the
entrepreneur's problem (Exercise 9.1, Prager [1957]), (4) vehicle fleet planning (Ex
ercise 9.2), (5) optimal storage policy for libraries (Exercise 9.3, Evans [1984]), (6)
zoned warehousing (Exercise 9.4, Evans [1984]), (7) allocation of contractors to
public works (Exercise 9.5, Cheshire, McKinnon, and Williams [1984]), (8) phasing
out capital equipment (Exercise 9.6, Daniel [1973]), (9) the terminal assignment prob
lem (Exercise 9.7, Esau and Williams [1966]), (10) linear programs with consecutive
or circular 1 's in rows (Exercises 9.8 and 9.9, Bartholdi, Orlin, and Ratliff [1980]),
(11) capacitated maximum spanning trees (Exercise 9.54, Garey and Johnson [1979]),
(12) fractional b-matching (Exercise 9.55), (13) the nurse scheduling problem (Ex
ercise 11.1), (14) the caterer problem (Exercise 11.2, Jacobs [1954]), (15) project
assignment (Exercise 11.3), (16) passenger routing (Exercise 11.4), (17) allocating
receivers to transmitters (Exercise 11.5, Dantzig [1962]), (18) faculty-course as
signment (Exercise 11.6, Mulvey [1979]), (19) optimal rounding of a matrix (Exercise
11. 7, Bacharach [1966]' Cox and Ernst [1982]), (20) automatic karotyping of chro
mosomes (Application 19.8, Tso, Kleinschmidt, Mitterreiter, and Graham [1991]),
(21) just-in-time scheduling (Application 19.10, Elmaghraby [1978], Levner and Nem
irovsky [1991]), (22) time-cost trade.!off in project management (Application 19'.11,
Fulkerson [1961a] and Kelly [1961]), (23) models for building evacuation (Application
19.13, Chalmet, Francis and Saunders [1982]), (24) the directed Cqinese postman
problem (Application 19.14, Edmonds and Johnson [1973]), (25) warehouse layout
(Application 19.17, Francis and White [1976]), (26) rectilinear distance facility lo
cation (Application 19.18, Cabot, Francis, and Stary [1970]f,'(27) dynamic lot sizing
(Application 19.19, Zangwill [1969]), (28) multistage production-inventory planning
(Application 19.23, Evans [1977]), (29) mold allocation (Application 19.24, Love and
Vemuganti [1978]), (30) a parking model (Exercise 19.17, Dirickx and Jennergren
[1975]), (31) the network interdiction problem (Exercise 19.18, Fulkerson and Hard
ing [1977]), (32) truck scheduling (Exercises 19.19 and 19.20, Gavish and Schweitzer
[1974]), and (33) optimal deployment of firefighting companies (Exercise 19.21, De
nardo, Rothblum, and Swersey [1988]).

The applications of the minimum cost flow problems are so vast that we have
not been able to describe many other applications in this book. The following list
provides a set of references to some other applications: (1) warehousing and distri
bution of a seasonal product (Jewell [1957]), (2) economic distribution of coal supplies
in the gas industry (Berrisford [1960]), (3) upsets in round-robin tournaments (Fulk
erson [1965]), (4) optimal container inventory and routing (Horn [1971]), (5) distri
bution of empty rail containers (White [1972]), (6) optimal defense of a network
(Picard and Ratliff [1973]), (7) telephone operator scheduling (Segal [1974]), (8) mul
tifacility minimax location problem with rectilinear distances (Dearing and Francis
[1974]), (9) cash management problems (Srinivasan [1974]), (10) multiproduct mul-

Chap. 9 Reference Notes 343

tifacility production-inventory planning (Dorsey, Hodgson, and Ratliff [1975]), (l1)
"hub" and "wheel" scheduling problems (Arisawa and Elmaghraby [1977]), (12)
the warehouse leasing problem (Lowe, Francis, and Reinhardt [1979]), (13) mul
tiattribute marketing models (Srinivasan [1979]), (14) material handling systems
(Maxwell and Wilson [1981]), (15) microdata file merging (Barr and Turner [1981]),
(16) determining service districts (Larson and Odoni [1981]), (17) control of forest
fires (Kourtz [1984]), (18) allocating blood to hospitals from a central blood bank
(Sapountzis [1984]), (19) market equilibrium problems (Dafetmos and Nagurney
[1984]), (20) automatic chromosome classifications (Tso [1986]), (21) the city traffic
congestion problem (Zawack and Thompson [1987]), (22) satellite scheduling (Servi
[1989]), and (23) determining k disjoint cuts in a network (Wagner [1990]).

EXERCISES

9.1. Enterpreneur's problem (Prager [1957]). An entrepreneur faces the following problem.
In each of T periods, he can buy, sell, or hold for later sale some commodity, subject
to the following constraints. In each period i he can buy at most (Xi units of the com
modity, can holdover at most f3i units of the commodity for the next period, and must
sell at least "Yi units (perhaps due to prior agreements). The enterpreneur cannot sell
the commodity in the same period in which he buys it. Assuming that Pi, Wi, and Si

denote the purchase cost, inventory carrying cost, and selling price per unit in period
i, what buy-sell policy should the entreprenuer adopt to maximize total profit in the
T periods? Formulate this problem as a minimum cost flow problem for T = 4.

9.2. Vehicle fleet planning. The Millersburg Supply Company uses a large fleet of vehicles
which it leases from manufacturers. The company has forecast the following pattern
of vehicle requirements for the next 6 months:

Month Jan. Feb. Mar. ApI· May June

Vehicles 430 410 440 390 425 450
required

Millersburg can lease vehicles from several manufacturers at various costs and for
various lengths of time. Three of the platts appear to be the best available: a 3-month
lease for $1700; a 4-month lease for $2200; and a 5-month lease for $2600. The company
can undertake a lease beginning in any month. On January 1 the company has 200 cars
on lease, all of which go off lease at the end of February. Formulate the problem of
determining the most economical leasing policy as a minimum cost flow problem. (Hint:
Observe that the linear (integer) programming formulation of this problem has consec
utive l's in each column. Then use the result in Application 9.6.)

9.3. Optimal storage poJicy for libraries (Evans [1984]). A library facing insufficient primary
storage space for its collection is considering the possibility of using secondary facilities,
such as closed stacks or remote locations, to store portions of its collection. These
options are preferred to an expensive expansion of primary storage. Each secondary
storage facility has limited capacity and a particular access costs for retrieving infor
mation. Through appropriate data collection, we can determine the usage rates for the
information needs of the users. Let bj denote the capacity of storage facility j and Vj

344 Minimum Cost Flows: Basic Algorithms Chap. 9

denote the access cost per unit item from this facility. In addition, let aj denote the
number of items of a particular class i requiring storage and let Uj denote the expected
rate (per unit time) that we will need to retrieve books from this class. Our goal is to
store the books in"a way that will minimize the expected retrieval cost.
(a) Show how to formulate the problem of determining an optimal policy as a trans

portation problem. What is the special structure of this problem? Transportation
problems wit,p this structure have become known as factored transportation prob
lems.

(b) Show that the simple rule that repeatedly assigns items with the greatest retrievel
rate to the storage facility with lowest access cost specifies an optimal solution of
this library storage problem.

9.4. Zoned warehousing (Evans [1984]). In the storage of multiple, say p, items in a zoned
warehouse, we need to extract (pick) items in large quantities (perhaps by pallet loads).
Suppose that the warehouse is partitioned into q zones, each with a different distance
to the shipping area. Let Bj denote the storage capacity of zone j and let dj denote the
average distance from zone j to the shipping area. For each item i, we know (1) the
space requirement per unit (rj), (2) the average order size in some common volume unit
(Sj), and (3) the average number of orders per day (fj). The problem is to determine
the quaritity of each item to allocate to each zone in order to minimize the average
daily handling 'costs. Assume that the handling cost is linearly proportional to the dis
tance and to the volume moved.
(a) Formulate this problem as a factored transportation problem (as defined in Exercise

9.3).
(b) Specify a simple rule that yields an optimal solution of the zoned warehousing

problem.

9.5. AUocation of contractors to public works (Cheshire, McKinnon, and Williams [1984]).
A large publicly owned corporation has 12 divisions in Great Britain. Each division
faces a similar problem. Each year the division subcontracts work to private contrac
tors. The work is of several different types and is done by teams, each of which is
capable of doing all types of work. One of these divisions is divided into several districts:
the jth district requires rj teams. The contractors are of two types: eXiperienced and
inexperienced. Each contractor i quotes a price cij to have a team conduct the work in
districtj. The objective is to allocate the work in the districts to the various contractors,
satisfying the following conditions: (1) each district j has rrassigned teams; (2) the
division contracts with contractor i for no more than Uj teams, the maximum number
of teams it can supply; and (3) each district has at least one experienced contractor
assigned to it. Formulate this problem as a minimum cost flow problem for a division
with three districts, and with two experienced and two iriexperienced contractors.
(Hint: Split each district node into two nodes, one of which requires an experienced
contractor.)

9.6. Phasing out capital equipment (Daniel [1973]). A shipping company wants to phase out
a fleet of (homogeneous) general cargo ships over a period of p years. Its objective is
to maximize its cash assets at the end of the p years by considering the possibility of
prematurely selling ships and temporary replacing them by charter ships. The company
faces a known nonincreasing demand for ships. Let d(i) denote the demand of ships in
year i. Each ship earns a revenue of rk units in period k. At the beginning of year k,
the company can sell any ship that it owns, accruing a cash inflow of Sk dollars. If the
company does not own sufficiently many ships to meet its demand, it must hire ad
ditional charter ships. Let hk denote the cost of hiring a ship for the kth year. The
shipping company wants to meet its commitments and at the same time maximize the
cash assets at the end of the pth year. Formulate this problem as a minimum cost flow
problem.

Chap. 9 Exercises 345

9.7. Terminal assignment problem (Esau and Williams [1966]). Centralized teleprocessing
networks often contain many (as many as tens of thousands) relatively unsophisticated
geographically dispersed terminals. These terminals need to be connected to a central
processor unit (CPU) either by direct lines or though concentrators. Each concentrator
is connected to the CPU through a high-speed, cost-effective line that is capable of
merging data flow streams from different terminals and sending them to the CPU. Sup
pose that the concentrators are in place and that each concentrator can handle at most
K terminals. For each terminal j, let Coj denote the cost of laying down a direct line
from the CPU to the terminal and let cij denote the line construction cost for connecting
concentrator i to terminal j. The decision problem is to construct the minimum cost
network for connecting the terminals to the CPU. Formulate this problem as a minimum
cost flow problem.

9.8. Linear programs with consecutive l's in rows. In Application 9.6 we considered linear
programs with consecutive 1 's in each column and showed how to transform them into
minimum cost flow problems. In this and the next exercise we study several related
linear programming problems and show how we can solve them by solving minimum
cost flow problems. In this exercise we study linear programs with consecutive 1 's in
the rows. Consider the following (integer) linear program with consecutive l's in the
rows:

subject to

X2 + X3 + X4 ? 20

XI + X2 + X3. + X4 ? 30

X2 + X3 ? 15

? 0 and integer.

Transform this problem to a minimum cost flow problem. (Hint: Use the same trans
formation of variables that we used in Application 4.6.)

9.9. Linear programs with circular l's in rows (Bartholdi, Orlin, and Ratliff [l~80]). In this
exercise we consider a generalization of Exercise 9.8 with the I 's in each row arranged
consecutively when we view columns in the wraparound fashion (i.e., we consider the
first column as next to the last column). A special case of this problem is the telephone
operator scheduling problem that we discussed in Application 4.6. In this exercise we
focus on the telephone operator scheduling problem; nevertheless, the approach easily
extends to any general linear program with circular l's in the rows. We consider a
version of the telephone operator scheduling in which we incur a cost Ci whenever an
operator works in the ith shift, and we wish to satisfy the minimum operator requirement
for each hour of the day at the least possible cost. We can formulate this "cyclic staff
scheduling problem" as the following (integer) linear program.

subject to

346

23

Minimize L Yi
;=0

Yi-7 + Yi-6 +

YI7+i + ... + Y23 + Yo +

+ Yi? b(i)

+ Yi ? b(i)

Yi? 0

for all i = 7 to 23,

for all i = 0 to 6,

for all i = 1 to 23.

Minimum Cost Flows: Basic Algorithms Chap. 9

(a) For a parameter p, let !!P(p) denote the cyclic staff scheduling problem when we
impose the additional constraint L7!o Yi = p, and let z(p) denote the optimal ob
jective value of this problem. Show how to transform !!P(p), for a fixed value of p,
into a minimum cost flow problem. (Hint: Use the same transformation of variables
that we used in Application 4.6 and observe that each row has one + 1 and one
-1. Then use the result of Theorem 9.9.)

(b) Show that z(p) is a (piecewise linear) convex function ofp. (Hint: Show that ify'
is an optimal solution of !!P(p') and y" is an optimal solution of !!P(p"), then for any
weighting parameter A, 0 ::; A ::; I, the point AY' + (1 - A)Y" is a feasible solution
of !!P(Ap' + (1 - A)p").)

(c) In the cyclic staff scheduling problem, we wish to determine a value of p, say p*,
satisfying the property that z(p*) ::; z(p) for all feasible p. Show how to solve the
cyclic staff scheduling problem in polynomial time by performing binary search on
the values of p. (Hint: For any integer p, show how to determine whether p ::; p*
by solving problems !!P(p) and !!P(p + 1).)

9.10. Racial balancing of schools. In this exercise we discuss some generalizations of the
problem of racial balancing of schools that we described in Application 9.3. Describe
how would you modify the formulation to include the following additional restrictions
(consider each restriction separately).
(a) We prohibit the assignment of a student from location i to school j if the travel

distance dij between these location exceeds some specified distance D.
(b) We include the distance traveled between location i and schoolj in the objective

function only if dij is greater than some specified distance D' (e.g., we account for
the distance traveled only if a student needs to be bussed).

(c) We impose lower and upper bounds on the number of black students from location
i who are assigned to school j.

9.11. Show how to transform the equipment replacement problem described in Application
9.6 into a shortest path problem. Give the resulting formulation for n = 4.

9.12. This exercise is based on the equipment replacement problem that we discussed in
Application 9.6.
(a) The problem as described allows us to buy and sell the equipment only yearly.

How would you model the situation if you could make decisions every half year?
(b) How sensitive do you think the optimal solution would be to the length T of planning

period? Can you anticipate a situation in which the optimal replacement plan would
change drastically if we were to increase the length of the'planning period to T +
I?

9.13. Justify the minimum cost flow formulation that we described in Application 9.4 for the
problem of optimally loading a hopping airplane. Establish a one-to-one correspondence
between feasible passenger routings and feasible flows in the minimum cost flow for
mulation of the problem.

9.14. In this exercise we consider one generalization of the tanker scheduling problem dis
cussed in Application 6.6. Suppose that we can compute the profit associated with each
available shipment (depending on the revenues and the operating cost directly attrib
utable to that shipment). Let the profits associated with the shipments 1, 2, 3, and 4
be 10, 10, 3, and 4, respectively. In addition to the operating cost, we incur a fixed
charge of 5 units to bring a ship into service. We want to determine the shipments we
should make and the number of ships to use to maximize net profits. (Note that it is
not necessary to honor all possible shipping commitments.) Formulate this problem as
a minimum cost flow problem.

9.15. Consider the following data, with n = 4, for the employment scheduling problem that
we discussed in Application 9.6. Formulate this problem as a minimum cost flow prob
lem and solve it by the successive shortest path algorithm.

Chap. 9 Exercises 347

2 3 4 5

- 20 35 50 55

{Cij} = 2 - - 15 30 40 i 1 2 3 4

3 - - - 25 35 d(i) 20 15 30 25

4 - - - - 10

9.16. Figure 9.21(b) shows the optimal solution of the minimum cost flow problem shown in
Figure 9.21(a). First, verify that x* is a feasible flow.

348

(a) Draw the residual network G(x*) and show that it contains no negative cycle.
(b) Specify a set of node potentials 'IT that together with x* satisfy the reduced cost

optimality conditions. List each arc in the residual network and its reduced cost. ., (cij, uij)
~. "~~

20 0
(6,10)

(1, 10) (0,10)

10 -10

(7, 15)
(2, 15) (9, 15)

-5
(5,10)

-15

(a) ., xij • • kilW ;\$k~~' <"k'

10

0
10 0 10

5

10 5

10

(b)

Figure 9.21 Minimum cost flow problem: (a) problem data; (b) optimal solution.

Minimum Cost Flows: Basic Algorithms Chap. 9

(c) Verify that the solution x* satisfies the complementary slackness optimality con
ditions. To do so, specify a set of optimal node potentials and list the reduced cost
of each arc in A.

9.17. (a) Figure 9.22(a) gives the data and an optimal solution for a minimum cost flow
problem. Assume that all arcs are uncapacitated. Determine optimal node poten
tials.

(b) Consider the uncapacitated minimum cost flow problem shown in Figure 9.22(b).
For this problem the vector 'IT = (0, -6, -9, -12, -5, -8, -15) is an optimal
set of node potentials. Determine an optimal flow in the network.

bCi)
(eii, xij)

b(j) • •)0 .,

10 -5
(3,20)

(2,30) (5, 15)

(4,0)

30 (1,20) (3,0) -25

(0,0)
(3,0) (6,10)

-20
(7,0)

10

(3)

b(i) b(j) • Cij • .. f~:'

0 -50

4 2 9

100

6 5 4
7

2
-10 20

(b)

Figure 9.22 Example for Exercise 9.17.

9.18. Solve the problem shown in Figure 9.23 by the cycle-canceling algorithm. Use the zero
flow as the starting solution.

Chap. 9 Exercises 349

(-2,5)

(-1,2)

(-1,7)

(-1,4)

(-1,2)

(-1,3)

(-1, 1)

Figure 9.23 Example for Exercise
9.18.

9.19. Show that if we apply the cycle-canceling algorithm to the minimum cost flow problem
shown in Figure 9.24, some sequence of augmentations requires 2 x 106 iterations to
solve the problem.

Figure 9.24 Network where cycle
canceling algorithm performs 2 x 106

iterations.

9.20. Apply the successive shortest path algorithm to the minimum cost flow problem shown
in Figure 9.25. Show that the algorithm performs eight augmentations, each of unit
flow, and that the cost of these augmentations (Le., sum of the arc costs in the path

b(l) = 8 b(8) =-8

Figure 9.25 Example for Exercise 9.20.

350 Minimum Cost Flows: Basic Algorithms Chap. 9

in the residual network) is 0, I, 2, 3, 3, 4, 5, and 6. How many iterations does the
primal-dual algorithm require to solve this problem?

9.21. Construct a class of minimum cost flow problems for which the number of iterations
performed by the successive shortest path algorithm might grow exponentially in log U.
(Hint: Consider the example shown in Figure 9.24.)

9.22. Figure 9.26 specifies the data and a feasible solution for a minimum cost flow problem.

25

With respect to zero node potentials, list the in-kilter and out-of-kilter arcs. Apply the
out-of-kilter algorithm to find an optimal flow in the network.

b(i) b(j) .. (cij, uij) • ~~~;; .. Xij • ~ ;;?iN
0

(4,10)
0

10

(7,30) 25

(2,20)
(1,20) 15

10
20

(6,20)

~
0 -25

(a) (b)

Figure 9.26 Example for Exercises 9.22 and 9.23: (a) problem data; (b) feasible flow.

9.23. Consider the minimum cost flow problem shown in Figure 9.26. Starting with zero
pseudoflow and zero node potentials, apply the relaxation algorithm to establish an
optimal flow.

9.24. Figure 9.21(b) specifies an optimal solution for the minimum cost flow problem shown
in Figure 9.21(a). Reoptimize the solution with respect to the following changes in the
problem data: (1) when C23 increases from 0 to 6; (2) when c78~decreases from 9 to 2;
(3) when b(2) decreases to 15 and b(S) increases to -5; and (4) when U23 increases to
20. Treat these changes individually.

9.25. Assuming that we set one node potential to value zero, show that nC is an upper bound
and that - nC is a lower bound on the optimal value of any node potential.

9.26. Justify the out-of-kilter algorithm described in Section 9.9 for the case when arcs can
violate their flow bounds. Show that in the execution of the algorithm, the kilter number
of arcs are nonincreasing and at least one kilter number strictly decreases at every
iteration.

9.27. Obtain a worst-case bound on the total number of iterations performed by the relaxation
algorithm. Compare this bound with the number of iterations performed by the cycle
canceling, successive shortest path, and primal-dual algorithms.

9.28. Show that if the pair (x, 'IT) satisfies the complementary slackness optimality conditions
(9.S), it also satisfies the reduced cost optimality conditions (9.7).

9.29. Prove that if x* is an optimal flow and 'IT is an optimal set of node potentials, the pair
(x*, 'IT) satisfies the complementary slackness optimality conditions. In your proof, do
not use the strong duality theorem. (Hint: Suppose that the pair (x, 'IT) satisfies the
optimality conditions for some flow x. Show that c"'(x* - x) = 0 and use this fact to
prove the desired result.)

Chap. 9 Exercises 351

9.30. With respect to an optimal solution x* of a minimum cost flow problem, suppose that
we redefine arc capacities u' as follows:

U~. = {Uij
lJ 00

if xt = Uij

if xt < Uij.

Show that x* is also an optimal solution of the minimum cost flow problem with the
arc capacities as u'.

9.31. With respect to an optimal solution x* of a minimum cost flow problem, suppose that
we redefine arc capacities u' = x*. Show that x* is also an optimal solution of the
minimum cost flow problem with arc capacities u'.

9.32. In Section 2.4 we showed how to transform a minimum cost flow problem in an un
directed network in which all lower bounds are zero into a minimum cost flow problem
in a directed network. Explain why this approach does not work when some lower
bounds on arc flows exceed zero.

9.33. In the minimum cost flow problem, suppose that one specified arc (p, q) has no lower
and upper flow bounds. How would you transform this problem into the standard min
imum cost flow problem?

9.34. As we have seen in Section 2.4, the uncapacitated transportation problem is equivalent
to the minimum cost flow problem in the sense that we can always transform either
problem into a version of another problem. If we can solve the uncapacitated trans
portation problem in O(g(n, m» time, can we also solve the minimum cost flow problem
in O(g(n, m» time?

9.35. In the min-cost max-flow problem defined on a directed network G = (N, A), we wish
to send the maximum amount of flow from a node s to a node t at the minimum possible
total cost. That is, among all maximum flows, find the one with the smallest cost.
(a) Show how to formulate any minimum cost flow problem as a min-cost max-flow

problem.
(b) Show how to convert any min-cost max-flow problem into a circulation problem.

9.36. Suppose that in a minimum cost flow problem, some arcs have infinite capacities and
some arc costs are negative. (Assume that the lower bounds on all arc flows are zero.)
(a) Show that the minimum cost flow problem has a finite optimal solution if and only

if the uncapacitated arcs do not contain a negative cost-directed cycle.
(b) Let B denote the sum of the finite arc capacities and the supplies b(·) of all the

supply nodes. Show that the minimum cost flow problem always has an optimal
solution in which each arc flow is at most B. Conclude that without any loss of
generality, we can assume that in the minimum cost flow problem (with a bounded
optimal solution value) every arc is capacitated. (Hint: Use the flow decomposition
property.)

9.37. Suppose that in a minimum cost flow problem, some arcs have infinite capacities and
some arc costs are negative. Let B denote the sum of the finite arc capacities and the
right-hand-side coefficients bU) for all the supply nodes. Let z and z' denote the ob
jective function values of the minimum cost flow problem when we set the capacity of
each infinite capacity arc to the value Band B + 1, respectively. Show that the objective
function of the minimum cost flow problem is unbounded if and only if z' < z.

9.38. In a minimum cost flow network, suppose that in addition to arc capacities, nodes have
upper bounds imposed upon the entering flow. Let wU) be the maximum flow that can
enter node i E N. How would you solve this generalization of the minimum cost flow
problem?

9.39. Let (k, l) and (p, q) denote a minimum cost arc and a maximum cost arc in a network.
Is it possible that no minimum cost flow have a positive flow on arc (k, I)? Is it possible
that every minimum cost flow have a positive flow on arc (p, q)? Justify your answers.

9.40. Prove or disprove the following claims.
(a) Suppose that all supply/demands and arc capacities in a minimum cost flow problem

352 Minimum Cost Flows: Basic Algorithms Chap. 9

are all even integers. Then for some optimal flow x*, each arc flow xt is an even
number.

(b) Suppose that all supply/demands and arc capacities in a minimum cost circulation
problem are all even integers. Then for some optimal flow x*, each arc flow xt is
an even number.

9.41. Let x* be an optimal solution of the minimum cost flow problem. Define GO as a
subgraph of the residual network G(x*) consisting of all arcs with zero reduced cost.
Show that the minimum cost flow problem has an alternative optimal solution if and
only if GO contains a directed cycle.

9.42. Suppose that you are given a nonintegral optimal solution to a minimum cost flow
problem with integral data. Suggest a method for converting this solution into an integer
optimal solution. Your method should maintain optimality ofthe solution at every step.

9.43. Suppose that the pair (x, 'IT), for some pseudoflow x and some node potentials 'IT, satisfies
the reduced cost optimality conditions. Define GO(x) as a subgraph of the residual
network G(x) consisting of only those arcs with zero residual capacity. Define the cost
of an arc (i, j) in GO(x) as cij if (i, j) E A, and as -CiJ otherwise. Show that every
directed path in GO(x) between any pair of nodes is a shortest path in G(x) between
the same pair of nodes with respect to the arc costs cij.

9.44. Let Xl and x2 be two distinct (alternate) minimum cost flows in a network. Suppose
that for some arc (k, I), xli = p, X~I = q, and p < q. Show that for every 0 :5 X. :5 1,
the minimum cost flow problem has an optimal solution x (possibly, noninteger) with
Xkl = (l - x.)p + x.q.

9.45. Let 'lT1 and 'lT2 be two distinct (alternate) optimal node potentials of a minimum cost
flow problem. Suppose that for some node k, 'lT1(k) = p, 'lT2(k) = q, and p < q. Show
that for every 0 :5 X. :5 1, the minimum cost flow problem has an optimal set of node
potentials 'IT (possibly, noninteger) with 'IT(k) = (1 - x.)p + x.q.

9.46. (a) In the transportation problem, does adding a constant k to the cost of every outgoing
arc from a specified supply node affect the optimality of a given optimal solution?
Would adding a constant k to the cost of every incoming arc to a specified demand
node affect the optimality of a given optimal solution?

(b) Would your answers to the questions in part (a) be the same if they were posed
for the minimum cost flow problem instead of the transportation pr.oblem?

9.47. In Section 9.7 we described the following practical improvement of the successive
shortest path algorithm: (1) terminate the execution of Dijkstra's algorithm whenever
it permanently labels a deficit node I, and (2) modify the node-potentials by setting 'IT(i)
to 'IT(i) - d(i) if node i is permanently labeled; and by setting 'IT(i) to 'IT(i) - d(l) if
node i is temporarily labeled. Show that after the algorithm has updated the node po
tentials in this manner, all the arcs in the residual network have nonnegative reduced
costs and all the arcs in the shortest path from node k to node I have zero reduced
costs. (Hint: Use the result in Exercise 5.9.)

9.48. Would multiplying each arc cost in a network by a constant k change the set of optimal
solutions of the minimum cost flow problem? Would adding a constant k to each arc
cost change the set of optimal solutions?

9.49. In Section 9.11 we described a method for performing sensitivity analysis when we
increase the capacity of an arc (p, q) by 1 unit. Modify the method to perform the
analysis when we decrease the capacity of the arc (p, q) by 1 unit.

9.50. In Section 9.11 we described a method for performing sensitivity analysis when we
increase the cost of an arc (p, q) by 1 unit. Modify the method to perform the analysis
when we decrease the cost of the arc (p, q) by 1 unit.

9.51. Suppose that we have to solve a minimum cost flow problem in which the sum of the
supplies exceeds the sum of the demands, so we need to retain some of the supply at
some nodes. We refer to this problem as the minimum cost flow problem with surplus.
Specify a linear programming formulation of this problem~ Also show how to transform
this problem into an (ordinary) minimum cost flow problem.

Chap. 9 Exercises 353

9.52. This exercise concerns the minimum cost flow problem with surplus, as defined in
Exercise 9.51. Suppose that we have an optimal solution of a minimum cost flow prob
lem with surplus and we increase the supply of some node by 1 unit, holding the other
data fixed. Show that the optimal objective function value cannot increase, but it might
decrease. Show that if we increase the demand of a node by 1 unit, holding the other
data fixed, the optimal objective function value cannot decrease, but it might increase.

9.53. More-for-less paradox (Chames and Klingman [1971]). The more-for-less paradox shows
that it is possible to send more flow from the supply nodes to the demand nodes of a
minimum cost flow problem at lower cost even if all arc costs are nonnegative. To
establish this more-for-less paradox, consider the minimum cost flow problem shown
in Figure 9.27. Assume that all arc capacities are infinite.
(a) Show that the solution given by X14 = 11, X16 = 9, X25 = 2, X26 = 8, X35 = 11, and

X37 = 14, is an optimal flow for this minimum cost flow problem. What is the total
cost of flow?

(b) Suppose that we increase the supply of node 2 by 2 units, increase the demand of
node 4 by 2 units, and reoptimize the solution using the method described in Section
9.11. Show that the total cost of flow decreases.

20 10 25 b(i)

~
-11 -13 -17 -14 b(j)

Figure 9.27 More-for-less paradox.

9.54. Capacitated minimum spanning tree problem (Garey and Johnson [1979]). In a complete
undirected network with arc lengths Cij and a specially designated node s, called the
central site, we associate an integer requirement rj with every node i E N - {s}. In
the capacitated minimum spanning tree problem, we want to identify a minimum cost
spanning tree so that when we send flow on this tree from the central site to the other
nodes to satisfy their flow requirements, no tree arc has a flow of more than a given
arc capacity R, which is the same for all arcs. Show that when each rj is 0 or 1, and
R = 1, we can solve this problem as a minimum cost flow problem. (Hint: Model this
problem as a minimum cost flow problem with node capacities, as discussed in Exercise
9.38.)

9.55. Fractional b-matching problem. Let G = (N, A) be an undirected graph in which each
node i E N has an associated supply b(i) and each arc (i,j) E A has an associated cost
cij and capacity uij. In the b-matching problem, we wish to find a minimum cost subgraph
of G with exactly b arcs incident to every node. The fractional b-matching problem is
a relaxation of the b-matching problem and can be stated as the following linear pro
gram:

subject to

354

Minimize L cijxij
(i.j)EA

L xij = b(i) for all i E N,
jEA(i)

for all (i, j) E A.

Minimum Cost Flows: Basic Algorithms Chap. 9

We assume that xi} = Xji for every arc (i, j) EA. We can define a related minimum
cost flow problem as follows. Construct a bipartite network G' = (N' U Nil, A') with
N' = {I', 2', ... , n'}, Nil = {I", 2", ... , nil}, b(i') = b(i), and b(i") = - b(i). For
each arc (i, j) E A, the network G' contains two associated arcs (i', j") and (j', i"),
each with cost Cij and capacity uij.
(a) Show how to transform every solution x of the fractional b-matching problem with

cost z into a solution x' of the minimum cost flow problem with cost 2z. Similarly,
show that if x' is a solution of the minimum cost flow problem with cost z', then
xij = (xi; + xj;)/2 is a feasible solution of the fractional b-matching problem with
cost z' /2. Use these results to show how to solve the fractional b-matching problem.

(b) Show that the fractional b-matching problem always has an optimal solution in
which each arc flow Xij is a mUltiple of !. Also show that if all the supplies and the
capacities are even integers, the fractional b-matching problem always has an in
teger optimal solution.

9.56. Bottleneck transportation problem. Consider a transportation problem with a traversal
time Ti} instead of a cost Cij' associated with each arc (i, j). In the bottleneck transpor
tation problem we wish to satisfy the requirements of the demand nodes from the supply
nodes in the least time possible [i.e., we wish to find a flow x that minimizes the quantity
max{Tij:(i,j) E A and Xij > O}].
(a) Suggest an application of the bottleneck transportation problem.
(b) Suppose that we arrange the arc traversal times in the nondecreasing order of their

values. Let TI < T2 < ... < T/ be the distinct values of the arc traversal times (thus
1:$ m). Let FS(k, found) denote a subroutine that finds whether the transportation
problem has a feasible solution using only those the arcs with traversal times less
than or equal to Tk; assume that the subroutine assigns a value true/false to found.
Suggest a method for implementing the subroutine FS(k, found).

(c) Using the subroutine FS(k, found), write a pseudocode for solving the bottleneck
transportation problem.

9.57. Equivalence of minimum cost flow algorithms (Zadeh [1979])
(a) Apply the successive shortest path algorithm to the minimum cost flow problem

shown in Figure 9.28. Show that it performs four augmentations from node 1 to
node 6, each of unit flow.

(b) Add the arc (1, 6) with sufficiently large cost and with Ul6 = 4 to the example in
part (a). Observe that setting XI6 = 4 and Xi} = 0 for all other arcs gives a feasible
flow in the network. With this flow as the initial flow, apply the cycle-canceling
algorithm and always augment flow along a negative cycle with minimum cost. Show
that this algorithm also performs four unit flow augmentations from node 1 to node
6 along the same paths as in part (a) and in the same order, except that the flow
returns to node 1 through the arc (6, 1) in the residual network.

~ _____ (C~ij'_U~ij_) __ ~.~.~

(0, (0)

(0,1)
(1,00)

(0,2)

b(l) = 4 b(6) =-4

(0,3) (1,00) (0,2)

(3, (0)

Figure 9.28 Equivalence of minimum cost flow algorithms.

Chap. 9 Exercises 355

(c) Using parts (a) and (b) as background, prove the general result that if initialized
properly, the successive shortest path algorithm and the cycle-canceling algorithm
(with augmentation along a most negative cycle) are equivalent in the sense that
they perform the same augmentations and in the same order.

9.58. Modify and initialize the minimum cost flow problem in Figure 9.28 appropriately so
that when we apply the out-of-kilter algorithm to this problem, it also performs four
augmentation in the same order as the successive shortest path algorithm. Then prove
the equivalence ofthe out-of-kilter algorithm with the successive shortest path algorithm
in general.

356 Minimum Cost Flows: Basic Algorithms Chap. 9

10

MINIMUM COST FLOWS: POLYNOMIAL
ALGORITHMS

Success generally depends upon knowing how long it
takes to succeed.

-Montesquieu

Cbapter Outline

10.1 Introduction
10.2 Capacity Scaling Algorithm
10.3 Cost Scaling Algorithm
10.4 Double Scaling Algorithm
10.5 Minimum Mean Cycle-Canceling Algorithm
10.6 Repeated Capacity Scaling Algorithm
10.7 Enhanced Capacity Scaling Algorithm
10.8 Summary

10.1 INTRODUCTION

In Chapter 9 we studied several different algorithms for solving minimum cost prob
lems. Although these algorithms guarantee finite convergence whenever the problem
data are integral, the computations are not bounded by any"polynomial in the un
derlying problem specification. In the spirit of computational complexity theory, this
situation is not completely satisfactory: It does not provide us with any good theo
retical assurance that the algorithms will perform well on all problems that we might
encounter. The circumstances are quite analogous to our previous development of
maximum flow algorithms; we started by first developing straightforward, but not
necessarily polynomial, algorithms for solving those problems, and then enhanced
these algorithms by changing the algorithmic strategy and/or by using clever data
structures and implementations. This situation raises the following natural questions:
(1) Can we devise algorithms that are polynomial in the usual problem parameters:
number n of nodes, number m of arcs, log U (the log of the largest supply/demand
or arc capacity), and log C (the log of the largest cost coefficient), and (2) can we
develop strongly polynomial-time algorithms (i.e., algorithms whose running time
depends upon only on nand m)? A strongly polynomial-time algorithm has one
important theoretical advantage: It will solve problems with irrational data.

In this chapter we provide affirmative answers to these questions. To develop
polynomial-time algorithms, we use ideas that are similar to those we have used
before: namely, scaling of the capacity data and/or of the cost data. We consider

357

three polynomial-time algorithms: (1) a capacity scaling algorithm that is a scaled
version of the successive shortest path algorithm that we discussed in Chapter 9,
(2) a cost scaling algorithm that is a generalization of the preflow-push algorithm for
the maximum flow problem, and (3) a double scaling algorithm that simultaneously
scales both the arc capacities and the costs.

Scaling is a powerful idea that has produced algorithmic improvements to many
problems in combinatorial optimization. We might view scaling algorithms as fol
lows. We start with the optimality conditions for the network flow problem we are
examining, but instead of enforcing these conditions exactly, we generate an "ap
proximate" solution that is permitted to violate one (or more) of the conditions by
an amount Ll. Initially, by choosing Ll quite large, for example as Cor U, we will
easily be able to find a starting solution that satisfies the relaxed optimality condi
tions. We then reset the parameter Ll to Ll/2 and reoptimize so that the approximate
solution now violates the optimality conditions by an amount of at most Ll/2. We
then repeat the procedure, reoptimizing again until the approximate solution violates
the conditions by an amount of at most Ll/4, and so on. This solution strategy is
quite flexible and leads to different algorithms depending on which of the optimality
conditions we relax and how we perform the reoptimizations.

Our discussion of the capacity scaling algorithm for the maximum flow problem
in Section 7.3 provides one example. A feasible flow to the maximum flow problem
is optimal if the residual network contains no augmenting path. In the capacity scaling
algorithm, we relaxed this condition so that after the Ll-scaling phase, the residual
network can contain an augmenting path, but only if its capacity were less than Ll.
The excess scaling algorithm for the maximum flow problem provides us with another
example. In this case the residual network again contains no path from the source
node s to the sink node t; however, at the end of the Ll-scaling phase, we relaxed a
feasibility requirement requiring that the flow into every node other than the source
and sink equals the flow out of that node. Instead, we permitted the excess at each
node to be as large as Ll during the Ll-scaling phase.

In this chapter, by applyip.g a scaling approach to the algorithms that we con
sidered in Chapter 9, we develop polynomial-time versions of these algorithms. We
begin by developing a modified version of the successive shortest path algorithm in
which we relax two optimality conditions in the Ll-scaling phase: (1) We permit the
solution to violate supply/demand constraints by an amount Ll, and (2) we permit
the residual network to contain negative cost cycles. The resulting algorithm reduces
the number of shortest path computations from nU to m log U.

We next describe a cost-scaling algorithm that uses another concept of ap
proximate optimality; at the end of each E-scaling phase (E plays the role of Ll) we
obtain a feasible flow that satisfies the property that the reduced cost of each arc
in the residual network is greater than or equal to - E (instead of zero). To find the
optimal solution during the E-scaling phase, this algorithm carries out a sequence of
push and relabel operations that are similar to the preflow-push algorithm for max
imum flows. The generic cost scaling algorithm runs in O(n 2 m 10g(nC» time. We
also describe a special "wave implementation" of this algorithm that chooses nodes
for the push/relabel operations in a specific order. This specialization requires O(n3
10g(nC» time.

358 Minimum Cost Flows: Polynomial Algorithms Chap. 10

We then describe a double scaling algorithm that combines the features of both
cost and capacity scaling. This algorithm works with two nested loops. In the outer
loop we scale the costs, and in the inner loop we scale the capacities. Introducing
capacity scaling as an inner loop within a cost scaling approach permits us to find
augmenting paths very efficiently. This resulting double scaling algorithm solves the
minimum cost flow problem in O(nm log U 10g(nC» time.

All of these algorithms require polynomial time; they are not, however, strongly
polynomial time because their time bounds depend on log U and/or log C. Developing
strongly polynomial-time algorithms seems to require a somewhat different ap
proach. Although most strongly polynomial-time algorithms use ideas of data scaling,
they also use another idea: By invoking the optimality conditions, they are able to
show that at intermediate steps of the algorithm, they have already discovered part
of the optimal solution (e.g., optimal flow), so that they are able to reduce the problem
size. In Sections 10.5, 10.6, and 10.7 we consider three different strongly polynomial
time algorithms whose analysis invokes this "problem reduction argument."

In Section 10.5 we analyze the minimum mean cycle-canceling algorithm that
we described in Section 9.6. Recall that this algorithm augments flow at each step
on a cycle with the smallest average cost, averaged over the number of arcs in the
cycle, until the residual network contains no negative cost cycle; at this point, the
current flow is optimal. As we show in this section, we can view this algorithm as
finding a sequence of improved approximately optimal solutions (in the sense that
the reduced cost of every arc is greater than or equal to - E, with E decreasing
throughout the algorithm). This algorithm has the property that if the magnitude of
the reduced cost of any arc is sufficiently large (as a function of E), the flow on that
arc remains fixed at its upper or lower bound throughout the remainder of the al
gorithm and so has this value in the optimal solution~ This property permits us to
show that the algorithm fixes the flow on an arc and does so sufficiently often so
that we obtain an O(n2m 3 log n) time algorithm for the capacitated minimum cost
flow problem. One interesting characteristic of this algorithm is that it does not
explicitly monitor E or explicitly fix the flow variables. Thes~Jeatures of the algo
rithm are by-products of the analysis.

The strongly polynomial-time algorithm that we consider in Section 10.6 solves
the linear programming dual of the minimum cost flow problem. This repeated ca
pacity scaling algorithm is a variant of the capacity scaling algorithm that we discuss
in Section 10.2. This algorithm uses a scaling parameter A as in the capacity scaling
algorithm, but shows that periodically the flow on some arc (i,j) becomes sufficiently
large (as a function of A), at which point we are able to reduce the size of the dual
linear program by one, which is equivalent to contraction in the primal network.
This observation permits us to reduce the size of the problem successively by con
tracting nodes. The end result is an algorithm requiring O((m2 log n)(m + n log n»
time for the minimum cost flow problem.

In Section 10.7 we consider an enhanced scaling algorithm that is a hybrid
version of the capacity scaling algorithm and the repeated capacity scaling algorithm.
By choosing a scaling parameter A carefully and by permitting a somewhat broader
choice of the augmenting paths at each step, this algorithm is able to fix variables
more quickly than the repeated capacity scaling algorithm. As a consequence, it

Sec. 10.1 Introduction 359

solves fewer shortest path problems and solves capacitated minimum cost flow prob
lems in O((m log n)(m + n log n»time, which is currently the best known polynomial
time bound for solving the capacitated minimum cost flow problem.

10.2 CAPACITY SCALING ALGORITHM

In Chapter 9 we considered the successive shortest path algorithm, one of the fun
damental algorithms for solving the minimum cost flow problem. An inherent draw
back of this algorithm is that its augmentations might carry relatively small amounts
of flow, resulting in a fairly large number of augmentations in the worst case. By
incorporating a scaling technique, the capacity algorithm described in this section
guarantees that each augmentation carries sufficiently large flow and thereby reduces
the number of augmentations substantially. This method 'permits us to improve the
worst-case algorithmic performance from O(nU . Sen, m, nC» to oem log U . sen,
m, nC». [Recall that U is an upper bound on the largest supply/demand and larg
est capacity in the network, and Sen, m, C) is the time required to solve a shortest
path problem with n nodes, m arcs, and nonnegative costs whose values are no
more than C. The reason that the running time involves Sen, m, nC) rather than
Sen, m, C) is that the costs in the residual network are reduced costs, and the re-
duced cost of an arc could be as large as nC.] .

The capacity scaling algorithm is a variant of the successive shortest path
algorithm. It is related to the successive shortest path algorithm, just as the capacity
scaling algorithm for the maximum flow problem (discussed in Section 7.3) is related
to the labeling algorithm (discussed in Section 6.5). Recall that the labeling algorithm
performs'O(nU) augmentations; by sending flows along paths with sufficiently large

-;'residual capacities, the capacity scaling algorithm reduces the number of augmen
tations to Oem log U). In a similar fashion, the capacity scaling algorithm for the
minimum cost flow problem ensures that each shortest path augmentation carries a
sufficiently large amount of flow; this modification to the algorithm reduces the
number of successive shortest path iterations from O(nU) to Oem log U). This
algorithm not only improves on the algorithmic performance of the successive short
est path algorithm, but also illustrates how small changes in an algorithm can produce
significant algorithmic improvements (at least in the worst case).

The capacity scaling algorithm applies to the general capacitated minimum cost
flow problem. It uses a pseudoflow x and the imbalances e(i) as defined in Section
9.7. The algorithm maintains a pseudoflow satisfying the reduced cost optimality
condition and gradually converts this pseudoflow into a flow by identifying shortest
paths from nodes with excesses to nodes with deficits and augmenting flows along
these paths. It performs a number of scaling phases for different values of a parameter
.1. We refer to a scaling phase with a specific value of .1 as the .1-scaling phase.
Initially, .1 = 2l1og

U J. The algorithm ensures that in the .1-scaling phase each aug
mentation carries exactly .1 units of flow. When it is not possible to do so because
no node has an excess of at least .1, or no node has a deficit of at least .1, the
algorithm reduces the value of.1 by a factor of2 and repeats the process. Eventually,
.1 = 1 and at the end of this scaling phase, the solution becomes a flow. This flow
must be an optimal flow because it satisfies the reduced cost optimality condition.

360 Minimum Cost Flows: Polynomial Algorithms Chap. 10

For a given value of Ll, we define two sets SeLl) and T(Ll) as follows:

SeLl) = {i : e(i) 2:: Ll},

T(Ll) = {i : e(i) :5 - Ll}.

In the Ll-scaling phase, each augmentation must start at a node in SeLl) and
end at a node in T(Ll). Moreover, the augmentation ~ust take place on a path along
which every arc has residual capacity of at least Ll. Therefore, we introduce another
definition: The Ll-residual network G(x, Ll) is defined as the subgraph of G(x) con
sisting of those arcs whose residual capacity is at least Ll. In the Ll-scaling phase,
the algorithm augments flow from a node in S (Ll) to a node in T(Ll) along a shortest
path in G(x, Ll). The algorithm satisfies the property that every arc in G(x, Ll) satisfies
the reduced cost optimality condition; however, arcs in G(x) but not in G(x, Ll)
might violate the reduced cost optimality condition. Figure 10.1 presents an algo
rithmic description of the capacity scaling algorithm.

Notice that the capacity scaling algorithm augments exactly Ll units of flow in
the Ll-scaling phase, even though it could augment more. For uncapacitated prob
lems, this tactic leads to the useful property that all arc flows are always an integral
multiple of Ll. (Why might capacitated networks not satisfy this property?) Several
variations of the capacity scaling algorithm discussed in Sections 10.5 and 14.5 adopt
the same tactic.

To establish the correctness of the capacity scaling algorithm, observe that the
2Ll-scaling phase ends when S(2Ll) = <I> or T(2Ll) = <1>. At that point, either e(i) <
2Ll for all i E Nor e(i) > - 2Ll for all i E N. These conditions imply that the sum
of the excesses (whose magnitude equals the sum of deficits) is bounded by 2n Ll .. >

algorithm capacity scaling;
begin

x: = 0 and 'IT : = 0;
Ll : = 21109 uJ;

while Ll 2: 1
begin {Ll-scaling phase}

for every arc (i, j) in the residual network G(x) do
if 'Ij 2: Ll and c]J < 0 then send 'Ij units of flow along arc (i, j),

update x and the imbalances e(·);
S(Ll) : = {i EN: e(i) 2: Ll};
T(Ll) : = {i EN: e(i) s: - Ll};
while S(Ll) ;6.0and T(Ll) ;6.0do
begin

select a node k E S(Ll) and a node IE T(Ll);
determine shortest path distances d(·) from node k to all other nodes in the

Ll-residual network G(x, Ll) with respect to the reduced costs c1J;
let P denote shortest path from node k to node I in G(x, Ll);
update 'IT : = 'IT - d;
augment Ll units of flow along the path P;
update x, S(Ll), T(Ll), and G(x, Ll);

end;
Ll : = Ll/2;

end;
end;

Figure 10.1 Capacity scaling algorithm.

Sec. 10.2 Capacity Scaling Algorithm 361

At the beginning of the A-scaling phase, the algorithm first checks whether every
arc (i, j) in A-residual network satisfies the reduced cost optimality condition ciJ :::::
O. The arcs introduced in the A-residual network at the beginning of the A-scaling
phase [i.e., those arcs (i, j) for which .:l :::; rij < 2A] might not satisfy the optimality
condition (since, conceivably, ciJ < 0). Therefore, the algorithm immediately sat
urates those arcs (i, j) so that they drop out of the residual network; since the reversal
of these arcs (j, i) satisfy the condition cJ'i = - ciJ > 0, they satisfy the optimality
condition. Notice that because rij < 2A, saturating any such arc (i, j) changes the
imbalance of its endpoints by at most 2A. As a result, after we have saturated all
the arcs violating the reduced cost optimality condition, the sum of the excesses is
bounded by 2nA + 2mA = 2(n + m)A.

In the A-scaling phase, each augmentation starts at a node k E SeA), terminates
at a node I E T(A), and carries at least A units of flow. Note that Assumption 9.4
implies that the A-residual network contains a directed path from node k to node I,
so we always succeed in identifying a shortest path from node k to node I. Augmenting
flow along a shortest path in G(x, A) preserves the property that every arc satisfies
the reduced cost optimality condition (see Section 9.3). When either SeA) or T(A)
is empty, the A-scaling phase ends. At this point we divide A by a factor of 2 and
start a new scaling phase. Within O(log U) scaling phases, A = 1, and by the in
tegrality of data, every node imbalance will be zero at the end of this phase. In this
phase G(x, A) == G(x) and every arc in the residual network satisfies the reduced
cost optimality condition. Consequently, the algorithm will obtain a minimum cost
flow at the end of this scaling phase.

As we have seen, the capacity scaling algorithm is easy to state. Similarly, its
running time is easy to analyze. We have noted previously that in the A-scaling phase
the sum of the excesses is bounded by 2(n + m)A. Since each augmentation in this
phase carries at least A units of flow from a node in SeA) to a node in T(A), each
augmentation reduces the sum of the excesses by at least A units. Therefore, a scaling
phase can perform at most 2(n + m) augmentations. Since we need to solve a shortest
path problem to identify each augmenting path, we have established the following
result.

Theorem 10.1. The capacity scaling algorithm solves the minimum cost flow
problem in Oem log U Sen, m, nC» time. •

10.8 COST SCALING ALGORITHM

In this section we describe a cost scaling algorithm for the minimum cost flow prob
lem. This algorithm can be viewed as a generalization of the preflow-push algorithm
for the maximum flow problem; in fact, the algorithm reveals an interesting rela
tionship between the maximum flow and minimum cost flow problems. This algo
rithm relies on the concept of approximate optimality.

Approximate Optimality

A flow x or a pseudoflow x is said to be E-optimal for some E > 0 if for some node
potentials 1T, the pair (x, 1T) satisfies the following E-optimality conditions:

362 Minimum Cost Flows: Polynomial Algorithms Chap. 10

If clJ > E, then Xij = O.

If - E :5 clJ :5 E, then 0 :5 Xij :5 Uij.

If clJ < - E, then Xij = Uij.

(10.Ia)

(to.lb)

(to.lc)

These conditions are relaxations of the (exact) complementary slackness op
timality conditions (9.8) that we discussed in Section 9.3; note that these conditions
reduce to the complementary slackness optimality conditions when E = O. The exact
optimality conditions (9.8) imply that any combination of (Xij, clJ) lying on the thick
lines shown in Figure IO.2(a) is optimal. The E-optimality conditions (10.1) imply
that any combination of (Xij, clJ) lying on the thick lines or in the hatched region in
Figure 1O.2(b) is E-optimal.

t
cij

o

t
eij

(a) (b)

Figure 10.2 Illustrating the optimality condition for arc (i, j): (a) exact optimality
condition for arc (i, j); (b) EO-optimality condition for arc (i, j).

The E-optimality conditions assume the following simpler form when stated in
terms of the residual network G(x): A flow x or a pseudoflow x is said to be E-optimal
for some E > 0 if x, together with some node potential vector 1T, satisfies the following
E-optimality conditions (we leave the proof as an exercise for the reader):

clf 2: -E for every arc (i, j) in the residual network G(x). (10.2)

Lemma 10.2. For a minimum cost flow problem with integer costs, any fea
sible flow is E-optimal whenever E 2: C. Moreover, if E < lin, then any E-optimal
feasible flow is an optimal flow.

Proof. Let x be any feasible flow and let 1T = O. Then clJ = cij 2: - C for every
arc (i, j) in the residual network G(x). Therefore, x is E-optimal for E = C.

Now consider an E-optimal flow x with E < lin. Suppose that x is E-optimal
with respect to the node potentials 1T and that W is a directed cycle in G(x). The con
dition (10'2) implies that LU,j)EW cij 2: -En> -1, because E < lin. The integrality
of the costs implies that LU,j)EW clJ is nonnegative. But notice that LU,j)EW cIi =

LU,j)EW (Cij - 1T(i) + 1T(j» = LU,j)EW Cij' Therefore, W cannot be a negative cost

Sec. 10.3 Cost Scaling Algorithm 363

cycle. Since G(x) cannot contain any negative cycle, x must be optimal (from
Theorem 9.1). •

Algorithm

The cost scaling algorithm treats E as a parameter and iteratively obtains E-optimal
flows for successively smaller values of E. Initially, E = C and any feasible flow is
E-optimal. The algorithm then performs cost scaling phases by repeatedly applying
an improve-approximation procedure that transforms an E-optimal flow into a
4 E-optimal flow. Mter 1 + pog(nC)l cost scaling phases, E < lin and the algorithm
terminates with an optimal flow. Figure 10.3 provides a more formal statement of
the cost scaling algorithm.

algorithm cost scaling;
begin

'IT : = 0 and E : = C;
let x be any feasible flow;
while E 2: 1/n do
begin

improve-approximation(E, x, 'IT);
E : = El2;

end;
x is an optimal flow for the minimum cost flow problem;

end; Figure 10.3 Cost scaling algorithm.

