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9.1 INTRODUCTION 

The minimum cost flow problem is the central object of study in this book. In the 
last five chapters, we have considered two special cases of this problem: the shortest 
path problem and the maximum flow problem. Our discussion has been multifaceted: 
(1) We have seen how these problems arise in application settings as diverse as 
equipment replacement, project planning, production scheduling, census rounding, 
and analyzing round-robin tournaments; (2) we have developed a number of algo
rithmic approaches for solving these problems and studied their computational com
plexity; and (3) we have shown connections between these problems and more gen
eral problems in combinatorial optimization such as the minimum cut problem and 
a variety of min-max duality results. As we have seen, it is easy to understand the 
basic nature of shortest path and maximum flow problems and to develop core 
algorithms for solving them; nevertheless, designing and analyzing efficient algo
rithms is a very challenging task, requiring considerable ingenuity and considerable 
insight concerning both basic algorithmic strategies and their implementations. 

As we begin to study more general minimum cost flow problems, we might ask 
ourselves a number of questions. 
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1. How much more difficult is it to solve the minimum cost flow problem than 
its shortest path and maximum flow specializations? 

2. Can we use some of the same basic algorithmic strategies, such as label-setting 
and label-correcting methods, and the many variants of the augmenting path 
methods (e.g., shortest augmenting paths, scaling methods) for solving mini
mum cost flow problems? 

3. The shortest path problem and the maximum flow problem address different 
components of the overall minimum cost flow problem: Shortest path problems 
consider arc flow costs but no flow capacities; maximum flow problems con
sider capacities but only the simplest cost structure. Since the minimum cost 
flow problem combines these problem ingredients, can we somehow combine 
the material that we have examined for shortest path and maximum flow prob
lems to develop optimality conditions, algorithms, and underlying theory for 
the minimum cost flow problem? 

In this and the next two chapters, we provide (partial) answers to these ques
tions. We develop a number of algorithms for solving the minimum cost flow prob
lem. Although these algorithms are not as efficient as those for the shortest path 
and maximum flow problems, they still are quite efficient, and indeed, are among 
the most efficient algorithms known in applied mathematics, computer science, and 
operations research for solving large-scale optimization problems. 

We also show that we can develop considerable insight and useful tools and 
methods of analysis by drawing on the material that we have developed already. 
For example, in order to give us a firm foundation for developing algorithms for 
solving minimum cost flow problems, in Section 9.3 we establish optimality con
ditions for minimum cost flow problems based on the notion of node potentials 
associated with the nodes in the underlying network. These node potentials are 
generalizations of the concept of distance labels that we used in our study of shortest 
path problems. Recall that we were able to use distance labels to characterize optimal 
shortest paths; in addition, we used the distance label optimality conditions as a 
starting point for developing the basic iterative label-setting and label-correcting 
algorithms for solving shortest path problems. We use the node potential in a similar 
fashion for minimum cost flow problems. The connection with shortest paths is much 
deeper, however, than this simple analogy between node potentials and distance 
labels. For example, we show how to interpret and find the optimal node potentials 
for a minimum cost flow problem by solving an appropriate shortest path problem: 
The optimal node potentials are equal to the negative of the optimal distance labels 
from this shortest path problem. 

In addition, many algorithms for solving the minimum cost flow problem com
bine ingredients of both shortest path and maximum flow algorithms. Many of these 
algorithms solve a sequence of shortest path problems with respect to maximum 
flow-like residual networks and augmenting paths. (Actually, to define the residual 
network, we consider both cost and capacity considerations.) We consider four such 
algorithms in this chapter. The cycle-canceling algorithm uses shortest path com
putations to find augmenting cycles with negative flow costs; it then augments flows 
along these cycles and iteratively repeats these computations for detecting negative 
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cost cycles and augmenting flows. The successive shortest path algorithm incre
mentally loads flow on the network from some source node to some sink node, each 
time selecting an appropriately defined shortest path. The primal-dual and out-of
kilter algorithms use a similar algorithmic strategy: at every iteration, they solve a 
shortest path problem and augment flow along one or more shortest paths. They 
vary, however, in their tactics. The primal-dual algorithm uses a maximum flow 
computation to augment flow simultaneously along several shortest paths. Unlike 
all the other algorithms, the out-of-kilter algorithm permits arc flows to violate their 
flow bounds. It uses shortest path computations to find flows that satisfy both the 
flow bounds and the cost and capacity based optimality conditions. 

The fact that we can implement iterative shortest path algorithms in so many 
ways demonstrates the versatility that we have in solving minimum cost flow prob
lems. Indeed, as we shall see in the next two chapters, we have even more versatility. 
Each of the algorithms that we discuss in this chapter is pseudopolynomial for prob
lems with integer data. As we shall see in Chapter to, by using ideas such as scaling 
of the problem data, we can also develop polynomial-time algorithms. 

Since minimum cost flow problems are linear programs, it is not surprising to 
discover that we can also use linear programming methodologies to solve minimum 
cost flow problems. Indeed, many of the various optimality conditions that we have 
introduced in previous chapters and that we consider in this chapter are special cases 
of the more general optimality conditions of linear programming. Moreover, we can 
interpret many of these results in the context of a general theory of duality for linear 
programs. In this chapter we devel()p these duality results for minimum cost flow 
problems. In Chapter 11 we study the application of the key algorithmic approach 
from linear programming, the simplex method, for the minimum cost flow problem. 
In this chapter we consider one other algorithm, known as the relaxation algorithm, 
for solving the minimum cost flow problem. 

To begin our discussion of the minimum cost flow problem, we first consider 
some additional applications, which help to show the importance of this problem in 
practice. Before doing so, however, let us set our notation and some underlying 
definitions that we use throughout our discussion. 

Notation and Assumptions 

Let G == (N, A) be a directed network with a cost Cu and a capacity Uu associated 
with every arc (i, j) E A. We associate with each node i E N a number b(i) which 
indicates its supply or demand depending on whether b(i) > 0 or b(i) < O. The 
minimum cost flow problem can be stated as follows: 

subject to 

Minimize z(x) L cijxij (9.ta) 

L Xu
{j: (i.j)EA} 

(i.j)EA 

L Xji = b(i) for all i E N, 
{j:(j.i)EA} 

for all (i, j) E A. 

(9.tb) 

(9.1c) 

Let C denote the largest magnitude of any arc cost. Further, let U denote the 
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largest magnitude of any supply/demand or finite arc capacity. We assume that the 
lower bounds lij on arc flows are all zero. We further make the following assumptions: 

Assumption 9.1. All data (cost, supply/demand. and capacity) are integral. 

As noted previously, this assumption is not really restrictive in practice because 
computers work with rational numbers which we can convert to integer numbers 
by mUltiplying by a suitably large number. 

Assumption 9.2. The network is directed. 

We have shown in Section 2.4 that we can always fulfill this assumption by 
transforming any undirected network into a directed network. 

Assumption 9.3. The supplies/demands at the nodes satisfy the condition 
LiEN b(i) = ° and the minimum cost flow problem has a feasible solution. 

We can determine whether the minimum cost flow problem has a feasible so
lution by solving a maximum flow problem as follows. Introduce a source node s* 
and a sink node t*. For each node i with b(i) > 0, add a "source" arc (s*, i) with 
capacity b(i), and for each node i with b(i) < 0, add a "sink" arc (i, t*) with capacity 
- b(i). Now solve a maximum flow problem from s* to t*. If the maximum flow 
saturates all the source arcs, the minimum cost flow problem is feasible; otherwise. 
it is infeasible. For the justification of this method, see Application 6.1 in Section 
6.2. 

Assumption 9.4. We assume that the network G contains an uncapacitated 
directed path (i.e., each arc in the path has infinite capacity) between every pair 
of nodes. 

We impose this condition, if necessary, by adding artificial arcs (l, j) and 
(j, 1) for eachj E N and assigning a large cost and infinite capacity to each of these 
arcs. No such arc would appear in a minimum cost solution unless the problem 
contains no feasible solution without artificial arcs. 

Assumption 9.5. All arc costs are nonnegative. 

This assumption imposes no loss ·of generality since the arc reversal transfor
mation described in Section 2.4 converts a minimum cost flow problem with negative 
arc lengths to those with nonnegative arc lengths. This transformation, however, 
requires that all arcs have finite capacities. When some arcs are uncapacitated, we 
assume that the network contains no directed negative cost cycle of infinite capacity. 
If the network contains any such cycles, the optimal value of the minimum cost flow 
problem is unbounded; moreover, we can detect such a situation by using the search 
algorithm described in Section 3.4. In the absence of a negative cycle with infinite 
capacity, we can make each uncapacitated arc capacitated by setting its capacity 
equal to B, where B is the sum of all arc capacities and the supplies of all supply 
nodes; we justify this transformation in Exercise 9.36. 
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Residual Network 

Our algorithms rely on the concept of residual networks. The residual network G(x) 
corresponding to a flow x is defined as follows. We replace each arc (i, j) E A by 
two arcs (i, j) and (j, 0. The arc (i, j) has cost Cij and residual capacity rij = Uij -
xv' and the arc (j, i) has cost Cji = - cij and residual capacity rji = Xij. The residual 
network consists only of arcs with positive residual capacity. 

9.2 APPLICATIONS 

Minimum cost flow problems arise in almost all industries, including agriculture, 
communications, defense, education, energy, health care, manufacturing, medicine, 
retailing, and transportation. Indeed, minimum cost flow problems are pervasive in 
practice. In this section, by considering a few selected applications that arise in 
distribution systems planning, medical diagnosis, public policy, transportation, man
ufacturing, capacity planning, and human resource management, we give a passing 
glimpse of these applications. This discussion is intended merely to introduce several 
important applications and to illustrate some of the possible uses of minimum cost 
flow problems in practice. Taken together, the exercises in this chapter and in Chap
ter 11 and the problem descriptions in Chapter 19 give a much more complete picture 
of the full range of applications of minimum cost flows. 

Application 9.1 Distribution Problems 

A large class of network flow problems centers around shipping and distribution 
applications. One core model might be best described in terms of shipments from 
plants to warehouses (or, alternatively, from warehouses to retailers). Suppose that 
a firm has p plants with known supplies and q warehouses with known demands. It 
wishes to identify a flow that satisfies the demands at the warehouses from the 
available supplies at the plants and that minimizes its shipping costs. This problem 
is a well-known special case of the minimum cost flow problem, known as the trans
portation problem. We next describe in more detail a slight generalization of this 
model that also incorporates manufacturing costs at the plants. 

A car manufacturer has several manufacturing plants and produces several car 
models at each plant that it then ships to geographically dispersed retail centers 
throughout the country. Each retail center requests a specific number of cars of each 
model. The firm must determine the production plan of each model at each plant 
and a shipping pattern that satisfies the demands of each retail center and minimizes 
the overall cost of production and transportation. 

We describe this formulation through an example. Figure 9.1 illustrates a sit
uation with two manufacturing plants, two retailers, and three car models. This model 
has four types of nodes: (1) plant nodes, representing various plants; (2) plant/model 
nodes, corresponding to each model made at a plant; (3) retailer/model nodes, cor
responding to the models required by each retailer; and (4) retailer nodes corre
sponding to each retailer. The network contains three types of arcs. 

1. Production arcs. These arcs connect a plant node to a plant/model node; the 
cost of this arc is the cost of producing the model at that plant. We might place 
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Plant 
lOdes 

Plant/model 
nodes 

Retailer/model 
nodes 

Retailer Figure 9.1 Production-distribution 
nodes model. 

lower and upper bounds on these arcs to control for the minimum and maximum 
production of each particular car model at the plants. 

2. Transportation arcs. These arcs connect plant/model nodes to retailer/model 
nodes; the cost of such an arc is the total cost of shipping one car from the 
manufacturing plant to the retail center. Any such arc might correspond to a 
complex distribution channel with, for example, three legs: (a) a delivery from 
a plant (by truck) to a rail system; (b) a delivery from the rail station to another 
rail station elsewhere in the system; and (c) a delivery from the rail station to 
a retailer (by a local delivery truck). The transportation arcs might have lower 
or upper bounds imposed on their flows to model contractual agreements with 
shippers or capacities imposed on any distribution channel. 

3. Demand arcs. These arcs connect retailer/model nodes to the retailer nodes. 
These arcs have zero costs and positive lower bounds which equal the demand 
of that model at that retail center. 

Clearly, the production and shipping schedules for the automobile company 
correspond in a one-to-one fashion with the feasible flows in this network model. 
Consequently, a minimum cost flow would yield an optimal production and shipping 
schedule. 

Application 9.B Reconstruoting the Left Ventriole from 
X-ray Projections 

This application describes a network flow model for reconstructing the three
dimensional shape of the left ventricle from biplane angiocardiograms that the medical 
profession uses to diagnose heart diseases. To conduct this analysis, we first reduce 
the three-dimensional reconstruction problem into several two-dimensional prob
lems by dividing the ventricle into a stack of parallel cross sections. Each two
dimensional cross section consists of one connected region of the left ventricle. 
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During a cardiac catheterization, doctors inject a dye known as Roentgen contrast 
agent into the ventricle; by taking x-rays of the dye, they would like to determine 
what portion of the left ventricle is functioning properly (Le., permitting the flow of 
blood). Conventional biplane x-ray installations do not permit doctors to obtain a 
complete picture of the left ventricle; rather, these x-rays provide one-dimensional 
projections that record the total intensity of the dye along two axes (see Figure 9.2). 
The problem is to determine the distribution of the cloud of dye within the left 
ventricle and thus the shape of the functioning portion of the ventricle, assuming 
that the dye mixes completely with the blood and fills the portions that are functioning 
properly. 

X-ray ---. 
projection 

X-ray 
projection 

~ 

Cumulative 
intensity 

(a) 

CumuLative 
intensity 

Observable 
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intensities ~ 
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(b) 

Figure 9.2 Using x-ray projections to measure a left ventricle. 

We can conceive of a cross section of the ventricle as a p x r binary matrix: 
a 1 in a position indicates that the corresponding segment allows blood to flow and 
a 0 indicates that it does not permit blood to flow. The angiocardiograms give the 
cumulative intensity of the contrast agent in two planes which we can translate into 
row and column sums of the binary matrix. The problem is then to construct the 
binary matrix given its row and column sums. This problem is a special case of the 
feasible flow problem that we discussed in Section 6.2. 

Typically, the number of feasible solutions for such problems are quite large; 
and these solutions might differ substantially. To constrain the feasible solutions, 
we might use certain facts from our experience that indicate that a solution is more 
likely to contain certain segments rather than others. Alternatively, we can use a 
priori information: for example, after some small time interval, the cross sections 
might resemble cross sections determined in a previous examination. Consequently, 
we might attach a probability pij that a solution will contain an element (i, j) of the 
binary matrix and might want to find a feasible solution with the largest possible 
cumulative probability. This problem is equivalent to a minimum cost flow problem. 
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Application 9.3 Racial Balancing of Schools 

In Application 1.10 in Section 1.3 we formulated the racial balancing of schools as 
a multicommodity flow problem. We now consider a related, yet important situation: 
seeking a racial balance of two ethnic communities (blacks and whites). In this case 
we show how to formulate the problem as a minimum cost flow problem. 

As in Application 1.10, suppose that a school district has S schools. For the 
purpose of this formulation, we divide the school district into L district locations 
and let hi and Wi denote the number of black and white students at location i. These 
locations might, for example, be census tracts, bus stops, or city blocks. The only 
restrictions on the locations is that they be finite in number and that there be a single 
distance measure dij that reasonably approximates the distance any student at lo
cation i must travel if he or she is assigned to school j. We make the reasonable 
assumption that we can compute the distances dij before assigning students to 
schools. School j can enroll Uj students. Finally, let p denote a lower bound and p 
denote an upper bound on the percentage of black students assigned to each school 
(we choose these numbers so that school j has same percentage of blacks as does 
the school district). The objective is to assign students to schools in a manner that 
maintains the stated racial balance and minimizes the total distance traveled by the 
students. 

We model this problem as a minimum cost flow problem. Figure 9.3 shows the 
minimum cost flow network for a three-location, two-school problem. Rather than 
describe the general model formally, we merely describe the model ingredients for 
this figure. In this formulation we model each location i as two nodes Ii and Ii and 
each school j as two nodes s; and sJ. rhe decision variables for this problem are 
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Figure 9.3 Network for the racial balancing of schools. 
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the number of black students assigned from location ito schoolj (which we represent 
by an arc from node Ii to node sJ) and the number of white students assigned from 
location ito schoolj (which we represent by an arc from node l'/ to node sJ). These 
arcs are uncapacitated and we set their per unit flow cost equal to dij. For each j, 
we connect the nodes sJ and sJ to the school node Sj. The flow on the arcs (sJ, Sj) 

and (sJ, Sj) denotes the total number of black and white students assigned to school 
j. Since each school must satisfy lower and upper bounds on the number of black 
students it enrolls, we set the lower and upper bounds of the arc (sJ, Sj) equal to 
(pujt jjUj). Finally, we must satisfy the constraint that school j enrolls at most Uj 

students. We incorporate this constraint in the model by introducing a sink node t 
and joining each school node j to node t by an arc of capacity Uj. As is easy to verify, 
this minimum cost flow problem correctly models the racial balancing application. 

Application 9.4 Optimal Loading of a Hopping 
Airplane 

A small commuter airline uses a plane, with a capacity to carry at most p passengers, 
on a "hopping flight," as shown in Figure 9.4(a). The hopping flight visits the cities 
1, 2, 3, ... , n, in a fixed sequence. The plane can pick up passengers at any node 
and drop them off at any other node. Let bij denote the number of passengers avail
able at node i who want to go to node j, and let f ij denote the fare per passenger 
from node ito nodej. The airline would like to determine the number of passengers 
that the plane should carry between the various origins to destinations in order to 
maximize the total fare per trip while never exceeding the plane capacity. 
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Figure 9.4 Formulating the hopping plane flight problem as a minimum cost flow 
problem. 
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Figure 9.4(b) shows a minimum cost flow formulation of this hopping plane 
flight problem. The network contains data for only those arcs with nonzero costs 
and with finite capacities: Any arc without an associated cost has a zero cost; any 
arc without an associated capacity has an infinite capacity. Consider, for example, 
node I. Three types of passengers are available at node I, those whose destination 
is node 2, node 3, or node 4. We represent these three types of passengers by the 
nodes 1-2, 1-3, and 1-4 with supplies b 12 , b 13 , and b 14 • A passenger available at 
any such node, say 1-3, either boards the plane at its origin node by flowing through 
the arc 0-3, I), and thus incurring a cost of - f13 units, or never boards the plane 
which we represent by the flow through the arc (1-3, 3). In Exercise 9.13 we ask 
the reader to show that this formulation correctly models the hopping plane appli
cation. 

Application 9.~ Scheduling with Deferral Costs 

In some scheduling applications. jobs do not have any fixed completion times, but 
instead incur a deferral cost for delaying their completion. Some of these scheduling 
problems have the following characteristics: one of q identical processors (machines) 
needs to process each of p jobs. Each job j has a fixed processing time o.j that does 
not depend on which machine processes the job, or which jobs precede or follow 
the job. Job j also has a deferral cost Cj(T) , which we assume is a monotonically 
nondecreasing function of T, the completion time of the job. Figure 9.5(a) illustrates 
one such deferral cost function. We wish to find a schedule for the jobs, with com
pletion times denoted by Tl, T2 •••• , Tp , that minimizes the total deferral cost 
~-l Cj(Tj)' This scheduling problem is difficult if the jobs have different processing 
times, but can be modeled as a minimum cost flow problem for situations with 
uniform processing times (i.e., o.j = 0. for each j = I, ... ,p). 

i 
Deferral 
cost c, (T) 
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Figure 9.5 Formulating the scheduling problem with deferral costs. 
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Since the deferral costs are monotonically nondecreasing with time, in some 
optimal schedule the machines will process the jobs one immediately after another 
(i.e., the machines incur no idle time). As a consequence, in some optimal schedule 
the completion of each job will be ko. for some constant k. The first job assigned to 
every machine will have a completion time of a units, the second job assigned to 
every machine will have a completion time of 20. units, and so on. This observation 
allows us to formulate the scheduling as a minimum cost flow problem in the network 
shown in Figure 9.5(b). 

Assume, for simplicity, that r = plq is an integer. This assumption implies that 
we will assign exactly r jobs to each machine. (There is no loss of generality in 
imposing this assumption because we can add dummy jobs so that plq becomes an 
'integer.) The network has p job nodes, 1, 2, ... , p, each with 1 unit of supply; it 
also has r position nodes, T, 2, ... , r, each with a demand of q units, indicating 
that the position has the capability to process q jobs. The flow on each arc (j, i) is 
1 or 0, depending on whether the schedule does or does not assign job j to the ith 
position of some machine. If we assign job j to the ith position on any machine, its 
completion time is io. and its deferral cost is ciio.). Therefore, arc (j, i) has a cost 
of cj(io.). Feasible schedules' correspond, in a one-to-one fashion, with feasible flows 
in the network and both have the same cost. Consequently, a minimum cost flow 
will prescribe a schedule with the least possible deferral cost. 

Application 9.6 Linear Programs with Consecutive 1 's 
in Columns 

Many linear programming problems of the form 

Minimize ex 

subject to 

.:Ax ~ b, 

x ~ 0, 

have a special structure that permits us to solve the problem more efficiently than 
general-purpose linear programs. Suppose that the p x q matrix constraint matrix 
.:A is a 0-1 matrix satisfying the property that all of the l' s in each column appear 
consecutively (i.e., with no intervening zeros). We show how to transform this prob
lem into a minimum cost flow problem. We illustrate our transformation using the 
following linear programming example: 

Minimize cx (9.2a) 

subject to 

(9.2b) 

x ~ o. (9.2c) 
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We first bring each constraint in (9.2b) into an equality form by introducing a 
"surplus" variable Yi for each row i in (9.2b). We then add a redundant row 0 . x + 
o . Y = 0 to the set of constraints. These changes produce the following equivalent 
formulation of the linear program: 

Minimize ex (9.3a) 

subject to 

[1 
1 0 1 1 -1 0 0 

-Il[: 1 [:!J 
1 0 0 1 0 -1 0 
1 1 0 0 0 0 -1 
1 1 0 0 0 0 0 
0 0 0 0 0 0 0 

(9.3b) 

x ~ O. (9.3c) 

We next perform the following elementary row operation for each i = p, p -
1, ... , 1, in the stated order: We subtract the ith constraint in (9.3b) from the 
(i + l)th constraint. These operations create the following equivalent linear program: 

Minimize ex (9.4a) 

subject to 

[J 
1 0 1 1 -1 0 0 

-!l[: 1 [=l} 
0 0 -1 0 1 -1 0 
0 1 0 -1 0 1 -1 
0 0 0 0 0 0 1 

-1 -1 0 0 0 0 0 

(9.4b) 

x ~ O. (9.4c) 

Notice that in this form the constraints (9.4b) clearly define the mass balance 
constraints of a minimum cost flow problem because each column contains one + 1 
and one - 1. Also notice that the entries in the right-hand-side vector sum to zero, 
which is a necessary condition for feasibility. Figure 9.6 gives the minimum cost 
flow problem corresponding to this linear program. 

Figure 9.6 Formulating a linear 
program with consecutive ones as a 
minimum cost flow problem. 

We have used a specific numerical example to illustrate the transformation of 
a linear program with consecutive l's into a minimum cost flow problem. It is easy 
to show that this transformation is valid in general as well. For a linear program 
with p rows and q columns, the corresponding network has p + 1 nodes, one cor
responding to each row, as well as one extra node that corresponds to an additional 
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"null row." Each column .st1.k in the linear program that has consecutive l' s in rows 
ito j becomes an arc (i, j + 1) of cost Ck. Each surplus variable Yi becomes an arc 
(i + 1, i) of zero cost. Finally, the supply/demand of a node i is b(i) - b(i - 1). 

Despite the fact that linear programs with consecutive 1 's might appear to be 
very special, and even contrived, this class of problems arises in a surprising number 
of applications. We illustrate the range of applications with three practical examples. 
We leave the formulations of these applications as minimum cost flow problems as 
exercises to the reader. 

Optimal capacity scheduling. A vice-president of logistics of a large man
ufacturing firm must contract for d(i) units of warehousing capacity for the time 
periods i = 1, 2, ... , n. Let Cij denote the cost of acquiring 1 unit of capacity at 
the beginning of period i, which is available for possible use throughout periods i, 
i + 1, ... , j - 1 (assume that we relinquish this warehousing capacity at the 
beginning of period j). The vice~president wants to know how much capacity to 
acquire, at what times, and for how many subsequent periods, to meet the firm's 
requirements at the lowest possible cost. This optimization problem arises because 
of possible savings that the firm might accrue by undertaking long-term leasing con
tracts at favorable times, even though these commitments might create excess ca
pacity during some periods. 

Employment scheduling. The vice-president of human resources ofa large 
retail company must determine an employment policy that properly balances the 
cost of hiring, training, and releasing short-term employees, with the expense of 
having idle employees on the payroll for time periods when demand is low. Suppose 
that the company knows the minimum labor requirement dj for each period j = 
1, ... , n. Let Cij denote the cost of hiring someone at the beginning of period i and 
releasing him at the end of period j - 1. The vice-president would like to identify 
an employment policy that meets the labor requirements and minimizes the cost of 
hiring, training, and releasing employees. 

Equipment replacement. A job shop must periodically replace its capital 
equipment because of machine wear. As a machine ages, it breaks down more fre
quently and so becomes more expensive to operate. Furthermore, as a machine 
ages, its salvage value decreases. Let Cij denote the cost of buying a particularly 
important machine at the beginning of period i, plus the cost of operating the machine 
over the periods i, i + 1, ... ,j - 1, minus the salvage cost of the machine at the 
beginning of period j. The equipment replacement problem attempts to obtain a 
replacement plan that minimizes the total cost of buying, selling, and operating the 
machine over a planning horizon of n years, assuming that the job shop must have 
at least 1 unit of this machine in service at all times. 

9.3 OPT1MALITY CONDITIONS 

In our discussion of shortest path problems in Section 5.2, we saw that a set of 
distance labels d(i) defines shortest path distances from a specified node s to every 
other node in the network if and only if they represent distances along some paths 
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from node s and satisfy the following shortest path optimality conditions: 

d(j) :s d(i) + Cij for all (i, j) E A. (9.5) 

These optimality conditions are useful in several respects. First, they give us 
a simple validity check to see whether a given set of distance labels does indeed 
define shortest paths. Similarly, the optimality conditions provide us with a method 
for determining whether or not a given set of paths, one from node s to every other 
node in the network, constitutes a set of shortest paths from node s. We simply 
compute the lengths of these paths and see if these distances satisfy the optimality 
conditions. In both cases, the optimality conditions provide us with a "certificate" 
of optimality, that is, an assurance that a set of distance labels or a set of paths is 
optimal. One nice feature of the cettificate is its ease of use. We need not invoke 
any complex algorithm to certify that a solution is optimal; we simply check the 
optimality conditions. The optimality conditions are also valuable for other reasons; 
as we saw in Chapter 5, they can suggest algorithms for solving a shortest path 
problem: For example, the generic label-correcting algorithm uses the simple idea 
of repeatedly replacing d(j) by d(i) + Cij if d(j) > d(i) + cij for some arc (i, j). 
Finally, the optimality conditions provide us with a mechanism for establishing the 
validity of algorithms for the shortest path problem. To show that an algorithm 
correctly finds the desired shortest paths, we verify that the solutions they generate 
satisfy the optimality conditions. 

These various uses of the shortest path optimality conditions suggest that sim
ilar sets of conditions might be valuable for designing and analyzing algorithms for 
the minimum cost flow problem. Accordingly, rather than launching immediately 
into a discussion of algorithms for solving the minimum cost flow problem, we first 
pause to describe a few different optimality conditions for this problem. All the 
optimality conditions that we state have an intuitive network interpretation and are 
rather direct extensions of their shortest path counterparts. We will consider three 
different (but equivalent) optimality conditions: (1) negative cycle optimality con
ditions, (2) reduced cost optimality conditions, and (3) complementary slackness 
optimality conditions. 

Negative Cyole Optimality Conditions 

The negative cycle optimality conditions stated next are a direct consequence of the 
flow decomposition property stated in Theorem 3.5 and our definition of residual 
networks given at the end of Section 9.1. 

Theorem 9.1 (Negative Cycle Optimality Conditions). A feasible solution x* is 
an optimal solution of the minimum cost flow problem if and only if it satisfies the 
negative cycle optimality conditions: namely, the residual network G(x*) contains 
no negative cost (directed) cycle. 

Proof. Suppose that x is a feasible flow and that G(x) contains a negative cycle. 
Then x cannot be an optimal flow, since by augmenting positive flow along the cycle 
we can improve the objective function value. Therefore, if x* is an optimal flow, 
then G(x*) cannot contain a negative cycle. Now suppose that x* is a feasible flow 
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and that G(x*) contains no negative cycle. Let XO be an optimal flow and x* oF- xO. 
The augmenting cycle property stated in Theorem 3.7 shows that we can decompose 
the difference vector XO - x* into at most m augmenting cycles with respect to the 
flow x* and the sum of the costs of flows on these cycles equals CXO - cx*. Since 
the lengths of all the cycles in G(x*) are nonnegative, CXO - cx* 2: 0, or CXO 2: cx*. 
Moreover, since XO is an optimal flow, CXO ::; cx*. Thus cxo = cX*, and x* is also 
an optimal flow. This argument shows that if G(x*) contains no negative cycle, then 
x* must be optimal, and this conclusion completes the proof of the theorem .• 

Reduced Cost Optimality Conditions 

To develop our second and third optimality conditions, let us make one observation. 
First, note that we can write the shortest path optimality conditions in the following 
equivalent form: 

ci = cij + d(i) - d(j) 2: 0 for all arcs (i, j) E A. (9.6) 

This expression has the following interpretation: ci is an optimal "reduced cost" 
for arc (i, j) in the sense that it measures the cost of this arc relative to the shortest 
path distances d(i) and d(j). Notice that with respect to the optimal distances, every 
arc in the network has a nonnegative reduced cost. Moreover, since d(j) = d(i) + 
Cij, if arc (i, j) is on a shortest path connecting the source node s to any other node, 
the shortest path uses only zero reduced cost arcs. Consequently, once we know 
the optimal distances, the problem is very easy to solve: We simply find a path from 
node s to every other node that uses only arcs with zero reduced costs. This inter
pretation raises a natural question: Is there a similar set of conditions for more general 
minimum cost flow problems? 

Suppose that we associate a real number 7T(i), unrestricted in sign, with each 
node i E N. We refer to 7T(i) as the potential of node i. We show in Section 9.4 that 
7T(i) is the linear programming dual variable corresponding to the mass balance con
straint of node i. For a given set of node potentials 7T, we define the reduced cost 
of an arc (i, j) as clJ = cij - 7T(i) + 7T(j). These reduced costs are applicable to the 
residual network as well as the original network. We define the reduced costs in the 
residual network just as we did the costs, but now using clJ in place of cij' The 
following properties will prove to be useful in our subsequent developments in this 
and later chapters. 

Property 9.2 
(a) For any directed path P from node k to node I, LU,j)EP clJ = LU,j)EP cij -

7T(k) + 7T(l). 
(b) For any directed cycle W, LU,j)EW clJ = LU,j)EW Cij' 

The proof of this property is similar to that of Property 2.5. Notice that this 
property implies that the node potentials do not change the shortest path between 
any pair of nodes k and I, since the potentials increase the length of every path by 
a constant amount 7T(l) - 7T(k). This property also implies that if W is a negative 
cycle with respect to cij as arc costs, it is also a negative cycle with respect to clJ 
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as arc costs. We can now provide an alternative form of the negative cycle optimality 
conditions, stated in terms of the reduced costs of the arcs. 

Theorem 9.3 (Reduced Cost Optimality Conditions). A feasible solution x* is an 
optimal solution of the minimum cost flow problem if and only if some set of node 
potentials 'IT satisfy the following reduced cost optimality conditions: 

cij ;::: 0 for every arc (i, j) in G(x*). (9.7) 

Proof. We shall prove this result using Theorem 9.1. To show that the negative 
cycle optimality conditions is equivalent to the reduced cost optimality conditions, 
suppose that the. solution x* satisfies the latter conditions. Therefore, L(i,j)EW 

cij ;::: 0 for every directed cycle W in G(x*). Consequently, by Property 9.2(b), 
L(i,j)EW cij = LU,j)EW Cij ;::: 0, so G(x*) contains no negative cycle. 

To show the converse, assume that for the solution x*, G(x*) contains no 
negative cycle. Let dO denote the shortest path distances from node 1 to all other 
nodes in G(x*). Recall from Section 5.2 that if the network contains no negative 
cycle, the distance labels d(·) are well defined and satisfy the conditions d(j) :S 

dU) + cij for all U, j) in G(x*). We can restate these inequalities as cij - (- dU» + 
( - d(j» ;::: 0, or cij ;::: 0 if we define 'IT = - d. Consequently, the solution x* satisfies 
the reduced cost optimality conditions. • 

In the preceding theorem we characterized an optimal flow x as a flow that 
satisfied the conditions cij ;::: for all U, j) in G(x) for some set of node potentials 'IT. 
In the same fashion, we could define "optimal node potentials" as a set of node 
potentials 'IT that satisfy the conditions cij ;::: 0 for all (i, j) in G(x) for some feasible 
flow x. 