The improve-approximation procedure transforms an E-optimal flow into a
4 E-optimal flow. It does so by (1) converting the E-optimal flow into arE-optimal
pseudoflow, and (2) then gradually converting the pseudoflow into a flow while
always maintaining 4 E-optimality of the solution. We refer to a node i with e(i) > 0
as active and say that an arc (i, j) in the residual network is admissible if - 4 E :5

cij < O. The basic operation in the procedure is to select an active node i and perform
pushes on admissible arcs (i, j) emanating from node i. When the network contains
no admissible arc, the algorithm updates the node potential 7r(i). Figure 10.4 sum
marizes the essential steps of the generic version of the improve-approximation
procedure.

Recall that rij denotes the residual capacity of an arc (i, j) in G(x). As in our
earlier discussion of preflow-push algorithms for the maximum flow problem, if
8 = rij, we refer to the push as saturating; otherwise, it is nonsaturating. We also
refer to the updating of the potential of a node as a relabel operation. The purpose
of a relabel operation at node i is to create new admissible arcs emanating from this
node.

We illustrate the basic operations of the improve-approximation procedure on
a small numerical example. Consider the residual network shown in Figure 10.5(a).
Let E = 8. The current pseudoflow is 4-optimal. Node 2 is the only active node in
the network, so the algorithm selects it for push/relabel. Suppose that arc (2, 4) is
the first admissible arc found. The algorithm pushes min{e(2), r24} = min{30, 5} =

5 units of flow on arc (2, 4); this push saturates the arc. Next the algorithm identifies
arc (2, 3) as admissible and pushes min{e(2), r23} = min{25, 30} = 25 units on this
arc. This push is nonsaturating; after the algorithm has performed this push, node

364 Minimum Cost Flows: Polynomial Algorithms Chap. 10

procedure improve-approximation(E, x, 'IT);
begin

for every arc (i, j) E A do
if clJ > 0 then Xlj : = 0
else if clJ < 0 then Xlj : = Ulj;

compute node imbalances;
while the network contains an active node do
begin

select an active node i;
pushlre/abe/(i);

end;
end;

(a)

procedure pushlre/abe/(i);
begin

if G(x) contains an admissible arc (i, j) then
push 1) : = min{e(i), rlj} units of flow from node i to node j;

else 'IT(i) : = 'IT(i) + El2;
end;

(b)

Figure 10.4 Procedures of the cost scaling algorithm.

2 is inactive and node 3 is active. Figure 1O.5(b) shows the residual network at this
point.

In the next iteration, the algorithm selects node 3 for push/relabel. Since no
admissible arc emanates from this node, we perform a relabel operation and increase
the node's potential by E/2 = 4 units. This potential change decreases die reduced
costs of the outgoing arcs, namely, (3, 4) and (3, 2), by 4 units and increases the
reduced costs of the incoming arcs, namely (1, 3) and (2, 3), by-4 units [see Figure
10.5(c)]. The relabel operation creates an admissible arc, namely arc (3, 4), and we
next perform a push of 15 units on this arc [see Figure 10.5(d)]. Since the current
solution is a flow, the improve-approximation procedure terminates.

To identify admissible arcs emanating from node i, we use the same data struc
ture used in the maximum flow algorithms described in Section 7.4. For each node
i, we maintain a current-arc (i, j) which is the current candidate to test for admis
sibility. Initially, the current-arc of node i is the first arc in its arc list A(i). To
determine an admissible arc emanating from node i, the algorithm checks whether
the node's current-arc is admissible, and if not, chooses the next arc in the arc list
as the current-arc. Thus the algorithm passes through the arc list starting with the
current-arc until it finds an admissible arc. If the algorithm reaches the end of the
arc list without finding an admissible arc, it declares that the node has no admissible
arc. At this point it relabels node i and again sets its current-arc to the first arc in
A(i).

We might comment on two practical improvements of the improve-approxi
mation procedure. The algorithm, as stated, starts with E = C and reduces E by a
factor of 2 in every scaling phase until E lin. As a consequence, E could become

Sec. 10.3 Cost Scaling Algorithm 365

e(i)
(cij, r i}

e(j) • ·0
30 0

,,0
\(",'

~
'-!J

,,0
\(",'

C?
'-!J

0 (-1,30) -20 0 (-1,5) (1,25) -15

C? ~
C? ",0 '<0 0'
'<0 0'

-10 15

(a) (b)

0 0

,,\.')1
C?

\(",' '-!J
(3,5)

0 (-3,25) -15 0 0

(is ",0 (is

'<0
\(""

'<0

15 0

(c) (d)

Figure 10.5 Illustration of push/relabel steps.

nonintegral during the execution of the algorithm. By slightly modifying the algo
rithm, however, we can ensure that E remains integral. We do so by multiplying all
the arc costs by n, by setting the initial value of E equal to 2 f1og(nC)1, and by terminating
the algorithm when E < 1. It is possible t<;> show (see Exercise 10.7) that the modified
algorithm would yield an optimal flow for the minimum cost flow problem in the
same computational time. Furthermore, as stated, the algorithm increases a node
potential by E/2 during a relabel operation. As described in Exercise 10.8, we can
often increase the node potential by an amount larger than E/2.

Analysis of the Algorithm

We show that the cost scaling algorithm correctly solves the minimum cost flow
problem. In the proof, we rely on the fact that the improve-approximation procedure
converts an E-optimal flow into an E/2-optimal flow. We esta:blish this result in the
following lemma.

Lemma 10.3. The improve-approximation procedure always maintains! E

optimality of the pseudo flow , and at termination yields a ! E-optimal flow.

366 Minimum Cost Flows: Polynomial Algorithms Chap. 10

Proof. We use induction on the number of pushes and relabels. At the beginning
of the procedure, the algorithm sets the flows on arcs with negative reduced costs
to their capacities, sets the flow on arcs with positive reduced costs to zero, and
leaves the flow on arcs with zero reduced costs unchanged. The resulting pseudoflow
satisfies (10.1) for E = 0 and thus is O-optimal. Since a O-optimal pseudoflow is
E-optimal for every E, the resulting flow is also ! E-optimal.

We next study the effect of a push on the! E-optimality of the solution. Pushing
flow on arc (i, j) might add its reversal (j, i) to the residual network. But since
- E/2 :5 cij < 0 (by the criteria of admissibility), c J'i = - cij > 0, and so this arc
satisfies the! E-optimality condition (10.2).

What is the effect of a relabel operation? The algorithm relabels a node i when
cij 2: 0 for every arc (i, j) emanating from node i in the residual network. Increasing
the potential of node i by E/2 units decreases the reduced cost of all arcs emanating
from node i by E/2 units. But since cij 2: 0 before the increase in 1T, cij 2: - E/2 after
the increase, and the arc satisfies the ! E-optimality condition. Furthermore, in
creasing the potential of node i by E/2 units increases the reduced costs of the in
coming arcs at node i but maintains the! E-optimality condition for these arcs. These
results establish the lemma. •

We next analyze the complexity of the improve-approximation procedure. We
show that the number of relabel operations is O(n2

), the number of saturating pushes
is O(nm), and the number of non saturating pushes for the generic version is O(n 2m).
These time bounds are comparable to those of the preflow-push algorithms for the
maximum flow problem and the proof techniques are also similar. We first prove
the most significant result, which bounds the number of relabel operations.

Lemma 10.4. No node potential increases more than 3n times during an ex
ecution of the improve-approximation procedure.

Proof. Let x be the current ! E-optimal pseudoflow and x I be the E-optimal
flow at the end of the previous cost scaling phase. Let 1T and 1T' be the node potentials
corresponding to the pseudoflow x and the flow x'. It is possible to show (see Ex
ercise 10.9) that for every node v with an excess there exists a node w with a deficit
and a sequence of nodes v = VO, VI, V2, ••• , VI = w that satisfies the property that
the path P = Vo - VI - V2 - ••• - VI is a directed path in G(x) and its reversal
P = VI - VI_I - .,. - VI - Vo is a directed path in G(x '). Applying the! E-optimality
condition to the arcs on the path P in G(x), we see that

~ cij 2: -1(E/2).
(i,j)EP

Substituting cij = Cij - 1T(i) + 1T(j) in this expression gives

~ Cij - 1T(V) + 1T(W) 2: -1(E/2).
(i,j)EP

Alternatively,

1T(V) :5 1T(W) + I(E/2) + ~ Cij'
(i,j)EP

Sec. 10.3 Cost Scaling Algorithm

(10.3)

367

Applying the E-optimality conditions to the arcs on the path P in G(x'), we
obtain L(j,i)EP cJf ;;:: -IE. Substituting Cft' = Cji - 'IT'(j) + 'IT'(i) in this expression
gives

L _ Cji - 'IT'(w) + 'IT'(v) ;;:: -IE. (10.4)
(j,i)EP

Notice that L(j,i)EP Cji = - LUJ)EP Cij since P is a reversal of P. In view of this
fact, we can restate (10.4) as

L Cij::; IE - 'IT'(w) + 'IT' (v). (10.5)
U,j)EP

Substituting (10.5) in (10.3), we see that

('IT (v) - 'IT'(v)) ::; ('IT(w) - 'IT'(w)) + 31E/2. (10.6)

Now we use the facts that (1) 'IT(w) = 'IT'(w) (the potential of a node with
negative imbalance does not change because the algorithm never selects it for push!
relabel), (2) I ::; n, and (3) each increase in the potential increases 'IT(v) by at least
E/2 units. These facts and expression (10.6) establish the lemma. •

Lemma 10.5. The improve-approximation procedure performs O(nm) satu
rating pushes.

Proof We show that between two consecutive saturations of an arc (i, j), the
procedure must increase both the potentials 'IT(i) and 'IT(j) at least once. Consider a
saturating push on arc (i, j). Since arc (i, j) is admissible at the time of the push,
cij < O. Before the algorithm can saturate this arc again, it must send some flow
back from node j to node i. At that time Cft < 0 or cij > O. These conditions are
possible only if the algorithm has relabeled node j. In the subsequent saturation of
arc (i, j), cij < 0, which is possible only if the algorithm has relabeled node i. But
by the previous lemma the improve-approximation procedure can relabel any node
O(n) times, so it can saturate any arc O(n) times. Consequently, the number of
saturating pushes is O(nm). •

To bound the number of nonsaturating pushes, we need one more result. We
define the admissible network of a given residual network as the network consisting
solely of admissible arcs. For example, Figure 10.6(b) specifies the admissible net
work for the residual network given in Figure 10.6(a).

Lemma 10.6. The admissible network is acyclic throughout the improve
approximation proceaure.

Proof We show that the algorithm satisfies this property at every step. The
result is true at the beginning of the improve-approximation procedure because the
initial pseudoflow is O-optimal and the residual network contains no admissible arc.
We show that the result remains valid throughout the procedure. We always push
flow on arc (i, j) with cij < 0; therefore, if the algorithm adds the reversal (j, i) of
this arc to the residual network, then cJI > 0 and so the reversal arc is nonadmissible.
Thus pushes do not create new ad.mi.ssible arcs and the admissible network remains
acyclic. The relabel operation at node i decreases the reduced costs of all outgoing

368 Minimum Cost Flows: Polynomial Algorithms Chap. 10

-5

-2

-3

(b)

Figure 10.6 Illustration of an admissible network: (a) residual network;
(b) admissible network.

-1

-2

arcs at node i by E/2 units and might create new admissible arcs. This relabel operation
increases the reduced costs of all incoming arcs at node i by E/2 units, so all such
arcs become inadmissible. Consequently, the relabel operation cannot create any
directed cycle passing through node i. Thus neither of the two operations, pushes
and relabels, of the algorithm can create a directed cycle, which establishes the
lemma. •

Lemma 10.7. The improve-approximation procedure performs O(n 2 m) non
saturating pushes.

Proof We use a potential function argument to prove the lemma. Let g(i) be
the number of nodes that are reachable from node i in the admissible network and
let <I> = Li is active g(i) be the potential function. We assume that every node is
reachable from itself. For example, in the admissible network shown in Figure 10.7,
nodes 1 and 4 are the only active nodes. In this network, nodes. 1 , 2, 3, 4, and 5 are
reachable from node 1, and nodes 4 and 5 are reachable from node 4. Therefore,
g(1) = 5, g(4) = 2, and <I> = 7.

At the beginning of the procedure, <I> ::; n since the admissible network contains

-1

40

Sec. 10.3 Cost Scaling Algorithm

Figure 10.7 Admissible network for
E = 8.

369

no arc and each g(i) = 1. After a saturating push on arc (i, j), nodej might change
its state from inactive to active, which would increase <I> by g(j) :5 n. Therefore,
Lemma 10.5 implies that the total increase due to saturating pushes is 0(n2 m). A
relabel operation of node i might create new admissible arcs (i, j) and will increase
g(i) by at most n units. But this relabel operation does not increase g(k) for any
other node k because it makes all incoming arcs at node k inadmissible (see the proof
of Lemma 10.6). Thus the total increase due to all relabel operations is 0(n3).

Finally, consider the effect on <I> of a nonsaturating push on arc (i, j). As a
result of the push, node i becomes inactive and node j might change its ~tatus from
inactive to active. Thus the push decreases <I> by g(i) units and might increase it by
another g(j) units. Now notice that g(i) 2: g(j) + 1 because every node that is
reachable from node j is also reachable from node i but node i is not reachable from
nodej (because the admissible network is acyclic). Therefore, a nonsaturating push
decreases <I> by at least 1 unit. Consequently, the total number of nonsaturating
pushes is bounded by the initial value of <I> plus the total increase in <I> throughout
the algorithm, which is O(n) + 0(n2 m) + 0(n3

) = 0(n2 m). This result establishes
the lemma. •

Let us summarize our discussion. The improve-approximation procedure re
quires 0(n2 m) time to perform nonsaturating pushes and O(nm) time to perform
saturating pushes. The amount of time needed to identify admissible arcs is
O(LiEN I A(i) I n) = O(nm), since between two consecutive potential increases of
a node i, the algorithm will examine I A(i) I arcs for testing admissibility. The al
gorithm could store all the active nodes in a list. Doing so would permit it to identify
an active node in 0(1) time, so this operation would not be a bottleneck step. Con
sequently, the improve-approximation procedure runs in 0(n2 m) time. Since the
cost scaling algorithm calls this procedure 1 + pog(nC)l times, we obtain the fol
lowing result.

Theorem 10.8. The generic cost scaling algorithm runs in 0(n2 m 10g(nC))
time. •

The cost scaling algorithm illustrates an important connection between
the maximum flow and the minimum cost flow problems. Solving an improve
approximation problem is very similar to solving a maximum flow problem by the
preflow-push method. Just as in the preflow-push algorithm, the bottleneck opera
tion in the procedure is the number of nonsaturating pushes. In Chapter 7 we have
seen how to reduce the number of nonsaturating pushes for the preflow-push
algorithm by examining active nodes in some specific order. Similar ideas permit us
to streamline the improve-approximation procedure as well. We describe one such
improvement, called the wave implementation, that reduces the number of nonsat
urating pushes from 0(n 2 m) to 0(n3

).

Wave Implementation

Before we describe the wave implementation, we introduce the concept of node
examination. In an iteration of the improve-approximation procedure, the algorithm
selects a node, say node i, and either performs a saturating push or a nonsaturating

370 Minimum Cost Flows: Polynomial Algorithms Chap. 10

push from this node, or relabels the node. If the algorithm performs a saturating
push, node i might still be active, but the algorithm might select another node in the
next iteration. We shall henceforth assume that whenever the algorithm selects a
node, it keeps pushing flow from that node until either its excess becomes zero or
the node becomes relabeled. If we adopt this node selection strategy, the algorithm
will perform several saturating pushes from a particular node followed either by a
nonsaturating push or a relabel operation; we refer to this sequence of operations
as a node examination.

The wave implementation is a special implementation of the improve-approx
imation procedure that selects active nodes for push/relabel steps in a specific order.
The algorithm uses the fact that the admissible network is acyclic. In Section 3.4
we showed that it is always possible to order nodes of an acyclic network so that
for every arc (i, j) in the network, node i occurs prior to node j. Such an ordering
of nodes is called a topological ordering. For example, for the admissible network
shown in Figure 10.6, one possible topological ordering of nodes is 1-2-5-4-3-6.
In Section 3.4 we showed how to arrange the nodes of a network in a topological
order in Oem) time. For a given topological order, we define the rank of a node as
n minus its number in the topological sequence. For example, in the preceding
example, rank(1) = 6, rank(6) = 1 and rank(5) = 4.

Observe that each push carries flow from a node with higher rank to a node
with lower rank. Also observe that pushes do not change the topological ordering
of nodes since they do not create new admissible arcs. The relabel operations, how
ever, might create new admissible arcs and consequently, might affect the topological
ordering of nodes.

The wave implementation sequentially examines nodes in the topological order
and if the node being examined is active, it performs push/relabel steps at the node
until either the node becomes inactive or it becomes relabeled. When examined in
this order, the active nodes push their excesses to nodes with lower rank, which in
turn push their excesses to nodes with even lower rank, and so on. A relabel op
eration changes the topological order; so after each relabel operation the algorithm
modifies the topological order and again starts to examine nodes according to the
topological order. If within n consecutive node examinations, the algorithm performs
no relabel operation, then at this point all the active nodes have discharged their
excesses and the algorithm has obtained a flow. Since the algorithm performs O(n2

)

relabel operations, we immediately obtain a bound of O(n3) on the number of node
examinations. Each node examination entails at most one nonsaturating push. Con
sequently, the wave algorithm performs O(n3) nonsaturating pushes per execution
of improve-approximation.

To illustrate the wave implementation, we consider the pseudoflow shown in
Figure 10.8. One topological order of nodes is 2-3-4-1-5-6. The algorithm first
examines node 2 and pushes 20 units of flow on arc (2, 1). Then it examines node
3 and pushes 5 units of flow on arc (3,1) and 10 units of flow on arc (3, 4). The push
creates an excess of 10 units at node 4. Next the algorithm examines node 4 and
sends 5 units on the arc (4, 6). Since node 4 has an excess of 5 units but has no
outgoing admissible arc, we need to relabel node 4 and reexamine all nodes in the
topological order starting with the first node in the order.

To complete the description of the algorithm, we need to describe a procedure

Sec. 10.3 Cost Scaling Algorithm 371

e(i) e(j)

G rij

»0
0 -25

30
»5. CD

/ 10

20 2 5

5

3 4
15 Figure 10.8 Example to illustrate the

10 0 wave implementation.

for obtaining a topological order of nodes after each relabel operation. We can use
an O(m) algorithm to determine an initial topological ordering of the nodes (see
Section 3.4). Suppose that while examining node i, the algorithm relabels this node.
At this point, the network contains no incoming admissible arc at node i. We claim
that if we move node i from its present position to the first position in the previous
topological order leaving all other nodes intact, we obtain a topological order of the
new admissible network. For example, for the admissible network given in Figure
10.8, one topological order of the nodes is 2-3-4-1-5-6. If we examine nodes in
this order, the algorithm relabels node 4. Mter the algorithm has performed this
relabel operation, the modified topological order of nodes is 4-2-3-1-5-6. This
method works because (1) after the relabeling, node i has no incoming admissible
arc, so assigning it to the first place in the topological order is justified; (2) the
relabeling of node i might create some new outgoing admissible arcs (i, j) but since
node i is first in the topological order, any such arc satisfies the conditions of a
topological ordering; and (3) the rest of the admissible network does not change, so
the previous order remains valid. Therefore, the algorithm maintains an ordered set
of nodes (possibly as a doubly linked list) and examines nodes in this order. Whenever
it relabels a node i, the algorithm moves this node to the first place in the order and
again examines nodes in order starting from node i.

We have established the following result.

Theorem 10.9. The wave implementation of the cost scaling algorithm solves
the minimum cost flow problem in O(n 3 10g(nC)) time. •

By examining the active nodes carefully and thereby reducing the number of
nonsaturating pushes, the wave implementation improves the running time of the
generic implementation of the improve-approximation procedure from O(n 2 m) to
O(n 3

). A complementary approach for improving the running time is to use cleverer
data structure to reduce the time per nonsaturating push. Using the dynamic tree
data structures described in Section 8.5, we can improve the running time of the
generic implementation to O(nm log n) and of the wave implementation to O(nm
log(n 2/m)). The references cited at the end ofthe chapter contain the details ofthese
implementations.

372 Minimum Cost Flows: Polynomial Algorithms Chap. 10

10.4 DOUBLE SCALING ALGORITHM

As we have seen in the preceding two sections, by scaling either the arc capacities
or the cost coefficients of a minimum cost flow problem, we can devise algorithms
with improved worst-case performance. This development raises a natural question:
Can we combine ideas from these algorithms to obtain even further improvements
that are not obtained by either technique alone? In this section we provide an af
firmative answer to this question. The double scaling algorithm we describe solves
the capacitated minimum cost flow problem in O(nm log U 10g(nC)) time. When
implemented using a dynamic tree data structure, this approach produces one of the
best polynomial time algorithms for solving the minimum cost flow problem.

In this discussion we assume that the reader is familiar with the capacity scaling
algorithm and the cost scaling algorithm that we examined in the preceding two
sections. To solve the capacitated minimum cost flow problem, we first transform
it into an uncapacitated transportation problem using the transformation described
in Section 2.4. We assume that every arc in the minimum cost flow problem is
capacitated. Consequently, the transformed network will be a bipartite network
G = (N1 U N 2 ,A) withN1 andN2 as the sets of supply and demand nodes. Moreover,
I NI I = n and I N2 I = m.

The double scaling algorithm is the same as the cost scaling algorithm described
in the preceding section except that it uses a more efficient version of the improve
approximation procedure. The improve-approximation procedure in the preceding
section relied on a "pseudoflow-push" method to push flow out of active nodes. A
natural alternative would be to try an augmenting path based method. This approach
would send flow from a node with excess to a node with deficit over an admissible
path (i.e., a path in which each arc is admissible). A straightforward implementation
of this approach would require O(nm) augmentations since each augmeptation would
saturate at least one arc and, by Lemma 10.5, the algorithm requires O(nm) arc
saturations. Since each augmentation requires O(n) time, this approach does not
appear to improve the O(n 2 m) bound of the generic improve-approximation pro
cedure.

We can, however, use ideas from the capacity scaling algorithm to reduce the
number of augmentations to O(m log U) by ensuring that each augmentation carries
sufficiently large flow. The resulting algorithm performs cost scaling in an "outer
loop" to obtain E.-optimal flows for successively smaller values of E.. Within each
cost scaling phase, we start with a pseudoflow and perform a number of capacity
scaling phases, called a-scaling phases, for successively smaller values of a. In the
a-scaling phase, the algorithm identifies admissible paths from a node with an excess
of at least a to a node with a deficit and augments a units of flow over these paths.
When all node excesses are less than a, we reduce a by a factor of 2 and initiate
a new a-scaling phase. At the end of the I-scaling phase, we obtain a flow.

The algorithmic description of the double scaling algorithm is same as that of
the cost scaling algorithm except that we replace the improve-approximation pro
cedure by the procedure given in Figure 10.9.

The capacity scaling within the improve-approximation procedure is somewhat
different from the capacity scaling algorithm described in Section 10.2. The new
algorithm differs from the one we considered previously in the following respects:

Sec. 10.4 Double Scaling Algorithm 373

procedure improve-approximation(E, x, 'IT);
begin

set x : = 0 and compute node imbalances;
'IT(j) : = 'IT(j) + E, for all j E N2 ;

a: = 2[109 uJ;
while the network contains an active node do
begin

5(.1.) : = {i E N1 U N2 : e(i) ;0,: a};
while 5(.1.) ¥.0do
begin {a-scaling phase}

select a node k from 5(.1.);
determine an admissible path P from node k to some node I with e(l) < 0;
augment a units of flow on path P and update x and 5(.1.);

end;
a: = .1./2;

end;
end;

Figure 10.9 Improve-approximation procedure in the double scaling algorithm.

(1) the augmentation terminates at a node I with e(l) < 0 but whose deficit may not
be as large as Ll; (2) each residual capacity is an integral mUltiple of Ll because each
arc flow is an integral mUltiple of Ll and each arc capacity is 00; and (3) the algorithm
does not change flow on some arcs at the beginning of the Ll-scaling phase to ensure
that the solution satisfies the optimality conditions. We point out that the algorithm
feature (3) is a consequence of feature (2) because each rij is a mUltiple of Ll, so
G(x, Ll) == G(x).

The double scaling algorithm improves on the capacity scaling algorithm by
identifying an admissible path in only O(n) time, on average, rather than the time
O(S(n, m, nC)) required to identify an augmentation path in the capacity scaling
algorithm. The savings in identifying augmenting paths more than offsets the extra
requirement of performing O(log(nC)) cost scaling phases in the double scaling al
gorithm.

We next describe a method for identifying admissible paths efficiently. The
algorithm identifies an admissible path by starting at node k and gradually building
up the path. It maintains a partial admissible path P, which is initially null, and
keeps enlarging it until it includes a node with deficit. We maintain the partial ad
missible path P using predecessor indices [i.e., if (u, v) E P then pred(v) = u]. At
any point in the algorithm, we perform one of the following two steps, whichever
is applicable, from the tip of P (say, node i):

advance(i). If the residual network contains an admissible arc (i, j), add (i, j)
to P and set pred(j): = i. If e(j) < 0, stop.
retreat(i). If the residual network does not contain an admissible arc (i, j),
update 7r(i) to 7r(i) + E/2. If i =? k, remove the arc (pred(i), i) from P so that
pred(i) becomes its new tip.

The retreat step relabels (increases the potential of) node i for the purpose of
creating new admissible arcs emanating from this node. However, increasing the
potential of node i increases the reduced costs of all the incoming arcs at the node

374 Minimum Cost Flows: Polynomial Algorithms Chap. 10

i by E/2. Consequently, the arc (pred(i), i) becomes inadmissible, so we delete this
arc from P (provided that P is nonempty).

We illustrate the method for identifying admissible paths on the example shown
in Figure 10.10. Let E = 4 and Ll = 4. Since node 1 is the only node with an excess
of at least 4, we begin to develop the admissible path starting from this node. We
perform the step advance(1) and add the arc (1, 2) to P. Next, we perform the step
advance(2) and add the arc (2, 4) to P. Now node 4 has no admissible arc. So we
perform a retreat step. We increase the potential of node 4 by E/2 = 2 units, thus
changing the reduced cost of arc (2, 4) to 1; so we eliminate this arc from P. In the
next two steps, the algorithm performs the steps advance(2) and advance(5), adding
arcs (2, 5) and (5, 6) to P. Since the path now contains node 6, which is a node with
a deficit, the method terminates. It has found the admissible path 1-2-5-6.

e(i) e(j)

0) cij ·0
0 0

-1

~_1
2

-1

-2
4

2 -1

3 5
-2

-3 0
(a) Figure 10.10 Residual network.

It is easy to show that the double scaling algorithm correctly sol~es the min
imum cost flow problem. At the beginning of the improve-approximation procedure,
we set x = 0 and the corresponding residual network is the-same as the original
network. The E-optimality of the solution at the end of the previous scaling phase
implies that cij ~ - E for all arcs (i, j) E A. Therefore, by adding E to 'IT(j) for each
j E N 2 , we obtain an ! E-optimal pseudoflow (in fact, it is a O-optimal pseudoflow).
Like the improve-approximation procedure described in the preceding section, the
algorithm always augments flow on admissible arcs and relabels a node when it has
no outgoing admissible arc. Consequently, the algorithm preserves! E-optimality of
the pseudoflow and at termination yields a ! E-optimal flow.

We next consider the complexity of the improve-approximation procedure.
Each execution of the procedure performs (1 + llog U J) capacity scaling phases.
At the end of the 2Ll-scaling phase, S(2Ll) = <1>. Therefore, at the beginning of the
Ll-scaling phase, Ll ::; e(i) < 2Ll for each node i E S(Ll). Duringthe Ll-scaling phase,
the algorithm augments Ll units of flow from a node k in S(Ll) to a node I with
e(l) < O. The augmentation reduces the excess of node k to a value less than Ll
and ensures that the imbalance at node I is strictly less than Ll. Consequently, each
augmentation deletes a node from S(Ll) and after at most I Nt I + I N21 = O(m)
augmentations, S(Ll) becomes empty and the algorithm begins a new capacity scaling
phase. The algorithm thus performs a total of O(m log U) augmentations.

Sec. lOA Double Scaling Algorithm 375

We next focus on the time needed to identify admissible paths. We first count
the number of advance steps. Each advance step adds an arc to the partial admissible
path, and each retreat step deletes an arc from the partial admissible path. Thus we
can distinguish between two types of advance steps: (1) those that add arcs to an
admissible path on which the algorithm later performs an augmentation, and (2) those
that are later canceled by a retreat step. Since the set of admissible arcs is acyclic
(by Lemma 10.6), after at most 2n advance steps of the first type, the algorithm
will discover an admissible path and will perform an augmentation (because the
longest path in the network has 2n nodes). Since the algorithm performs a total of
O(m log U) augmentations, the number of advance steps of the first type is at
most O(nm log U). The algorithm performs O(nm) advance steps of the second
type because each retreat step increases a node potential, and by Lemma lOA,
node potentials increase O(n(n + m)) = O(nm) times. Therefore, the total number
of advance steps is O(nm log U).

The amount of time needed to relabel node~ in Nl is O(n LiEN I AU) D =
O(nm). The time needed to relabel nodes in N2 is also O(nm) since I N21 = m and
the degree of each node in N2 is constant (i.e., it is 2). The same arguments show
that the algorithm requires O(nm) time to identify admissible arcs. We have, there
fore, established the following result.

Theorem 10.10. The double scaling algorithm solves the minimum cost flow
problem in O(nm log U 10g(nC)) time. •

One nice feature of the double scaling algorithm is that it achieves an excellent
worst-case running time for solving the minimum cost flow problem and yet is fairly
simple, both conceptually and computationally.

10.5 MINIMUM MEAN CYCLE-CANCELING ALGORITHM

The three minimum cost flow algorithms we have discussed in this chapter-the
capacity scaling algorithm, the cost scaling algorithm, and the double scaling al
gorithm-are weakly polynomial-time algorithms because their running times de
pend on log U and/or log C. Although these algorithms are capable of solving any
problem with integer or rational data, they are not applicable to problems with ir
rational data. In contrast, the running times of strongly polynomial-time algorithms
depend only on nand m; consequently, these algorithms are capable of solving
problems with irrational data, assuming that a computer can perform additions and
subtractions on irrational data. In this and the next two sections, we discuss several
strongly polynomial time algorithms for solving any class of minimum cost flow
problems, including those with irrational data.

The algorithm discussed in this section is a special case of the cycle-canceling
algorithm that we discussed in Section 9.6. Because this algorithm iteratively cancels
cycles (i.e., augments flows along cycles) with the minimum mean cost in the res
idential network, it is known as the (minimum) mean cycle-canceling algorithm.
Recall from Section 5.7 that the mean cost of a directed cycle W is (Lu,j)EW Cij)/
I wi, and that the minimum mean cycle is a cycle with the smallest mean cost in

376 Minimum Cost Flows: Polynomial Algorithms Chap. 10

the network. In Section 5.7 we showed how to use dynamic programming algorithm
to find the minimum mean cycle in O(nm) time.

The minimum mean cycle-canceling algorithm starts with a feasible flow x in
the network. At every iteration, the algorithm identifies a minimum mean cycle W
in G(x). If the mean cost of the cycle W is negative, the algorithm augments the
maximum possible flow along W, updates G(x), and repeats this process. If the mean
cost of"W is nonnegative, G(x) contains no negative cycle and x is a minimum cost
flow, so the algorithm terminates. This algorithm is surprisingly simple to state; even
more surprisingly, the algorithm runs in strongly polynomial time.

To establish the wprst-case complexity of the minimum mean cycle-canceling
algorithm, w~ recall a few facts. In our subsequent discussion, we often use Property
9.2(b), which states that for any set of node potentials 7T and any directed cycle W,
the sum of the. cqsts of the arcs in W equals the sum of the reduced costs of the arcs
in W. We will aIsous\hhe following property concerning sequences of real numbers,
which is a variant of the geometric improvement argument (see Section 3.3).

Property 10.11. Let a be a positive integer and let YI, Y2, Y3, ... be a sequence
of real numbers satisfying the condition Yk+ 1 :5 (1 - lIo.)Yk for every k. Then for
every value of k, Yk+", :5 Yk12.

Proof We first rewrite the expression Yk+ 1 :5 (1 - lIo.)Yk as Yk;:::: Yk+ 1 + Yk+ II
(a - 1). We now use this last expression repeatedly to replace the first term on the
right-hand side, giving

Yk ;:::: Yk+ 1 + Yk+ 1/(0. - 1) ;:::: Yk+2 + Yk+ 2/(o. + 1) + Yk+ 1/(0. - 1)

;:::: Yk+2 + 2Yk+2/(o. - 1) ;:::: Yk+3 + 3Yk+3/(o. - 1)

;:::: Yk+", + o.Yk+",/(o. - 1) ;:::: 2Yk+""

which is the assertion of the property. •
We divide the worst-case analysis of the minimum mean cycle algorithm into

two parts: First, we show that the algorithm is weakly polynomial-time; then
we establish its strong polynomiality. Although the description of the algorithm
does not use scaling techniques, the worst-cast analysis borrows ideas from the cost
scaling algorithm that we discussed in Section 10.3. In particular, the notion of
E-optimality discussed in that section plays a crucial role in its analysis. We
will show that the flows maintained by the minimum mean cycle-canceling algo
rithm are 'E-optimal flows satisfying the conditions that (1) between any two
consecutive iterations the value of E either stays the same or decreases; (2) oc
casionally, the value of E strictly decreases; and (3) eventually, E < lin and the
algorithm terminates (see Lemma 10.2). As we observed in Section 10.3, the cost
scaling algorithm's explicit strategy is to reduce E from iteration to iteration. Al
though the minimum mean cycle-canceling algorithm also reduces the value of E
(although periodically, rather than at every iteration), the reduction is very much an
implicit by-product of the algorithm.

We first establish a connection between the E-optimality of a flow x and the

Sec. 10.5 Minimum Mean Cycle-Canceling Algorithm 377

mean cost of a minimum mean cycle in G(x). Recall that a flow x is E-optimal if for
some set of node potentials, the reduced cost of every arc is at least - E. Notice
that any flow x will be E-optimal for many values of E, because a flow that is
E-optimal is also E'-optimal for all E' 2: E. For any particular set of node potentials 1T,
we let E"'(X) be the negative of the minimum value of any reduced cost [i.e.,
E"'(X) = -min[cij: (i,j) in G(x)]. Thus cij 2: -E"'(X) and cij = -E'lT(X) for some
arc (i, j). Thus x is E-optimal for E = E'lT(X). Potentially, we could find a smaller
value of E by using other values of the node potentials. With this thought in mind,
we let E(X) = min'lTE"'(x). Note that E(X) is the smallest value of E for which the
flow x is E-optimal. As additional notation, we let j.1(x) denote the mean cost of
the minimum mean cycle in G(x).

Note that since x is E(x)-optimal, conditions (10.2) imply that LU,j)EW cij =
LU,j)EW cij 2: -E'lT(X) 1 W I. Choosing Was the minimum mean cycle and dividing
this expression by 1 W I, we see that j.1(x) 2: -E(X). As we have seen, this inequality
is a simple consequence of the definitions of E-optimality and of the minimum mean
cycle cost; it uses the fact that if we can bound the reduced cost of every arc around
a cycle, this same bound applies to the average cost around the cycle. Perhaps
surprisingly, however, we can obtain a converse result: that is, we can always find
a set of node potentials so that every arc around the minimum mean cycle has the
same reduced cost and that this cost equals - E(X). Our next two results establish
this property.

Lemma 10.12. Let x be a nonoptimal jlow. Then E(X) = - j.1(x).

Proof Since our observation in the preceding paragraph shows that E(X) 2:

- j.1(X) , we only need to show that E(X) ::; - j.1(x).
Let W be a minimum mean cycle in the residual network G(x), and let j.1(x)

be the mean cost of this cycle. Suppose that we replace each arc cost Cij by cij =

Cij - j.1(x). This transformation reduces the mean cost of every directed cycle in
G(x) by j.1(x) units. Consequently, the minimum mean cost of the cycle W becomes
zero, which implies that the residual network contains no negative cost cycle. Let
d' (.) denote the shortest path distances in G(x) from a specified node s to all other
nodes with cijas the arc lengths. The shortest path optimality conditions imply that

d' (j) ::; d' (i) + cij = d' (i) + Cij - j.1(x)

If we let 1TU) = d'U), then (10.7) becomes

for each arc (i, j) in G(x). (10.7)

cij 2: j.1(x) for each arc (i, j) in G(x), (10.8)

which implies that x is (- j.1(x))-optimal. Therefore, E(X) ::; - j.1(X) , completing the
proof of the lemma. •

Lemma 10.13. Let x be any nonoptimaljlow. Then for some set of node po
tentials 1T, cij = j.1(x) = -E(X) for every arc (i,j) in the minimum mean cycle Wof
G(x).

Proof Let 1T be defined as in the proof of the preceding lemma; with these
set of node potentials, the reduced costs satisfy (10.8). The cost of the cycle W
equals LU,j)EW Cij, which also equals its reduced cost LU,j)EW cij. Con-

378 Minimum Cost Flows: Polynomial Algorithms Chap. 10

sequently, LU,j)EW clf = lJ.(x) 1 W I· This equation and (10.8) imply that clf =
lJ.(x) for each arc (i, j) in W. Lemma 10.12 establishes that clf - E(X) for every
arc in W. •

We next show that during the execution of the minimum mean cycle-canceling
algorithm, E(X) never increases; moreover, within m consecutive iterations E(X) de
creases by a factor of at least (1 - lin).

Lemma 10.14. For a nonoptimaljlow x, ifwe cancel a minimum mean cycle
in G(x), E(X) cannot increase [alternatively, lJ.(x) cannot decrease].

Proof Let W denote the minimum mean cycle in G(x). Lemma 10.13 implies
that for some set of node potentials 7T, cli = -E(X) for each arc (i, j) E W. Let x'
denote the flow obtained after we have canceled the cycle W. This flow augmentation
deletes some arcs in W from the residual network and adds some other arcs, which
are reversals of the arcs in W. Consider any arc (i, j) in G(x'). If (i, j) is in G(x),
then, by hypothesis, cij 2: -E(X). If (i, j) is not in G(x), then (i, j) is a reversal of
some arc (j, i) in G(x) for which Cft = -E(X). Therefore, cij = -cft = E(X) > O.
In either case, cij 2: -E(X) for each arc (i, j) in G(x'). Consequently, the minimum
mean cost of any cycle in G(x') will be at least -E(X), since the mean cost around
a cycle, which equals the mean reduced cost, must be at least as large as the minimum
value of the reduced costs. Therefore, in light of Lemma 10.12, as asserted,
E(X') = lJ.(x') 2: -E(X) = lJ.(x). •

Lemma 10.15. After a sequence ofm minimum mean cycle cancelations start
ing with a flow x, the value of the optimality parameter E(X) deceases to a value 'at
most (1 - lin) E(X) [i.e., to at most (1 - lin) times its original value].

Proof. Let 7T denote a set of node potentials satisfying the con.ditions cij 2:

- E(X) for each arc (i, j) in G(x). For convenience, we designate those arcs in G(x)
with (strictly) negative reduced costs as negative arcs (with respect to the reduced
costs). We now classify the subsequent cycle cancelation~ into two types: (1) all the
arcs in the canceled cycle are negative (a type 1 cancelation), and (2) at least one
arc in the canceled cycle has a nonnegative reduced cost (a type 2 cancelation). We
claim that the algorithm will perform at most m type 1 cancelations before it either
terminates or performs a type 2 cancelation. This claim follows from the observations
that each type 1 cancelation deletes at least one negative arc from the (current)
residual network and all the arcs that the cancelation adds to the residual network
have positive reduced cost with respect to 7T (as shown in the proof of Lemma 10.14).
Consequently, if within m iterations, the algorithm performs no type 2 cancelations,
all the arcs in the residual network will have nonnegative reduced costs with respect
to 7T and the algorithm will terminate with an optimal flow.

Now consider the first time the algorithm performs a type 2 cancelation. Sup
pose that the algorithm cancels the cycle W, which contains at least one arc with a
nonnegative reduced cost; let x' and x" denote the flows just before and after the
cancelation. Then cij 2: - E(X') for each arc (i, j) E Wand Crt 2: 0 for some arc
(k, l) E W. As a result, since c(W) = LU,j)EW cij, the cost c(W) of Wwith respect to
the flow x' satisfies the condition c(W) 2: [(I WI - 1)(-E(X'))]. By Lemma 10.14,

Sec, 10.5 Minimum Mean Cycle-Canceling Algorithm 379

the cancelation cannot increase the minimum mean cost and, therefore, J.1(x") :::::
J.1(x'). But since J.1(x') is the mean cost of W with respect to x', J.1(x") ::::: J.1(x') :::::
(1 - 111 W 1)(- E(X')) 2: (1 - lIn)(- E(X')). This inequality implies that - J.1(x") :s:
(1 - lIn)E(x'). Using the factthat J.1(x") = - E(X"), we see that E(X") ::; (1 - lIn)E(x').
This result establishes the lemma. •

As indicated by the next theorem, the preceding two lemmas imply that the
minimum mean cycle-canceling algorithm performs a polynomial number of itera
tions.

Theorem 10.16. If all arc costs are integer, the minimum mean cycle-can
celing algorithm performs O(nm 10g(nC)) iterations and runs in O(n 2 m 2 10g(nC))
time.

Proof Let x denote the flow at any point during the execution of the algorithm.
Initially, E(X) ::; C because every flow is C-optimal (see Lemma 10.2). In every m
consecutive iterations, the algorithm decreases E(X) by a factor of (1 - lin). When
E(X) < lin, the algorithm terminates with an optimal flow (see Lemma 10.2). There
fore, the algorithm needs to decrease E(X) by a factor of nC over all iterations. By
Lemma 10.15, the mean cost of a cycle becomes smaller by a factor of at least
(1 - lin) in every m iterations. Property 10.11 implies that the minimum mean cycle
cost decreases by a factor of 2 every nm iterations, so that within nm 10g(nC)
iterations, the minimum mean cycle cost decreases from C to lin. At this point the
algorithm terminates with an optimal flow. This conclusion establishes the first part
of the theorem. Since the bottleneck operation in each iteration is identifying a
minimum mean cycle, which requires O(nm) time (see Section 5.7), we also have
established the second part of the theorem.

Having proved that the minimum mean cycle-canceling algorithm runs in
polynomial time, we next obtain a strongly polynomial bound on the number of
iterations the algorithm performs. Our analysis rests upon the following rather useful
result: If the absolute value of the reduced cost of an arc (k, l) is "significantly
greater than" the current value of the parameter E(X), the flow on the arc (k, l) in
any optimal solution is the same as the current flow on this arc. In other words, the
flow on the arc (k, I) becomes "fixed." As we will show, in every O(nm log n)
iterations, the algorithm will fix at least one additional arc at its lower bound or at
its upper bound. As a result, within O(nm 2 10g n) iterations, the algorithm will have
fixed all the arcs and will terminate with an optimal flow.

We define an arc to be E-fixed if the flow on this arc is the same for all
E'-optimal flows whenever E' ::; E. Since the value of E(X) of the E(x)-optimal flows,
that the minimum mean cycle-canceling algorithm maintains, is nonincreasing, the
flow on an E(X)-fixed arc will not change during the execution of the algorithm and
will be the same in every optimal flow. We next establish a condition that will permit
us to fix an arc.

Lemma 10.17. Suppose that x is an E(x)-optimal flow with respect to the
potentials 7T, and suppose that for some arc (k, l) E A, I Crt I 2: 2nE(x). Then arc
(k, I) is an E(x)-fixed arc.

380 Minimum Cost Flows: Polynomial Algorithms Chap. 10

Proof Let E = E(X). We first prove the lemma when Crl 2: 2nE. The E-optimality
condition (lO.la) implies that Xkl = O. Suppose that some E(x')-optimal flow x', with
E(X ') :5 E(X), satisfies the condition that Xkl > O. The flow decomposition theorem
(i.e., Theorem 3.5) implies that we can express x' as x plus the flow along at most
m augmenting cycles in G(x). Since Xkl = 0 and Xkl > 0, one of these cycles, say
W, must contain the arc (k, l) as a forward arc. Since each arc (i, j) E W is in the
residual network G(x), and so satisfies the condition cij 2: - E, the reduced cost (or,
cost) of the cycle W is at least Crl - E(I W I - 1) 2: 2nE - E(n - 1) > nE.

Now consider the cycle wr obtained by reversing the arcs in W. The cycle wr
must be a directed cycle in the residual network G(x ') (see Exercise 10.6). The cost
of the cycle wr is the negative of the cost of the cycle Wand so must be less than
-nE:5 -nE(x'). Therefore, the mean cost of wr is less than _E(X'). Lemma 10.12
implies that x' is not E(x')-optimal, which is a contradiction.

We next consider the case when Crl :5 - 2nE. In this case the E-optimality
condition (lO.lc) implies that Xkl = Ukl. Using an analysis similar to the one used in
the preceding case, we can show that no E-optimal flow x' can satisfy the condition
Xkl < Ukl. •

We are now in a position to obtain a strongly polynomial bound on the number
of iterations performed by the minimum mean cycle-canceling algorithm.

Theorem 10.18. For arbitrary real-valued arc costs, the minimum mean cycle
canceling algorithm peiforms O(nm2 log n) iterations and runs in O(n2m 3 log n)
time.

Proof Let K = nm(flog n 1 + 1). We divide the iterations performed by the
algorithm into groups of K consecutive iterations. We claim that each group of
iterations fixes the flow on an additional arc (k, l) (i.e., the iterations after those in
the group do not change the value of Xki). The theorem follows immediately from
this claim, since the algorithm can fix at most m arcs, and each iteration requires
O(nm) time.

Consider any group of iterations. Let x be the flow before the first iteration of
the group and let x' be the flow after the last iteration of the group. Let E = E(X),
E' = E(X '), and let 1T' be the node potentials for which x' satisfies the E'-optimality
conditions. Since every nm iterations reduce E by a factor of at least 2, the nm (flog
n 1 + 1) iterations between x and x I reduce E by a factor of at least 2 [log n 1 + 1.

Therefore, E' :5 (E/2flognl+l):5 E/2n. Alternatively, -E:5 -2nE'.
Let W be the cycle canceled when the flow has value x. Lemma 10.12 and the

fact that the sum of the costs and reduced costs around every cycle are the same,
imply that for any values of the node potentials, the average reduced cost around
the cycle Wequals fL(X) = - E. Therefore, with respect to the potentials 1T', at least
one arc (k, l) in W must have a reduced cost as small as - E, so cr; = - E :5 - 2nE'
for some arc (k, I) in W. By Lemma 10.17, the flow on arc (k, l) will not change in
any subsequent iteration. Next notice that in the first iteration in the group, the
algorithm changed the value of Xkl. Thus each group fixes the flow on at least one
additional arc, completing the proof of the theorem. •

Sec. 10.5 Minimum Mean Cycle-Canceling Algorithm 381

We might conclude this section with a few observations. First, note that we
need not formally compute the value of E(X) at each iteration, nor do we need to
identify the E-fixed arcs at any stage in the algorithm. Indeed, we can use any method
to find the minimum mean cost cycle at each step; in principle, we need not maintain
or ever compute any reduced costs. As we noted earlier in this section, the minimum
mean cycle-canceling algorithm implicitly reduces E(X) and fixes some arcs as it
proceeds-we need not keep track of the algorithm's progress concerning these
features.

We also might note that the ideas presented in this section would also permit
us to develop a strongly polynomial-time version of the cost scaling algorithm that
we discussed in Section 10.3. In Exercise 10.12 we consider this modification of the
cost scaling algorithm and analyze its running time.

10.6 REPEATED CAPACITY SCALING ALGORITHM

The minimum cost flow problem described in Section 10.5 uses the idea that when
ever the reduced cost of an arc is sufficiently large, we can "fix" the flow on the
arc. By incorporating a similar idea in the capacity scaling algorithm, we can develop
another strongly polynomial time algorithm. As we will see, when the flow on an
arc (i, j) is sufficiently large, the potentials of nodes i and j become "fixed" with
respect to each other. In this section we discuss the details of this algorithm, which
we call the repeated capacity scaling algorithm.

The repeated capacity scaling algorithm to be discussed in this section is dif
ferent from all the other minimum cost flow algorithms discussed in this book. All
ofthe other algorithms solve the primal minimum cost flow problem (9.1) and obtain
an optimal flow; the repeated capacity scaling algorithm solves the dual minimum
cost flow problem (9.10). This algorithm obtains an optimal set of node potentials
for (9.10) and then uses it to determine an optimal flow.

The repeated capacity scaling algorithm is a modified version of the capacity
scaling algorithm discussed in Section 10.2. For simplicity, we describe the algorithm
for the uncapacitated minimum cost flow problem; we could solve the capacitated
problem by converting it to the uncapacitated problem using the transformation
described in Section 2.4. Recall that in the capacity scaling algorithm, each arc flow
is an integral mUltiple of the scale factor Ll. For uncapacitated networks, each re
sidual capacity rij is also an integral mUltiple of Ll, because either rij = Uij = 00, or
rij = Xji = kLl for some integer k. This observation implies that the Ll-residual network
G(x, Ll) is the same as the residual network G(x). As a result, the algorithm for the
uncapacitated problem does not require the preprocessing (i.e., saturating the arcs
violating the optimality conditions) at the beginning of each scaling phase. The fol
lowing property is an immediate consequence of this result.

Property 10.19. The capacity scaling algorithm for the un capacitated mini
mum cost flow problem satisfies the following properties: (a) the excesses at the
nodes are monotonically decreasing; (b) the sum of the excesses at the beginning
of the Ll-scaling phase is at most 2n Ll; and (c) the algorithm performs at most 2n
augmentations per scaling phase.

382 Minimum Cost Flows: Polynomial Algorithms Chap. 10

The repeated capacity scaling algorithm is based on the three simple results
stated in the following lemmas.

Lemma 10.20. Suppose that at the beginning of the fl-scaling phase, b(k) >
6n2 fl for some node kEN. Then some arc (k, l) with Xkl > 4nfl emanates from
node k.

Proof Property 10.19 implies that at the beginning of the fl-scaling phase, the
sum of the excesses is at most 2nfl. Therefore, e(k):5 2nfl. Since b(k) > 6n2 fl and
e(k) :5 2nfl, the net outflow of node k [i.e., b(k) - e(k)] is strictly greater than
(6n 2A - 2nfl). Since fewer than n arcs emanate from node k, the flow on at least
one of these arcs must be strictly more than (6n 2 fl - 2nfl)ln 2: (4n 2 fl)ln = 4nfl,
which concludes the lemma. •

Lemma 10.21. If at the beginning of the fl-scaling phase Xkl > 4n fl, then for
some optimal solution Xkl > O.

Proof Property 10.19 implies that the algorithm performs at most 2n aug
mentations in each scaling phase. The fact that the algorithm augments exactly
fl units of flow in every augmentation in the fl-scaling phase implies that the total
flow change due to all augmentations in the subsequent scaling phases is at most
2n(fl + fl/2 + fll4 + ... + 1) < 4nfl. Consequently, if Xkl > 4nfl at the beginning
of the fl-scaling phase, then Xkl > 0 when the algorithm terminates. •

Lemma 10.22. Suppose that Xkl > 0 in an optimal solution of the minimum
cost flow problem. Then with respect to every set of optimal node potentials, the
reduced cost of arc (k, l) is zero.

Proof. Suppose that x satisfies the complementary slackness optimality con
dition (9.8) with respect to the node potential 7T. The condition (9.8b) implies that
Crl = O. Property 9.8 implies that if x satisfies the complem~mtary slackness opti
mality condition (9.8b) with respect to some node potential, it satisfies this condition
with respect to every optimal node potential. Consequently, the reduced cost of arc
(k, l) is zero with respect to every set of optimal node potentials. •

We are now in a position to discuss the essential ideas ofthe repeated capacity
scaling algorithm. Let P denote the minimum cost flow problem stated in (9.1). The
algorithm applies the capacity scaling algorithm stated in Figure 10.1 to the problem
P. We will show that within O(log n) scaling phases, b(k) > 6n2 fl for some node k
and, by Lemma 10.20, some arc (k, l) satisfies the condition Xkl > 4n fl. Lemmas
10.21 and 10.22 imply that for any set of optimal node potentials, the reduced cost
of arc (k, l) will be zero. This result allows us to show, as described next, that we
can contract the nodes k and I into a single node, thereby- obtaining a new minimum
cost flow problem defined on a network with one fewer node.

Suppose that we are using the capacity scaling algorithm to solve a minimum
cost flow problem P with arc costs Cij and at some stage we realize that for an arc
(k, l), Xkl > 4n fl. Let 7T denote the node potentials at this point. The optimality
condition (9.8b) implies that

Sec. 10.6 Repeated Capacity Scaling Algorithm 383

Ckl - 'IT(k) + 'IT(I) = O. (10.9)

Now consider the same minimum cost flow problem, but with the cost of each
arc (i,j) equal to Clj = clJ = Cij - 'IT(i) + 'IT(j). Let P' denote the modified minimum
cost flow problem. Condition (10.9) implies that

Ckl = O. (10.10)

We next observe that the problems P and P' have the same optimal solutions
(see Property 2.4 in Section 2.4). Since Xkl > 4nLl, Lemmas 10.21 and 10.22 imply
that in problem P' the reduced cost of arc (k, I) will be zero. If 'IT' denotes an optimal
set of node potentials for pI, then

Ckl - 'IT'(k) + 'IT'(I) = o. (10.11)

Substituting (10.10) in (10.11) implies that 'IT' (k) = 'IT' (I).
The preceding discussion shows that if Xkl > 4nLl for some arc (k, I), we can

"fix" one node potential with respect to the other. The discussion also shows that
if we solve the problem pI with the additional constraint that the potentials of nodes
k and I are same, this constraint will not eliminate the optimal solution of P'. But
how can we solve a minimum cost flow problem when two node potentials must be
the same?

Consider the dual minimum cost flow problem stated in (9.10). In this problem
we replace both 'IT(k) and 'IT(I) by 'IT(p). This substitution gives us a linear program
ming problem with one less dual variable (or, node potential). The reader can easily
verify that the resulting problem is a dual minimum cost flow problem on the network
with nodes k and I contracted into a single node p. The contraction operation consists
of (1) letting b(p) = b(k) + b(l), (2) replacing each arc (i, k) or (i, l) by the arc
(i, p), (3) replacing each arc (k, i) or (I, i) by the arc (p, i), and (4) letting the cost of
an arc in the contracted network equal that of the arc it replaces. We point out that
the contraction might produce multiarcs (i.e., more than one arc with the same tail
and head nodes). The purpose of contraction operations should be clear; since each
contraction operation reduces the size of the network by one node, we can apply
at most n of these operations.

We can now describe th~ repeated capacity scaling algorithm. We first compute
U = max{b(i) : i E Nand b(i) > O} and initialize Ll = 2L1og uJ. Let node k be a
node with b(k) = U. We then apply the capacity scaling algorithm as described in
Figure 10.1. Each scaling phase of the capacity scaling algorithm decreases Ll by a
factor of 2; therefore, since the initial value of Ll is b(k), after at most q = log
(6n 2

) =: O(logn)phases,Ll = b(k)/2Q::S;b(k)/6n2
• The algorithm might obtain a feasible

flow before Ll ::s; b(k)/6n 2 (in which case it terminates); if not, then by Lemma 10.20,
some arc (k, I) will satisfy the condition that Xkl > 4nLl. The algorithm then defines
a new minimum cost flow problem with nodes k and I contracted into a new node
p, and the cost of each arc is the reduced cost of the corresponding arc before the
contraction. We solve the new minimum cost flow problem afresh by redefining U
as the largest supply in the contracted network and reapplying the capacity scaling
algorithm described in Figure 10.1. We repeat these steps until the algorithm ter
minates. The algorithm terminates in one of the two ways: (1) while applying the
capacity scaling algorithm, it obtains a flow; or (2) it contracts the network into a

384 Minimum Cost Flows: Polynomial Algorithms Chap. 10

single node p [with b(p) = 0], which is trivially solvable by a zero flow. At this
point we expand the contracted nodes and obtain an optimal flow in the expanded
network. We show how to expand the contracted nodes a little later. The preceding
discussion shows that the algorithm performs O(n log n) scaling phases, and since
each scaling phase solves at most 2n shortest path problems, the running time of
the algorithm is O(n 2 log n S(n, m)). In this expression, S(n, m) is the minimum
time required by a strongly polynomial-time algorithm for solving a shortest path
problem with nonnegative arc lengths. [Recall from Chapter 4 that O(m + n log n)
is currently the best known such bound.]

We illustrate the repeated capacity scaling algorithm on the example shown in
Figure 10.11(a). When applied to this example, the capacity scaling algorithm per
forms 100 scaling phases with A = 299, 298-1, ... , 20. The strongly polynomial
version, however, terminates within five phases, as shown next.

Phase 1. In this phase, A = 299, S(A) = {I, 2}, and T(A) = {3, 4}. The algorithm
augments A units of flow along the two paths 1-3 and 2-1-3-4. Figure 10.11(b)
shows the solution at the end of this phase.
Phase 2. In this phase, A = 298. The algorithm augments A units of flow along
the path 1-3.
Phase 3. In this phase, A = 297. The algorithm augments A units of flow along
the path 1-3.
Phase 4. In this phase, A = 296. The algorithm finds that the flow on the arc
(1, 3) is 2100 + 299 + 298 , which is more than 4n A = 2100. Therefore, the
algorithm contracts the nodes 1 and 3 into a new node 5 and obtains the min
imum cost flow problem shown in Figure 10.11(c), which it then proceeds to
solve.
Phase 5. In this phase, A = 295 . The algorithm augments A units of.flow along
the path 2-5-4. The solution is a flow now; consequently, the algorithm ter
minates. The corresponding flow in the original network is X21 = 299, XI3 =
2100 - 1, and X34 = 299.

b(i) b(j)

~
Cij • ~

ioo_l 299

r ~ ~";l;;o 0(
<i,:x/ 0

0

~
0
.~

_ioo+l _299

(a)

e(i)

~
Xij

299_1
299

~l!J~

i oo

~
299

~:~·/:fr

_299+1

(b)

e(j)

• ®
0

~:~9

• ~
0

o

b(i) b(j)

~ __ C-=-ij----:.~~

o

(c)

Figure 10.11 Illustrating the repeated capacity scaling algorithm: (a) minimum cost
flow problem; (b) solution after the first phase; (c) minimum cost flow problem after
contracting the nodes 1 and 3 into a new node 5.

Sec. 10.6 Repeated Capacity Scaling Algorithm 385

We now explain how we expand the contracted network, and in the process
we prove that the algorithm determines an optimal solution of the minimum cost
flow problem. The algorithm, in fact, first determines an optimal set of node poten
tials of the problem, and then by solving a maximum flow problem (as described in
Section 9.5) determines an optimal flow. The algorithm obtains an optimal set of
node potentials for the original problem by repeated use of the following result.

Property 10.23. Let P be a problem with arc costs Cij and pI be the {lame
problem with arc costs Cij - 'IT(i) + 'IT(j). If'lT' is an optimal se(of node potentials
for problem pI, then'lT + 'IT' is an optimal set of node potentials for P.

Proof This property easily follows from the observation that if a solution x
satisfies the reduced cost optimality condition (9.7) with respect to the arc costs
Cij - 'IT(i) + 'IT(j) and node potentials 'IT', the same solution satisfies these conditions
with arc costs Cij and node potentials 'IT + 'IT'. •

We expand (or uncontract) the nodes in the reverse order in which we con
tracted them in the strongly polynomial algorithm and obtain optimal node potentials
of the successive problems. In earlier stages, between two successive problems, we
performed two transformations in the following order: (1) we replaced the arc cost
Cij by its reduced cost Cij - 'IT(i) + 'IT(j), and (2) we contracted two nodes k and I
into a single new node p. We undo these transformations in the reverse order. To
undo the contracted node p, for case (2) we set the potentials of nodes k and I equal
to that of node p, and for case (1) we add 'IT to the existing node potentials. When we
have expanded all the contracted nodes, the resulting node potentials are an optimal
set of node potentials for the minimum cost flow problem. Then, as described in
Section 9.5, we can use these node potentials to obtain an optimal flow by solving
a maximum flow problem. The following theorem summarizes the preceding dis
cussion.

Theorem 10.24. The repeated capacity scaling algorithm solves the unca-
pacitated minimum cost flow problem in O(n 2 10g n S(n, m» time. •

Since the best known strongly polynomial-time algorithm for solving the short
est path problem with nonnegative arc lengths runs in O(m + n log n) time, the
best current bound for the uncapacitated minimum cost flow problem is O(n log
n(m + n log n». We can solve the capacitated minimum cost flow problem by the re
peated capacity scaling algorithm by first transforming it to an uncapacitated problem
(see Section 2.4). The uncapacitated network will have n' = n + m nodes and
m' = 2m arcs. When applied to this network, the repeated capacity scaling algorithm
will perform O(n' log n') = O(m log.n) scaling phases and solve O(m') = O(m)
shortest path problems in each scaling phase. Thus the running time ofthe algorithm
is the time needed to solve O(m 2 log n) shortest path problems. Each shortest path
problem in the uncapacitated network requires O(2m + (m + n) log (m + n» =
O(m + m log n) time, but using a clever approach for solving the resulting shortest
path problem (as discussed in Exercise 4.53) we can obtain a better bound of O(m
+ n log n). Consequently, the repeated capacity scaling algorithm requires O(m 2

log n(m + n log n» time to solve a capacitated minimum cost flow problem.

386 Minimum Cost Flows: Polynomial Algorithms Chap. 10

10.7 ENHANCED CAPACITY SCALING ALGORITHM

In this section we discuss yet another strongly polynomial-time algorithm for the
minimum cost flow problem. This algorithm is a variant of the capacity scaling
algorithm that we discussed in Section 10.2 and draws on some ideas from the re
peated capacity scaling algorithm discussed in Section 10.6. We refer to this algo
rithm as the enhanced capacity scaling algorithm. This algorithm runs in O«m log
n)(m + log n)) time for the capacitated minimum cost flow problem and is currently
the fastest strongly polynomial-time algorithm for solving the minimum cost flow
problem. In this section we first show how to solve the enhanced capacity scaling
algorithm for the uncapacitated minimum cost flow problem; we can solve the ca
pacitated problem by transforming it to an uncapacitated problem (see Section 2.4).

Recall from Section 10.6 that the essential idea in the repeated capacity scaling
algorithm is to identify arcs with sufficiently large flow. The repeated capacity scaling
algorithm identifies such an arc (k, I) within O(log n) scaling phases, contracts the
nodes k and I into a single node, and solves the resulting minimum cost flow problem
afresh. For the uncapacitated minimum cost flow problem, this algorithm performs
a total of O(n log n) scaling phases and O(n 2 log n) shortest path augmentations.
The enhanced capacity scaling algorithm adopts a similar approach but it differs in
the following two ways: (1) the algorithm does not explicitly perform the contraction
operation; and (2) the algorithm does not solve the minimum cost flow problem
afresh, but continues from where it left off in its earlier computations. By avoiding
contractions, the algorithm achieves ease of coding (because contractions change
the network structure and so its computer representation) and maintains a pseu
doflow satisfying the dual optimality conditions at every step until the end, at which
point it becomes an optimal flow. Moreover, the total number of scaling phases is
O(n log n) and the total number of shortest path augmentations in these scalings
phases is also O(n log n). Consequently, if Sen, m) is the time requited to solve a
shortest path problem with nonnegative arc lengths, the running time of the enhanced
capacity scaling algorithm for uncapacitated problems is Otn log n Sen, m)). For
capacitated minimum cost flow problems, this time bound becomes Oem log n
sen, m)). [By Exercise 4.53 the time bound for the shortest path problem in the
transformed network is O(S(n, m)) rather than O(S(n + m, 2m)) even though the
transformed network has n + m nodes and 2m arcs.]

The enhanced capacity scaling algorithm proceeds by performing scaling
phases for different values of the scale factor Ll. In the Ll-scaling phase, we say that
an arc (i, j) has a sufficiently large flow if Xu ;::= 8n Ll. [We later show that if Xu ;::=

8n Ll, then arc (i, j) will have positive flow during the entire execution of the algo
rithm.] We refer to an arc with sufficiently large flow as an abundant arc; otherwise,
we call it a nonabundant arc. We refer to the subgraph consisting of the node set
N and abundant arcs as the abundant subgraph. The abundant subgraph typically
contains several components, which we call abundant components. If the network
contains no abundant arc, the abundant subgraph contains n components, each con
sisting of a singleton node. For simplicity, we will designate an abundant component
by the set S of nodes it spans. We let b(S) = LiES b(i) and e(S) = LiES e(i).

We designate an (arbitrary) node in each abundant component as its root and
refer to all the other nodes as nonroot nodes. By convention we assume that the

Sec. 10.7 Enhanced Capacity Scaling Algorithm 387

minimum index node in an abundant component is its root. For example, if S = {3,
5, 9}, then node 3 is the root node of the abundant component S. Throughout its
execution, the enhanced capacity scaling algorithm satisfies the following properties.

Property 10.25 (Flow Property). In the a-scaling phase, the flow on each non
abundant arc is an integral multiple of a; an abundant arc can have any nonnegative
flow value.

Property 10.26 (Imbalance Property). Each nonroot node has a zero imbalance;
a root node can have an excess or a deficit.

At the beginning of the enhanced capacity scaling algorithm, the network has
no abundant arc and the abundant subgraph contains n components, each consisting
of a singleton node. As the algorithm proceeds, it identifies abundant arcs and adds
them to the abundant sub graph. Suppose that the algorithm adds a new abundant
arc (i, j) at some stage. Let Si and Sj, respectively, denote the abundant components
containing the nodes i and j. If Si = Sj [i.e., the arc (i, j) has both of its endpoints
in the same component], this addition does not create any new abundant component;
otherwise,' the addition creates a new abundant component consisting of the union
of Si and Sj. We refer to this operation as a merge operation because it merges the
components Si and Sj into a single abundant component. Notice that since each
merge operation reduces the number of abundant components by one, the algorithm
can perform at most n merge operations.

Whenever the algorithm merges the components Si and Sj, we need to ensure
that the solution satisfies the imbalance property. Suppose that ir and jr denote the
root nodes of the components Si and Sj before the merge operation. Suppose further
that ir < jr' If e(jr) = 0, after the merge operation the abundant subgraph satisfies
the imbalance property. However, if e(jr) is nonzero, we satisfy the imbalance prop
erty by sending e(M units of flow from node jr to node ir using any path in the
merged component. [Notice that if e(jr) < 0, we should view this augmentation as
augmenting I e(jr) I units of flow from node ir to jr so we eliminate the imbalance at
node jr'] Observe that this augmentation changes the flow on some abundant arcs
by I e(M I units. We refer to this augmentation as an imbalance-property augmen
tation. In Exercise 10.26 we ask the reader to show how to perform merge operations
and the subsequent imbalance-property augmentations in O(m) time.

We are now in a position to describe the enhanced capacity scaling algorithm.
Figure 10.12 gives an algorithmic description of this algorithm.

The enhanced capacity scaling algorithm performs two types of augmentations.
The first type of augmentation enforces the imbalance property when the algorithm
identifies new abundant arcs; we have earlier defined these augmentations as the
imbalance-property augmentations. The second type of augmentation takes place
from excess nodes to deficit nodes along shortest paths. We refer to these augmen
tations as shortest-path augmentations.

As we have already mentioned, the enhanced capacity scaling algorithm is a
variant of the capacity scaling algorithm. These two algorithms differ in the following
respects:

388 Minimum Cost Flows: Polynomial Algorithms Chap. 10

algorithm enhanced capacity scaling;
begin

set x : = 0, 'IT : = 0, and e: = b;
set !:J. : = max{le(i)1 : i E N};
while the residual network G(x) contains a node i with eU) > ° do
begin

if max{e(i) : i E N} :s: !:J./(8n) then !:J. : = max{e(i) : i E N};
{the !:J.-scaling phase begins here}
for each nonabundant arc (i, j) do
if xij ;0:: 8n!:J. then designate arc (i, j) as an abundant arc;
update abundant components and reinstate the imbalance property;
while the residual network G(x) contains a node k with I e(k) I ;0:: (n - 1)D./n do
begin

select a pair of nodes k and / satisfying the property that (i) either e(k) > (n - 1)!:J./n
and e(l) < -D./n, or (ii) e(k) > !:J./n and e(l) < -(n - 1)!:J./n;

considering reduced costs as arc lengths, compute shortest path distance d(·) in
G(x) from node k to all other nodes;

'IT(i) : = 'IT(i) - d(i) for all i E N;
augment !:J. units of flow along the shortest path in G(x) from node k to node /;

end;
{the !:J.-scaling phase ends here}
!:J. : = !:J./2;

end;
end;

Figure 10.12 Enhanced capacity scaling algorithm.

1. In the capacity scaling algorithm, we set the initial value of Ll = 2 Llog uJ, that
is, the largest power of 2 less than or equal to U = max{1 b(i) I : i EN}. In a
strongly polynomial algorithm, we cannot take logarithms because we cannot
determine log U in 0(1) elementary arithmetic operations. Therefore, in the
enhanced capacity scaling algorithm, we set Ll = max{1 b(i) I : i..E N}.

2. The capacity scaling algorithm decreases Ll by a factor of 2 in every scaling
phase. In the enhanced capacity scaling algorithm, we~.also decrease Ll by a
factor of 2, but if max{J e(i) I : i E N} :::; Ll/8n, then we reset Ll =
max{1 e(i) I : i EN}. Consequently, the enhanced capacity scaling algorithm
generally decreases Ll by a factor of 2, but sometimes by a larger factor when
imbalances are too small compared to the current scale factor. Without resetting
Ll in this way, the capacity scaling algorithm might perform O(log U) scaling
phases, many of which will not perform any augmentations. The resulting
algorithm would contain O(log U) in its running time and would not be strongly
polynomial-time.

3. In the capacity scaling algorithm, each arc flow is an integral multiple of Ll.
This property is essential for its correctness because it ensures that each pos
itive residual capacity is a multiple of Ll, and consequently, any augmentation
can carry Ll units offlow. In the enhanced capacity scaling algorithm, although
the flows on nonabundant arcs are integral multiples of Ll, the flows on the
abundant arcs can be arbitrary. Since the flows on abundant arcs are sufficiently
large, their arbitrary values do not prohibit sending Ll units of flow on them.

4. The capacity scaling algorithm sends Ll units of flow from a node k with
e(k) 2: Ll to a node I with e(l):::; - Ll. As a result, the excess nodes do not become

Sec. 10.7 Enhanced Capacity Scaling Algorithm 389

deficit nodes, and vice versa. In the enhanced capacity scaling algorithm, aug
mentations carry .1 units of flow and are (a) either from a node k with e(k) >
(n - l).1ln to a node I with e(l) < -.1ln, (b) or from a node k with e(k) >
.1ln to a node I with e(l) < -(n - 1).1ln. Notice that due to these choices
excess nodes might become deficit nodes and deficit nodes might become ex~
cess nodes. Although these choices might seem a bit odd when compared to
the capacity scaling algorithm, they ensure several nice theoretical properties
that we describe in the following discussion.

We establish the correctness of the enhanced capacity scaling algorithm as
follows. In the .1-scaling phase, we refer to a node i as a large excess node if
e(i) > (n - l).1ln and as a medium excess node if e(i) > .1ln. (Observe that a large
excess node is also a medium excess node.) Similarly, we refer to a node i as a large
deficit node if e(i) < - (n - l).1ln and as a medium deficit node if e(i) < - .1ln.
In the .1-scaling phase, each shortest path augmentation either starts at a large excess
node k and ends at a medium deficit node I, or starts at a medium excess node k
and ends at a large deficit node I. To establish the correctness of the algorithm, we
need to show that whenever (1) the network contains a large excess node k, it must
also contain a medium deficit node I, or when (2) the network contains a large deficit
node I, it must also contain a medium excess node k. We establish this result in the
following lemma.

Lemma 10.27. If the network contains a large excess node k, it must also
contain a medium deficit node I. Similarly, if the network contains a large deficit
node I, it must also contain a medium excess node k.

Proof We prove the first part of the lemma; the proof of the second part is
similar. Note that LiEN e(i) = 0 because the total excess ofthe excess nodes equals
the total deficit of the deficit nodes. If e(k) > (n - 1).1ln for some excess node k,
the total deficit of deficit nodes is also greater than (n - 1).1ln. Since the network
contains at most (n - 1) deficit nodes, at least one of these nodes, say node I, must
have a deficit greater than .1ln, or equivalently e(l) < - .1 In. •

In the proofs, we use the following lemma several times.

Lemma 10.28. At the end of the .1-scaling phase, I e(i) I :s (n - 1).1ln for
each node i. At the beginning of the .1-scaling phase, I e(i) I :s 2(n - 1).1 In for each
node i.

Proof Suppose that during some scaling phase the network contains some
large excess node. Then by Lemma 10.27, it also contains some medium deficit
node, so the scaling phase would not yet end. Similarly, if the network contains
some large deficit node, it would also contain some medium excess node, and the
scaling phase would not end. Therefore, at the end of the scaling phase, I e(i) I :s
(n - 1).1ln for each node i.

If at the next scaling phase the algorithm halves the value of .1, then I e(i) I :s
2(n - l).1ln for each node i. On the other hand, if the algorithm sets .1 equal to
emax , then I e(i) I :s .1 for each node i. In either case, the lemma is true. •

390 Minimum Cost Flows: Polynomial Algorithms Chap. 10

The enhanced capacity scaling algorithm also relies on the fact that in the A
scaling phase, we can send A units of flow along the shortest path P from node k to
node I. To prove this result, we need to show that the residual capacity of every
arc in the path P is at least A. We establish this property in two parts. First, we
show that the flow on each nonabundant arc is a mUltiple of A; this would imply
that residual capacities of nonabundant arcs and their reversals in the residual net
work are mUltiples of A (because all the arcs in A are un capacitated) . We next show
that the flow on each abundant arc is always greater than or equal to 4n A ; therefore,
we can send A units of flow in either direction. These two results would complete
the correctness proof of the enhanced capacity scaling algorithm.

Lemma 10.29. Throughout the execution of the enhanced capacity scaling
algorithm, the solution satisfies the flow and imbalance properties (i.e., Properties
10.25 and 10 .26) .

Proof We prove this lemma by performing induction on the number of flow
augmentations and changes in the scale factor A . We first consider the flow property.
Each augmentation sends A units offlow and thus preserves the property. The scale
factor A changes in one of the two following ways: (1) when we replace A by A' ""
A/2, or (2) after replacing A' "" A/2, we reset A" "" max{1 e(i) I : i EN}. In case (1),
the flows on the nonabundant arcs continue to be multiples of A'. In case (2), A" ""
max{e(i) : i E N} :5 A'/Sn, or A' 2:: SnAil. Since each positive arc flow Xij on a
nonabundant arc is a mUltiple of A', Xij 2:: A' 2:: SnAil. Consequently, each positive
flow arc becomes an abundant arc (with respect to the new scale factor) and vac
uously satisfies the flow property.

We next establish the imbalance property by performing induction on the num
ber of augmentations and the creation of new abundant arcs. Each augmentation
carries flow from a nonroot node to another nonroot node and preserves the property.
Moreover, each time the algorithm creates a new abundant arc, it rriight create a
nonroot node i with nonzero imbalance; however, it immediately performs an
imbalance-property augmentation to reduce its imbalance to -zero. The lemma now
follows. •

Theorem 10.30. In the A-scaling phase, the algorithm changes the flow on
any arc by at most 4nA units.

Proof The flow on an arc changes through either imbalance-property aug
mentations or shortest path augmentations. We first consider changes caused by
imbalance-property augmentations. At the beginning of the A-scaling phase, e(i) :5

2(n - 1)Aln for each node i (from Lemma 10.2S). Consequently, an imbalance
property augmentation changes the flow on any arc by at most 2(n - 1)Aln. Since
the algorithm can perform at most n imbalance-property augmentations at the be
ginning of a scaling phase, the change in the flow on an arc due to all imbalance
property augmentations is at most 2(n - 1)A:5 2nA.

Next consider the changes in the flow on an arc caused by shortest path aug
mentations. At the beginning of the A-scaling phase, each root node i satisfies the
condition I e(i) I :5 2(n - 1) Aln (by Lemma 10.29). Consider the case when the A
scaling phase performs no imbalance-property augmentations. In this case, at most

Sec. 10.7 Enhanced Capacity Scaling Algorithm 391

one shortest path augmentation will begin at a large excess node i, because after
this augmentation, the new excess e' (i) satisfies the inequality e' (i) ::; 2(n -
1) Ll/n - Ll = (n - 2)Ll/n ::; (n _.1) Llln, and node i is no longer a large excess
node. Similarly, at most one shortest patr augmentation will end at a large deficit
node.

Now suppose that the algorithm does perform some imbalance-property aug
mentations. In this case the algorithm sends e(j) units of flow from each nonroot
node j to the root of its abundant component. The subsequent imbalance-property
augmentation from node j to the root node i can increase I e(i) I by at most 2(n -
1) Ll In units, so node i can be the start or end node of at most two additional shortest
path augmentations in the Ll-scaling phase. We "charge" these two augmentations
to node j, which becomes a nonroot node and remains a nonroot node in the sub-
sequent scaling phases. .

To summarize, we have shown that in the Ll-scaling phase, we can charge each
root node at most one shortest path augmentation and each nonroot node at most
two shortest path augmentations. Each such augmentation changes the flow on any
arc by 0 or Ll units. Consequently, the total flow change on any arc due to all shortest
path augmentations is at most 2nLl. We have earlier shown the total flow change
due to imbalance-property augmentations is at most 2n Ll. These results establish
the theorem. •

The preceding theorem immediately implies the foll~wing result.

Lemma 10.31. If the algorithm designates an arc (i, j) as an abundant arc in
the Ll-scaling phase, then in all subsequent Ll'-scaling phas~s Xu 2:: 4nLl'.

Proof. We prove this result by performing induction on the number of scaling
phases. Since the algorithm designates arc (i, j) as an abundant arc at the beginning
of the Ll-scaling phase, the flow on this arc satisfies the condition Xij 2:: 8n Ll. The
Lemma 10.31 implies that the flow change on any arc in the Ll-scaling phase is at
most 4n Ll. Therefore, throughout the Ll-scaling phase and, also, at the end of this
scaling phase, the arc (i, j) satisfies the condition Xu 2:: 4n Ll. In the next scaling
phase, the scale factor Ll' ::; Ll/2; so at the beginning of the Ll'-scaling phase, Xij 2::

8n Ll'. This conclusion establishes the lemma. •

We next consider the worst-case complexity of the enhanced capacity scaling
algorithm. We show that the algorithm performs O(n log n) scaling phases, requiring
a total of O(n log n) shortest path augmentations. These proofs rely on the result,
stated in Theorem 10.33, that any abundant component whose root node has a me
dium excess or a medium deficit merges into a larger abundant component within
O(log n) scaling phases. Theorem 10.33, in turn, depends on the following lemma.

Lemma 10.32. Let S be the set afnodes spanned by an abundant component,
and let e(S) = ~iES e(i) and b(S) = ~iES b(i). Then b(S) - e(S) is an integral
multiple of Ll.

Proof. Summing the mass balance constraints (9.1b) of nodes in S, we see that

b(S) - e(S) = ~ Xij - ~ xu.
{(i,j)E(S,S)} {(i,j)E(S,S)}

(10.12)

392 Minimum Cost Flows: Polynomial Algorithms Chap. 10

In this expression, (S, S) and (S, S) denote the sets of forward and backward arcs
in the cut [S, S]. Since the flow on each arc in the cut is an integral mUltiple of Ll
(by the flow property), b(S) - e(S) is also an integral multiple of Ll. •

Theorem 10.33. Let S be the set of nodes spanned by an abundant component
and suppose that at the end of the Ll-scaling phase, I e(S) I > Llln. Then within O(log
n) additional scaling phases, the algorithm will merge the abundant component S
into a larger abundant component.

Proof. We first claim that at the end of the Ll-scaling phase, I b(S) I ~ Llln.
We prove this result by contradiction. Suppose that I b(S) I < Llln. Let node i be
the root node of the component S. Lemma 10.28 implies that at the end of the
Ll-scaling phase, I e(i) I = I e(S) I ::.; (n - 1) Sin. Therefore, I b(S) I + I e(S) I < Ll,
which from Lemma 10.32 is possible only if I b(S) I = I e(S) I. This condition,
however, contradicts the facts that I e(S) I > Llln and I b(S) I < Llln. Therefore,
I b(S) I ~ Llln whenever I e(S) I > Llln. Consequently, at the end of the Ll-scaling
phase, I b(S) I ~ Llln.

Since the enhanced capacity scaling algorithrri decreases Ll by a factor of at
least 2 in each scaling phase, within log (9n 2m) ::.; log (9n4) = O(log n) scaling
phases, the scale factor will be Ll' ::.; Ll/2Iog

(9n
2
m) = Ll/(9n 2 m), or Llln ~ 9nmLl'. Since

I b(S) I ~ Llln, I b(S) I ~ 9nmLl'. We consider the situation when b(S) > O. [The
analysis of the situation with b(S) < 0 is similar.] Since e(S) ::.; Ll' (n - l)ln ::.; Ll'
(by Lemma 10.28), the flow across the cut [S, S] (i.e., the right-hand side of (10.12»
is at least 9nmLl' - Ll' ~ 8nmLl'. This cut contains at most m arcs; at least one of
these arcs, say arc (i, j), must have a flow at least 8nLl'. Thus the algorithm will
designate the arc (i, j) as an abundant arc and merge the component S into a larger
abundant component. •

We are now ready to complete the proof of the main result of this section.

Theorem 10.34. The enhanced capacity scaling algorithm solves the unca
pacitated minimum costjlow problem within O(n log n) scaling phases and performs
a total of O(n log n) shortest path augmentations. If S(n, m) is the time required
to solve a shortest path problem with nonnegative arc lengths, the running time of
the enhanced capacity scaling algorithm is O(n log n S(n, m».

Proof. We first show that the algorithm performs O(n log n) scaling phases.
Consider a scaling phase with scale factor equal to Ll. At the end of this scaling
phase, we will encounter one of the following two outcomes:

Case 1. For some node i, I e(i) I > Ll/16n. Let node i be the root node of an
abundant component S. Clearly, within four scaling phases, either the com
ponent S merges into a larger component or I e(i) I > Llln. In the latter case,
Theorem 10.33 implies that within O(log n) scaling phases, the component S
merges into a larger component.
Case 2. For every node i,1 e(i) I ::.; Ll/16n. At the beginning of the next scaling
phase, the new scale factor Ll' = Ll/2, so I e(i) I ::.; Ll'/8n for each node i. We
then reset Ll' = max{1 e(i) I : i EN}. As a result, for some node i, I e(i) I =

Sec. 10.7 Enhanced Capacity Scaling Algorithm 393

Ll' > Ll'/16n and, as in Case 1, within O(log n) scaling phases, the abundant
component containing node i merges into a larger component.

This discussion shows that within O(log n) scaling phases the algorithm per
forms one merge operation. Since each merge operation decreases the number of
abundant components by one, the algorithm can perform at most n merge operations.
Consequently, the number of scaling phases is bounded by O(n log n). The algo
rithmic description of the enhanced capacity scaling algorithm implies that the al
gorithm requires O(m) time per scaling phase plus the time required for the aug
mentations.

We now obtain a bound on the number of augmentations and the time that they
require. The algorithm performs at most n imbalance-property augmentations; it can
easily execute each augmentation in Oem) time; thus these augmentations are not
a bottleneck step in the algorithm. Next consider the shortest path augmentations.
Recall from the proof of Theorem 10.30 that in a scaling phase, we can charge each
shortest path augmentation to a root node (which is a large excess or a large-deficit
node) or to a nonroot node. Since we can charge each nonroot at most two aug
mentations over the entire execution of the algorithm, we charge at most 2n aug
mentations to nonroots. Moreover, when we charge an augmentation to a root node
i, this node satisfies the condition I e(i) r 2: (n - l)Ll/n. Theorem 10.33 implies that
we will charge at most one augmentation to node i in the following O(log n) scaling
phases before the algorithm performs a merge operation and the component con
taining node i merges into a larger component. Since the algorithm encounters at
most 2n different abundant components (n to begin with and n due to merge oper
ations), the total number of shortest path augmentations we can charge to root nodes
is at most O(n log n). Since each shortest path augmentation requires the solution
of a shortest path problem with nonnegative arc lengths and requires Sen, m) time,
all the shortest path augmentations require a total of O(n log n Sen, m» time. This
time dominates the time taken by all other operations performed by the algorithm.
Therefore, we have established the assertion of the theorem. •

To solve the capacitated minimum cost flow problem, we transform it to the
uncapacitated version using the transformation described in Section 2.4. The re
sulting uncapacitated network has n' = n + m nodes and m' = 2m arcs. The
enhanced capacity scaling algorithm will solve the minimum cost flow problem in
the transformed network in O(n' log n') = Oem log m) = Oem log n2

) = Oem
log n) scaling phases and will solve a total of O(n' log n') = Oem log n) shortest
path problems. Each shortest path problem in the uncapacitated network requires
S(n', m') time, but using the ideas described in Exercise 4.53 we can improve this
time bound to Sen, m). Therefore, the enhanced capacity scaling algorithm can solve
the capacitated minimum cost flow problem in Oem log n sen, m» time. We state
this important result as a theorem.

Theorem 10.35. The enhanced capacity scaling algorithm solves a capaci-
tated minimum cost flow problem in Oem log n sen, m» time. •

394 Minimum Cost Flows: Polynomial Algorithms Chap. 10

10.8 SUMMARY

In this chapter we continued our study of the minimum cost flow problem by de
veloping several polynomial-time algorithms. The scaling technique is a central
theme in almost all the algorithms we have discussed. The algorithms discussed use
capacity scaling, cost scaling, or both, or use scaling concepts in their proofs. We
discussed six polynomial-time algorithms: (1) the capacity scaling algorithm, (2) the
cost scaling algorithm, (3) the double scaling algorithm, (4) the minimum mean cycle
canceling algorithm, (5) the repeated capacity scaling algorithm, and (6) the enhanced
capacity scaling algorithm. The first three of these algorithms are weakly polynomial;
the other three are strongly polynomial. Figure 10.13 specifies the running times of
these algorithms.

The capacity scaling algorithm is possibly the simplest of all the polynomial
time algorithms we have discussed. This algorithm is an improved version of the
successive shortest path algorithm discussed in Section 9.7; by augmenting flows
along paths with sufficiently large residual capacities, this algorithm is able to de
crease the number of augmentations from O(nU) to Oem log U).

Whereas the capacity scaling algorithm scales the capacities, the cost scaling
algorithm scales costs. The algorithm maintains E-optimal flows for decreasing values
of E and repeatedly executes an improve-approximation procedure that converts an
E-optimal flow into an E/2-optimal flow. The computations performed by the improve
approximation procedure are similar to those performed by the preflow-push algo
rithm for the maximum flow problem. The double scaling algorithm is the same as
the cost scaling algorithm except that it uses a different version of the improve
approximation procedure. The improve-approximation procedure in the cost scaling
algorithm performs push/relabel steps; in the double scaling algorithm, this procedure
augments flow along paths of sufficiently large residual capacity. Justifying its name,
within a cost scaling phase, the double scaling algorithm performs' a number of
capacity scaling phases.

The minimum mean cycle-canceling algorithm for the minimum cost flow prob
lem is different from all the other algorithms discussed in this chapter. The algorithm
is startlingly simple to describe and does not make explicit use of the scaling tech
nique; the proof of the algorithm, however, uses arguments from scaling techniques.

Algorithm Running time

Capacity scaling algorithm O«m log U)(m + n log n»

Cost scaling algorithm O(n3 log(nC»

Double scaling algorithm O(nm log U log(nC»

Minimum mean cycle-canceling algorithm O(n2m3 log n)

Repeated capacity scaling algorithm O«m2 log n)(m + n log n»

Enhanced capacity scaling algorithm O«m log n)(m + n log n»

Figure 10.13 Running times of polynomial-time minimum cost flow algorithms.

Sec. 10.8 Summary 395

This algorithm is a special implementation of the cycle canceling algorithm that we
described in Section 9.6; it always augments flow along a minimum mean (negative)
cycle in the residual network. To establish that this algorithm is strongly polynomial,
we show that (1) when the reduced cost of an arc is sufficiently large, the flow on
the arc becomes "fixed" (i.e., does not change any more); and (2) within O(nm log
n) iterations, at least one additional arc has a sufficiently large reduced cost so that
its value becomes fixed.

If we adopt a similar idea in the capacity scaling algorithm, it also becomes
strongly polynomial. We showed that whenever the flow on an arc (i,j) is sufficiently
large, we can fix the potentials of nodes i and j with respect to each other. The
repeated capacity scaling algorithm applies the capacity scaling algorithm and within
O(log n) scaling phases, it identifies an arc (i, j) with a sufficiently large flow. The
algorithm then merges the nodes i and j into a single node and starts from scratch
again on the modified minimum cost flow problem. The enhanced capacity scaling
algorithm, described next, dramatically improves on the repeated capacity scaling
algorithm by observing that whenever we contract an arc, we need not start all over
again, .but can continue the computations and stilI contract an additional arc within
every O(log n) scaling phases and use only Oem log n) augmentations in total. This
algorithm does not perform contractions explicitly, but does so implicitly by main
taining zero excesses at the contracted nodes (i.e., nonroot nodes).

REFERENCE NOTES

The following account of polynomial-time minimum cost flow algorithms is fairly
brief. The surveys by Ahuja, Magnanti, and Orlin [1989, 1991] and by Goldberg,
Tardos, and TaIjan [1989] provide more details concerning the development of this
field.

Most of the available (combinatorial) polynomial-time algorithms for the min
imum cost flow problems use scaling techniques. Edmonds and Karp [1972] intro
duced the scaling approach and obtained the first weakly polynomial-time algorithm
for the minimum cost flow problem. This algorithm used the capacity scaling tech
nique. The algorithm we presented in Section lO.2, which is a variant of Edmonds
and Karp's algorithm, is due to Orlin [1988]. From 1972 to 1984, there was little
research on scaling techniques. Since 1985, research employing scaling techniques
has been extensive. Researchers now recognize that scaling techniques have great
theoretical value as well as potential practical significance. Scaling techniques now
yield many of the best (in the worst-case sense) available minimum cost flow al
gorithms.

Rock [19801 and, independently, Bland and Jensen [1985] suggested a cost
scaling technique for the minimum cost flow problem. This approach solves the
minimum cost flow problem as a sequence of O(n log C) maximum flow problems.
Goldberg and TaIjan [1987] improved on the running time of Rock's algorithm and
solved the minimum cost flow problem by solving "almost" O(log(nC» maximum
flow problems. This approach is based on the concept of E-optimality, which is,
independently, due to Bertsekas [1979] and Tardos [19851. We describe this approach
in Section lO.3. Goldberg and TaIjan [1987] have developed several improved im
plementations of this approach, including the wave implementation presented in

396 Minimum Cost Flows: Polynomial Algorithms Chap. 10

Section 10.3. Their best implementation, which runs in O(nm log(n 2/m) 10g(nC))
time, uses Fibonacci heaps and finger search trees. Bertsekas and Eckstein [1988],
independently, discovered the wave implementation.

Ahuja, Goldberg, Orlin, and TaIjan [1992] developed the double scaling al
gorithm described in Section 10.4, which combines capacity and cost scaling. This
paper also describes several improved implementations, the best of which runs in
O(nm log log U 10g(nC)) time and uses the Fibonacci heap data structure.

When Edmonds and Karp [1972] suggested the first (weakly) polynomial-time
algorithm for the minimum cost flow problem, they posed the development of a
strongly polynomial-time algorithm as an open challenging problem. Tardos [1985]
first settled this problem. Subsequently, Orlin [1984], Fujishige [1986], Galil and
Tardos [1986], Goldberg and TaIjan [1987, 1988], Orlin [1988], and Ervolina and
McCormick [1990b] developed other strongly polynomial-time algorithms. Cur
rently, the best strongly polynomial-time algorithm is due to Orlin [1988]; it runs in
O((m log n)(m + n log n)) time.

Most of the strongly polynomial-time minimum cost flow algorithm use the
ideas of "fixing arc flows" or "fixing node potentials." Tardos [1985] was the first
investigator to propose the use of either ofthese ideas (her algorithm fixes arc flows).
The minimum mean cycle-canceling algorithm that we presented in Section 10.5
fixes arc flows; it is due to Goldberg and TaIjan [1988]. Goldberg and TaIjan [1988]
also presented several variants of the minimum mean cycle-canceling algorithm with
improved worst-case complexity. Orlin [1984] and Fujishige [1986] independently
developed the idea of fixing node potentials, which is the "dual" of fixing arc flows.
Using this idea, Goldberg, Tardos, and TaIjan [1989] obtained the repeated capacity
scaling algorithm that we examined in Section 10.6. The enhanced capacity scaling
algorithm, which is due to Orlin [1988], achieves the best strongly polynomial-time
for solving the minimum cost flow problem. However, our presentation of the en
hanced capacity scaling algorithm in Section 10.7 is based on Plotkin and Tardos'
[1990] simplification of Orlin's original algorithm.

Some additional polynomial-time minimum cost flow algorithms include (1) a
triple scaling algorithm due to Gabow and TaIjan [1989a], (2) a special implemen
tation of the cycle canceling algorithm developed by Barahona and Tardos [1989],
and (3) (its dual approach) a cut canceling algorithm proposed by Ervolina and
McCormick [1990a].

Interior point linear programming algorithms are another source of polynomial
time algorithms for the minimum cost flow problem. Among these, the fastest avail
able algorithm, due to Vaidya [1989], solves the minimum cost flow problem in
O(n2

.
sVfii K) time, with K = log n + log C + log U.
Currently, the best available time bound for the minimum cost flow problem

is O(min{nm log(n 2/m) 10g(nC)), nm (log log U) 10g(nC), (m log n)(m + n log n)});
the three bounds in this expression are, respectively, due to Goldberg and TaIjan
[1987], Ahuja, Goldberg, Orlin, and TaIjan [1992], and Orlin [1988].

EXERCISES

10.1. Suppose that we want to solve the minimum cost flow problem shown in Figure
1O.14(a) by the capacity scaling algorithm. Show the computations for two scaling
phases. You may identify the shortest path distances by inspection.

Chap. 10 Exercises 397

b(j)

.@
15 13 -2
~I (10,4),

(10, 101 ~ '(W,S) (~'S)'i;15'6)
® (5, 1O).~ (0,8)· ;iW;~
-7 -5 -14

(a) (b)

Figure 10.14 Examples for Exercises 10.1 and 10.4.

10.2. In every iteration of the capacity scaling algorithm, we augment flow along a shortest
path from a node k with e(k) ;::: ~ to a node I with e(l) ::S - ~. Suppose that we modify
the algorithm as follows: We let node 1 be any deficit node; that is, we do not necessarily
assume that e(l) ::S - ~. Will this modification affect the worst-case complexity of the
capacity scaling algorithm?

10.3. Prove or disprove the following statements.
(a) During the ~-scaling phase of the capacity scaling algorithm, I e(i) I ::S 2 ~ for each

node i E N.
(b) While solving a specific instance of the minimum cost flow problem, the capacity

scaling algorithm might perform more augmentations than the successive shortest
path algorithm.

10.4. Consider the minimum cost flow problem given in Figure 1O.14(a) and the feasible
flow x shown in Figure 1O.14(b). Starting with e = 0, apply two phases of the cost
scaling algorithm.

10.5. Show that if the cost-scaling algorithm finds that arc (i, j) is inadmissible at some stage,
this arc remains inadmissible until the algorithm relabels node i.

10.6. Let x and x' be two distinct (feasible) flows in a network. The flow decomposition
theorem implies that we can always express x' as x plus the flow along at most m
directed cycles WI> W2 , ••• , Wp in G(x). For every 1 ::S i ::S p, let Wi denote the
directed cycle obtained by reversing each arc in Wi' Show that we can express x as
x' plus the flow along the cycles Wi, Wz, ... , W;.

10.7. For the cost scaling algorithm, we showed that whenever e < lin, any e-optimal flow
is O-optimal. Show that if we multiply all arc costs by n + 1, then any flow that is
e-optimal flow for the modified problem when e ::S 1 is O-optimal for the original prob
lem.

10.8. In the cost scaling algorithm, during a relabel operation we increase node potentials
by e/2 units. Show that we can increase node potentials by as much as e/2 +
min{cij : (i, j) in G(x) and rij > O} and still maintain e/2-optimality of the pseudoflow.

10.9. Let x' be a feasible flow of the minimum cost flow problem and let x be a pseudoflow.
Show that in the pseudoflow x, for every node v with an excess, there exists a node
w with a deficit and a sequence of nodes v = VO, VI> V2, ••• , VI = w that satisfies
the property that the path P = Vo - VI - V2 - ... - VI is a directed path in G(x) and
its reversal P = VI - VI-I - ... - Vo is a directed path in G(X'). (Hint: This exercise
is similar to Exercise 10.6.)

10.10. In this exercise we study the non scaled version of the cost scaling algorithm.
(a) Modify the algorithm described in Section 10.3 so that it starts with a O-optimal

398 Minimum Cost Flows: Polynomial Algorithms Chap. 10

pseudoflow, maintains an l/(n + 1)-optimal pseudoflow at every step, and ter
minates with an lI(n + 1)-optimal flow.

(b) Determine the number of relabel operations, the number of saturating and non
saturating pushes, and the running time of the algorithm. Compare these numbers
with those of the cost scaling algorithm.

10.11. In the wave implementation of the cost scaling algorithm described in Section 10.3,
we scaled costs by a factor of 2. Suppose, instead, that we scaled costs by a factor
of k 2 2. In that case we start with 11 = k l10g CJ and decrease e by a factor of k between
two consecutive scaling phases. Outline the changes required in the algorithm and
determine the number of scaling phases, relabel operations, and saturating and non
saturating pushes within a scaling phase. For what value of k is the running time
minimum?

10.12. Generalized cost scaling algorithm (Goldberg and Tarjan [1987]). As we noted in the
text, by using some of the ideas of the minimum mean cycle-canceling algorithm (de
scribed in Section 10.5), we can devise a strongly polynomial-time version of the cost
scaling algorithm that we described in Section 10.3. The modified algorithm, which
we call the generalized cost scaling algorithm, is the same as the cost scaling algorithm
except that it performs the following additional step after it has called the procedure
improve-approximation, but before resetting e : = e/2 (see Figure 10.3).

Additional step: Solve a minimum mean cycle problem to determine the minimum
mean cycle cost /L(x), set e = -/L(x), and then determine a set of potential 'IT so that
the flow x is e-optimal with respect to 'IT (as described in the proof of Lemma 10.12).

Show that the generalized cost scaling fixes a distinct arc after O(log n) scaling
phases. What is the resulting running time of the algorithm?

10.13. In the double scaling algorithm described in Section lOA, we scaled costs by a factor
of 2. Suppose that as described in Exercise 10.2, we scale costs by a factor of k instead
of 2. Show that within a cost scaling phase, the algorithm performs O(knm) retreat
steps. How many advance steps does the algorithm perform within a scaling phase?
How many scaling phases does it require? For what value of k does the algorithm run
in the least time? What is the time bound for this value of k?

10.14. An arc (i, j) in the network G = (N, A) is critical if increasing Cij causes the cost of
the optimal flow to increase and decreasing Cij causes the cost of the optimal flow to
decrease. Does a network always contain a critical arc? Show that we can identify all
critical arcs by solving O(m) maximum flow problems. (Hint: Use' the fact that an arc
is critical if it carries a positive flow in every optimal flow.)

10.15. In some minimum cost flow problem, each arc capacity and each supply/demand is a
mUltiple of ex and lies in the range [0, exK] for some constant K. Will the algorithms
discussed in this chapter run any faster when applied to minimum cost flow problems
with this special structure?

10.16. Suppose that in some minimum cost flow problem, each arc cost is a mUltiple of ex
and lies in the range [0, exK] for some constant K. Will this special structure permit
us to solve the minimum cost flow problem any faster by the cost scaling and double
scaling algorithms?

10.17. Minimum cost flows in unit capacity networks. A network is a unit capacity network
if each arc has a capacity of 1.
(a) What is the running time of the capacity scaling algorithm for unit capacity net

works?
(b) What is the running time of the cost scaling algorithm for unit capacity networks?

(Hint: Will the algorithm make any non saturating pushes?)
10.lS. Minimum cost flows in bipartite networks. Let G = (N1 U N 2 , A) be a bipartite network.

Let nl = I NI I :5 I N2 I = n2'
(a) Show that when applied to a bipartite network, the cost scaling algorithm relabels

any node O(nl) times during a scaling phase.

Chap. 10 Exercises 399

(b) Develop an implementation of the generic cost scaling algorithm that runs in
O(nrm log(nC)) time for bipartite networks. (Hint: Generalize the bipartite
preflow-push algorithm for the maximum flow problem discussed in Section 8.3.)

10.19. What is the running time of the double scaling algorithm for bipartite networks G ==
(Nt U N 2, A), assuming that nt == I Nt I :5 I N2 I = n2?

10.20. Two minimum cost flow problems pI and P" are capacity adjacent if P" differs from
P' only in one arc capacity and by 1 unit. Given an optimal solution of pI, describe
an efficient method for solving P". (Hint: Reoptimize by solving a shortest path prob
lem.)

10.21. Two minimum cost flow problems pI arid P" are cost adjacent if P" differs from pI
only in one arc cost, and by 1 unit. Given an optimal solution of pI, describe an efficient
method for solving P". (Hint: Reoptimize by solving a maximum flow problem.)

10.22. Bit scaling of capacities (Rock [1980]). In this capacity scaling algorithm, we consider
binary representations of the arc capacities (as described in Section 3.3) and define
problem p k to be the minimum cost flow problem with each arc capacity equal to the
k leading bits of the actual capacity. Given an optimal solution of pk, how would you
obtain an optimal solution of pk+ t by solving at most m capacity adjacent problems
(as defined in Exercise 10.20). Write a pseudocode for the minimum cost flow problem
assuming the availability of a subroutine for solving capacity adjacent problems (Le.,
solving one from the solution to the other). What is the running time of your algorithm?

10.23. Bit scaling of costs (Rock [1980]). In this cost scaling algorithm, we consider binary
representations of the arc costs and define problem p k to be the minimum cost flow
problem with each arc cost equal to the k leading bits of the actual cost. Given an
optimal solution of Pk, how would you obtain an optimal solution of p k + 1 by solving
at most m cost adjacent problems (as defined in Exercise 1O.21)? Write a pseudocode
for the minimum cost flow problem assuming the availability of a subroutine for solving
cost adjacerit-problems (Le., solving one from the solution to the other). What is the
running time of your algorithm?

10.24. Suppose that we define the contraction of an arc as in Section 10.5. Let GC denote
the network of G = (N, A) we obtain when we contract the endpoints of an arc
(k, l) E A into a single node p. In addition, let G' = (N, A - {(k, I)}). Show that if
a(G) denotes the number of (distinct) spanning trees of G, then a(G) = a(GC

) +
a(G').

10.25. Constrahwd maximum flow problem. In the constrained maximum flow problem, we
wish to maximize the flow from the source node s to the sink node t subject to an
additional linear constraint. Consider the following linear programming formulation
of this problem:

400

subject to

Maximize v

~ xij - ~ Xji = { ~
{j:(i,j)EA} {j:(j,i)EA} -v

o :5 xij :5 uij,

~ cijXij:5 D.
(ij)EA

for i = s
for all i E N - {s,t}
for i = t,

(a) Let v* be any integer and let x* be an optimal solution of a minimum cost flow
problem with the objective function ~(i,j)EA cijxij and with the supply/demand
data b(s) = v*, b(t) = -v*, and b(i) = 0 for all other nodes. Let z* =
~(iJ)EA CijXt· Show that x* solves the constrained maximum flow problem when
D = z*. Assume that cij ;:::: 0 for each arc (i, j) E A.

(b) Assume that all of the data in the constrained maximum flow problem are integer.
Use the result in part (a) to develop an algorithm for the constrained maximum

Minimum Cost Flows: Polynomial Algorithms Chap. 10

flow problem that uses a minimum cost flow algorithm as a subroutine. What is
the running time of your algorithm? (Hint: Perform binary search on v.)

10.26. In the enhanced capacity scaling algorithm, suppose we maintain an index with each
arc that stores whether the arc is an abundant or a nonabundant arc. Suppose further
that at some stage the algorithm adds an arc (i, j) to the abundant subgraph. Show
how you would perform each of the following operations in Oem) time: (i) identifying
the root nodes, ir and jn of the abundant components containing the nodes i and j;
(ii) determining whether the nodes i and j belong to the same abundant component;
and (iii) identifying a path from node i to j, or vice versa. Using these operations,
explain how you would perform a merge operation and the subsequent imbalance
property augmentation in Oem) time. (Hint: Observe that each abundant arc can be
traversed in either direction because it has sufficient residual capacity in both the
directions. Then use the search algorithm described in Section 3.4.)