We might note that the reduced cost optimality conditions have a convenient 
economic interpretation. Suppose that we interpret Cij as the cost of transporting 1 
unit of a commodity from node i to node j through the arc U, j), and we interpret 
flU) = - 'IT(i) as the cost of obtaining a unit of this commodity at node i. Then 
c ij + fl( i) is the cost of the commodity at node j if we obtain it at node i and transport 
it to nodej. The reduced cost optimality condition, Cij - 'lTU) + 'IT(j) ;::: 0, or equiv
alently, fl(j) :S Cij + fl(i), states that the cost of obtaining the commodity at node 
j is no more than the cost of the commodity if we obtain it at node i and incur the 
transportation cost in sending it from node i toj. The cost at nodej might be smaller 
than Cij + flU) because there might be a more cost-effective way to transport the 
commodity to node j via other nodes. 

Complementary Slackness Optimality Conditions 

Both Theorems 9.1 and 9.3 provide means for establishing optimality of solutions 
to the minimum cost flow problem by formulating conditions imposed on the residual 
network; we shall now restate these conditions in terms of the original network. 

Theorem 9.4 (Complementary Slackness Optimality Conditions). A feasible so
lution x* is an optimal solution of the minimum cost flow problem if and only if for 
some set of node potentials 'IT, the reduced costs andflow values satisfy thefollowing 
complementary slackness optimality conditions for every arc U, j) E A: 

Sec. 9.3 Optimality Conditions 309 



If eij > 0, then xt = o. 
If 0 < Xu < Uij, then eij = o. 
If eij < 0, then xt = Uij. 

(9.8a) 

(9.8b) 

(9.8c) 

Proof. We show that the reduced cost optimality conditions are equivalent to 
(9.8). To establish this result, we first prove that if the node potentials 1T and the 
flow vector X satisfy the reduced cost optimality conditions, then they must satisfy 
(9.8). Consider three possibilities for any arc (i, j) EA. 

Case 1. If e'{f > 0, the residual network cannot contain the arc (j, i) because 
eX = -eij < 0 for that arc, contradicting (9.7). Therefore, Xu = O. 

Case 2. If 0 < xt < Uij, the residual network contains both the arcs (i, j) and 
(j, i). The reduced cost optimality conditions imply that eij ;::: 0 and eX ;::: O. But 
since eX = - eij, these inequalities imply that eij = eX = o. 

Case 3. If eij < 0, the residual network cannot contain the arc (i, j) because 
eij < 0 for that arc, contradicting (9.7). Therefore, xt = Uij. 

We have thus shown that if the node potentials 1T and the flow vector X satisfy 
the reduced cost optimality conditions, they also satisfy the complementary slack
ness optimality conditions. In Exercise 9.28 we ask the reader to prove the converse 
result: If the pair (x, 1T) satisfies the complementary slackness optimality conditions, 
it also satisfies the reduced cost optimality conditions. . • 

Those readers familiar with linear programming might notice that these con
ditions are the complementary slackness conditions for a linear programming prob
lem whose variables have upper bounds; this association explains the choice of the 
name complementary slackness. 

9.4 MINIMUM COST FLOW DUALITY 

When we were introducing shortest path problems with nonnegative arc costs in 
Chapter 4, we considered a string model with knots representing the nodes of the 
network and with a string of length eij connecting the ith and jth knots. To solve 
the shortest path problem between a designated source node s and sink node t, we 
hold the string at the knots sand t and pull them as far apart as possible. As we 
noted in our previous discussion, if d(i) denotes the distance from the so.urce node 
s to node i along the shortest path and nodes i andj are any two nodes on this path, 
then d(i) + eij;::: d(j). The shortest path distances might satisfy this inequality as 
a strict inequality if the string from node i to node j is not taut. In this string solution, 
since we are pulling the string apart as far as possible, we are obtaining the optimal 
shortest path distance between nodes sand t by solving a maximization problem. 
We could cast this problem formally as the following maximization problem: 

Maximize d(t) - d(s) (9.9a) 

subject to 

d(j) - d(i) ::5 eij for all (i, j) EA. (9.9b) 
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In this formulation, d(s) = O. As we have noted in Chapter 4, if d is any vector 
of distance labels satisfying the constraints of this problem and the path P defined 
ass - i1 - i2 - ... ik - t is any path from node s to node t, then 

dUl) - des) ::S Csi) 

d(i2) - d(il) ::S Cili2 

d(t) - dUk) ::S Cikt, 

so by adding these inequalities and using the fact that des) = 0, we see that 

This result shows that if d is any feasible vector to the optimization problem 
(9.9), then d(t) is a lower bound on the length of any path from node s to node t 
and therefore is a lower bound on the shortest distance between these nodes. As 
we see from the string solution, if we choose the distance labels d(·) appropriately 
(as the distances obtained from the string solution), d(t) equals the shortest path 
distance. 

This discussion shows the connection between the shortest path problem and 
a related maximization problem (9.9). In our discussion of the maximum flow prob
lem, we saw a similar relationship, namely, the max-flow min-cut theorem, which 
tells us that associated with every maximum flow problem is an associated min
imization problem. Moreover, since the maximum flow equals the minimum cut, the 
optimal value of these two associated problems is the same. These two results'are 
special cases of a more general property that applies to any minimum cost flow 
problem, and that we now establish. 

For every linear programming problem, which we subsequently refer to as a 
primal problem, we can associate another intimately related linear programming 
problem, called its dual. For example, the objective function value of any feasible 
solution of the dual is less than or equal to the objective function of any feasible 
solution of the primal. Furthermore, the maximum objective function value of the 
dual equals the minimum objective function of the primaL This duality theory is 
fundamental to an understanding of the theory of linear programming. In this section 
we state and prove these duality theory results for the minimum cost flow problem. 

While forming the dual of a (primal) linear programming problem, we associate 
a dual variable with every constraint of the primal except for the nonnegativity 
restriction on arc flows. For the minimum cost flow problem stated in (9.1), we 
associate the variable 7r(i) with the mass balance constraint of node i and the variable 
aij with the capacity constraint of arc (i, j). In terms of these variables, the dual 
minimum cost flow problem can be stated as follows: 

Maximize w(7r, a) = 2: b(i)7r(i) - 2: uijaij (9. lOa) 
iEN (i,j)EA 

subject to 
7r( i) - 7r(j) - aij ::S C ij for all (i, j) E A, (9. lOb) 

for all (i,j) E A and 7r(j) unrestricted for allj E N. (9.10c) 
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Note that the shortest path dual problem (9.9) is a special case ofthis model: 
For the shortest path problem, b(s) = 1, b(t) = -1, and b(i) = 0 otherwise. Also, 
since the shortest path problem contains no arc capacities, we can eliminate the aij 
variables. Therefore, if we let d(i) = - 7T(i), the dual minimum cost flow problem 
(9.10) becomes the shortest path dual problem (9.9). 

Our first duality result for the general minimum cost flow problem is known 
as the wedk duality theorem. 

Theorem 9.5 (Weak Duality Theorem). Let z(x) denote the objective function 
value of some feasible solution x of the minimum cost flow problem and let w( 7T, a) 
denote the objective function value of some feasible solution (7T, a) of its dual. Then 
W(7T, a) ::5 z(x). 

Proof We multiply both sides of (9 . lOb ) by Xij and sum these weighted in
equalities for all (i, j) E A, obtaining 

L (7T(i) - 7T(j))Xij - L aijxij::5 L cijxij. (9.11) 
(i,j)EA (i,j)EA (i,j)EA 

Notice that cx - c"'x = L(i,j)EA (7T(i) - 7T(j))Xij [because cij = Cij - 7T(i) + 
7T(j)]. Next notice that Property 2.4 in Section 2.4 implies that cx - c"'x equals 
LiEN b(i)7T(i). Therefore, the first term on the left-hand side of (9.11) equals 
LiEN b(i)7T(i). Next notice that replacing Xij in the second term on the left-hand side 
of (9.11) by Uij preserves the inequality because Xij ::5 Uij and au ;::: O. Consequently, 

L b(i)7T(i) - L aijuij::5 L CijXij. (9.12) 
iEn (i,j)EA (i,j)EA 

Now notice that the left-hand side of (9.12) is the dual objective W(7T, a) 
and the right-hand side is the primal objective, so we have established the 
lemma. • 

The weak duality theorem implies that the objective function value of any dual 
feasible solution is a lower bound on the 6bjectiv~ function value of any primal 
feasible solution. One consequence of this result is immediate: If some dual solution 
(7T, a) and a primal solution x have the same objective function value, (7T, a) must 
be an optimal solution of the dual problem and x must b.¢ al}. qptimal solution of the 
primal problem (why?). Can we always find such solutions? The strong duality theo-
rem, to be proved next, answers this question in the affirmative. • 

We first eliminate the dual variables aij's from ~!1e dual formation (9.10) using 
some properties of the optimal solution. Defining the reduced cost, as before, as 
cij = Cij - 7T(i) + 7T(j), we can rewrite the constraint (9. lOb) as 

aij;::: -cij. (9.13) 

The coefficient associated with the variable aij in the dual objective (9. lOa) is 
-Uij, and we wish to maximize the objective function value. Consequently, in any 
optimal solution we would assign the smallest possible value to aij. This observation, 
in view of (9.lOc) and (9.13), implies that 

aij = max{O, - cij}. (9.14) 
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We have thus shown that if we know optimal values for the dual variables 7r(i), 
we can compute the optimal values of the variables aij using (9.14). This construction 
permits us to eliminate the variables aij from the dual formulation. Substituting (9.14) 
in (9. lOa) yields . 

Maximize w( 7r) = L b(i)'Tr(i) - L max{O, - cij}Uij. (9.15) 
iEN (i,j)EA 

The dual problem reduces to finding a vector 7r that optimizes (9.15). Weare 
now in a position to prove the strong duality theorem. (Recall that our blanket 
assumption, Assumption 9.3, implies that the minimum cost flow problem always 
has a solution.) , 

Theorem 9.6 (Strong Duality Theorem). For any choice of problem data, the 
minimum cost flow problem always has a solution x* and the dual minimum cost 
flow problem has a solution 7r satisfying the property that z(x*) = w(7r). 

Proof. We prove this theorem using the complementary slackness optimality 
conditions (9.8). Let x* be an optimal solution of the minimum cost flow problem. 
Theorem 9.4 implies that x* together with some vector 7r of node potentials satisfy 
the complementary slackness optimality conditions. We claim that this solution sat
isfies the condition 

- cijxij = max{O, - cij}Uij for every arc (i, j) EA. (9.16) 

To establish this result, consider the following three cases: (1) cij > 0, (2) 
cij = 0, and (3) cij < 0. The complementary slackness conditions (9.8) imply that 
in the first two cases, both the left -hand side and right -hand side of (9.16) are zero, 
and in the third case both sides equal - cijUij. 

Next consider the dual objective (9.15). Substituting (9.16) in (9.15) yields 

w(7r) = L b(i)7r(i) + L cijxt = L Cijxt = z(x*). 
iEN (i,j)EA (i,j)EA 

The second last inequality follows from Property 2.4. This result is the conclusion 
of the theorem. • 

The proof of this theorem shows that any optimal solution x* of the minimum 
cost flow problem always· has an associated dual solution 7r satisfying the condition 
z(x*) = w(7r). Needless to say, the solution 7r is an optimal solution of the dual 
minimum cost flow problem since any larger value of the dual objective would con
tradict the weak duality theorem stated in Theorem 9.5. 

In Theorem 9.6 we showed that the complementary slackness optimality con
ditions implies strong duality. We next prove the converse result: namely, that strong 
duality implies Jhe complementary slackness optimality conditions. 

Theorem 9.7. If x is a feasible flow and 7r is an (arbitrary) vector satisfying 
the property that z(x) = w(7r), then the pair (x, 7r) satisfies the complementary 
slackness opti;nality conditions. 

Sec. 9.4 Minimum Cost Flow Duality 313 



Proof. Since z(x) = W(1T), 

L CijXij = L b(i)1T(i) 
(i,j)EA iEN 

L max{O, - cij}Uij. 
(i,j)EA 

(9.17) 

Substituting the result of Property 2.4 in (9.17) shows that 

L max{O, - cij}Uij = L - cijxij. (9.18) 
(i,j)EA (i,j)EA 

Now observe that both the sides have m terms, and each term on the left-hand 
side is nonnegative and its value is an upper bound on the corresponding term on 
the right-hand side (because max{O, -cij} 2:: -cij and Uij 2:: xij)' Therefore, the two 
sides can be equal only when 

max{O, - cij}Uij = - cijXij for every arc (i, j) EA. (9.19) 

Now we consider three cases. 

(a) cij> O. In this case, the left-hand side of (9.19) is zero, and the right-hand 
side can be zero only if Xij = O. This conclusion establishes (9.8a). 

(b) 0 < Xij < Uij. In this case, cij = 0; otherwise, the right-hand side of (9.19) 
is negative. This conclusion establishes (9.8b). 

(c) c; < O. In this case, the left-hand side of (9.19) is - cijUij and therefore, 
Xij = Uij. This conclusion establishes (9.8c). 

These results complete the proof of the theorem. • 
The following result is an easy consequence of Theorems 9.6 and 9.7. 

Property 9.S. If X* is an optimal solution of the minimum cost flow problem, 
and 1T is an optimal solution of the dual minimum cost flow problem, the pair 
(x*, 1T) satisfies the complementary slackness optimality conditions (9.8). 

Proof Theorem 9.6 implies that z(x*) 
the pair (x*, 1T) satisfies (9.8). 

W(1T) and Theorem 9.7 implies that 

• 
One important implication of the minimum cost flow duality is that it permits 

us to solve linear programs that have at most one + 1 and at most one - 1 in each 
row as minimum cost flow problems. Linear programs with this special structure 
arise in a variety of situations; Applications 19.10, 19.11, 19.18, and Exlercises 9.9 
and 19.18 provide a few examples. 

Before examining the situation with at most one + 1 and at most one - 1 in 
each row, let us consider a linear program that has at most one + 1 and at most one 
- 1 in each column. We assume, without any loss of generality, that each constraint 
in the linear program is in equality form, because we can always bring the linear 
program into this form by introducing slack or surplus variables. (Observe that col
umn corresponding the slack or surplus variables will also have one + 1 or one -1.) 
If each column has exactly one + 1 and exactly one - 1, clearly the linear program 
is a minimum cost flow problem. Otherwise, we can augment this linear program 
by adding a redundant equality constraint which is the negative of the sum of all the 
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original constraints. (The new constraint corresponds to a new node that acts as a 
repository to deposit any excess supply or a source to fulfill any deficit demand from 
the other nodes.) The augmented linear program contains exactly one + 1 and exactly 
one -1 in each column and the right-hand side values sum to zero. This model is 
clearly an instance of the minimum cost flow problem. 

We now return to linear programs (in maximization form) that have at most 
one + 1 and at most one - 1 in each row. We allow a constraint in this linear program 
to be in any form: equality or inequality. The dual of this linear program contains 
at most one + 1 and at most one - 1 in each column, which we have already shown 
to be equivalent to a minimum cost flow problem. The variables in the dual problem 
will be nonnegative, nonpositive, or unrestricted, depending on whether they cor
respond to a less than or equal to, a greater than or equal to, or an equality constraint 
in the primal. A nonnegative variable xij defines a directed arc (i, j) in the resulting 
minimum cost flow formulation. To model any unrestricted variable xij, we replace 
it with two nonnegative variables, which is equivalent to introducing two arcs (i, j) 
and (j, i) of the same cost and capacity as this variable. The following theorem 
summarizes the preceding discussion. 

Theorem 9.9. Any linear program that contains (a) at most one + 1 and at 
most one -1 in each column, or (b) at most one + 1 and at most one -1 in each 
row, can be transformed into a minimum cost flow problem. • 

Minimum cost flow duality has several important implications. Since almost 
all algorithms for solving the primal problem also generate optimal node potentials 
7T(i) and the variables aij, solving the primal problem almost always solves both the 
primal and dual problems. Similarly, solving the dual problem typically solves the 
primal problem as well. Most algorithms for solving network flow problems explicitly 
or implicitly use properties of dual variables (since they are the node potentials that 
we have used at every turn) and of the dual linear program. In particular, the dual 
problem provides us with a certificate that if we can find a feasible dual solution 
that has the same objective function value as a given primal soiution, we know from 
the strong duality theorem that the primal solution must be optimal, without making 
additional calculations and without considering other potentially optimal primal so
lutions. This certification procedure is a very powerful idea in network optimization, 
and in optimization in general. We have used it at many points in our previous 
developments and will see it many times again. 

. For network flow problems, the primal and dual problems are closely related 
via the basic shortest path and maximum flow problems that we have studied in 
previous chapters. In fact, these relationships help us to understand the fundamental 
importance of these two core problems to network flow theory and algorithms. We 
develop these relationships in the next section. 

9.5 RELATING OPTIMAL FLOWS TO OPTIMAL NODE 
POTENTIALS 

We next address the following questions: (1) Given an optimal flow, how might we 
obtain optimal node potentials? Conversely, (2) given optimal node potentials, how 
might we obtain an optimal flow? We show how to solve these problems by solving 
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either a shortest path problem or a maximum flow problem. These results point out 
an interesting relationship between the minimum cost flow problem and the maxi
mum flow and shortest path problems. 

Computing Optimal Node Potentials 

We show that given an optimal flow x*, we can obtain optimal node potentials by 
solving a shortest path problem (with possibly negative arc lengths). Let G(x*) 
denote the residual network with respect to the flow x*. Clearly, G(x*) does not 
contain any negative cost cycle, for otherwise we would contradict the optimality 
of the solution x*. Let d(·) denote the shortest path distances from node 1 to the 
rest of the nodes in the residual network if we use Cij as arc lengths. The distances 
dO are well defined because the residual network does not contain a negative cycle. 
The shortest path optimality conditions (5.2) imply that 

d(j) ::5 d(i) + Cij for all (i, j) in G(x*). 

Let 1T = - d. Then we can restate (9.20) as 

cij = Cij - 1T(i) + 1T(j) 2:: 0 for all (i, j) in G(x*). 

Theorem 9.3 shows that 1T constitutes an optimal set of node potentials. 

Obtaining Optimal Flows 

(9.20) 

. We now show that given a set of optimal node potentials 1T, we can obtain an optimal 
solution x* by solving a maximum flow problem. First, we compute the reduced 
cost cij of every arc (i, j) E A and then we examine all arcs one by one. We classify 
each arc (i, j) in one of the following ways and use these categorizations of the arcs 
to define a maximum flow problem. 

Case 1: cij > 0 
The condition (9.8a) implies that xt must be zero. We enforce this constraint 

by setting xt = 0 and deleting arc (i, j) from the network. 

Case 2: cij < 0 
The condition (9.8c) implies that xu = uij. We enforce this constraint by setting 

xt = Uij and deleting arc (i, j) from the network. Since we sent uij units of flow on 
arc (i, j), we must decrease b(i) by Uij and increase b(j) by uij. 

Case 3: cij = 0 
In this case we allow the flow on arc (i, j) to assume any value between 0 and 

Uij. 

Let G' = (N, A') denote the resulting network and let b' denote the modified 
supplies/demands of the nodes. Now the problem reduces to finding a feasible flow 
in the network G' that meets the modified supplies/demands of the nodes. As noted 
in Section 6.2, we can find such a flow by solving a maximum flow problem defined 
as follows. We introduce a source node s, and a sink node t. For each node i with 
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b'U) > 0, we add an arc (s, i) with capacity b'U) and for each node i with b'U) < 
0, we add an arc U, t) with capacity - b' U). We now solve a maximum flow problem 
from node s to t in the transformed network obtaining a maximum flow x*. The 
solution xt for all (i, j) E A is an optimal flow for the minimum cost flow problem 
in G. 

9.6 CYCLE-CANCELING ALGORITHM AND THE 
INTEGRALITY PROPERTY 

The negative cycle optimality conditions suggests one simple algorithmic approach 
for solving the minimum cost flow problem, which we call the cycle-canceling al
gorithm. This algorithm maintains a feasible solution and at every iteration attempts 
to improve its objective function value. The algorithm first establishes a feasible 
flow x in the network by solving a maximum flow problem (see Section 6.2). Then 
it iteratively finds negative cost-directed cycles in the residual network and augments 
flows on these cycles. The algorithm terminates when the residual network contains 
no negative cost-directed cycle. Theorem 9.1 implies that when the algorithm ter
minates, it has found a minimum cost flow. Figure 9.7 specifies this generic version 
of the cycle-canceling algorithm. 

algorithm cycle-canceling; 
begin 

establish a feasible flow x in the network; 
while G(x) contain!> a negative cycle do 
begin 

use some algorithm to identify a negative cycle W; 
8 : = min{rij : (i, j) E W}; 
augment 8 units of flow in the cycle Wand update G(x); 

end; 
end; Figure 9.7 Cycle canceling algorithm. 

We use the example shown in Figure 9.8(a) to illustrate the cycle-canceling 
algorithm. (The reader might notice that our example does not satisfy Assumption 
9.4; we violate this assumption so that the network is simpler to analyze.) Figure 
9.8(a) depicts a feasible flow in the network and Figure 9.8(b) gives the corresponding 
residual network. Suppose that the algorithm first selects the cycle 4-2-3-4 whose 
cost is - 1. The residual capacity of this cycle is 2. The algorithm augments 2 units 
of flow along this cycle. Figure 9.8(c) shows the modified residual network. In the 
next iteration, suppose that the algorithm selects the cycle 4-2-1-3-4 whose cost 
is -2. The algorithm sends 1 unit of flow along this cycle. Figure 9.8(d) depicts the 
updated residual network. Since this residual network contains no negative cycle, 
the algorithm terminates. 

In Chapter 5 we discussed several algorithms for identifying a negative cycle 
if one exists. One algorithm for identifying a negative cycle is the FIFO label
correcting algorithm for the shortest path problem described in Section 5.4; this 
algorithm requires O(nm) time. We describe other algorithms for detecting negative 
cycles in Sections 11.7 and 12.7. 

A by-product of the cycle-canceling algorithm is the following important result. 
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b(l) = 4 

b(2) =0 

b(3) = 0 

(a) 

(c) 

b(4) =-4 

(b) 

(d) 

Figure 9.8 Illustrating the cycle canceling algorithm: (a) network example with a 
feasible flow x; (b) residual network G(x); (c) residual network after augmenting 2 
units along the cycle 4-2-3-4; (d) residual network after augmenting I unit along the 
cycle 4-2-1-3-4. 

Theorem 9.10 (Integrality Property). If all arc capacities and supplies/demands 
of nodes are integer, the minimum costflow problem always has an integer minimum 
cost flow. 

Proof. We show this result by performing induction on the number of iterations. 
The algorithm first establishes a feasible flow in the network by solving a maximum 
flow problem. By Theorem 6.5 the problem has an integer feasible flow and we 
assume that the maximum flow algorithm finds an integer solution since all arc 
capacities in the network are integer and the initial residual capacities are also in
teger. The flow augmented by the cycle-canceling algorithm in any iteration equals 
the minimum residual capacity in the cycle canceled, which by the inductive hy
pothesis is integer. Therefore the modified residual capacities in the next iteration 
will again be integer. This conclusion implies the assertion of the theorem. • 

Let us now consider the number of iterations that the algorithm performs. For 
the minimum cost flow problem, mCU is an upper bound on the initial flow cost 
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[since Cij ::5 C and Xij ::5 U for all (i, j) E A] and - mCU is a lower bound on the 
optimal flow cost [since Cij ;::: - C and Xij ::5 U for all (i, j) E A]. Each iteration of 
the cycle-canceling algorithm changes the objective function value by an amount 
(L(i,j)EW cij)8, which is strictly negative. Since we are assuming that all the data of 
the problem are integral, the algorithm terminates within O(mCU) iterations and 
runs in O(nm2 CU) time. 

The generic version of the cycle-canceling algorithm does not specify the order 
for selecting negative cycles from the network. Different rules for selecting negative 
cycles produce different versions of the algorithm, each with different worse-case 
and theoretical behavior. The network simplex algorithm, which is widely considered 
to be one of the fastest algorithms for solving the minimum cost flow problem in 
practice, is a particular version of the cycle-canceling algorithm. The network sim
plex algorithm maintains information (a spanning tree solution and node potentials) 
that enables it to identify a negative cost cycle in O(m) time. However, due to 
degeneracy, the algorithm cannot necessarily send a positive amount of flow along 
this cycle. We discuss these issues in Chapter 11, where we consider the network 
simplex algorithm in more detail. The most general implementation of the network 
simplex algorithm does not run in polynomial time. The following two versions of 
the cycle-canceling algorithm are, however, polynomial-time implementations. 

Augmenting flow in a negative cycle with maximum improvement. 
Let x be any feasible flow and let X* be an optimal flow. The improvement in the 

objective function value due to an augmentation along a cycle W is 
-(L(i,j)EW cd (min{rij : (i, j) E W}). We observed in the proof of Theorem).7 
in Section 3.5 that X* equals x plus the flow on at most m augmenting cycles with 
respect to x, and improvements in cost due to flow augmentations on these aug
menting cycles sum to cx - cx*. Consequently, at least one of these augmenting 
cycles with respect to x must decrease the objective function value by at least 
(cx - cx*)/m. Consequently, if the algorithm always augments flow along a cycle 
giving the maximum possible improvement, then Theorem 3.1 implies that the 
method would obtain an optimal flow within O(m 10g(mCU)) iterations. Finding a 
maximum improvement cycle is difficult (i.e., it is a XQ/l-complete problem), but a 
modest variation of this approach yields a polynomial-time algorithm for the mini
mum cost flow problem. We provide a reference for this algorithm in the reference 
notes. 

Augmenting flow along a negative cycle with minimum mean cost. 
We define the mean cost of a cycle as its cost divided by the number of arcs it 

contains. A minimum mean cycle is a cycle whose mean cost is as small as possible. 
It is possible to identify a minimum mean cycle in O(nm) or O(Vn m 10g(nC)) time 
(see the reference notes of Chapter 5). Researchers have shown that if the cycle
canceling algorithm always augments flow along a minimum mean cycle, it performs 
O(min{nm 10g(nC), nm2 log n}) iterations. We describe this algorithm in Section 
10.5. 
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9.7 SUCCESSIVE SHORTEST PATH ALGORITHM 

The cycle-canceling algorithm maintains feasibility of the solution at every step and 
attempts to achieve optimality. In contrast, the successive shortest path algorithm 
maintains optimality of the solution (as defined in Theorem 9.3) at every step and 
strives to attain feasibility. It maintains a solution x that satisfies the nonnegativity 
and capacity constraints, but violates the mass balance constraints of the nodes. At 
each step, the algorithm selects a node s with excess supply (Le., supply not yet 
sent to some demand node) and a node t with unfulfilled demand and sends flow 
from s to t along a shortest path in the residual network. The algorithm terminates 
when the current solution satisfies all the mass balance constraints. 

To describe this algorithm as well as several later developments, we first in
troduce the concept of pse udo./low s. A pseudo./low is a function x: A -i> R + satisfying 
only the capacity and nonnegativity constraints; it need not satisfy the mass balance 
constraints. For any pseudoflow x, we define the imbalance of node i as 

e(i) = b(i) + ~ Xji - ~ xij for all i E N. 
{j:(j.i)EA} {j:(i.j)EA} 

If e(i) > 0 for some node i, we refer to e(i) as the excess of node i; if e(i) < 
0, we call - e(i) the node's deficit. We refer to a node i with e(i) = 0 as balanced. 
Let E and D denote the sets of excess and deficit nodes in the network. Notice that 
~iEN e(i) = ~iEN b(i) = 0, and hence ~iEE e(i) = - ~iED e(i). Consequently, 
if the network contains an excess node, it must also contain a deficit node. The 
residual network corresponding to a pseudoflow is defined in the same way that we 
define the residual network for a flow. 

U sing the concept of pseudoflow and the reduced cost optimality conditions 
specified in Theorem 9.3, we next prove some results that we will use extensively 
in this and the following chapters. 

Lemma 9.11. Suppose that a pseudo./low (or a./low) x satisfies the reduced 
cost optimality conditions with respect to some node potentials 1T. Let the vector d 
represent the shortest path distances from some node s to all other nodes in the 
residual network G(x) with cij as the length of an arc (i, j). Then the following 
properties are valid: 

(a) The pseudo./low x also satisfies the reduced cost optimality condi~ions with re
spect to the node potentials 1T' = 1T - d. 

(b) The reduced costs clY are zero for all arcs (i, j) in a shortest path from node s 
to every other node. 

Proof Since x satisfies the reduced cost optimality conditions with respect to 
1T, cij 2:: 0 for every arc (i, j) in G(x). Furthermore, since the vector d represents 
shortest path distances with cij as arc lengths, it satisfies the shortest path optimality 
conditions, that is, 

d(j) :5 d(i) + cij for all (i, j) in G(x). (9.21) 

Substituting cij = cij - 1T(i) + 1T(j) in (9.21), we obtain d(j) :5 d(i) + Cij 
:- 1T(i) + 1T(j). Alternatively, Cij - (1T(i) - d(i» + (1T(j) - d(j» 2:: 0, or cij' 2:: O. 
This conclusion establishes part (a) of the lemma. 
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Consider next a shortest path from node s to some node I. For each arc (i, j) 
in this path, d(j) = d(i) + c7J. Substituting c7J = Clf - 7r(i) + 7r(j) in this equation, 
we obtain c7J' = o. This conclusion establishes part (b) of the lemma. • 

The following result is an immediate corollary of the preceding lemma. 

Lemma 9.12. Suppose that a pseudoflow (or a flow) x satisfies the reduced 
cost optimality conditions and we obtain x' from x by sending flow along a shortest 
path from node s to some other node k; then x' also satisfies the reduced cost 
optimality conditions. 

Proof Define the potentials 7r and 7r ' as in Lem~a 9.11. The proof of Lemma 
9.11 implies that for every arc (i, j) in the shortest path P from node s to the node 
k, c7J' = o. Augmenting flow on any such arc might add its reversal (j, i) to the 
residual network. But since cij'= 0 for each arc (i, jY E P, cJf' = 0 and the arc 
(j, i) also satisfies the reduced cost optimality conditions. These results establish 
the lemma. • 

We are now in a position to describe the successive shortest path algorithm. 
The node potentials playa very important role in this algorithm. Besides using them 
to prove the correctness of the algorithm, we use them to maintain nonnegative arc 
lengths so that we can solve the shortest path problem more efficiently. Figure 9.9 
gives a formal statement of the successive shortest path atgorithm. 

We illustrate the successive shortest path algorithm on the same numerical 
example we used to illustrate the cycle canceling algorithm. Figure 9.1O(a) shows 
the initial residual network. Initially, E = {I} and D = {4}. Therefore, in the'first 
iteration, s = 1 and t = 4. The shortest path distances d (with respect to the reduced 
costs) are d = (0, 2, 2, 3) and the shortest path from node 1 to node 4 is 1-3-4. 
Figure 9.10(b) shows the updated node potentials and reduced costs, and Figure 
9.10(c) shows the solution after we have augmented min{e(1),-e(4), r13, r34} = 
min{4, 4, 2, 5} = 2 units of flow along the path 1-3-4. In the second iteration, k = 
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algorithm successive shortest path; 
begin 

x: = 0 and 'IT : = 0; 
e(i) : = b(i) for all i E N; 
initialize the sets E: = {i : e(i) > O} and D : = {i : e(i) < O}; 
while E¥ 8do 
begin 

select a node k E E and a node 1 E D; 
determine shortest path distances d(j) from node s to all 

other nodes in G(x) with respect to the reduced costs c1J; 
let P denote a shortest path from node k to node I; 
update 'IT : = 'IT- d; 
1) : = min[e(k). - e(l). min{rij : (i, j) E P}]; 
augment 1) units of flow along the path P; 
update x, G(x), E, D, and the reduced costs; 

end; 
end; 

Figure 9.9 Successive shortest path algorithm, 
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e(l) = 4 
'!T(l) = 0 
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e(3) =0 
'!T(3) =-2 
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'!T(l) = 0 

(b) 

e(2) = 0 
'!T(2) =-2 

e(3) = 0 
'!T(3) =-3 

(d) 
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e(2) =0 
'!T(2) = 0 

e(3) = 0 
'!T(3) = 0 

(a) 

e(4) =-4 
'!T(4) =-3 

e(4) =-2 
'!T(4) =-4 

e(l) = 2 
'!T(l) = 0 

eel) = 0 
'!T(l) = 0 

e(4) =-4 
'!T(4) = 0 

e(2) = 0 
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e(3) = 0 
'!T(3) =-2 

(c) 

e(2) = 0 
'!T(2) =-2 

e(3) = 0 
'!T(3) =-3 

(e) 

Figure 9.10 Illustrating the successive shortest path algorithm: (a) initial residual 
network for x = 0 and '!T = 0; (b) network after updating the potentials '!T; (c) network 
after augmenting 2 units along the path 1-3-4; (d) network after updating the poten
tials '!T; (e) network after augmenting 2 units along the path 1-2-3-4. 

e(4) =-2 
'!T(4) =-3 

e(4) = 0 
'!T(4) =-4 

1, I = 4, d = (0, 0, 1, 1) and the shortest path from node 1 to node 4 is 1-2-3-4. 
Figure 9.1O(d) shows the updated node potentials and reduced costs, and Figure 
9.1O(e) shows the solution after we have augmented min{e(1), - e(4), Y12, Y23, Y34} = 

min{2, 2, 4, 2, 3} = 2 units offlow. At the end of this iteration, all imbalances become 
zero and the algorithm terminates. 
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We now justify the successive shortest path algorithm. To initialize the algo
rithm, we set x = 0, which is a feasible pseudoflow. For the zero pseudoflow x, 
G(x) = G. Note that this solution together with 1T = 0 satisfies the reduced cost 
optimality conditions because cij = cij;::: 0 for every arc (i,j) in the residual network 
G(x) (recall Assumption 9.5, which states that all arc costs are nonnegative). Observe 
that as long as any node has a nonzero imbalance, both E and D must be nonempty 
since the total sum of excesses equals the total sum of deficits. Thus until all nodes 
are balanced, the algorithm always succeeds in identifying an excess node k and a 
deficit node I. Assumption 9.4 implies that the residual network contains a directed 
path from node k to every other node, including node I. Therefore, the shortest path 
distances d(·) are well defined. Each iteration ofthe algorithm solves a shortest path 
problem with nonnegative arc lengths and strictly decreases the excess of some node 
(and, also, the deficit of some other node). Consequently, if U is an upper bound 
on the largest supply of any node, the algorithm would terminate in at most nU 
iterations. If S(n, m, C) denotes the time taken to solve a shortest path problem 
with nonnegative arc lengths, the overall complexity of this algorithm is O(nUS(n, 
m, nC)). [Note that we have used nC rather than C in this expression, since the 
costs in the residual network are bounded by nC.] We refer the reader to the reference 
notes of Chapter 4 for the best available value of S(n, m, C). 