Chap. 10 Exercises 401

11

MINIMUM COST FLOWS: NETWORK
SIMPLEX ALGORITHMS

Chapter Outline

11.1 Introduction
11.2 Cycle Free and Spanning Tree Solutions
11.3 Maintaining a Spanning Tree Structure
11.4 Computing Node Potentials and Flows
11.5 Network Simplex Algorithm
11.6 Strongly Feasible Spanning Trees

... seek, and ye shall find.
-The Book of Matthew

11.7 Network Simplex Algorithm for the Shortest Path Problem
11.8 Network Simplex Algorithm for the Maximum Flow Problem
11.9 Related Network Simplex Algorithms
11.10 Sensitivity Analysis
11 .11 Relationship to Simplex Method
11.12 U nimodularity Property
11.13 Summary

11.1 INTRODUCTION

The simplex method for solving linear programming problems is perhaps the most
powerful algorithm ever devised for solving constrained optimization problems. In
deed, many members of the academic community view the simplex method as not
only one of the principal computational engines of applied mathematic,s, computer
science, and operations research, but also as one of the landmark contributi6ns to
computational mathematics of this century. The algorithm has achieved this lofty
status because of the pervasiveness of its applications throughout many problem
domains, because of its extraordinary efficiency, and because it pertp.its ~s to not
only solve problems numerically, but also to gain considerable practical and theo-
retical insight through the use of sensitivity analysis and duality theory. ",

Since minimum cost flow problems define a special class of linear programs,
we might expect the simplex method to be an attractive solution procedure for solving
many of the problems that we consider in this text. Then again, because network
flow problems have considerable special structure, we might also ask whether the
simplex method could possibly compete with other "combinatorial" methods, such
as the many variants of the successive shortest path algorithm, that exploit the
underlying network structure. The general simplex method, when implemented in

402

a way that does not exploit underlying network structure, is not a competitive so
lution procedure for solving minimum cost flow problems. Fortunately, however, if
we interpret the core concepts of the simplex method appropriately as network
operations, we can adapt and streamline the method to exploit the network structure
of the minimum cost flow problem, producing an algorithm that is very efficient.
Our purpose in this chapter is to develop this network-based implementation of the
simplex method and show how to apply it to the minimum cost flow problem, the
shortest path problem, and the maximum flow problem.

We could adopt several different approaches for presenting this material, and
each has its own merits. For example, we could start by describing the simplex
method for general linear programming problems and then show how to adapt the
method for minimum cost flow problems. This approach has the advantage of placing
our development in the broader context of more general linear programs. Alterna
tively, we could develop the network simplex method directly in the context of
network flow problems as a particular type of augmenting cycle algorithm. This
approach has the advantage of not requiring any background in linear programming
and of building more directly on the concepts that we have developed already. We
discuss both points of view. Throughout most of this chapter we adopt the network
approach and derive the network simplex algorithm from the first principles, avoiding
the use of linear programming in any direct way. Later, in Section 11.11, we show
that the network simplex algorithm is an adaptation of the simplex method.

The central concept underlying the network simplex algorithm is the notion of
spanning tree solutions, which are solutions that we obtain by fixing the flow of
every arc not in a spanning tree either at value zero or at the arc's flow capacity.
As we show in this chapter, we can then solve uniquely for the flow on all the arcs ..
in the spanning tree. We also show that the minimum cost flow problem always has
at least one optimal spanning tree solution and that it is possible to find an optimal
spanning tree solution by "moving" from one such solution to another, at each step
introducing one new nontree arc into the spanning tree in place of one tree arc. This
method is known as the network simplex algorithm because spanning trees corre
spond to the so-called basic feasible solutions of linear programming, and the move
ment from one spanning tree solution to another corresponds to a so-called pivot
operation of the general simplex method; In Section 11.11 we make these connec
tions.

In the first three sections of this chapter we examine several fundamental ideas
that either motivate the network simplex method or underlie its development. In
Section 11.2 we show that the minimum cost flow problem always has at least one
spanning tree solution. We also show how the network optimality conditions that
we have used repeatedly in previous chapters specialize when applied to any span
ning tree solution. In keeping with our practice in previous chapters, we use these
conditions to assess whether a candidate solution is optimal and, ifnot, how to modify
it to construct a better spanning tree solution.

To implement the network simplex algorithm efficiently we need to develop a
method for representing spanning trees conveniently in a computer so that we can
perform the basic operations of the algorithm efficiently and so that we can efficiently
manipUlate the computer representation of a spanning tree structure from step to
step. We describe one such approach in Section 11.3.

Sec. 11.1 Introduction 403

In Section 11.4 we show how to compute the arc flows corresponding to any
spanning tree and associated node potentials so that we can assess whether the
particular spanning tree is optimal. These operations are essential to the network
simplex algorithm, and since we need to make these computations repeatedly as we
move from one spanning tree to another, we need to be able to implement these
operations very efficiently. Section 11.5 brings all these pieces together and describes
the network simplex algorithm .

. In the context of applying the network simplex algorithm and establishing that
the algorithm properly solves any given minimum cost flow problem, we need to
address a technical issue known as degeneracy (which occurs when one of the arcs
in a spanning tree, like the nontree arcs, has a flow value equal to zero or the arc's
flow capacity). In Section 11.6 we describe a very appealing and simple way to
modify the basic network simplex algorithm so that it overcomes the difficulties
associated with degeneracy.

Since the shortest path and maximum flow problems are special cases of the
minimum cost flow problem, the network simplex algorithm applies to these prob
lems as well. In Sections 11.7 and 11.8 we describe these specialized implementa
tions. When applied to the shortest path problem, the network simplex algorithm
closely resembles the label-correcting algorithms that we discussed in Chapter 5.
When applied to the maximum flow problem, the algorithm is essentially an aug
menting path algorithm.

The network simplex algorithm maintains a feasible solution at each step; by
moving from one spanning tree solution to another, it eventually finds a spanning
tree solution that satisfies the network optimality conditions. Are there other span
ning tree algorithms that iteratively move from one infeasible spanning tree solution
to another and yet eventually find an optimal solution? In Section 11. 9 we describe
two such algorithms: a parametric network simplex algorithm that satisfies all of the
optimality conditions except the mass balance constraints at two nodes, and a dual
network simplex algorithm that satisfies the mass balance constraints at all the nodes
but might violate the arc flow bounds. These algorithms are important because they
provide alternative solution strategies for solving minimum cost flow problems; they
also illustrate the versatility of spanning tree manipUlation algorithms for solving
network flow problems.

We next consider a key feature of the optimal spanning tree solutions generated
by the network simplex algorithm. In Section 11.10 we show that it is easy to use
these solutions to conduct sensitivity analysis: that is, to determine a new solution
if we change any cost coefficient or change the capacity of any arc. This type of
information is invaluable in practice because problem data are often only approxi
mate and/or because we would like to understand how robust a solution is to changes
in the underlying data.

To conclude this chapter we delineate connections between the network sim
plex algorithm and more general concepts in linear and integer programming. In
Section 11.11 we show that the network simplex algorithm is a special case of the
simplex method for general linear programs, although streamlined to exploit the
special structure of network flow problems. In particular, we show that spanning
trees for the network flow problem correspond in a one-to-one fashion with bases
of the linear programming formulation of the problem. We also show that each of

404 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

the essential steps of the network simplex algorithm, for example, determining node
potentials or moving from one spanning tree to another, are specializations of the
usual steps of the simplex method for solving linear programs.

As we have noted in Section 9.6, network flow problems satisfy one very
remarkable property: They have optimal integral flows whenever the underlying data
are integral. In Section 11.12 we show that this integrality result is a special case of
a more general result in linear and integer programming. We define a set of linear
programming problems with special constraint matrices, known as unimodular ma
trices, and show that these linear programs also satisfy the integrality property. That
is, when solved as linear programs with integral data, problems with these specialized
constraint matrices always have integer solutions. Since node-arc incidence ma
trices satisfy the unimodularity property, this integrality property for linear pro
gramming is a strict generalization of the integrality property of network flows. This
result provides us with another way to view the integrality property of network flows;
it is also suggestive of more general results in integer programming and shows how
network flow results have stimulated more general investigations in combinatorial
optimization and integer programming.

11.2 CYCLE FREE AND SPANNING TREE SOLUTIONS

Much of our development in previous chapters has relied on a simple but powerful
algorithmic idea: To generate an improving sequence of solutions to the minimum
cost flow problem, we iteratively augment flows along a series of negative cycles
and shortest paths. As one of these variants, the network simplex algorithm uses a
particular strategy for generating negative cycles. In this-section, as a prelude to
our discussion of the method, we introduce some basic background material. We
begin by examining two important concepts known as cycle free solutions and span
ning tree solutions."

For any feasible solution, x, we say that an arc (i, j) is afree arc if 0 < Xij <
Uu and is a restricted arc if Xu = 0 or Xu = uu. Note that we can both increase and
decrease flow on a free arc while honoring the bounds on arc flows. However, in a
restricted arc (i, j) at its lower bound (i.e., Xu = 0) we can only increase the flow.
Similarly, for flow on a restricted arc (i, j) at its upper bound (i.e., Xij = Uij) we can
only decrease the flow. We refer to a solution X as a cycle free solution if the network
contains no cycle composed only of free arcs. Note that in a cycle free solution, we
can augment flow on any augmenting cycle in only a single direction since some arc
in any cycle will restrict us from either increasing or decreasing that arc's flow. We
also refer to a feasible solution X and an associated spanning tree of the network as
a spanning tree solution if every nontree arc is a restricted arc. Notice that in a
spanning tree solution, the tree arcs can be free or restricted. Frequently, when we
refer to a spanning tree solution, we do not explicitly identify the associated tree;
rather, it will be understood from the context of our discussion.

In this section we establish a fundamental result of network flows: minimum
cost flow problems always have optimal cycle free and spanning tree solutions. The
network simplex algorithm will exploit this result by restricting its search for an
optimal solution to only spanning tree solutions. To illustrate the argument used to
prove these results, we use the network example shown in Figure 11.1.

Sec. 11.2 Cycle Free and Spanning Tree Solutions 405

(3,4) 3-9

(5,2) 5+9

(2,1)

4-9
(4,3)

4+9
(a) (b)

Figure 11.1 Improving flow around a cycle: (a) feasible solution; (b) solution after aug
menting 9 amount of flow along a cycle.

2+9

For the time being let us assume that all arcs are uncapacitated [i.e., Uij = 00

for each (i,j) E AJ. The network shown in Figure 11.1 contains positive flow around
a cycle. We define the orientation of the cycle as the same as that of arc (4, 5). Let
us augment 6 units of flow along the cycle in the direction of its orientation. As
shown in Figure 11.1, this augmentation increases the flow on arcs along the ori
entation of the cycle (i.e., forward arcs) by 6 units and decreases the flow on arcs
opposite to the orientation of the cycle (i.e., backward arcs) by 6 units. Also note

. that the per unit incremental cost for this flow change is the sum of the costs of
forward arcs minus the sum of the costs of backward arcs in the cycle, that is,

per unit change in cost Ll = 2 + 1 + 3 - 4 - 3 = - 1.

Since augmenting flow in the cycle decreases the cost, we set 6 as large as
possible while preserving nonnegativity of all arc flows. Therefore, we must satisfy
the inequalities 3 - 6 2:: ° and 4 - 6 2:: 0, and hence we set 6 = 3. Note that in the
new solution (at e = 3), some arc in the cycle has a flow at value zero, and moreover,
the objective function value of this solution is strictly less than the value ofthe initial
solution.

In our example, if we change C12 from 2 to 5, the per unit cost of the cycle is
Ll = 2. Consequently, to improve the cost by the greatest amount, we would decrease
6 as much as possible (i.e., satisfy the restrictions 5 + 6 2:: 0, 2 + 6 2:: 0, and 4 +
6 2:: 0, or e 2:: - 2) and again find a lower cost solution with the flow on at least one
arc in the cycle at value zero. We can restate this observation in another way: To
preserve nonnegativity of all the arc flows, we must select e in the interval - 2 ::;
e ::; 3. Since the objective function depends linearly on e, we optimize it by selecting
6 = 3 or 6 = - 2, at which point one arc in the cycle has a flow value of zero.

We can extend this observation in several ways:

1. If the per unit cycle cost Ll = 0, we are indifferent to all solutions in the interval
- 2 ::; e ::; 3 and therefore can again choose a solution as good as the original
one, but with the flow of at least one arc in the cycle at value zero.

2. If we impose upper bounds on the flow (e.g., such as 6 units on all arcs), the

406 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

range offlow that preserves feasibility (i.e., the mass balance constraints, lower
and upper bounds on flows) is again an interval, in this case -2::.; 6 ::.; 1, and
we can find a solution as good as the original one by choosing 6 = - 2 or
6 = 1. At these values of 6, the solution is cycle free; that is, some arc on the
cycle has a flow either at value zero (at the lower bound) or at its upper bound.

In general, our prior observations apply to any cycle in a network. Therefore,
given any initial flow we can apply our previous argument repeatedly, one cycle at
a time, and establish the following fundamental result.

Theorem 11.1 (Cycle Free Property). If the objective function of a minimum
cost flow problem is bounded from below over the feasible region, the problem
always has an optimal cycle free solution. •

It is easy to convert a cycle free solution into a spanning tree solution. Our
results in Section 2.2 show that the free arcs in a cycle free solution define a forest
(i.e., a collection of node-disjoint trees). If this forest is a spanning tree, the cycle
free solution is already a spanning tree solution. However, if this forest is not a
spanning tree, we can add some restricted arcs and produce a spanning tree.

Figure 11.2 illustrates a spanning tree corresponding to a cycle free solution.

(2,3)

(1,2)

Sec. 11.2

(fj) (xU'ui) .(])
".

(4,4)

(3,3) (1, 1) (1,6)

(0,5)

(a) (b)

@ .~ ~, ~

(c)

Figure 11.2 Converting a cycle free solution into a spanning tree solution:
(a) example network; (b) set of free arcs; (c) 2 spanning tree solutions.

Cycle Free and Spanning Tree Solutions 407

The solution in Figure 11.2(a) is cycle free. Figure 11.2(b) represents the set of free
arcs, and Figure 11.2(c) shows two spanning tree solutions corresponding to the
cycle free solution. As shown by this example, it might be possible (and often is) to
complete the set of free arcs into a spanning tree in several ways. Adding the arc
(3, 4) instead of the arc (2, 4) or (3, 5) would produce yet another spanning tree
solution. Therefore, a given cycle free solution can correspond to several spanning
trees. Nevertheless, since we assume that the underlying network is connected, we
can always add some restricted arcs to the free arcs of a cycle free solution to produce
a spanning tree, so we have established the following fundamental result:

Theorem 11.2 (Spanning Tree Property). If the objective function of a minimum
cost flow problem is bounded from below over the feasible region, the problem
always has an optimal spanning tree solution. •

A spanning tree solution partitions the arc set A into three subsets: (1) T, the
arcs in the spanning tree; (2) L, the nontree arcs whose flow is restricted to value
zero; and (3) U, the nontree arcs whose flow is restricted in value to the arcs' flow
capacities. We refer to the triple (T, L, U) as a spanning tree structure.

Just as we can associate a spanning tree structure with a spanning tree solution,
we can also obtain a unique spanning tree solution corresponding to a given spanning
tree structure (T, L, U). To do so, we set Xij = 0 for all arcs (i, j) E L, Xij = Uij for
all arcs (i, j) E U, and then solve the mass balance equations to determine the flow
values for arcs in T. In Section 11.4 we show that the flows on the spanning tree
arcs are unique. We say that a spanning tree structure is feasible if its associated

. spanning tree solution satisfies all of the arcs' flow bounds. In the special case in
which every tree arc in a spanning tree solution is a free arc, we say that the spanning
tree is nondegenerate; otherwise, we refer to it as a degenerate spanning tree. We
refer to a spanning tree structure as optimal if its associated spanning tree solution
is an optimal solution of the minimum cost flow problem. The following theorem
states a sufficient condition for a spanning tree structure to be an optimal structure.
As shown by ?ur disc~ssion in pr~vious chap~e.rs, th~Fredu~~ed .costs de~n~d as
cIl = Cij - 'TI'(I) + 'TI'(j) are useful m charactenzmg optimal solutlOns to mllllmum
cost flow problems.

Theorem 11.3 (Minimum Cost Flow Optimality Conditions). A spanning tree
structure (T, L, U) is an optimal spanning tree structure of the minimum cost flow
problem if it is feasible and for some choice of node potentials 'TI', the arc reduced
costs cIl satisfy the following conditions:

(a) cIl = 0 for all (i, j) E T.

(b) cij ~ 0 for all (i, j) E L.

(c) cij:5 0 for all (i, j) E U.

(11.1a)

(l1.1b)

(11.1c)

Proof Let X* be the solution associated with the spanning tree structure (T,
L, U). We know that some set of node potentials 'TI', together with the spanning tree
structure (T, L, U), satisfies (11.1).

We need to show that X* is an optimal solution of the minimum cost flow

408 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

problem. In Section 2.4 we showed that minimizing LU,j)EA CijXij is equivalent to
minimizing LU,j)EA cijxij. The conditions stated in (11.1) imply that for the given
node potential 'IT , minimizing LU,j)EA cijxij is equivalent to minimizing the following
expression:

Minimize L cijxij - L I cij I Xij. (11.2)
U,j)EL U,j)EU

The definition of the solution x* implies that for any arbitrary solution x,
Xij ;:::: xt for all (i, j) ELand xij :5 Xu for all (i, j) E U. The expression (11.2) implies
that the objective function value of the solution X will be greater than or equal to
that of x*. •

These optimality conditions have a nice economic interpretation. As we shall
see later in Section 11.4, if'IT(1) = 0, the equations in (11.1a) imply that -'IT(k)
denotes the length of the tree path from node 1 to node k. The reduced cost cij =

Cij - 'IT(i) + 'IT(j) for a nontree arc (i, j) E L denotes the change in the cost of the
flow that we realize by sending 1 unit of flow through the tree path from node 1 to
node i through the arc (i, j), and then back to node 1 along the tree path from node
j to node 1. The condition (11.1 b) implies that this circulation of flow is not profitable
(i.e., does not decrease cost) for any nontree arc in L. The condition (11.1c) has a
similar interpretation.

The network simplex algorithm maintains a feasible spanning tree structure
and moves from one spanning tree structure to another until it finds an optimal
structure. At each iteration, the algorithm adds one arc to the spanning tree in place
of one of its current arcs. The entering arc is a nontree arc violating its optimality
condition. The algorithm (1) adds this arc to the spanning tree, creating a negative
cycle (which might have zero residual capacity), (2) sends the maximum possible
flow in this cycle until the flow on at least one arc in the cycle reaches its lower or
upper bound, and (3) drops an arC whose flow has reached its lower or upper bound,
giving us a new spanning tree structure. Because of its relationship to the primal
simplex algorithm for the linear programming problem (see Appendix C), this op
eration of moving from one spanning tree structure to another is known as a pivot
operation, and the two spruming trees structures obtained in consecutive iterations
are called adjacent spdhning tree structures. In Section 11.5 we give a detailed
description of this algorithm.

11.8 MAINTAINING A SPANNING TREE STRUCTURE

Since the network simplex algorithm generates a sequence of spanning tree solutions,
to implement th~ algorithm effectively, we need to be able to represent spanning
trees conveniently in a computer so that the algorithm can perform its basic oper
ations efficiently and can update the representation quickly when it changes the
spanning tree. Over the years, researchers have suggested several procedures for
maintaining and manipulating a spanning tree structure. In this section we describe
one of the more popular representations.

We consider the tree as "hanging" from a specially designated node, called
the root. Throughout this chapter we assume that node 1 is the root node. Figure

Sec. 11.3 Maintaining a Spanning Tree Structure 409

/

"-

/

11.3 gives an example of a tree. We associate three indices with each node i in the
tree: a predecessor index, pred(i) , a depth index depth(O, and a thread index,
thread(i).

/'~

/'

./
/'

/'

I
/

/

" " " "-
"-

"-
\

\
\

I

\
\
I
I
I

/

i 1

pred (i) 0

depth (i) 0

thread (i) 2

2 3 4 5 6 7 8 9

1 2 3 2 5 5 6 6

1 2 3 2 3 3 4 4

5 4 1 6 8 3 9 7

'-.. ----
(a) (b)

Figure 11.3 Example of a tree indices: (a) rooted tree; (b) corresponding tree indices.

Predecessor index. Each node i has a unique path connecting it to the root.
The index pred(i) stores the first node in that path (other than node 0. For example,
the path 9-6-5-2-1 connects node 9 to the root; therefore, pred(9) = 6. By con
vention, we set the predecessor node of the root node, node 1, equal to zero. Figure
11.3 specifies these indices for the other nodes. Observe that by iteratively using
the predecessor indices, we can enumerate the path from any node to the root.

A node j is called a successor of node i if pred(j) = i. For example, node 5
has two successors: nodes 6 and 7. A leaf node is a node with no successors. In
Figure 11.3, nodes 4, 7, 8, and 9 are leaf nodes. The descendants of a node i are
the node i itself, its successors, successors of its successors, and so on. For example,
in Figure 11.3, the elements of node set {5, 6, 7, 8, 9} are the descendants of node
5.

Depth index. We observed earlier that each node i has a unique path con
necting it to the root. The index depth(i) stores the number of arcs in that path. For
example, since the path 9-6-5-2-1 connects node 9 to the root, depth(9) = 4. Figure
11.3 gives depth indices for all of the nodes in the network.

Thread index. The thread indices define a traversal of a tree, that is, a
sequence of nodes that walks or threads its way through the nodes of a tree, starting
at the root node, and visiting nodes in a "top-to-bottom" order, and finally returning
to the root. We can find thread indices by performing a depth-first search of the tree

Minimum Cost Flows: Network Simplex Algorithms Chap. 11

as described in Section 3.4 and setting the thread of a node to be the node in the
depth-first search encountered just after the node itself. For our example, the depth
first traversal would read 1-2-5-6-8-9-7-3-4-1, so thread(1) = 2, thread(2) = 5,
thread(5) = 6, and so on (see the dashed lines in Figure 11.3).

The thread indices provide a particularly convenient means for visiting (or
finding) all descendants of a node i. We simply follow the thread starting at that
node and record the nodes visited, until the depth of the visited node becomes at
least as large as that of node i. For example, starting at node 5, we visit nodes 6,
8, 9, and 7 in order, which are the descendants of node 5 and then visit node 3.
Since the depth of node 3 equals that of node 5, we know that we have left the
"descendant tree" lying below node 5. We shall see later that finding the descendant
tree of a node efficiently is an important step in developing an efficient implemen
tation of the network simplex algorithm.

In the next section we show how the tree indices permit us to compute the
feasible solution and the set of node potentials associated with a tree.

11.4 COMPUTING NODE POTENTIALS AND FLOWS

As we noted in Section 11.2, as the network simplex algorithm moves from one
spanning tree to the next, it always maintains the condition that the reduced cost of
every arc (i, j) in the current spanning tree is zero (i.e. cij = 0). Given the current
spanning tree structure (T, L, U), the method first detennines values for the node
potentials 'IT that will satisfy this condition for the tree arcs. In this section we show
how to find these values of the node potentials. _-

Note that we can set the value of one node potential arbitrarily because adding
a constant k to each node potential does not alter the reduced cost of any arc; that
is, for any constant k, Cil = Cij - 'IT(i) + 'IT(j) = Cij - ['IT(i) + k]:r- ['IT(j) + k].
So for convenience, we henceforth assume that 'IT(1) = O. We compute the remaining
node potentials using the fact that the reduced cost of every spanning tree arc is
zero; that is,

Cij = Cij - 'IT(i) + 'IT(j) = 0 for every arc (i, j) E T. (11.3)

In equation (11.3), if we know one of the node potentials 'IT(i) or 'IT(j), we can
easily compute the other one. Consequently, the basic idea in the procedure is to
start at node 1 and fan out along the tree arcs using the thread indices to compute
other node potentials. By traversing the nodes using the thread indices, we ensure
that whenever the procedure visits a node k, it has already evaluated the potential
of its predecessor, so it can compute 'IT(k) using (11.3). Figure 11.4 gives a formal
statement of the procedure compute-potentials.

The numerical example shown in Figure 11.5 illustrates the procedure. We first
set 'IT(1) = O. The thread of node 1 is 2, so we next examine node 2. Since arc
(1, 2) connects node 2 to its predecessor, using (11.3) we find that 'IT(2) = 'IT(1) -
C12 = - 5. We next examine node 5, which is connected to its parent by arc (5, 2).
Using (11.3) we obtain 'IT(5) = 'IT(2) + C52 = -5 + 2 = -3. In the same fashion
we compute the rest of the node potentials; the numbers shown next to each node
in Figure 11.5 specify these values.

Sec. 11.4 Computing Node Potentials and Flows 411

-7

"- ' ----

procedure compute-potentials;
begin

7T(1) : = 0;
j: = thread(1);
while j ~ 1 do
begin

i : = pred(j);
if (i, j) E A then 7r(j) : = 7r(i) - Cij;

if (j, t) E A then 7r(j) : = 7r(t) + Cji;

j: = thread(j);
end;

end;
Figure 11.4 Procedure compute
potentials.

Figure 11.5 Computing node
potentials for a spanning tree.

Let P be the tree path in T from the root node 1 to some node k. Moreover,
let P and r., respectively, denote the sets of forward and backward arcs in P. Now
let us examine arcs in P starting at node 1. The procedure compute-potentials implies
that 'IT(j) = 'IT(i) - Cij whenever arc (i, j) is a forward arc in the path, and that
'IT(j) = 'IT(i) + Cji whenever arc (j, i) is a backward arc in the path. This observation
implies that 'IT(k) = 'IT(k) - 'IT(1) = - LU,j)EP Cij + L(i,j)Et: cij' In other words,
'IT(k) is the negative of the cost of sending 1 unit of flow from node 1 to node k along
the tree path. Alternatively, 'IT(k) is the cost of sending 1 unit of flow from mode k
to node 1 along the tree path. The procedure compute-potentials requires 0(1) time
per iteration and performs (n - 1) iterations to evaluate the node potential of each
node. Therefore, the procedure runs in O(n) time.

One important consequence of the procedure compute-potentials is that the
minimum cost flow problem always has integer optimal node potentials whenever
all the arc costs are integer. To see this result, recall from Theorem 11.2 that the
minimum cost flow problem always has an optimal spanning tree solution. The po
tentials associated with this tree constitute optimal node potentials, which we can
determine using the procedure compute-potentials. The description ofthe procedure
compute-potentials implies that if all arc costs are integer, node potentials are integer
as well (because the procedure performs only additions and subtractions). We refer
to this integrality property of optimal node potentials as the dual integrality property

412 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

5

since node potentials are the dual linear programming variables associated with the
minimum cost flow problem.

Theorem 11.4 (Dual Integrality Property). If all arc costs are integer, the min-
imum cost flow problem always has optimal integer node potentials. •

Computing Arc Flows

We next consider the problem of determining the flows on the tree arcs of a given
spanning tree structure. To ease our discussion, for the moment let us first consider
the uncapacitated version of the minimum cost flow problem. We can then assume
that all nontree arcs carry zero flow.

If we delete a tree arc, say arc (i,j), from the spanning tree, the tree decomposes
into two subtrees. Let T, be the subtree containing node i and let T2 be the subtree
containing node j. Note that LkETJ b(k) denotes the cumulative supply/demand
of nodes in T, [which must be equal to - LkET2 b(k) because LkETJ b(k) +
LkET2 b(k) = 0]. In the spanning tree, arc (i, j) is the only arc that connects the
subtree T, to the subtree T2 , so it must carry LkETJ b(k) units of flow, for this is
the only way to satisfy the mass balance constraints. For example, in Figure 11.6,
if we delete arc (1, 2) from the tree, then T, = {I, 3, 6, 7}, T2 = {2, 4, 5}, and
LkETJ b(k) = 10. Consequently, arc (1, 2) carries 10 units of flow.

15

5 10

(a)

-15 5

15

1nA c
~ ~

5 10

(b)

Figure 11.6 Computing flows for a spanning tree.

o.

crbCi
)

fij
@b(j)

-15

U sing this observation we can devise an efficient method for computing the
flows on all the tree arcs. Suppose that (i, j) is a tree arc and that node j is a leaf
node [the treatment of the case when (i, j) is a tree arc and node i is a leaf node is
similar]. Our observations imply that arc (i, j) must carry - b(j) units of flow. For
our example, arc (3, 7) must carry 15 units of flow to satisfy the demand of node 7.
Setting the flow on this arc to this value has an effect on the mass balance of its
incident nodes: we must subtract 15 units from b(3) and add 15 units to b(7) [which
reduces b(7) to zero]. Having determined X37, we can delete arc (3, 7) from the tree
and repeat the method on the smaller tree. Notice that we can identify a leaf node
in every iteration because every tree has at least two leaf nodes (see Exercise 2.13).
Figure 11.7 gives a formal description of this procedure.

Sec. 11.4 Computing Node Potentials and Flows 413

procedure compute-flows;
begin

b'(i) : = b(i), for all i E N;
for each (i, j) E L do set xli: = 0;
T': = T;
while T' ¥o {1} do
begin

select a leaf node j (other than node 1) in the subtree T';
i: = pred(j);
if (i, j) E T' then Xif : = - b' (j)
else xii: = b'(j);
add b'(j) to b'(i);
delete node j and the arc incident to it from T';

end;
end;

Figure 11.7 Procedure compute-flows.

This method for computing the flow values assumes that the minimum cost
flow problem is uncapacitated. For the capacitated version of the problem, we add
the following statement immediately after the first statement [i.e., b' (i): = b(i) for
all i E N] in the procedure compute-jlows. We leave the justification of this modi
fication as an exercise (see Exercise 11.19).

for each (i, j) E U do
set xif: = Uij. subtract Uli from b'U) and add Ulf to b'(j);

The running time of the procedure compute-jlows is easy to determine. Clearly,
the initialization of flows and modification of supplies/demands b(i) and b(j) for
arcs (i, j) in U requires O(m) time. If we set aside the time to select leaf nodes of
T, then each iteration requires 0(1) time, resulting in a total of O(n) time. One way
of identifying leaf nodes in T is to select nodes in the reverse order of the thread
indices. Note that in the thread traversal, each node appears prior to its descendants
(see Property 3.4). We identify the reverse thread traversal of the nodes by examining
the nodes in the order dictated by the thread indices, putting all the nodes into a
stack in the order of their appearance and then taking them out from the top of the
stack one at a time. Therefore, the reverse thread traversal examines each node only
after it has examined all of the node's descendants. We have thus established that
for the uncapacitated minimum cost flow problem, the procedure compute-flows
runs in O(m) time. For the capacitated version of the problem, the procedure also
requires O(m) time.

We can use the procedure compute-jlows to obtain an alternative proof of the
(primal) integrality property that we stated in Theorem 9.10. Recall from Theorem
11.2 that the minimum cost flow problem always has an optimal spanning tree so
lution. The flow associated with this tree is an optimal flow and we can determine
it using the procedure compute-flows. The description of the procedure compute
flows implies that if the capacities of all the arcs and the supplies/demands of all the
nodes are integer, arc flows are integer as well (because the procedure performs
only additions and subtractions). We state this result again because of its importance
in network flow theory.

414 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

Theorem 11.5 (Primal Integrality Property). If capacities of all the arcs and
supplies/demands of all the nodes are integer, the minimum cost flow problem always
has an integer optimal flow. •

In closing this section we observe that every spanning tree structure (T, L, U)
defines a unique flow x. If this flow satisfies the flow bounds 0 :5 Xij :5 Uij for every
arc (i, j) E A, the spanning tree structure is feasible; otherwise, it is infeasible. We
refer to the spanning tree T as degenerate if xij = 0 or Xij = Uij for some arc (i, j)
E T, and nondegenerate otherwise. In a nondegenerate spanning tree, 0 < Xij < Uij

for every tree arc (i, j).

11.5 NETWORK SIMPLEX ALGORITHM

The network simplex algorithm maintains a feasible spanning tree structure at each
iteration and successively transforms it into an improved spanning tree structure
until it becomes optimal. The algorithmic description in Figure 11.8 specifies the
essential steps of the method.

algorithm network simplex;
begin

determine an initial feasible tree structure (T, L, U);
let x be the flow and 11" be the node potentials associated with this tree structure;
while some nontree arc violates the optimality conditions do
begin

select an entering arc (k, I) violating its optimality condition;
add arc (k, I) to the tree and determine the leaving arc (p, q);
perform a tree update and update the solutions x and 11";

end;
end;

Figure 11.8 Network simplex algorithm.

In the following discussion we describe in greater detail how the network sim
plex algorithm uses tree indices to perform these various steps. This discussion
highlights the value of the tree indices in designing an effident implementation of
the algorithm.

Obtaining an Initial Spanning Tree Structure

Our connectedness assumption (i.e., Assumption 9.4 in Section 9.1) provides one
way of obtaining an initial spanning tree structure. We have assumed that for every
nodej EN - {I}, the network contains arcs (1,j) and (j, 1), with sufficiently large
costs and capacities. We construct the initial tree T as follows. We examine each
node j, other than node 1, one by one. If b(j) ;:::: 0, we include arc (1, j) in T with
a flow value of b(j). If b(j) < 0, we include arc (j, 1) in T with a flow value of
-b(j). The set L consists of the remaining arcs, and the set U is empty. As shown
in Section 11.4, we can easily compute the node potentials for this tree using the
equations Cij - 7r(i) + 7r(j) = 0 for all (i, j) E T. Recall that we set 7r(1) = o.

If the network does not contain the arcs (1, j) and (j, 1) for each node j E

Sec. 11.5 Network Simplex Algorithm 415

N - {I} (or, we do not wish to add these arcs for some reason), we could construct
an initial spanning tree structure by first establishing a feasible flow in the network
by solving a maximum flow problem (as described in Application 6.1), and then by
converting this solution into a spanning tree solution using the method described in
Section 11.2.

Optimality Testing and the Entering Arc

Let (T, L, U) be a feasible spanning tree structure of the minimum cost flow problem,
and let 'IT be the corresponding node potentials. To determine whether the spanning
tree structure is optimal, we check to see whether the spanning tree structure satisfies
the following conditions:

cij 2: 0 for every arc (i, j) E L,

cij :5 0 for every arc (i, j) E U.

If the spanning tree structure satisfies these conditions, it is optimal and the
algorithm terminates. Otherwise, the algorithm selects a nontree arc violating the
optimality condition to be introduced into the tree. Two types of arcs are eligible
to enter the tree:

1. Any arc (i, j) E L with cij < 0

2. Any arc (i, j) E U with cij > 0

For any eligible arc (i, j), we refer to I cij I as its violation. The network simplex
algorithm can select any eligible arc to enter the tree and still would terminate finitely
(with some provisions for dealing with degeneracy, as discussed in Section 11.6).
However, different rules for selecting the entering arc produce algorithms with dif
ferent empirical and theoretical behavior. Many different rules, called pivot rules,
are possible for choosing the entering arc. The following rules are most widely
adopted.

Dantzig's pivot rule. This rule was suggested by George B. Dantzig, the
father of linear programming. At each iteration this rule selects an arc with the
maximum violation to enter the tree. The motivation for this rule is that the arc with
the maximum violation causes the maximum decrease in the objective function per
unit change in the value of flow on the selected arc, and hence the introduction of
this arc into the spanning tree would cause the maximum decrease per pivot if the
average increase in the value of the selected arc were the same for all arcs. Com
putational results confirm that this choice of the entering arc tends to produce rel
atively large decreases in the objective function per iteration and, as a result, the
algorithm performs fewer iterations than other choices for the pivot rule. However,
this rule does have a major drawback: The algorithm must consider every nontree
arc to identify the arc with the maximum violation and doing so is very time con
suming. Therefore, even though this algorithm generally performs fewer iterations
than other implementations, the running time of the algorithm is not attractive.

416 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

First eligible arc pivot rule. To implement this rule, we scan the arc list
sequentially and select the first eligible arc to enter the tree. In a popular version
of this rule, we examine the arc list in a wraparound fashion. For example, in an
iteration if we find that the fifth arc in the arc list is the first eligible arc, then in the
next iteration we start scanning the arc list from the sixth arc. If we reach the end
of the arc list while we are performing some iteration, we continue by examining
the arc list from the beginning. One nice feature of this pivot rule is that it quickly
identifies the entering arc. The pivot rule does have a counterbalancing drawback:
with it, the algorithm generally performs more iterations than it would with other
pivot rules because each pivot operation produces a relatively small decrease in the
objective function value. The overall effect of this pivot rule on the running time of
the algorithm is not very attractive, although the rule does produce a more efficient
implementation than Dantzig's pivot nile.

Dantzig's pivot rule and the first pivot ruie represent two extreme choices of
a pivot rule. The candidate list pivot rule, which we discuss next, strikes an effective
compromise between these two extremes and has proven to be one of the most
successful pivot rules in practice. This rule also offers ·sufficient flexibility for fine
tuning to special circumstances.

Candidate list pivot rule. When implemented with this rule, the algorithm
selects the entering arc using a two-phase pr9cedure consisting of major iterations
and minor iterations. In a major iteration we construct a candidate list of eligible
arcs. Having constructed this list, we then perform a number of minor iterations;
in each of these iterations, we select an eligible arc from the candidate list with the
maximum violation.

In a major iteration we construct the candidate list as follows. We first examine
arcs emanating from node 1 and add eligible arcs to the candidate list. We repeat
this process for nodes 2, 3, ... , until either the list has reached its maximum
allowable size or we have examined all the nodes. The next major iteration begins
with the node where the previous major iteration ended and examines nodes in a
wraparound fashion.

Once the algorithm has formed the candidate list in a major iteration, it performs
a number of minor iterations. In a minor iteration, the algorithm scans all the arcs
in the candidate list and selects an arc with the maximum violation to enter the tree.
As we scan the arcs, we update the candidate list by removing those arcs that are
no longer eligible (due to changes in the node potentials). Once the candidate list
becomes empty or we have reached a specified limit on the number of minor iter
ations to be performed within each major iteration, we rebuild the candidate list by
performing another major iteration.

Notice that the candidate list approach offers considerable flexibility for fine
tuning to special problem classes. By setting the maximum allowable size of the
candidate list appropriately and by specifying the number of minor iterations to be
performed within a major iteration, we can obtain numerous different pivot rules.
In fact, Dantzig's pivot rule and the first eligible pivot rule are special cases of the
candidate list pivot rule (see Exercise 11.20). .

In the preceding discussion, we described several important pivot rules. In the
reference notes, we supply references for other pivot rules. Our next topic of study

Sec. 11.5 Network Simplex Algorithm 417

is deciding how to choose the arc that leaves the spanning tree structure at each
step of the network simplex algorithm.

Leaving Arc

Suppose that we select arc (k, l) as the entering arc. The addition of this arc to the
tree T creates exactly one cycle W, which we refer to as the pivot cycle. The pivot
cycle consists of the unique path in the tree T from node k to node I, together with
arc (k, I). We define the orientation of the cycle Was the same as that of (k, l) if
(k, I) ELand opposite the orientation of (k, l) if (k, I) E U. Let Wand W denote
the sets of forward arcs (i.e., those along the orientation of W) and backward arcs
(those opposite to the orientation of W) in the pivot cycle. Sending additional flow
around the pivot cycle W in the direction of its orientation strictly decreases the
cost of the current solution at the per unit rate of 1 Crt I. We augment the flow as
much as possible until one of the arcs in the pivot cycle reaches its lower or upper
bound. Notice that augmenting flow along W increases the flow on forward arcs and
decreases the flow on backward arcs. Consequently, the maximum flow change &ij

on an arc (i, j) E W that satisfies the flow bound constraints is

if (i, j) E W
if (i, j) E W

To maintain feasibility, we can augment & = min{&ij : (i, j) E W} units of flow
along W. We refer to any arc (i, j) E W that defines & (Le., for which & = &ij) as a
blocking arc. We then augment & units of flow and select an arc (p, q) with &pq =
& as the leaving arc, breaking ties arbitrarily. We say that a pivot iteration is a
nondegenerate iteration if & > 0 and is a degenerate iteration if & == O. A degenerate
iteration occurs only if T is a degenerate spanning tree. Observe that if two arcs tie
while determining the value of &, the next spanning tree will be degenerate.

The crucial step in identifying the leaving arc is to identify the pivot cycle. If
P(i) denotes the unique path in the tree from any node i to the root node, this cycle
consists of the arcs {(k, I)} U P(k) U P(l) - (P(k) n P(l». In other words, W
consists of the arc (k, I) and the disjoint portions of P(k) and P(l). Using the pre
decessor indices alone permits us to identify the cycle Was follows. First, we des
ignate all the nodes in the network as unmarked. We then start at node k and, using
the predecessor indices, trace the path from this node to the root and mark all the
nodes in this path. Next we start at node I and trace the predecessor indices until
we encounter a marked node, say w. The node w is the first common ancestor of
nodes k and I; we refer to it as the apex of cycle W. The cycle W contains the portions
of the paths P(k) and P(l) up to node w, together with the arc (k, I). This method
identifies the cycle Win O(n) time and so is efficient. However, it has the drawback
of backtracking along those arcs of P(k) that are not in W. If the pivot cycle lies
"deep in the tree," farfrqm its root, then tracing the nodes back to the root will be
inefficient. Ideally, we would like to identify the cycle W in time proportional to
1 W I. The simultaneous use of depth and predecessor indices, as indicated in Figure
11.9, permits us to achieve this goal.

This method scans the arcsin the pivot cycle W twice. During the first scan,
we identify the apex of the cycle and also identify the maximum possible flow that

418 Minil11:um Cost Flows: Network Simplex Algorithms Chap. 11

procedure identify-cycle;
begin·

i: = k and j : = I;
while i ¥o j do
begin

if depth(i) > depth(j) then i: = pred(i)
else if depth (j) > depth (i) then j : = pred(j)

else i: = pred(i) and j: = pred(j);
end;

end;
Figure 11.9 Procedure for identifying
the pivot cycle.

can be augmented along W. In the second scan, we augment the flow. The entire
flow change operation requires O(n) time in the worst case, but typically it examines
only a small subset of nodes (and arcs).

Updating the Tree

When the network simplex algorithm has determined a leaving arc (p, q) for a given
entering arc (k, I), it updates the tree structure. If the leaving arc is the same as the
entering arc, which would happen when 8 = 8kt = Uk/, the tree does not change. In
this instance the arc (k, I) merely moves from the set L to the set U, or vice versa.
If the leaving arc differs from the entering arc, the algorithm must perform more
extensive changes. In this instance the arc (p, q) becomes a nontree arc at its lower
or upper bound, depending on whether (in the updated flow) Xpq = 0 or Xpq = U pq •

Adding arc (k, I) to the current spanning tree and deleting arc (p, q) creates a new
spanning tree. ,

For the new spanning tree, the node potentials also change; we can update
them as follows. The deletion of the arc (p, q) from the previous tree partitions the
set of nodes into two subtrees, one, TI, containing the root node, and the other, T2 ,

not containing the root node. Note that the subtree T2 hangs from node p or node
q. The arc (k, I) has one endpoint in TJ and the other inT2 • As is easy to verify,
the conditions 71'(1) == 0 and Cij - 71'(i) + 71'(j) = 0 for all arcs in the new tree imply
that the potentials of nodes in the subtree TJ remain unchanged, and the potentials
of nodes in the subtree T2 change by a constant amount. If k E TJ and I E T2, all
the node potentials in T2 increase by - Crt; if I E TJ and k E T2, they increase by
the amount Crt. Using the thread and depth indices, the method described in Figure
11.10 updates the node potentials quickly.

procedure update-potentials;
begin

if q E T2 then y: = q else y: = p;
if k E T1 then change: = - cJ:, else change: = cJ:,;
1T(Y) : = 1T(Y) + change;
z: = thread(y);
while depth(z) > depth(y) do
begin

1T(Z) : = 1T(Z) + change;
z: = thread(z);

end;
end;

Sec. 1J.5 Network Simplex Algorithm

Figure 11.10 Updating node potentials
in a pivot operation.

419

The final step in the updating of the tree is to recompute the various tree indices.
This step is rather involved and we refer the reader to the references given in ref
erence notes for the details. We do point out, however, that it is possible to update
the tree indices in O(n) time. In fact, the time required to update the tree indices
is 0(1 WI + min{1 TI I, I T2 1}), which is typically much less than n.

Termination

The network simplex algorithm, as just described, moves from one feasible spanning
tree structure to another until it obtains a spanning tree structure that satisfies the
optimality condition (11.1). If each pivot operation in the algorithm is nondegenerate,
it is easy to show that the algorithm terminates finitely. Recall that 1 ci:z 1 is the net
decrease in the cost per unit flow sent around the pivot cycle W. Mter a nonde
generate pivot (for which & > 0), the cost of the new spanning tree structure is
&1 ci:z 1 units less than the cost of the previous spanning tree structure. Since any
network has a finite number of spanning tree structures and every spanning tree
structure has a unique associated cost, the network simplex algorithm will encounter
any spanning tree structure at most once and hence will terminate finitely. Degen
erate pivots, however, pose a theoretical difficulty: The algorithm might not ter
minate finitely unless we perform pivots carefully. In the next section we discuss a
special implementation, called the strongly feasible spanning tree implementation,
that guarantees finite convergence of the network simplex algorithm even for prob
lems that are degenerate.

We use the example in Figure l1.11(a) to illustrate the network simplex al
gorithm. Figure l1.11(b) shows a feasible spanning tree solution for the problem.
For this solution, T = {(1, 2), (1, 3), (2,4), (2, 5), (5, 6)}, L = {(2, 3), (5, 4)}, and
U = {(3, 5), (4, 6)}. In this solution, arc (3, 5) has a positive violation, which is 1
unit. We introduce this arc into the tree creating a cycle whose apex is node 1. Since
arc (3, 5) is at its upper bound, the orientation of the cycle is opposite to that of arc
(3, 5). The arcs (1, 2) and (2, 5) are forward arcs in the cycle and arcs (3, 5) and
(1, 3) are backward arcs. The maximum increase in flow permitted by the arcs
(3, 5), (1, 3), (1, 2), and (2, 5) is, respectively, 3, 3, 2, and 1 units. Consequently,
& = 1 and we augment 1 unit of flow along the cycle. The augmentation increases
the flow on arcs (1, 2) and (2, 5) by one unit and decreases the flow on arcs (1, 3)
and (3, 5) by one unit. Arc (2, 5) is the unique blocking arc and so we select it to
leave the tree. Dropping arc (2, 5) from the tree produces two subtrees: Tl consisting
of nodes 1, 2, 3, 4 and T2 consisting of nodes 5 and 6. Introducing arc (3, 5), we
again obtain a spanning tree, as shown in Figure 11.11 (c). Notice that in this spanning
tree, the node potentials of nodes 5 and 6 are 1 unit less than that in the previous
spanning tree.

In the feasible spanning tree solution shown in Figure l1.l1(c), L = {(2, 3),
(5, 4)} and U = {(2, 5), (4, 6)}. In this solution, arc (4, 6) is the only eligible arc: its
violation equals 1 unit. Therefore, we introduce arc (4,6) into the tree. Figure 11.11(c)
shows the resulting cycle and its orientation. We can augment 1 unit of additional
flow along the orientation of this cycle. Sending this flow, we find that arc (3, 5) is
a blocking arc, so we drop this arc from the current spanning tree. Figure 11.11(d)

420 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

b(i) b(j)

.f--_(,-,C;J,--.,U2;}_~·e

o o
(5,7)

'Tr(i) 'Tr(j) .f---__ x...::.ij __ ~.@

-3 -8

g;'~1) __ 5_~~

9 (2,3) (2,2) (5,4) -9 o ~-9

o '

o

-3

-2

(4,3)

(a)

5

C
2

(c)

o

-8

~ ~~~t'" ,
,J' ,
)j 14)'0'-10

/~
-6

---3----..ii~~
-2 -5

(b)

-3 -8
4

0

,y

-2 -7
(d)

Figure 11.11 Numerical example for the network simplex algorithm.

'il'

-11

"

shows the new spanning tree. As the reader can verify, this solution-has no eligible
arc, and thus the network simplex algorithm terminates with this solution.

11.6 STRONGLY FEASIBLE SPANNING TREES

The network simplex algorithm does not necessarily terminate in a finite number of
iterations unless we impose some additional restriction on the choice of the entering
and leaving arcs. Very small network examples show that a poor choice leads to
cycling (i.e., an infinite repetitive sequence of degenerate pivots). Degeneracy in
network problems is not only a theoretical issue, but also a practical one. Compu
tational studies have shown that as many as 90% of the pivot operations in com
monplace networks can be degenerate. As we show next, by maintaining a special
type of spanning tree, called a strongly feasible spanning tree, the network simplex
algorithm terminates finitely; moreover, it runs faster in practice as well.

Let (T, L, U) be a spanning tree structure for a minimum cost flow problem
with integral data. As before, we conceive of a spanning tree as a tree hanging from
the root node. The tree arcs are either upward pointing (toward the root) or are
downward pointing (away from the root). We now state two alternate definitions of
a strongly feasible spanning tree.

Sec. 11.6 Strongly Feasible Spanning Trees 421

1. Strongly feasible spanning tree. A spanning tree T is strongly feasible if every
tree arc with zero flow is upward pointing and every tree arc whose flow equals
its capacity is downward pointing.

2. Strongly feasible spanning tree. A spanning tree T is strongly feasible if we
can send a positive amount of flow from any node to the root along the tree
path without violating any flow bound.

If a spanning tree T is strongly feasible, we also say that the spanning tree
structure (T, L, U) is strongly feasible.

It is easy to show that the two definitions of the strongly feasible spanning
trees are equivalent (see Exercise 11.24). Figure 11.12(a) gives an example of a
strongly feasible spanning tree, and Figure 11.12(b) illustrates a feasible spanning
tree that is not strongly feasible. The spanning tree shown in Figure 11.12(b) fails
to be strongly feasible because arc (3, 5) carries zero flow and is downward pointing.
Observe that in this spanning tree, we cannot send any additional flow from nodes
5 and 7 to the root along the tree path.

To implement the network simplex algorithm so that it always maintains a
strongly feasible spanning tree, we must first find an initial strongly feasible spanning
tree. The method described in Section 11.5 for constructing the initial spanning tree
structure always gives such a spanning tree. Note that a nondegenerate spanning
tree is always strongly feasible; a degenerate spanning tree might or might not be
strongly feasible. The network simplex algorithm creates a degenerate spanning tree
from a nondegenerate spanning tree whenever two or more arcs are qualified as

,
l(x""
~

422

(6,6)

(3,3) (0,3)

(a) (b)

Figure 11.12 Feasible spanning trees: (a) strongly feasible; (b) nonstrongly feasible.

Minimum Cost Flows: Network Simplex Algorithms Chap. 11

leaving arcs and we drop only one of these. Therefore, the algorithm needs to select
the leaving arc carefully so that the next spanning tree is strongly feasible.

Suppose that we have a strongly feasible spanning tree and, during a pivot
operation, arc (k, I) enters the spanning tree. We first consider the case when (k, I)
is a nontree arc at its lower bound. Suppose that W is the pivot cycle formed by
adding arc (k, I) to the spanning tree and that node w is the apex of the cycle W;
that is, w is the first common ancestor of nodes k and I. We define the orientation
of the cycle Was compatible with that of arc (k, I). After augmenting 8 units of flow
along the pivot cycle, the algorithm identifies the blocking arcs [i.e., those arcs
(i, j) in the cycle that satisfy 8ij = 8]. If the blocking arc is unique, we select it to
leave the spanning tree. If the cycle contains more than one blocking arc, the next
spanning tree will be degenerate (i.e., some tree arcs will be at their lower or upper
bounds). In this case the algorithm selects the leaving arc in accordance with the
following rule.

Leaving Arc Rule. Select the leaving arc as the last blocking arc encountered
in traversing the pivot cycle W along its orientation starting at the apex w.

To illustrate the leaving arc rule, we consider a numerical example. Figure
11.13 shows a strongly feasible spanning tree for this example. Let (9, 10) be the
entering arc. The pivot cycle is 10-8-6-4-2-3-5-7-9-10 and the apex is node 2.
This pivot is degenerate because arcs (2, 3) and (7, 5) block any additional flow in
the pivot cycle. Traversing the pivot cycle starting at node 2, we encounter arc
(7, 5) later than arc (2, 3); so we select arc (7, 5) as the leaving arc.

We show that the leaving arc rule guarantees that in the next spanning tree
every node in the cycle W can send a positive amount of flow to the root node. Let

Entering arc Figure 11.13 Selecting the leaving arc.

Sec. 1J.6 Strongly Feasible Spanning Trees 423

(p, q) be the arc selected by the leaving arc rule. Let WI be the segment of the cycle
W between the apex wand arc (p, q) when we traverse the cycle along its orientation.
Let W2 = W - WI - {(p, q)}. Define the orientation of segments WI and W2 as
compatible with the orientation of W. See Figure 11.13 for an illustration of the
segments WI and W2 • We use the following property about the nodes in the segment
W2 •

Property 11.6. Each node in the segment W2 can send a positive amount of
flow to the root in the next spanning tree.

This observation follows from the fact that arc (p, q) is the last blocking arc
in W; consequently, no arc in W2 is blocking and every node in this segment can
send a positive amount of flow to the root via node w along the orientation of W2 •

Note that if the leaving arc does not satisfy the leaving arc rule, no node in the
segment W2 can send a positive amount of flow to the root; therefore, the next
spanning tree will not be strongly feasible.

We next focus on the nodes contained in the segment WI.