The successive shortest path algorithm requires pseudopolynomial time to 
solve the minimum cost flow problem since it is polynomial in n, m and the largest 
supply U. This algorithm is, however, polynomial time for the assignment problem, 
a special case of the minimum cost flow problem, for which U = 1. In Chapter 10, 
using scaling techniques, we develop weakly and strongly polynomial-time versions 
of the successive shortest path algorithm. In Section 14.5 we generalize this approach 
even further, developing a polynomial-time algorithm for the convex cost flow prob
lem. 

We now suggest some practical improvements to the successive'shortest path 
algorithm. As stated, this algorithm selects an excess node k, uses Dijkstra's algo
rithm to identify shortest paths from node k to all other nodes, and augments flow 
along a shortest path from node k to some deficit node I. In fact, it is not necessary 
to determine a shortest path from node k to all nodes; a shortest path from node k 
to one deficit node 1 is sufficient. Consequently, we could terminate Dijkstra's al
gorithm whenever it permanently labels the first deficit node I. At this point we might 
modify the node potentials in the following manner: 

( .) = {1T(i) - d(i) 
1T I 1T(i) - d(l) 

if node i is permanently labeled 
if node i is temporarily labeled. 

In Exercise 9.47 we ask the reader to show that with this choice of the modified 
node potentials, the reduced costs of all the arcs in the residual network remain 
nonnegative and the reduced costs of the arcs along the shortest path from node k 
to node 1 are zero. Observe that we can alternatively modify the node potentials in 
the following manner: 
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( .) = {1T(i) - d(i) + d(l) 
1T I 1T(i) 

if node i is permanently labeled 
if node i is temporarily labeled. 
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This scheme for updating node potentials is the same as the previous scheme 
except that we add d(l) to all of the node potentials (which does not affect the reduced 
cost of any arc). An advantage of this scheme is that the algorithm spends no time 
updating the potentials of the temporarily labeled nodes. 

9.8 PRIMAL-DUAL ALGORITHM 

The primal-dual algorithm for the minimum cost flow problem is similar to the 
successive shortest path algorithm in the sense that it also maintains a pseudoflow 
that satisfies the reduced cost optimality conditions and gradually converts it into 
a flow by augmenting flows along shortest paths. In contrast, instead of sending flow 
along one shortest path at a time, it solves a maximum flow problem that sends flow 
along all shortest paths. 

The primal-dual algorithm generally transforms the minimum cost flow prob
lem into a problem with a single excess node and a single deficit node. We transform 
the problem into this form by introducing a source node s and a sink node t. For 
each node i with b(i) > 0, we add a zero cost arc (s, i) with capacity b(i), and for 
each node i with b(i) < 0, we add a zero cost arc (i, t) with capacity - b(i). Finally, 
we set b(s) = L{iEN:b(i}>O} b(i), bet) = -b(s), and b(i) = 0 for all i E N. It is 
easy to see that a minimum cost flow in the transformed network gives a minimum 
cost flow in the original network. For simplicity of notation, we shall represent the 
transformed network as G = (N, A), which is the same representation that we used 
for the original network. 

The primal-dual algorithm solves a maximum flow problem on a subgraph of 
the residual network G(x), called the admissible network, which we represent as 
Gt(x). We define the admissible network GO(x) with respect to a pseudoflow x that 
satisfies the reduced cost optimality conditions for some node potentials 'iT; the ad
missible network contains only those arcs in G(x) with a zero reduced cost. The 
residual capacity of an arc in GO(x) is the same as that in G(x). Observe that every 
directed path from node s to node tin GO(x) is a shortest path in G(x) between the 
same pair of nodes (see Exercise 5.20). Figure 9.11 formally describes the primal
dual algorithm on the transformed network. 
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algorithm primal-dual; 
begin 

x: = 0 and 'IT : = 0; 
e(s) : = b(s) and e(t) : = b(t); 
while e(s) > 0 do 
begin 

determine shortest path distances d(·) from node s to all other nodes in G(x) with 
respect to the reduced costs c1J; 

update 'IT : = 'IT - d; 
define the admissible network GO(x); 
establish a maximum flow from node s to node tin GO(x); 
update e(s) , e(t), and G(x); 

end; 
end; 

Figure 9.11 Primal-dual algorithm. 
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To illustrate the primal-dual algorithm, we consider the numerical example 
shown in Figure 9. 12(a). Figure 9. 12(b) shows the transformed network. The shortest 
path computation yields the vector d = (0, 0, 0, 1, 2, 1) whose components are in 

2 -2 o o 

4 

2 -2 o o 
(a) (b) 

'IT(2) = 0 'IT(4) = 1 

e(s) =4 
'IT(s) = 0 

e(t) =-4 
'IT(t) = 1 
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'IT(3) = 0 'IT(5) = 2 

(c) 

e(s) = 4 e(t) =-4 

(d) 

Figure 9.12 Illustrating the primal-dual algorithm: (a) example network; (b) trans
formed network; (c) residual network after updating the node potentials; (d) admis
sible network. 
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the order s, 1, 2, 3, 4, t. Figure 9.12(c) shows the modified node potentials and 
reduced costs and Figure 9. 12(d) shows the admissible network at this stage in the 
computations. When we apply the maximum flow algorithm to the admissible net
work, it is able to send 2 units of flow from node s to node t. Observe that the 
admissible network contained two paths from node s to node t and the maximum 
flow computation saturates both the paths. The successive shortest path algorithm 
would have taken two iterations to send the 2 units offlow. As the reader can verify, 
the second iteration of the primal-dual algorithm also sends 2 units of flow from 
node s to node t, at which point it converts the pseudoflow into a flow and terminates. 

The primal-dual algorithm guarantees that the excess of node s strictly de
creases at each iteration, and also assures that the node potential of the sink strictly 
decreases from one iteration to the next. The second observation follows from the 
fact that once we have established a maximum flow in GO(x), the residual network 
G(x) contains no directed path from node s to node t consisting entirely of arcs with 
zero reduced costs. Consequently, in the next iteration, when we solve the shortest 
path problem, d(t) 2: 1. These observations give a bound of min{nU, nC} on the 
number of iterations since initially e(s) ::5 nU, and the value of no node potential 
can fall below - nC (see Exercise 9.25). This bound on the number of iterations is 
better than that of the successive shortest path algorithm, but, of course, the al
gorithm incurs the additional expense of solving a maximum flow problem at every 
iteration. If S(n, m, C) and M(n, m, U) denote the solution times of shortest path 
and the maximum flow algorithms, the primal-dual algorithm has an overall com
plexity of O(min{nU, nCHS(n, m, nC) + M(n, m, U)}). 

In concluding this discussion, we might comment on why this algorithm is 
known as the primal-dual algorithm. This name stems from linear programming 
duality theory. In the linear programming literature, the primal-dual algorithm al
ways maintains a dual feasible solution 1T and a primal solution that might violate 
some supply/demand constraints (i.e., is primal infeasible), so that the pair satisfies 
the complementary slackness conditions. For a given dual feasible solution, the 
algorithm attempts to decrease the degree of primal infeasibility to the minimum 
possible level. [Recall that the algorithm solves a maximum flow problem to reduce 
e(s) by the maximum amount.] When no further reduction in the primal infeasibility 
is possible, the algorithm modifies the dual solution (i.e., node potentials in the 
network flow context) and again tries to minimize primal infeasibility. ;rhis primal
dual approach is applicable to several combinatorial optimization problems and also 
to the general linear programming problem. Indeed, this primal-dual solution strat
egy is one of the most popular approaches for solving specially structured problems 
and has often yielded fairly efficient and intuitively appealing algorithms. 

9.9 OUT-OF-KILTER ALGORITHM 

The successive shortest path and primal-dual algorithms maintain a solution that 
satisfies the reduced cost optimality conditions and the flow bound constraints but 
violates the mass balance constraints. These algorithms iteratively modify arc flows 
and node potentials so that the flow at each step comes closer to satisfying the mass 
balance constraints. However, we could just as well have developed other solution 
strategies by violating other constraints at intermediate steps. The out-of-kilter al-
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gorithm, which we discuss in this section, satisfies only the mass balance constraints, 
so intermediate solutions might violate both the optimality conditions and the flow 
bound restrictions. The algorithm iteratively modifies flows and potentials in a way 
that decreases the infeasibility of the solution (in a way to be specified) and, si
multaneously, moves it closer to optimality. In essence, the out-of-kilter algorithm 
is similar to the successive shortest path and primal-dual algorithms because its 
fundamental step at every iteration is solving a shortest path problem and augmenting 
flow along a shortest path. 

To describe the out-of-kilter algorithm, we refer to the complementary slack
ness optimality conditions stated in Theorem 9.4. For ease of reference, let us restate 
these conditions. 

If Xij = 0, then elJ 2: O. 

If 0 < xij < Uij, then elJ = O. 

If xij = Uij, then elJ ::5 0, 

(9.22a) 

(9.22b) 

(9.22c) 

The name out-of-kilter algorithm reflects the fact that arcs in the network either 
satisfy the complementary slackness optimality conditions (are in-kilter) or do not 
(are out-oj-kilter). The so-called kilter diagram is a convenient way to represent 
these conditions. As shown in Figure 9.13, the kilter diagram of an arc (i, j) is the 
collection of all points (Xij, elJ) in the two-dimensional plane that satisfy the optimality 
conditions (9.22). The condition 9.22(a) implies that elJ 2: 0 if xij = 0; therefore, the 
kilter diagram contains all points with zero xij-coordinates and nonnegative 
elJ-coordinates. Similarly, the condition 9.22(b) yields the horizontal segment of the 
diagram, and condition 9.22(c) yields the other vertical segment of the diagram. Each 
arc has its own kilter diagram. 

i 
cij 

o 

Figure 9.13 Kilter diagram for arc (i, j). 

Notice that for every arc (i, j), the flow Xij and reduced cost elJ define a point 
(xij' elJ) in the two-dimensional plane. If the point (Xij, elJ) lies on the thick lines in 
the kilter diagram, the arc is in-kilter; otherwise, it is out-of-kilter. For instance, the 
points B, D, and E in Figure 9.14 are in-kilter, whereas the points A and Care out
of-kilter. We define the kilter number kij of each arc (i, j) in A as the magnitude of 
the change in Xij required to make the arc an in-kilter arc while keeping elJ fixed. 
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Figure 9.14 Examples of in-kilter and 
out-of-kilter arcs. 

Therefore, in accordance with conditions (9.22a) and (9.22c), if elJ > 0, then k = 
1 Xij I. and if elJ < 0, then kij = 1 Uij - Xij I. If elJ = 0 and Xij > Uij, then kij = Xij -
Uij. If elJ = 0 and xij < 0, then kij = - Xij' The kilter number of any in-kilter arc is 
zero. The sum K = ~(i,j)EA kij of all kilter numbers provides us with a measure of 
how far the current solution is from optimality; the smaller the value of K, the closer 
the current solution is to being an optimal solution. 

In describing the out-of-kilter algorithm, we begin by making a simplifying 
assumption that the algorithm starts with a feasible flow. At the end of this section 
we show how to extend the algorithm so that it applies to situations when the initial 
flow does not satisfy the arc flow bounds (we also consider situations with nonzero 
lower bounds on arc flows). 

To describe the out-of-kilter algorithm, we will work on the residual network; 
in this setting, the algorithm iteratively decreases the kilter number of one or more 
arcs in the residual network. To do so, we must be able to define the kilter number 
of the arcs in the residual network G(x). We set the kilter number kij of an arc 
(i, j) in the following manner: 

kij = {O 
rij 

if elJ ~ O. 
if elJ < O. 

(9.23) 

This definition of the kilter number of an arc in the residual network is con
sistent with our previous definition: It is the change in flow (or, equivalently, the 
residual capacity) required so that the arc satisfies its optimality condition [which, 
in the case of residual networks, is the reduced cost optimality condition (9.7)]. An 
arc (i, j) in the residual network with elJ ~ 0 satisfies its optimality condition (9.7), 
but an arc (i, j) with elJ < 0 does not. In the latter case, we must send rij units of 
flow on the arc (i, j) so that it drops out of the residual network and thus satisfies 
its optimality condition .. 

The out-of-kilter algorithm maintains a feasible flow x and a set of node po
tentials 'IT. We could obtain a feasible flow by solving a maximum flow problem (as 
described in Section 6.2) and start with 'IT = O. Subsequently, the algorithm maintains 
all of the in-kilter arcs as in-kilter arcs and successively transforms the out-of-kilter 
arcs into in-kilter arcs. The algorithm terminates when all arcs in the residual network 
become in-kiiter. Figure 9.15 gives a formal description of the out-of-kilter algorithm. 
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algorithm out-ot-kilter; 
begin 

71": = 0; 
establish a feasible flow x in the network; 
define the residual network G(x) and compute the kilter numbers of arcs; 
while the network contains an out-of-kilter arc do 
begin 

select an out-of-kilter arc (p, q) in G(x); 
define the length of each arc (i, J) in G(x) as max{O, cJJ}; 
let d(·) denote the shortest path distances from node qto all other nodes in 

G(x) - {( q, p)} and let P denote a shortest path from node q to node p; 
update 7I"'(i) : = 7I"(i) - d(i) for all i E N; 
if cp~ < 0 then 
begin 

end; 
end; 

end; 

W: = P U {(p, q)}; 
/) : = min{rij : (i, j) E W}; 
augment /) units of flow along W; 
update x, G(x) , and the reduced costs; 

Figure 9.15 Out-of-kilter algorithm. 

We now discuss the correctness and complexity of the out-of-kilter algorithm. 
The correctness argument of the algorithm uses the fact that kilter numbers of arcs 
are nonincreasirig. Two operations in the algorithm affect the kilter numbers of arcs: 
updating node potentials and augmenting flow along the cycle W. In the next two 
lemmas we show that these operations do not increase the kilter number of any arc. 

Lemma 9.13. Updating the node potentials does not inerease the kilter num
ber of any are in the residual network. 

Proof Let 'IT and .'IT' denote the node potentials in the out-of-kilter algorithm 
before and after the update. The definition of the kilter numbers from (9.23) implies 
that the kilter number of an arc (i, j) can increase only if eij ~ 0 and eij' < O. We 
show that this cannot ,happen. Consider any arc (i,j) with eij ~ o. We wish to show 
that eij' ~ o. Since e;q < 0, (i, j) ¥- (p, q). Since the distances dO represent the 
shortest path distances with max{O, eij} as the length of arc (i, j), the shortest path 
distances satisfy the following shortest path optimality condition (see Section 5.2): 

d(j) ~ d(i) + max{O, eij} = d(i) + eij. 

The equality in this expression is valid because, by assumption, eij ~ o. The pre
ceding expression shows that 

eij + d(i) - d(j) ~ eij' ~ 0, 

so each arc in the residual network with a nonnegative reduced cost has a nonnega
tive reduced cost after the potentials update, which implies the conclusion of the 
lemma. • 
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Lemma 9.14. Augmenting flow along the directed cycle W = P U {(p, q)} 
does not increase the kilter number of any arc in the residual network and strictly 
decreases the kilter number of the arc (p, q). 

Proof Notice that the flow augmentation can change the kilter number of only 
the arcs in W = P U {(p, q)} and their reversals. Since P is a shortest path in the 
residual network with max{O, cij} as the length of arc (i, j), 

d(j) = d(i) + max{O, cij} 2": d(i) + cij for each arc (i, j) E P, 

which, using 'IT' = 'IT - d and the definition cij = Cij - 'IT(i) + 'IT(j), implies that 

cij' ::; 0 for each arc (i, j) E P. 

Since the reduced cost of each arc (i, j) in P with respect to 'IT' is nonpositive, 
the condition (9.23) shows that sending additional flow does not increase the arc's 
kilter number, but might decrease it. The flow augmentation might add the reversals 
of arcs in P, but since cij' ::; 0, the reversal of this arc (j, i) has eft' 2": 0, and therefore 
arc (j, i) is an in-kilter arc. 

Finally, we consider arc (p, q). Recall from the algorithm description in Figure 
9.15 that we augment flow along the arc (p, q) only if it is an out-of-kilter arc (i.e., 
c;~ < 0). Since augmenting flow along the arc (p, q) decreases its residual capacity, 
the augmentation decreases this arc's kilter number. Since c;;; > 0, arc (q, p) remains 
an in-kilter arc. These conclusions complete the proof of the lemma. • 

The preceding two lemmas allow us to obtain a pseudopolynomial bound on 
the running time of the out-of-kilter algorithm. Initially, the kilter number of an arc 
is at most U; therefore, the sum of the kilter numbers is at most mU. At each 
iteration, the algorithm selects an arc, say (p, q), with a positive kilter number and 
either makes it an in-kilter arc during the potential update step or decreases its kilter 
number by the siIbsequent flow augmentation. Therefore, the sum of kilter numbers 
decreases by at least 1 unit at every iteration. Consequently, the algorithm terminates 
within O(mU) iterations. The dominant computation within each iteration is solving 
a shortest path problem. Therefore, if S(n, m, C) is the time requireq to solve a 
shortest path problem with nonnegative arc lengths, the out-of-kilter algorithm runs 
in O(mU S(n, m, nC» time. 

How might we modify the algorithm to handle situations when the arc flows 
do not necessarily satisfy their flow bounds? In examining this case we consider the 
more general problem setting by allowing the arcs to have nonzero lower bounds. 
Let lij denote the lower bound on the flow on arc (i, j) EA. In this case, the com
plementary slackness optimality conditions become: 

If xij = lij, then cij 2": O. 

If lij < Xij < Uij, then cij = o. 
If Xij = Uij, then cij ::; O. 

(9. 24a) 

(9.24b) 

(9.24c) 

The thick lines in Figure 9.16 define the kilter diagram for this case. Consider 
arc (i, j). If the point (Xij, clJ) lies on the thick line in Figure 9.16, the arc is an in
kilter arc; otherwise it is an out-of-kilter arc. As earlier, we define the kilter number 
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Figure 9.16 Kilter diagram for an arc 
(i, j) with a nonzero lower bound. 

of an arc (i, j) in A as the magnitude of the change in Xij required to make the arc 
an in-kilter arc while keeping cij fixed. Since arcs might violate their flow bounds, 
six types of out-of-kilter arcs are possible, which we depict by points A, B, C, D, 
E, and F in Figure 9.16. For example, the kilter numbers of arcs with coordinates 
depicted by the points A and Dare (lij - Xij) and (Xij - Uij), respectively. 

To describe the algorithm for handling these situations, we need to determine 
how to form the residual network G(x) for a flow x violating its lower and upper 
bounds. We consider each arc (i, j) in A one by one and add arcs to the residual 
network G(x) in the following manner: 

1. lij S Xij S Uij. If Xij < Uij, we add the arc (i, j) with a residual capacity Uij - Xij 
and with a cost Cij. If Xij > lij, we add the arc (j, i) with a residual capacity 
Xij - lij and with a cost - Cij. We call these arcs feasible arcs. 

2. xij < lij. In this case we add the arc (i,j) with a residual capacity Oij - Xij) and 
with a cost Cij. We refer to this arc as a lower-infeasible arc. 

3. Xij > uij. In this case we add the arc (j, i) with a residual capacity (Xij - uij) 
and with a cost -Cij. We refer to this arc as an upper-infeasible arc. 

We next define the kilter numbers of arcs in the residual network. For feasible 
arcs in the residual network, we define their kilter numbers using (9.23). We define 
the kilter number kij of a lower-infeasible or an upper-infeasible arc (i, j) as the 
change in its residual capacity required to restore its feasibility as well as its opti
mality. For instance, for a lower-infeasible arc (i, j) (1) if cij 2': 0, then kij = (lij -
Xij); and (2) if cij < 0, then kij = (uij - Xij). Note that 

1. Lower-infeasible and upper-infeasible arcs have positive kilter numbers. 
2. Sending additional flow on lower-infeasible and upper-infeasible arcs in the 

residual network decreases their kilter numbers. 

The out-of-kilter algorithm for this case is same as that for the earlier case. 
The algorithmic description given in Figure 9.15 applies to this case as well except 
that at the beginning of the algorithm we need not establish a feasible flow in the 
network. We can initiate the algorithm with x ° as the starting flow. We leave 
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the justification of the out -of-kilter algorithm for this case as an exercise to the reader 
(see Exercise 9.26). 

9.10 RELAXATION ALGORITHM 

All the minimum cost flow algorithms we have discussed so far-the cycle-canceling 
algorithm, the successive shortest path algorithm, the primal-dual algorithm, and 
the out-of-kilter algorithm-are classical in the sense that researchers developed 
them in the 1950s and 1960s as network flow area was emerging as an independent 
field of scientific investigation. These algorithms have several common features: (1) 
they repeatedly apply shortest path algorithms, (2) they run in pseudopolynomial 
time, and (3) their empirical running times have proven to be inferior to those of the 
network simplex algorithm tailored for the minimum cost flow problem (we discuss 
this algorithm in Chapter 11). The relaxation algorithm we examine in this section 
is a more recent vintage minimum cost flow algorithm; it is competitive or better 
than the network simplex algorithm for some classes of networks. Interestingly, the 
relaxation algorithm is also a variation of the successive shortest path algorithm. 
Even though the algorithm has proven to be efficient in practice for many classes 
of problems, its worst-case running time is much poorer than that of every minimum 
cost flow algorithm discussed in this chapter. 

The relaxation algorithm uses ideas from Lagrangian relaxation, a well-known 
technique used for solving integer programming problems. We discuss the Lagran
gian relaxation technique in more detail in Chapter 16. In the Lagrangian relaxation 
technique, we identify a set of constraints to be relaxed, multiply each such constraint 
by a scalar, and subtract the product from the objective function. The relaxation 
algorithm relaxes the mass balance constraints of the nodes, mUltiplying the mass 
balance constraint for node i by an (unrestricted) variable 7r(i) (called, as usual, a 
node potential) and subtracts the resulting product from the objective function. These 
operations yield the following relaxed problem: 

w(7r) = minimize [ ~ CijXij + 
x (ij)EA (9.25a) 

~ 7r(i) {- ~ Xij + ~ Xji + b(i)}] 
iEN {j:(i,j)EA} {j:(j,i)EA} 

subject to 

for all (i, j) EA. (9.25b) 

For a specific value of the vector 7r of node potentials, we refer to the relaxed 
problem as LR(7r) and denote its objective function value by w(7r). Note that the 
optimal solution of LR(7r) is a pseudoflow for the minimum cost flow problem since 
it might violate the mass balance constraints. We can restate the objective function 
of LR(1T) in the following equivalent way: 

w(7r) = minimize [ ~ CijXij + ~ 7r(i)e(i)]. 
x (iJ)EA iEN 

(9.26) 
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In this expression, as in our earlier discussion, e(i) denotes the imbalance of 
node i. Let us restate the objective function (9.25a) of the relaxed problem in another 
way. Notice that in the second term of (9.25a), each flow variable Xij appears twice: 
once with a coefficient of -7r(i) and the second time with a coefficient of 7r(j). 
Therefore, we can write (9.25a) as follows: 

w(7r) = minimize [ L (Cij - 7r(i) + 7r(j»xij + L 7r(i)b(i)] , 
x (i,j)EA iEN 

or, equivalently, 

W(7r) = minimize [ L cijxij + ,.L
EN 

7r(Ob(i)]. 
x (i,j)EA 

(9.27) 

In the subsequent discussion, we refer to the objective function of LR(7r) as 
(9.26) or (9.27), whichever is more convenient. For a given vector 7r of node po
tentials, it is very easy to obtain an optimal solution x of LR(7r): In light of the 
formulation (9.27) of the objective function, (1) if cij > 0, we set Xij = 0; (2) if 
cij < 0, we set Xij = uij; and (3) if cij = 0, we can set xij to any value between ° 
and Uij. The reSUlting solution is a pseudoflow for the minimum cost flow problem 
and satisfies the reduced cost optimality conditions. We have therefore established 
the following result. 

Property 9.15. If a pseudo flow x of the minimum cost flow problem satisfies 
the reduced cost optimality conditions for some 7r, then x is an optimal solution of 
LR(7r). 

Let z* denote the optimal objective function value of the minimum cost flow 
problem. As shown by the next lemma, the value z* is intimately.related to the 
optimal objective value w(7r) of the relaxed problem LR(7r). 

Lemma 9.16 
(a) For any node potentials 7r, w( 7r) :5 z*. 
(b) For some choice of node potentials 7r*, w(7r*) = z*. 

Proof Let x* be an optimal solution of the minimum cost flow problem with 
objective function value z*. Clearly, for any vector 7r of node potentials, X* is a 
feasible solution ofLR(7r) and its objective function value in LR(7r) is also z*. There
fore, the minimum objective function value of LR(7r) will be less than or equal to 
z*. We have thus established the first part of the lemma. 

To prove the second part, let 7r* be a vector of node potentials that together 
with X* satisfies the complementary slackness optimality conditions (9.8). Property 
9.15 implies that X* is an optimal solution of LR(7r*) and w( 7r*) = cx* = z*. This 
conclusion completes the proof of the lemma. • 

Notice the similarity between this result and the weak duality theorem (i.e., 
Theorem 9.5) for the minimum cost flow problem that we have stated earlier in this 
chapter. The similarity is more than incidental, since we can view the Lagrangian 
relaxation solution strategy as a dual linear programming approach that combines 
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some key features of both the primal and dual linear programs. Moreover, we can 
view the dual linear program itself as being generated by applying Lagrangian re
laxation. 

The relaxation algorithm always maintains a vector of node potentials 'IT and 
a pseudoflow x that is an optimal solution of LR('IT). In other words, the pair (x, 'IT) 
satisfies the reduced cost optimality conditions. The algorithm repeatedly performs 
one of the following two operations: 

1. Keeping 'IT unchanged, it modifies x to x' so that x' is also an optimal solution 
of LR('IT) and the excess of at least one node decreases. 

2. It modifies 'IT to 'IT' and x to x' so that x' is an optimal solution of LR('IT') and 
w('IT') > w('IT). 

If the algorithm can perform either of the two operations, it gives priority to 
the second operation. Consequently, the primary objective in the relaxation algo
rithm is to increase w('IT) and the secondary objective is to reduce the infeasibility 
of the pseudoflow x while keeping w('IT) unchanged. We point out that the excesses 
at the nodes might increase when the algorithm performs the second operation. As 
we show at the end of this section, these two operations are sufficient to guarantee 
finite convergence of the algorithm. For a fixed value of w('IT), the algorithm con
sistently reduces the excesses of the nodes by at least one unit, and from Lemma 
9.16 the number of increases in w('IT), each of which is at least 1 unit, is finite. 

We now describe the relaxation algorithm in more detail. The algorithm per
forms major iterations and, within a major iteration, it performs several minor it
erations. Within a major iteration, the algorithm selects an excess node s and grows 
a tree rooted at node s so that every tree node has a nonnegative imbalance and 
every tree arc has zero reduced cost. Each minor iteration adds an additional node 
to the tree. A major iteration ends when the algorithm performs either an augmen
tation or increases w('IT). 

Let S denote the set of nodes spanned by the tree at some stage.and let 8 = 
N - S. The set S defines a cut which we denote by [S, 8]. As in earlier chapters, 
we let (S, 8) denote the set offorward arcs in the cut and (8, S) the set of backward 
arcs [all in G(x)]. The algorithm maintains two variables e(S) and r('IT, S), defined 
as follows: 

e(S) = L e(i), 
iES 

r('IT, S) = L rij. 
(i,j)E(S,S) and cij ~O 

Given the set S, the algorithm first checks the condition e(S) > r('IT, S). If the 
current solution satisfies this condition, the algorithm can increase w('IT) in the fol
lowing manner. [We illustrate this method using the example shown in Figure 
9.17(a).] The algorithm first increases the flow on zero reduced cost arcs in (S, 8) 
so that they become saturated (i.e., drop out of the residual network). The flow 
change does not alter the value of w('IT) because the change takes place on arcs with 
zero reduced costs. However, the flow change decreases the total imbalance of the 
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Figure 9.17 Illustrating the relaxation algorithm: (a) solution at some stage; 
(b) solution after modifying the flow; (c) solution after modifying the potentials. 

nodes by the amount r(1T, S); but since e(S) > r(1T, S), the remaining imbalance 
e(S) - r(1T, S) is still positive [see Figure 9.17(b)]. 

At this point all the arcs in (S, S) have (strictly) positive reduced cost. The 
algorithm next computes the minimum reduced cost of an arc in (S, S), say a, and 
increases the potential of every node i E S by a> 0 units [see Figure 9. 17(c)]. The 
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formulation (9.26) of the Lagrangian relaxation objective function implies that this 
updating of the node potentials does not change its first term but increases the second 
term by (e(S) - r(-rr, S»ex units. Therefore, this operation increases w('lT) by 
(e(S) - r( 'IT, S»ex units, which is strictly positive. Increasing the potentials of nodes in 
S by ex decreases the reduced costs of all the arcs in (S, 8) by ex units, increases the 
reduced costs of all arcs in (8, S) by ex units, and does not change the remaining 
reduced costs. Although increasing the reduced costs does not change the reduced 
cost optimality conditions, decreasing the reduced costs might. Notice, however, 
that before we change the node potentials, cij 2: ex for all (i,j) E (S, 8); therefore, 
after the change, cij' 2: 0, so the algorithm preserves the optimality conditions. This 
completes one major iteration. 

We next study situations in which e(S) ::; r('lT, S). Since r('lT, S) 2: e(S) > 0, 
at least one arc (i, j) E (S, 8) must have a zero reduced cost. If e(j) 2: 0, the 
algorithm adds nodej to S, completes one minor iteration, and repeats this process. 
If e(j) < 0, the algorithm augmertts the maximum possible flow along the tree path 
from node s to node j. Notice that since we augment flow along zero residual cost 
arcs, we do not change the objective function value of LR('lT). The augmentation 
reduces the total excess of the nodes and completes one major iteration of the al
gorithm. 

Figures 9.18 and 9.19 give a formal description of the relaxation algorithm. 
It is easy to see that the algorithm terminates with a minimum cost flow. The 

algorithm terminates when all of the node. imbalances have become zero (i.e., the 
solution is a flow). Because the algorithm maintains the reduced cost optimality 
conditions at every iteration, the terminal solution is a minimum cost flow. 

We now prove that for problems with integral data, the algorithm terminates 
in a finite number of iterations. Since each minor iteration adds a node to the set S, 
within n minor iterations the algorithm either executes adjust-flow or executes adjust
potentials. Each call of the procedure adjust-flow decreases the excess of at least 
one node by at least 1 unit; therefore, the algorithm can perform a finite number of 
executions of the adjust-flow procedure within two consecutive calls of the adjust
potential procedure. To bound the executions of the adjust-potential procedure, we 
notice that (1) initially, w('lT) = 0; (2) each call of this procedure strictly increases 
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algorithm relaxation; 
begin 

x ; = 0 and 71" ; = 0; 
while the network contains a node s with e(s) > 0 do 
begin 

S; = {s}; 
if e(S) > r(7I", S) then adjust-potential; 
repeat 

select an arc (i, j) E (S, Si in the residual network with clJ = 0; 
if e( j) ;;;,; 0 then set pred( j) : = i and add node j to S; 

until e(j) < 0 or e(S) > r(7I", S); 
if e(S) > r(7I", S) then adjust-potential 
else adjust-flow; 

end; 
end; 

Figure 9.18 Relaxation algorithm. 
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procedure adjust-potential; 
begin 

for every arc (i, j) E (S, S) with cij = 0 do send rij units of flow on the arc (i, j); 
compute a : = min{cij : (i, j) E (S, Si and rij> O}; 
for every node i E S do -rr(i) : = -rr(i) + a; 

end; 

(8) 

procedure adjust-flow; 
begin 

trace the predecessor indices to identify the directed path P from node s to node j; 
/) : = min[e(s), - e(j), min{rlj : (i, j) E P}j; 
augment /) units of flow along P, update imbalances and residual capacities; 

end; 

(b) 

Figure 9.19 Procedures of the relaxation algorithm. 

w('lT) by at least 1 unit; and (3) the maximum possible value of w('lT) is mCU. The 
preceding arguments establish that the algorithm performs finite number of itera
tions. In Exercise 9.27 we ask the reader to obtain a worst-case bound on the total 
number of iterations; this time bound is much worse than those of the other minimum 
cost flow algorithms discussed in earlier sections. 

Notice that the relaxation algorithm is a type of shortest augmenting path al
gorithm; indeed, it bears some resemblance to the successive shortest path algorithm 
that we considered in Section 9.7. Since the reduced cost of every arc in the residual 
network is nonnegative, and since every arc in the tree connecting the nodes in S 
has a zero reduced cost, the path P that we find in the adjust-flow procedure of the 
relaxation algorithm is a shortest path in the residual network. Therefore, the se
quence of flow adjustments that the algorithm makes is a set of flow augmentations 
along shortest augmenting paths. The relaxation algorithm differs from the succes
sive shortest augmenting path algorithm, however, because it uses "intermediate" 
information to make changes to the node potentials as it fans out and constructs the 
tree containing the nodes S. This use of intermediate information might explain why 
the relaxation algorithm has performed much better empirically than the successive 
shortest path algorithm. 

9.11 SENSITIVITY ANALYSIS 

The purpose of sensitivity analysis is to determine changes in the optimal solution 
of a minimum cost flow problem resulting from changes in the data (supply/demand 
vector or the capacity or cost of any arc). There are two different ways of performing 
sensitivity analysis: (1) using combinatorial methods, and (2) using simplex-based 
methods from linear programming. Each method has its advantages. For example, 
although combinatorial methods obtain better worst-case time bounds for performing 
sensitivity analysis, simplex-based methods might be more efficient in practice. In 
this section we describe sensitivity analysis using combinatorial methods; in Section 
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11.10 we consider a simplex-based approach. For simplicity, we limit our discussion 
. to a unit change of only a particular type. In a sense, however, this discussion is 

quite general: It is possible to reduce more complex changes to a sequence of the 
simple changes we consider. We show that sensitivity analysis for the minimum cost 
flow problem essentially reduces to applying shortest path or maximum flow algo
rithms. 

Let x* denote an optimal solution of a minimum cost flow problem. Let 1T be 
the corresponding node potentials and cij = Cij - 1T(i) + 1T(j) denote the reduced 
costs. Further, let d(k, I) denote the shortest distance from node k to node I in the 
residual network with respect to the original arc lengths Cij' Since for any directed 
path P from node k to node I, Lu,j)EP cij = Lu,j)EP Cij - 1T(k) + 1T(l), d(k, l) equals 
the shortest distance from node k to node I with respect to the arc lengths cij plus 
[1T(k) - 1T(I)]. At optimality, the reduced costs cij of all arcs in the residual network 
are nonnegative. Therefore, we can compute d(k, l) for all pairs of nodes k and I by 
solving n single-source shortest path problems with nonnegative arc lengths. 

Supply/Demand Sensitivity An8Jysis 

We first study changes in the supply/demand vector. Suppose that the supply/demand 
of a node k becomes b(k) + 1 and the supply/demand of another node I becomes 
b (I) - 1. [Recall from Section 9.1 that feasibility of the minimum cost flow problem 
dictates that LiEN b(i) = 0; therefore, we must change the supply/demand values 
of two nodes by equal magnitudes, and must increase one value and decrease the 
other.] The vector x* is a pseudoflow for the modified problem; moreover, this vector 
satisfies the reduced cost optimality conditions. Augmenting 1 unit of flow from node 
k to node I along the shortest path in the residual network G(x*) converts this 
pseudoflow into a flow. This augmentation changes the objective function value by 
d(k, I) units. Lemma 9.12 implies that this flow is optimal for the modified minimum 
cost flow problem. We point out that the residual network G(x*) might not contain 
any directed path from node k to node I, in which case the modified minimum cost 
flow problem is infeasible. 

Arc Capacity Sensitivity Analysis 

We next consider a change in an arc capacity. Suppose that the capacity of an arc 
(p, q) increases by 1 unit. The flow x* is feasible for the modified problem. In 
addition, if C;q 2:: 0, it satisfies the reduced cost optimality conditions; therefore, it 
is an optimal flow for the modified problem. If C;q < 0, the optimality conditions 
dictate that the flow on the arc must equal its capacity . We satisfy this requirement 
by increasing the flow on the arc (p, q) by 1 unit, which produces a pseudoflow 
with an excess of 1 unit at node q and a deficit of 1 unit at node p. We convert the 
pseudoflow into a flow by augmenting 1 unit of flow from node q to node p along 
the shortest path in the residual network G(x*), which changes the objective function 
value by an amount Cpq + d(q, p). This flow is optimal from our observations 
concerning supply/demand sensitivity analysis. 

When the capacity of the arc (p, q) decreases by 1 unit and the flow on the 
arc is strictly less than its capacity, x* remains feasible, and therefore optimal, for 
the modified problem. However, if the flow on the arc is at its capacity, we decrease 
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the flow by 1 unit and augment 1 unit of flow from node p to node q along the shortest 
path in the residual network. This augmentation changes the objective function value 
by an amount -cpq + d(p, q). Observed that the residual network G(x*) might not 
contain any directed path from node p to node q, indicating the infeasibility of the 
modified problem. 

Cost Sensitivity Analysis 

Finally, we discuss changes in arc costs, which we assume are integral. We discuss 
the case when the cost of an arc (p, q) increases by 1 unit; the case when the cost 
of an arc decreases is left as an exercise to the reader (see Exercise 9.50). This 
change increases the reduced cost of arc (p, q) by 1 unit as well. If C;q < 0 before 
the change, then after the change, the modified reduced cost is nonpositive. Simi
larly, if C;q > 0 before the change, the modified reduced cost is nonnegative after 
the change. In both cases we preserve the optimality conditions. However, if 
C;q = 0 before the change and Xpq > 0, then after the change the modified reduced 
cost is positive and the solution violates the reduced-cost optimality conditions. To 
restore the optimality conditions of the arc, we must either reduce the flow on arc 
(p, q) to zero or change the potentials so that the reduced cost of arc (p, q) becomes 
zero. 

We first try to reroute the flow X;q from node p to node q without violating 
any of the optimality conditions. We do so by solving a maximum flow problem 
defined as follows: (1) set the flow on the arc (p, q) to zero, thus creating an excess 
of X;q at node p and a deficit of X;q at node q; (2) designate node p as the source 
node and node q as the sink node; and (3) send a maximum of X;q units from the 
source to the sink. We permit the maximum flow algorithm, however, to change 
flows only on arcs with zero reduced costs since otherwise it would generate a 
solution that might violate (9.8). Let VO denote the flow sent from nodep to node q 
and XO denote the resulting arc flow. If VO = X;q, then XO denotes a minimum cost 
flow of the modified problem. In this case the optimal objective function values of 
the original and modified problems are the same. 

On the other hand, if VO < X;q, the maximum flow algorithm yields an s-t cut 
[S, S] with the properties that pES, q E S, and every forward arc in the cut with 
zero reduced cost has flow equal to its capacity and every backward arc in the cut 
with zero reduced cost has zero flow . We then decrease the node potential of every 
node in S by 1 unit. It is easy to verify by case analysis that this change in node 
potentials maintains the complementary slackness optimality conditions and, fur
thermore, decreases the reduced cost of arc (p, q) to zero. Consequently, we can 
set the flow on arc (p, q) equal to X;q - VO and obtain a feasible minimum cost flow. 
In this case the objective function value of the modified problem is X;q - VO units 
more than that of the original problem. 

9.12 SUMMARY 

The minimum cost flow problem is the central object of study in this book. In this 
chapter we began our study of this important class of problems by showing how 
minimum cost flow problems arise in several application settings and by considering 
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Number of 
Algorithm iterations Features 

Cycle-canceling O(mCU) I. Maintains a feasible flow x at every iteration and augments 
algorithm flows along negative cycles in G(x). 

2. At each iteration, solves a shortest path problem with ar-
bitrary arc lengths to identify a negative cycle. 

3. Very flexible: some rules for selecting negative cycles 
leads to polynomial-time algorithms. 

Successive shortest O(nU) 1. Maintains a pseudoflow x satisfying the optimality con-
path algorithm ditions and augments flow along shortest paths from excess 

nodes to deficit nodes in G(x). 
2. At each iteration, solves a shortest path problem with non-

negative arc lengths. 
3. Very flexible: by selecting augmentations carefully, we can 

obtain several polynomial-time algorithms. 

Primal-dual O(min{nU, nC}) 1. Maintains a pseudo flow x satisfying the optimality con-
algorithm ditions. Solves a shortest path problem to update node 

potentials and attempts to reduce primal infeasibility by 
the maximum amount by solving a maximum flow prob-
lem. 

2. At each iteration, solves both a shortest path problem with 
nonnegative arc lengths and a maximum flow problem. 

3. Closely related to the successive shortest path algorithm: 
instead of sending flow along one shortest path, sends flow 
along all shortest paths. 

Out-of-kilter O(nU) 1. Maintains a feasible flow x at each iteration and attempts 
algorithm to satisfy the optimality conditions by augmenting flows 

along shortest paths. 
2. At each iteration, solves a shortest path problem with non-

negative arc lengths. 
3. Can be generalized to solve situations in which the flow x 

maintained by the algorithm might not satisfy the flow 
bounds on the arcs. 

Relaxation See Exercise 9.27 1. Somewhat different from other minimum cost flow algo-
algorithm rithms. 

2. Maintains a pseudoflow x satisfying the optimality con-
ditions and modifies arc flows and node potentials so that 
a Lagrangian objective function does not decrease and oc-
casionally increllses. 

3. With the incorporation of some heuristics, the algorithm 
is very efficient in practice and yields the fastest available 
algorithm for some classes of minimum cost flow prob-
lems. 

Figure 9.20 Summary of pseudopolynomial-time algorithms for the minimum cost 
flow problem. 
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the simplest pseudopolynomial-time algorithms for solving these problems. These 
pseudopolynomial-time algorithms include classical algorithms that are important 
because of both their historical significance and because they provide the essential 
building blocks and core ideas used in more efficient algorithms. Our algorithmic 
development relies heavily upon optimality conditions for the minimum cost flow 
problem that we developed and proved in the following equivalent frameworks: 
negative cycle optimality conditions, reduced cost optimality conditions, and com
plementary slackness optimality conditions. The negative cycle optimality conditions 
state that a feasible flow x is an optimal flow if and only if the residual network G(x) 
contains no negative cycle. The reduced cost optimality conditions state that a fea
sible flow x is an optimal flow if and only if the reduced cost of each arc in the 
residual network is nonnegative. The complementary slackness optimality conditions 
are adaptations of the linear programming optimality conditions for network flows. 
As part of this general discussion in this chapter, we also examined minimum cost 
flow duality. 

We developed several minimum cost flow algorithms: the cycle-canceling, suc
cessive shortest path, primal-dual, out-of-kilter, and relaxation algorithms. These 
algorithms represent a good spectrum of approaches for solving the same problem: 
Some of these algorithms maintain primal feasible solutions and strive toward op
timality; others maintain primal infeasible solutions that satisfy the optimality con
ditions and strive toward feasibility. These algorithms have some commonalties as 
well-they all repeatedly solve shortest path problems. In fact, in Exercises 9.57 
and 9.58 we establish a very strong result by showing that the cycle-canceling, suc
cessive shortest path, primal-dual, and out-of-kilter algorithms are all equivalent in 
the sense that if initialized properly, they perform the same sequence of augmen
tations. Figure 9.20 summarizes the basic features of the algorithms discussed in 
this chapter. 

Finally, we discussed sensitivity analysis for the minimum cost flow problem. 
We showed how to reoptimize the minimum cost flow problem, after we have made 
unit changes in the supply/demand vector or the arc capacities-; by solving a shortest 
path problem, and how to handle unit changes in the cost vector by solving a max
imum flow problem. Needless to say, these reoptimization procedures are substan
tially faster than solving the problem afresh if the changes in the problem data are 
sufficiently small. 

REFERENCE NOTES 

In this chapter and in these reference notes we focus on pseudopolynomial-time 
nonsimplex algorithms for solving minimum cost flow problems. In Chapter 10 we 
provide references for polynomial-time minimum cost flow algorithms, and in Chap
ter 11 we give references for simplex-based algorithms. 

Ford and Fulkerson [1957] developed the primal-dual algorithms for the ca
pacitated transportation problem; Ford and Fulkerson [1962] later generalized this 
approach for solving the minimum cost flow problem. Jewell [1958], Iri [1960], and 
Busaker and Gowen [1961] independently developed the successive shortest path 
algorithm. These researchers showed how to solve the minimum cost flow problem 
as a sequence of shortest path problems with arbitrary arc lengths. Tomizava [1972] 
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and Edmonds and Karp [1972] independently observed that if the computations use 
node potentials, it is possible to implement these algorithms so that the shortest path 
problems have nonnegative arc lengths. 

Minty [1960] and Fulkerson [1961b] independently developed the out-of-kilter 
algorithm. Aashtiani and Magnanti [1976] have described an efficient implementation 
of this algorithm. The description of the out-of-kilter algorithm presented in Section 
9.9 differs substantially from the development found in other textbooks. Our de
scription is substantially shorter and simpler because it avoids tedious case analyses. 
Moreover, our description explicitly highlights the use of Dijkstra's algorithm; be
cause other descriptions do not focus on the shortest path computations, they find 
an accurate worst-case analysis of the algorithm much more difficult to conduct. 

The cycle-canceling algorithm is credited to Klein [1967]. Three special im
plementations of the cycle-canceling algorithms run in polynomial time: the first, 
due to Barahona and Tardos [1989] (which, in turn, modifies an algorithm by Wein
traub [1974]), augments flow along (negative) cycles with the maximum possible 
improvement; the second, due to Goldberg and Trujan [1988], augments flow along 
minimum mean cost (negative) cycles; and the third, due to Wallacher and Zim
merman [1991], augments flow along minimum ratio cycles. 

Zadeh [1973a,1973b] described families of minimum cost flow problems on 
which each of several algorithms-the cycle-canceling algorithm, successive short
est path algorithm, primal-dual algorithm, and out-of-kilter algorithm-perform an 
exponential number of iterations. The fact that the same families of networks are 
bad for many network algorithms suggests an interrelationship among the algorithms. 
The insightful paper by Zadeh [1979] points out that each of the algorithms we have 
just mentioned are indeed equivalent in the sense that they perform the same se
quence of augmentations, which they obtained through shortest path computations, 
provided that we initialize them properly and break ties using the same rule. 

Bertsekas and Tseng [1988b] developed the relaxation algorithm and conducted 
extensive computational investigations of it. A FORTRAN code of the relaxation , 
algorithm appears in Bertsekas and Tseng [1988a]. Their study and those conducted 
by Grigoriadis [1986] and Kennington and Wang [1990] indicate that the relaxation 
algorithm and the network simplex algorithm (described in Chapter 11) are the two 
fastest available algorithms for solving the minimum cost flow problem in practice. 
When the supplies/demands at nodes are relatively small, the successive shortest 
path algorithm is the fastest algorithm. Previous computational studies conducted 
by Glover, Karney, and Klingman [1974] and Bradley, Brown, and Graves [1977] 
have indicated that the network simplex algorithm is consistently superior to the 
primal-dual and out-of-kilter algorithms. Most of these computational testings have 
been done on random network flow problems generated by the well-known computer 
program NETGEN, suggested by Klingman, Napier, and Stutz [1974]. 

The applications of the minimum cost flow problem that we discussed Section 
9.2 have been adapted from the following papers: 

1. Distribution problems (Glover and Klingman [1976]) 
2. Reconstructing the left ventricle from x-ray projections (Slump and Gerbrands 

[1982]) 
3. Racial balancing of schools (Belford and Ratliff [1972]) 
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4. Optimal loading of a hopping airplane (Gupta [1985] and Lawania [1990]) 
5. Scheduling with deferral costs (Lawler [1964]) 
6. Linear programming with consecutive l's in columns (Veinott and Wagner 

[1962]) 

Elsewhere in this book we describe other applications of the minimum cost 
flow problem. These applications include (1) leveling mountainous terrain (Appli
cation 1.4, Farley [1980]), (2) the forest scheduling problem (Exercise 1.10), (3) the 
entrepreneur's problem (Exercise 9.1, Prager [1957]), (4) vehicle fleet planning (Ex
ercise 9.2), (5) optimal storage policy for libraries (Exercise 9.3, Evans [1984]), (6) 
zoned warehousing (Exercise 9.4, Evans [1984]), (7) allocation of contractors to 
public works (Exercise 9.5, Cheshire, McKinnon, and Williams [1984]), (8) phasing 
out capital equipment (Exercise 9.6, Daniel [1973]), (9) the terminal assignment prob
lem (Exercise 9.7, Esau and Williams [1966]), (10) linear programs with consecutive 
or circular 1 's in rows (Exercises 9.8 and 9.9, Bartholdi, Orlin, and Ratliff [1980]), 
(11) capacitated maximum spanning trees (Exercise 9.54, Garey and Johnson [1979]), 
(12) fractional b-matching (Exercise 9.55), (13) the nurse scheduling problem (Ex
ercise 11.1), (14) the caterer problem (Exercise 11.2, Jacobs [1954]), (15) project 
assignment (Exercise 11.3), (16) passenger routing (Exercise 11.4), (17) allocating 
receivers to transmitters (Exercise 11.5, Dantzig [1962]), (18) faculty-course as
signment (Exercise 11.6, Mulvey [1979]), (19) optimal rounding of a matrix (Exercise 
11. 7, Bacharach [1966]' Cox and Ernst [1982]), (20) automatic karotyping of chro
mosomes (Application 19.8, Tso, Kleinschmidt, Mitterreiter, and Graham [1991]), 
(21) just-in-time scheduling (Application 19.10, Elmaghraby [1978], Levner and Nem
irovsky [1991]), (22) time-cost trade.!off in project management (Application 19'.11, 
Fulkerson [1961a] and Kelly [1961]), (23) models for building evacuation (Application 
19.13, Chalmet, Francis and Saunders [1982]), (24) the directed Cqinese postman 
problem (Application 19.14, Edmonds and Johnson [1973]), (25) warehouse layout 
(Application 19.17, Francis and White [1976]), (26) rectilinear distance facility lo
cation (Application 19.18, Cabot, Francis, and Stary [1970]f,'(27) dynamic lot sizing 
(Application 19.19, Zangwill [1969]), (28) multistage production-inventory planning 
(Application 19.23, Evans [1977]), (29) mold allocation (Application 19.24, Love and 
Vemuganti [1978]), (30) a parking model (Exercise 19.17, Dirickx and Jennergren 
[1975]), (31) the network interdiction problem (Exercise 19.18, Fulkerson and Hard
ing [1977]), (32) truck scheduling (Exercises 19.19 and 19.20, Gavish and Schweitzer 
[1974]), and (33) optimal deployment of firefighting companies (Exercise 19.21, De
nardo, Rothblum, and Swersey [1988]). 

The applications of the minimum cost flow problems are so vast that we have 
not been able to describe many other applications in this book. The following list 
provides a set of references to some other applications: (1) warehousing and distri
bution of a seasonal product (Jewell [1957]), (2) economic distribution of coal supplies 
in the gas industry (Berrisford [1960]), (3) upsets in round-robin tournaments (Fulk
erson [1965]), (4) optimal container inventory and routing (Horn [1971]), (5) distri
bution of empty rail containers (White [1972]), (6) optimal defense of a network 
(Picard and Ratliff [1973]), (7) telephone operator scheduling (Segal [1974]), (8) mul
tifacility minimax location problem with rectilinear distances (Dearing and Francis 
[1974]), (9) cash management problems (Srinivasan [1974]), (10) multiproduct mul-
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tifacility production-inventory planning (Dorsey, Hodgson, and Ratliff [1975]), (l1) 
"hub" and "wheel" scheduling problems (Arisawa and Elmaghraby [1977]), (12) 
the warehouse leasing problem (Lowe, Francis, and Reinhardt [1979]), (13) mul
tiattribute marketing models (Srinivasan [1979]), (14) material handling systems 
(Maxwell and Wilson [1981]), (15) microdata file merging (Barr and Turner [1981]), 
(16) determining service districts (Larson and Odoni [1981]), (17) control of forest 
fires (Kourtz [1984]), (18) allocating blood to hospitals from a central blood bank 
(Sapountzis [1984]), (19) market equilibrium problems (Dafetmos and Nagurney 
[1984]), (20) automatic chromosome classifications (Tso [1986]), (21) the city traffic 
congestion problem (Zawack and Thompson [1987]), (22) satellite scheduling (Servi 
[1989]), and (23) determining k disjoint cuts in a network (Wagner [1990]). 

EXERCISES 

9.1. Enterpreneur's problem (Prager [1957]). An entrepreneur faces the following problem. 
In each of T periods, he can buy, sell, or hold for later sale some commodity, subject 
to the following constraints. In each period i he can buy at most (Xi units of the com
modity, can holdover at most f3i units of the commodity for the next period, and must 
sell at least "Yi units (perhaps due to prior agreements). The enterpreneur cannot sell 
the commodity in the same period in which he buys it. Assuming that Pi, Wi, and Si 

denote the purchase cost, inventory carrying cost, and selling price per unit in period 
i, what buy-sell policy should the entreprenuer adopt to maximize total profit in the 
T periods? Formulate this problem as a minimum cost flow problem for T = 4. 

9.2. Vehicle fleet planning. The Millersburg Supply Company uses a large fleet of vehicles 
which it leases from manufacturers. The company has forecast the following pattern 
of vehicle requirements for the next 6 months: 

Month Jan. Feb. Mar. ApI· May June 

Vehicles 430 410 440 390 425 450 
required 

Millersburg can lease vehicles from several manufacturers at various costs and for 
various lengths of time. Three of the platts appear to be the best available: a 3-month 
lease for $1700; a 4-month lease for $2200; and a 5-month lease for $2600. The company 
can undertake a lease beginning in any month. On January 1 the company has 200 cars 
on lease, all of which go off lease at the end of February. Formulate the problem of 
determining the most economical leasing policy as a minimum cost flow problem. (Hint: 
Observe that the linear (integer) programming formulation of this problem has consec
utive l's in each column. Then use the result in Application 9.6.) 

9.3. Optimal storage poJicy for libraries (Evans [1984]). A library facing insufficient primary 
storage space for its collection is considering the possibility of using secondary facilities, 
such as closed stacks or remote locations, to store portions of its collection. These 
options are preferred to an expensive expansion of primary storage. Each secondary 
storage facility has limited capacity and a particular access costs for retrieving infor
mation. Through appropriate data collection, we can determine the usage rates for the 
information needs of the users. Let bj denote the capacity of storage facility j and Vj 
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denote the access cost per unit item from this facility. In addition, let aj denote the 
number of items of a particular class i requiring storage and let Uj denote the expected 
rate (per unit time) that we will need to retrieve books from this class. Our goal is to 
store the books in"a way that will minimize the expected retrieval cost. 
(a) Show how to formulate the problem of determining an optimal policy as a trans

portation problem. What is the special structure of this problem? Transportation 
problems wit,p this structure have become known as factored transportation prob
lems. 

(b) Show that the simple rule that repeatedly assigns items with the greatest retrievel 
rate to the storage facility with lowest access cost specifies an optimal solution of 
this library storage problem. 

9.4. Zoned warehousing (Evans [1984]). In the storage of multiple, say p, items in a zoned 
warehouse, we need to extract (pick) items in large quantities (perhaps by pallet loads). 
Suppose that the warehouse is partitioned into q zones, each with a different distance 
to the shipping area. Let Bj denote the storage capacity of zone j and let dj denote the 
average distance from zone j to the shipping area. For each item i, we know (1) the 
space requirement per unit (rj), (2) the average order size in some common volume unit 
(Sj), and (3) the average number of orders per day (fj). The problem is to determine 
the quaritity of each item to allocate to each zone in order to minimize the average 
daily handling 'costs. Assume that the handling cost is linearly proportional to the dis
tance and to the volume moved. 
(a) Formulate this problem as a factored transportation problem (as defined in Exercise 

9.3). 
(b) Specify a simple rule that yields an optimal solution of the zoned warehousing 

problem. 

9.5. AUocation of contractors to public works (Cheshire, McKinnon, and Williams [1984]). 
A large publicly owned corporation has 12 divisions in Great Britain. Each division 
faces a similar problem. Each year the division subcontracts work to private contrac
tors. The work is of several different types and is done by teams, each of which is 
capable of doing all types of work. One of these divisions is divided into several districts: 
the jth district requires rj teams. The contractors are of two types: eXiperienced and 
inexperienced. Each contractor i quotes a price cij to have a team conduct the work in 
districtj. The objective is to allocate the work in the districts to the various contractors, 
satisfying the following conditions: (1) each district j has rrassigned teams; (2) the 
division contracts with contractor i for no more than Uj teams, the maximum number 
of teams it can supply; and (3) each district has at least one experienced contractor 
assigned to it. Formulate this problem as a minimum cost flow problem for a division 
with three districts, and with two experienced and two iriexperienced contractors. 
(Hint: Split each district node into two nodes, one of which requires an experienced 
contractor. ) 

9.6. Phasing out capital equipment (Daniel [1973]). A shipping company wants to phase out 
a fleet of (homogeneous) general cargo ships over a period of p years. Its objective is 
to maximize its cash assets at the end of the p years by considering the possibility of 
prematurely selling ships and temporary replacing them by charter ships. The company 
faces a known nonincreasing demand for ships. Let d(i) denote the demand of ships in 
year i. Each ship earns a revenue of rk units in period k. At the beginning of year k, 
the company can sell any ship that it owns, accruing a cash inflow of Sk dollars. If the 
company does not own sufficiently many ships to meet its demand, it must hire ad
ditional charter ships. Let hk denote the cost of hiring a ship for the kth year. The 
shipping company wants to meet its commitments and at the same time maximize the 
cash assets at the end of the pth year. Formulate this problem as a minimum cost flow 
problem. 
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9.7. Terminal assignment problem (Esau and Williams [1966]). Centralized teleprocessing 
networks often contain many (as many as tens of thousands) relatively unsophisticated 
geographically dispersed terminals. These terminals need to be connected to a central 
processor unit (CPU) either by direct lines or though concentrators. Each concentrator 
is connected to the CPU through a high-speed, cost-effective line that is capable of 
merging data flow streams from different terminals and sending them to the CPU. Sup
pose that the concentrators are in place and that each concentrator can handle at most 
K terminals. For each terminal j, let Coj denote the cost of laying down a direct line 
from the CPU to the terminal and let cij denote the line construction cost for connecting 
concentrator i to terminal j. The decision problem is to construct the minimum cost 
network for connecting the terminals to the CPU. Formulate this problem as a minimum 
cost flow problem. 

9.8. Linear programs with consecutive l's in rows. In Application 9.6 we considered linear 
programs with consecutive 1 's in each column and showed how to transform them into 
minimum cost flow problems. In this and the next exercise we study several related 
linear programming problems and show how we can solve them by solving minimum 
cost flow problems. In this exercise we study linear programs with consecutive 1 's in 
the rows. Consider the following (integer) linear program with consecutive l's in the 
rows: 

subject to 

X2 + X3 + X4 ? 20 

XI + X2 + X3. + X4 ? 30 

X2 + X3 ? 15 

? 0 and integer. 

Transform this problem to a minimum cost flow problem. (Hint: Use the same trans
formation of variables that we used in Application 4.6.) 

9.9. Linear programs with circular l's in rows (Bartholdi, Orlin, and Ratliff [l~80]). In this 
exercise we consider a generalization of Exercise 9.8 with the I 's in each row arranged 
consecutively when we view columns in the wraparound fashion (i.e., we consider the 
first column as next to the last column). A special case of this problem is the telephone 
operator scheduling problem that we discussed in Application 4.6. In this exercise we 
focus on the telephone operator scheduling problem; nevertheless, the approach easily 
extends to any general linear program with circular l's in the rows. We consider a 
version of the telephone operator scheduling in which we incur a cost Ci whenever an 
operator works in the ith shift, and we wish to satisfy the minimum operator requirement 
for each hour of the day at the least possible cost. We can formulate this "cyclic staff 
scheduling problem" as the following (integer) linear program. 

subject to 

346 

23 

Minimize L Yi 
;=0 

Yi-7 + Yi-6 + 

YI7+i + ... + Y23 + Yo + 

+ Yi? b(i) 

+ Yi ? b(i) 

Yi? 0 

for all i = 7 to 23, 

for all i = 0 to 6, 

for all i = 1 to 23. 
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(a) For a parameter p, let !!P(p) denote the cyclic staff scheduling problem when we 
impose the additional constraint L7!o Yi = p, and let z(p) denote the optimal ob
jective value of this problem. Show how to transform !!P(p), for a fixed value of p, 
into a minimum cost flow problem. (Hint: Use the same transformation of variables 
that we used in Application 4.6 and observe that each row has one + 1 and one 
-1. Then use the result of Theorem 9.9.) 

(b) Show that z(p) is a (piecewise linear) convex function ofp. (Hint: Show that ify' 
is an optimal solution of !!P(p') and y" is an optimal solution of !!P(p"), then for any 
weighting parameter A, 0 ::; A ::; I, the point AY' + (1 - A)Y" is a feasible solution 
of !!P(Ap' + (1 - A)p").) 

(c) In the cyclic staff scheduling problem, we wish to determine a value of p, say p*, 
satisfying the property that z(p*) ::; z(p) for all feasible p. Show how to solve the 
cyclic staff scheduling problem in polynomial time by performing binary search on 
the values of p. (Hint: For any integer p, show how to determine whether p ::; p* 
by solving problems !!P(p) and !!P(p + 1).) 

9.10. Racial balancing of schools. In this exercise we discuss some generalizations of the 
problem of racial balancing of schools that we described in Application 9.3. Describe 
how would you modify the formulation to include the following additional restrictions 
(consider each restriction separately). 
(a) We prohibit the assignment of a student from location i to school j if the travel 

distance dij between these location exceeds some specified distance D. 
(b) We include the distance traveled between location i and schoolj in the objective 

function only if dij is greater than some specified distance D' (e.g., we account for 
the distance traveled only if a student needs to be bussed). 

(c) We impose lower and upper bounds on the number of black students from location 
i who are assigned to school j. 

9.11. Show how to transform the equipment replacement problem described in Application 
9.6 into a shortest path problem. Give the resulting formulation for n = 4. 

9.12. This exercise is based on the equipment replacement problem that we discussed in 
Application 9.6. 
(a) The problem as described allows us to buy and sell the equipment only yearly. 

How would you model the situation if you could make decisions every half year? 
(b) How sensitive do you think the optimal solution would be to the length T of planning 

period? Can you anticipate a situation in which the optimal replacement plan would 
change drastically if we were to increase the length of the'planning period to T + 
I? 

9.13. Justify the minimum cost flow formulation that we described in Application 9.4 for the 
problem of optimally loading a hopping airplane. Establish a one-to-one correspondence 
between feasible passenger routings and feasible flows in the minimum cost flow for
mulation of the problem. 

9.14. In this exercise we consider one generalization of the tanker scheduling problem dis
cussed in Application 6.6. Suppose that we can compute the profit associated with each 
available shipment (depending on the revenues and the operating cost directly attrib
utable to that shipment). Let the profits associated with the shipments 1, 2, 3, and 4 
be 10, 10, 3, and 4, respectively. In addition to the operating cost, we incur a fixed 
charge of 5 units to bring a ship into service. We want to determine the shipments we 
should make and the number of ships to use to maximize net profits. (Note that it is 
not necessary to honor all possible shipping commitments.) Formulate this problem as 
a minimum cost flow problem. 

9.15. Consider the following data, with n = 4, for the employment scheduling problem that 
we discussed in Application 9.6. Formulate this problem as a minimum cost flow prob
lem and solve it by the successive shortest path algorithm. 
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2 3 4 5 

- 20 35 50 55 

{Cij} = 2 - - 15 30 40 i 1 2 3 4 

3 - - - 25 35 d(i) 20 15 30 25 

4 - - - - 10 

9.16. Figure 9.21(b) shows the optimal solution of the minimum cost flow problem shown in 
Figure 9.21(a). First, verify that x* is a feasible flow. 
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(a) Draw the residual network G(x*) and show that it contains no negative cycle. 
(b) Specify a set of node potentials 'IT that together with x* satisfy the reduced cost 

optimality conditions. List each arc in the residual network and its reduced cost. ., (cij, uij) 
~. "~~ 

20 0 
(6,10) 

(1, 10) (0,10) 

10 -10 

(7, 15) 
(2, 15) (9, 15) 

-5 
(5,10) 

-15 

(a) ., xij • • kilW ;\$k~~' <"k' 

10 

0 
10 0 10 

5 

10 5 

10 

(b) 

Figure 9.21 Minimum cost flow problem: (a) problem data; (b) optimal solution. 
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(c) Verify that the solution x* satisfies the complementary slackness optimality con
ditions. To do so, specify a set of optimal node potentials and list the reduced cost 
of each arc in A. 