Property 11.7. Each node in the segment WI can send a positive amount of
flow to the root in the next spanning tree.

We prove this observation by considering two cases. If the previous pivot was
a nondegenerate pivot, the pivot augmented a positive amount of flow 8 along the
arcs in WI; consequently, after the augmentation, every node in the segment WI can
send a positive amount of flow back to the root opposite to the orientation of WI
via the apex node w (each node can send at least 8 units to the apex and then at
least some of this flow to the root since the previous spanning tree was strongly
feasible). If the previous pivot was a degenerate pivot, WI must be contained in the
segment of W between node w and node k because the property of strong feasibility
implies that every node on the path from node I to node w can send a positive amount
of flow to the root before the pivot, and thus no arc on this path can be a blocking
arc in a degenerate pivot. Now observe that before the pivot, every node in WI
could send a positive amount of flow to the root, and therefore since the pivot does
not change flow values, every node in WI must be able to send a positive amount
of flow to the root after the pivot as well. This conclusion completes the proof that
in the next spanning tree every node in the cycle W can send a positive amount of
flow to the root node.

We next show that in the next spanning tree, nodes not belonging to the cycle
W can also send a positive amount of flow to the root. In the previous spanning tree
(before the augmentation), every node j could send a positive amount of flow to the
root and if the tree path from node j does not pass through the cycle W, the same
path is available to carry a positive amount of flow in the next spanning tree. If the
tree path from node j does pass through the cycle W, the segment of this tree path
to the cycle W is available to carry a positive amount of flow in the next spanning
tree and once a positive amount of flow reaches the cycle W, then, as shown earlier,
we can send it (or some of it) to the root node. This conclusion completes the proof
that the next spanning tree is strongly feasible.

424 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

We now establish the finiteness of the network simplex algorithm. Since we
have previously shown that each nondegenerate pivot strictly decreases the objective
function value, the number of nondegenerate pivots is finite. The algorithm can,
however, also perform degenerate pivots. We will show that the number of succes
sive degenerate pivots between any two nondegenerate pivots is finitely bounded.
Suppose that arc (k, l) enters the spanning tree at its lower bound and in doing so
it defines a degenerate pivot. In this case, the leaving arc belongs to the tree path
from node k to the apex w. Now observe from Section 11.5 that node k lies in the
subtree T2 and the potentials of all nodes in T2 change by an amount Ckt. Since
Ckt < 0, this degenerate pivot strictly decreases the sum of all node potentials (which
by our prior assumption is integral). Since no node potential can fall below - nC,
the number of successive degenerate pivots is finite.

So far we have assumed that the entering arcs are always at their lower bounds.
If the entering arc (k, l) is at its upper bound, we define the orientation of the cycle
Was opposite to the orientation of arc (k, I). The criteria for selecting the leaving
arc remains unchanged-the leaving arc is the last blocking arc encountered in tra
versing W along its orientation starting at the apex w. In this case node I is contained
in the subtree T 2 , and thus after the pivot, the potentials of all the nodes T2 decrease
by the amount Ckt > 0; consequently, the pivot again decreases the sum of the node
potentials.

11.7 NETWORK SIMPLEX ALGORITHM FOR THE
SHORTEST PATH PROBLEM

In this section we see how the network simplex algorithm specializes when applied
to the shortest path problem. The resulting algorithm bears a close resemblance to
the label-correcting algorithms discussed in Chapter 5. In this section we study the
version of the shortest path problem in which we wish to determine shortest paths
from a given source node s to all other nodes in a network. In other words, the
problem is to send 1 unit of flow from the source to every other node along minimum
cost paths. We can formulate this version of the shortest path problem as the fol
lowing minimum cost flow model:

subject to

Minimize .L CijXij
(i,j)EA

.L Xij - .L Xji = {n - 1
{j:(i,j)EA} {j:(j,i)EA} - 1

for i == s
for all i E N - {s}

for all (i, j) E A.

If the network contains a negative (cost)-directed cycle, this linear program
ming formulation would have an unbounded so~ution since we could send an infinite
amount of flow along this cycle without violating any of the constraints (because
the arc flows have no upper bounds). The network simplex algorithm we describe
is capable of detecting the presence of a negative cycle, and if the network contains
no such cycle, it determines the shortest path distances.

Sec. 11.7 Network Simplex Algorithm/or the Shortest Path Problem 425

Like other minimum cost flow problems, the shortest path problem has a span
ning tree solution. Because node s is the only source node and all the other nodes
are demand nodes, the tree path from the source node to every other node is a
directed path. This observation implies that the spanning tree must be a directed
out-tree rooted at node s (see Figure 11.14 and the discussion in Section 4.3). As
before, we store this tree using predecessor, depth, and thread indices. In a directed
out-tree, every node other than the source has exactly one incoming arc but could
have several outgoing arcs. Since each node except node s has unit demand, the
flow of arc (i, j) is 1 D(j) I. [Recall that D(j) is the set of descendants of node j in
the spanning tree and, by definition, this set includes nodej.] Therefore, every tree
of the shortest path problem is nondegenerate, and consequently, the network sim
plex algorithm will never perform degenerate pivots.

5

2 Figure 11.14 Directed out-tree rooted
at the source.

Any spanning tree· for the shortest path problem contains a unique directed
path from node s to every other node. Let P(k) denote the path from node s to node
k. We obtain the node potentials corresponding to the tree T by setting'IT(s) = 0
and then using the equation Cij - 'IT(i) + Ti(j) = 0 for each arc (i, j) E T by fanning
out from node s (see Figure 11.15). The directed out-tree property of the spanning
tree implies that Ti(k) = - LUJ)EP(k) Cij. Thus Ti(k) is the negative of the length of
the path P(k).

Since the variables in the minimum cost flow formulation of the shortest path
problem have no upper bounds, every nontree arc is at its lower bound. The algorithm
selects a nontree arc (k, l) with a negative reduced cost to introduce into the spanning
tree. The addition of arc (k, 1) to the tree creates a cycle which we orient in the
same direction as arc (k, I). Let w be the apex of this cycle. (See Figure 11.16 for
an illustration.) In this cycle, every arc from node I to node w is a backward arc
and every arc from node w to node k is a forward arc. Consequently, the leaving
arc would lie in the segment from node I to node w. In fact, the leaving arc would
be the arc (pred(l), l) because this arc has the smallest flow value among all arcs in
the segment from node I to node w. The algorithm would then increase the potentials
of nodes in the subtree rooted at the node I by an amount 1 Crt I, update the tree

426 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

-8 -15

3

-10

4

-15

6

11
4

2

-17

2

-23

-24
Figure 11.15 Computing node
potentials.

Figure 11.16 Selecting the leaving arc.

indices, and repeat the computations until all nontree arcs have nonnegative reduced
costs. When the algorithm terminates, the final tree would be a shortest path tree
(i.e., a tree in which the directed path from node s to every other node is a shortest
path).

Recall that in implementing the network simplex algorithm for the minimum
cost flow problem, we maintained flow values for all the arcs because we needed
these values to identify the leaving arc. For the shortest path problem, however,
we can determine the leaving arc without considering the flow values. If (k, l) is the
entering arc, then (pred(l), I) is the leaving arc. Thus the network simplex algorithm
for the shortest path problem need not maintain arc flows. Moreover, updating of
the tree indices is simpler for the shortest path problem.

The network simplex algorithm for the shortest path problem is similar to the
label-correcting algorithms discussed in Section 5.3. Recall that a label-correcting
algorithm maintains distance labels d(i), searches for an arc satisfying the condition
d(j) > d(i) + Cij, and sets the distance label of node j equal to d(i) + cu. In the

Sec. 1J.7 Network Simplex Algorithm for the Shortest Path Problem 427

network simplex algorithm, if we define d(i) = - 'IT(i), then d(i) are the valid distance
labels (i.e., they represent the length of some directed path from source to node i).
At each iteration the network simplex algorithm selects an arc (i, j) with cij < O.
Observe that cij = Cij - 'IT(i) + 'IT(j) = Cij + d(i) - d(j). Therefore, like a label
correcting algorithm, the network simplex algorithm selects an arc that satisfies the
condition d(j) > d(i) + Cij. The algorithm then increases the potential of every node
in the subtree rooted at nodej by an amount I cijl which amounts to decreasing the
distance label of all the nodes in the subtree rooted at node j by an amount I cij I.
In this regard the network simplex algorithm differs from the label correcting al
gorithm: instead of updating one distance label at each step, it updates several of
them.

Ifthe network contains no negative cycle, the network simplex algorithm would
terminate with a shortest path tree. When the network does contain a negative cycle,
the algorithm would eventually encounter a situation like that depicted in Figure
11.17. This type of situation will occur only when the tail of the entering arc (k, I)
belongs to D(l), the set of descendants of node l. The network simplex algorithm
can detect this situation easily without any significant increase in its computational
effort: Mter introducing an arc (k, I), the algorithm updates the potentials of all
nodes in D(l); at that time, it can check to see whether k E D(l), and if so, then
terminate. In this case, tracing the predecessor indices would yield a negative cycle.

Figure 11.17 Detecting a negative
cycle in the network.

The generic version of the network simplex algorithm for the shortest path
problem runs in pseudopolynomial time. This result follows from the facts that (1)
for each node i, - nC ~ 'IT(i) ~ nC (because the length of every directed path from
s to node i lies between - nC to nC), and (2) each iteration increases the value of
at least one node potential. We can, however, develop special implementations that
run in polynomial time. In the remainder of this section, in the exercises, and in the
reference notes at the end of this chapter, we describe several polynomial-time
implementations of the network simplex algorithm for the shortest path problem.
These algorithms will solve the shortest path problem in O(n 2m), O(n3

), and O(nm
log C) time. We obtain these polynomial-time algorithms by carefully selecting the
entering arcs.

First eligible arc pivot rule. We have described this pivot rule in Section
11.5. The network simplex algorithm with this pivot rule bears a strong resemblance
with the FIFO label-correcting algorithm that we described in Section 5.4. Recall

428 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

that the FIFO label-correcting algorithm examines the arc list in a wraparound fash
ion: If an arc (i, j) violates its optimality condition (i.e., it is eligible), the algorithm
updates the distance label of nodej. This orderfor examining the arcs ensures that
after the kth pass, the algorithm has computed the shortest path distances to all
those nodes that have a shortest path with k or fewer arcs. The network simplex
algorithm with the first eligible arc pivot rule also examines the arc list in a wrap
around fashion, and if an arc (i, j) is eligible (i.e., violates its optimality condition),
it updates the distances label of every node in D(j), which also includes j. Conse
quently, this pivot rule will also, within k passes, determine shortest path distances
to all those nodes that are connected to the source node s by a shortest path with
k or fewer arcs. Consequently, the network simplex algorithm will perform at most
n passes over the arc list. As a result, the algorithm will perform at most nm pivots
and run in O(n2 m) time. In Exercise 11.30 we discuss a modification ofthis algorithm
that runs in O(n3) time.

Dantzig's pivot rule. This pivot rule selects the entering arc as an arc with
the maximum violation. Let C denote the largest arc cost. We will show that the
network simplex algorithm with this pivot rule performs O(n2 10g(nC)) pivots and
so runs in O(n2m 10g(nC)) time.

Scaled pivot rule. This pivot is a scaled variant of Dantzig's pivot nile. In
this pivot rule we perform a number of scaling phases with varying values of a scaling
parameter Ll. Initially, we let Ll = 2PogCl (i.e., we set Ll equal to the smallest power
of 2 greater than or equal to C) and pivot in any nontree arc with a violation of at
least Ll/2. When no arc has a violation of at least Ll/2, we replace Ll by Ll/2.. and
repeat the steps. We terminate the algorithm when Ll < 1.

We now show that the network simplex algorithm with the scaled pivot rule
solves the shortest path problem in polynomial time. It is easy to verify that Dantzig's
pivot rule is a special case of scaled pivot rule, so this result also shows that when
implemented with Dantzig's pivot rule, the network simplex algorithm requires
polynomial time.

We call the sequence of iterations for which Ll remains unchanged as the
Ll-scaling phase. Let 'iT denote the set of node potentials at the beginning of a
Ll-scaling phase. Moreover, let P*(p) denote a shortest path from node s to node
p and let 'iT* (p) = - ~(i,j)EP* Cij denote the optimal node potential of node p. Our
analysis of the scaled pivot rule uses the following lemma:

Lemma 11.8. If'iT denotes the current node potentials at the beginning of the
Ll-scaling phase, then 'iT*(p) - 'iT(p) :5 2nLlfor each node p.

Proof In the first scaling phase, Ll ;::: C and the lemma follows from the facts
that - nC and nC are the lower and upper bounds on any node potentials (why?).
Consider next any subsequent scaling phase. Property 9.2 implies that

clf = cij - 'iT(s) + 'iT(p) = 'iT(p) - 'iT*(p). (11.4)
(i,j)EP*(k) (i,j)EP*(k)

Since Ll is an upper bound on the maximum arc violation at the beginning of
the Ll-scaling phase (except the first one), clf ;::: - Ll for every arc (i, j) E A. Sub-

Sec. 11.7 Network Simplex Algorithm for the Shortest Path Problem 429

stituting this inequality in (11.4), we obtain

'IT(p) - 'IT*(p);;;:: -ill P*(p) I ;;;:: -nil,

which implies the conclusion of the lemma.

N ow consider the potential function <I> = ~PEN ('1'1'* (p) - 'IT(p)). The preceding
lemma shows that at the beginning of each scaling phase, <I> is at most 2n2il. Now,
recall from our previous discussion in this section that in each iteration, the network
simplex algorithm increases at least one node potential by· an amount equal to the
violation of the entering arc. Since the entering arc has violation at least
il/2, at least one node potential increases by il/2 units, causing <I> to decrease by at
least il/2 units. Since no node potential ever decreases, the algorithm can perform
at most 4n2 iterations in this scaling phase. So, after at most 4n2 iterations, either
the algorithm will obtain an optimal solution or will complete the scaling phase.
Since the algorithm performs O(log C) scaling phases, it will perform O(n2 log C)
iterations and so require O(n2 m log C) time. It is, however, possible to implement
this algorithm in O(nm log C) time; the reference notes provide a reference for this
result.

11.8 NETWORK SIMPLEX ALGORITHM FOR THE
MAXIMUM FLOW PROBLEM

In this section we describe another specialization of the network simplex algorithm:
its implementation for solving the maximum flow problem. The resulting algorithm
is essentially an augmenting path algorithm, so it provides an alternative proof of
the max-flow min-cut theorem we discussed in Section 6.5.

As we have noted before, we can view the maximum flow problem as a par
ticular version of the minimum cost flow problem, obtained by introducing an ad
ditional arc (t, s) with cost coefficient Cts == -1 and an upper bound Uts == 00, and
by setting Cu == 0 for all the original arcs (i, j) in A. To simplify our notation, we
henceforth assume that A represents the set A U {(t, s)}. The resulting formulation
is to

Minimize - Xts

subject to

~ Xu - 2: Xji == 0 for all i E lV,
{j:(i,j)EA} {j:(j,i)EA}

for all (i, j) E A.

Observe that minimizing - Xts is equivalent to maximizing Xts, which is equiv
alent to maximizing the net flow sent from the source to the sink, since this flow
returns to the source via arc (t, s). This observation explains why the inflow equals
the outflow for every node in the network, including the source and the sink nodes.

Note that in any feasible spanning tree solution that carries a positive amount
of flow from the source to the sink (i.e., Xts > 0), arc (t, s) must be in the spanning
tree. Consequently, the spanning tree for the maximum flow problem consists of

430 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

two subtrees of G joined by the arc (t, s) (see Figure 11.18). Let Ts and Tt denote
the subtrees containing nodes sand t.

Figure 11.18 Spanning tree for the
maximum flow problem.

We obtain node potentials corresponding to a feasible spanning tree of the
maximum flow problem as follows. Since we can set one node potential arbitrarily,
let'lT(t) = O. Furthermore, since the reduced cost of arc (t, s) must be zero, 0 =
cYs = Cts - 'IT(t) + 'IT(s) = -1 + 'IT(s), which implies that 'IT(s) = 1. Since (1) the
reduced cost of every arc in Ts and Tt must be zero, and (2) the costs of these arcs
are also zero, the node potentials have the following values: 'IT(i) = 1 for every node
i E Ts , and 'IT(i) = 0 for every node i E Tt •

Notice that every spanning tree solution of the maximum flow problem defines
an s-t cut [S, S] in the original network obtained by setting S =; Ts and S = Tt •

Each arc in this cut is a nontree arc; its flow has value zero or equals the arc's
capacity. For every forward arc (i,j) in the cut, cij = -1, and for every backward
arc (i, j) in the cut, cij = 1. Moreover, for every arc (i,-j) not in the cut, cij = o.
Consequently, if every forward arc in the cut has a flow value equal to the arc's
capacity and every backward arc has zero flow, this spanning tree solution satisfies
the optimality conditions (11.1), and therefore it must be optimal. On the other hand,
if in the current spanning tree solution, some forward arc in the cut has a flow of
value zero or the flow on some backward arc equals the arc's capacity, all these
arcs have a violation of 1 unit. Therefore, we can select any of these arcs to enter
the spanning tree. Suppose that we select arc (k, I). Introducing this arc into the
tree creates a cycle that contains arc (t, s) as a forward arc (see Figure 11.19). The
algorithm augments the maximum possible flow in this cycle and identifies a blocking
arc. Dropping this arc again creates two subtrees joined by the arc (t, s). This new
tree constitutes a spanning tree for the next iteration.

Notice that this algorithm is an augmenting path algorithm: The tree structure
permits us to determine the path from the source to the sink very easily. In this
sense the network simplex algorithm has an advantage over other types of aug
menting path algorithms for the maximum flow problem. As a compensating factor,
however, due to degeneracy, the network simplex algorithm might not send a positive
amount of flow from the source to the sink in every iteration.

Sec. 11.8 Network Simplex Algorithm for the Maximum Flow Problem 431

\
\

\
\
\

\
\

\
\
~

~

Figure 11.19 Forming a cycle.

The network simplex algorithm for the maximum flow problem gives another
proof of the max-flow min-cut theorem. The algorithm terminates when every for
ward arc in the cut is capacitated and every backward arc has a flow of value zero.
This termination condition implies that the current maximum flow value equals the
capacity of the s-t cut defined by the subtrees Ts and Tt , and thus the value of a
maximum flow from node s to node t equals the capacity of the minimum s-t cut.

Just as the mechanics of the network simplex algorithm becomes simpler in
the context of the maximum flow problem, so does the concept of a strongly feasible
spanning tree. If we designate the sink as the root node, the definition of a strongly
feasible spanning tree implies that we can send a positive amount of flow from every
node in Tt to the sink node t without violating any of the flow bounds. Therefore,
every arc in Tt whose flow value is zero must point toward the sink node t and every
arc in Tt whose flow value equals the arc's upper bound must point away from node
t. Moreover, the leaving arc criterion reduces to selecting a blocking arc in the pivot
cycle that is farthest from the sink node when we traverse the cycle in the direction
of arc (t, s) starting from node t. Each degenerate pivot selects an entering arc that
is incident to some node in Tt • The preceding observation implies that each blocking
arc must be an arc in Ts. Consequently, each degenerate pivot increases the size of
Tt " so the algorithm can perform at most n consecutive degenerate pivots. We might
note that the minimum cost flow problem does not satisfy this property: For the
more general problem, the number of consecutive degenerate pivots can be expo
nentially large.

The preceding discussion shows that when implemented to maintain a strongly
feasible spanning tree, the network simplex algorithm performs O(n2 U) iterations
for the maximum flow problem. This result follows from the fact that the number
of nondegenerate pivots is at most nU, an upper bound on the maximum flow value.
This bound on the number of iterations is Iionpolynomial, so is not satisfactory from
a theoretical perspective. Developing a polynomial-time network simplex algorithm
for the maximum flow problem remained an open problem for quite some time.
However, researchers have recently suggested an entering arc rule that performs
only O(nm) iterations and can be implemented to run in O(n2m) time. This rule

432 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

selects entering arcs so that the algorithm augments flow along shortest paths from
the source to the sink. We provide a reference for this result in the reference notes.

11.9 RELATED NETWORK SIMPLEX ALGORITHMS

In this section we study two additional algorithms for the minimum cost flow prob
lem-the parametric network simplex algorithm and the dual network simplex al
gorithm-that are close relatives of the network simplex algorithm. In contrast to
the network simplex algorithm, which maintains a feasible solution at each inter
mediate step, both of these algorithms maintain an infeasible solution that satisfies
the optimality conditions; they iteratively attempt to transform this solution into a
feasible solution. The solution maintained by the parametric network simplex al
gorithm satisfies all of the problem constraints except the mass balance constraints
at two specially designated nodes, sand t. The solution maintained by the dual
network simplex algorithm satisfies all of the mass balance constraints but might
violate the lower and upper bound constraints on some arc flows. Like the network
simplex algorithm, both algorithms maintain a spanning tree at every step and per
form all computations using the spanning tree.

Parametric Network Simplex Algorithm

For the sake of simplicity, we assume that the network has one supply node (the
source s) and one demand node (the sink t). We incur no loss of generality in imposing
this assumption because we can always transform a network with several supply
and demand nodes into one with a single supply and a single demand nod~.
The parametric network simplex algorithm starts with a solution for which b'(s) =
-b'(t) = 0, and gradually increases b'(s) and -b'(t) until b'(s) = b(s) and b'(t)
= b(t). Let T be a shortest path tree rooted at the source node s in the underlying
network. The parametric network simplex algorithm starts with zero flow and with
(T, L, U) with L = A - T and U = 0 as the initial spanning.tree structure. Since,
by Assumption 9.5, all the arc costs are nonnegative, the zero flow is an optimal
flow provided that b(s) = b(t) = O. Moreover, since T is a shortest path tree, the
shortest path distances d(·) to the nodes satisfy the condition d(j) = d(i) + Cij for
each (i, j) E T, and d(j) :5 d(i) + Cij for each (i, j) ~ T. By setting 'IT(j) = - d(j)
for each node j, these shortest path optimality conditions become the optimality
conditions (11.1) of the initial spanning tree structure (T, L, U).

Thus the parametric network simplex algorithm starts with an optimal solution
of a minimum cost flow problem that violates the mass balance constraints only at
the source and sink nodes. In the subsequent steps, the algorithm maintains opti
mality of the solution and attempts to satisfy the violated constraints by sending
flow from node s to node t along tree arcs. The algorithm stops when it has sent the
desired amount (b(s) = -b(t)) of flow.

In each iteration the algorithm performs the following computations. Let (T,
L, U) be the spanning tree structure at some iteration. The spanning tree T contains
a unique path P from node s to node t. The algorithm first determines the maximum
amount of flow 3 that can be sent from s to 1 along P while honoring the flow bounds

Sec. 11.9 Related Network Simplex Algorithms 433

on the arcs. Let P and f.. denote the sets offorward and backward arcs in P. Then

3 = min[min{uij - Xij: (i, j) E P}, min{xij: (i, j) E f..}].

The algorithm either sends 3 units of flow along P, or a smaller amount if it
would be sufficient to satisfy the mass balance constraints at nodes sand t. As in
the network simplex algorithm, all the tree arcs have zero reduced costs; therefore,
sending additional flow along the tree path from node s to node t preserves the
optimality of the solution. If the solution becomes feasible after the augmentation,
the algorithm terminates. If the solution is still infeasible, the augmentation creates
at least one blocking arc (Le., an arc that prohibits us from sending additional flow
from node s to node t). We select one such blocking arc, say (p, q), as the leaving
arc and replace it by some nontree arc (k, I), called the entering are, so that the
next spanning tree both (1) satisfies the optimality condition, and (2) permits addi
tional flow to be sent from node s to node t . We accomplish this transition from one
tree to another by performing a dual pivot. Recall from Section 11.5 that a (primal)
pivot first identifies an entering arc and then the leaving arc. In contrast, a dual
pivot first selects the leaving arc and then identifies the entering arc.

We perform a dual pivot in the following manner. We first drop the leaving
arc from the spanning tree. Doing so gives us two subtrees Ts and Tt , with sETs
and t E Tt • Let Sand 8 be the subsets of nodes spanned by these two subtrees.
Clearly, the cut [S, 8] is an s-t cut and the entering arc (k, I) must belong to [S, 8]
if the next solution is to be a spanning tree solution. As earlier, we let (S, 8) denote
the set of forward arcs and (8, S) the set of backward arcs in the cut [S, 8]. Each
arc in the cut [S, 8] is at its lower bound or at its upper bound. We define the set
Q of eligible arcs as the set

Q = «S, S) n L) U «S, S) n U),

that is, the set of forward arcs at their lower bound and the set of backward arcs at
their upper bound. Note that if we add a noneligible arc to the subtrees Ts and Tt ,

we cannot increase the flow from node s to node t along the new tree path joining
these nodes (since the arc lies on the path and would be a forward arc at its upper
bound or a backward arc at its lower bound). If we introduce an eligible arc, the
new path from node s to node t might be able to carry a positive amount of flow.
Next, notice that if Q = 0, we can send no additional flow from node s to node t.
In fact, the cut [S, 8] has zero residual capacity and the current flow from node s
to node t equals the maximum flow. If b(s) is larger than this flow vahle, the minimum
cost flow problem is infeasible. We now focus on situations in which Q #- 0. Notice
that we cannot select an arbitrary eligible arc as the entering arc, because the new
spanning tree must also satisfy the optimality condition. For each eligible arc (i, j),
we define a number eu in the following manner:

e .. = { cij
IJ - cij

if (i, j) E L,
if(i,j)EU.

Since the spanning tree structure (T, L, U) satisfies the optimality condition
(11.1), eu ;::: 0 for every eligible arc (i, j). Suppose that we select some eligible arc
(k, I) as the entering arc. It is easy to see that adding the arc (k, I) to Ts U Tt decreases
the potential of each node in 8 by ekl units (throughout the computations, we maintain

434 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

that the node potential of the source node s has value zero). This change in node
potentials decreases the reduced cost of each arc in (S, S) by fJ kl units and increases
the reduced cost of each arc in (S, S) by fJ kl units. We have four cases to consider.

Case 1. (i, j) E (S, S) n L

The reduced cost of the arc (i, j) becomes eij - fJkl • The arc will satisfy the
optimality condition (11.1b) if fJ kl $ eij = fJij.

Case 2. (t, j) E (S, S) n u
The reduced cost of the arc (i, j) becomes elf - fJ kl • The arc will satisfy the
optimality condition (11.1c) regardless of the value of fJ kl because elf $ O.

Case 3. (i, j) E (S, S) n L

The reduced cost of the arc (i, j) becomes elf + fJ kl • The arc will satisfy the
optimality condition (11.1b) regardless of the value of fJ kl because elf;::: O.

Case 4. (t, j) E (S, S) n u
The reduced cost of the arc (i, j) becomes elf + fJ kl . The arc will satisfy the
optimality condition (11.1c) provided that fJ kl $ - elf = fJij.

The preceding discussion implies that the new spanning tree structure will
satisfy the optimality conditions provided that

fJ kl $ fJij for each (i, j) E ((S, S) n L) U ((S, S) n U) == Q.

Consequently, we select the entering arc (k, I) to be an eligible arc for whi,ch
fJ kl = min{fJij: (i, j) E Q}. Adding the arc (k, l) to the subtrees Ts and Tt gives us a
new spanning tree structure and completes an iteration. We refer to this dual pivot
as degenerate if fJ kl = 0, and as nondegenerate otherwise. We repeat this process
until we have sent the desired amount of flow from node s to node t.

It is easy to implement the parametric network simplex algorithm so that it
runs in pseudopolynomial time. In this implementation, if an augmentation creates
several blocking arcs, we select the one closest to the source as the leaving arc.
Using inductive arguments, it is possible to show that in this implementation, the
subtree Ts will permit us to augment a positive amount of flow from node s to every
other node in Ts along the tree path. Moreover, in each iteration, when the algorithm
sends no additional flow from node s to node t, it adds at least one new node to Ts.
Consequently, after at most n iterations, the algorithm will send a positive amount
of flow from node s to node t. Therefore, the parametric network simplex algorithm
will perform O(nb(s)) iterations.

To illustrate the parametric network simplex algorithm, let us consider the same
example we used to illustrate the network simplex algorithm. Figure 11.20(a) gives
the minimum cost flow problem if we choose s = 1 and t = 6. Figure 11.20(b) shows·
the tree of shortest paths. All the nontree arcs are at their lower bounds. In the first
iteration, the algorithm augments the maximum possible flow from node 1 to node
6 along the tree path 1-2-5-6. This path permits us to send a maximum of 3 =
min{u12' U25, U56} = min{8, 2, 6} = 2 units of flow. Augmenting 2 units along the
path creates the unique blocking arc (2, 5). We drop arc (2, 5) from the tree, creating

Sec. 11.9 Related Network Simplex Algorithms 435

o

o

'"
0

-7

9

'frU) 'fr(j)

@ ___ X--,-ij __ .~@

-3 -8

"'".,\l-__ O_-----.I~

2

-2 -5
(b)

'frU) 'fr(j)

@ xij .® <v',,;

-3 -8
0

~ ';4\ i ~ ",

bU) b(j)
@f--_(---,Cij,---"'U-,,-ij)_--,.@

o

®-9

(5,7)

(2,2)

(4,3)

(a)

o

0

o

o

o

®-lO

~ ,5
3

'''>:;,;,

-2 -6
(d)

-9

'frU) 'fr(j)

@--6,,---ij--..Vlf[)

-2 -5
(c)

'frU) 'fr(})

GI-__ -'6ij __ •• @ .•. ~.j{
\:J3 '<:3J;J
-3 -8

o

-2 -6
(e)

Figure 11.20 Illustrating the parametric network simplex algorithm.

the s-t cut [S, S] with S = {I, 2, 3, 4} [see Figure 11.20(c)]. This cut contains two
eligible arcs: arcs (3, 5) and (4, 6) with 835 = 1 and 846 = 2. We select arc (3, 5) as
the entering arc, creating the spanning tree shown in Figure 11.20(d). Notice that
the potentials of the nodes 5 and 6 increase by 1 unit. In the new spanning tree, 1-

436 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

3-5-6 is the tree path from node 1 to node 6. We augment 3 = min{u13, U35, U56 -

X56} = min{3, 3, 6 - 2} = 3 units of flow along the path, creating two blocking arcs,
(1,3) and (3,5). The arc (1, 3) is closer to the source and we select it as the leaving
arc. As shown in Figure 11.20(e), the resulting s-t cut contains two eligible arcs,
(2,3) and (4, 6). Since 846 < 823 , we select (4,6) as the entering arc. We leave the
remaining steps of the algorithm as an exercise for the reader.

Notice the resemblance between the parametric network simplex algorithm
and the successive shortest path algorithm that we discussed in Section 9.7. Both
algorithms maintain the optimality conditions and gradually satisfy the mass balance
constraints at the source and sink nodes. Both algorithms send flow along shortest
paths from node s to node t. Whereas the successive shortest path algorithm does
so by explicitly solving a shortest path problem, the parametric network simplex
algorithm implicitly solves a shortest path problem. Indeed, the sequence of itera
tions that the parametric network simplex algorithm performs between two consec
utive positive-flow iterations are essentially the steps of Dijkstra's algorithm for the
shortest path problem.

Dual Network Simplex Algorithm

The dual network simplex algorithm maintains a solution that satisfies the mass
balance constraints at all nodes, but that violates some of the lower and upper bounds
imposed on the arc flows. The algorithm maintains a spanning tree structure (T, L,
U) that satisfies the optimality conditions (11.1); the flow on the arcs in Land U are
at their lower and upper bounds, but the flow on the tree arcs might not satisfy their
flow bounds. We refer to a tree arc (i, j) as feasible if 0 :s Xu :s uij and as infeasible
otherwise. The algorithm attempts to make infeasible arcs feasible by sending flow
along cycles; it terminates when the network contains no infeasible arc.

The dual network simplex algorithm performs a dual pivot at every iteration.
Let (T, L, U) be the spanning tree structure at some iteration. In this solution some
tree arcs might be infeasible. The algorithm selects anyone of these arcs as the
leaving arc. (Empirical evidence suggests that choosing an infeasible arc with the
maximum violation of its flow bound generally results in a fewer number of itera
tions.) Suppose that we select the arc (p, q) as the leaving arc and Xpq > upq • We
later address the casexpq < O. To make the flow on the arc (p, q) feasible, we must
decrease the flow on this arc. We decrease the flow by introducing some nontree
arc (k, l) that creates a unique cycle W containing arc (p, q) and augment enough
flow along this cycle. Let us see which entering arc (k, I) would permit us to ac
complish this objective.

If we drop the arc (p, q) from the spanning tree, we create two subtrees TJ
and T2 , with p E TJ and q E T2 • Let Sand 8 be the sets of nodes spanned by TJ
and T2 • In addition, let (S, 8) and (8, S) denote the sets of forward and backward
arcs in the cut [S, 8]. Each arc in the cut [S, 8], except the arc (p, q), is at its lower
or upper bound. Adding any arc (i, j) in [S, 8] to T creates a unique cycle W that
contains the arc (p, q). Suppose that we define the orientation of the cycle W along
the arc (i, j) if (i, j) ELand opposite to the arc (i, j) if (i, j) E U. Each nontree arc
in the cut [8, S] is (1) either a forward arc or a backward arc, and (2) either belongs
to L or belongs to U. Consider any arc (i,j) E (S, 8) n L. In this case, the orientation

Sec. 11.9 Related Network Simplex Algorithms 437

of the cycle is along arc (i, j); consequently, arc (p, q) will be a backward arc in
the cycle Wand sending additional flow along the orientation of the cycle will de
c.!.ease flow on the arc (p, q) [see Figure 11.21(a»). Next, consider any arc (i, j) E
(8,8) n U. In this case the orientation of the cycle is opposite to arc (i,j); therefore,
sending additional flow along the orientation of the cycle again decreases flow on
the arc (p, q) [see Figure 11.21(b»). The reader can easily verify that in the other
two cases when (i, j) E (8, 8) n U or (i, j) E (8, 8) n L, increasing flow along the
orientation of the cycle does not decrease flow on the arc (p, q). Consequently, we
define the set of eligible arcs as

Q = «8, 8) n L) U «8, 8) n U).

s s s s

(a) (a)

Figure 11.21 Identifying eligible arcs in the dual network simplex algorithm.

If Q = 0, we cannot reduce the flow on arc (p, q) and the minimum cost flow
problem is infeasible (see Exercise 11.37). If Q # 0, we must select as the entering
arc an eligible arc that would create a new spanning tree structure satisfying the
optimality conditions. This step is similar to the same step in the parametric network
simplex algorithm. We define a number Su for each eligible arc (i, j) in the following
manner:

S .. = { cij
IJ - cij

if (i, j) E L,
if (i,j) E u,

and select an arc (k, l) as the entering arc for which Ski = min{Sij: (i, j) E Q}. As
before, we say this dual pivot is degenerate if Ski = 0 and is nondegenerate otherwise.
We augment Xpq - Upq units of flow along the cycle created by the arc (k, /); doing
so decreases the flow on the arc (p, q) to value upq • Note that as a result of the
augmentation, the arc (p, q) becomes feasible; other feasible arcs, however, might
become infeasible. In the next spanning tree structure, the arc (k, I) replaces the
arc (p, q), and (p, q) becomes a nontree arc at its upper bound. Replacing the arc
(p, q) by the arc (k, l) in the spanning tree decreases the potential of each node in
8 by Ski units. (In the dual network simplex algorithm, the potential of node 1 might
not always be zero.) As in our discussion of the parametric network simplex algo
rithm, it is possible to show that the new spanning tree structure satisfies the op
timality conditions.

So far we have addressed situations in which the leaving arc (p, q) is infeasible
because Xpq > Upq • We now consider the case when Xpq < O. In this instance, to
make this arc feasible, we will increase its flow. The computations in this case are
exactly the same as in the previous case except that we define the subtrees TJ and

438 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

T2 so that p E T2 and q E T1 • We define the set of eligible arcs as Q = «S, S) n
L) U «S, S) n U) and select an eligible arc (k, I) with the minimum value of Skt as
the entering arc. We augment I Xpq I units of flow along the cycle created by the arc
(k, I); doing so increases the flow on arc (p, q) to value zero. In the next spanning
tree structure, arc (k, I) becomes a tree arc and (p, q) becomes a nontree arc at its
lower bound.

Proving the finiteness of the dual network simplex algorithm is easy if each
dual pivot is nondegenerate. As before, we assume that Xpq > u pq (a similar proof
applies when Xpq < 0). In this case the entering arc (k, I) belongs to (S, S) n L or
belongs to (S, S) n U. In the former case, cft > 0 and the flow on the arc (k, I)
increases by (xpq - u pq) > 0 units. In the latter case, cft < 0 and the flow on the
arc decreases by (xpq - u pq) > 0 units. In either case, the cost of the flow increases
by cft(xpq - u pq) > O. Since mCU is an upper bound on the objective function value
of the minimum cost flow problem and each nondegenerate pivot increases the cost
by at least 1 unit, the dual network simplex algorithm will terminate finitely whenever
every pivot is nondegenerate. In a degenerate pivot, the objective function value
does not change because the entering arc (k, I) satisfies the condition cft = O. In
Exercise 11.38 we describe a dual perturbation technique that avoids the degenerate
dual pivots altogether and yields a finite dual network simplex algorithm.

11.10 SENSITIVITY ANALYSIS

The purpose of sensitivity analysis is to determine changes in the optimal solution
of the minimum cost flow problem resulting from changes in the data (supply/demand
vector, capacity, or cost of any arc)~ In Section 9.11 we described methods for
conducting sensitivity analysis llSingilOnsimplex algorithms. In this section we de
scribe network simplex based algorithms for performing sensitivity analysis.

Sensitivity analysis adopts the following basic approach. We first determine
the effect of a given change in the data on the feasibility and optimality of the solution
assuming that the spanning tree structure remains unchanged~If the change affects
the optimality of the spanning tree structure, we perform (primal) pivots to achieve
optimality. Whenever the change destroys the feasibility of the spanning tree struc
ture, we perform dual pivots to achieve feasibility.

Let x* denote an optimal solution of the minimum cost flow problem. Let (T*,
L*, U*) denote the corresponding spanning tree structure and 'IT* denote the cor
responding node potentials. We first consider sensitivity analysis with respect to
changes in the cost coefficients.

Cost Sensitivity Analysis

Suppose that the cost of an arc (p, q) increases by A units. The analysis would be
different when arc (p, q) is a tree or a nontree arc.

Case 1. Arc (p, q) is a nontree arc.

In this case, changing the cost of arc (p, q) does not change the node potentials
of the current spanning tree structure. The modified reduced cost of arc (p,
q) is c;; + A. If the modified reduced cost satisfies condition (1l.lb) or (Il.1c),

Sec. 11.10 Sensitivity Analysis 439

whichever is appropriate, the current spanning tree structure remains optimal.
Otherwise, we reoptimize the solution using the network simplex algorithm
with (T*, L*, U*) as the starting spanning tree structure.

Case 2. Arc (p, q) is a tree arc.

In this case, changing the cost of arc (p, q) changes some node potentials. If
arc (p, q) is an upward-pointing arc in the current spanning tree, potentials of
all the nodes in D(p) increase by l\, and if (p, q) is a downward-pointing arc,
potentials of all the nodes in D(q) decrease by l\. Note that these changes alter
the reduced costs of those nontree arcs that belong to the cut [D(q), D(q)]. If
all nontree arcs still satisfy the optimality condition, the current spanning tree
structure remains optimal; otherwise, we reoptimize the solution using the
network simplex algorithm.

Supply/Demand Sensitivity Analysis

To study changes in the supply/demand vector, suppose that the supply/demand b(k)
of node k increases by l\ and the supply/demand bel) of another node I decreases by
l\. [Recall that since :LiEN b(i) = 0, the supplies of two nodes must change simul
taneously, by equal magnitudes and in opposite directions.] The mass balance con
straints require that we must ship l\ units of flow from node k to node t. Let P be
the unique tree path from node k to node t. Let P and l!., respectively, denote the
sets of arcs in P that are along and opposite to the direction ofthe path. The maximum
flow change &ij on an arc (i, j) E P that preserves the flow bounds is

Let

if (i,j) E P,
if (i, j) E f..

& = min{&ij:(i,j) E Pl.
If l\ ~ &, we send l\ units of flow from node k to node t along the path P. The

modified solution is feasible to the modified problem and since the modification in
b(i) does not affect the optimality of the solution, the resulting solution must be an
optimal solution of the modified problem.

If l\ > &, we cannot send l\ units of flow from node k to node t along the arcs
of the current spanning tree and preserve feasibility. In this case we send & units of
flow along P and reduce l\ to l\ - &. Let x 1 denote the updated flow . We next perform
a dual pivot (as described in the preceding section) to obtain a new spanning tree
that might allow additional flow to be sent from node k to node I along the tree path.
In a dual pivot, we first decide on the leaving variable and then identify an entering
variable. Let (p, q) be an arc in P that blocks us from sending additional flow from
node k to node t. If (p, q) E P, then X;q = upq and if (p, q) E f., then X~q = O. We
drop arc (p, q) from the spanning tree. Doing so partitions the set of nodes into two
subtrees. Let S denote the subtree containing node k and S denote the subtree
containing node t. Now consider the cut [S, S]. Since we wish to send additional
flow through the cut [S, S]' the arcs eligible to enter the tree would be the forward
arcs in the cut at their lower bound or backward arcs at their upper bounds. If the

440 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

· network contains no eligible arc, we can send no additional flow from node k to
node I and the modified problem is infeasible. If the network does contain qualified
arcs, then among these arcs, we select an arc, say (g, h), whose reduced cost has
the smallest magnitude. We introduce the arc (g, h) into the spanning tree and update
the node potentials.

We then again try to send A' = A - 3 units of flow from node k to node I on
the tree path. If we succeed, we terminate; otherwise, we send the maximum possible
flow and perform another dual pivot to obtain a new spanning tree structure. We
repeat these computations until either we establish a feasible flow in the network
or discover that the modified problem is infeasible.

Capacity Sensitivity Analysis

Finally, we consider sensitivity analysis with respect to arc capacities. Consider the
analysis when the capacity of an arc (p, q) increases by A units. (Exercise 11.40
considers the situation when an arc capacity decreases by A units.) Whenever we
increase the capacity of any arc, the previous optimal solution always remains fea
sible; to determine whether this solution remains optimal, we check the optimality
conditions (11.1). If arc (p, q) is a tr..ee..llrC or is a nontree arc at its lower bound,
increasing uPC!. py A does not affect the optimality condition for that arc. If, however,
arc (p, q) is a nontree arc at its upper bound and its capacity increases by A units,
the optimality condition (11.1 c) dictates that we must increase the flow on the arc
by A units. Doing so creates an excess of A units at node q and a deficit of A units
at node p. To achieve feasibility, we must send A units from node q to node p. We
accomplish'this objective by using the method described earlier in our discussion
of supply/demand sensitivity analysis.

11.11 RELATIONSHIP TO SIMPLEX METHOD

So far in this chapter, we have described the network simplex algorithm as a com
binatorial algorithm and used combinatorial arguments to show that the algorithm
correctly solves the minimum cost flow problem. This development has the advan
tage of highlighting the inherent combinatorial structure of the minimum cost flow
problem and of the network simplex algorithm. The approach has the disadvantage,
however, of not placing the network simplex method in the broader context of linear
programming. To help to rectify this shortcoming, in this section we offer a linear
programming interpretation of the network simplex algorithm. We show that the
network simplex algorithm is indeed an adaptation ofthe well-known simplex method
for general linear prQgrams. Because the minimum cost flow problem is a highly
structured linear programming problem, when we apply the simplex method to it,
the resulting computations become considerably streamlined. In fact, we need not
explicitly maitititn the matrix representation (known as the simplex tableau) of the
linear program and can perform all the computations directly on the network. As
we will see, the resulting computations are exactly the same as those performed by
the network simplex algorithm. Consequently, the network simplex algorithm is not
a new minimum cost flow algorithm; instead, it is a special implementation of the

Sec. 11.11 Relationship to Simplex Method 441

well-known simplex method that exploits the special structure of the minimum cost
flow problem.

Our discussion in this section requires a basic understanding of the simplex
method; Appendix C provides a brief review of this method. As we have noted
before, the minimum cost flow problem is the following linear program:

Minimize cx

subject to

Xx = b,

0:5 X :5 U.

The bounded variable simplex method for linear programming (or, simply, the
simplex method) maintains a basis structure (B, L, U) at every iteration and moves
from one basis structure to another until it obtains an optimal basis structure. The
set B is the set of basic variables, and the sets Land U are the nonbasic variables
at their lower and upper bounds. Following traditions in linear programming, we
also refer to the variables in B as a basis. Let (%, X, and au denote the sets of columns
in X corresponding to the variables in B, L, and U. We refer to (% as a basis matrix.
Our first result is a graph-theoretic characterization of the basis matrix.

Bases and Spanning Trees

We begin by establishing a one-to-one correspondence between bases of the mini
mum cost flow problem and spanning trees of G. One implication of this result is
that the basis matrix is always lower triangular. The triangularity of the basis matrix
is a key in achieving the efficiency of the network simplex algorithm.

We define the jth unit vector ej as a column vector of size n consisting of all
zeros except a 1 in thejth row. We let Xij denote the column of X associated with
the arc (i, j). In Section 1.2 we show that Xu = ei - ej. The rows of X are linearly
dependent since summing all the rows yields the redundant constraint

o = ~ b(i),
iEN

which is our assumption that the supplies/demands of all the nodes sum to zero. For
convenience we henceforth assume that we have deleted the first row in X (corre
sponding to node 1, which is treated as the root node). Thus X has at most n - 1
independent rows. Since the number of linearly independent rows of a matrix is the
same as the number of linearly independent columns, X has at most n - 1 linearly
independent columns. We show that the n - 1 columns associated with arcs of any
spanning tree are linearly independent and thus define a basis matrix of the minimum
cost flow problem.

Consider a spanning tree T. Let 0'3 be the (n - 1) x (n - 1) matrix defined
by the arcs in T. As an example, consider the spanning tree shown in Figure 11.22(a)
which corresponds to the matrix (% shown in Figure 11.22(b). The first row in
this matrix corresponds to the redundant row in X and deleting this row yields an
(n - 1) x (n - 1) square matrix. For the sake of clarity, however, we shall some
times retain the first row. We order the rows and columns of \% in a certain specific

442 Minimum Cost Flows: Network Simplex Algorithms Chap. Jl

/
/

;('/
(1,2) (3, 1) (3,5) (2,4) (2,4) (l,2) (3,5) (3,1)

-1 0 0 4 -1 0 0 0

2 -1 0 0 2 -1 0 0

3 0 0 5 0 0 -1 0

4 0 0 0 -1 3 0 0

5 0 0 -1 0 0 0 -1

(b) (c)

Figure 11.22 (a) Spanning tree and its reverse thread traversal; (b) basis matrix corre
sponding to the spanning tree; (c) bas~ matrix after rearranging the rows and columns.

manner. Doing so requires the reverse thread traversal of the nodes in the tree.
Recall that a reverse thread traversal visits each node before visiting its predecessor.
We order nodes and arcs in the following manner.

1. We order nodes of the tree in order of the reverse thread traversal. For our
example, this order is 4-2-5-3-1 [see Figure 11.22(a)].

2. We order the tree arcs by visiting the nodes in order of the reverse thread
traversal, and for each node i visited, we select the unique arc incident to it
on the path to the root node. For our example, this order is (2, 4), (1, 2),
(3, 5), and (3, 1).

We now arrange the rows and columns of 0"3 as specified by the preceding node
and arc orderings. Figure 11.22(c) shows the resulting matrix for our example. In
this matrix, if we ignore the row corresponding to node 1, we have a lower triangular
(n - 1) x (n - 1) matrix. The triangularity of the matrix is not specific to our
example: The matrix would be triangular in general. It is easy-to see why. Suppose
that the reverse thread traversal selects node i at some step. Letj = pred(i). Then
either (j, i) E T, or (i, j) E T. Without any loss of generality, we assume that
(i, j) E T. The reverse thread traversal ensures that we have not visited node j so
far. Consequently, the column corresponding to arc (i, j) will contain a +1 entry in
the row r corresponding to node i, will contain all zero entries above this row, and
will contain a-I entry corresponding to node j below row r (because we will visit
node j later). We have thus shown that this rearranged version of 0"3 is a lower
triangular matrix and that all of its diagonal elements are + 1 or - 1. We, therefore,
have established the following result.

Theorem 11.9 (Triangularity Property). The rows and columns of the node
arc incidence matrix of any spanning tree can be rearranged to be lower triangular .

•
The determinant of a lower triangular matrix is the product of its diagonal

elements. Since each diagonal element in the matrix is ± 1, the determinant is ± 1.
We now use the well-known fact from linear algebra that a set of (n -1) column

Sec. 11.11 Relationship to Simplex Method 443

vectors, each of size (n - 1), is linearly independent if and only if the matrix con
taining these vectors as columns has a nonzero detenninant. This result shows that
the columns corresponding to arcs of a spanning tree constitute a basis matrix of N.

We now establish the converse result: Every basis matrix 0'3 of N defines a
spanning tree. The fact that every basis matrix has the same number of columns
implies that every basis matrix 0'3 has (n - 1) columns. These columns correspond
to a subgraph G' of G having (n - 1) arcs. Suppose that G' contains a cycle
W. We assign any orientation to this cycle and consider the expression ~(i.j)EW
(± 1)Nij = ~(i.j)EW (± 1)(ei - ej); the leading coefficient of each term is + 1 for
those arcs aligned along the orientation of the cycle and is - 1 for arcs aligned
opposite to the orientation of the cycle. It is easy to verify that for each node j
contained in the cycle, the unit vector ej appears twice, once with a + 1 sign and
once with a-I sign. Consequently, the preceding expression sums to zero, indi
cating that the columns corresponding to arcs of a cycle are linearly dependent.
Since the columns of 0'3 are linearly independent, G' must be an acyclic graph. Any
acyclic graph on n nodes containing (n - 1) arcs must be a spanning tree. So we
have established the following theorem.

Theorem 11.10 (Basis Property). Every spanning tree ofG defines a basis of
the minimum cost flow problem and, conversely, every basis of the minimum cost
flow problem defines a spanning tree of G. •

Implications of Triangularity

In the preceding discussion we showed that we can arrange every basis matrix of
the minimum cost flow problem so that it is lower triangular and has an associated
spanning tree. We now show that the triangularity of the basis matrix allows us to
simplify the computations of the simplex method when applied to the minimum cost
flow problem.

When applied to the minimum cost flow problem, the simplex method maintains
a basis structure (B, L, U) at every step. Our preceding discussion implies that the
arcs in the set B constitute a spanning tree and the arcs in the set L U U are nontree
arcs. Therefore, this basis structure is no different from the spanning tree structure
that the network simplex algorithm maintains. Moreover, the process of moving
from one spanning tree structure to another corresponds to moving from one basis

\ structure to another in the simplex method.
The simplex method perfonns the following operations:

1. Given a basis structure (B, L, U), determine the associated basic feasible so
lution.

2. Given a basis structure (B, L, U), determine the associated simplex multipliers
'iT (or, dual variables).

3. Given a basis structure (B, L, U), check whether it is optimal, and if not, then
detennine an entering nonbasic variable Xkl.

4. Given a basis structure (B, L, U) and a nonbasic variable Xkl, determine the
representation, N kl, of the column N kl, corresponding to this variable in terms

444 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

of the basis matrix 0'3. We require this representation to perform the pivot
operation while introducing the variable Xkl into the current basis.

We consider these simplex operations one by one.

Computing the Basio Feasible Solution

Given the basis structure (B, L, U), the simplex method determines the associated
basic feasible solution by solving the follow~ng system of equations:

(11.5)

In this expression, XB denotes the set of basic variables, and XL and Xu denote
the sets of nonbasic variables at their lower and upper bounds. The simplex method
sets each nonbasic variable in XL to value zero, each nonbasic variable in Xu to its
upper bound, and solves the resulting system of equations. Let Uu be the vector of
upper bounds for variables in U and let b I = b - OUuu. The simplex method solves
the following system of equations:

0'3XB = b'. (11.6)

Let,us see how can we solve (11.6) for the minimum cost flow problem. For
simplicity of exposition, assume that XB = (X2, X3, ... , xn). (Assume that the row
corresponding to node 1 is the redundant row.) Since 0'3 is a lower triangular matrix,
the first row of 0'3 has exactly one nonzero element corresponding to X2. Therefore,
we can uniquely determine the value of X2. Since the coefficient of X2 is ± 1, the
value of X2 is integral. The second row of 0'3 has at most two nonzero elements,
corresponding to the variables X2 and X3. Since we have already determined the value
of X2, we can determine the value of X3 uniquely. Continuing to solve successively
for one variable at a time by this method of forward substitution, we can determine
the entire vector XB. Since the nonzero coefficients in the basis matrix 0'3 all have
the value ± 1, the only operations we perform are additions ang,subtractions, which
preserve the integrality of the solution.