9.17. (a) Figure 9.22(a) gives the data and an optimal solution for a minimum cost flow 
problem. Assume that all arcs are uncapacitated. Determine optimal node poten
tials. 

(b) Consider the uncapacitated minimum cost flow problem shown in Figure 9.22(b). 
For this problem the vector 'IT = (0, -6, -9, -12, -5, -8, -15) is an optimal 
set of node potentials. Determine an optimal flow in the network. 

bCi) 
(eii, xij) 

b(j) • • )0 ., 

10 -5 
(3,20) 

(2,30) (5, 15) 

(4,0) 

30 (1,20) (3,0) -25 

(0,0) 
(3,0) (6,10) 

-20 
(7,0) 

10 

(3) 

b(i) b(j) • Cij • .. f~:' 

0 -50 

4 2 9 

100 

6 5 4 
7 

2 
-10 20 

(b) 

Figure 9.22 Example for Exercise 9.17. 

9.18. Solve the problem shown in Figure 9.23 by the cycle-canceling algorithm. Use the zero 
flow as the starting solution. 
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(-2,5) 

(-1,2) 

(-1,7) 

(-1,4) 

(-1,2) 

(-1,3) 

(-1, 1) 

Figure 9.23 Example for Exercise 
9.18. 

9.19. Show that if we apply the cycle-canceling algorithm to the minimum cost flow problem 
shown in Figure 9.24, some sequence of augmentations requires 2 x 106 iterations to 
solve the problem. 

Figure 9.24 Network where cycle 
canceling algorithm performs 2 x 106 

iterations. 

9.20. Apply the successive shortest path algorithm to the minimum cost flow problem shown 
in Figure 9.25. Show that the algorithm performs eight augmentations, each of unit 
flow, and that the cost of these augmentations (Le., sum of the arc costs in the path 

b(l) = 8 b(8) =-8 

Figure 9.25 Example for Exercise 9.20. 
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in the residual network) is 0, I, 2, 3, 3, 4, 5, and 6. How many iterations does the 
primal-dual algorithm require to solve this problem? 

9.21. Construct a class of minimum cost flow problems for which the number of iterations 
performed by the successive shortest path algorithm might grow exponentially in log U. 
(Hint: Consider the example shown in Figure 9.24.) 

9.22. Figure 9.26 specifies the data and a feasible solution for a minimum cost flow problem. 

25 

With respect to zero node potentials, list the in-kilter and out-of-kilter arcs. Apply the 
out-of-kilter algorithm to find an optimal flow in the network. 

b(i) b(j) .. (cij, uij) • ~~~;; .. Xij • ~ ;;?iN 
0 

(4,10) 
0 

10 

(7,30) 25 

(2,20) 
(1,20) 15 

10 
20 

(6,20) 

~ 
0 -25 

(a) (b) 

Figure 9.26 Example for Exercises 9.22 and 9.23: (a) problem data; (b) feasible flow. 

9.23. Consider the minimum cost flow problem shown in Figure 9.26. Starting with zero 
pseudoflow and zero node potentials, apply the relaxation algorithm to establish an 
optimal flow. 

9.24. Figure 9.21(b) specifies an optimal solution for the minimum cost flow problem shown 
in Figure 9.21(a). Reoptimize the solution with respect to the following changes in the 
problem data: (1) when C23 increases from 0 to 6; (2) when c78~decreases from 9 to 2; 
(3) when b(2) decreases to 15 and b(S) increases to -5; and (4) when U23 increases to 
20. Treat these changes individually. 

9.25. Assuming that we set one node potential to value zero, show that nC is an upper bound 
and that - nC is a lower bound on the optimal value of any node potential. 

9.26. Justify the out-of-kilter algorithm described in Section 9.9 for the case when arcs can 
violate their flow bounds. Show that in the execution of the algorithm, the kilter number 
of arcs are nonincreasing and at least one kilter number strictly decreases at every 
iteration. 

9.27. Obtain a worst-case bound on the total number of iterations performed by the relaxation 
algorithm. Compare this bound with the number of iterations performed by the cycle
canceling, successive shortest path, and primal-dual algorithms. 

9.28. Show that if the pair (x, 'IT) satisfies the complementary slackness optimality conditions 
(9.S), it also satisfies the reduced cost optimality conditions (9.7). 

9.29. Prove that if x* is an optimal flow and 'IT is an optimal set of node potentials, the pair 
(x*, 'IT) satisfies the complementary slackness optimality conditions. In your proof, do 
not use the strong duality theorem. (Hint: Suppose that the pair (x, 'IT) satisfies the 
optimality conditions for some flow x. Show that c"'(x* - x) = 0 and use this fact to 
prove the desired result.) 
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9.30. With respect to an optimal solution x* of a minimum cost flow problem, suppose that 
we redefine arc capacities u' as follows: 

U~. = {Uij 
lJ 00 

if xt = Uij 

if xt < Uij. 

Show that x* is also an optimal solution of the minimum cost flow problem with the 
arc capacities as u'. 

9.31. With respect to an optimal solution x* of a minimum cost flow problem, suppose that 
we redefine arc capacities u' = x*. Show that x* is also an optimal solution of the 
minimum cost flow problem with arc capacities u'. 

9.32. In Section 2.4 we showed how to transform a minimum cost flow problem in an un
directed network in which all lower bounds are zero into a minimum cost flow problem 
in a directed network. Explain why this approach does not work when some lower 
bounds on arc flows exceed zero. 

9.33. In the minimum cost flow problem, suppose that one specified arc (p, q) has no lower 
and upper flow bounds. How would you transform this problem into the standard min
imum cost flow problem? 

9.34. As we have seen in Section 2.4, the uncapacitated transportation problem is equivalent 
to the minimum cost flow problem in the sense that we can always transform either 
problem into a version of another problem. If we can solve the uncapacitated trans
portation problem in O(g(n, m» time, can we also solve the minimum cost flow problem 
in O(g(n, m» time? 

9.35. In the min-cost max-flow problem defined on a directed network G = (N, A), we wish 
to send the maximum amount of flow from a node s to a node t at the minimum possible 
total cost. That is, among all maximum flows, find the one with the smallest cost. 
(a) Show how to formulate any minimum cost flow problem as a min-cost max-flow 

problem. 
(b) Show how to convert any min-cost max-flow problem into a circulation problem. 

9.36. Suppose that in a minimum cost flow problem, some arcs have infinite capacities and 
some arc costs are negative. (Assume that the lower bounds on all arc flows are zero.) 
(a) Show that the minimum cost flow problem has a finite optimal solution if and only 

if the uncapacitated arcs do not contain a negative cost-directed cycle. 
(b) Let B denote the sum of the finite arc capacities and the supplies b(·) of all the 

supply nodes. Show that the minimum cost flow problem always has an optimal 
solution in which each arc flow is at most B. Conclude that without any loss of 
generality, we can assume that in the minimum cost flow problem (with a bounded 
optimal solution value) every arc is capacitated. (Hint: Use the flow decomposition 
property.) 

9.37. Suppose that in a minimum cost flow problem, some arcs have infinite capacities and 
some arc costs are negative. Let B denote the sum of the finite arc capacities and the 
right-hand-side coefficients bU) for all the supply nodes. Let z and z' denote the ob
jective function values of the minimum cost flow problem when we set the capacity of 
each infinite capacity arc to the value Band B + 1, respectively. Show that the objective 
function of the minimum cost flow problem is unbounded if and only if z' < z. 

9.38. In a minimum cost flow network, suppose that in addition to arc capacities, nodes have 
upper bounds imposed upon the entering flow. Let wU) be the maximum flow that can 
enter node i E N. How would you solve this generalization of the minimum cost flow 
problem? 

9.39. Let (k, l) and (p, q) denote a minimum cost arc and a maximum cost arc in a network. 
Is it possible that no minimum cost flow have a positive flow on arc (k, I)? Is it possible 
that every minimum cost flow have a positive flow on arc (p, q)? Justify your answers. 

9.40. Prove or disprove the following claims. 
(a) Suppose that all supply/demands and arc capacities in a minimum cost flow problem 
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are all even integers. Then for some optimal flow x*, each arc flow xt is an even 
number. 

(b) Suppose that all supply/demands and arc capacities in a minimum cost circulation 
problem are all even integers. Then for some optimal flow x*, each arc flow xt is 
an even number. 

9.41. Let x* be an optimal solution of the minimum cost flow problem. Define GO as a 
subgraph of the residual network G(x*) consisting of all arcs with zero reduced cost. 
Show that the minimum cost flow problem has an alternative optimal solution if and 
only if GO contains a directed cycle. 

9.42. Suppose that you are given a nonintegral optimal solution to a minimum cost flow 
problem with integral data. Suggest a method for converting this solution into an integer 
optimal solution. Your method should maintain optimality ofthe solution at every step. 

9.43. Suppose that the pair (x, 'IT), for some pseudoflow x and some node potentials 'IT, satisfies 
the reduced cost optimality conditions. Define GO(x) as a subgraph of the residual 
network G(x) consisting of only those arcs with zero residual capacity. Define the cost 
of an arc (i, j) in GO(x) as cij if (i, j) E A, and as -CiJ otherwise. Show that every 
directed path in GO(x) between any pair of nodes is a shortest path in G(x) between 
the same pair of nodes with respect to the arc costs cij. 

9.44. Let Xl and x2 be two distinct (alternate) minimum cost flows in a network. Suppose 
that for some arc (k, I), xli = p, X~I = q, and p < q. Show that for every 0 :5 X. :5 1, 
the minimum cost flow problem has an optimal solution x (possibly, noninteger) with 
Xkl = (l - x.)p + x.q. 

9.45. Let 'lT1 and 'lT2 be two distinct (alternate) optimal node potentials of a minimum cost 
flow problem. Suppose that for some node k, 'lT1(k) = p, 'lT2(k) = q, and p < q. Show 
that for every 0 :5 X. :5 1, the minimum cost flow problem has an optimal set of node 
potentials 'IT (possibly, noninteger) with 'IT(k) = (1 - x.)p + x.q. 

9.46. (a) In the transportation problem, does adding a constant k to the cost of every outgoing 
arc from a specified supply node affect the optimality of a given optimal solution? 
Would adding a constant k to the cost of every incoming arc to a specified demand 
node affect the optimality of a given optimal solution? 

(b) Would your answers to the questions in part (a) be the same if they were posed 
for the minimum cost flow problem instead of the transportation pr.oblem? 

9.47. In Section 9.7 we described the following practical improvement of the successive 
shortest path algorithm: (1) terminate the execution of Dijkstra's algorithm whenever 
it permanently labels a deficit node I, and (2) modify the node-potentials by setting 'IT(i) 
to 'IT(i) - d(i) if node i is permanently labeled; and by setting 'IT(i) to 'IT(i) - d(l) if 
node i is temporarily labeled. Show that after the algorithm has updated the node po
tentials in this manner, all the arcs in the residual network have nonnegative reduced 
costs and all the arcs in the shortest path from node k to node I have zero reduced 
costs. (Hint: Use the result in Exercise 5.9.) 

9.48. Would multiplying each arc cost in a network by a constant k change the set of optimal 
solutions of the minimum cost flow problem? Would adding a constant k to each arc 
cost change the set of optimal solutions? 

9.49. In Section 9.11 we described a method for performing sensitivity analysis when we 
increase the capacity of an arc (p, q) by 1 unit. Modify the method to perform the 
analysis when we decrease the capacity of the arc (p, q) by 1 unit. 

9.50. In Section 9.11 we described a method for performing sensitivity analysis when we 
increase the cost of an arc (p, q) by 1 unit. Modify the method to perform the analysis 
when we decrease the cost of the arc (p, q) by 1 unit. 

9.51. Suppose that we have to solve a minimum cost flow problem in which the sum of the 
supplies exceeds the sum of the demands, so we need to retain some of the supply at 
some nodes. We refer to this problem as the minimum cost flow problem with surplus. 
Specify a linear programming formulation of this problem~ Also show how to transform 
this problem into an (ordinary) minimum cost flow problem. 
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9.52. This exercise concerns the minimum cost flow problem with surplus, as defined in 
Exercise 9.51. Suppose that we have an optimal solution of a minimum cost flow prob
lem with surplus and we increase the supply of some node by 1 unit, holding the other 
data fixed. Show that the optimal objective function value cannot increase, but it might 
decrease. Show that if we increase the demand of a node by 1 unit, holding the other 
data fixed, the optimal objective function value cannot decrease, but it might increase. 

9.53. More-for-less paradox (Chames and Klingman [1971]). The more-for-less paradox shows 
that it is possible to send more flow from the supply nodes to the demand nodes of a 
minimum cost flow problem at lower cost even if all arc costs are nonnegative. To 
establish this more-for-less paradox, consider the minimum cost flow problem shown 
in Figure 9.27. Assume that all arc capacities are infinite. 
(a) Show that the solution given by X14 = 11, X16 = 9, X25 = 2, X26 = 8, X35 = 11, and 

X37 = 14, is an optimal flow for this minimum cost flow problem. What is the total 
cost of flow? 

(b) Suppose that we increase the supply of node 2 by 2 units, increase the demand of 
node 4 by 2 units, and reoptimize the solution using the method described in Section 
9.11. Show that the total cost of flow decreases. 

20 10 25 b(i) 

~ 
-11 -13 -17 -14 b(j) 

Figure 9.27 More-for-less paradox. 

9.54. Capacitated minimum spanning tree problem (Garey and Johnson [1979]). In a complete 
undirected network with arc lengths Cij and a specially designated node s, called the 
central site, we associate an integer requirement rj with every node i E N - {s}. In 
the capacitated minimum spanning tree problem, we want to identify a minimum cost 
spanning tree so that when we send flow on this tree from the central site to the other 
nodes to satisfy their flow requirements, no tree arc has a flow of more than a given 
arc capacity R, which is the same for all arcs. Show that when each rj is 0 or 1, and 
R = 1, we can solve this problem as a minimum cost flow problem. (Hint: Model this 
problem as a minimum cost flow problem with node capacities, as discussed in Exercise 
9.38.) 

9.55. Fractional b-matching problem. Let G = (N, A) be an undirected graph in which each 
node i E N has an associated supply b(i) and each arc (i,j) E A has an associated cost 
cij and capacity uij. In the b-matching problem, we wish to find a minimum cost subgraph 
of G with exactly b arcs incident to every node. The fractional b-matching problem is 
a relaxation of the b-matching problem and can be stated as the following linear pro
gram: 

subject to 
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Minimize L cijxij 
(i.j)EA 

L xij = b(i) for all i E N, 
jEA(i) 

for all (i, j) E A. 
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We assume that xi} = Xji for every arc (i, j) EA. We can define a related minimum 
cost flow problem as follows. Construct a bipartite network G' = (N' U Nil, A') with 
N' = {I', 2', ... , n'}, Nil = {I", 2", ... , nil}, b(i') = b(i), and b(i") = - b(i). For 
each arc (i, j) E A, the network G' contains two associated arcs (i', j") and (j', i"), 
each with cost Cij and capacity uij. 
(a) Show how to transform every solution x of the fractional b-matching problem with 

cost z into a solution x' of the minimum cost flow problem with cost 2z. Similarly, 
show that if x' is a solution of the minimum cost flow problem with cost z', then 
xij = (xi; + xj;)/2 is a feasible solution of the fractional b-matching problem with 
cost z' /2. Use these results to show how to solve the fractional b-matching problem. 

(b) Show that the fractional b-matching problem always has an optimal solution in 
which each arc flow Xij is a mUltiple of !. Also show that if all the supplies and the 
capacities are even integers, the fractional b-matching problem always has an in
teger optimal solution. 

9.56. Bottleneck transportation problem. Consider a transportation problem with a traversal 
time Ti} instead of a cost Cij' associated with each arc (i, j). In the bottleneck transpor
tation problem we wish to satisfy the requirements of the demand nodes from the supply 
nodes in the least time possible [i.e., we wish to find a flow x that minimizes the quantity 
max{Tij:(i,j) E A and Xij > O}]. 
(a) Suggest an application of the bottleneck transportation problem. 
(b) Suppose that we arrange the arc traversal times in the nondecreasing order of their 

values. Let TI < T2 < ... < T/ be the distinct values of the arc traversal times (thus 
1:$ m). Let FS(k, found) denote a subroutine that finds whether the transportation 
problem has a feasible solution using only those the arcs with traversal times less 
than or equal to Tk; assume that the subroutine assigns a value true/false to found. 
Suggest a method for implementing the subroutine FS(k, found). 

(c) Using the subroutine FS(k, found), write a pseudocode for solving the bottleneck 
transportation problem. 

9.57. Equivalence of minimum cost flow algorithms (Zadeh [1979]) 
(a) Apply the successive shortest path algorithm to the minimum cost flow problem 

shown in Figure 9.28. Show that it performs four augmentations from node 1 to 
node 6, each of unit flow. 

(b) Add the arc (1, 6) with sufficiently large cost and with Ul6 = 4 to the example in 
part (a). Observe that setting XI6 = 4 and Xi} = 0 for all other arcs gives a feasible 
flow in the network. With this flow as the initial flow, apply the cycle-canceling 
algorithm and always augment flow along a negative cycle with minimum cost. Show 
that this algorithm also performs four unit flow augmentations from node 1 to node 
6 along the same paths as in part (a) and in the same order, except that the flow 
returns to node 1 through the arc (6, 1) in the residual network. 

~ _____ (C~ij'_U~ij_) __ ~.~.~ 

(0, (0) 

(0,1) 
(1,00) 

(0,2) 

b(l) = 4 b(6) =-4 

(0,3) (1,00) (0,2) 

(3, (0) 

Figure 9.28 Equivalence of minimum cost flow algorithms. 
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(c) Using parts (a) and (b) as background, prove the general result that if initialized 
properly, the successive shortest path algorithm and the cycle-canceling algorithm 
(with augmentation along a most negative cycle) are equivalent in the sense that 
they perform the same augmentations and in the same order. 

9.58. Modify and initialize the minimum cost flow problem in Figure 9.28 appropriately so 
that when we apply the out-of-kilter algorithm to this problem, it also performs four 
augmentation in the same order as the successive shortest path algorithm. Then prove 
the equivalence ofthe out-of-kilter algorithm with the successive shortest path algorithm 
in general. 
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10 

MINIMUM COST FLOWS: POLYNOMIAL 
ALGORITHMS 

Success generally depends upon knowing how long it 
takes to succeed. 

-Montesquieu 

Cbapter Outline 

10.1 Introduction 
10.2 Capacity Scaling Algorithm 
10.3 Cost Scaling Algorithm 
10.4 Double Scaling Algorithm 
10.5 Minimum Mean Cycle-Canceling Algorithm 
10.6 Repeated Capacity Scaling Algorithm 
10.7 Enhanced Capacity Scaling Algorithm 
10.8 Summary 

10.1 INTRODUCTION 

In Chapter 9 we studied several different algorithms for solving minimum cost prob
lems. Although these algorithms guarantee finite convergence whenever the problem 
data are integral, the computations are not bounded by any"polynomial in the un
derlying problem specification. In the spirit of computational complexity theory, this 
situation is not completely satisfactory: It does not provide us with any good theo
retical assurance that the algorithms will perform well on all problems that we might 
encounter. The circumstances are quite analogous to our previous development of 
maximum flow algorithms; we started by first developing straightforward, but not 
necessarily polynomial, algorithms for solving those problems, and then enhanced 
these algorithms by changing the algorithmic strategy and/or by using clever data 
structures and implementations. This situation raises the following natural questions: 
(1) Can we devise algorithms that are polynomial in the usual problem parameters: 
number n of nodes, number m of arcs, log U (the log of the largest supply/demand 
or arc capacity), and log C (the log of the largest cost coefficient), and (2) can we 
develop strongly polynomial-time algorithms (i.e., algorithms whose running time 
depends upon only on nand m)? A strongly polynomial-time algorithm has one 
important theoretical advantage: It will solve problems with irrational data. 

In this chapter we provide affirmative answers to these questions. To develop 
polynomial-time algorithms, we use ideas that are similar to those we have used 
before: namely, scaling of the capacity data and/or of the cost data. We consider 
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three polynomial-time algorithms: (1) a capacity scaling algorithm that is a scaled 
version of the successive shortest path algorithm that we discussed in Chapter 9, 
(2) a cost scaling algorithm that is a generalization of the preflow-push algorithm for 
the maximum flow problem, and (3) a double scaling algorithm that simultaneously 
scales both the arc capacities and the costs. 

Scaling is a powerful idea that has produced algorithmic improvements to many 
problems in combinatorial optimization. We might view scaling algorithms as fol
lows. We start with the optimality conditions for the network flow problem we are 
examining, but instead of enforcing these conditions exactly, we generate an "ap
proximate" solution that is permitted to violate one (or more) of the conditions by 
an amount Ll. Initially, by choosing Ll quite large, for example as Cor U, we will 
easily be able to find a starting solution that satisfies the relaxed optimality condi
tions. We then reset the parameter Ll to Ll/2 and reoptimize so that the approximate 
solution now violates the optimality conditions by an amount of at most Ll/2. We 
then repeat the procedure, reoptimizing again until the approximate solution violates 
the conditions by an amount of at most Ll/4, and so on. This solution strategy is 
quite flexible and leads to different algorithms depending on which of the optimality 
conditions we relax and how we perform the reoptimizations. 

Our discussion of the capacity scaling algorithm for the maximum flow problem 
in Section 7.3 provides one example. A feasible flow to the maximum flow problem 
is optimal if the residual network contains no augmenting path. In the capacity scaling 
algorithm, we relaxed this condition so that after the Ll-scaling phase, the residual 
network can contain an augmenting path, but only if its capacity were less than Ll. 
The excess scaling algorithm for the maximum flow problem provides us with another 
example. In this case the residual network again contains no path from the source 
node s to the sink node t; however, at the end of the Ll-scaling phase, we relaxed a 
feasibility requirement requiring that the flow into every node other than the source 
and sink equals the flow out of that node. Instead, we permitted the excess at each 
node to be as large as Ll during the Ll-scaling phase. 

In this chapter, by applyip.g a scaling approach to the algorithms that we con
sidered in Chapter 9, we develop polynomial-time versions of these algorithms. We 
begin by developing a modified version of the successive shortest path algorithm in 
which we relax two optimality conditions in the Ll-scaling phase: (1) We permit the 
solution to violate supply/demand constraints by an amount Ll, and (2) we permit 
the residual network to contain negative cost cycles. The resulting algorithm reduces 
the number of shortest path computations from nU to m log U. 

We next describe a cost-scaling algorithm that uses another concept of ap
proximate optimality; at the end of each E-scaling phase (E plays the role of Ll) we 
obtain a feasible flow that satisfies the property that the reduced cost of each arc 
in the residual network is greater than or equal to - E (instead of zero). To find the 
optimal solution during the E-scaling phase, this algorithm carries out a sequence of 
push and relabel operations that are similar to the preflow-push algorithm for max
imum flows. The generic cost scaling algorithm runs in O(n 2 m 10g(nC» time. We 
also describe a special "wave implementation" of this algorithm that chooses nodes 
for the push/relabel operations in a specific order. This specialization requires O(n3 
10g(nC» time. 
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We then describe a double scaling algorithm that combines the features of both 
cost and capacity scaling. This algorithm works with two nested loops. In the outer 
loop we scale the costs, and in the inner loop we scale the capacities. Introducing 
capacity scaling as an inner loop within a cost scaling approach permits us to find 
augmenting paths very efficiently. This resulting double scaling algorithm solves the 
minimum cost flow problem in O(nm log U 10g(nC» time. 

All of these algorithms require polynomial time; they are not, however, strongly 
polynomial time because their time bounds depend on log U and/or log C. Developing 
strongly polynomial-time algorithms seems to require a somewhat different ap
proach. Although most strongly polynomial-time algorithms use ideas of data scaling, 
they also use another idea: By invoking the optimality conditions, they are able to 
show that at intermediate steps of the algorithm, they have already discovered part 
of the optimal solution (e.g., optimal flow), so that they are able to reduce the problem 
size. In Sections 10.5, 10.6, and 10.7 we consider three different strongly polynomial
time algorithms whose analysis invokes this "problem reduction argument." 

In Section 10.5 we analyze the minimum mean cycle-canceling algorithm that 
we described in Section 9.6. Recall that this algorithm augments flow at each step 
on a cycle with the smallest average cost, averaged over the number of arcs in the 
cycle, until the residual network contains no negative cost cycle; at this point, the 
current flow is optimal. As we show in this section, we can view this algorithm as 
finding a sequence of improved approximately optimal solutions (in the sense that 
the reduced cost of every arc is greater than or equal to - E, with E decreasing 
throughout the algorithm). This algorithm has the property that if the magnitude of 
the reduced cost of any arc is sufficiently large (as a function of E), the flow on that 
arc remains fixed at its upper or lower bound throughout the remainder of the al
gorithm and so has this value in the optimal solution~ This property permits us to 
show that the algorithm fixes the flow on an arc and does so sufficiently often so 
that we obtain an O(n2m 3 log n) time algorithm for the capacitated minimum cost 
flow problem. One interesting characteristic of this algorithm is that it does not 
explicitly monitor E or explicitly fix the flow variables. Thes~Jeatures of the algo
rithm are by-products of the analysis. 

The strongly polynomial-time algorithm that we consider in Section 10.6 solves 
the linear programming dual of the minimum cost flow problem. This repeated ca
pacity scaling algorithm is a variant of the capacity scaling algorithm that we discuss 
in Section 10.2. This algorithm uses a scaling parameter A as in the capacity scaling 
algorithm, but shows that periodically the flow on some arc (i,j) becomes sufficiently 
large (as a function of A), at which point we are able to reduce the size of the dual 
linear program by one, which is equivalent to contraction in the primal network. 
This observation permits us to reduce the size of the problem successively by con
tracting nodes. The end result is an algorithm requiring O((m2 log n)(m + n log n» 
time for the minimum cost flow problem. 

In Section 10.7 we consider an enhanced scaling algorithm that is a hybrid 
version of the capacity scaling algorithm and the repeated capacity scaling algorithm. 
By choosing a scaling parameter A carefully and by permitting a somewhat broader 
choice of the augmenting paths at each step, this algorithm is able to fix variables 
more quickly than the repeated capacity scaling algorithm. As a consequence, it 
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solves fewer shortest path problems and solves capacitated minimum cost flow prob
lems in O((m log n)(m + n log n»time, which is currently the best known polynomial
time bound for solving the capacitated minimum cost flow problem. 

10.2 CAPACITY SCALING ALGORITHM 

In Chapter 9 we considered the successive shortest path algorithm, one of the fun
damental algorithms for solving the minimum cost flow problem. An inherent draw
back of this algorithm is that its augmentations might carry relatively small amounts 
of flow, resulting in a fairly large number of augmentations in the worst case. By 
incorporating a scaling technique, the capacity algorithm described in this section 
guarantees that each augmentation carries sufficiently large flow and thereby reduces 
the number of augmentations substantially. This method 'permits us to improve the 
worst-case algorithmic performance from O(nU . Sen, m, nC» to oem log U . sen, 
m, nC». [Recall that U is an upper bound on the largest supply/demand and larg
est capacity in the network, and Sen, m, C) is the time required to solve a shortest 
path problem with n nodes, m arcs, and nonnegative costs whose values are no 
more than C. The reason that the running time involves Sen, m, nC) rather than 
Sen, m, C) is that the costs in the residual network are reduced costs, and the re-
duced cost of an arc could be as large as nC.] . 

The capacity scaling algorithm is a variant of the successive shortest path 
algorithm. It is related to the successive shortest path algorithm, just as the capacity 
scaling algorithm for the maximum flow problem (discussed in Section 7.3) is related 
to the labeling algorithm (discussed in Section 6.5). Recall that the labeling algorithm 
performs'O(nU) augmentations; by sending flows along paths with sufficiently large 

-;'residual capacities, the capacity scaling algorithm reduces the number of augmen
tations to Oem log U). In a similar fashion, the capacity scaling algorithm for the 
minimum cost flow problem ensures that each shortest path augmentation carries a 
sufficiently large amount of flow; this modification to the algorithm reduces the 
number of successive shortest path iterations from O(nU) to Oem log U). This 
algorithm not only improves on the algorithmic performance of the successive short
est path algorithm, but also illustrates how small changes in an algorithm can produce 
significant algorithmic improvements (at least in the worst case). 

The capacity scaling algorithm applies to the general capacitated minimum cost 
flow problem. It uses a pseudoflow x and the imbalances e(i) as defined in Section 
9.7. The algorithm maintains a pseudoflow satisfying the reduced cost optimality 
condition and gradually converts this pseudoflow into a flow by identifying shortest 
paths from nodes with excesses to nodes with deficits and augmenting flows along 
these paths. It performs a number of scaling phases for different values of a parameter 
.1. We refer to a scaling phase with a specific value of .1 as the .1-scaling phase. 
Initially, .1 = 2l1og 

U J. The algorithm ensures that in the .1-scaling phase each aug
mentation carries exactly .1 units of flow. When it is not possible to do so because 
no node has an excess of at least .1, or no node has a deficit of at least .1, the 
algorithm reduces the value of.1 by a factor of2 and repeats the process. Eventually, 
.1 = 1 and at the end of this scaling phase, the solution becomes a flow. This flow 
must be an optimal flow because it satisfies the reduced cost optimality condition. 
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For a given value of Ll, we define two sets SeLl) and T(Ll) as follows: 

SeLl) = {i : e(i) 2:: Ll}, 

T(Ll) = {i : e(i) :5 - Ll}. 

In the Ll-scaling phase, each augmentation must start at a node in SeLl) and 
end at a node in T(Ll). Moreover, the augmentation ~ust take place on a path along 
which every arc has residual capacity of at least Ll. Therefore, we introduce another 
definition: The Ll-residual network G(x, Ll) is defined as the subgraph of G(x) con
sisting of those arcs whose residual capacity is at least Ll. In the Ll-scaling phase, 
the algorithm augments flow from a node in S (Ll) to a node in T( Ll) along a shortest 
path in G(x, Ll). The algorithm satisfies the property that every arc in G(x, Ll) satisfies 
the reduced cost optimality condition; however, arcs in G(x) but not in G(x, Ll) 
might violate the reduced cost optimality condition. Figure 10.1 presents an algo
rithmic description of the capacity scaling algorithm. 

Notice that the capacity scaling algorithm augments exactly Ll units of flow in 
the Ll-scaling phase, even though it could augment more. For uncapacitated prob
lems, this tactic leads to the useful property that all arc flows are always an integral 
multiple of Ll. (Why might capacitated networks not satisfy this property?) Several 
variations of the capacity scaling algorithm discussed in Sections 10.5 and 14.5 adopt 
the same tactic. 

To establish the correctness of the capacity scaling algorithm, observe that the 
2Ll-scaling phase ends when S(2Ll) = <I> or T(2Ll) = <1>. At that point, either e(i) < 
2Ll for all i E Nor e(i) > - 2Ll for all i E N. These conditions imply that the sum 
of the excesses (whose magnitude equals the sum of deficits) is bounded by 2n Ll .. > 

algorithm capacity scaling; 
begin 

x: = 0 and 'IT : = 0; 
Ll : = 21109 uJ; 

while Ll 2: 1 
begin {Ll-scaling phase} 

for every arc (i, j) in the residual network G(x) do 
if 'Ij 2: Ll and c]J < 0 then send 'Ij units of flow along arc (i, j), 

update x and the imbalances e(·); 
S(Ll) : = {i EN: e(i) 2: Ll}; 
T(Ll) : = {i EN: e(i) s: - Ll}; 
while S(Ll) ;6.0and T(Ll) ;6.0do 
begin 

select a node k E S(Ll) and a node IE T(Ll); 
determine shortest path distances d(·) from node k to all other nodes in the 

Ll-residual network G(x, Ll) with respect to the reduced costs c1J; 
let P denote shortest path from node k to node I in G(x, Ll); 
update 'IT : = 'IT - d; 
augment Ll units of flow along the path P; 
update x, S(Ll), T(Ll), and G(x, Ll); 

end; 
Ll : = Ll/2; 

end; 
end; 

Figure 10.1 Capacity scaling algorithm. 
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At the beginning of the A-scaling phase, the algorithm first checks whether every 
arc (i, j) in A-residual network satisfies the reduced cost optimality condition ciJ ::::: 
O. The arcs introduced in the A-residual network at the beginning of the A-scaling 
phase [i.e., those arcs (i, j) for which .:l :::; rij < 2A] might not satisfy the optimality 
condition (since, conceivably, ciJ < 0). Therefore, the algorithm immediately sat
urates those arcs (i, j) so that they drop out of the residual network; since the reversal 
of these arcs (j, i) satisfy the condition cJ'i = - ciJ > 0, they satisfy the optimality 
condition. Notice that because rij < 2A, saturating any such arc (i, j) changes the 
imbalance of its endpoints by at most 2A. As a result, after we have saturated all 
the arcs violating the reduced cost optimality condition, the sum of the excesses is 
bounded by 2nA + 2mA = 2(n + m)A. 

In the A-scaling phase, each augmentation starts at a node k E SeA), terminates 
at a node I E T(A), and carries at least A units of flow. Note that Assumption 9.4 
implies that the A-residual network contains a directed path from node k to node I, 
so we always succeed in identifying a shortest path from node k to node I. Augmenting 
flow along a shortest path in G(x, A) preserves the property that every arc satisfies 
the reduced cost optimality condition (see Section 9.3). When either SeA) or T(A) 
is empty, the A-scaling phase ends. At this point we divide A by a factor of 2 and 
start a new scaling phase. Within O(log U) scaling phases, A = 1, and by the in
tegrality of data, every node imbalance will be zero at the end of this phase. In this 
phase G(x, A) == G(x) and every arc in the residual network satisfies the reduced 
cost optimality condition. Consequently, the algorithm will obtain a minimum cost 
flow at the end of this scaling phase. 

As we have seen, the capacity scaling algorithm is easy to state. Similarly, its 
running time is easy to analyze. We have noted previously that in the A-scaling phase 
the sum of the excesses is bounded by 2(n + m)A. Since each augmentation in this 
phase carries at least A units of flow from a node in SeA) to a node in T(A), each 
augmentation reduces the sum of the excesses by at least A units. Therefore, a scaling 
phase can perform at most 2(n + m) augmentations. Since we need to solve a shortest 
path problem to identify each augmenting path, we have established the following 
result. 

Theorem 10.1. The capacity scaling algorithm solves the minimum cost flow 
problem in Oem log U Sen, m, nC» time. • 

10.8 COST SCALING ALGORITHM 

In this section we describe a cost scaling algorithm for the minimum cost flow prob
lem. This algorithm can be viewed as a generalization of the preflow-push algorithm 
for the maximum flow problem; in fact, the algorithm reveals an interesting rela
tionship between the maximum flow and minimum cost flow problems. This algo
rithm relies on the concept of approximate optimality. 

Approximate Optimality 

A flow x or a pseudoflow x is said to be E-optimal for some E > 0 if for some node 
potentials 1T, the pair (x, 1T) satisfies the following E-optimality conditions: 
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If clJ > E, then Xij = O. 

If - E :5 clJ :5 E, then 0 :5 Xij :5 Uij. 

If clJ < - E, then Xij = Uij. 

(10.Ia) 

(to.lb) 

(to.lc) 

These conditions are relaxations of the (exact) complementary slackness op
timality conditions (9.8) that we discussed in Section 9.3; note that these conditions 
reduce to the complementary slackness optimality conditions when E = O. The exact 
optimality conditions (9.8) imply that any combination of (Xij, clJ) lying on the thick 
lines shown in Figure IO.2(a) is optimal. The E-optimality conditions (10.1) imply 
that any combination of (Xij, clJ) lying on the thick lines or in the hatched region in 
Figure 1O.2(b) is E-optimal. 

t 
cij 

o 

t 
eij 

(a) (b) 

Figure 10.2 Illustrating the optimality condition for arc (i, j): (a) exact optimality 
condition for arc (i, j); (b) EO-optimality condition for arc (i, j). 

The E-optimality conditions assume the following simpler form when stated in 
terms of the residual network G(x): A flow x or a pseudoflow x is said to be E-optimal 
for some E > 0 if x, together with some node potential vector 1T, satisfies the following 
E-optimality conditions (we leave the proof as an exercise for the reader): 

clf 2: -E for every arc (i, j) in the residual network G(x). (10.2) 

Lemma 10.2. For a minimum cost flow problem with integer costs, any fea
sible flow is E-optimal whenever E 2: C. Moreover, if E < lin, then any E-optimal 
feasible flow is an optimal flow. 

Proof. Let x be any feasible flow and let 1T = O. Then clJ = cij 2: - C for every 
arc (i, j) in the residual network G(x). Therefore, x is E-optimal for E = C. 

Now consider an E-optimal flow x with E < lin. Suppose that x is E-optimal 
with respect to the node potentials 1T and that W is a directed cycle in G(x). The con
dition (10'2) implies that LU,j)EW cij 2: -En> -1, because E < lin. The integrality 
of the costs implies that LU,j)EW clJ is nonnegative. But notice that LU,j)EW cIi = 

LU,j)EW (Cij - 1T(i) + 1T(j» = LU,j)EW Cij' Therefore, W cannot be a negative cost 
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cycle. Since G(x) cannot contain any negative cycle, x must be optimal (from 
Theorem 9.1). • 

Algorithm 

The cost scaling algorithm treats E as a parameter and iteratively obtains E-optimal 
flows for successively smaller values of E. Initially, E = C and any feasible flow is 
E-optimal. The algorithm then performs cost scaling phases by repeatedly applying 
an improve-approximation procedure that transforms an E-optimal flow into a 
4 E-optimal flow. Mter 1 + pog(nC)l cost scaling phases, E < lin and the algorithm 
terminates with an optimal flow. Figure 10.3 provides a more formal statement of 
the cost scaling algorithm. 

algorithm cost scaling; 
begin 

'IT : = 0 and E : = C; 
let x be any feasible flow; 
while E 2: 1/n do 
begin 

improve-approximation(E, x, 'IT); 
E : = El2; 

end; 
x is an optimal flow for the minimum cost flow problem; 

end; Figure 10.3 Cost scaling algorithm. 

The improve-approximation procedure transforms an E-optimal flow into a 
4 E-optimal flow. It does so by (1) converting the E-optimal flow into arE-optimal 
pseudoflow, and (2) then gradually converting the pseudoflow into a flow while 
always maintaining 4 E-optimality of the solution. We refer to a node i with e(i) > 0 
as active and say that an arc (i, j) in the residual network is admissible if - 4 E :5 

cij < O. The basic operation in the procedure is to select an active node i and perform 
pushes on admissible arcs (i, j) emanating from node i. When the network contains 
no admissible arc, the algorithm updates the node potential 7r(i). Figure 10.4 sum
marizes the essential steps of the generic version of the improve-approximation 
procedure. 

Recall that rij denotes the residual capacity of an arc (i, j) in G(x). As in our 
earlier discussion of preflow-push algorithms for the maximum flow problem, if 
8 = rij, we refer to the push as saturating; otherwise, it is nonsaturating. We also 
refer to the updating of the potential of a node as a relabel operation. The purpose 
of a relabel operation at node i is to create new admissible arcs emanating from this 
node. 

We illustrate the basic operations of the improve-approximation procedure on 
a small numerical example. Consider the residual network shown in Figure 10.5(a). 
Let E = 8. The current pseudoflow is 4-optimal. Node 2 is the only active node in 
the network, so the algorithm selects it for push/relabel. Suppose that arc (2, 4) is 
the first admissible arc found. The algorithm pushes min{e(2), r24} = min{30, 5} = 

5 units of flow on arc (2, 4); this push saturates the arc. Next the algorithm identifies 
arc (2, 3) as admissible and pushes min{e(2), r23} = min{25, 30} = 25 units on this 
arc. This push is nonsaturating; after the algorithm has performed this push, node 
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procedure improve-approximation(E, x, 'IT); 
begin 

for every arc (i, j) E A do 
if clJ > 0 then Xlj : = 0 
else if clJ < 0 then Xlj : = Ulj; 

compute node imbalances; 
while the network contains an active node do 
begin 

select an active node i; 
pushlre/abe/( i); 

end; 
end; 

(a) 

procedure pushlre/abe/(i); 
begin 

if G(x) contains an admissible arc (i, j) then 
push 1) : = min{e(i), rlj} units of flow from node i to node j; 

else 'IT(i) : = 'IT(i) + El2; 
end; 

(b) 

Figure 10.4 Procedures of the cost scaling algorithm. 

2 is inactive and node 3 is active. Figure 1O.5(b) shows the residual network at this 
point. 

In the next iteration, the algorithm selects node 3 for push/relabel. Since no 
admissible arc emanates from this node, we perform a relabel operation and increase 
the node's potential by E/2 = 4 units. This potential change decreases die reduced 
costs of the outgoing arcs, namely, (3, 4) and (3, 2), by 4 units and increases the 
reduced costs of the incoming arcs, namely (1, 3) and (2, 3), by-4 units [see Figure 
10.5(c)]. The relabel operation creates an admissible arc, namely arc (3, 4), and we 
next perform a push of 15 units on this arc [see Figure 10.5(d)]. Since the current 
solution is a flow, the improve-approximation procedure terminates. 

To identify admissible arcs emanating from node i, we use the same data struc
ture used in the maximum flow algorithms described in Section 7.4. For each node 
i, we maintain a current-arc (i, j) which is the current candidate to test for admis
sibility. Initially, the current-arc of node i is the first arc in its arc list A(i). To 
determine an admissible arc emanating from node i, the algorithm checks whether 
the node's current-arc is admissible, and if not, chooses the next arc in the arc list 
as the current-arc. Thus the algorithm passes through the arc list starting with the 
current-arc until it finds an admissible arc. If the algorithm reaches the end of the 
arc list without finding an admissible arc, it declares that the node has no admissible 
arc. At this point it relabels node i and again sets its current-arc to the first arc in 
A(i). 

We might comment on two practical improvements of the improve-approxi
mation procedure. The algorithm, as stated, starts with E = C and reduces E by a 
factor of 2 in every scaling phase until E lin. As a consequence, E could become 
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Figure 10.5 Illustration of push/relabel steps. 

nonintegral during the execution of the algorithm. By slightly modifying the algo
rithm, however, we can ensure that E remains integral. We do so by multiplying all 
the arc costs by n, by setting the initial value of E equal to 2 f1og(nC)1, and by terminating 
the algorithm when E < 1. It is possible t<;> show (see Exercise 10.7) that the modified 
algorithm would yield an optimal flow for the minimum cost flow problem in the 
same computational time. Furthermore, as stated, the algorithm increases a node 
potential by E/2 during a relabel operation. As described in Exercise 10.8, we can 
often increase the node potential by an amount larger than E/2. 

Analysis of the Algorithm 

We show that the cost scaling algorithm correctly solves the minimum cost flow 
problem. In the proof, we rely on the fact that the improve-approximation procedure 
converts an E-optimal flow into an E/2-optimal flow. We esta:blish this result in the 
following lemma. 

Lemma 10.3. The improve-approximation procedure always maintains! E

optimality of the pseudo flow , and at termination yields a ! E-optimal flow. 
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Proof. We use induction on the number of pushes and relabels. At the beginning 
of the procedure, the algorithm sets the flows on arcs with negative reduced costs 
to their capacities, sets the flow on arcs with positive reduced costs to zero, and 
leaves the flow on arcs with zero reduced costs unchanged. The resulting pseudoflow 
satisfies (10.1) for E = 0 and thus is O-optimal. Since a O-optimal pseudoflow is 
E-optimal for every E, the resulting flow is also ! E-optimal. 

We next study the effect of a push on the! E-optimality of the solution. Pushing 
flow on arc (i, j) might add its reversal (j, i) to the residual network. But since 
- E/2 :5 cij < 0 (by the criteria of admissibility), c J'i = - cij > 0, and so this arc 
satisfies the! E-optimality condition (10.2). 

What is the effect of a relabel operation? The algorithm relabels a node i when 
cij 2: 0 for every arc (i, j) emanating from node i in the residual network. Increasing 
the potential of node i by E/2 units decreases the reduced cost of all arcs emanating 
from node i by E/2 units. But since cij 2: 0 before the increase in 1T, cij 2: - E/2 after 
the increase, and the arc satisfies the ! E-optimality condition. Furthermore, in
creasing the potential of node i by E/2 units increases the reduced costs of the in
coming arcs at node i but maintains the! E-optimality condition for these arcs. These 
results establish the lemma. • 

We next analyze the complexity of the improve-approximation procedure. We 
show that the number of relabel operations is O(n2

), the number of saturating pushes 
is O(nm), and the number of non saturating pushes for the generic version is O(n 2m). 
These time bounds are comparable to those of the preflow-push algorithms for the 
maximum flow problem and the proof techniques are also similar. We first prove 
the most significant result, which bounds the number of relabel operations. 

Lemma 10.4. No node potential increases more than 3n times during an ex
ecution of the improve-approximation procedure. 

Proof. Let x be the current ! E-optimal pseudoflow and x I be the E-optimal 
flow at the end of the previous cost scaling phase. Let 1T and 1T' be the node potentials 
corresponding to the pseudoflow x and the flow x'. It is possible to show (see Ex
ercise 10.9) that for every node v with an excess there exists a node w with a deficit 
and a sequence of nodes v = VO, VI, V2, ••• , VI = w that satisfies the property that 
the path P = Vo - VI - V2 - ••• - VI is a directed path in G(x) and its reversal 
P = VI - VI_I - .,. - VI - Vo is a directed path in G(x ' ). Applying the! E-optimality 
condition to the arcs on the path P in G(x), we see that 

~ cij 2: -1(E/2). 
(i,j)EP 

Substituting cij = Cij - 1T(i) + 1T(j) in this expression gives 

~ Cij - 1T(V) + 1T(W) 2: -1(E/2). 
(i,j)EP 

Alternatively, 

1T(V) :5 1T(W) + I(E/2) + ~ Cij' 
(i,j)EP 
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Applying the E-optimality conditions to the arcs on the path P in G(x'), we 
obtain L(j,i)EP cJf ;;:: -IE. Substituting Cft' = Cji - 'IT'(j) + 'IT'(i) in this expression 
gives 

L _ Cji - 'IT'(w) + 'IT'(v) ;;:: -IE. (10.4) 
(j,i)EP 

Notice that L(j,i)EP Cji = - LUJ)EP Cij since P is a reversal of P. In view of this 
fact, we can restate (10.4) as 

L Cij::; IE - 'IT'(w) + 'IT' (v). (10.5) 
U,j)EP 

Substituting (10.5) in (10.3), we see that 

('IT (v) - 'IT'(v)) ::; ('IT(w) - 'IT'(w)) + 31E/2. (10.6) 

Now we use the facts that (1) 'IT(w) = 'IT'(w) (the potential of a node with 
negative imbalance does not change because the algorithm never selects it for push! 
relabel), (2) I ::; n, and (3) each increase in the potential increases 'IT(v) by at least 
E/2 units. These facts and expression (10.6) establish the lemma. • 

Lemma 10.5. The improve-approximation procedure performs O(nm) satu
rating pushes. 

Proof We show that between two consecutive saturations of an arc (i, j), the 
procedure must increase both the potentials 'IT(i) and 'IT(j) at least once. Consider a 
saturating push on arc (i, j). Since arc (i, j) is admissible at the time of the push, 
cij < O. Before the algorithm can saturate this arc again, it must send some flow 
back from node j to node i. At that time Cft < 0 or cij > O. These conditions are 
possible only if the algorithm has relabeled node j. In the subsequent saturation of 
arc (i, j), cij < 0, which is possible only if the algorithm has relabeled node i. But 
by the previous lemma the improve-approximation procedure can relabel any node 
O(n) times, so it can saturate any arc O(n) times. Consequently, the number of 
saturating pushes is O(nm). • 

To bound the number of nonsaturating pushes, we need one more result. We 
define the admissible network of a given residual network as the network consisting 
solely of admissible arcs. For example, Figure 10.6(b) specifies the admissible net
work for the residual network given in Figure 10.6(a). 

Lemma 10.6. The admissible network is acyclic throughout the improve
approximation proceaure. 

Proof We show that the algorithm satisfies this property at every step. The 
result is true at the beginning of the improve-approximation procedure because the 
initial pseudoflow is O-optimal and the residual network contains no admissible arc. 
We show that the result remains valid throughout the procedure. We always push 
flow on arc (i, j) with cij < 0; therefore, if the algorithm adds the reversal (j, i) of 
this arc to the residual network, then cJI > 0 and so the reversal arc is nonadmissible. 
Thus pushes do not create new ad.mi.ssible arcs and the admissible network remains 
acyclic. The relabel operation at node i decreases the reduced costs of all outgoing 
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Figure 10.6 Illustration of an admissible network: (a) residual network; 
(b) admissible network. 

-1 

-2 

arcs at node i by E/2 units and might create new admissible arcs. This relabel operation 
increases the reduced costs of all incoming arcs at node i by E/2 units, so all such 
arcs become inadmissible. Consequently, the relabel operation cannot create any 
directed cycle passing through node i. Thus neither of the two operations, pushes 
and relabels, of the algorithm can create a directed cycle, which establishes the 
lemma. • 

Lemma 10.7. The improve-approximation procedure performs O(n 2 m) non
saturating pushes. 

Proof We use a potential function argument to prove the lemma. Let g(i) be 
the number of nodes that are reachable from node i in the admissible network and 
let <I> = Li is active g(i) be the potential function. We assume that every node is 
reachable from itself. For example, in the admissible network shown in Figure 10.7, 
nodes 1 and 4 are the only active nodes. In this network, nodes. 1 , 2, 3, 4, and 5 are 
reachable from node 1, and nodes 4 and 5 are reachable from node 4. Therefore, 
g(1) = 5, g(4) = 2, and <I> = 7. 

At the beginning of the procedure, <I> ::; n since the admissible network contains 

-1 

40 
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no arc and each g(i) = 1. After a saturating push on arc (i, j), nodej might change 
its state from inactive to active, which would increase <I> by g(j) :5 n. Therefore, 
Lemma 10.5 implies that the total increase due to saturating pushes is 0(n2 m). A 
relabel operation of node i might create new admissible arcs (i, j) and will increase 
g(i) by at most n units. But this relabel operation does not increase g(k) for any 
other node k because it makes all incoming arcs at node k inadmissible (see the proof 
of Lemma 10.6). Thus the total increase due to all relabel operations is 0(n3 ). 

Finally, consider the effect on <I> of a nonsaturating push on arc (i, j). As a 
result of the push, node i becomes inactive and node j might change its ~tatus from 
inactive to active. Thus the push decreases <I> by g(i) units and might increase it by 
another g(j) units. Now notice that g(i) 2: g(j) + 1 because every node that is 
reachable from node j is also reachable from node i but node i is not reachable from 
nodej (because the admissible network is acyclic). Therefore, a nonsaturating push 
decreases <I> by at least 1 unit. Consequently, the total number of nonsaturating 
pushes is bounded by the initial value of <I> plus the total increase in <I> throughout 
the algorithm, which is O(n) + 0(n2 m) + 0(n3

) = 0(n2 m). This result establishes 
the lemma. • 

Let us summarize our discussion. The improve-approximation procedure re
quires 0(n2 m) time to perform nonsaturating pushes and O(nm) time to perform 
saturating pushes. The amount of time needed to identify admissible arcs is 
O(LiEN I A(i) I n) = O(nm), since between two consecutive potential increases of 
a node i, the algorithm will examine I A(i) I arcs for testing admissibility. The al
gorithm could store all the active nodes in a list. Doing so would permit it to identify 
an active node in 0(1) time, so this operation would not be a bottleneck step. Con
sequently, the improve-approximation procedure runs in 0(n2 m) time. Since the 
cost scaling algorithm calls this procedure 1 + pog(nC)l times, we obtain the fol
lowing result. 

Theorem 10.8. The generic cost scaling algorithm runs in 0(n2 m 10g(nC)) 
time. • 

The cost scaling algorithm illustrates an important connection between 
the maximum flow and the minimum cost flow problems. Solving an improve
approximation problem is very similar to solving a maximum flow problem by the 
preflow-push method. Just as in the preflow-push algorithm, the bottleneck opera
tion in the procedure is the number of nonsaturating pushes. In Chapter 7 we have 
seen how to reduce the number of nonsaturating pushes for the preflow-push 
algorithm by examining active nodes in some specific order. Similar ideas permit us 
to streamline the improve-approximation procedure as well. We describe one such 
improvement, called the wave implementation, that reduces the number of nonsat
urating pushes from 0(n 2 m) to 0(n3

). 

Wave Implementation 

Before we describe the wave implementation, we introduce the concept of node 
examination. In an iteration of the improve-approximation procedure, the algorithm 
selects a node, say node i, and either performs a saturating push or a nonsaturating 
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push from this node, or relabels the node. If the algorithm performs a saturating 
push, node i might still be active, but the algorithm might select another node in the 
next iteration. We shall henceforth assume that whenever the algorithm selects a 
node, it keeps pushing flow from that node until either its excess becomes zero or 
the node becomes relabeled. If we adopt this node selection strategy, the algorithm 
will perform several saturating pushes from a particular node followed either by a 
nonsaturating push or a relabel operation; we refer to this sequence of operations 
as a node examination. 

The wave implementation is a special implementation of the improve-approx
imation procedure that selects active nodes for push/relabel steps in a specific order. 
The algorithm uses the fact that the admissible network is acyclic. In Section 3.4 
we showed that it is always possible to order nodes of an acyclic network so that 
for every arc (i, j) in the network, node i occurs prior to node j. Such an ordering 
of nodes is called a topological ordering. For example, for the admissible network 
shown in Figure 10.6, one possible topological ordering of nodes is 1-2-5-4-3-6. 
In Section 3.4 we showed how to arrange the nodes of a network in a topological 
order in Oem) time. For a given topological order, we define the rank of a node as 
n minus its number in the topological sequence. For example, in the preceding 
example, rank(1) = 6, rank(6) = 1 and rank(5) = 4. 

Observe that each push carries flow from a node with higher rank to a node 
with lower rank. Also observe that pushes do not change the topological ordering 
of nodes since they do not create new admissible arcs. The relabel operations, how
ever, might create new admissible arcs and consequently, might affect the topological 
ordering of nodes. 

The wave implementation sequentially examines nodes in the topological order 
and if the node being examined is active, it performs push/relabel steps at the node 
until either the node becomes inactive or it becomes relabeled. When examined in 
this order, the active nodes push their excesses to nodes with lower rank, which in 
turn push their excesses to nodes with even lower rank, and so on. A relabel op
eration changes the topological order; so after each relabel operation the algorithm 
modifies the topological order and again starts to examine nodes according to the 
topological order. If within n consecutive node examinations, the algorithm performs 
no relabel operation, then at this point all the active nodes have discharged their 
excesses and the algorithm has obtained a flow. Since the algorithm performs O(n2

) 

relabel operations, we immediately obtain a bound of O(n3) on the number of node 
examinations. Each node examination entails at most one nonsaturating push. Con
sequently, the wave algorithm performs O(n3) nonsaturating pushes per execution 
of improve-approximation. 

To illustrate the wave implementation, we consider the pseudoflow shown in 
Figure 10.8. One topological order of nodes is 2-3-4-1-5-6. The algorithm first 
examines node 2 and pushes 20 units of flow on arc (2, 1). Then it examines node 
3 and pushes 5 units of flow on arc (3,1) and 10 units of flow on arc (3, 4). The push 
creates an excess of 10 units at node 4. Next the algorithm examines node 4 and 
sends 5 units on the arc (4, 6). Since node 4 has an excess of 5 units but has no 
outgoing admissible arc, we need to relabel node 4 and reexamine all nodes in the 
topological order starting with the first node in the order. 

To complete the description of the algorithm, we need to describe a procedure 
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for obtaining a topological order of nodes after each relabel operation. We can use 
an O(m) algorithm to determine an initial topological ordering of the nodes (see 
Section 3.4). Suppose that while examining node i, the algorithm relabels this node. 
At this point, the network contains no incoming admissible arc at node i. We claim 
that if we move node i from its present position to the first position in the previous 
topological order leaving all other nodes intact, we obtain a topological order of the 
new admissible network. For example, for the admissible network given in Figure 
10.8, one topological order of the nodes is 2-3-4-1-5-6. If we examine nodes in 
this order, the algorithm relabels node 4. Mter the algorithm has performed this 
relabel operation, the modified topological order of nodes is 4-2-3-1-5-6. This 
method works because (1) after the relabeling, node i has no incoming admissible 
arc, so assigning it to the first place in the topological order is justified; (2) the 
relabeling of node i might create some new outgoing admissible arcs (i, j) but since 
node i is first in the topological order, any such arc satisfies the conditions of a 
topological ordering; and (3) the rest of the admissible network does not change, so 
the previous order remains valid. Therefore, the algorithm maintains an ordered set 
of nodes (possibly as a doubly linked list) and examines nodes in this order. Whenever 
it relabels a node i, the algorithm moves this node to the first place in the order and 
again examines nodes in order starting from node i. 

We have established the following result. 

Theorem 10.9. The wave implementation of the cost scaling algorithm solves 
the minimum cost flow problem in O(n 3 10g(nC)) time. • 

By examining the active nodes carefully and thereby reducing the number of 
nonsaturating pushes, the wave implementation improves the running time of the 
generic implementation of the improve-approximation procedure from O(n 2 m) to 
O(n 3

). A complementary approach for improving the running time is to use cleverer 
data structure to reduce the time per nonsaturating push. Using the dynamic tree 
data structures described in Section 8.5, we can improve the running time of the 
generic implementation to O(nm log n) and of the wave implementation to O(nm 
log(n 2/m)). The references cited at the end ofthe chapter contain the details ofthese 
implementations. 
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10.4 DOUBLE SCALING ALGORITHM 

As we have seen in the preceding two sections, by scaling either the arc capacities 
or the cost coefficients of a minimum cost flow problem, we can devise algorithms 
with improved worst-case performance. This development raises a natural question: 
Can we combine ideas from these algorithms to obtain even further improvements 
that are not obtained by either technique alone? In this section we provide an af
firmative answer to this question. The double scaling algorithm we describe solves 
the capacitated minimum cost flow problem in O(nm log U 10g(nC)) time. When 
implemented using a dynamic tree data structure, this approach produces one of the 
best polynomial time algorithms for solving the minimum cost flow problem. 

In this discussion we assume that the reader is familiar with the capacity scaling 
algorithm and the cost scaling algorithm that we examined in the preceding two 
sections. To solve the capacitated minimum cost flow problem, we first transform 
it into an uncapacitated transportation problem using the transformation described 
in Section 2.4. We assume that every arc in the minimum cost flow problem is 
capacitated. Consequently, the transformed network will be a bipartite network 
G = (N1 U N 2 ,A) withN1 andN2 as the sets of supply and demand nodes. Moreover, 
I NI I = n and I N2 I = m. 

The double scaling algorithm is the same as the cost scaling algorithm described 
in the preceding section except that it uses a more efficient version of the improve
approximation procedure. The improve-approximation procedure in the preceding 
section relied on a "pseudoflow-push" method to push flow out of active nodes. A 
natural alternative would be to try an augmenting path based method. This approach 
would send flow from a node with excess to a node with deficit over an admissible 
path (i.e., a path in which each arc is admissible). A straightforward implementation 
of this approach would require O(nm) augmentations since each augmeptation would 
saturate at least one arc and, by Lemma 10.5, the algorithm requires O(nm) arc 
saturations. Since each augmentation requires O(n) time, this approach does not 
appear to improve the O(n 2 m) bound of the generic improve-approximation pro
cedure. 

We can, however, use ideas from the capacity scaling algorithm to reduce the 
number of augmentations to O(m log U) by ensuring that each augmentation carries 
sufficiently large flow. The resulting algorithm performs cost scaling in an "outer 
loop" to obtain E.-optimal flows for successively smaller values of E.. Within each 
cost scaling phase, we start with a pseudoflow and perform a number of capacity 
scaling phases, called a-scaling phases, for successively smaller values of a. In the 
a-scaling phase, the algorithm identifies admissible paths from a node with an excess 
of at least a to a node with a deficit and augments a units of flow over these paths. 
When all node excesses are less than a, we reduce a by a factor of 2 and initiate 
a new a-scaling phase. At the end of the I-scaling phase, we obtain a flow. 

The algorithmic description of the double scaling algorithm is same as that of 
the cost scaling algorithm except that we replace the improve-approximation pro
cedure by the procedure given in Figure 10.9. 

The capacity scaling within the improve-approximation procedure is somewhat 
different from the capacity scaling algorithm described in Section 10.2. The new 
algorithm differs from the one we considered previously in the following respects: 

Sec. 10.4 Double Scaling Algorithm 373 



procedure improve-approximation(E, x, 'IT); 
begin 

set x : = 0 and compute node imbalances; 
'IT(j) : = 'IT(j) + E, for all j E N2 ; 

a: = 2[109 uJ; 
while the network contains an active node do 
begin 

5(.1.) : = {i E N1 U N2 : e(i) ;0,: a}; 
while 5(.1.) ¥.0do 
begin {a-scaling phase} 

select a node k from 5(.1.); 
determine an admissible path P from node k to some node I with e(l) < 0; 
augment a units of flow on path P and update x and 5(.1.); 

end; 
a: = .1./2; 

end; 
end; 

Figure 10.9 Improve-approximation procedure in the double scaling algorithm. 

(1) the augmentation terminates at a node I with e(l) < 0 but whose deficit may not 
be as large as Ll; (2) each residual capacity is an integral mUltiple of Ll because each 
arc flow is an integral mUltiple of Ll and each arc capacity is 00; and (3) the algorithm 
does not change flow on some arcs at the beginning of the Ll-scaling phase to ensure 
that the solution satisfies the optimality conditions. We point out that the algorithm 
feature (3) is a consequence of feature (2) because each rij is a mUltiple of Ll, so 
G(x, Ll) == G(x). 

The double scaling algorithm improves on the capacity scaling algorithm by 
identifying an admissible path in only O(n) time, on average, rather than the time 
O(S(n, m, nC)) required to identify an augmentation path in the capacity scaling 
algorithm. The savings in identifying augmenting paths more than offsets the extra 
requirement of performing O(log(nC)) cost scaling phases in the double scaling al
gorithm. 

We next describe a method for identifying admissible paths efficiently. The 
algorithm identifies an admissible path by starting at node k and gradually building 
up the path. It maintains a partial admissible path P, which is initially null, and 
keeps enlarging it until it includes a node with deficit. We maintain the partial ad
missible path P using predecessor indices [i.e., if (u, v) E P then pred(v) = u]. At 
any point in the algorithm, we perform one of the following two steps, whichever 
is applicable, from the tip of P (say, node i): 

advance(i). If the residual network contains an admissible arc (i, j), add (i, j) 
to P and set pred(j): = i. If e(j) < 0, stop. 
retreat(i). If the residual network does not contain an admissible arc (i, j), 
update 7r(i) to 7r(i) + E/2. If i =? k, remove the arc (pred(i), i) from P so that 
pred(i) becomes its new tip. 

The retreat step relabels (increases the potential of) node i for the purpose of 
creating new admissible arcs emanating from this node. However, increasing the 
potential of node i increases the reduced costs of all the incoming arcs at the node 
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i by E/2. Consequently, the arc (pred(i), i) becomes inadmissible, so we delete this 
arc from P (provided that P is nonempty). 

We illustrate the method for identifying admissible paths on the example shown 
in Figure 10.10. Let E = 4 and Ll = 4. Since node 1 is the only node with an excess 
of at least 4, we begin to develop the admissible path starting from this node. We 
perform the step advance(1) and add the arc (1, 2) to P. Next, we perform the step 
advance(2) and add the arc (2, 4) to P. Now node 4 has no admissible arc. So we 
perform a retreat step. We increase the potential of node 4 by E/2 = 2 units, thus 
changing the reduced cost of arc (2, 4) to 1; so we eliminate this arc from P. In the 
next two steps, the algorithm performs the steps advance(2) and advance(5), adding 
arcs (2, 5) and (5, 6) to P. Since the path now contains node 6, which is a node with 
a deficit, the method terminates. It has found the admissible path 1-2-5-6. 

e(i) e(j) 

0) cij ·0 
0 0 

-1 

~_1 
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-1 

-2 
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2 -1 

3 5 
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-3 0 
(a) Figure 10.10 Residual network. 

It is easy to show that the double scaling algorithm correctly sol~es the min
imum cost flow problem. At the beginning of the improve-approximation procedure, 
we set x = 0 and the corresponding residual network is the-same as the original 
network. The E-optimality of the solution at the end of the previous scaling phase 
implies that cij ~ - E for all arcs (i, j) E A. Therefore, by adding E to 'IT(j) for each 
j E N 2 , we obtain an ! E-optimal pseudoflow (in fact, it is a O-optimal pseudoflow). 
Like the improve-approximation procedure described in the preceding section, the 
algorithm always augments flow on admissible arcs and relabels a node when it has 
no outgoing admissible arc. Consequently, the algorithm preserves! E-optimality of 
the pseudoflow and at termination yields a ! E-optimal flow. 

We next consider the complexity of the improve-approximation procedure. 
Each execution of the procedure performs (1 + llog U J) capacity scaling phases. 
At the end of the 2Ll-scaling phase, S(2Ll) = <1>. Therefore, at the beginning of the 
Ll-scaling phase, Ll ::; e(i) < 2Ll for each node i E S(Ll). Duringthe Ll-scaling phase, 
the algorithm augments Ll units of flow from a node k in S(Ll) to a node I with 
e(l) < O. The augmentation reduces the excess of node k to a value less than Ll 
and ensures that the imbalance at node I is strictly less than Ll. Consequently, each 
augmentation deletes a node from S(Ll) and after at most I Nt I + I N21 = O(m) 
augmentations, S(Ll) becomes empty and the algorithm begins a new capacity scaling 
phase. The algorithm thus performs a total of O(m log U) augmentations. 
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We next focus on the time needed to identify admissible paths. We first count 
the number of advance steps. Each advance step adds an arc to the partial admissible 
path, and each retreat step deletes an arc from the partial admissible path. Thus we 
can distinguish between two types of advance steps: (1) those that add arcs to an 
admissible path on which the algorithm later performs an augmentation, and (2) those 
that are later canceled by a retreat step. Since the set of admissible arcs is acyclic 
(by Lemma 10.6), after at most 2n advance steps of the first type, the algorithm 
will discover an admissible path and will perform an augmentation (because the 
longest path in the network has 2n nodes). Since the algorithm performs a total of 
O(m log U) augmentations, the number of advance steps of the first type is at 
most O(nm log U). The algorithm performs O(nm) advance steps of the second 
type because each retreat step increases a node potential, and by Lemma lOA, 
node potentials increase O(n(n + m)) = O(nm) times. Therefore, the total number 
of advance steps is O(nm log U). 