It is easy to see that the computations required to solve the system of equations
0'3XB = b I are exactly same as those performed by the procedure compute-flows
described in Section 11.4. Recall that the procedure first modifies the supply/demand
vector b by setting the flows on the arcs in U equal to their upper bounds. The
modified supply/demand vector b ' equals b - OUuu. Then the procedure examines
the nodes in order of the reverse thread traversal and computes the flows on the
arcs incident to these nodes. To put the matrix 0'3 into a lower triangular form, we
ordered its rows using the reverse thread traversal of the nodes. As a result, the
procedure compute-flows computes flows on the arcs exactly in the same order as
solving the system of equation 0'3XB = b I by forward substitution.

Determining the Simplex Multipliers

The simplex algorithm determines the simplex multipliers 'iT associated with a basis
structure (B, L, U) by solving the following system of equations:

(11.7)

Sec. 11.11 Relationship to Simplex Method 445

In this expression, CB is the vector consisting of cost coefficients of the variables
in B. Assume, for simplicity of exposition, that 'IT = ('IT(2), 'IT(3), ... , 'IT(n)). Since
0'3 is a lower triangular matrix, the last column of 0'3 has exactly one nonzero element.
Therefore, we can immediately determine 'IT(n). The second to last column of 0'3 has
at most two nonzero elements, corresponding to 'IT(n - 1) and 'IT(n). Since we have
already computed 'IT(n), we can easily compute 'IT(n - 1), and so on. We can thus
solve (11. 7) by backward substitution and compute all the simplex multipliers by
performing only additions and subtractions. Since we have arranged the rows of 0'3
in the order of the reverse thread traversal of the nodes, and we determine simplex
multipliers in the opposite order, we are, in fact, determining the simplex multipliers
of nodes in the order dictated by the thread traversal. Recall from Section 11.4 that
the procedure compute-potentials also examines nodes and computes the node po
tentials by visiting the nodes via the thread traversal. Consequently, the procedure
compute-potentials is in fact solving the system of equations 'lT0'3 = CB by backward
substitution. Also, notice that the node potentials are the simplex multipliers main
tained by the simplex method.

optimality Testing

Given a basis structure (B, L, U), the simplex method computes the simplex mul
tipliers 'IT, and then tests whether the basis structure satisfies the optimality con
ditions (11.1) (see Appendix C). As expressed in terms of the reduced costs cli, the
optimality conditions are

for each (i, j) E A.

For the minimum cost flow problem, Xu = ei - ej and, therefore, cli = Cij -

'IT(i) + 'IT(j). Consequently, the reduced costs of the arcs as defined in the network
simplex algorithm are the linear programming reduced costs and the optimality con
ditions (11.1) for the network simplex algorithm are the same as the linear program
ming optimality conditions (see Section C.S). The selection of the entering arc
(k, l) in the network simplex algorithm corresponds to selecting the nonbasic variable
Xkl as the entering variable. To simplify our subsequent exposition, we assume that
the entering arc (k, l) is at its lower bound.

Representation of a Nonbasic Column

Once the simplex algorithm has identified a nonbasic variable Xkl to enter the basis,
it next obtains the representation X kl of the column corresponding to Xkl with respect
to the current basis matrix. We use this representation to determine the effect on
the basic variables of assigning a value e to Xkl, that is, to solve the system

XB = b' - Xk1e.

In this expression, b' = 0'3 - 1 b' and X kl = 0'3 - 1 X kl. Observe that - X kl denotes
the change in the values of basic variables as we increase the value of the entering
nonbasic variable Xkl by 1 unit (i.e., set e to value 1) and maintain all other nonbasic
variables at their current lower and upper bounds. What is the graph-theoretic sig
nificance of X kl?

446 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

The addition of arc (k, I) to the spanning tree T creates exactly one cycle, say
W. Define the orientation of the cycle W to align with the orientation of the arc
(k, I). Let Wand W denote the sets of forward and backward arcs in W. Observe
that if we wish to increase the flow on arc (k, I) by 1 unit, keeping the flow on all
other nontree arcs intact, then to satisfy the mass balance constraints we must aug
ment 1 unit of flow along W. This change would increase the flow on arcs in W by
1 unit and decrease the flow on arcs in W by 1 unit. This discussion shows that the

. fundamental cycle W created by the nontree.arc (k, l) defines the representation .Nkl

in the following manner. All the basic Ivariables corresponding to the arcs in W have
a coefficient of -1 in the column veqtor .Nkl , all the basic variables corresponding
to the arcs in W have a coefficient df" + 1, and all other basic variables have a
coefficient of O. This discussion also shows that in the network simplex algorithm,
augmenting flow in the fundamental cycle created by the entering arc (k, I) and
obtaining a new spanning tree solution corresponds to performing a pivot operation
and obtaining a new basis structure in the simplex method.

To summarize, we have shown that the network simplex algorithm is the same
as the simplex method applied to the minimum cost flow problem. The triangularity
of the basis matrix permits us to apply the simplex method directly on the network
without explicitly maintaining the simplex tableau. This possibility permits us to use
the network structure to greatly improve the efficiency of ' the simplex method for
solving the minimum cost flow problem.

In this section we have shown that the network simplex algorithm is an ad
aptation of the simplex method for solving general linear programs. A similar de
velopment would permit us to show that the parametric network simplex algorithm
is an adaptation of the right-hand-side parametric algorithm of linear programmi.ng,
and that the dual network simplex algorithm is an adaptation 'of the well-known dual
simplex method for solving linear programs. We leave the details of these results
as exercises (see Exercises 11.35 and 11.36).

11.12 UNIMODULARITY PROPERTY

In Section 11.4, using network flow algorithms, we established one of the funda
mental results of network flows, the integrality property, stating that every minimum
cost flow problem with integer supplies/demands and integer capacities has an integer
optimal solution. The type of constructive proof that we used to establish this result
has the obvious advantage of actually permitting us to compute integer optimal so
lutions. In that sense, constructive proofs have enormous value. However, con
structive proofs do not always identify underlying structural (mathematical) reasons
for explaining why results are true. These structural insights usually help in under
standing a subject matter, and often suggest relationships between the subject matter
and other problem domains or help to define potential limitations and generalization
of the subject matter. In this section we briefly examine the structural properties of
the integrality property, by providing an algebraic proof of this result. This discussion
shows relationships between the integrality property and certain integrality results
in linear programming.

Let .sa be a p x q matrix with integer elements and p linearly independent rows
(the matrix's rank is p). We say that the matrix .sa is unimodular if the determinant

Sec. 11.12 Unimodularity Property 447

of every basis matrix ~ of sIl has value + 1 or -1 [i.e., det(~) = ± 1]. Recall from
Appendix C that a p x p submatrix of sIl is a basis matrix if its columns are linearly
independent. The following classical result shows the relationship between uni
modularity and the integer solvability of linear programs.

Theorem 11.11 (Unimodularity Theorem). Let sIl be an integer matrix with lin
early independent rows. Then the following three conditions are equivalent:
(a) sIl is unimodular.
(b) Every basic feasible solution defined by the constraints sIlx = b, x 2: 0, is integer

for any integer vector b.
(c) Every basis matrix ~ of sIl has an integer inverse ~ -1 .

Proof. We prove the theorem by showing that (a) =? (b), (b) =? (c), and
(c) =? (a).

(a) =? (b). Each basic feasible solution XB has an associated basic matrix ~
for which ~XB = b. By Cramer's rule, any component Xj of the solution XB will be
of the form

det(integer matrix)
Xj = det(~)

We obtain the integer matrix in this formula by replacing the jth column of ~
with the vector b. Since, by assumption, sIl is unimodular, det(~) is ± 1, so Xj is
integer.

(b) =? (c). Let ~ be a basis matrix of sIl. Since ~ has a nonzero determinant,
its inverse ~ -1 exists. Let ej denote the jth unit vector (i.e., a vector with a 1 at
thejth position and 0 elsewhere). Let 05 = ~-1 and 05j denote thejth column of 05.
We will show that the column vector 05j is integer for eachj whenever condition (b)
holds. Select an integer vector IX so that 05j + IX 2: O. Let x = 05j + IX. Notice that

(11.8)

Multiplying the expression (11.8) by 05 = ~ -1, we see that x = 05j + IX. Since
ej + ~IX is integer (by definition), condition (b) implies that 05j + IX is integer.
Recalling that IX is integer, we find that 05j is also integer. This conclusion completes
the proof of part (b).

(c) =? (a). Let ~ be a basis matrix of sIl. By assumption, ~ is an integer matrix,
so det(~) is an integer. By condition (c), ~-1 is an integer matrix; consequently,
det(~ -1) is also an integer. Since ~ . ~ - 1 = I (i. e., an identity matrix),
det(~) . det(~-l) = 1, which implies that det(~) = det(~-l) = ± 1. •

This result shows us when a linear program of the form minimize ex, subject
to sIlx = b, x 2: 0, has integer optimal solutions for all integer right-hand-side vectors
b and for all cost vectors c. Network flow problems are the largest important class
of models that satisfy this integrality property. To establish a formal connection
between network flows and the results embodied in this theorem, we consider an
other noteworthy class of matrices.

Totally unimodular matrices are an important special subclass of unimodular

448 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

matrices. We say that a matrix :il is totally unimodular if each square submatrix of
:il has determinant 0 or ± 1. Every totally unimodular matrix :il is unimodular because
each basis matrix ~ must have determinant ± 1 (because the zero value of the de
terminant would imply the linear dependence of the columns of ~). However, a
unimodular matrix need not be totally unimodular. Totally unimodular matrices are
important, in large part, because the constraint matrices of the minimum cost flow
problems are totally unimodular.

Theorem 11.12. The node-arc incidence matrix .N of a directed network is
totally unimodular.

Proof To prove the theorem, we need to show that every square submatrix
<iF of.N of size k has determinant 0, + 1, or -1. We establish this result by performing
induction on k. Since each element of N is 0, + 1, or -1, the theorem is true for
k = 1. Now suppose that the theorem holds for some k. Let <iF be any (k + 1) x
(k + 1) submatrix of .N. The matrix <iF satisfies exactly one of the three following
possibilities: (1) <iF contains a column with no nonzero element; (2) every column of
<iF has exactly two nonzero elements, in which case, one of these must be a + 1 and
the another a -1; and (3) some column <iF I has exactly one nonzero element, in, say,
the ith row. In case (1) the determinant of <iF is zero and the theorem holds. In case
(2) summing all of the rows in <iF yields the zero vector, implying that the rows in
<iF are linearly dependent and, consequently, det(<iF) = 0. In case (3) let <iF' denote
the submatrix of <iF obtained by deleting the ith row and the lth column. Then
det(<iF) = ± 1 det(<iF'). By the induction hypothesis, det(<iF') is 0, + 1, or -1, so
det(<iF) is also 0, + 1, or -1. This conclusion establishes the theorem. •

This result, combined with Theorem 11.11, provides us with an algebraic proof
of the integrality property of network flows: Network flow models have integer
optimal solutions because every node-arc incidence matrix is totally unimodular
and therefore unimodular. As we will see in later chapters,-the constraint matrices
for many extensions of the basic network flow problem, for example, generalized
flows and multicommodity flows, are not unimodular. Therefore, we would not ex
pect the optimal solutions of these models to be integer even when all of the un
derlying data are integer. Therefore, to find integer solutions to these problems, we
need to rely on methods of integer programming. Although our development of the
minimum cost flow problem has not stressed this point, one of the primary reasons
that we are able to solve this problem so efficiently, and still obtain integer solutions,
is because, as reflected by the integrality property, the basic feasible solutions of
the linear programming formulation of this problem are integer whenever the un
derlying data are integer.

To close this section, we might note that the unimodularity properties provide
us with a very strong result: any basic feasible solution is guaranteed to be integer
valued whenever the right-hand-side vector b is integer. It is possible, however, that
basic feasible solutions to a linear program might be integer valued for a particular
right-hand side even though they might be fractional for some other right-hand sides.
We illustrate this possibility in Section 13.8 when we give an integer programming
formulation of the minimal spanning tree problem.

Sec. 11.12 Unimodularity Property 449

11.18 SUMMARY

The network simplex algorithm is one of the most popular algorithms in practice for
solving the minimum cost flow problem. This algorithm is an adaptation for the
minimum cost flow problem of the well-known simplex method of linear program
ming. The linear programming basis of the minimum cost flow problem is a spanning
tree. This property permits us to simplify the operations of the simplex method
because we can perform all of its operations on the network itself, without main
taining the simplex tableau. Our development in this chapter does not require linear
programming background because we have developed and proved the validity of the
network simplex algorithm from first principles. Later in the chapter we showed the
connection between the network simplex algorithm and the linear programming sim
plex method.

The development in this chapter relies on the fact that the minimum cost flow
problem always has an optimal spanning tree solution. This result permits us to
restrict our search for an optimal solution among spanning tree solutions. The net
work simplex algorithm maintains a spanning tree solution and successively trans
forms it into an improved spanning tree solution until it becomes optimal. At each
iteration, the algorithm selects a nontree arc, introduces it into the current spanning
tree, augments the maximum possible amount of flow in the resulting cycle, and
drops a blocking arc from the spanning tree, yielding a new spanning tree solution.
The algorithm is flexible in the sense that we can select the entering arc in a variety
of ways and obtain algorithms with different worst-case and empirical attributes.

The network simplex algorithm does not necessarily terminate in a finite num
ber of iterations unless we impose some additional restrictions on the choice of the
entering and leaving arcs. We described a special type of spanning tree solution,
called the strongly feasible spanning tree solution; when implemented in a way that
maintains strongly feasible spanning tree solutions, the network simplex algorithm
terminates finitely for any choice of the rule used for selecting the entering arc. We
can maintain strongly feasible spanning tree solutions by selecting the leaving arc
appropriately whenever several arcs qualify to be the leaving arc.

We also specialized the network simplex algorithm for the shortest path and
maximum flow problems. When specialized for the shortest path problem, the al
gorithm maintains a directed out-tree rooted at the source node and iteratively mod
ifies this tree until it becomes a tree of shortest paths. When we specialize the
network simplex algorithm for the maximum flow problem, the algorithm maintains
an s-t cut and selects an arc in this cut as the entering arc until the associated cut
becomes a minimum cut.

The network simplex algorithm has two close relatives that might be quite useful
in some circumstances: the parametric network simplex algorithm and the dual net
work simplex algorithm. The parametric network simplex algorithm maintains a
spanning tree solution and parametrically increases the flow from a source node to
a sink node until the algorithm has sent the desired amount of flow between these
nodes. This algorithm is useful in situations in which we want to maximize the amount
of flow to be sent from a source node to a sink node, subject to an upper bound on
the cost of flow (see Exercise 10.25). The dual network simplex algorithm maintains
a spanning tree solution in which spanning tree arcs do not necessarily satisfy the

450 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

flow bound constraints. The algorithm successively attempts to satisfy the flow
bound constraints. The primary use of the dual network simplex algorithm has been
for reoptimizing the minimum cost flow problem procedures for solving the minimum
cost flow problem after we have changfd the supply/demand or capacity data.

We also described methods for usiQg the network simplex algorithm to conduct
sensitivity analysis for the minimum cost flow problem with respect to the changes
in costs, supplies/demands, and capacities. The resulting methods maintain a span
ning tree solution and perform primal or dual pivots. Unlike the methods described
in Section 9.11, these methods for conducting sensitivity analysis do not necessarily
run in polynomial time (without further refinements). However, network simplex
based sensitivity analysis is excellent in practice.

The minimum cost flow problem always has an integer optimal solution; at the
beginning of the chapter, we gave an algorithmic proof of this integrality property.
We also examined the structural properties of the integrality property by providing
an algebraic proof of this result. We showed that the constraint matrix of the min
imum cost flow problem is totally unimodular and that, consequently, every basic
feasible solution (or, equivalently, spanning tree solution) is an integer solution.

REFERENCE NOTES

Dantzig [1951] developed the network simplex algorithm for the uncapacitated trans
portation problem by specializing his linear programming simplex method. He
proved the spanning tree property of the basis and the integrality property of the
optimal solution. Later, his development of the upper bounding technique for linear
programming led to an efficient specialization of the simplex method for the minimulV
cost flow problem. Dantzig's [1962] book discusses these topics. .

The network simplex algorithm gained its current popularity in the early 1970s
when the research community began to develop and test algorithms using efficient
tree indices. Johnson [1966] suggested the first tree indices. Srinivasan and Thomp
son [1973], and Glover, Karney, Klingman, and Napier [1974] implemented these
ideas; these investigations found the network simplex algorithm to be substantially
faster than the existing codes that implemented the primal-dual and out-of-kilter
algorithms. Subsequent research has focused on designing improved tree indices and
determining the best pivot rule. The book by Kennington and Helgason [1980] de
scribes a variety of tree indices and specifies procedures for updating them from
iteration to iteration. The book by Bazaraa, Jarvis, and Sherali [1990] also describes
a method for updating tree indices. The following papers describe a variety of pivot
rules and the computational performance of the resulting algorithms: Glover, Kar
ney, and Klingman [1974], Mulvey [1978], Bradley, Brown, and Graves [1977], Gri
goriadis [1986], and Chang and Chen [1989]. The candidate list pivot rule that we
describe in Section 11.5 is due to Mulvey [1978]. The reference notes of Chapter 9
contain information concerning the computational performance of the network sim
plex algorithm and other minimum cost flow algorithms.

Experience with solving large-scale minimum cost flow problems has shown
that for certain classes of problems, more than 90% of the pivots in the network
simplex algorithm can be degenerate. The strongly feasible spanning tree technique,
proposed by Cunningham [1976] for the minimum cost flow problem, and indepen-

Chap. 11 Reference Notes 451

dently by Barr, Glover, and Klingman [1977] for the assignment problem, helps to
reduce the number of degenerate steps in practice and ensures that the network
simplex algorithm has a finite termination. Although the strongly feasible spanning
tree technique prevents cycling during a sequence of consecutive degenerate pivots,
the number of consecutive degenerate pivots can be exponential. This phenomenon
is known as stalling. Cunningham [1979] and Goldfarb, Hao, and Kai [1990b] describe
several antistalling pivot rules for the network simplex algorithm.

Researchers have attempted, with partial success, to develop polynomial-time
implementations of the network simplex algorithm. TaIjan [1991] and Goldfarb and
Hao [1988] have described polynomial-time implementations of a variant of the net
work simplex algorithm that permits pivots to increase value of the objective func
tion. A monotone polynomial-time implementation, in which the value of the ob
jective function is nonincreasing (as it does in any natural implementation), remains
elusive to researchers.

Several FORTRAN codes of the network simplex algorithm are available in
the public domain. These include (1) the RNET code developed by Grigoriadis and
Hsu [1979], (2) the NETFLOW code developed by Kennington and Helgason [1980],
and (3) a recent code by Chang and Chen [1989].

We next give selected references for several specific topics.

Shortest path problem. We have adapted the network simplex algorithm
for the shortest path problem from Dantzig [1962]. Goldfarb, Hao, and Kai [1990a]
and Ahuja and arlin [1992a] developed the polynomial-time implementations of this
algorithm that we have presented in Section 11.7. Additional polynomial-time im
plementations can be found in arlin [1985] and Akgiil [1985a].

Maximum flow problem. Fulkerson and Dantzig [1955) specialized the net
work simplex algorithm for the maximum flow problem. Goldfarb and Hao [1990]
gave a polynomial-time implementation of this algorithm that performs at most nm
pivots and runs in O(n2m) time; Goldberg, Grigoriadis, and Trojan [1988] describe
an O(nm log n) implementation of this algorithm.

Assignment problem. One popular implementation of the network simplex
algorithm for the assignment problem is due to Barr, Glover, and Klingman [1977].
Roohy-Laleh [1980], Hung [1983], arlin [1985], Akgiil [1985b], and Ahuja and arlin
[1992a] have presented polynomial-time implementations of the network simplex
algorithm for the assignment problem. Balinski [1986) and Goldfarb [1985] present
polynomial-time dual network simplex algorithms for the assignment problem.

Parametric network simplex algorithm. Schmidt, Jensen, and Barnes
[1982], and Ahuja, Batra, and Gupta [1984) are two sources for additional information
on the parametric network simplex algorithm.

Dual network simplex algorithm. Ali, Padman, and Thiagarajan [1989]
have described implementation details and computational results for the dual net
work simplex algorithm. Although no one has yet devised a (genuine) polynomial
time primal network simplex algorithm, arlin [1984] and Plotkin and Tardos [1990]

452 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

have developed polynomial-time dual network simplex algorithms. The algorithm of
Orlin [1984J is more efficient if capacities satisfy the similarity assumption; other
wise, the algorithm of Plotkin and Tardos [1990J is more efficient. The latter algorithm
performs O(m2 log n) pivots and runs in O(m3 log n) time.

Sensitivity analysis. Srinivasan and Thompson [1972J have described para
metric and sensitivity analysis for the transportation problem, which is similar to
that for the minimum cost flow problem. Ali, Allen, Barr, and Kennington [1986J
also discuss reoptimization procedures for the minimum cost flow problem.

Unimodularity. Hoffman and Kruskal [1956J first proved Theorem 11.11;
the proof we have given is due to Veinott and Dantzig [1968J. The book by Schrijver
[1986J presents an in-depth treatment of the unimodularity property and related
topics.

EXERCISES

11.1. Nurse scheduling problem. A hospital administrator needs to establish a staffing sched
ule for nurses that will meet the minimum daily requirements shown in Figure 11.23.
Nurses reporting to the hospital wards for the first five shifts work for 8 consecutive
hours, except nurses reporting for the last shift (2 A.M. to 6 A.M.), when they work
for only 4 hours. The administrator wants to determine the minimal number of nurses
to employ to ensure that a sufficient number of nurses are available for each period.
Formulate this problem as a network flow problem.

Shift 1 2 3 4 5 6

Clock 6 A.M. 10 A.M. 2 P.M. 6 P.M. 10 P.M. 2 A.M.

time to to to to to to
10 A.M. 2 P.M. 6 P.M. 10 P.M. 2 A.M. 6 A.M.

-."

Minimum 70 80 50 60 40 30
nurses
required

Figure 11.23 Nurse scheduling problem.

11.2. Caterer problem. As part of its food service, a caterer needs dj napkins for each day
of the upcoming week. He can buy new napkins at the price of u cents each or have
his soiled napkins laundered. Two types of laundry service are available: regular and
expedited. The regular laundry service requires two working days and costs 13 cents
per napkin, and the expedited service requires one working day and costs "I cents per
napkin ("I > 13). The problem is to determine a purchasing and laundry policy that
meets the demand at the minimum possible cost. Formulate this problem as a minimum
costs flow problem. (Hint: Define a network on 15 nodes, 7 nodes corresponding to
soiled napkins, 7 nodes corresponding to fresh napkins, and 1 node for the supply of
fresh napkins.)

11.3. Project assignment. In a new industry-funded academic program, each master's degree
student is required to undertake a 6-month internship project at a company site. Since
the projects are such an important component of the student's educational program

Chap. 11 Exercises 453

and vary considerably by company (e.g., by the problem and industry context) and
by geography, each student would like to undertake a project of his or her liking. To
assure that the project assignments are' 'fair," the students and program administrators
have decided to use an optimization approach: Each student ranks the available
projects in order of increasing preference (lowest to highest). The objective is to assign
students to projects to achieve the highest sum of total ranking of assigned projects.
The project assignment has several constraints. Each student must work on exactly
one project, and each project has an upper limit on the number of students it can
accept. Each project must have a supervisor, drawn from a known pool of eligible
faculty. Finally, each faculty member has bounds (upper and lower) on the number
of projects that he or she can supervise. Formulate this problem as a minimum cost
flow problem.

11.4. Passenger routing. United Airlines has six daily flights from Chicago to Washington.
From 10 A.M. until 8 P.M., the flights depart every 2 hours. The first three flights have
a capacity of 100 passengers and the last three flights can accommodate 150 passengers
each. If overbooking results in insufficient room for a passenger on a scheduled flight,
United can divert a passenger to a later flight. It compensates any passenger delayed
by more than 2 hours from his or her regularly scheduled departure by paying $200
plus $20 for every hour of delay. United can always accommodate passengers delayed
beyond the 8 P.M. flight on the 11 P.M. flight of another airline that always has a great
deal of spare capacity. Suppose that at the start of a particular day the six United
flights have 110, 160, 103, 149, 175, and 140 confirmed reservations. Show how to
formulate the problem of determining the most economical passenger routing strategy
as a minimum cost flow problem.

11.5. Allocating receivers to transmitters (Dantzig [1962]). An engine testing facility has four
types of instruments: u. thermocouplers, U2 pressure gauges, U3 accelerometers, and
U4 thrust meters. Each instrument measures one type of engine characteristic and
transmits its measurements over a separate communication channel. A set of receivers
receive and record these data. The testing facility uses four types of receivers, each
capable of recording one channel of information: 131 cameras, 132 oscilloscopes, 133
instruments called "Idiots," and 134 instruments called "Hathaways." The setup time
of each receiver depends on the measurement instruments that are transmitting the
data; let elj denote the setup time needed to prepare a receiver of type i to receive
the information transmitted from any measurement taken by the jth instrument. The
testing facility wants to find an allocation of receivers to transmitters that minimizes
the total setup time. Formulate this problem as a network flow problem.

11.6. Faculty-course assignment (Mulvey [1979]). In 1973, the Graduate School of Manage
ment at UCLA revamped its M.B.A. curriculum. This change necessitated an in
creased centralization of the annual scheduling of faculty to courses. The large size
of the problem (100 faculty, 500 courses, and three quarters) suggested that a mathe
matical model would be useful for determining an initial solution. The administration
knows the courses to be taught in each of the three teaching quarters (fall, winter,
and spring). Some courses can be taught in either of the two specified quarters; this
information is available. A faculty member might not be available in all the quarters
(due to leaves, sabbaticals, or other special circumstances) and when he is available
he might be relieved from teaching some courses by using his project grants for "fac
ulty offset time." Suppose that the administration knows the quarters when a faculty
member will be available and the total number of courses he will be teaching in those
quarters. The school would like to maximize the preferences of the faculty for teaching
the courses. The administration determines these preferences through an annual fac
ulty questionnaire. The preference weights range from - 2 to + 2 and the administra
tion occasionally revises the weights to reflect teaching ability and student inputs.
Suggest a network model for determining a teaching schedule.

11.7. Optimal rounding ofa matrix (Bacharach [1966], Cox and Ernst [1982]). In Application
6.3 we studied the problem of rounding the entries of a table to their nearest integers

454 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

while preserving the row and column sums of the matrix. We refer to any such rounding
as a consistent rounding. Rounding off an element of the matrix introduces some error.
If we round off an element aij to bij and bij = laijJ or bij = r aij 1, we measure the
error as (aij - b;)2. Summing these terms for all the elements of the matrix gives us
an error associated with any consistent rounding scheme. We say that a consistent
rounding is an optimal rounding if the error associated with this rounding is as small
as the error associated with any consistent rounding. Show how to determine an op
timal rounding by solving a circulation problem. (Hint: Construct a network similar
to the one used in Application 6.3. Define the arc costs appropriately.)

11.8. Describe an algorithm that either identifies p arc-disjoint directed paths from node s
to node t or shows that the network does not contain any such set of paths. In the
former case, show how to determine p arc-disjoint paths containing the fewest number
of arcs. Suggest modifications of this algorithm to identify p node-disjoint directed
paths from node s to node t containing the fewest number of arcs.

11.9. Show that a tree is a directed out-tree T rooted at node s if and only if every node in
T except node s has indegree 1. State (but do not prove) an equivalent result for a
directed in-tree.

11.10. Suppose that we permute the rows and columns of the node-arc incidence matrix .N
of a graph G. Is the modified matrix a node-arc incidence matrix of some graph G'?
If so, how are G' and G related?

11.11. Let T be a spanning tree of G = (N, A). Every nontree arc (k, l) has an associated
fundamental cycle which is the unique cycle in T U {(k, I)}. With respect to any
arbitrary ordering of the arcs U], h), (i2 , j2), ... , Urn, jrn), we define the incidence
vector of any cycle Win G as an m-vector whose kth element is (1) 1, if (h, A) is a
forward arc in W; (2) - 1, if Uk. A) is a backward arc in W; and (3) 0, if Uk, A) E w.
Show how to express the incidence vector of any cycle Was a sum of incidence vectors
of fundamental cycles.

11.12. Figure 11.24(b) gives a feasible solution of the minimum cost flow problem shown in
Figure 11.24(a). Convert this solution into a spanning tree solution with the same ,or
lower cost. .

60

b(i) b(j)

®f--(~Clj,--.' u--,ij_) ~~ 0
-15 -60

10 -5
(a)

(1,35)

(b)

Figure 11.24 Example for Exercise 11.12: (a) problem data; (b) feasible solution.

25

11.13. Figure 11.25 specifies two spanning trees for the minimum cost flow problem shown
in Figure 11.24(a). For Figure 11.25(a), compute the spanning tree solution assuming
that all nontree arcs are at their lower bounds. For Figure 11.25(b), compute the
spanning tree solution assuming that all nontree arcs are at their upper bounds.

Chap. 11 Exercises 455

(a) (b)

Figure 11.25 Two spanning trees of the network in Figure I I .24.

11.14. Assume that the spanning trees in Figure 11.25 have node 1 as their root. Specify the
predecessor, depth, thread, and reverse thread indices of the nodes.

11.15. Compute the node potentials associated with the trees shown in Figure 11.25, which
are the spanning trees of the minimum cost flow problem given in Figure 11.24(a).
Verify that for each node j, the node potential 'IT(j) equals the length of the tree path
from node j to the root.

11.16. Consider the minimum cost flow problem shown in Figure 11.26. Using the network
simplex algorithm ini.plemented with the first eligible pivot rule, find an optimal so
lution of this problem. Assume, as always, that arcs are arranged in the increasing
order of their tail nodes, and for the same tail node, they are arranged in the increasing
order of their head nodes. Use the following initial spanning tree structure: T =
{(t, 2), (3, 2), (2, 5), (4, 5), (4, 6)}, L = {(3, 5)}, and U = {(I, 3), (2, 4), (5, 6)}.

20

(4, 15)

b(i) b(j)

~I-_(-,Ci},-.' u-,,",--) -.. ~

o o

(3,10)

(2, 10) ~
(7,20) (8, 10) ~-20

fl"3'Jil-__ -.V'5l

o 0

Figure 11.26 Example for Exercises
11.16 and 11.17.

11.17. Using the network simplex algorithm implemented with Dantzig's pivot rule, solve
the minimum cost flow problem shown in Figure 11.26. Use the same initial spanning
tree structure as used in Exercise 11.16.

11.18. In the procedure compute-potentials, we set 'ITO) = 0 and then compute other node
potentials. Suppose, instead, that we set 'IT(1) = C/. for some C/. > 0 and then recompute
all the node potentials. Show that all the node potentials increase by the amount C/..

Also show that this change does not affect the reduced cost of any arc.
11.19. Justify the procedure compute-jlows for capacitated networks.
11.20. In the candidate list pivot rule, let size denote the ma~imum allowable size of the

candidate list and iter denote the maximum number of minor iterations to be performed
within a major iteration.

456 Minimum Cost Flows: Network Simplex Algorithms Chap. 11

(a) Specify values of size and iter so that the candidate list pivot rule reduces to
Dantzig's pivot rule.

(b) Specify values of size and iter so that the candidate list pivot rule reduces to the
first eligible arc pivot rule.

11.21. In Section 11.5 we showed how to find the apex of the pivot cycle Win 0(/ Wi) time
using the predecessor and depth indices. Show that by using predecessor indices alone,
you can find the apex of the pivot cycle in O(/wl) time. (Hint: Do so by scanning at
most 2/WJ arcs.)

11.22. Given the predecessor indices of a spanning tree, describe an O(n) time method for
computing the thread and depth indices.

11.23. Desciibe methods for updating the predecessor and depth indices of the nodes when
performing a pivot operation. Your method should require O(n) time and should run
faster than recomputing these indices from scratch.

11.24. Prove that in a spanning tree we can send a positive amount of flow from any 'node
to the root without violating any flow bound if and only if every tree arc with zero
flow is upward pointing and every tree arc at its upper bound is downward pointing.

11.25. Let G(x) denote the residual network corresponding to a flow x. Show that a spanning
tree T is a strongly feasible spanning tree if and only if for every node i E N - {I},
G(x) contains the arc (i, pred(i».

11.26. Primal perturbation. In the minimum cost flow problem on a network G, suppose that
we alter the supplyldemand vector from value b to value b + E for some vector E.
Let us refer to the modified problem as a perturbed problem. We consider the per
turbation E defined by E(i) = lin for all i = 2,3, ... , n, and E(1) = -en - l)ln.
(a) Let T be a spanning tree of G and let D(j) denote the set of descendants of node

j in T. Show that the perturbation decreases the flow on a downward-pointing arc
(i, j) by the amount I D(j) lin and increases the flow on an upward-pointing arc
(i, j) by the amount I D(i) lin. Conclude that in a strongly feasible spanning tree
solution, each arC flow is nonzero and is an integral multiple of lin.

(b) Use the result in part (a) to show that the network simplex algorithm solves the
perturbed problem in pseudopolynomial time irrespective of the pivot rule used
for selecting entering arcs.

11.27. Perturbation and strongly feasible solutions. Let (T, L, U) be a feasible spanning tree
structure of the minimum cost flow problem and let E be a perturbation as defined in
Exercise 11.26. Show that (T, L, U) is strongly feasible if and only if (T, L, U) remains
feasible when we replace b by b + E. Use this equivalence to show that when im
plemented to maintain a strongly feasible basis, the network simplex algorithm runs
in pseudopolynomial time irrespective of the pivot rule used for selecting entering
arcs.

11.28. Apply the network simplex algorithm to the shortest path problem shown in Figure
11.27(a). Use a depth-first search tree with node 1 as the source node in the initial
spanning tree solution and perform three iterations of the algorithm.

11.29. Apply the network simplex algorithm to the maximum flow problem shown in Figure
11.27(b). Use the following spanning tree as the initial spanning tree: a breadth-first
search tree rooted at node 1 and spanning the nodes N - it} plus the arc (t, s). Show
three iterations of the algorithm.

11.30. Consider the application of the network simplex algorithm, implemented with the fol
lowing pivot rule, for solving the shortest path problem. We examine all the nodes,
one by one, in a wraparound fashion. Each time we examine a node i, we scan all
incoming arcs at that node, and if the incoming arcs contain an eligible arc, we pivot
in the arc with the maximum violation. We terminate when during an entire pass of
the nodes, we find that no arc is eligible. Show when implemented with this pivot
rule, the network simplex algorithm would perform O(n2) pivot operations and would
run in O(n3) time. (Hint: The proof is similar to the proof of the first eligible arc pivot
rule that we discussed in Section 11.7.)

Chap. 11 Exercises 457

8 5

2
10 3 4

(b)

Figure 11.27 Examples for Exercises 11.28 and 11.29.

11.31. The assignment problem, as formulated as a linear programming in (12.1), is a special
case of the minimum cost flow problem. Show that every strongly feasible spanning
tree of the assignment problem satisfies the following properties: (1) every downward
pointing arc carries unit flow; (2) every upward-pointing arc carries zero flow; and (3)
every downward-pointing arc is the unique arc with flow equal to 1 emanating from
node i.

11.32. In a strongly feasible spanning tree of the assignment problem, a nontree arc (k, l) is
a downward arc if node I is a descendant of node k. Show that when the network
simplex algorithm, implemented to maintain strongly feasible spanning trees, is applied
to the assignment problem, a pivot is nondegenerate if and only if the entering arc is
a downward arc.

11.33. Solve the minimum cost flow problem shown in Figure 11.26 by the parametric network
simplex algorithm.

11.34. Show how to solve the constrained maximum flow problem, as defined in Exercise
10.25, by a single application of the parametric network simplex algorithm.

11.35. Show that the parametric network simplex algorithm described in Section 11.9 is an
adaptation of the right-hand-side parametric simplex method of linear programming.
(Consult any linear programming textbook for a review of the parametric simplex
method of linear programming.)

11.36. Show that the dual network simplex algorithm described in Section 11.9 is an adap
tation of the dual simplex method of linear programming. (Consult any linear pro
gramming textbook for a review of the dual simplex method of linear programming).

11.37. At some point during its execution, the dual network simplex algorithm that we dis
cussed in Section 11.9 might find that the set Q of eligible arcs is empty. In this case
show that the minimum cost flow problem is infeasible. (Hint: Use the result in Ex
ercise 6.43.)

11.38. Dual perturbation. Suppose that we modify the cost vector c of a minimum cost flow
problem on a network G in the following manner. After arranging the arcs in some
order, we add! to the cost of the first arc, ~ to the cost of the second arc, ~ to the
cost of the third arc, and so on. We refer to the perturbed cost as c', and the minimum
cost flow problem with the cost c' as the perturbed minimum cost flow problem.

458

(a) Show that if x* is an optimal solution of the perturbed problem, x* is also an
optimal solution of the original problem. (Hint: Show that if G(x*) does not contain
any negative cycle with cost c', it does not contain any negative cycle with cost
c.)

(b) Show that if we apply the dual network simplex algorithm to the perturbed prob
lem, the reduced cost of each nontree arc is nonzero. Conclude that each dual

Minimum Cost Flows: Network Simplex Algorithms Chap. 11

pivot in the algorithm will be nondegenerate and that the algorithm will terminate
finitely. (Hint: Use the fact that the reduced cost of a nontree arc (k, l) is the cost
of the fundamental cycle created by adding arc (k, l) to the spanning tree.)

11.39. In Exercise 9.24 we considered a numerical example concerning sensitivity analysis
of a minimum cost flow problem. Solve the same problem using the simplex-based
methods described in Section 11.10.

11.40. In Section 11.10 we described simplex-based procedures for reoptimizing a minimum
cost flow solution when some cost coefficient Cij increases or some flow bound uij

decreases. Modify these procedures so that we can use them to handle situations in
which (1) some cij decreases, or (2) some uij decreases.

11.41. Let ~ denote the basis matrix associated with the columns of the spanning tree in
Figure 11.25(a). Rearrange the rows and columns of ~ so that it is lower triangular.

11.42. Let G' = (N, A') be a subgraph of G = (N, A) containing I A' I = n - 1 arcs. Let
~' be the square matrix defined by the columns of arcs in A' (where we delete one
redundant row). Show that A' is a spanning tree of G if and only if the determinant
of~' is ± 1.

11.43. Computation of ~ -1. In this exercise we discuss a combinatorial method for computing
the inverse of a basis matrix ~ of the minimum cost flow problem. (We assume that
we have deleted a redundant row from ~.) By definition, ~~ -I = !P, an identity
matrix. Therefore, thejth column ~j-I of the inverse matrix ~ -I satisfies the condition
~~j-I = ej. Consequently, ~j-I is the unique solution x of the system of equations
~x = ej. Assuming that we have deleted the row corresponding to node 1, x is the
flow vector obtained from sending 1 unit of flow from node j to node 1 on the tree
arcs corresponding to the basis. Use this result to compute ~ -I for the basis ~ defined
by the spanning trees shown in Figure 11.25(a).

11.44. Show that a matrix sIl whose components are 0, + 1, or -1 is totally unimodular if it
satisfies both of the following conditions: (1) each column of sIl contains at most two
nonzero elements; and (2) the rows of sIl can be partitioned into two subsets sill and
sIl2 so that the two nonzero entries in any column are in the same set of rows if they
have different signs and are in different set of rows if they have the same sign.

11.45. Let.N be a totally unimodular matrix. Show that .NT and [.N, -.N] ar~ also totally
unimodular.

11.46. Show that a matrix .N is totally unimodular if and only if the matrix [.N, !P] is uni
modular.

11.47. Let T be a spanning tree of a directed network G = (N, A) with node 1 as a designated
root node. Let d(i, j) denote the number of arcs on the tree path from node i to node
j in T.
(a) For the given tree T, the average depth is (kEN d(1 , j))/n, and the average cycle

length is (Lnontree arcs (i,j) d(i, j) + l)/(m - n + 1). Show that if G is a complete
graph, the average cycle length is at most twice the average depth. Show that this
relationship is not necessarily valid if the graph is not complete. (Hint: Use the
fact that the length of the cycle created by adding the arc (i, j) to the tree is at
most d(1, i) + d(1, j) + 1.)

(b) For a given tree T, let D(j) denote the set of descendants of node j. The average
subtree size ofT is (kEN I D(j) I)/n. Show that the average subtree size is 1 more
than the average depth. (Hint: Let E(j) denote the number of ancestors of node
j in the tree T. First show that kEN I E(j) I = LjEN I D(j) I.)

11.48. Cost parametrization (Srinivasan and Thompson [1972]). Suppose that we wish to solve
a parametric minimum cost flow problem when the cost Cij for each arc (i, j) E A is
given by Cij = c~ + ~c'lJ for some constants c~ and c'lJ and we want to find an optimal
solution for all values of the parameter ~ in a given interval [a, 13].
(a) Let (T, L, U) be an optimal spanning tree structure for the minimum cost flow

problem for some value ~ of the parameter. Let 'ITo denote the node potentials for
the tree T when c~ are the arc costs, and let 'IT* denote node potentials when

Chap. 11 Exercises 459

ct are the arc costs in T (we can compute these potentials using the procedure
compute-potentials). Show that 'ITo + ~'IT* are the node potentials for the tree T
when t!!e arc costs are cg + ~ct. Use this result to identify the largest value of
~, say ~, for which (T, L, U) satisfies the optimality conditions.

(b) Show that at ~ = X:, some nontree arc (k, l) satisfies its optimality condition as
an equality and violates the optimality condition when ~ > X:. Show that if we
perform the pivot operation with arc (k, I) as the entering ars the new spanning
tree structure also satisfies the optimality conditions at ~ = ~.

(c) Use the results in parts (a) and (b) to solve the minimum cost flow problem for
all values of the parameter ~ in a given interval [u, 13].

11.49. Supply/demand parametrization (Srinivasan and Thompson [1972]). Suppose that we
wish to solve a parametric minimum cost flow problem in which the supply/demand
b(i) of each node i E N is given by b(i) = b°(i) + ~b*(i) for some constants bO(i)
and b*(i) and we want to find an optimal solution for all values of the parameter ~ in
a given interval [u, 13]. We assume that LiEN b°(i) = LiEN b*(i) = O.
(a) Let (T, L, U) be an optimal spanning tree structure of the minimum cost flow

problem for some value ~ of the parameter. Let xg· and xt denote the flows on
spanning tree arcs when bO and b* are the supply/demand vectors (we can compute
these flows using the procedure compute-flows). Show that xg + ~t is the flow
on the spanning tree arcs when bO + ~b* is the supply/demand vector. Use this
result to identify the largest value of A., say X:, for which spanning tree arcs satisfy
the flow bound constraints.

(b) Show that at ~ = X:, some tree arc (p, q) satisfies one of its bounds (lower or
upper bound) as an equality and violate its flow bound for ~ > X:. Show that if we
perform a dual pivot (as described in Section 11.9) with arc (p, q) as the leaving
arc, !!Ie new spanning tree structure also satisfies the optimality conditions at
~ = ~.

(c) Use the results in parts (a) and (b) to solve the minimum cost flow problem for
all values of the parameter ~ in a given interval [u, 13].

11.50. Capacity parametrization (Srinivasan and Thompson [1972]). Consider a parametric
minimum cost flow problem when the capacity uij of each arc (i, j) E A is given by
Uij = ug + ~ut for some constants ug and ut. Describe an algorithm for solving the
minimum cost flow problem for all values of the parameter ~ in an interval [u, 13].
(Hint: Let (T, L, U) be the basic structure at some state. Maintain the flow on each
arc in the set U as the arc's upper flow bound (as a function of ~), determine the impact
of this choice on the flows on the arcs in the spanning tree, and identify the maximum
value of ~ for which all the arc flows satisfy their flow bounds.)

11.51. Constrained minimum cost flow problem. The constrained minimum cost flow problem
is a minimum cost flow problem with an additional constraint Lu.j)EA dijxij ~ D, called
the budget constraint.

460

(a) Show that the constrained minimum cost flow problem need not satisfy the in
tegrality property (i.e., the problem need not have an integer optimal solution,
even when all the data are integer).

(b) For the constrained minimum cost flow problem, we say that a solution x is an
augmented tree solution if some partition of the arc set A into the subsets T U
{(p, q)}, L, and U satisfies the following two properties: (1) T is a spanning tree,
and (2) by setting xij = 0 for each arc (i, j) ELand xij = Uij for each arc (i, j) E
U, we obtain a unique flow on the arcs in T U {(p, q)} that satisfies the mass
balance constraints and the budget constraint. Show that the constrained minimum
cost flow problem always has an optimal augmented tree solution. Establish this
result in two ways: (1) using a linear programming argument, and (2) using a com
binatorial argument like the one we used in proving Theorem 11.2.

Minimum Cost Flows: Network Simplex Algorithms Chap. 11

REFERENCES

AASHTIANI, H. A., and T. L. MAGNANT!. 1976. Implementing primal-dual network flow algorithms. Tech
nical Report OR 055-76, Operations Research Center, MIT, Cambridge, MA.

ABDALLAOUl, G. 1987. Maintainability of a grade structure as a transportation problem. Journal of the
Operational Research Society 38, 367-369.

ADEL'SON-VEL'SKI, G. M., E. A. DINIC, and E. V. KARZANOV. 1975. Flow Algorithms. Science, Moscow.
(In Russian.)

AHLFELD, D. P., R. S. DEMBO, J. M. MULVEY, and S. A. ZENIOS. 1987. Nonlinear programming on
generalized networks. ACM Transactions on Mathematical Software 13, 350-367.

AHO, A. V., J. E. HOPCROFT, and J. D. ULLMAN. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA.

AHO, A. V., J. E. HOPCROFT, and J. D. ULLMAN. 1983. Data Structures and Algorithms. Addison-Wesley,
Reading, MA.

AHUJA, R. K. 1986. Algorithms for the minimax transportation problem. Naval Research Logistics Quar
terly 33, 725-740.

AHUJA, R. K., and J. B. ORLIN. 1989. A fast and simple algorithm for the maximum flow problem.
Operations Research 37, 748-759.

AHUJA, R. K., and J. B. ORLIN. 1991. Distance-directed augmenting path algorithms for maximum flow
and parametric maximum flow problems. Naval Research Logistics Quarterly 38, 413-430.

AHUJA, R. K., and J. B. ORLIN. 1992a. The scaling network simplex algorithm. Operations Research 40,
Supplement 1, S5-S13.

AHUJA, R. K., and J. B. ORLIN. 1992b. Use of representative counts in computational testings of algo
rithms. Sloan Working Paper, Sloan School of Management, MIT, Cambridge, MA.

AHUJA, R. K., J. L. BATRA, and S. K. GUPTA. 1984. A parametric algorithm for the convex cost network
flow and related problems. European Journal of Operational Research 16, 222-235.

AHUJA, R. K., A. V. GOLDBERG, J. B. ORLfN, and R. E. TARJAN. 1992. Finding minimum-cost flows by
double scaling. Mathematical Programming 53, 243-266.

AHUJA, R. K., M. KODIALAM, A. K. MISHRA, and J. B. ORLIN. 1992. Computational testing of maximum
flow algorithms. Sloan Working Paper, Sloan School of Management, MIT, Cambridge, MA.

AHUJA, R. K., T. L. MAGNANTI, and J. B. ORLIN. 1989. Network flows. In Handbooks in Operations
Research and Management Science. Vol. 1: Optimization, edited by G. L. Nemhauser, A. H. G.
Rinnooy Kan, and M. J. Todd. North-Holland, Amsterdam, pp. 211-369.

AHUJA, R. K., T. L. MAGNANTI, and J. B. ORLIN. 1991. Some recent advances in network flows. SIAM
Review 33, 175-219.

AHUJA, R. K., T. L. MAGNANT!, J. B. ORLlN, and M. R. REDDY. 1992. Applications of network optim
ization. Sloan Working Paper, Sloan School of Management, MIT, Cambridge, MA.

AHUJA, R. K., K. MEHLHORN, J. B. ORLlN, and R. E. TARJAN. 1990. Faster algorithms for the'shortest
path problem. Journal of ACM 37,213-223.

AHUJA, R. K., J. B. ORLlN, C. STEIN, and R. E. TARJAN. 1990. Improved algorithms for bipartite network
flow problems. Technical Report, Sloan School of Management, MIT, Cambridge, MA. Submitted
to SIAM Journal on Computing.

AHUJA, R. K., J. B. ORLIN, andR. E. TARJAN. 1989. Improved time bounds for the maximum flow problem.
SIAM Journal on Computing 18, 939-954.

AKGUL, M. 1985a. Shortest path and simplex method. Research Report, Department of Computer Science
and Operations Research, North Carolina State University, Raleigh, NC.

821

AKGUL, M. 1985b. A genuinely polynomial primal simplex algorithm for the assignment problem. Research
Report, Department of Computer Science and Operations Research, North Carolina State University,
Raleigh, NC.

ALI, A. I., E. P. ALLEN, R. S. BARR, and J. L. KENNINGTON. 1986. Reoptimization procedures for bounded
variable primal simplex network algorithms. European Journal of Operational Research 23, 256-
ill. .

ALI, A. 1., D. BARNETT, K. FARHANGIAN, J. L. KENNINGTON, B. PATTY, B. SHETTY, B. MCCARL, and
P. WONG. 1984. Multicommodity network problems: Applications and computations. lIE Transac
tions 16, 127-134.

ALI, A. 1., R. V. HELGA SON, and J. L. KENNINGTON. 1978. The convex cost network flow problem: A
state-of-the-art survey. Technical Report OREM 78001, Southern Methodist University, Dallas, TX.

ALI, A.!., R. PADMAN, and H. THIAGARAJAN. 1989. Dual algorithms for pure network problems. Oper
ations Research 37, 159-171.

ALON, N. 1990. Generating pseudo-random permutations and maximum flow algorithms. In/ormation
Processing Letters 35, 201-204.

ANDERSON, W. N. 1975. Maximum matching and the rank of a matrix. SIAM Journal on Applied Math
ematics 28, 114-123.

ARISAWA, S., and S. E. ELMAGHRABY. 1977. The "hub" and "wheel" scheduling problems. Transportation
Science 11, 124-146.

ARONSON, J. E. 1989. A survey of dynamic network flows. Annals o/Operations Research 20, 1-66.
ASSAD, A. A. 1978. Multicommodity network flows: A survey. Networks 8, 37-91.
ASSAD, A. A. 1980a. Models for rail transportation. Transportation Research 14A, 205-220.
ASSAD, A. A. 1980b. Solving linear multicommodity flow problems. Proceedings of the IEEE International

Con/erence on Circuits and Computers, pp. 157-161. .
BACHARACH, M. 1966. Matrix rounding problems. Management Science 9, 732-742.
BALACHANDRAN, V., and G. L. THOMPSON. 1975. An operator theory of parametric programming for the

generalized transportation problems. Parts I-IV. Naval Research Logistics Quarterly 22, 79-125,
297-340.

BALAKRISHNAN, A., T. L. MAGNANTI, and R. T. WONG. 1989. A dual-ascent procedure for large scale
uncapacitated network design. Operations Research 37, 716-740.

BALAKRISHNAN, A., T. L. MAGNANTI, A. SHULMAN, and R. T. WONG. 1991. Models for capacity expansion
in local access telecommunication networks. Annals of Operations Research 33, 239-284.

BALAKRISHNAN, A., T. L. MAGNANT!, and R. T. WONG. 1991. A decomposition algorithm for local access
telecommunications network expansion planning. Working Paper, Operations Research Center, MIT,
Cambridge, MA.

BALINSKI, M. L. 1986. A competitive (dual) simplex method for the assignment problem. Mathematical
Programming 34, 125-141.

BALL, M. 0., and U. DERIGS. 1983. An analysis of alternative strategies for implementing matching
algorithms. Networks 13, 517-549.

BARAHONA, F., and :E. TARDOS. 1989. Note on Weintraub's minimum cost circulation algorithm. SIAM
Journal on Computing 18, 579-583.

BARNHART, C. 1988. A network-based primal-dual solution methodology for the multicommodity network
flow problem. Ph.D. dissertation, Department of Civil Engineering, MIT, Cambridge, MA.

BARR, R. S., F. GLOVER, and D. KLINGMAN. 1977. The alternating path basis algorithm for the assignment
problem. Mathematical Programming 13, 1-13.

BARR, R. S., and J. S. TURNER. 1981. Microdata file merging through large scale network technology.
Mathematical Programming Study 15, 1-22.

BARROS, 0., and A. WEINTRAUB. 1986. Spatial market equilibrium problems as network models. Discrete
Applied Mathematics 13, 109-130.

BARTHOLDI, J. J., J. B. ORLlN, and H. D. RATLIFF. 1980. Cyclic scheduling via integer programs with
circular ones. Operations Research 28, 1074-1085.

BARZILAI, J., W. D. COOK, and M. KRESS. 1986. A generalized network formulation of the pairwise
comparison consensus ranking model. Management Science 32, 1007-1014.

BAZARAA, M. S., J. J. JARVIS, and H. D. SHERALI. 1990. Linear Programming and Network Flows, 2nd
ed. Wiley, New York.

822 References

BELFORD, P. C., and H. D. RATLIFF. 1972. A network-flow model for racially balancing schools. Operations
Research 20, 619-628.