The amount of time needed to relabel node~ in Nl is O(n LiEN I AU) D = 
O(nm). The time needed to relabel nodes in N2 is also O(nm) since I N21 = m and 
the degree of each node in N2 is constant (i.e., it is 2). The same arguments show 
that the algorithm requires O(nm) time to identify admissible arcs. We have, there
fore, established the following result. 

Theorem 10.10. The double scaling algorithm solves the minimum cost flow 
problem in O(nm log U 10g(nC)) time. • 

One nice feature of the double scaling algorithm is that it achieves an excellent 
worst-case running time for solving the minimum cost flow problem and yet is fairly 
simple, both conceptually and computationally. 

10.5 MINIMUM MEAN CYCLE-CANCELING ALGORITHM 

The three minimum cost flow algorithms we have discussed in this chapter-the 
capacity scaling algorithm, the cost scaling algorithm, and the double scaling al
gorithm-are weakly polynomial-time algorithms because their running times de
pend on log U and/or log C. Although these algorithms are capable of solving any 
problem with integer or rational data, they are not applicable to problems with ir
rational data. In contrast, the running times of strongly polynomial-time algorithms 
depend only on nand m; consequently, these algorithms are capable of solving 
problems with irrational data, assuming that a computer can perform additions and 
subtractions on irrational data. In this and the next two sections, we discuss several 
strongly polynomial time algorithms for solving any class of minimum cost flow 
problems, including those with irrational data. 

The algorithm discussed in this section is a special case of the cycle-canceling 
algorithm that we discussed in Section 9.6. Because this algorithm iteratively cancels 
cycles (i.e., augments flows along cycles) with the minimum mean cost in the res
idential network, it is known as the (minimum) mean cycle-canceling algorithm. 
Recall from Section 5.7 that the mean cost of a directed cycle W is (Lu,j)EW Cij)/ 
I wi, and that the minimum mean cycle is a cycle with the smallest mean cost in 
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the network. In Section 5.7 we showed how to use dynamic programming algorithm 
to find the minimum mean cycle in O(nm) time. 

The minimum mean cycle-canceling algorithm starts with a feasible flow x in 
the network. At every iteration, the algorithm identifies a minimum mean cycle W 
in G(x). If the mean cost of the cycle W is negative, the algorithm augments the 
maximum possible flow along W, updates G(x), and repeats this process. If the mean 
cost of"W is nonnegative, G(x) contains no negative cycle and x is a minimum cost 
flow, so the algorithm terminates. This algorithm is surprisingly simple to state; even 
more surprisingly, the algorithm runs in strongly polynomial time. 

To establish the wprst-case complexity of the minimum mean cycle-canceling 
algorithm, w~ recall a few facts. In our subsequent discussion, we often use Property 
9.2(b), which states that for any set of node potentials 7T and any directed cycle W, 
the sum of the. cqsts of the arcs in W equals the sum of the reduced costs of the arcs 
in W. We will aIsous\hhe following property concerning sequences of real numbers, 
which is a variant of the geometric improvement argument (see Section 3.3). 

Property 10.11. Let a be a positive integer and let YI, Y2, Y3, ... be a sequence 
of real numbers satisfying the condition Yk+ 1 :5 (1 - lIo.)Yk for every k. Then for 
every value of k, Yk+", :5 Yk12. 

Proof We first rewrite the expression Yk+ 1 :5 (1 - lIo.)Yk as Yk;:::: Yk+ 1 + Yk+ II 
(a - 1). We now use this last expression repeatedly to replace the first term on the 
right-hand side, giving 

Yk ;:::: Yk+ 1 + Yk+ 1/(0. - 1) ;:::: Yk+2 + Yk+ 2/(o. + 1) + Yk+ 1/(0. - 1) 

;:::: Yk+2 + 2Yk+2/(o. - 1) ;:::: Yk+3 + 3Yk+3/(o. - 1) 

;:::: Yk+", + o.Yk+",/(o. - 1) ;:::: 2Yk+"" 

which is the assertion of the property. • 
We divide the worst-case analysis of the minimum mean cycle algorithm into 

two parts: First, we show that the algorithm is weakly polynomial-time; then 
we establish its strong polynomiality. Although the description of the algorithm 
does not use scaling techniques, the worst-cast analysis borrows ideas from the cost 
scaling algorithm that we discussed in Section 10.3. In particular, the notion of 
E-optimality discussed in that section plays a crucial role in its analysis. We 
will show that the flows maintained by the minimum mean cycle-canceling algo
rithm are 'E-optimal flows satisfying the conditions that (1) between any two 
consecutive iterations the value of E either stays the same or decreases; (2) oc
casionally, the value of E strictly decreases; and (3) eventually, E < lin and the 
algorithm terminates (see Lemma 10.2). As we observed in Section 10.3, the cost 
scaling algorithm's explicit strategy is to reduce E from iteration to iteration. Al
though the minimum mean cycle-canceling algorithm also reduces the value of E 
(although periodically, rather than at every iteration), the reduction is very much an 
implicit by-product of the algorithm. 

We first establish a connection between the E-optimality of a flow x and the 
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mean cost of a minimum mean cycle in G(x). Recall that a flow x is E-optimal if for 
some set of node potentials, the reduced cost of every arc is at least - E. Notice 
that any flow x will be E-optimal for many values of E, because a flow that is 
E-optimal is also E'-optimal for all E' 2: E. For any particular set of node potentials 1T, 
we let E"'(X) be the negative of the minimum value of any reduced cost [i.e., 
E"'(X) = -min[cij: (i,j) in G(x)]. Thus cij 2: -E"'(X) and cij = -E'lT(X) for some 
arc (i, j). Thus x is E-optimal for E = E'lT(X). Potentially, we could find a smaller 
value of E by using other values of the node potentials. With this thought in mind, 
we let E(X) = min'lTE"'(x). Note that E(X) is the smallest value of E for which the 
flow x is E-optimal. As additional notation, we let j.1(x) denote the mean cost of 
the minimum mean cycle in G(x). 

Note that since x is E(x)-optimal, conditions (10.2) imply that LU,j)EW cij = 
LU,j)EW cij 2: -E'lT(X) 1 W I. Choosing Was the minimum mean cycle and dividing 
this expression by 1 W I, we see that j.1(x) 2: -E(X). As we have seen, this inequality 
is a simple consequence of the definitions of E-optimality and of the minimum mean 
cycle cost; it uses the fact that if we can bound the reduced cost of every arc around 
a cycle, this same bound applies to the average cost around the cycle. Perhaps 
surprisingly, however, we can obtain a converse result: that is, we can always find 
a set of node potentials so that every arc around the minimum mean cycle has the 
same reduced cost and that this cost equals - E(X). Our next two results establish 
this property. 

Lemma 10.12. Let x be a nonoptimal jlow. Then E(X) = - j.1(x). 

Proof Since our observation in the preceding paragraph shows that E(X) 2: 

- j.1(X) , we only need to show that E(X) ::; - j.1(x). 
Let W be a minimum mean cycle in the residual network G(x), and let j.1(x) 

be the mean cost of this cycle. Suppose that we replace each arc cost Cij by cij = 

Cij - j.1(x). This transformation reduces the mean cost of every directed cycle in 
G(x) by j.1(x) units. Consequently, the minimum mean cost of the cycle W becomes 
zero, which implies that the residual network contains no negative cost cycle. Let 
d' (.) denote the shortest path distances in G(x) from a specified node s to all other 
nodes with cijas the arc lengths. The shortest path optimality conditions imply that 

d' (j) ::; d' (i) + cij = d' (i) + Cij - j.1(x) 

If we let 1TU) = d'U), then (10.7) becomes 

for each arc (i, j) in G(x). (10.7) 

cij 2: j.1(x) for each arc (i, j) in G(x), (10.8) 

which implies that x is ( - j.1(x))-optimal. Therefore, E(X) ::; - j.1(X) , completing the 
proof of the lemma. • 

Lemma 10.13. Let x be any nonoptimaljlow. Then for some set of node po
tentials 1T, cij = j.1(x) = -E(X) for every arc (i,j) in the minimum mean cycle Wof 
G(x). 

Proof Let 1T be defined as in the proof of the preceding lemma; with these 
set of node potentials, the reduced costs satisfy (10.8). The cost of the cycle W 
equals LU,j)EW Cij, which also equals its reduced cost LU,j)EW cij. Con-
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sequently, LU,j)EW clf = lJ.(x) 1 W I· This equation and (10.8) imply that clf = 
lJ.(x) for each arc (i, j) in W. Lemma 10.12 establishes that clf - E(X) for every 
arc in W. • 

We next show that during the execution of the minimum mean cycle-canceling 
algorithm, E(X) never increases; moreover, within m consecutive iterations E(X) de
creases by a factor of at least (1 - lin). 

Lemma 10.14. For a nonoptimaljlow x, ifwe cancel a minimum mean cycle 
in G(x), E(X) cannot increase [alternatively, lJ.(x) cannot decrease]. 

Proof Let W denote the minimum mean cycle in G(x). Lemma 10.13 implies 
that for some set of node potentials 7T, cli = -E(X) for each arc (i, j) E W. Let x' 
denote the flow obtained after we have canceled the cycle W. This flow augmentation 
deletes some arcs in W from the residual network and adds some other arcs, which 
are reversals of the arcs in W. Consider any arc (i, j) in G(x'). If (i, j) is in G(x), 
then, by hypothesis, cij 2: -E(X). If (i, j) is not in G(x), then (i, j) is a reversal of 
some arc (j, i) in G(x) for which Cft = -E(X). Therefore, cij = -cft = E(X) > O. 
In either case, cij 2: -E(X) for each arc (i, j) in G(x'). Consequently, the minimum 
mean cost of any cycle in G(x') will be at least -E(X), since the mean cost around 
a cycle, which equals the mean reduced cost, must be at least as large as the minimum 
value of the reduced costs. Therefore, in light of Lemma 10.12, as asserted, 
E(X') = lJ.(x') 2: -E(X) = lJ.(x). • 

Lemma 10.15. After a sequence ofm minimum mean cycle cancelations start
ing with a flow x, the value of the optimality parameter E(X) deceases to a value 'at 
most (1 - lin) E(X) [i.e., to at most (1 - lin) times its original value]. 

Proof. Let 7T denote a set of node potentials satisfying the con.ditions cij 2: 

- E(X) for each arc (i, j) in G(x). For convenience, we designate those arcs in G(x) 
with (strictly) negative reduced costs as negative arcs (with respect to the reduced 
costs). We now classify the subsequent cycle cancelation~ into two types: (1) all the 
arcs in the canceled cycle are negative (a type 1 cancelation), and (2) at least one 
arc in the canceled cycle has a nonnegative reduced cost (a type 2 cancelation). We 
claim that the algorithm will perform at most m type 1 cancelations before it either 
terminates or performs a type 2 cancelation. This claim follows from the observations 
that each type 1 cancelation deletes at least one negative arc from the (current) 
residual network and all the arcs that the cancelation adds to the residual network 
have positive reduced cost with respect to 7T (as shown in the proof of Lemma 10.14). 
Consequently, if within m iterations, the algorithm performs no type 2 cancelations, 
all the arcs in the residual network will have nonnegative reduced costs with respect 
to 7T and the algorithm will terminate with an optimal flow. 

Now consider the first time the algorithm performs a type 2 cancelation. Sup
pose that the algorithm cancels the cycle W, which contains at least one arc with a 
nonnegative reduced cost; let x' and x" denote the flows just before and after the 
cancelation. Then cij 2: - E(X') for each arc (i, j) E Wand Crt 2: 0 for some arc 
(k, l) E W. As a result, since c(W) = LU,j)EW cij, the cost c(W) of Wwith respect to 
the flow x' satisfies the condition c(W) 2: [(I WI - 1)( -E(X'))]. By Lemma 10.14, 
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the cancelation cannot increase the minimum mean cost and, therefore, J.1(x") ::::: 
J.1(x'). But since J.1(x') is the mean cost of W with respect to x', J.1(x") ::::: J.1(x') ::::: 
(1 - 111 W 1)( - E(X')) 2: (1 - lIn)( - E(X')). This inequality implies that - J.1(x") :s: 
(1 - lIn)E(x'). Using the factthat J.1(x") = - E(X"), we see that E(X") ::; (1 - lIn)E(x'). 
This result establishes the lemma. • 

As indicated by the next theorem, the preceding two lemmas imply that the 
minimum mean cycle-canceling algorithm performs a polynomial number of itera
tions. 

Theorem 10.16. If all arc costs are integer, the minimum mean cycle-can
celing algorithm performs O(nm 10g(nC)) iterations and runs in O(n 2 m 2 10g(nC)) 
time. 

Proof Let x denote the flow at any point during the execution of the algorithm. 
Initially, E(X) ::; C because every flow is C-optimal (see Lemma 10.2). In every m 
consecutive iterations, the algorithm decreases E(X) by a factor of (1 - lin). When 
E(X) < lin, the algorithm terminates with an optimal flow (see Lemma 10.2). There
fore, the algorithm needs to decrease E(X) by a factor of nC over all iterations. By 
Lemma 10.15, the mean cost of a cycle becomes smaller by a factor of at least 
(1 - lin) in every m iterations. Property 10.11 implies that the minimum mean cycle 
cost decreases by a factor of 2 every nm iterations, so that within nm 10g(nC) 
iterations, the minimum mean cycle cost decreases from C to lin. At this point the 
algorithm terminates with an optimal flow. This conclusion establishes the first part 
of the theorem. Since the bottleneck operation in each iteration is identifying a 
minimum mean cycle, which requires O(nm) time (see Section 5.7), we also have 
established the second part of the theorem. 

Having proved that the minimum mean cycle-canceling algorithm runs in 
polynomial time, we next obtain a strongly polynomial bound on the number of 
iterations the algorithm performs. Our analysis rests upon the following rather useful 
result: If the absolute value of the reduced cost of an arc (k, l) is "significantly 
greater than" the current value of the parameter E(X), the flow on the arc (k, l) in 
any optimal solution is the same as the current flow on this arc. In other words, the 
flow on the arc (k, I) becomes "fixed." As we will show, in every O(nm log n) 
iterations, the algorithm will fix at least one additional arc at its lower bound or at 
its upper bound. As a result, within O(nm 2 10g n) iterations, the algorithm will have 
fixed all the arcs and will terminate with an optimal flow. 

We define an arc to be E-fixed if the flow on this arc is the same for all 
E'-optimal flows whenever E' ::; E. Since the value of E(X) of the E(x)-optimal flows, 
that the minimum mean cycle-canceling algorithm maintains, is nonincreasing, the 
flow on an E(X )-fixed arc will not change during the execution of the algorithm and 
will be the same in every optimal flow. We next establish a condition that will permit 
us to fix an arc. 

Lemma 10.17. Suppose that x is an E(x)-optimal flow with respect to the 
potentials 7T, and suppose that for some arc (k, l) E A, I Crt I 2: 2nE(x). Then arc 
(k, I) is an E(x)-fixed arc. 
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Proof Let E = E(X). We first prove the lemma when Crl 2: 2nE. The E-optimality 
condition (lO.la) implies that Xkl = O. Suppose that some E(x')-optimal flow x', with 
E(X ' ) :5 E(X), satisfies the condition that Xkl > O. The flow decomposition theorem 
(i.e., Theorem 3.5) implies that we can express x' as x plus the flow along at most 
m augmenting cycles in G(x). Since Xkl = 0 and Xkl > 0, one of these cycles, say 
W, must contain the arc (k, l) as a forward arc. Since each arc (i, j) E W is in the 
residual network G(x), and so satisfies the condition cij 2: - E, the reduced cost (or, 
cost) of the cycle W is at least Crl - E(I W I - 1) 2: 2nE - E(n - 1) > nE. 

Now consider the cycle wr obtained by reversing the arcs in W. The cycle wr 
must be a directed cycle in the residual network G(x ' ) (see Exercise 10.6). The cost 
of the cycle wr is the negative of the cost of the cycle Wand so must be less than 
-nE:5 -nE(x'). Therefore, the mean cost of wr is less than _E(X'). Lemma 10.12 
implies that x' is not E(x')-optimal, which is a contradiction. 

We next consider the case when Crl :5 - 2nE. In this case the E-optimality 
condition (lO.lc) implies that Xkl = Ukl. Using an analysis similar to the one used in 
the preceding case, we can show that no E-optimal flow x' can satisfy the condition 
Xkl < Ukl. • 

We are now in a position to obtain a strongly polynomial bound on the number 
of iterations performed by the minimum mean cycle-canceling algorithm. 

Theorem 10.18. For arbitrary real-valued arc costs, the minimum mean cycle
canceling algorithm peiforms O(nm2 log n) iterations and runs in O(n2m 3 log n) 
time. 

Proof Let K = nm( flog n 1 + 1). We divide the iterations performed by the 
algorithm into groups of K consecutive iterations. We claim that each group of 
iterations fixes the flow on an additional arc (k, l) (i.e., the iterations after those in 
the group do not change the value of Xki). The theorem follows immediately from 
this claim, since the algorithm can fix at most m arcs, and each iteration requires 
O(nm) time. 

Consider any group of iterations. Let x be the flow before the first iteration of 
the group and let x' be the flow after the last iteration of the group. Let E = E(X), 
E' = E(X ' ), and let 1T' be the node potentials for which x' satisfies the E'-optimality 
conditions. Since every nm iterations reduce E by a factor of at least 2, the nm (flog 
n 1 + 1) iterations between x and x I reduce E by a factor of at least 2 [log n 1 + 1. 

Therefore, E' :5 (E/2flognl+l):5 E/2n. Alternatively, -E:5 -2nE'. 
Let W be the cycle canceled when the flow has value x. Lemma 10.12 and the 

fact that the sum of the costs and reduced costs around every cycle are the same, 
imply that for any values of the node potentials, the average reduced cost around 
the cycle Wequals fL(X) = - E. Therefore, with respect to the potentials 1T', at least 
one arc (k, l) in W must have a reduced cost as small as - E, so cr; = - E :5 - 2nE' 
for some arc (k, I) in W. By Lemma 10.17, the flow on arc (k, l) will not change in 
any subsequent iteration. Next notice that in the first iteration in the group, the 
algorithm changed the value of Xkl. Thus each group fixes the flow on at least one 
additional arc, completing the proof of the theorem. • 
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We might conclude this section with a few observations. First, note that we 
need not formally compute the value of E(X) at each iteration, nor do we need to 
identify the E-fixed arcs at any stage in the algorithm. Indeed, we can use any method 
to find the minimum mean cost cycle at each step; in principle, we need not maintain 
or ever compute any reduced costs. As we noted earlier in this section, the minimum 
mean cycle-canceling algorithm implicitly reduces E(X) and fixes some arcs as it 
proceeds-we need not keep track of the algorithm's progress concerning these 
features. 

We also might note that the ideas presented in this section would also permit 
us to develop a strongly polynomial-time version of the cost scaling algorithm that 
we discussed in Section 10.3. In Exercise 10.12 we consider this modification of the 
cost scaling algorithm and analyze its running time. 

10.6 REPEATED CAPACITY SCALING ALGORITHM 

The minimum cost flow problem described in Section 10.5 uses the idea that when
ever the reduced cost of an arc is sufficiently large, we can "fix" the flow on the 
arc. By incorporating a similar idea in the capacity scaling algorithm, we can develop 
another strongly polynomial time algorithm. As we will see, when the flow on an 
arc (i, j) is sufficiently large, the potentials of nodes i and j become "fixed" with 
respect to each other. In this section we discuss the details of this algorithm, which 
we call the repeated capacity scaling algorithm. 

The repeated capacity scaling algorithm to be discussed in this section is dif
ferent from all the other minimum cost flow algorithms discussed in this book. All 
ofthe other algorithms solve the primal minimum cost flow problem (9.1) and obtain 
an optimal flow; the repeated capacity scaling algorithm solves the dual minimum 
cost flow problem (9.10). This algorithm obtains an optimal set of node potentials 
for (9.10) and then uses it to determine an optimal flow. 

The repeated capacity scaling algorithm is a modified version of the capacity 
scaling algorithm discussed in Section 10.2. For simplicity, we describe the algorithm 
for the uncapacitated minimum cost flow problem; we could solve the capacitated 
problem by converting it to the uncapacitated problem using the transformation 
described in Section 2.4. Recall that in the capacity scaling algorithm, each arc flow 
is an integral mUltiple of the scale factor Ll. For uncapacitated networks, each re
sidual capacity rij is also an integral mUltiple of Ll, because either rij = Uij = 00, or 
rij = Xji = kLl for some integer k. This observation implies that the Ll-residual network 
G(x, Ll) is the same as the residual network G(x). As a result, the algorithm for the 
uncapacitated problem does not require the preprocessing (i.e., saturating the arcs 
violating the optimality conditions) at the beginning of each scaling phase. The fol
lowing property is an immediate consequence of this result. 

Property 10.19. The capacity scaling algorithm for the un capacitated mini
mum cost flow problem satisfies the following properties: (a) the excesses at the 
nodes are monotonically decreasing; (b) the sum of the excesses at the beginning 
of the Ll-scaling phase is at most 2n Ll; and (c) the algorithm performs at most 2n 
augmentations per scaling phase. 
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The repeated capacity scaling algorithm is based on the three simple results 
stated in the following lemmas. 

Lemma 10.20. Suppose that at the beginning of the fl-scaling phase, b(k) > 
6n2 fl for some node kEN. Then some arc (k, l) with Xkl > 4nfl emanates from 
node k. 

Proof Property 10.19 implies that at the beginning of the fl-scaling phase, the 
sum of the excesses is at most 2nfl. Therefore, e(k):5 2nfl. Since b(k) > 6n2 fl and 
e(k) :5 2nfl, the net outflow of node k [i.e., b(k) - e(k)] is strictly greater than 
(6n 2A - 2nfl). Since fewer than n arcs emanate from node k, the flow on at least 
one of these arcs must be strictly more than (6n 2 fl - 2nfl)ln 2: (4n 2 fl)ln = 4nfl, 
which concludes the lemma. • 

Lemma 10.21. If at the beginning of the fl-scaling phase Xkl > 4n fl, then for 
some optimal solution Xkl > O. 

Proof Property 10.19 implies that the algorithm performs at most 2n aug
mentations in each scaling phase. The fact that the algorithm augments exactly 
fl units of flow in every augmentation in the fl-scaling phase implies that the total 
flow change due to all augmentations in the subsequent scaling phases is at most 
2n(fl + fl/2 + fll4 + ... + 1) < 4nfl. Consequently, if Xkl > 4nfl at the beginning 
of the fl-scaling phase, then Xkl > 0 when the algorithm terminates. • 

Lemma 10.22. Suppose that Xkl > 0 in an optimal solution of the minimum 
cost flow problem. Then with respect to every set of optimal node potentials, the 
reduced cost of arc (k, l) is zero. 

Proof. Suppose that x satisfies the complementary slackness optimality con
dition (9.8) with respect to the node potential 7T. The condition (9.8b) implies that 
Crl = O. Property 9.8 implies that if x satisfies the complem~mtary slackness opti
mality condition (9.8b) with respect to some node potential, it satisfies this condition 
with respect to every optimal node potential. Consequently, the reduced cost of arc 
(k, l) is zero with respect to every set of optimal node potentials. • 

We are now in a position to discuss the essential ideas ofthe repeated capacity 
scaling algorithm. Let P denote the minimum cost flow problem stated in (9.1). The 
algorithm applies the capacity scaling algorithm stated in Figure 10.1 to the problem 
P. We will show that within O(log n) scaling phases, b(k) > 6n2 fl for some node k 
and, by Lemma 10.20, some arc (k, l) satisfies the condition Xkl > 4n fl. Lemmas 
10.21 and 10.22 imply that for any set of optimal node potentials, the reduced cost 
of arc (k, l) will be zero. This result allows us to show, as described next, that we 
can contract the nodes k and I into a single node, thereby- obtaining a new minimum 
cost flow problem defined on a network with one fewer node. 

Suppose that we are using the capacity scaling algorithm to solve a minimum 
cost flow problem P with arc costs Cij and at some stage we realize that for an arc 
(k, l), Xkl > 4n fl. Let 7T denote the node potentials at this point. The optimality 
condition (9.8b) implies that 
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Ckl - 'IT(k) + 'IT(I) = O. (10.9) 

Now consider the same minimum cost flow problem, but with the cost of each 
arc (i,j) equal to Clj = clJ = Cij - 'IT(i) + 'IT(j). Let P' denote the modified minimum 
cost flow problem. Condition (10.9) implies that 

Ckl = O. (10.10) 

We next observe that the problems P and P' have the same optimal solutions 
(see Property 2.4 in Section 2.4). Since Xkl > 4nLl, Lemmas 10.21 and 10.22 imply 
that in problem P' the reduced cost of arc (k, I) will be zero. If 'IT' denotes an optimal 
set of node potentials for pI, then 

Ckl - 'IT'(k) + 'IT'(I) = o. (10.11) 

Substituting (10.10) in (10.11) implies that 'IT' (k) = 'IT' (I). 
The preceding discussion shows that if Xkl > 4nLl for some arc (k, I), we can 

"fix" one node potential with respect to the other. The discussion also shows that 
if we solve the problem pI with the additional constraint that the potentials of nodes 
k and I are same, this constraint will not eliminate the optimal solution of P'. But 
how can we solve a minimum cost flow problem when two node potentials must be 
the same? 

Consider the dual minimum cost flow problem stated in (9.10). In this problem 
we replace both 'IT(k) and 'IT(I) by 'IT(p). This substitution gives us a linear program
ming problem with one less dual variable (or, node potential). The reader can easily 
verify that the resulting problem is a dual minimum cost flow problem on the network 
with nodes k and I contracted into a single node p. The contraction operation consists 
of (1) letting b(p) = b(k) + b(l), (2) replacing each arc (i, k) or (i, l) by the arc 
(i, p), (3) replacing each arc (k, i) or (I, i) by the arc (p, i), and (4) letting the cost of 
an arc in the contracted network equal that of the arc it replaces. We point out that 
the contraction might produce multiarcs (i.e., more than one arc with the same tail 
and head nodes). The purpose of contraction operations should be clear; since each 
contraction operation reduces the size of the network by one node, we can apply 
at most n of these operations. 

We can now describe th~ repeated capacity scaling algorithm. We first compute 
U = max{b(i) : i E Nand b(i) > O} and initialize Ll = 2L1og uJ. Let node k be a 
node with b(k) = U. We then apply the capacity scaling algorithm as described in 
Figure 10.1. Each scaling phase of the capacity scaling algorithm decreases Ll by a 
factor of 2; therefore, since the initial value of Ll is b(k), after at most q = log 
(6n 2

) =: O(logn)phases,Ll = b(k)/2Q::S;b(k)/6n2
• The algorithm might obtain a feasible 

flow before Ll ::s; b(k)/6n 2 (in which case it terminates); if not, then by Lemma 10.20, 
some arc (k, I) will satisfy the condition that Xkl > 4nLl. The algorithm then defines 
a new minimum cost flow problem with nodes k and I contracted into a new node 
p, and the cost of each arc is the reduced cost of the corresponding arc before the 
contraction. We solve the new minimum cost flow problem afresh by redefining U 
as the largest supply in the contracted network and reapplying the capacity scaling 
algorithm described in Figure 10.1. We repeat these steps until the algorithm ter
minates. The algorithm terminates in one of the two ways: (1) while applying the 
capacity scaling algorithm, it obtains a flow; or (2) it contracts the network into a 
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single node p [with b(p) = 0], which is trivially solvable by a zero flow. At this 
point we expand the contracted nodes and obtain an optimal flow in the expanded 
network. We show how to expand the contracted nodes a little later. The preceding 
discussion shows that the algorithm performs O(n log n) scaling phases, and since 
each scaling phase solves at most 2n shortest path problems, the running time of 
the algorithm is O(n 2 log n S(n, m)). In this expression, S(n, m) is the minimum 
time required by a strongly polynomial-time algorithm for solving a shortest path 
problem with nonnegative arc lengths. [Recall from Chapter 4 that O(m + n log n) 
is currently the best known such bound.] 

We illustrate the repeated capacity scaling algorithm on the example shown in 
Figure 10.11(a). When applied to this example, the capacity scaling algorithm per
forms 100 scaling phases with A = 299, 298-1, ... , 20. The strongly polynomial 
version, however, terminates within five phases, as shown next. 

Phase 1. In this phase, A = 299, S(A) = {I, 2}, and T(A) = {3, 4}. The algorithm 
augments A units of flow along the two paths 1-3 and 2-1-3-4. Figure 10.11(b) 
shows the solution at the end of this phase. 
Phase 2. In this phase, A = 298. The algorithm augments A units of flow along 
the path 1-3. 
Phase 3. In this phase, A = 297. The algorithm augments A units of flow along 
the path 1-3. 
Phase 4. In this phase, A = 296. The algorithm finds that the flow on the arc 
(1, 3) is 2100 + 299 + 298 , which is more than 4n A = 2100. Therefore, the 
algorithm contracts the nodes 1 and 3 into a new node 5 and obtains the min
imum cost flow problem shown in Figure 10.11(c), which it then proceeds to 
solve. 
Phase 5. In this phase, A = 295 . The algorithm augments A units of.flow along 
the path 2-5-4. The solution is a flow now; consequently, the algorithm ter
minates. The corresponding flow in the original network is X21 = 299, XI3 = 
2100 - 1, and X34 = 299. 
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Figure 10.11 Illustrating the repeated capacity scaling algorithm: (a) minimum cost 
flow problem; (b) solution after the first phase; (c) minimum cost flow problem after 
contracting the nodes 1 and 3 into a new node 5. 
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We now explain how we expand the contracted network, and in the process 
we prove that the algorithm determines an optimal solution of the minimum cost 
flow problem. The algorithm, in fact, first determines an optimal set of node poten
tials of the problem, and then by solving a maximum flow problem (as described in 
Section 9.5) determines an optimal flow. The algorithm obtains an optimal set of 
node potentials for the original problem by repeated use of the following result. 

Property 10.23. Let P be a problem with arc costs Cij and pI be the {lame 
problem with arc costs Cij - 'IT(i) + 'IT(j). If'lT' is an optimal se(of node potentials 
for problem pI, then'lT + 'IT' is an optimal set of node potentials for P. 

Proof This property easily follows from the observation that if a solution x 
satisfies the reduced cost optimality condition (9.7) with respect to the arc costs 
Cij - 'IT(i) + 'IT(j) and node potentials 'IT', the same solution satisfies these conditions 
with arc costs Cij and node potentials 'IT + 'IT'. • 

We expand (or uncontract) the nodes in the reverse order in which we con
tracted them in the strongly polynomial algorithm and obtain optimal node potentials 
of the successive problems. In earlier stages, between two successive problems, we 
performed two transformations in the following order: (1) we replaced the arc cost 
Cij by its reduced cost Cij - 'IT(i) + 'IT(j), and (2) we contracted two nodes k and I 
into a single new node p. We undo these transformations in the reverse order. To 
undo the contracted node p, for case (2) we set the potentials of nodes k and I equal 
to that of node p, and for case (1) we add 'IT to the existing node potentials. When we 
have expanded all the contracted nodes, the resulting node potentials are an optimal 
set of node potentials for the minimum cost flow problem. Then, as described in 
Section 9.5, we can use these node potentials to obtain an optimal flow by solving 
a maximum flow problem. The following theorem summarizes the preceding dis
cussion. 

Theorem 10.24. The repeated capacity scaling algorithm solves the unca-
pacitated minimum cost flow problem in O(n 2 10g n S(n, m» time. • 

Since the best known strongly polynomial-time algorithm for solving the short
est path problem with nonnegative arc lengths runs in O(m + n log n) time, the 
best current bound for the uncapacitated minimum cost flow problem is O(n log 
n(m + n log n». We can solve the capacitated minimum cost flow problem by the re
peated capacity scaling algorithm by first transforming it to an uncapacitated problem 
(see Section 2.4). The uncapacitated network will have n' = n + m nodes and 
m' = 2m arcs. When applied to this network, the repeated capacity scaling algorithm 
will perform O(n' log n') = O(m log.n) scaling phases and solve O(m') = O(m) 
shortest path problems in each scaling phase. Thus the running time ofthe algorithm 
is the time needed to solve O(m 2 log n) shortest path problems. Each shortest path 
problem in the uncapacitated network requires O(2m + (m + n) log (m + n» = 
O(m + m log n) time, but using a clever approach for solving the resulting shortest 
path problem (as discussed in Exercise 4.53) we can obtain a better bound of O(m 
+ n log n). Consequently, the repeated capacity scaling algorithm requires O(m 2 

log n(m + n log n» time to solve a capacitated minimum cost flow problem. 
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10.7 ENHANCED CAPACITY SCALING ALGORITHM 

In this section we discuss yet another strongly polynomial-time algorithm for the 
minimum cost flow problem. This algorithm is a variant of the capacity scaling 
algorithm that we discussed in Section 10.2 and draws on some ideas from the re
peated capacity scaling algorithm discussed in Section 10.6. We refer to this algo
rithm as the enhanced capacity scaling algorithm. This algorithm runs in O«m log 
n)(m + log n)) time for the capacitated minimum cost flow problem and is currently 
the fastest strongly polynomial-time algorithm for solving the minimum cost flow 
problem. In this section we first show how to solve the enhanced capacity scaling 
algorithm for the uncapacitated minimum cost flow problem; we can solve the ca
pacitated problem by transforming it to an uncapacitated problem (see Section 2.4). 