BELLMAN, R. E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ.
BELLMAN, R. 1958. On a routing problem. Quarterly of Applied Mathematics 16, 87-90.
BELLMORE, M., G. BENNINGTON, and S. LUBORE. 1971. A multivehicle tanker scheduling problem. Trans

portation Science 5, 36-47.
BENNINGTON, G. E. 1974. Applying network analysis. Industrial Engineering 6, 17-25.
BENTLEY, J. L. 1990. Experiments on geometric traveling salesman heuristics. Computing Science Tech

nical Report 151, AT&T Bell Laboratories, Holmdel, NY.
BENTLEY, J. L., and B. W. KERNIGHAN. 1990. A system for algorithm animation: Tutorial and algorithm

animation. Unix Research System Paper, 10th ed., Vol. II. Saunders College Publishing, Philadelphia,
pp. 451-475.

BERGE, C. 1957. Two theorems in graph theory. Proceedings of the National Academy of Sciences USA
43, 842-844.

BERGE, C., and A. GHOUILA-HoURI. 1962. Programming, Games and Transportation Networks. Wiley,
New York.

BERRISFORD, H. G. 1960. The economic distribution of coal supplies in the gas industry: An application
of the linear programming transport theory. Operations Research Quarterly 11, 139-150.

BERTSEKAS, D. P. 1976. Dynamic Programming and Stochastic Control. Academic Press, New York.
BERTSEKAS, D. P. 1979. A distributed algorithm for the assignment problem. Working Paper, Laboratory

for Information and Decision Systems, MIT, Cambridge, MA.
BERTSEKAS, D. P. 1988. The auction algorithm: A distributed relaxation method for the assignment prob

lem. Annals of Operations Research 14, 105-123.
BERTSEKAS, D. P., and D. E. BAz. 1987. Distributed asynchronous relaxation methods for convex network

flow problems. SIAM Journal on Control and Optimization 25, 74-85.
BERTSEKAS, D. P., and J. ECKSTEIN. 1988. Dual coordinate step methods for linear network flow problems.

Mathematical Programming B 42, 203-243.
BERTSEKAS, D. P., P. A. HOSEIN, and P. TSENG. 1987. Relaxation methods for network flow problems

with convex arc costs. SIAM Journal on Control and Optimization 25, 1219-1243.
BERTSEKAS, D. P., and P. TSENG. 1988a. The relax codes for linear minimum cost network flow problems.

In FORTRAN Codes for Network Optimization, edited by B. Simeone, P. Toth, G. Gallo, F. Maffioli,
and S. Pallottino. Annals of Operations Research 13, 125-190.

BERTSEKAS, D. P., and P. TSENG. 1988b. Relaxation methods for minimum cost ordinary and generalized
network flow problems. Operations Research 36, 93-114.

BERTSIMAS, D., and J. B. ORLIN. 1991. A technique for speeding up the solution of the Lagrangian dual.
Working Paper OR 248-91, Operations Research Center, MIT, Cambridge, MA.

BIXBY, R. E. 1982. Matroids and operatio)!s research. In Advanced Techniques in the Practice of Op
erations Research, edited by H. J. Greenberg, F. H. Murphy, and S. H. Shaw. North-Holland,
Amsterdam, pp. 433-458.

BIXBY, R. E. 1991. The simplex method: It keeps getting better. Presented at the 14th International
Symposium on Mathematical Programming, Amsterdam,. The Netherlands.

BLAND, R. G., and D. L. JENSEN. 1992. On the computational behavior of a polynomial-time network
flow algorithm. Mathematical Programming 54, 1-39.

BOAS, P. V. E., R. KAAs, and E. ZIJLSTRA. 1977. Design and implementation of an efficient priority queue.
Mathematical Systems Theory 10, 99-127.

BODIN, L. D., B. L. GOLDEN, A. D. SCHUSTER, and W. ROWING. 1980. A model for the bloc kings of
trains. Transportation Research 14B, 115-120.

BODIN, L. D., B. L. GOLDEN, A. A. ASSAD, and M. O. BALL. 1983. Routing and scheduling of vehicles
and crews: The state of the art. Computers and Operations Research 10, 69-211.

BONDY, J. A., and U. S. R. MURTY. 1976. Graph Theory with Applications. American Elsevier, New
York.

BORUVKA, O. 1926, Prfspevek k resenf otazky ekonomicke stavby elektrovodnfch sftf. Elektrotechnicky
Obzor 15, 153-154.

BRADLEY, G., G. BROWN, and G. GRAVES. 1977. Design and implementation of large scale primal trans
shipment algorithms. Management Science 21, 1-38.

References 823

BRADLEY, S. P., A. C. HAx, and T. L. MAGNANTI. 1977. Applied Mathematical Programming. Addison
Wesley, Reading, MA.

BROGAN, W. L. 1989. Algorithm for ranked assignments with application to multiobject tracking. Journal
of Guidance, 357-364.

BROWN, M. H. 1988. Algorithm Animation. MIT Press, Cambridge, MA.
BROWN, G. G., and R. D. McBRIDE. 1984. Solving generalized networks. Management Science 30,1497-

1523.
BRUYNOOGHE, M., A. GIBERT, and M. SAKAROVITCH. 1968. Une methode d'affection du traffic. In: Fourth

International Symposium on the Theory of Traffic Flow, Karlsruhe, 1968, W. Lentzback and P.
Barons (eds.), Beitrage Theorie des Verkehrsflusses Strassenbau und Strassenkehrstechnik Heft 86,
Herausgeben von Bunderesminister fur Verkehr, Abteilung Strassenbau, Bonn, Germany.

BUSAKER, R. G., and P. J. GOWEN. 1961. A procedure for determining minimal-cost network flow patterns.
ORO Technical Report 15, Operational Research Office, Johns Hopkins University, Baltimore, MD.

BUSACKER, R. G., and T. L. SAATY. 1965. Finite Graphs and Networks. McGraw-Hili, New York.
CABOT, A. V., R. L. FRANCIS, and M. A. STARY. 1970. A network flow solution to a rectilinear distance

facility location problem. AIlE Transactions 2, 132-141.
CAHN, A. S. 1948. The warehouse problem (Abstract). Bulletin of the American Mathematical Society

54, 1073.
CARPENTO, G., S. MARTELLO, and P. TOTH. 1988. Algorithms and codes for the assignment problem. In

FORTRAN Codes for Network Optimization, edited by B. Simeone, P. Toth, G. Gallo, F. Maffioli,
and S. Pallottino. Annals of Operations Research 13, 193-224.

CARRARESI, P., and G. GALLO. 1984. Network models for vehicle and crew scheduling. European Journal
of Operational Research 16, 139-151.

CHALMET, L.G., R. L. FRANCIS, and P. B. SAUNDERS. 1982. Network models for building evacuation.
Management Science 28, 86-105.

CHANDRASEKARAN, R. 1977. Minimum ratio spanning trees. Networks 7,335-342.
CHANG, M. D., and C. J. CHEN. 1989. An improved primal simplex variant for pure processing networks.

ACM Transactions on Mathematical Software 15, 64-78.
CHARNES, A., and D. KLINGMAN. 1971. The "more for less" paradox in the distribution model. Cahiers

du Centre D' Etudes de Recherche Operationne{[e 13, 11-22.
CHEN, H., and C. G. DEWALD. 1974. A generalized chain labeling algorithm for solving multicommodity

flow problems. Computers and Operations Research 1,437-465.
CHENG, C. K., and T. C. Hu: 1990. Ancestor tree for arbitrary multi-terminal cut functions. Proceedings

of a Conference on "Integer Programming and Combinatorial Optimization," edited by R. Kannan
and W. R. Pulleyblank. University of Waterloo, Waterloo, Canada.

CHERIYAN, J., and T. HAGERUP. 1989. A randomized maximum-flow algorithm. Proceedings of the 30th
IEEE Conference on the Foundations of Computer Science, pp. 1I8-123.

CHERIY AN, J., T. HAGER up, and K. MEHLHORN. 1990. Can a maximum flow be computed in O(nm) time?
Proceedings of the 17th International Colloquium on Automata, Languages and Programming, pp.
235-248.

CHERIYAN, J., and S. N. MAHESHWARI. 1989. Analysis of pre flow push algorithms for maximum network
flow. SIAM Journal on Computing 18, 1057-1086.

CHESHIRE, M., K. 1. M. McKINNON, and H. P. WILLIAMS. 1984. The efficient allocation of private con
tractors to public works. Journal of the Operational Research Quarterly 35, 705-709.

CHIN, F., and D. HOUCH. 1978. Algorithms for updating spanning trees. Journal of Computer and System
Sciences 16, 333-344.

CHRISTOPHIDES, N. 1975. Graph Theory: An Algorithmic Approach. Academic Press, New York.
CHvATAL, V. 1983. Linear Programming. W. H. Freeman, New York.
CLARK, J. A., and N. A. J. HASTINGS. 1977. Decision networks. Operational Research Quarterly 20,51-

68.
CLARKE, S., and J. SURKIS. 1968. An operations research approach to racial desegregation of school

systems. Socio-Economic Planning Sciences 1; 259-272.
COBHAM, A. 1964. The intrinsic computational difficulty of functions. Proceedings of the 1964 Congress

for Logic, Methodology, and the Philosophy of Science, North-Holland, Amsterdam, pp. 24-30.
COLLINS, M., L. COOPER, R. HELGA SON , J. KENNINGTON, and L. LEB LANC. 1978. Solving the pipe network

analysis problem using optimization techniques. Management Science 24,747-760.

824 References

COOK, S. 1971. The complexity of theorem proving procedures. Proceedings 0/ the 3rd Annual ACM
Symposium on Theory o/Computing, pp. 151-158.

CORMEN, T. H., C. L. LEISERSON, and R. L. RIVEST. 1990. Introduction to Algorithms. MIT Press and
McGraw-Hill, New York.

Cox, L. H., and L. R. ERNST. 1982. Controlled rounding. INFOR 20, 423-432.
CRAINIC, T., J. A. FERLAND, and J. M. ROUSSEAU. 1984. A tactical planning model for rail freight trans

portation. Transportation Science 18, 165-184.
CREMEANS, J. E., R. A. SMITH, and G. R. TYNDALL. 1970. Optimal multicommodity network flows with

resource allocation. Naval Research Logistics Quarterly 17, 269-280.
CROWDER, H. P., R. S. DEMBO, and J. M. MULVEY. 1978. Reporting computational experiments in mathe

matical programming. Mathematical Programming 15, 316-329.
CROWDER, H. P., R. S. DEMBO, and J. M. MULVEY. 1979. On reporting computational experiments with

mathematical software. ACM Transactions on Mathematical Software 5, 193-203.
CROWDER, H. P., and P. B. SAUNDERS. 1980. Results of a survey on MP performance indicators. COAL

Newsletter, January, pp. 2-6.
CRUM, R. L., and D. J. NYE: 1981. A network model of insurance company cash flow management.

Mathematical Programming 15, 86-101.
CUNNINGHAM, W. H. 1976. A network simplex method. Mathematical Programming 11, 105-116.
CUNNINGHAM, W. H. 1979. Theoretical properties of the network simplex method. Mathematics 0/ Op

erations Research 4, 196-208.
DAFERMOS, S., and A. NAGURNEY. 1984. A network formulation of market equilibrium problems and

variational inequalities. Operations Research Letters 5, 247-250.
DANIEL, R. C. 1973. Phasing out capital equipment. Operations Research Quarterly 24, 113-116.
DANTZIG, G. B. 1951. Application of the simplex method to a transportation problem. In Activity Analysis

and Production and Allocation, edited by T. C. Koopmans. Wiley, New York, pp. 359-373.
DANTZIG, G. B. 1960. On the shortest route through a network. Management Science 6, 187-190.
DANTZIG, G. B. 1962. Linear Programming and Extensions. Princeton University Press, Princeton, NJ.
DANTZIG, G. B., W. BLATTNER, and M. R. RAO. 1966. Finding a cycle in a graph with minimum cost to

time ratio with application to a ship routing problem. In Theory o/Graphs.International Symposium.
Dunod, Paris, and Gordon and Breach, New York, pp. 209-213. ."

DANTZIG, G. B., and D. R. FULKERSON. 1954. Minimizing the number of tankers to meet a fixed schedule.
Naval Research Logistics Quarterly 1, 217-222.

DANTZIG, G. B., and P. WOLFE. 1960. Decomposition principle for linear programs. Operations Research
8,101-11L

DANTZIG, G. B., and P. WOLFE. 1961. The decomposition method for linear programming. Econometrica
29, 767-778.

DEARING, P. M., and R. L. FRANCIS. 1974. A network flow solution to a multifacility minimax location
problem involving rectilinear distances~-Transportation Science 8, 126-141.

DEMBO, R. S.', J. M. MULVEY, and S. A. ZENIOS. 1989. Large-scale nonlinear network models and their
applications. Operations Research 37, 353-372.

DENARDO, E. V. 1982. Dynamic Programming: Models and Applications. Prentice Hall, Englewood Cliffs,
NJ.

DENARDO, E. V., and B. L. Fox. 1979. Shortest-route methods: 1. Reaching, pruning and buckets. Op
erations Research 27, 161-186.

DENARDO, E. V., U. G. ROTHBLUM, and A. J. SWERSEY. 1988. A transportation problem in which costs
depend on the order of arrival. Management Science 34, 774-783.

DEO, N., and C. PANG. 1984. Shortest path algorithms: Taxonomy and annotation. Networks 14, 275-
323.

DERIG'S, U. 1988. Programming in Networks and Graphs. Lecture Notes in Economics and Mathematical
Systems, Vol. 300. Springer-Verlag, New York.

DERIGS, U., and W. MEIER. 1989. Implementing Goldberg's max-flow algorithm: A computational in
vestigation, Zeitschrift fur Operations Research 33, 383-403.

DERMAN, C., and M. KLEIN. 1959, A note on the optimal depletion of inventory. Management Science
5, 210-214.

DEVINE, M. V. 1973. A model for minimizing the cost of drilling dual completion oil wells. Management
Science 20, 532-535.

References 825

DEWAR, M. S. J., and H. C. LONGUET-HIGGINS. 1952. The correspondence between the resonance and
molecular orbital theories. Proceedings of the Royal Society of London A214, 482-493.

DIAL, R. 1969. Algorithm 360: Shortest path forest with topological ordering. Communications of ACM
12, 632-633.

DIAL, R., F. GLOVER, D. KARNEY, and D. KLINGMAN. 1979. A computational analysis of alternative
algorithms and labeling techniques for finding shortest path trees. Networks 9, 215-248.

DIJKSTRA, E. 1959. A note on two problems in connexion with graphs. Numeriche Mathematics 1, 269-
271.

DINIC, E. A. 1970. Algorithm for solution of a problem of maximum flow in networks with power esti
mation. Soviet Mathematics Doklady 11, 1277-1280.

DINIC, E. A. 1973. The method of scaling and transportation problems. Issled. Diskret. Mat. Science,
Moscow. (In Russian.)

DIRICKX, Y. M.' I., and L. P. JENNERGREN. 1975. An analysis of the parking situation in the downtown
area of West Berlin. Transportation Research 9, 1-11.

DIVOKY, J. J., and M. S. HUNG. 1990. Performance of shortest path algorithms in network flow problems.
Management Science 36, 661-673.

DORSEY, R. C., T. J. HODGSON, and H. D. RATLIFF. 1974. A production scheduling problem with batch
processing. Operations Research 22, 1271-1279.

DORSEY, R. C., T. J. HODGSON, and H. D. RATLIFF. 1975. A network approach to a multi-facility, multi
product production scheduling problem without backordering. Management Science 21, 813-822.

DRESS, A. W. M., and T. F. HAVEL. 1988. Shortest path problems and molecular conformation. Discrete
Applied Mathematics 19, 129-144.

DROR, M., P. TRUDEAU, and S. P. LADANY. 1988. Network models for seat allocation on flights. Trans-
portation Research 22B, 239-250.

DUDE, R. 0., and P. E. HART. 1973. Pattern Classification and Science Analysis. Wiley, New York.
EDMONDS, J. 1965a. Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449-467.
EDMONDS, J. 1965b. Maximum matchings and a polyhedran with 0, 1 vertices. Journal of Research of

the National Bureau of Standards 69B, 125-130.
EDMONDS, J. 1965c. Minimum partition of a matroid into independent subsets. Journal of Research of

the National Bureau of Standards 69B, 67-72.
EDMONDS, J. 1967. An introduction to matching. Mimeographed notes, Engineering Summer Conference,

The University of Michigan, Ann Arbor, MI.
EDMONDS, J. 1971. Matroids and the greedy algorithm. Mathematical Programming 1, 127-136.
EDMONDS, J., and E. L. JOHNSON. 1973. Matching, Euler tours and the Chinese postman. Mathematical

Programming 5, 88-124.
EDMONDS, J., and R. M. KARP. 1972. Theoretical improvements in algorithmic efficiency for network

flow problems. Journal of ACM 19,248-264.
ELAM, J., F. GLOVER, and D. KLINGMAN. 1979. A strongly convergent primal simplex algorithm for

generalized networks. Mathematics of Operations Research 4, 39-59.
ELIAS, P., A. FEINSTEIN, and C. E. SHANNON. 1956. Note on maximum flow through a network. IRE

Transactions on Information Theory IT-2, 117-119.
ELMAGHRABY, S. E. 1978. Activity Networks: Project Planning and Control by Network Models. Wiley

Interscience, New York.
ERLENKOITER, D. 1978. A dual-based procedure for uncapacitated facility location. Operations Research

26, 992-1009.
ERVOLINA, T. R., and S. T. MCCORMICK. 1990a. Cancelling most helpful cuts for minimum cost network

flow. Faculty of Commerce Working Paper 90-MSC-O 18, University of British Columbia, Vancouver,
Canada.

ERVOLlNA, T. R., and S. T. MCCORMICK. 1990b. Two strongly polynomial cut cancelling algorithms for
minimum cost network flow. Technical Report, Faculty of Commerce and Business Administration,
University of British Columbia, Vancouver, Canada.

ESAU, L. R., and K. C. WILLIAMS. 1966. On teleprocessing system design II. IBM Systems Journal 5,
142-147.

EVANS, J. R. 1977. Some network flow models and heuristics for multiproduct production and inventory
planning. AIlE Transactions 9, 75-81.

EVANS, J. R. 1984. The factored transportation problem. Management Science 30, 1021-1024.

826 References

EVEN, S. 1979. Graph Algorithms. Computer Science Press, Rockville, MD.
EVEN, S., and O. KARIV. 1975. An O(n2

.
5

) algorithm for maximum matching in general graphs. Proceedings
of the 16th Annual Symposium on Foundations of Computer Science, pp. 100-112.

EVEN, S., and R. E. TARJAN. 1975. Network flow and testing graph connectivity. SIAM Journal on
Computing 4, 507-518.

EVERETT, H., III. 1963. Generalized Lagrange multiplier method for solving problems of optimal allocation
of resources. Operations Research 11, 399-417.

EWASHKO, T. A., and R. C. DUDDING. 1971. Application of Kuhn's Hungarian assignment algorithm to
posting servicemen. Operations Research 19, 991.

FARINA, R. F., and F. W. GLOVER. 1983. The application of generalized networks to choice of raw materials
for fuels and petrochemicals. In Energy Models and Studies, edited by B. Lev. North-Holland,
Amsterdam.

FARLEY, A. R. 1980. Levelling terrain trees: A transshipment problem. Information Processing Letters
10, 189-192.

FARVOLDEN, J. M., and W. B. POWELL. 1990. A primal partitioning solution for multicommodity network
flow problems. Working Paper 90-04, Department of Industrial Engineering, University of Toronto,
Toronto, Canada.

FEDERGRUEN, A., and H. GROENEVELT. 1986. Preemptive scheduling of uniform machines by ordinary
network flow techniques. Management Science 32, 341-349.

FERNANDEZ-BACA, D., and C. U. MARTEL. 1989. On the efficiency of maximum flow algorithms on net
works with small integer capacities. Algorithmica 4, 173-189.

FILLIBEN, J. J., K. KAFADAR, and D. R. SHIER. 1983. Testing for homogeneity of two-dimensional surfaces,_
Mathematical Modelling 4, 167-189.

FISHER, M. L. 1981. The Lagrangian relaxation methods for solving integer programming problems. Man
agement Science 27, 1-18.

FISHER, M. L. 1985. An applications oriented guide to Lagrangian relaxation. Interfaces 15, 10-21.
FLORIAN, M. 1986. Nonlinear cost network models in transportation analysis. Mathematical Programming

Study 26, 167-196.
FLOYD, R. W. 1962. Algorithm 97: Shortest path. Communications of ACM 5,345.
FORD, L. R. 1956. Network flow theory. Report P-923, Rand Corp., Santa Monica, CA.
FORD, L. R., and D. R. FULKERSON. 1956a. Maximal flow through a network. Canadian Journal of

Mathematics 8, 399-404.
FORD, L. R., and D. R. FULKERSON. 1956b. Solving the transportation problem. Management Science

3,24-32.
FORD, L. R., and D. R. FULKERSON. 1957. A primal-dual algorithm for the capacitated Hitchcock problem.

Naval Research Logistics Quarterly 4, 47-54.
FORD, L. R., and D. R. FULKERSON. 1958a. Constructing maximum dynamic flows from static flows.

Operations Research 6, 419-433. ..~,

FORD, L. R., and D. R. FULKERSON. 1958b. A suggested computation for maximal multicommodity net
work flows. Management Science 5, 97-101.

FORD, L. R., and D. R. FULKERSON. 1962. Flows in Networks. Princeton University Press, Princeton,
NJ.

FORD, L. R., and S. M. JOHNSON. 1959. A tournament problem. The American Mathematical Monthly
66, 387-389.

FRANCIS, R. L., and J. A. WHITE. 1976. Facility Layout and Location. Prentice Hall, Englewood Cliffs,
NJ.

FRANK, C. R. 1965. A note on the assortment problem. Management Science 11, 724-726.
FRANK, H., and I. T. FRISCH. 1971. Communication, Transmission, and Transportation Networks. Ad

dison-Wesley, Reading, MA.
FREDMAN, M. L., and R. E. TARJAN. 1984. Fibonacci heaps and their uses in improved network optim

ization algorithms. Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer
Science, pp. 338-346. Full paper in Journal of ACM 34(1987), 596-615.

FUJII, M., T. KASAMI, and K. NINOMIYA. 1969. Optimal sequencing of two equivalent processors. SIAM
Journal on Applied Mathematics 17, 784-789. Erratum, same journal 18, 141.

FUJISHlGE, S. 1986. A capacity-rounding algorithm for the minimum cost circulation problem: A dual
framework of Tardos' algorithm. Mathematical Programming 35, 298-308.

References 827

FULKERSON, D. R. 1961a. A network flow computation for project cost curve. Management Science 7,
167-178.

FULKERSON, D. R. 1961b. An out-of-kilter method for minimal cost flow problems. SIAM Journal on
Applied Mathematics 9, 18-27.

FULKERSON, D. R. 1963. Flows in networks. In Recent Advances in Mathematical Programming, edited
by R. L. Graves and P. Wolfe. McGraw-Hill, New York, pp. 319-332.

FULKERSON, D. R. 1965. Upsets in a round robin tournament. Canadian Journal of Mathematics 17,957-
969.

FULKERSON, D. R. 1966. Flow networks and combinatorial operations research. American Mathematical
Monthly 73, 115-138.

FULKERSON, D. R., and G. B. DANTZIG. 1955. Computation of maximum flow in networks. Naval Research
Logistics Quarterly 2, 277-283.

FULKERSON, D. R., and G. C. HARDING. 1977. Maximizing the minimum source-sink path subject to a
budget constraint. Mathematical Programming 13, 116-118.

GABOW, H. N. 1975. An efficient implementation of Edmond's algorithm for maximum matchings on
graphs. Journal of ACM 23,221-234.

GABOW, H. N. 1985. Scaling algorithms for network problems. Journal of Computer and System Sciences
31, 148-168.

GABOW, H. N. 1990. Data structures for weighted matching and nearest common ancestors with linking.
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadel
phia, pp. 434-443.

GABOW, H. N., Z. GALIL, T. SPENCER, and R. E. TARJAN. 1986. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica 6, 109-122.

GABOW, H. N., and R. E. TARIAN. 1989a. Faster scaling algorithms for network problems. SIAM Journal
on Computing 18, 1013-1036.

GABOW, H. N., and R. E. TARJAN. 1989b. Faster scaling algorithms for general graph matching problems.
Technical Report CU-CS-432-89, Department of Computer Science, University of Colorado, Boulder,
CO.

GALE, D. 1957. A theorem on flows in networks. Pacific Journal of Mathematics 7, 1073-1082.
GALE, D., and L. S. SHAPLEY. 1962. College admissions and the stability of marriage. American Mathe

matical Monthly 69, 9-14.
GALIL, Z. 1981. On the theoretical efficiency of various network flow algorithms. Theoretical Computer

Science 14, 103-111.
GALIL, Z., and E. TARDOS. 1986. An O(n 2(m + n log n) log n) min-cost flow algorithm. Proceedings of

the 27th Annual Symposium on the Foundations of Computer Science, pp. 136-146. Full paper in
Journal of ACM 35(1987),374-386.

GALLO, G., M. D. GRIGORIADIS, and R. E. TARJAN. 1989. A fast parametric maximum flow algorithm and
applications. SIAM Journal on Computing 18, 30-55.

GALLO, G., and S. PALLOTTINO. 1984. Shortest path methods in transportation models. In Transportation
Planning Models, edited by M. Florian. Elsevier/North-Holland, Amsterdam.

GALLO, G., and S. PALLOTTINO. 1986. Shortest path methods: A unifying approach. Mathematical Pro
gramming Study 26, 38-64.

GALLO, G., and S. PALLOTTINO. 1988. Shortest path algorithms. In Fortran Codes for Network Optimi
zation, edited by B. Simeone, P. Toth, G. Gallo, F. Maffioli, and S. Pallottino. Annals of Operations
Research 13, 3-79.

GAREY, M. S., and D. S. JOHNSON. 1979. Computers and Intractability: A Guide to the Theory of NP
Completeness. W. H. Freeman, New York.

GAVISH, B. 1985. Augmented Lagrangian based algorithms for centralized network design. IEEE Trans
actions on Communications COM-33, 1247-1257.

GAVISH, B., and P. SCHWEITZER. 1974. An algorithm for combining truck trips. Transportation Science
8,13-23.

GAVISH, B., and K. N. SRIKANTH. 1979. O(n2
) algorithms for sensitivity analysis of minimal spanning

trees and related subgraphs. Working Paper 8003, Graduate School of Management, University of
Rochester, Rochester, NY.

GEOFFRION, A. 1974. Lagrangian relaxations for integer programming. Mathematical Programming Study
2, 82-114.

828 References

GEOFFRION, A. M., and G. W. GRAVES. 1974. Multicommodity distribution system design by Benders
decomposition. Management Science 20,822-844.

GERSHT, A., and A. SHULMAN. 1987. A new algorithm for the solution of the minimum cost multicom
modity flow problem. Proceedings of the IEEE Conference on Decision and Control 26, 748-758.

GILMORE, P. C., and R. E. GOMORY. 1964. Sequencing a one state-variable machine: A solvable case of
the travelling salesman problem. Operations Research 12, 655-679.

GLOVER, F., R. GLOVER, and F. K. MARTINSON. 1984. A netform system for resource p'lanning in the
U.S. Bureau of Land Management. Journal of the Operational Research Society 35,605-616.

GLOVER, F., R. GLOVER, and D. J. SHIELDS. 1988. Microcomputer-based model of international mineral
market. In Operational Research '87, edited by G. K. Rand. Elsevier, Amsterdam.

GLOVER, F., J. HULTZ, D. KLINGMAN, and J. STUTZ. 1978. Generalized networks: A fundamental computer
based planning tool. Management Science 24, 1209-1220.

GLOVER, F., D. KARNEY, and D. KLINGMAN. 1974. Implementation and computational comparisons of
primal, dual and primal-dual computer codes for minimum cost network flow problem. Networks 4,
191-212.

GLOVER, F., D. KARNEY, D. KLINGMAN, and A. NAPIER. 1974. A computational study on start procedures,
basis change criteria, and solution algorithms for transportation problem. Management Science 20,
793-813.

GLOVER, F., and D. KLINGMAN. 1977. Network applications in industry and government. AIlE Trans
actions 9, 363-376.

GLOVER, F., D. KLINGMAN, J. MOTE, and D. WHITMAN. 1984. A primal simplex variant for the maximum
flow problem. Naval Research Logistics Quarterly 31, 41-61.

GLOVER, F., D. KLINGMAN, and N. PHILLIPS. 1985. A new polynomially bounded shortest path algorithm.
Operations Research 33, 65-73.

GLOVER, F., D. KLINGMAN, and N. PHILLIPS. 1990. Netform modeling and applications. Interfaces 20,
7-27.

GLOVER, F., D. KLINGMAN, N. PHILLIPS, and R. F. SCHNEIDER. 1985. New polynomial shortest path
algorithms and their computational attributes. Management Science 31, 1106-1128.

GLOVER, F., and J. ROGOZINSKI. 1982. Resort development: A network-related model for optimizing sites
and visits. Journal of Leisure Research, 235-247.

GOETSCHALCKX, M., and H. D. RATLIFF. 1988. Order picking in an aisle. lIE Transactions 20, 53-62.
GOLDBERG, A. V. 1985. A new max-flow algorithm. Technical Report MIT/LCS/TM-291, Laboratory for

Computer Science, MIT, Cambridge, MA.
GOLDBERG, A. V., M. D. GRIGORIADIS, and R. E. TARJAN. 1988. Efficiency of the network simplex al

gorithm for the maximum flow problem. Technical Report, Department of Computer Science, Stan
ford University, Stanford, CA.

GOLDBERG, A. V., S. A. PLOTKIN, and E. TARDOS. 1991. Combinatorial algorithms for the generalized
circulation problem. Mathematics of Operations Research 16, 351-381.

GOLDBERG, A. V., E. TARDOS, and R. E. TARJAN. 1989. Network flow algorithms. Technical Report 860,
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY.

GOLDBERG, A. V., and R. E. TARJAN. 1986. A new approach to the maximum flow problem. Proceedings
of the 18th ACM Symposium on the Theory of Computing, pp. 136-146. Full paper in Journal of
ACM 35(1988), 921-940.

GOLDBERG, A. V., and R. E. TARJAN. 1987. Solving minimum cost flow problem by successive approx
imation. Proceedings of the 19thACM Symposium on the Theory of Computing, pp. 7-18. Full paper
in Mathematics of Operations Research 15(1990), 430-466.

GOLDBERG, A. V., and R. E. TARJAN. 1988. Finding minimum-cost circulations by cancelling negative
cycles. Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 388-397. Full
paper in Journal of ACM 36(1989), 873-886.

GOLDEN, B. L. 1975. A minimum cost multicommodity network flow problem concerning imports and
exports. Networks 5, 331-356.

GOLDEN, B. L., A. A. ASSAD, E. A. WASIL, and E. BAKER. 1986. Experiments in optimization. Working
Paper Series MS/S 86-004, University of Maryland, College Park, MD.

GOLDEN, B. L., M. LIBERATORE, and C. LIEBERMAN. 1979. Models and solution techniques for cash flow
management. Computers and Operations Research 6, 13-20.

GOLDEN, B. L., and T. L. MAGNANTI. 1977. Deterministic network optimization: A bibliography. Networks
7, 149-183.

References 829

GOLDFARB, D. 1985. Efficient dual simplex algorithms for the assignment problem. Mathematical Pro
gramming 33, 187-203.

GOLDFARB, D., and J. HAO. 1988. Polynomial-time primal simplex algorithms for the minimum cost net
work flow problem. Technical Report, Department of Industrial Engineering and Operations Re
search, Columbia University, New York.

GOLDFARB, D., and J. HAO. 1990. A primal simplex algorithm that solves the maximum flow problem in
at most nm pivots and O(n2m) time. Mathematical Programming 47, 353-365.

GOLDFARB, D., J. HAO, and S. KAI. 1990a. Efficient shortest path simplex algorithms. Operations Research
38, 624-628.

GOLDFARB, D., J. HAO, and S. KAI. 199Ob. Anti-staHing pivot rules for the network simplex algorithm.
Networks 20, 79-91.

GOLDMAN, A. J., and G. L. NEMHAUSER. 1967. A transport improvement problem transformable to a
best-path problem. Transportation Science 1, 295-307.

GOLITSCHEK, M. V., and H. SCHNEIDER. 1984. Applic ations of shortest path algorithms to matrix scalings.
Numerische Mathematik 44, 111-126.

GOMORY, R. E., and T. C. Hu. 1961. Multi-terminal network flows. Journal of SIAM 9,551-570.
GONDRAN, M., and M. MINOUX. 1984. Graphs and Algorithms. Wiley-Interscience, New York.
GORHAM, W. 1963. An application of a network flow model to personnel planning. IEEE Transactions

on Engineering Management 10, 113-123.
GOWER, J. C., and G. J. S. Ross. 1969. Minimum spanning trees and single linkage cluster analysis.

Applied Statistics 18, 54-64.
GRAHAM, R. L., anti P. HELL. 1985. On the history of minimum spanning tree problem. Annals of the

History of Computing 7, 43-57.
GRAVES, S. C. 1982. Using Lagrangian techniques to solve hierarchical production planning problems.

Management Science 28, 260-275.
GRAVES, G. W., and R. D. McBRIDE. 1976. The factorization approach to large scale linear programming.

Mathematical Programming 10, 91-110.
GREENBERG, H. 1990. Computational testing: Why, how, and how much. ORSA Journal of Computing

2,94-97.
GRIGORIADIS, M. D. 1986. An efficient implementation of the network simplex method. Mathematical

Programming Study 26, 83-111.
GRIGORIADIS, M. D., and Y. Hsu. 1979. The Rutgers minimum cost network flow subroutines. SIGMAP

Bulletin of the ACM 26, 17-18.
GROTSCHEL, M., and O. HOLLAND. 1985. Solving matching problems with linear programming. Mathe

matical Programming 33, 243-259.
GUIGNARD, M., and S. KIM. 1987a. Lagrangian decomposition: A model yielding stronger Lagrangian

bounds. Mathematical Programming 39, 215-228.
GUIGNARD, M., and S. KIM. 1987b. Lagrangian decomposition for integer programming: Theory and

applications. Technical Report 93, Department of Statistics, The Wharton School, University of
Pennsylvania, Philadelphia, PA.

GUPTA, S. K. 1985. Linear Programming and Network Models. Affiliated East-West Press, New Delhi,
India.

GUSFIELD, D. 1988. A graph theoretic approach to statistical data security. SIAM Journal on Computing
17, 552-571.

GUSFIELD, D. 1990. Very simple methods for all pairs network flow analysis. SIAM Journal on Computing
19, 143-155.

GUSFIELD, D., and R. W. IRVING. 1989. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Cambridge, MA.

GUSFIELD, D., and C. MARTEL. 1989. A fast algorithm for the generalized parametric minimum cut problem
and applications. Technical Report CSE-89-21, Computer Science Division, University of California,
Davis, CA.

Gus FIELD, D., C. MARTEL, and D. FERNANDEZ-BACA. 1987. Fast algorithms for bipartite network flow.
SIAM Journal on Computing 16, 237-251.

GUTJAHR, A. L., and G. L. NEMHAUSER. 1964. An algorithm for the line balancing problem. Management
Science 11, 308-315.

HALL, M. 1956. An algorithm for distinct representatives. American Mathematical Monthly 63, 716-717.

830 References

HAMACHER, H. W., and S. TUFEKCI. 1987. On the use of lexicographic min cost flows in evacuation
modelling. Naval Research Logistics Quarterly 34, 487-504.

HANDLER, G. Y. 1973. Minimax location of a facility in an undirected graph. Transportation Science 7,
287-293.

HANDLER, G., and 1. ZANG. 1980. A dual algorithm for the constrained shortest path problem. Networks
10,293-309.

HASSIN, R. 1981. Maximum flow in (s, t)-planar networks. Information Processing Letters 13, 107.
HASSIN, R., and D. B. JOHNSON. 1985. An O(n log2 n) algorithm for maximum flow in undirected planar

networks. SIAM Journal on Computing 14, 612-624.
HAUSMAN, H. 1978. Integer Programming and Related Areas: A Classified Bibliography. Lecture Notes

in Economics and Mathematical Systems, Vol. 160. Springer-Verlag, Berlin.
HAX, A. C., and C. CANDEA. 1984. Production and Inventory Management. Prentice Hall, Englewood

Cliffs, NJ.
HAYMOND, R. E., J. P. JARVIS, and D. R. SHIER. 1980. Computational methods for minimum spanning

tree problems. Technical Report 354, Department of Mathematical Sciences, Clemson University,
Clemson, SC.

HAYMOND, R. E., J. R. THORNTON, and D. D. WARNER. 1988. A shortest path algorithm in robotics and
its implementation on the FPS T-20 hypercube. Annals of Operations Research 14, 305-320.

HELD, M., and R. KARP. 1970. The traveling salesman problem and minimum spanning trees. Operations
Research 18, 1138-1162.

HELD, M., and R. KARP. 1971. The traveling salesman problem and minimum spanning trees, Part II.
Mathemqtical Programming 6, 62-88.

HELGASON, 'R. V., J. L. KENNINGTON, and B. D. STEWART. 1988. Dijkstra's two-tree shortest path al
gorithm. Technical Report, Department of Operations Research and Engineering Management, South
ern Methodist University, Dallas, TX.

HITCHCOCK, F. L. 1941. The distribution of a product from several sources to numerous facilities. Journal
of Mathematical Physics 20, 224-230.

HOCHBAUM, D. S., and J. G. SHANTHIKUMAR. 1990. Convex separable optimization is not much harder
than linear optimization. Journal of ACM 37, 843-862.

HOFFMAN. A. J. 1960. Some recent applications of the theory of linear inequalities to extremal combi
natorial analysis. In Combinatorial Analysis, edited by R. Bellman and M. Hall. American Mathe
matical Society, Providence, RI, pp. 113-128.

HOFFMAN, K. L., and R. H. F. JACKSON. 1982. In pursuit of a methodology for testing mathematical
programming software. In Evaluating Mathematical Programming Techniques, Lecture Notes in
Economics and Mathematical Systems, Vol. 199, edited by J. M. Mulvey et aI., Springer-Verlag,
New York. .

HOFFMAN, A. J., and J. B. KRUSKAL. 1956. Integral boundary points of convex polyhedra. In Linear
Inequalities and Related Systems, edited~fjy H. W. Kuhn and A. W. Tucker. Princeton University
Press, Princeton, NJ, pp. 233-246.

HOFFMAN, A. J., and H. M. MARKOWITZ. 1963. A note on shortest path, assignment and transportation
problems. Naval Research Logistics Quarterly 10, 375-379.

HOFFMAN, A. J., and S. T. MCCORMICK. 1984. A fast algorithm that makes matrices optimally sparse. In
Progress in Combinatorial Optimization. Academic Press Canada, Don Mills, Ontario, Canada.

HOPCROFT, J. E., and R. M. KARP. 1973. A n512 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing 2, 225-231.

HOPCROFT, J. E., and R. E. TARJAN. 1974. Efficient planarity testing. Journal of ACM 21,549-568.
HORN, W. A. 1971. Determining optimal container inventory and routing. Transportation Science 5, 225-

231.
HORN, W. A. 1973. Minimizing average flow time with parallel machines. Operations Research 21,846-

847.
Hu, T. C. 1961. The maximum capacity route problem. Operations Research 9, 898-900.
Hu, T. C. 1963. Multi-commodity network flows. Operations Research 11, 344-360.
Hu, T. C. 1966. Minimum cost flows in convex cost networks. Naval Research Logistics Quarterly 13,

1-9.
Hu, T. C. 1967. Laplace's equation and network flows. Operations Research 15, 348-354.
Hu, T. C. 1969. Integer Programming and Network Flows. Addison-Wesley, Reading, MA.

References 831

Hu, T. C. 1974. Optimum communication spanning trees. SIAM Journal on Computing 3, 188-195.
HUNG, M. S. 1983. A polynomial simplex method for the assignment problem. Operations Research 31,

595-600.
HUNG, M. S., and J. J. DIVOKY. 1988. A computational study of efficient shortest path algorithms. Com

puters and Operations Research 15, 567-576.
IMAI, H. 1983. On the practical efficiency of various maximum flow algorithms. Journal of the Operations

Research Society of Japan 26, 61-82.
IMAI, H., and M. IRI. 1986. Computational-geometric methods for polygonal approximations of a curve.

Computer Vision, Graphics and Image Processing 36,31-41.
IRI, M. 1960. A new method of solving transportation-network problems. Journal of the Operations

Research Society of Japan 3, 27-87.
IRI, M. 1969. Network Flow, Transportation and Scheduling. Academic Press, New York.
ITAI, A., and Y. SHlLOACH. 1979. Maximum flow in planar networks. SIAM Journal on Computing 8,

135-150.
JACKSON, R. H. B., P. T. BOGGs, S. G. NASH, and S. POWELL. 1989. Report of the ad hoc committee to

revise the guidelines for reporting computational experiments in mathematical programming. COAL
Newsletter 18, 3-14. .

JACKSON, R. H. B., and J. M. MULVEY. 1978. A critical review of comparisons of mathematical pro
gramming algorithms and software (1953-1977). Journal of Research of the National Bureau of
Standards 83, 563-584.

JACOBS, W. W. 1954. The caterer problem. Naval Research Logistics Quarterly 1, 154-165.
JARNicK, V. 1930. 0 jistem problemu minimalnfm. Acta Societatis Scientiarum Natur. Moravicae 6,57-

63.
JARVIS, J. P., and D. E. WHITE. 1983. Computational experience with minimum spanning tree algorithms.

Operations Research Letters 2, 36-41.
JENSEN, P. A., and W. BARNES. 1980. Network Flow Programming. Wiley, New York.
JENSEN, P., and G. BHAUMIK. 1977. A flow augmentation approach to the network with gains minimum

cost flew problem. Management Science 23, 631-643.
JEWELL, W. S. 1957. Warehousing and distribution of a seasonal product. Naval Research Logistics

Quarterly 4, 29-34.
JEWELL, W. S. 1958. Optimal flow through networks. Interim Technical Report 8, Operations Research

Center, MIT, Cambridge, MA.
JEWELL, W. S. 1962. Optimal flow through networks with gains. Operations Research 10, 476-499.
JOHNSON, E. L. 1966. Networks and basic solutions. Operations Research 14, 619-624.
JOHNSON, T. B. 1968. Optimum pit mine production scheduling. Technical Report, University of Cali

fornia, Berkeley, CA.
JOHNSON, D. B. 1982. A priority queue in which initialization and queue operations take O(log log D)

time. Mathematical Systems Theory 15, 295-309.
JOHNSON,D. S. 1990. Local optimization and the traveling salesman problem. Proceedings of the 17th

Colloquium on Automata, Languages, and Programming. Springer-Verlag, New York, pp. 446-461.
JOHNSON, D. B., and S. VENKATESAN. 1982. Using divide and conquer to find flows in directed planar

networks in 0(n312 log n) time. Proceedings of the 20th Annual Allerton Conference on Communi
cation, Control, and Computing, University of Illinois, Urbana-Champaign, IL, pp. 898-905.

KAMEDA, T., and!. MUNRO. 1974. A 0(1 VI. 1 E I) algorithm for maximum matching of graphs. Computing
12,91-98.

KANG, A. N. C., R. C. T. LEE, C. L. CHANG, and S. K. CHANG. 1977. Storage reduction through minimal
spanning trees and spanning forests. IEEE Transactions on Computers C-26, 425-434.

KANTOROVICH, L. V. 1939. Mathematical methods in the organization and planning of production. Pub
lication House of the Leningrad University. Translated in Management Science 6(1960), 366-422.

KAPLAN, S. 1973. Readiness and the optimal redeployment of resources. Naval Research Logistics Quar
terly 20, 625-638.

KARP, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations,
edited by R. E. Miller and J. W. Thacher. Plenum Press, New York, pp. 83-103.

KARP, R. M. 1978. A characterization of the minimum cycle mean in a diagraph. Discrete Mathematics
23, 309-311.

832 References

KARP, R. M., and J. B. ORLIN. 1981. Parametric shortest path algorithms with an application to cyclic
staffing. Discrete Applied Mathematics 3, 37-45.

KARZANOV, A. V. 1974. Determining the maximal flow in a network by the method of preflows. Soviet
Mathematics Doklady 15, 434-437.

KASTNING, C. 1976. Integer Programming and Related Areas: A Classified Bibliography. Lecture Notes
in Economics and Mathematical Systems, Vol. 128, Springer-Verlag, Berlin.

KELLY, J. R. 1961. Critical path planning and scheduling: Mathematical basis. Operations Research 9,
296-320.

KELLY, J. P., B. L. GOLDEN, and A. A. ASSAD. 1992. Cell suppression: Disclosure protection for sensitive
tabular data. Networks 22, 397-412.

KENNINGTON, J. L. 1978. A survey of linear cost rnulticommodity network flows. Operations Research
26, 209-236.

KENNINGTON, J. L., and R. V. HELGASON. 1980. Algorithms for Network Programming. Wiley-Intersci
ence, New York.

KENNINGTON, J. L., and M. SHALABY. 1977. An effective subgradient procedure for minimal cost mul
ticommodity flow problems. Management Science 23,994-1004.

KENNINGTON, J. L., and Z. WANG. 1990. The shortest augmenting path algorithm for the transportation
problem. Technical Report 90-CSE-10, Southern Methodist University, Dallas, TX.

KHAN, M. R. 1979. A capacitated network formulation for manpower scheduling. Industrial Management
21,24-28.

KHAN, M. R., and D. A. LEWIS. 1987. A network model for nursing staff scheduling. ZeitschriJt fur
Operations Research 31, BI61-BI71.

KLEIN, M. 1967. A primal method for minimal cost flows with application to the assignment and trans
portation problems. Management Science 14, 205-220.

KLINCEWICZ, J. G. 1983. A Newton method for convex separable network flow problems. Networks 13,
427-442.

KLINGMAN, D., A. NAPIER, and J. STUTZ. 1974. NETGEN: A program for generating large scale capac
itated assignment, transportation, and minimum cost flow network problems. Management Science
20, 814-821.

KNUTH, D. E. 1973a. The Art of Computer Programming. Vol. 1: Fundamental Algorithms, 2nd' ed.
Addison-Wesley, Reading, MA.

KNUTH, D. E. 1973b. The Art of Computer Programming. Vol. III: Sorting and Searching. Addison
Wesley, Reading, MA.

KOLITZ, S. 1991. Personal communication.
KOOPMANS, T. C. 1947. Optimum utilization of the transportation system. Proceedings of the International

Statistical Conference, Washington, DC. Also in Econometrica 17(1949).

KORTE, B. 1988. Applications of combinatorial optimization. Technical Report 88541-0R, Institute fiir
Okonometrie und Operations Research, Bonn, Germany.

KOURTZ, P. 1984. A network approach to least cost daily transfers of forest fire control resources. INFOR
22, 283-290.

KRUSKAL, J. B. 1956. On the shortest spanning tree of graph and the traveling salesman problem. Pro
ceedings of the American Mathematical Society 7, 48-50.

KUHN, H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quar
terly 2, 83-97.

LAPORTE, G., and Y. NOBERT. 1987. Exact algorithms for the vehicle routing problem. In Surveys in
Combinatorial Optimization, edited by S. Martello, G. Laporte, M. Minoux, and C. Ribeiro. North-
Holland, Amsterdam. .

LARSON, R. C., and A. R. ODONI. 1981. Urban Operations Research. Prentice Hall, Englewood Cliffs,
NJ.

LAWANIA, A. K. 1990. Personal communication.
LAWLER, E. L. 1964. On scheduling problems with deferral costs. Management Science 11, 280-287.
LAWLER, E. L. 1966. Optimal cycles in doubly weighted linear graphs. In Theory of Graphs: International

Symposium, Dunod, Paris, and Gordon and Breach, New York, pp. 209-213.
LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,

New York.

References 833

LAWLER, E. L., J. K. LENSTRA, A. H. G. RINNOOY KAN, and D. B. SHMOYS (eds.). 1985. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, :New York.

LEUNG, J., T. L. MAGNANTI, and V. SINGHAL. 1990. Routing in point to point delivery systems. Trans
portation Science 24, 245-260.

LEVIN, L. A. 1973. Universal sorting problems. Problemy Peredachi Informatsii 9,265-266. (In Russian.)
LEVNER, E. V., and A. S. NEMIROVSKY. 1991. A network flow algorithm for just-in-time project scheduling.

Memorandum COS OR 91-21, Department of Mathematics and Computing Science, Eindhoven Uni
versity of Technology, Eindhoven, The Netherlands.

LIN, T. F. 1986. A system of linear equations related to the transportation problem with application to
probability theory. Discrete Applied Mathematics 14,47-56.

LOB ERMAN, H., and A. WEINBERGER. 1957. Formal procedures for connecting terminals with a minimum
total wire length. Journal of ACM 4,428-437.

LovAsz, L., and M. D. PLUMMER. 1986. Matching Theory. North-Holland, Amsterdam.
LOVE, R. R., and R. R. VEMUGANTI. 1978. The single-plant mold allocation problem with capacity and

changeover restriction. Operations Research 26, 159-165.
LOWE, T. J., R. L. FRANCIS, andE. W. REINHARDT. 1979. A greedy network flow algorithm for a warehouse

leasing problem. AIlE Transactions 11, 170-182.
Luss, H. 1979. A capacity expansion model for two facilities. Naval Research Logistics Quarterly 26,

291-303.
MACHOL, R. E. 1961. An application of the assignment problem. Operations Research 9, 585-586.
MACHOL, R. E. 1970. An application of the assignment problem. Operations Research 18, 745-746.
MAGNANTI, T. L. 1981. Combinatorial optimization and vehicle fleet planning: Perspectives and prospects.

Networks 11, 179-214.
MAGNANTI, T. L. 1984. Models and algorithms for predicting urban traffic equilibria. In Transportation

Planning Models, edited by M. Florian. North-Holland, Amsterdam, pp. 153-186.
MAGNANTI, T. L., P. MIRCHANDANI, and R. VACHANJ. 1991. Modeling and solving the capacitated network

loading problem. Working Paper, Operations Research Center, MIT, Cambridge, MA.
MAGNANTI, T. L., J. SHAPIRO, and M. WAGNER. 1976. Generalized linear programming solves the dual.

Management Science 22, 1195-1203.
MAGNANTI, T. L., L. A. WOLSEY, and R. T. WONG. 1992. Optimal Trees. To appear in Handbooks in

Operations Research and Management Science. Vol. 6: Networks, edited by M. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser. North-Holland, Amsterdam.

MAGNANTI, T. L., L. A. WOLSEY, and R. T. WONG. 1992. Network design. To appear in Handbooks in
Operations Research and Management Science, Vol. 6: Networks, edited by M. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser. North-Holland, Amsterdam.

MAGNANTI, T. L., and R. T. WONG. 1984. Network design and transportation planning: Models and
algorithms. Transportation Science 18, 1-55.

MALIK, K., A. K. MITrAL, and S. K. GUPTA. 1989. The k most vital arcs in the shortest path problem.
Operations Research Letters 8, 223-227. Erratum: Same journal 9(1990) 283.

MAMER, J. W., and S. A. SMITH. 1982. Optimizing field repair kits based on job completion rate. Man
agement Science 28, 1328-1334.

MANNE, A. S. 1958. A target-assignment problem. Operations Research 6, 346-351.
MANSOUR, Y., and B. SCHIEBER. 1988. Finding the edge connectivity of directed graphs. Research Report

RC 13556, IBM Thomas J. Watson Research Center, Yorktown Heights, NY.
MARTEL, C. 1982. Preemptive scheduling with release times, deadlines, and due times. Journal of ACM

29, 812-829.
MARTELLO, S., W. R. PULLEYBLANK, P. TOTH, and D. DE WERRA. 1984. Balanced optimization problems.

Operations Research Letters 3, 275-278.
MASON, A. J., and A. B. PHILPOTT. 1988. Pairing stereo speakers using matching algorithms. Asia-Pacific

Journal of Operational Research 5, 101-116.
MATSUMOTO, K., T. NISHIZEKI, and N. SAITO. 1985. An efficient algorithm for finding multicommodity

flows in planar networks. SIAM Journal on Computing 14, 289-302.
MATULA, D. W. 1987. Determining edge connectivity in O(nm). Proceedings of the 28th Symposium on

Foundations of Computer Science, pp. 249-251.
MAXWELL, W. L., and R. C. WILSON. 1981. Dynamic network flow modelling of fixed path material

handling systems. AIlE Transactions 13, 12-21.

834 References

MCGEOCH, C. C. 1986. Experimental Analysis of Algorithms. Unpublished Ph.D. dissertation, Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

MCGEOCH, C. C. 1992. Analysis of algorithms by simulation: Variance reduction techniques and simulation
speedups. Computing Surveys 24, June issue.

MCGINNIS, L. F., and H. L. W. NUTILE. 1978. The project coordinators problem. OMEGA 6, 325-
330.

MEGGIDO, N. 1979. Combinatorial optimization with rational objective functions. Mathematics of Op
erations Research 4, 414-424.

MEGGIDO, N., and A. TAMIR. 1978. An O(n log n) algorithm for a class of matching problems. SIAM
Journal on Computing 7, 154-157.