Recall from Section 10.6 that the essential idea in the repeated capacity scaling 
algorithm is to identify arcs with sufficiently large flow. The repeated capacity scaling 
algorithm identifies such an arc (k, I) within O(log n) scaling phases, contracts the 
nodes k and I into a single node, and solves the resulting minimum cost flow problem 
afresh. For the uncapacitated minimum cost flow problem, this algorithm performs 
a total of O(n log n) scaling phases and O(n 2 log n) shortest path augmentations. 
The enhanced capacity scaling algorithm adopts a similar approach but it differs in 
the following two ways: (1) the algorithm does not explicitly perform the contraction 
operation; and (2) the algorithm does not solve the minimum cost flow problem 
afresh, but continues from where it left off in its earlier computations. By avoiding 
contractions, the algorithm achieves ease of coding (because contractions change 
the network structure and so its computer representation) and maintains a pseu
doflow satisfying the dual optimality conditions at every step until the end, at which 
point it becomes an optimal flow. Moreover, the total number of scaling phases is 
O(n log n) and the total number of shortest path augmentations in these scalings 
phases is also O(n log n). Consequently, if Sen, m) is the time requited to solve a 
shortest path problem with nonnegative arc lengths, the running time of the enhanced 
capacity scaling algorithm for uncapacitated problems is Otn log n Sen, m)). For 
capacitated minimum cost flow problems, this time bound becomes Oem log n 
sen, m)). [By Exercise 4.53 the time bound for the shortest path problem in the 
transformed network is O(S(n, m)) rather than O(S(n + m, 2m)) even though the 
transformed network has n + m nodes and 2m arcs.] 

The enhanced capacity scaling algorithm proceeds by performing scaling 
phases for different values of the scale factor Ll. In the Ll-scaling phase, we say that 
an arc (i, j) has a sufficiently large flow if Xu ;::= 8n Ll. [We later show that if Xu ;::= 

8n Ll, then arc (i, j) will have positive flow during the entire execution of the algo
rithm.] We refer to an arc with sufficiently large flow as an abundant arc; otherwise, 
we call it a nonabundant arc. We refer to the subgraph consisting of the node set 
N and abundant arcs as the abundant subgraph. The abundant subgraph typically 
contains several components, which we call abundant components. If the network 
contains no abundant arc, the abundant subgraph contains n components, each con
sisting of a singleton node. For simplicity, we will designate an abundant component 
by the set S of nodes it spans. We let b(S) = LiES b(i) and e(S) = LiES e(i). 

We designate an (arbitrary) node in each abundant component as its root and 
refer to all the other nodes as nonroot nodes. By convention we assume that the 
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minimum index node in an abundant component is its root. For example, if S = {3, 
5, 9}, then node 3 is the root node of the abundant component S. Throughout its 
execution, the enhanced capacity scaling algorithm satisfies the following properties. 

Property 10.25 (Flow Property). In the a-scaling phase, the flow on each non
abundant arc is an integral multiple of a; an abundant arc can have any nonnegative 
flow value. 

Property 10.26 (Imbalance Property). Each nonroot node has a zero imbalance; 
a root node can have an excess or a deficit. 

At the beginning of the enhanced capacity scaling algorithm, the network has 
no abundant arc and the abundant subgraph contains n components, each consisting 
of a singleton node. As the algorithm proceeds, it identifies abundant arcs and adds 
them to the abundant sub graph. Suppose that the algorithm adds a new abundant 
arc (i, j) at some stage. Let Si and Sj, respectively, denote the abundant components 
containing the nodes i and j. If Si = Sj [i.e., the arc (i, j) has both of its endpoints 
in the same component], this addition does not create any new abundant component; 
otherwise,' the addition creates a new abundant component consisting of the union 
of Si and Sj. We refer to this operation as a merge operation because it merges the 
components Si and Sj into a single abundant component. Notice that since each 
merge operation reduces the number of abundant components by one, the algorithm 
can perform at most n merge operations. 

Whenever the algorithm merges the components Si and Sj, we need to ensure 
that the solution satisfies the imbalance property. Suppose that ir and jr denote the 
root nodes of the components Si and Sj before the merge operation. Suppose further 
that ir < jr' If e(jr) = 0, after the merge operation the abundant subgraph satisfies 
the imbalance property. However, if e(jr) is nonzero, we satisfy the imbalance prop
erty by sending e(M units of flow from node jr to node ir using any path in the 
merged component. [Notice that if e(jr) < 0, we should view this augmentation as 
augmenting I e(jr) I units of flow from node ir to jr so we eliminate the imbalance at 
node jr'] Observe that this augmentation changes the flow on some abundant arcs 
by I e(M I units. We refer to this augmentation as an imbalance-property augmen
tation. In Exercise 10.26 we ask the reader to show how to perform merge operations 
and the subsequent imbalance-property augmentations in O(m) time. 

We are now in a position to describe the enhanced capacity scaling algorithm. 
Figure 10.12 gives an algorithmic description of this algorithm. 

The enhanced capacity scaling algorithm performs two types of augmentations. 
The first type of augmentation enforces the imbalance property when the algorithm 
identifies new abundant arcs; we have earlier defined these augmentations as the 
imbalance-property augmentations. The second type of augmentation takes place 
from excess nodes to deficit nodes along shortest paths. We refer to these augmen
tations as shortest-path augmentations. 

As we have already mentioned, the enhanced capacity scaling algorithm is a 
variant of the capacity scaling algorithm. These two algorithms differ in the following 
respects: 
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algorithm enhanced capacity scaling; 
begin 

set x : = 0, 'IT : = 0, and e: = b; 
set !:J. : = max{le(i)1 : i E N}; 
while the residual network G(x) contains a node i with eU) > ° do 
begin 

if max{e(i) : i E N} :s: !:J./(8n) then !:J. : = max{e(i) : i E N}; 
{the !:J.-scaling phase begins here} 
for each nonabundant arc (i, j) do 
if xij ;0:: 8n!:J. then designate arc (i, j) as an abundant arc; 
update abundant components and reinstate the imbalance property; 
while the residual network G(x) contains a node k with I e(k) I ;0:: (n - 1)D./n do 
begin 

select a pair of nodes k and / satisfying the property that (i) either e(k) > (n - 1)!:J./n 
and e(l) < -D./n, or (ii) e(k) > !:J./n and e(l) < -(n - 1)!:J./n; 

considering reduced costs as arc lengths, compute shortest path distance d(·) in 
G(x) from node k to all other nodes; 

'IT(i) : = 'IT(i) - d(i) for all i E N; 
augment !:J. units of flow along the shortest path in G(x) from node k to node /; 

end; 
{the !:J.-scaling phase ends here} 
!:J. : = !:J./2; 

end; 
end; 

Figure 10.12 Enhanced capacity scaling algorithm. 

1. In the capacity scaling algorithm, we set the initial value of Ll = 2 Llog uJ, that 
is, the largest power of 2 less than or equal to U = max{1 b(i) I : i EN}. In a 
strongly polynomial algorithm, we cannot take logarithms because we cannot 
determine log U in 0(1) elementary arithmetic operations. Therefore, in the 
enhanced capacity scaling algorithm, we set Ll = max{1 b(i) I : i..E N}. 

2. The capacity scaling algorithm decreases Ll by a factor of 2 in every scaling 
phase. In the enhanced capacity scaling algorithm, we~.also decrease Ll by a 
factor of 2, but if max{J e(i) I : i E N} :::; Ll/8n, then we reset Ll = 
max{1 e(i) I : i EN}. Consequently, the enhanced capacity scaling algorithm 
generally decreases Ll by a factor of 2, but sometimes by a larger factor when 
imbalances are too small compared to the current scale factor. Without resetting 
Ll in this way, the capacity scaling algorithm might perform O(log U) scaling 
phases, many of which will not perform any augmentations. The resulting 
algorithm would contain O(log U) in its running time and would not be strongly 
polynomial-time. 

3. In the capacity scaling algorithm, each arc flow is an integral multiple of Ll. 
This property is essential for its correctness because it ensures that each pos
itive residual capacity is a multiple of Ll, and consequently, any augmentation 
can carry Ll units offlow. In the enhanced capacity scaling algorithm, although 
the flows on nonabundant arcs are integral multiples of Ll, the flows on the 
abundant arcs can be arbitrary. Since the flows on abundant arcs are sufficiently 
large, their arbitrary values do not prohibit sending Ll units of flow on them. 

4. The capacity scaling algorithm sends Ll units of flow from a node k with 
e(k) 2: Ll to a node I with e(l):::; - Ll. As a result, the excess nodes do not become 
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deficit nodes, and vice versa. In the enhanced capacity scaling algorithm, aug
mentations carry .1 units of flow and are (a) either from a node k with e(k) > 
(n - l).1ln to a node I with e(l) < -.1ln, (b) or from a node k with e(k) > 
.1ln to a node I with e(l) < -(n - 1).1ln. Notice that due to these choices 
excess nodes might become deficit nodes and deficit nodes might become ex~ 
cess nodes. Although these choices might seem a bit odd when compared to 
the capacity scaling algorithm, they ensure several nice theoretical properties 
that we describe in the following discussion. 

We establish the correctness of the enhanced capacity scaling algorithm as 
follows. In the .1-scaling phase, we refer to a node i as a large excess node if 
e(i) > (n - l).1ln and as a medium excess node if e(i) > .1ln. (Observe that a large 
excess node is also a medium excess node.) Similarly, we refer to a node i as a large 
deficit node if e(i) < - (n - l).1ln and as a medium deficit node if e(i) < - .1ln. 
In the .1-scaling phase, each shortest path augmentation either starts at a large excess 
node k and ends at a medium deficit node I, or starts at a medium excess node k 
and ends at a large deficit node I. To establish the correctness of the algorithm, we 
need to show that whenever (1) the network contains a large excess node k, it must 
also contain a medium deficit node I, or when (2) the network contains a large deficit 
node I, it must also contain a medium excess node k. We establish this result in the 
following lemma. 

Lemma 10.27. If the network contains a large excess node k, it must also 
contain a medium deficit node I. Similarly, if the network contains a large deficit 
node I, it must also contain a medium excess node k. 

Proof We prove the first part of the lemma; the proof of the second part is 
similar. Note that LiEN e(i) = 0 because the total excess ofthe excess nodes equals 
the total deficit of the deficit nodes. If e(k) > (n - 1).1ln for some excess node k, 
the total deficit of deficit nodes is also greater than (n - 1).1ln. Since the network 
contains at most (n - 1) deficit nodes, at least one of these nodes, say node I, must 
have a deficit greater than .1ln, or equivalently e(l) < - .1 In. • 

In the proofs, we use the following lemma several times. 

Lemma 10.28. At the end of the .1-scaling phase, I e(i) I :s (n - 1).1ln for 
each node i. At the beginning of the .1-scaling phase, I e(i) I :s 2(n - 1).1 In for each 
node i. 

Proof Suppose that during some scaling phase the network contains some 
large excess node. Then by Lemma 10.27, it also contains some medium deficit 
node, so the scaling phase would not yet end. Similarly, if the network contains 
some large deficit node, it would also contain some medium excess node, and the 
scaling phase would not end. Therefore, at the end of the scaling phase, I e(i) I :s 
(n - 1).1ln for each node i. 

If at the next scaling phase the algorithm halves the value of .1, then I e(i) I :s 
2(n - l).1ln for each node i. On the other hand, if the algorithm sets .1 equal to 
emax , then I e(i) I :s .1 for each node i. In either case, the lemma is true. • 

390 Minimum Cost Flows: Polynomial Algorithms Chap. 10 



The enhanced capacity scaling algorithm also relies on the fact that in the A
scaling phase, we can send A units of flow along the shortest path P from node k to 
node I. To prove this result, we need to show that the residual capacity of every 
arc in the path P is at least A. We establish this property in two parts. First, we 
show that the flow on each nonabundant arc is a mUltiple of A; this would imply 
that residual capacities of nonabundant arcs and their reversals in the residual net
work are mUltiples of A (because all the arcs in A are un capacitated) . We next show 
that the flow on each abundant arc is always greater than or equal to 4n A ; therefore, 
we can send A units of flow in either direction. These two results would complete 
the correctness proof of the enhanced capacity scaling algorithm. 

Lemma 10.29. Throughout the execution of the enhanced capacity scaling 
algorithm, the solution satisfies the flow and imbalance properties (i.e., Properties 
10.25 and 10 .26) . 

Proof We prove this lemma by performing induction on the number of flow 
augmentations and changes in the scale factor A . We first consider the flow property. 
Each augmentation sends A units offlow and thus preserves the property. The scale 
factor A changes in one of the two following ways: (1) when we replace A by A' "" 
A/2, or (2) after replacing A' "" A/2, we reset A" "" max{1 e(i) I : i EN}. In case (1), 
the flows on the nonabundant arcs continue to be multiples of A'. In case (2), A" "" 
max{e(i) : i E N} :5 A'/Sn, or A' 2:: SnAil. Since each positive arc flow Xij on a 
nonabundant arc is a mUltiple of A', Xij 2:: A' 2:: SnAil. Consequently, each positive 
flow arc becomes an abundant arc (with respect to the new scale factor) and vac
uously satisfies the flow property. 

We next establish the imbalance property by performing induction on the num
ber of augmentations and the creation of new abundant arcs. Each augmentation 
carries flow from a nonroot node to another nonroot node and preserves the property. 
Moreover, each time the algorithm creates a new abundant arc, it rriight create a 
nonroot node i with nonzero imbalance; however, it immediately performs an 
imbalance-property augmentation to reduce its imbalance to -zero. The lemma now 
follows. • 

Theorem 10.30. In the A-scaling phase, the algorithm changes the flow on 
any arc by at most 4nA units. 

Proof The flow on an arc changes through either imbalance-property aug
mentations or shortest path augmentations. We first consider changes caused by 
imbalance-property augmentations. At the beginning of the A-scaling phase, e(i) :5 

2(n - 1)Aln for each node i (from Lemma 10.2S). Consequently, an imbalance
property augmentation changes the flow on any arc by at most 2(n - 1)Aln. Since 
the algorithm can perform at most n imbalance-property augmentations at the be
ginning of a scaling phase, the change in the flow on an arc due to all imbalance
property augmentations is at most 2(n - 1)A:5 2nA. 

Next consider the changes in the flow on an arc caused by shortest path aug
mentations. At the beginning of the A-scaling phase, each root node i satisfies the 
condition I e(i) I :5 2(n - 1) Aln (by Lemma 10.29). Consider the case when the A
scaling phase performs no imbalance-property augmentations. In this case, at most 
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one shortest path augmentation will begin at a large excess node i, because after 
this augmentation, the new excess e' (i) satisfies the inequality e' (i) ::; 2(n -
1) Ll/n - Ll = (n - 2)Ll/n ::; (n _.1) Llln, and node i is no longer a large excess 
node. Similarly, at most one shortest patr augmentation will end at a large deficit 
node. 

Now suppose that the algorithm does perform some imbalance-property aug
mentations. In this case the algorithm sends e(j) units of flow from each nonroot 
node j to the root of its abundant component. The subsequent imbalance-property 
augmentation from node j to the root node i can increase I e(i) I by at most 2(n -
1) Ll In units, so node i can be the start or end node of at most two additional shortest 
path augmentations in the Ll-scaling phase. We "charge" these two augmentations 
to node j, which becomes a nonroot node and remains a nonroot node in the sub-
sequent scaling phases. . 

To summarize, we have shown that in the Ll-scaling phase, we can charge each 
root node at most one shortest path augmentation and each nonroot node at most 
two shortest path augmentations. Each such augmentation changes the flow on any 
arc by 0 or Ll units. Consequently, the total flow change on any arc due to all shortest 
path augmentations is at most 2nLl. We have earlier shown the total flow change 
due to imbalance-property augmentations is at most 2n Ll. These results establish 
the theorem. • 

The preceding theorem immediately implies the foll~wing result. 

Lemma 10.31. If the algorithm designates an arc (i, j) as an abundant arc in 
the Ll-scaling phase, then in all subsequent Ll'-scaling phas~s Xu 2:: 4nLl'. 

Proof. We prove this result by performing induction on the number of scaling 
phases. Since the algorithm designates arc (i, j) as an abundant arc at the beginning 
of the Ll-scaling phase, the flow on this arc satisfies the condition Xij 2:: 8n Ll. The 
Lemma 10.31 implies that the flow change on any arc in the Ll-scaling phase is at 
most 4n Ll. Therefore, throughout the Ll-scaling phase and, also, at the end of this 
scaling phase, the arc (i, j) satisfies the condition Xu 2:: 4n Ll. In the next scaling 
phase, the scale factor Ll' ::; Ll/2; so at the beginning of the Ll'-scaling phase, Xij 2:: 

8n Ll'. This conclusion establishes the lemma. • 

We next consider the worst-case complexity of the enhanced capacity scaling 
algorithm. We show that the algorithm performs O(n log n) scaling phases, requiring 
a total of O(n log n) shortest path augmentations. These proofs rely on the result, 
stated in Theorem 10.33, that any abundant component whose root node has a me
dium excess or a medium deficit merges into a larger abundant component within 
O(log n) scaling phases. Theorem 10.33, in turn, depends on the following lemma. 

Lemma 10.32. Let S be the set afnodes spanned by an abundant component, 
and let e(S) = ~iES e(i) and b(S) = ~iES b(i). Then b(S) - e(S) is an integral 
multiple of Ll. 

Proof. Summing the mass balance constraints (9.1b) of nodes in S, we see that 

b(S) - e(S) = ~ Xij - ~ xu. 
{(i,j)E(S,S)} {(i,j)E(S,S)} 

(10.12) 
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In this expression, (S, S) and (S, S) denote the sets of forward and backward arcs 
in the cut [S, S]. Since the flow on each arc in the cut is an integral mUltiple of Ll 
(by the flow property), b(S) - e(S) is also an integral multiple of Ll. • 

Theorem 10.33. Let S be the set of nodes spanned by an abundant component 
and suppose that at the end of the Ll-scaling phase, I e(S) I > Llln. Then within O(log 
n) additional scaling phases, the algorithm will merge the abundant component S 
into a larger abundant component. 

Proof. We first claim that at the end of the Ll-scaling phase, I b(S) I ~ Llln. 
We prove this result by contradiction. Suppose that I b(S) I < Llln. Let node i be 
the root node of the component S. Lemma 10.28 implies that at the end of the 
Ll-scaling phase, I e(i) I = I e(S) I ::.; (n - 1) Sin. Therefore, I b(S) I + I e(S) I < Ll, 
which from Lemma 10.32 is possible only if I b(S) I = I e(S) I. This condition, 
however, contradicts the facts that I e(S) I > Llln and I b(S) I < Llln. Therefore, 
I b(S) I ~ Llln whenever I e(S) I > Llln. Consequently, at the end of the Ll-scaling 
phase, I b(S) I ~ Llln. 

Since the enhanced capacity scaling algorithrri decreases Ll by a factor of at 
least 2 in each scaling phase, within log (9n 2m) ::.; log (9n4) = O(log n) scaling 
phases, the scale factor will be Ll' ::.; Ll/2Iog

(9n
2
m) = Ll/(9n 2 m), or Llln ~ 9nmLl'. Since 

I b(S) I ~ Llln, I b(S) I ~ 9nmLl'. We consider the situation when b(S) > O. [The 
analysis of the situation with b(S) < 0 is similar.] Since e(S) ::.; Ll' (n - l)ln ::.; Ll' 
(by Lemma 10.28), the flow across the cut [S, S] (i.e., the right-hand side of (10.12» 
is at least 9nmLl' - Ll' ~ 8nmLl'. This cut contains at most m arcs; at least one of 
these arcs, say arc (i, j), must have a flow at least 8nLl'. Thus the algorithm will 
designate the arc (i, j) as an abundant arc and merge the component S into a larger 
abundant component. • 

We are now ready to complete the proof of the main result of this section. 

Theorem 10.34. The enhanced capacity scaling algorithm solves the unca
pacitated minimum costjlow problem within O(n log n) scaling phases and performs 
a total of O(n log n) shortest path augmentations. If S(n, m) is the time required 
to solve a shortest path problem with nonnegative arc lengths, the running time of 
the enhanced capacity scaling algorithm is O(n log n S(n, m». 

Proof. We first show that the algorithm performs O(n log n) scaling phases. 
Consider a scaling phase with scale factor equal to Ll. At the end of this scaling 
phase, we will encounter one of the following two outcomes: 

Case 1. For some node i, I e(i) I > Ll/16n. Let node i be the root node of an 
abundant component S. Clearly, within four scaling phases, either the com
ponent S merges into a larger component or I e(i) I > Llln. In the latter case, 
Theorem 10.33 implies that within O(log n) scaling phases, the component S 
merges into a larger component. 
Case 2. For every node i,1 e(i) I ::.; Ll/16n. At the beginning of the next scaling 
phase, the new scale factor Ll' = Ll/2, so I e(i) I ::.; Ll'/8n for each node i. We 
then reset Ll' = max{1 e(i) I : i EN}. As a result, for some node i, I e(i) I = 
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Ll' > Ll'/16n and, as in Case 1, within O(log n) scaling phases, the abundant 
component containing node i merges into a larger component. 

This discussion shows that within O(log n) scaling phases the algorithm per
forms one merge operation. Since each merge operation decreases the number of 
abundant components by one, the algorithm can perform at most n merge operations. 
Consequently, the number of scaling phases is bounded by O(n log n). The algo
rithmic description of the enhanced capacity scaling algorithm implies that the al
gorithm requires O(m) time per scaling phase plus the time required for the aug
mentations. 

We now obtain a bound on the number of augmentations and the time that they 
require. The algorithm performs at most n imbalance-property augmentations; it can 
easily execute each augmentation in Oem) time; thus these augmentations are not 
a bottleneck step in the algorithm. Next consider the shortest path augmentations. 
Recall from the proof of Theorem 10.30 that in a scaling phase, we can charge each 
shortest path augmentation to a root node (which is a large excess or a large-deficit 
node) or to a nonroot node. Since we can charge each nonroot at most two aug
mentations over the entire execution of the algorithm, we charge at most 2n aug
mentations to nonroots. Moreover, when we charge an augmentation to a root node 
i, this node satisfies the condition I e(i) r 2: (n - l)Ll/n. Theorem 10.33 implies that 
we will charge at most one augmentation to node i in the following O(log n) scaling 
phases before the algorithm performs a merge operation and the component con
taining node i merges into a larger component. Since the algorithm encounters at 
most 2n different abundant components (n to begin with and n due to merge oper
ations), the total number of shortest path augmentations we can charge to root nodes 
is at most O(n log n). Since each shortest path augmentation requires the solution 
of a shortest path problem with nonnegative arc lengths and requires Sen, m) time, 
all the shortest path augmentations require a total of O(n log n Sen, m» time. This 
time dominates the time taken by all other operations performed by the algorithm. 
Therefore, we have established the assertion of the theorem. • 

To solve the capacitated minimum cost flow problem, we transform it to the 
uncapacitated version using the transformation described in Section 2.4. The re
sulting uncapacitated network has n' = n + m nodes and m' = 2m arcs. The 
enhanced capacity scaling algorithm will solve the minimum cost flow problem in 
the transformed network in O(n' log n') = Oem log m) = Oem log n2

) = Oem 
log n) scaling phases and will solve a total of O(n' log n') = Oem log n) shortest 
path problems. Each shortest path problem in the uncapacitated network requires 
S(n', m') time, but using the ideas described in Exercise 4.53 we can improve this 
time bound to Sen, m). Therefore, the enhanced capacity scaling algorithm can solve 
the capacitated minimum cost flow problem in Oem log n sen, m» time. We state 
this important result as a theorem. 

Theorem 10.35. The enhanced capacity scaling algorithm solves a capaci-
tated minimum cost flow problem in Oem log n sen, m» time. • 
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10.8 SUMMARY 

In this chapter we continued our study of the minimum cost flow problem by de
veloping several polynomial-time algorithms. The scaling technique is a central 
theme in almost all the algorithms we have discussed. The algorithms discussed use 
capacity scaling, cost scaling, or both, or use scaling concepts in their proofs. We 
discussed six polynomial-time algorithms: (1) the capacity scaling algorithm, (2) the 
cost scaling algorithm, (3) the double scaling algorithm, (4) the minimum mean cycle
canceling algorithm, (5) the repeated capacity scaling algorithm, and (6) the enhanced 
capacity scaling algorithm. The first three of these algorithms are weakly polynomial; 
the other three are strongly polynomial. Figure 10.13 specifies the running times of 
these algorithms. 

The capacity scaling algorithm is possibly the simplest of all the polynomial
time algorithms we have discussed. This algorithm is an improved version of the 
successive shortest path algorithm discussed in Section 9.7; by augmenting flows 
along paths with sufficiently large residual capacities, this algorithm is able to de
crease the number of augmentations from O(nU) to Oem log U). 

Whereas the capacity scaling algorithm scales the capacities, the cost scaling 
algorithm scales costs. The algorithm maintains E-optimal flows for decreasing values 
of E and repeatedly executes an improve-approximation procedure that converts an 
E-optimal flow into an E/2-optimal flow. The computations performed by the improve
approximation procedure are similar to those performed by the preflow-push algo
rithm for the maximum flow problem. The double scaling algorithm is the same as 
the cost scaling algorithm except that it uses a different version of the improve
approximation procedure. The improve-approximation procedure in the cost scaling 
algorithm performs push/relabel steps; in the double scaling algorithm, this procedure 
augments flow along paths of sufficiently large residual capacity. Justifying its name, 
within a cost scaling phase, the double scaling algorithm performs' a number of 
capacity scaling phases. 

The minimum mean cycle-canceling algorithm for the minimum cost flow prob
lem is different from all the other algorithms discussed in this chapter. The algorithm 
is startlingly simple to describe and does not make explicit use of the scaling tech
nique; the proof of the algorithm, however, uses arguments from scaling techniques. 

Algorithm Running time 

Capacity scaling algorithm O«m log U)(m + n log n» 

Cost scaling algorithm O(n3 log(nC» 

Double scaling algorithm O(nm log U log(nC» 

Minimum mean cycle-canceling algorithm O(n2m3 log n) 

Repeated capacity scaling algorithm O«m2 log n)(m + n log n» 

Enhanced capacity scaling algorithm O«m log n)(m + n log n» 

Figure 10.13 Running times of polynomial-time minimum cost flow algorithms. 
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This algorithm is a special implementation of the cycle canceling algorithm that we 
described in Section 9.6; it always augments flow along a minimum mean (negative) 
cycle in the residual network. To establish that this algorithm is strongly polynomial, 
we show that (1) when the reduced cost of an arc is sufficiently large, the flow on 
the arc becomes "fixed" (i.e., does not change any more); and (2) within O(nm log 
n) iterations, at least one additional arc has a sufficiently large reduced cost so that 
its value becomes fixed. 

If we adopt a similar idea in the capacity scaling algorithm, it also becomes 
strongly polynomial. We showed that whenever the flow on an arc (i,j) is sufficiently 
large, we can fix the potentials of nodes i and j with respect to each other. The 
repeated capacity scaling algorithm applies the capacity scaling algorithm and within 
O(log n) scaling phases, it identifies an arc (i, j) with a sufficiently large flow. The 
algorithm then merges the nodes i and j into a single node and starts from scratch 
again on the modified minimum cost flow problem. The enhanced capacity scaling 
algorithm, described next, dramatically improves on the repeated capacity scaling 
algorithm by observing that whenever we contract an arc, we need not start all over 
again, .but can continue the computations and stilI contract an additional arc within 
every O(log n) scaling phases and use only Oem log n) augmentations in total. This 
algorithm does not perform contractions explicitly, but does so implicitly by main
taining zero excesses at the contracted nodes (i.e., nonroot nodes). 

REFERENCE NOTES 

The following account of polynomial-time minimum cost flow algorithms is fairly 
brief. The surveys by Ahuja, Magnanti, and Orlin [1989, 1991] and by Goldberg, 
Tardos, and TaIjan [1989] provide more details concerning the development of this 
field. 

Most of the available (combinatorial) polynomial-time algorithms for the min
imum cost flow problems use scaling techniques. Edmonds and Karp [1972] intro
duced the scaling approach and obtained the first weakly polynomial-time algorithm 
for the minimum cost flow problem. This algorithm used the capacity scaling tech
nique. The algorithm we presented in Section lO.2, which is a variant of Edmonds 
and Karp's algorithm, is due to Orlin [1988]. From 1972 to 1984, there was little 
research on scaling techniques. Since 1985, research employing scaling techniques 
has been extensive. Researchers now recognize that scaling techniques have great 
theoretical value as well as potential practical significance. Scaling techniques now 
yield many of the best (in the worst-case sense) available minimum cost flow al
gorithms. 

Rock [19801 and, independently, Bland and Jensen [1985] suggested a cost 
scaling technique for the minimum cost flow problem. This approach solves the 
minimum cost flow problem as a sequence of O(n log C) maximum flow problems. 
Goldberg and TaIjan [1987] improved on the running time of Rock's algorithm and 
solved the minimum cost flow problem by solving "almost" O(log(nC» maximum 
flow problems. This approach is based on the concept of E-optimality, which is, 
independently, due to Bertsekas [1979] and Tardos [19851. We describe this approach 
in Section lO.3. Goldberg and TaIjan [1987] have developed several improved im
plementations of this approach, including the wave implementation presented in 
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Section 10.3. Their best implementation, which runs in O(nm log(n 2/m) 10g(nC)) 
time, uses Fibonacci heaps and finger search trees. Bertsekas and Eckstein [1988], 
independently, discovered the wave implementation. 

Ahuja, Goldberg, Orlin, and TaIjan [1992] developed the double scaling al
gorithm described in Section 10.4, which combines capacity and cost scaling. This 
paper also describes several improved implementations, the best of which runs in 
O(nm log log U 10g(nC)) time and uses the Fibonacci heap data structure. 

When Edmonds and Karp [1972] suggested the first (weakly) polynomial-time 
algorithm for the minimum cost flow problem, they posed the development of a 
strongly polynomial-time algorithm as an open challenging problem. Tardos [1985] 
first settled this problem. Subsequently, Orlin [1984], Fujishige [1986], Galil and 
Tardos [1986], Goldberg and TaIjan [1987, 1988], Orlin [1988], and Ervolina and 
McCormick [1990b] developed other strongly polynomial-time algorithms. Cur
rently, the best strongly polynomial-time algorithm is due to Orlin [1988]; it runs in 
O((m log n)(m + n log n)) time. 

Most of the strongly polynomial-time minimum cost flow algorithm use the 
ideas of "fixing arc flows" or "fixing node potentials." Tardos [1985] was the first 
investigator to propose the use of either ofthese ideas (her algorithm fixes arc flows). 
The minimum mean cycle-canceling algorithm that we presented in Section 10.5 
fixes arc flows; it is due to Goldberg and TaIjan [1988]. Goldberg and TaIjan [1988] 
also presented several variants of the minimum mean cycle-canceling algorithm with 
improved worst-case complexity. Orlin [1984] and Fujishige [1986] independently 
developed the idea of fixing node potentials, which is the "dual" of fixing arc flows. 
Using this idea, Goldberg, Tardos, and TaIjan [1989] obtained the repeated capacity 
scaling algorithm that we examined in Section 10.6. The enhanced capacity scaling 
algorithm, which is due to Orlin [1988], achieves the best strongly polynomial-time 
for solving the minimum cost flow problem. However, our presentation of the en
hanced capacity scaling algorithm in Section 10.7 is based on Plotkin and Tardos' 
[1990] simplification of Orlin's original algorithm. 

Some additional polynomial-time minimum cost flow algorithms include (1) a 
triple scaling algorithm due to Gabow and TaIjan [1989a], (2) a special implemen
tation of the cycle canceling algorithm developed by Barahona and Tardos [1989], 
and (3) (its dual approach) a cut canceling algorithm proposed by Ervolina and 
McCormick [1990a]. 

Interior point linear programming algorithms are another source of polynomial
time algorithms for the minimum cost flow problem. Among these, the fastest avail
able algorithm, due to Vaidya [1989], solves the minimum cost flow problem in 
O(n2

.
sVfii K) time, with K = log n + log C + log U. 
Currently, the best available time bound for the minimum cost flow problem 

is O(min{nm log(n 2/m) 10g(nC)), nm (log log U) 10g(nC), (m log n)(m + n log n)}); 
the three bounds in this expression are, respectively, due to Goldberg and TaIjan 
[1987], Ahuja, Goldberg, Orlin, and TaIjan [1992], and Orlin [1988]. 

EXERCISES 

10.1. Suppose that we want to solve the minimum cost flow problem shown in Figure 
1O.14(a) by the capacity scaling algorithm. Show the computations for two scaling 
phases. You may identify the shortest path distances by inspection. 
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Figure 10.14 Examples for Exercises 10.1 and 10.4. 

10.2. In every iteration of the capacity scaling algorithm, we augment flow along a shortest 
path from a node k with e(k) ;::: ~ to a node I with e(l) ::S - ~. Suppose that we modify 
the algorithm as follows: We let node 1 be