MEHLHORN, K. 1984. Data Structures and Algorithms, Vol. I: Searching and Sorting. Springer-Verlag,
New York.

MICALI, S., and V. V. VAZIRANI. 1980. An O(vfVl . lEi) algorithm for finding maximum matching in
general graphs. Proceedings of the 21 st Annual Symposium on the Foundations of Computer Science,
pp. 17-27.

MINIEKA, E. 1978. Optimization Algorithms for Networks and Graphs. Marcel Dekker, New York.
MINOUX, M. 1984. A polynomial algorithm for minimum quadratic cost flow problems. European Journal

of Operational Research 18, 377-387.
MINOUX, M. 1986. Solving integer minimum cost flows with separable convex cost objective polynomially.

Mathematical Programming Study 26, 237-239.
MINOUX, M. 1989. Network synthesis and optimal network design problems: Models, solution methods,

and applications. Networks 19, 313-360.
MINTY, G. J. 1960. Monotone networks. Proceedings of the Royal Society of London 257A, 194-212.
MONMA, C. L., and M. SEGAL. 1982. A primal algorithm for finding minimum-cost flows in capacitated

networks with applications. Bell System Technical Journal 61, 449-468.
MOORE, E. F. 1957. The shortest path through a maze. In Proceedings of the International Symposium

on the Theory of Switching, Part II; The Annals ofthe Computation Laboratory of Harvard University
30, Harvard University Press, pp. 285-292.

MULVEY, J. 1978. Pivot strategies for primal-simplex network codes. Journal of ACM 25,266-270.
MULVEY, J. M. 1979. Strategies in modeling: A personal scheduling example. Interfaces 9, 66-76 .. '
NEMHAUSER, G. L., and L. A. WOLSEY. 1988. Integer and Combinatorial Optimization. Wiley, New

York.
ORLIN, D. 1987. Optimal weapons allocation against layered defenses. Naval Research Logistics Quarterly

34, 605-617.
ORLIN, J. B. 1984. Genuinely polynomial simplex and non-simplex algorithms for the minimum cost flow

problem. Technical Report 1615-84, Sloan School of Management, MIT, Cambridge, MA.
ORLIN, J. B. 1985. On the simplex algorithm for networks and generalized networks. Mathematical Pro-

gramming Study 24, 166-178. ~--

ORLIN, J. B. 1988. A faster strongly polynomial minimum cost flow algorithm. Proceedings of the 20th
ACM Symposium on the Theory of Computing, pp. 377-387. Full paper to appear in Operations
Research.

ORLIN, J. B., and R. K. AHUJA. 1992. New scaling algorithms for the assignment and minimum cycle
mean problems. Mathematical Programming 54,41-56.

ORLIN, J. B., and U. G. ROTHBLUM. 1985. Computing optimal scalings by parametric network algorithms.
Mathematical Programming 32, 1-10.

OSTEEN, R. E., and P. P. LIN. 1974. Picture skeletons based on eccentricities of points of minimum
spanning trees. SIAM Journal on Computing 3, 23-40.

PALLOTIINO, S. 1991. Personal communications.
PAPADIMITRIOU, C. H., and K. STEIGLITZ. 1982. Combinatorial Optimization: Algorithms and Complexity.

Prentice Hall, Englewood Cliffs, NJ.
PAPE, U. 1974. Implementation and efficiency of Moore-algorithms for the shortest route problem. Mathe

matical Programming 7,212-222.
PAPE, U. 1980. Algorithm 562: Shortest path lengths. ACM Transactions on Mathematical Software 6,

450-455.
PHILLIPS, D. T., and A. GARCIA-DIAZ. 1981. Fundamentals of Network Analysis. Prentice Hall, Englewood

Cliffs, NJ.

References 835

PICARD, J. C., and M. QUEYRANNE. 1982. Selected applications of minimum cuts in networks. INFOR
20,394-422.

PICARD, J. C., and H. D. RATLIFF. 1973. Minimal cost cut equivalent networks. Management Science
19, 1087-1092.

PICARD, J. C., and H. D. RATLIFF. 1978. A cut approach to the rectilinear distance facility location problem.
Operations Research 26, 422-433.

PINAR, M. C., and S. A. ZENIOS. 1990. Parallel decomposition of multicommodity network flows using
smooth penalty functions. Technical Report 90-12-06, Department of Decision Sciences, Wharton
School, University of Pennsylvania, Philadelphia, PA.

PINTO, Y., and R. SHAMIR. 1990. Efficient algorithms for minimum cost flow problems with convex costs.
Technical Report, Department of Computer Science, Tel Aviv University, Tel Aviv, Israel.

PLOTKIN, S., and E. TARDos. 1990. Improved dual network simplex. Proceedings of the First ACM-
SIAM Symposium on Discrete Algorithms, pp. 367-376.

POTTS, R. B., and R. M. OLIVER. 1972. Flows in Transportation Networks. Academic Press, New York.
PRAGER, W. 1957. On warehousing problems. Operations Research 5, 504-512.
PRIM, R. C. 1957. Shortest connection networks and some generalizations. Bell System Technical Journal

36, 1389-1401.
RATLIFF, H. D. 1978. Network models for production scheduling problems with convex cost and batch

processing. AlJE Transactions 10, 104-108.
RAVINDRAN, A. 1971. On compact book storage in libraries. Opsearch 8, 245-252.
RECSKI, A. 1988. Matroid Theory and Its Applications. Springer-Verlag, New York.
RHYS, J. M. W. 1970. A selection problem of shared fixed costs and network flows. Management Science

17, 200-207.
ROCK, H. 1980. Scaling techniques for minimal cost network flows. In Discrete Structures and Algorithms.

Edited by V. Page. Carl Hanser, Munich, pp. 181-191.
ROCKAFELLAR, R. T. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
ROCKAFELLAR, R. T. 1984. Network Flows and Monotropic Optimization. John Wiley & Sons, New York.
ROOHy-LALEH, E. 1980. Improvements to the Theoretical Efficiency of the Network Simplex Method.

Unpublished Ph.D. dissertation, Carleton University, Ottawa, Canada.
ROSENTHAL, R. E. 1981. A nonlinear network flow algorithm for maximization of benefits in a hydroelectric

power system. Operations Research 29, 763-786.
Ross, G. T., and R. M. SOLAND. 1975. A branch and bound algorithm for the generalized assignment

problem. Mathematical Programming 8, 91-103.
ROTH, A. E., U. G. ROTHBLUM, and J. H. VANDE VATE. 1990. Stable matchings, optimal assignments

and linear programming. Rutcor Research Report 23-90, The State University of New Jersey, Rutgers,
NJ.

ROTHFARB, B., N. P. SHEIN, and 1. T. FRISCH. 1968. Common terminal multicommodity flow. Operations
Research 16, 202-205.

SAKAROVITCH, M. 1973. Two commodity network flows and linear programming. Mathematical Pro
gramming 4, 1-20.

SAPOUNTZIS, C. 1984. Allocating blood to hospitals from a central blood bank. European Journal of
Operational Research 16, 157-162.

SCHMIDT, S. R., P. A. JENSEN, andJ. W. BARNES. 1982. An advanced dual incremental network algorithm.
Networks 12, 475-492.

SCHNEIDER, M. H., and S. A. ZENIOS. 1990. A comparative study of algorithms for matrix balancing.
Operations Research 38, 439-455.

SCHNEUR, R. 1991. Scaling algorithms for multicommodity flow problems and network flow problems
with side constraints. Ph.D. dissertation, Department of Civil Engineering, MIT, Cambridge, MA.

SCHNORR, C. P. 1979. Bottlenecks and edge connectivity in unsymmetrical networks. SIAM Journal on
Computing 8, 265-274.

SCHRIJVER, A. 1986. Theory of Linear and Integer Programming. Wiley, New York.

SCHWARTZ, B. L. 1966. Possible winners in partially completed tournaments. SIAM Review 8, 302-308.

SCHWARTZ, M., and T. E. STERN. 1980. Routing techniques used in computer communication networks.
IEEE Transactions on Communications COM-28, 539-552.

836 References

SEGAL, M. 1974. The operator-scheduling problem: A network flow approach. Operations Research 22,
808-823.

SERVI, L. D. 1989. A network flow approach to a satellite scheduling problem. Research Report, GTE
Laboratories, Waltham, MA.

SHAPIRO, J. F. 1979. Mathematical Programming: Structures and Algorithms. Wiley, New York.
SHAPIRO, J. F. 1992. Mathematical programming models and methods for production planning and sched

uling. To appear in Handbooks in Operations Research and Management Science, Vol. 4: Logistics
of Production and Inventory, edited by S. C. Graves, A. H. G. Rinnooy Kan, and P. Zipkin. North
Holland, Amsterdam.

SHEPARDSON, F., and R. E. MARSTEN. 1980. A Lagrangian relaxation algorithm for the two-duty scheduling
problem. Management Science 26, 274-281.

SHIER, D. R. 1982. Testing for homogeneity using minimum spanning trees. The UMAP Journal 3, 273-
283.

SHiLOACH, Y., and U. VISHKIN. 1982. An O(n2 log n) parallel max-flow algorithm. Journal of Algorithms
, 3, 128-146.

SLEATOR, D. D., and R. E. TARJAN. 1983. A data structure for dynamic trees. Journal of Computer and
System Sciences 24, 362-391.

SLUMP, C. H., and J. J. GERBRANDS. 1982. A network flow approach to reconstruction of the left ventricle
from two projections. Computer Graphics and Image Processing 18, 18-36.

SRINIVASAN, V. 1974. A transshipment model for cash management decisions. Management Science 20,
1350-1363.

SRINIVASAN, V. 1979. Network models for estimating brand-specific effects in multiattribute marketing
models. Management Science 25, 11-21.

SRINIVASAN, V., and G. L. THOMPSON. 1972. An operator theory of parametric programming for the
transportation problem. Naval Research Logistics Quarterly 19, 205-252.

SRINIVASAN, V., and G. L. THOMPSON. 1973. Benefit-cost analysis of coding techniques for primal trans
portation algorithm. Journal of ACM 20, 194-213.

STILLINGER, F. H. 1967. Physical clusters, surface tension, and critical phenomenon. Journal of Chemical
Physics 47, 2513-2533.

STOER, J., and C. WITZGALL. 1970. Convexity and Optimiz.ation in Finite Dimensions. Springer-Verlag,
New York.

STONE, H. S. 1977. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Transactions
on Software Engineering 3, 85-93.

SWOVELAND, C. 1971. Decomposition algorithms for the multi-commodity distribution problem. Working
Paper 184, Western Management Science Institute, University of California, Los Angeles, CA.

SYSLO, M. M., N. DEO, and J. S. KOWALIK. 1983. Discrete Optimiz.ation Algorithms. Prentice Hall,
Englewood Cliffs, NJ.

SZADKOWSKI, S. 1970. An approach to machining process optimization. International Journal of Pro
duction Research 9, 371-376.

T ALLURI, K. T. 1991. Issues in the design of survivable networks. Ph.D. dissertation, Operations Research
Center, MIT, Cambridge, MA.

TARDos, E. 1985. A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247-255.
TARDos, E. 1986. A strongly polynomial algorithm to solve combinatorial linear programs. Operations

Research 34, 250-256.
TARJAN, R. E. 1982. Sensitivity analysis of minimum spanning trees and shortest path trees. Information

Processing Letters 14, 30-33.
TARJAN, R. E. 1983. Data Structures and Network Algorithms. SIAM, Philadelphia, PA.
T ARJAN, R. E. 1984. A simple version of Karzanov' s blocking flow algorithm. Operations Research Letters

2,265-268.
TARJAN, R. E. 1991. Efficiency of the primal network simplex algorithm for the minimum-cost circulation

problem. Mathematics of Operations Research 16, 272-291.
TOMIZA VA, N. 1972. On some techniques usefulfor solution of transportation network problems. Networks

1, 173-194.
TOMLIN, J. A. 1966. A linear programming model for the assignment of traffic. Proceedings of the 3rd

Conference of the Australian Road Research Board 3, 263-271.

References 837

TRUEMPER, K. 1977. On max flow with gains and pure min-cost flows. SIAM Journal on Applied Math
ematics 32, 450-456.

Tso, M. 1986. Network flow models in image processing. Journal of the Operational Research Society
37,31-34.

Tso, M., P. KLEINSCHMIDT, 1. MITTERREITER, and J. GRAHAM. 1991. An efficient transportation algorithm
for automatic chromosome karotyping. Pattern Recognition Letters 12, II7-126.

TUTTE, W. T. 1971. Introduction to the Theory of Matroids. American Elsevier, New York.
VAIDYA, P. M. 1989. Speeding up linear programming using fast matrix mUltiplication. Proceedings of

the 30th Annual Symposium on the Foundations of Computer Science, pp. 332-337.
VAN SLYKE, R., and H. FRANK. 1972. Network reliability analysis: Part 1. Networks 1,279-290.
VAZIRANI, V. V. 1989. A theory of alternating paths and blossoms for proving correctness of the

0(n Il2 m) general graph matching algorithm. Technical Report 89-1035, Department of Computer
Science, Cornell University, Ithaca, NY.

VEINOTT, A. F., and O. B. DANTZIG. 1968. Integer extreme points. SIAM Review 10, 371-372.
VEINOTT, A. F., and H. M. WAGNER. 1962. Optimal capacity scheduling: Parts I and II. Operations

Research 10, 518-547.
VOLGENANT, A. 1989. A Lagrangian approach to the degree-constrained minimum spanning tree problem.

European Journal of Operational Research 39,325-331.
VON RANDOW, R. 1982. Integer Programming and Related Areas: A Classified Bibliography 1978-1981.

Lecture Notes in Economics and Mathematical Systems, Vol. 197. Springer-Verlag, Berlin.
VON RANDOW, R. 1985. Integer Programming and Related Areas: A Classified Bibliography 1981-1984.

Lecture Notes in Economics and Mathematical Systems, Vol. 243. Springer-Verlag, Berlin.
WAGNER, R. A. 1976. A shortest path algorithm for edge-sparse graphs. Journal of ACM 23,50-57.
WAGNER, D. K. 1990. Disjoint (s, f)-cuts in a network. Networks 20, 361-371.
WALLACHER, C., and U. T. ZIMMERMANN. 1991. A combinatorial interior point method for network flow

problems. Presented at the 14th International Symposium on Mathematical Programming, Amster
dam, The Netherlands.

WARSHALL, S. 1962. A theorem on boolean matrices. Journal of ACM 9, II-12.
WATERMAN, M. S. 1988. Mathematical Methods for DNA Sequences. CRC Press, Boca Raton, FL.
WEINTRAUB, A. 1974. A primal algorithm to solve network flow problems with convex costs. Management

Science 21, 87-97.
WELSH, D. J. A. 1976. Matroid Theory. Academic Press, New York.
WHrrE, L. S. 1969. Shortest route models for the allocation of inspection effort on a production line.

Management Science 15, 249-259.
WHITE, W. W. 1972. Dynamic transshipment networks: An algorithm and its application to the distribution

of empty containers. Networks 2, 211-230.
WHITING, P. D., and J. A. HILLIER. 1960. A method for finding the shortest route through a road network.

Operations Research Quarterly 11, 37-40.
WHITNEY, H. 1935. On the abstract properties of linear dependence. American Journal of Mathematics

57, 509-533.
WINSTON, W. L. 1991. Operations Research: Applications and Algorithms. PWS-Kent, Boston, MA.
WITZGALL, C., and C. T. ZAHN. 1965. Modification of Edmonds maximum matching algorithm. Journal

of Research of the National Bureau of Standards 69B, 91-98.
WONG, R. T. 1980. Integer programming formulations of the traveling salesman problem. Proceedings of

the 1980 IEEE International Conference on Circuits and Computers, pp. 149-152.
WRIGHT, J. W. 1975. Reallocation of housing by use of network analysis. Operational Research Quarterly

26, 253-258.
Y AO, A. 1975. An 0(1 E 1 log log 1 V I) algorithm for finding minimum spanning trees. Information Pro

cessing Letters 4, 21-23.
YOUNG, N. E., R. E. TARJAN, and J. B. ORLIN. 1990. Faster parametric shortest path and minimum

balance algorithms. Working Paper 3112-90-MS, Sloan School of Management, MIT, Cambridge,
MA.

ZADEH, N. 1973a. A bad network problem for the simplex method and other minimum cost flow algorithms.
Mathematical Programming 5, 255-266.

ZADEH, N. 1973b. More pathological examples for network flow problems. Mathematical Programming
5, 217-224.

838 References

ZADEH, N. 1979. Near equivalence of network flow algorithms. Technical Report 26, Department of
Operations Research, Stanford University, Stanford, CA.

ZAHN, C. T. 1971. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans
actions on Computing C20, 68-86.

ZAKI, H. 1990. A comparison of two algorithms for the assignment problem. Technical Report ORL
90-002, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana
Champaign, Urbana, IL.

ZANGWILL, W. I. 1969. A backlogging model and a multi-echelon model of a dynamic economic lot size
production system: A network approach. Management Science 15, 506-527.

ZAWACK, D. J., and G. L. THOMPSON. 1987. A dynamic space-time network flow model for city traffic
congestion. Transportation Science 21, 153-162.

ZENIOS, S. A., and J. M. MULVEY. 1986. Relaxation techniques for strictly convex network problems.
Annals of Operations Research 5, 517-538.

References 839

INDEX

I-forest, 541
I-tree, 541
3-cover problem, 794-95
~-residual network, 211-12,

557-58
~-scaling phase, 211, 238, 360,

373,557-60
E-optimality conditions, 363

A* algorithm, 130
Active node, 224
Acyclic networks, 51

applications of, 368-69, 444
definition, 27
determination of, 77-79
properties, 51

Adjacency lists, 25, 34-35,46
Adjacency matrix representations,

33-34,46
Admissible arcs, 74, 210, 364
Admissible networks, 324, 368
Admissible paths, 210
Aircraft assignment, 570
Airline scheduling problem, 204
Algorithms

animation, 714-15
bad,54
easy, 788
efficient, 54, 788
good,54

All pairs label correcting
algorithms, 146-50

All-pairs minimum value cut
problem, 277-86

All-pairs shortest path problem,
144-50, 155-56

Allocating contractors to public
works, 345

Allocating receivers to
transmitters, 454

Alternating paths, 476
Alternating tree, 479-80
Amortized complexity, 63-65
Analog solution of shortest paths,

96

840

Applications
of convex cost flows, 562
of generalized flow problems,

592
of maximum flow problem,

197-98
of matchings and assignments,

501
of minimum cost flow problem,

342-44
of minimum cut problem,

197-98
of minimum spanning trees, 536
of multi commodity flow

problems, 685-86
of shortest path problem,

123-24
Applications of network models

in computer science and
communication systems, 757

in defense, 757
in distribution and

transportation, 759
in engineering, 756
in management science, 757
in manufacturing, production

and inventory planning, 756
in physical and medical

sciences, 757
in scheduling, 757
in social sciences and public

policy, 758
Approximate optimality, 362-63
Approximating piecewise linear

functions, 98-99, 131
Arborescence, 511
Arc adjacency list, 25, 34
Arc coloring problem, 504
Arc connectivity, 273-74, 292-93
Arc reversal transformation, 40
Arc routing problems, 740-44
Arc tolerances, 130-31
Assigning medical school

graduates to hospitals, 465
Assignment problem, 7, 470-73

Assortment of structural steel
beams, 11,21

Asymptotic bottleneck operations,
702-07

Augmented forest structures,
572-90

Augmented tree, 575
Augmenting cycle theorem, 83
Augmenting path algorithm,

180-84,223
Augmenting path theorem, 185,

478
Average-case analysis, 56-57

Backward arc, 26
Balanced assignment problem,

505-06
Balanced nodes, 80, 320
Balanced spanning tree problem,

540
Baseball elimination problem,

258-59, 289
Basic feasible solutions

for generalized flows, 582-83
for linear programs, 805-10
for minimum cost flows, 445
for multicommodity flows,

679-82
Basis property

for generalized flows, 582-83
for minimum cost flows, 442-46

Bellman's equations, 158
Berge's theorem, 508
Bicycles, 587-89
Big n notation, 59-60
Big 0 notation, 63
Bin packing problem, 87
Binary heaps

applications, 116, 525
data structure, 778

Binary search
applications, 88, 152, 791
technique, 72-73

Binomial coefficients, 70

Bipartite matching algorithm,
469-73,478-81

Bipartite networks, 49, 51, 288
applications, 41

-definition, 31
in matching algorithms, 189-91
in maximum flow algorithms,

255-59,286
in minimum cost flow

algorithms, 373, 399-400
in shortest path algorithms, 159
properties, 31, 49, 51

Bit-scaling algorithms
basic approach, 68-70
for maximum flow problem, 246
for minimum cost flow

problem, 400
for shortest path problem, 164

Blocking arc, 418
Blocking flows, 221-22
Blossoms, 483-94
Book storage in libraries, 124-25
Bottleneck assignment problem,

505
Bottleneck operations, 704-07
Bottleneck spanning tree problem,

540
Bottleneck transportation

problem, 355
Branch and bound technique,

602-04
Breadth-first search, 76, 90, 107
Breakeven cycle, 574
Bridges of Konigsberg, 48
Bubble sort algorithm, 86
Buckets, 113-14, 116-21
Building evacuation models,

738-39

Candidate list pivot rule, 417
Capacitated minimum spanning

tree problem, 354, 647
Capacity expansion problems,

562-64, 641
Capacity of a cut, 178
Capacity scaling algorithms

for convex cost flows, 555-60
for maximum flows, 210-12,

220, 240, 246
for minimum cost flows,

360-62, 373-76, 382-95, 400
Caterer problem, 453, 593
Certificate checking algorithm,

793-94
Chinese postman problems

undirected version, 742-44

Index

Circulation problem, 7, 20, 81, 92
feasibility conditions, 195
for multi commodity flows,

687-88
Class N'2Jl, 793-96
Class N'2Jl-complete, 795-801

strong N'2Jl-completeness,
799-800

Class N'2Jl-hard, 796
Class '2Jl, 792-95
Clique, 50
Cluster analysis, 125,515-16
Coloring problems, 49, 504
Column generation approach,

665-70
Comparison of algorithms, 707
Complementary slackness

conditions
for generalized flows, 576-77
for Lagrangian relaxation, 607
for linear programs, 819-20
for minimum cost flows,

309-14,330
for minimum spanning trees,

531-32
for multicommodity flows, 658,

667-68
Complexity analysis, 56-66
Components of a graph, 27
Computational testing of

algorithms, 695-716
Concentrator location problem,

125-26
Concurrent flow problem, 691
Connectivity

algorithms, 273-77, 286, 292-93
arc, 273-74, 292-93
biconnectiVity, 288
definition, 27
node, 273, 293

Constrained maximum flows,
400-01

Constrained minimum cost flows,
460,621-22

Constrained minimum spanning
trees, 631-33

Constrained shortest paths,
599-600, 762, 798

Contractions, 384-85, 492
Conversion of physical entities,

568-69
Convex cost flow problem, 7,

543-65
Convexification, 618, 646
Cost scaling algorithms

for assignment problem, 472-73

for convex cost flows, 565
for minimum cost flows,

362-72,399
Coverage of sporting events, 205
Crew scheduling, 127
Currency conversion problem,

593
Current-arc data structure, 75, 82,

216-17, 365-72
Current forest, 234
Cuts, 27

s-t cuts, 28
Cycle-canceling algorithms

for convex cost flows, 555-56
for minimum cost flows,

317-19,340,376-82
specific implementations, 319,

376-82
Cycle free solutions, 405-09
Cycles, 26
Cyclic scheduling problem, 622
Cyclic staff scheduling problem,

346-47

d-heaps
applications, 116, 525
data structure, 773-78

Dancing problem, 504
Dantzig-Wolfe decomposition,

652-53,671-73 "
Data scaling, 725-28
Data structures

arrays, 766
binary heaps, 778
current-arc, 75
d-heaps, 773-78
Fibonacci heaps, 779-87
linked lists, 767-71

Dating problem, 21
Deficit of a node, 80, 320
Degrees, 25
Degeneracy

in dual network simplex
method, 438-39

in network simplex method,
418,420-25

in simplex method, 814
Deployment of firefighting

companies, 763-64
Deployment of resources, 686
Depth-first search

applications, 410
technique, 76, 90

Depth index, 410
Dequeue, 143
Descendants, 29

841

Designing physical systems,
512-13

Destruction of military targets,
723

Determining an optimal energy
policy, 16

Determining chemical bonds, 466
Dial's implementation

algorithm, 113-14, 129
applications, 122, 700

Dijkstra's algorithm, 108-22
bidirectional implementation,

112-13,132
Dial's implementation, 113-14,

122, 129, 700
Johnson's implementation, 116
original implementation,

108-12, 122
radix heap implementation,

116-22
reiationship to label correcting

algorithms, 141
reverse implementation, 112

Dinie's algorithm, 221-23
Dining problem, 198
Directed cycles, 27
Directed in-trees, 30
Directed networks

defmitions,24-31
representation, 31-38

Directed out-trees, 29
Directed path, 26
Directed walk, 26
Distance labels, 209-10, 221-23
Distribution problems, 298-99,

654
DNA sequence alignment, 728-31
Double scaling algorithm, 373-76,

399
Doubly linked lists

applications, 113,229,372,527
data structure, 769-71, 773

Doubly stochastic matrix, 504
Distributed computing on

computers, 174-75
Dual completion of oil wells, 465
Dual integrality property, 413
Dual networks, 262-65, 291
Duality gap, 614, 620
Duality theory

for linear programming, 816-20
for minimum cost flows,

310-15, 384
for multieommodity flows,

657-58
Dynamic flow problems, 737-40

842

Dynamic lot sizing, 749-52
Dynamic programming

applications, 88, 102, 107, 148,
153, 162, 729-31

technique, 70-72
Dynamic trees

applications, 372
data structure, 265-73,286

Economic order quantity, 748
Electrical networks, 15
Eligible arcs, 416, 585-86

in dual network simplex, 438
in network simplex, 416
in parametric network simplex,

434
Empirical analysis of algorithms,

56-57, 695-716
Employment scheduling, 306
Endpoints, 25
Equipment replacement problem,

306,347
Euler's formula, 261
Euler's theorem, 742-43
Euler's tour, 91
Excess dominator, 237
Excess of a node, 80, 224, 320
Exponential-time algorithms,

60-62
Extreme point solutions, 533
Extreme points, 804-05, 809-10

Factored assignment problems,
505

Factored minimum spanning tree
problem, 539-40

Factored transportation problem,
345

Faculty-course assignment, 454
Feasible flow problem

algorithm, 169-70
applications, 170-74, 194,

258-59,563
feasibility conditions, 196, 205
max and min arc flows, 283-85

Feasibility of perfect matchings,
503

Fibonacci heaps
applications, 116, 122, 525
data structure, 779-87

Fibonacci numbers, 779
FIFO label correcting algorithm,

142-44, 155, 159, 429, 700
FIFO preflow-push algorithm,

231-32, 696
Flow across a cut, 179

Flow bound constraints, 5
Flow decomposition.

applications of, 92, 183-84,
188-90, 228, 308, 398, 470,
596-97, 666, 741, 743

theory, 79-83
Flow property, 388
Flowers, 483
Floyd-Warshall algorithm,

147-50, 156, 162
Flyaway kit problem, 724-25
Forest, 28-29, 49
Forest scheduling problem, 22
Forward arc, 26
Forward star representation,

35-37,46
Fractional b-matching problem,

354
Fundamental cuts, 30
Fundamental cycles, 30

Gainy are, 8, 568, 574
Gainy cycle, 574
Generalized assignment problem,

639-40
Generalized flow problems, 8,

566-97,800,596
Generalized upper bounding

simplex method, 666-67
Geometric improvement approach

applications, 211, 377
basic ideas, 67-68

Good algorithm, 54
Greedy algorithm, 528-30, 541

Hamiltonian cycle problem,
794-95

Hamiltonian path problem, 797
Hard problems, 789
Head nodes, 25
Heaps, 773-87
Hungarian algorithm, 471-72

Imbalance of a node, 80, 320
Imbalance property, 388
Incidence matrix, 5, 32-33, 46
Incoming arc, 25
Indegree, 25
Independent arcs, 190, 205
Independent nodes, 50
Insights into 1llgorithms, 709-11
Inspection of a production line,

99-100
Instance of a problem, 56
Integer programming, 531-33,

598-648, 794-95, 799

Index

Integrality assumption, 6
Integrality property

for Lagrangian relaxation,
619-20

for maximum flows, 186
for minimum cost flows, 318,

413, 415, 447-49
Isomorphic graphs, 49, 790

Just-in-time scheduling, 734-35

Karyotyping of chromosomes, 731
Kilter diagram, 327
Kilter number, 327-31
Knapsack problem, 71-72, 88,

100-02, 127, 131, 697
Knight's tour problem, 89
Kruskal's algorithm, 520-23,

530-34

Label correcting algorithms,
136-65

and network simplex algorithm,
427-28

dequeue implementation, 143,
155, 161

FIFO implementation, 142-44,
155, 159,317

for finding negative cycles,
143-44, 159

generic implementation,
136-41, 155, 159, 161

Labeling algorithm, 70, 184-87,
240, 252-55, 274, 700

pathological example, 205-06
Lagrangian decomposition,

647-48
Lagrangian multiplier problem,

607-15
Lagrangian relaxation, 598-648

for minimum cost flows, 332
for multicommodity flows,

660-65
Land management, 571-72
Layered networks, 88, 221-23
Leaving arc rule, 423
Leveling mountainous terrain, 12
Linear programming, 802-20

and assignment problem, 471
and convex cost flows, 552-53
and generalized flow, 567-68,

582-83
and greedy algorithm, 541
and Lagrangian relaxation,

615-20, 638-39
and m:atroids, 541-42

Index

and maximum flows, 168
and minimum cost flows, 296,

304-06, 310-15
and minimum ratio cycle

problem, 163-64
and multicommodity flows,

649-50,666
and primal-dual algorithm, 326
and shortest paths, 94, 136
and spanning trees, 530-33

Linear programs
canocial form, 806
standard form, 803
symmetric form, 817
with consecutive l's in

columns, 304-06, 314-15, 344
with consecutive l's in rows,

314-15, 346-47, 737, 748
Linked lists

applications, 34-35, 233, 239,
521, 527

data structure, 767-69, 773
Loading of a hopping airplane,

302
Locating objects in space, 466
Location and layout problems,

163,640-41,744-48,764
Longest path problem, 91, 102,

129,797
Loops, 25
Lossy arc, 8, 568
Lossy cycle, 574

Machine loading problem, 569-70
Machine scheduling, 172-74,

303-04,468-69
Mass balanc.s: constraints, 5
Matching problems, 9, 461-509

and Chinese Postman, 743-44
and maximum flows, 189-191
and shortest paths, 494-98
three-dimensional, 800

Matrix balancing, 548-49
Matrix manipulation algorithms,

150
Matrix rounding problems,

171-72, 454-55
Matroids, 528-30, 533, 541-42
Max-flow min-cut theorem,

184-85
combinatorial implications,

188-191
for nonzero lower bounds, 193
linear programming proof, 432

Maximum capacity augmenting
path algorithm, 210-11

Maximum capacity path problem,
129

Maximum cut problem, 800
Maximum dynamic flow problem,

738
Maximum flow problem, 6,

69-70, 166-293
Maximum flows

and minimum cost flows,
324-26, 339

and primal-dual algorithm,
324-26

in bipartite networks, 255-59
in planar networks, 260-65
in unit capacity networks,

252-55
with nonzero lower bounds,

191-96
Maximum preflow, 245
Maximum spanning tree problem,

278, 519-20
Maximum weight closure, 719-25
Maze problem, 89
Measuring homogeneity of

bimetallic objects, 14
Min-cost max-flow problem, 352
Min-value max-cut theorem, 202
Minimax path problem, 513-14
Minimax transportation problem,

199 "
Minimum cost flow problem, 4-5,

52, 83, 294-460
Minimum cost flows

and assignment problem,
470-73

and convex cost flow problem,
552-53

and maximum flow problem,
324-26,339

and shortest path problem, 316,
320-32, 360-62, 382-94

Minimum cut problem, 167, 178,
184-85, 204

all-pairs, 277-86
applications, 174-76,283-85
in planar networks, 262-63
with fewest arcs, 247

Minimum disconnecting set,
273-77

Minimum flow problem
algorithm, 202
min-value max-cut theorem, 202

Minimum mean cycle problem,
152-54

application to data scaling, 728
application to minimum cost

flow algorithms, 319, 376-82

843

Minimum ratio cycle problem,
150-54, 163-64

Minimum ratio rule, 812
Minimumratio spanning trees,

541
Minimum spanning trees, 8,

510-42
and all-pairs min cut problem,

278
applications, 536

Minimum value problem. See
Minimum flow problem

Mold allocation, 754
Money-changing problem, 125
More-for-less paradox, 354
Multiarcs, 25
Multicommodity flows, 8, 649-94

funnel problem, 688-89
in two-commodity networks,

690
in undirected networks, 689-90
maximum flow version, 690-91
multisink problem, 688
multisource problem, 688

Multidrop terminal layout
problem, 632

Multipliers of arcs, 568
Multipliers of paths and cycles,

573-74

Negative cycle detection
algorithms, 136, 143-44, 149,

162, 428, 495
applications, 103-04, 151-52,

317,727
Negative cycle optimality

conditions, 307-08
Negative cycle optimality

theorem, 83
Network connectivity, 188-91,

273-77
Network decomposition

algorithms, 79-83
Network design problems,

627-28,642
Network flow books, 19-20
Network interdiction problem,

763
Network reliability testing, 259
Network representations, 31-38,

46
Network simplex algorithms,

402-60
degeneracy in, 421
empirical analysis, 702-12

Network transformations, 38-46

844

Network types
communication, 10,654
computer, 10, 654
energy, 569
financial, 568
hydraulic, 10
mechanical, 10
transportation, 10

Node-arc incidence matrix, 5, 32,
46,50,449

Node adjacency list, 25, 34
Node capacities, 42, 203
N ode coloring, 49
Node connectivity, 273, 279
Node cover, 50, 189-91
Node-node adjacency matrix, 33,

46, 50, 51
Node potentials, 308
N ode splitting transformation

applications, 189,497-98
technique, 41

Nonbipartite matching problem,
475-494, 498

Nonsaturating push, 225, 364
Nontree arcs, 30
NP-completeness, 788-801
Nurse scheduling problem, 453
Nurse staff scheduling, 198

Open pit mining, 721-23
Operator scheduling, 628-31
Optimal capacity scheduling, 306
Optimal depletion of inventory,

468
Optimal message passing, 513
Optimality conditions

for all-pairs shortest paths, 146
for generalized flows, 576-77,

597
for Lagrangian relaxation, 606
for minimum cost flows,

306-10, 408-09
for minimum spanning trees,

516-19, 531-32
for multicommodity flows,

657-58, 667-68
for shortest paths, 135-36,

306-07
Out-of-kilter algorithm, 326-31,

340
Outdegree, 25
Outgoing arc, 25

Painted network theorem, 203
Pairing stereo speakers, 14
Paragraph problem, 21

Parallel arcs, 25, 37-38, 128, 203
representation, 37-38

Parameter balancing
applications, 87, 116, 525
technique, 65-66, 87

Parametric analysis
for maximum flows, 248
for minimum cost flows, 459-60
for minimum spanning trees,

540
for shortest paths, 164-65,

433-37
Parking model, 762-63
Partition problem, 794-95
Partitioning algorithm

for shortest paths, 160-61
Partitioning methods

for multicommodity flows, 653,
678-88

Passenger routing, 454
Path and cycle flow, 80-83
Path flow formulation, 665-66
Path optimality conditions, 519
Path problems

maximum capacity, 129, 162
maximum multiplier, 160, 162
maximum reliability, 130
minimax, 513-14
with additional constraints, 131
with resource constraints, 131
with turn penalties, 130

Pathological examples, 161,
205-06

Paths, 26
Penalty approach, 692-93
Perfect b-matching, 496-97
Performance measures, 714
Permanently labeled node, 109
Permutation matrix, 504
Personnel assignment, 21, 463-64

bipartite, 463-64
nonbipartite, 464-65

Personnel planning problem, 126
Perturbation

and strongly feasible solutions,
457

for generalized flows, 590
for minimum cost flows, 457-59

Phasing out capital equipment,
345

Physical networks, 9-10
Pivot operations

for dual network simplex
method, 434-35

for linear programming, 811-13
for network simplex method,

418-20,711

Index

Pivot rules
for generalized flows, 585
for minimum cost flows, 416-17
for shortest paths, 428-29

Planar networks, 260-65, 286-87
Police patrol problem, 21-22
Policemen's problem, 509
Polyhedron, 804:....05
Polynomial reductions, 790-92
Polynomial-time algorithms,

60-62
pseudopolynomial, 61
strongly polynomial, 61

Polynomial-time algorithms for
all-pairs shortest paths, 147-48
assignment problem, 470-73
bipartite matchings, 469-70,

478-80
convex cost flows, 556-60
maximum flows, 210-40
minimum cost flows, 360-95
non bipartite matchings, 475-94
shortest paths, 108-112,

115-22, 141-43,429-30
spanning trees, 520-28

Polynomial transformations,
792-801

Polynomially equivalent, 791
Potential functions

applications, 165,228-29, 232,
235-37, 239, 257-58, 369-70,
430, 782, 784

technique, 63-65
Potential of a node, 43
Practical improvements

for cost scaling algorithms,
365-66

for Dial's implementation, 129
for preflow-push algorithms,

229-30
for shortest augmenting path

algorithm, 219-20
for successive shortest path

algorithm, 323-24
Predecessor graph, 137-39
Predecessor index, 26, 29, 410
Preflow, 224
Preflow push· algorithms

empirical testing, 700
excess scaling implementation,

237-40,247
FIFO implementation, 230-34,

240,246
for bipartite networks, 255-58,

290
generic version, 223-31, 240,

255-58

Index

highest label implementation,
233-36, 240, 246

Preorder travers.al, 76
Price-directive decomposition, 652
Prim's algorithm, 523-26, 534
Primal-dual algorithm, 324-26,

340
Priority queue, 773-87
Problem of queens, 50
Problem of representatives,

170-71
Problem size, 57-58
Production-inventory planning

models, 748-53
Production planning, 633-35
Production property, 750
Production scheduling problem,

593
Project assignment, 453-54
Project management, 732-37
Pseudoflow, 320
Pseudo polynomial-time

algorithms, 113-14, 140, 143,
136, 317-37, 554-56

Pushes, 223

Queues
applications, 142, 231
data structure, 772-73

Racial balancing of schools, 17,
301-02,347,563

Radix heaps, 116-21
Reallocation of housing, 10, 163
Recognition problems, 790-91
Reconstructing left ventricle from

X-ray projections, 299-300
Reduced cost optimality

conditions, 308-09
Reduced costs, 43-44, 308, 808
Reducing data storage, 514
Relabel operation, 213, 225, 364
Relaxation algorithm, 332-37,

340,472
Repeated shortest path algorithm,

144-45, 156
Reporting computational

experiments, 714
Representative operation counts,

698-716
Residual capacity, 44
Residual capacity of a cut, 178
Residual networks, 44-46, 51, 83,

177, 298, 554-55
Resource-directive

decomposition, 652, 674-78

Reverse search algorithm, 76
Reverse star representation,

35-37
Revised simplex method, 813-14
Rewiring of typewriters, 13
Rooted trees, 29
Routing multiple commodities,

653
Running time of algorithms, 58-66
Ryser's theorem, 248-49

s-t cut, 177-78
s-t planar networks, 263-65
Saturating push, 225, 364
Scaling algorithms

basic ideas, 68-70
for convex cost flows, 556-61
for maximum flows, 210-12,

237-39, 246
for minimum cost flows,

360-94,400
for shortest paths, 164

Scheduling problems, 172-74,
303-04, 468-69

School bus driver assignment, 501
Search algorithms

basic approaches, 73-79
Search trees, 74, 76, 90, 107,479
Seat-sharing problem, 21
Selecting freight terminals, 722
Semi-bipartite networks, 132, 290
Sensitivity analysis

for maximum flows, 204
for minimum cost flows,

337-39, 353, 439-40
for minimum spanning trees,

539
for shortest paths, 159-60, 163

Separable functions, 544
Separator tree, 279-83
Sequencial search algorithm,

151-52
Sharp distance labels, 160
Shortest augmenting path

algorithm, 213-23, 240,
252-55, 265-73

Shortest path tree, 106-07, 139
Shortest paths, 6, 93-165

application to min cost flows,
262-63, 320-56, 360-62,
382-94

enumerating all paths, 160
in acyclic networks, 107-08
in bipartite networks, 132, 159
in layered networks, 88

Similarity assumption, 60,
799-800

845

Simplex method,
for bounded variables, 814-15
for generalized flows, 583-89
for linear programming, 810-19
for maximum flows, 430-33
for minimum cost flows, 415-21
for shortest paths, 425-30
generalized upper bounding,

666-67
revised, 813-14

Simplex multipliers
for linear programs, 808
for minimum cost flows, 445-46

Ski instructor's problem, 501
Small-capacity networks, 289
SoUin's algorithm, 526-28, 534
Solving systems of equations, 199
Sorting, 86, 521, 774, 778
Spanning subgraph, 26
Spanning tree, 30
Spanning tree solutions, 405-09
Spanning tree structures, 408-09
Stable marriage problem, 473-75
Stable matchings, 475
Stable university admissions, 507
Stacks

applications, 64-65
Statistical security of data, 199,

283-85
Steiner tree problem, 642
Stick percolation problem, 550-51
Storage policy for libraries,

344-45
Strong connectivity

algorithm, 77
definition, 27

Strong duality theorem
for linear programs, 818-19
for minimum cost flows, 312-13

Strongly feasible solutions,
421-25, 432, 457, 590

and perturbation, 457
Subgradient optimization

application to multicommodity
flows, 663-65

technique, 611-15
Subgraph, 26
Subset systems, 528-30
Subtour breaking constraints, 626

846

Successive shortest path
algorithm

applications, 360, 437, 471, 556,
639,701

basic approach, 320-24, 340
Succint certificate, 794
Symmetric difference, 477
System of difference constraints,

103-05, 127,726-28

Tail nodes, 25
Tanker scheduling problems,

176-77,347,656
Telephone operator scheduling,

105-06, 127
Teleprocessing design problem,

632
Temporarily labeled nodes, 109
Terminal assignment problem, 346
Thread index, 410-14, 443-46
Threshold algorithm, 161
Time complexity function, 58
Time-cost trade-off problem,

735-37
Time-expanded networks, 737-40
Topological ordering

algorithm, 77-79
applications, 11, 107-08,

371-72
Totally unimodular matrices,

,448-49
Tournament problem, 12
Traffic flows, 547
Tramp steamer problem, 103, 150
Transfers in communication

networks, 547-48
Transformations

for removing arc capacities, 40
for removing nonzero lower

bounds, 39
for removing undirected arcs,

39
node splitting, 41-43

Transitive closure, 90, 91
Transportation problem, 7, 9, 20,

294
Travelling salesman problem. See

TSP

Tree arcs, 30
Tree indices, 410-14, 419, 576
Tree of shortest paths, 106, 139
Trees, 28-30
Triangularity property, 443-47
Triple operation, 147
Truck scheduling problem, 763
TSP, 623-25, 643-44, 790-91,

794,797

Uncapacitated networks, 40-41
Undirected networks

definitions, 25, 31
representations, 38
transformation, 39

Unimodular matrices, 447-49
Unimodularity property, 447-49
Union-find operation, 522
Unique label property, 481-82
U nit capacity networks

and bipartite matchings, 469-70
and minimum cost flows, 399
and network connectivity,

188-91, 274
maximum flows in, 252-55,

285, 289
Unstable roommates, 507

Validity conditions, 209
Variable splitting, 630
Variational principle, 16, 547
Vehicle fleet planning, 344
Vehicle routing, 625-27, 645-47
Virtual running times, 707-09
Vital arcs, 128-29, 244

Walk,26
Warehousing problem, 570, 655
Wave algorithm, 246
Weak duality theorem

for Lagrangian relaxation, 606
for linear programs, 817-18
for minimum cost flow, 312

Wine division problem, 90
Worst-case complexity, 56-66

Zero length cycle, 151, 160
Zoned warehousing, 345

Index

	Cover
	NETWORK FLOWS: Theory, Algorithms, and Applications
	Copyright
	CONTENTS
	PREFACE
	1 INTRODUCTION,����������������������
	1.1 Introduction,������������������������
	1.2 Network Flow Problems,���������������������������������
	1.3 Applications,������������������������
	1.4 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	2 PATHS, TREES, AND CYCLES,����������������������������������
	2.1 Introduction,������������������������
	2.2 Notation and Definitions,������������������������������������
	2.3 Network Representations,�����������������������������������
	2.4 Network Transformations,�����������������������������������
	2.5 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	3 ALGORITHM DESIGN AND ANALYSIS,
	3.1 Introduction,������������������������
	3.2 Complexity Analysis,�������������������������������
	3.3 Developing Polynomial-Time Algorithms,���
	3.4 Search Algorithms,�����������������������������
	3.5 Flow Decomposition Algorithms,���
	3.6 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS,
	4.1 Introduction,������������������������
	4.2 Applications,������������������������
	4.3 Tree of Shortest Paths,����������������������������������
	4.4 Shortest Path Problems in Acyclic Networks,��
	4.5 Dijkstra's Algorithm,��������������������������������
	4.6 Dial's Implementation,���������������������������������
	4.7 Heap Implementations,��������������������������������
	4.8 Radix Heap Implementation,�������������������������������������
	4.9 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS,
	5.1 Introduction,������������������������
	5.2 Optimality Conditions,���������������������������������
	5.3 Generic Label-Correcting Algorithms,���
	5.4 Special Implementations of the Modified Label-Correcting Algorithm,��
	5.5 Detecting Negative Cycles,�������������������������������������
	5.6 All-Pairs Shortest Path Problem,���
	5.7 Minimum Cost-to-Time Ratio Cycle Problem,��
	5.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	6 MAXIMUM FLOWS: BASIC IDEAS,
	6.1 Introduction,������������������������
	6.2 Applications,������������������������
	6.3 Flows and Cuts,��������������������������
	6.4 Generic Augmenting Path Algorithm,���
	6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem,���
	6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem,��
	6.7 Flows with Lower Bounds,�����������������������������������
	6.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHM
	7.1 Introduction,������������������������
	7.2 Distance Labels,���������������������������
	7.3 Capacity Scaling Algorithm,��������������������������������������
	7.4 Shortest Augmenting Path Algorithm,��
	7.5 Distance Labels and Layered Networks,��
	7.6 Generic Preflow-Push Algorithm,��
	7.7 FIFO Preflow-Push Algorithm,���������������������������������������
	7.8 Highest-Label Preflow-Push Algorithm,��
	7.9 Excess Scaling Algorithm,������������������������������������
	7.10 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	8 MAXIMUM FLOWS: ADDITIONAL TOPICS,
	8.1 Introduction,������������������������
	8.2 Flows in Unit Capacity Networks,���
	8.3 Flows in Bipartite Networks,���������������������������������������
	8.4 Flows in Planar Undirected Networks,���
	8.5 Dynamic Tree Implementations,��
	8.6 Network Connectivity,��������������������������������
	8.7 All-Pairs Minimum Value Cut Problem,���
	8.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	9 MINIMUM COST FLOWS: BASIC ALGORITHMS,
	9.1 Introduction,
	9.2 Applications,������������������������
	9.3 Optimality Conditions,���������������������������������
	9.4 Minimum Cost Flow Duality,�������������������������������������
	9.5 Relating Optimal Flows to Optimal Node Potentials,���
	9.6 Cycle-Canceling Algorithm and the Integrality Property,��
	9.7 Successive Shortest Path Algorithm,��
	9.8 Primal-Dual Algorithm,���������������������������������
	9.9 Out-of-Kilter Algorithm,�����������������������������������
	9.10 Relaxation Algorithm,���������������������������������
	9.11 Sensitivity Analysis,���������������������������������
	9.12 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS,
	10.1 Introduction,�������������������������
	10.2 Capacity Scaling Algorithm,���������������������������������������
	10.3 Cost Scaling Algorithm,�����������������������������������
	10.4 Double Scaling Algorithm,�������������������������������������
	10.5 Minimum Mean Cycle-Canceling Algorithm,���
	10.6 Repeated Capacity Scaling Algorithm,��
	10.7 Enhanced Capacity Scaling Algorithm,��
	10.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS,
	11.1 Introduction,�������������������������
	11.2 Cycle Free and Spanning Tree Solutions,���
	11.3 Maintaining a Spanning Tree Structure,��
	11.4 Computing Node Potentials and Flows,��
	11.5 Network Simplex Algorithm,
	11.6 Strongly Feasible Spanning Trees,���
	11.7 Network Simplex Algorithm for the Shortest Path Problem,��
	11.8 Network Simplex Algorithm for the Maximum Flow Problem,���
	11.9 Related Network Simplex Algorithms,���
	11.10 Sensitivity Analysis,����������������������������������
	11.11 Relationship to Simplex Method,��
	11.12 Unimodularity Property,
	11.13 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	12 ASSIGNMENTS AND MATCHINGS,
	12.1 Introduction,�������������������������
	12.2 Applications,�������������������������
	12.3 Bipartite Cardinality Matching Problem,���
	12.4 Bipartite Weighted Matching Problem,��
	12.S Stable Marriage Problem,������������������������������������
	12.6 Nonbipartite Cardinality Matching Problem,��
	12.7 Matchings and Paths,��������������������������������
	12.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	13 MINIMUM SPANNING TREES,
	13.1 Introduction,�������������������������
	13.2 Applications,�������������������������
	13.3 Optimality Conditions,����������������������������������
	13.4 Kruskal's Algorithm,��������������������������������
	13.S Prim's Algorithm,�����������������������������
	13.6 Sollin's Algorithm,�������������������������������
	13.7 Minimum Spanning Trees and Matroids,��
	13.8 Minimum Spanning Trees and Linear Programming,��
	13.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	14 CONVEX COST FLOWS,
	14.1 Introduction,�������������������������
	14.2 Applications,�������������������������
	14.3 Transformation to a Minimum Cost Flow Problem,��
	14.4 Pseudopolynomial-Time Algorithms,���
	14.5 Polynomial-Time Algorithm,
	14.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	15 GENERALIZED FLOWS,
	15.1 Introduction,
	15.2 Applications,
	15.3 Augmented Forest Structures,��
	15.4 Determining Potentials and Flows for an Augmented Forest Structure,
	15.5 Good Augmented Forests and Linear Programming Bases,
	15.6 Generalized Network Simplex Algorithm,
	15.7 Summary,
	Reference Notes,�����������������������
	Exercises,�����������������

	16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION,
	16.1 Introduction,�������������������������
	16.2 Problem Relaxations and Branch and Bound,���
	16.3 Lagrangian Relaxation Technique,��
	16.4 Lagrangian Relaxation and Linear Programming,���
	16.5 Applications of Lagrangian Relaxation,��
	16.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	17 MULTICOMMODITY FLOWS,
	17.1 Introduction,�������������������������
	17.2 Applications,�������������������������
	17.3 Optimality Conditions,����������������������������������
	17.4 Lagrangian Relaxation,����������������������������������
	17.5 Column Generation Approach,���������������������������������������
	17.6 Dantzig-Wolfe Decomposition,��
	17.7 Resource-Directive Decomposition,���
	17.8 Basis Partitioning,�������������������������������
	17.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	18 COMPUTATIONAL TESTING OF ALGORITHMS,
	18.1 Introduction,�������������������������
	18.2 Representative Operation Counts,��
	18.3 Application to Network Simplex Algorithm,���
	18.4 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	19 ADDITIONAL APPLICATIONS,����������������������������������
	19.1 Introduction,�������������������������
	19.2 Maximum Weight Closure of a Graph,��
	19.3 Data Scaling,�������������������������
	19.4 Science Applications,���������������������������������
	19.5 Project Management,�������������������������������
	19.6 Dynamic Flows,��������������������������
	19.7 Arc Routing Problems,���������������������������������
	19.8 Facility Layout and Location,���
	19.9 Production and Inventory Planning,��
	19.10 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	APPENDIX A: DATA STRUCTURES,
	A.1 Introduction,
	A.2 Elementary Data Structures,��������������������������������������
	A.3 d-Heaps,�������������������
	A.4 Fibonacci Heaps,���������������������������
	Reference Notes,�����������������������

	APPENDIX B: NP-COMPLETENESS,
	B.1 Introduction,
	B.2 Problem Reductions and Transformations,��
	B.3 Problem Classes P, NP, NP-Complete, and NP-Hard,
	B.4 Proving NP-Completeness Results,
	B.5 Concluding Remarks,������������������������������
	Reference Notes,�����������������������

	APPENDIX C: LINEAR PROGRAMMING,
	C.1 Introduction,
	C.2 Graphical Solution Procedure,��
	C.3 Basic Feasible Solutions,������������������������������������
	C.4 Simplex Method,��������������������������
	C.5 Bounded Variable Simplex Method,
	C.6 Linear Programming Duality,��������������������������������������
	Reference Notes,�����������������������

	REFERENCES,
	INDEX,�������������

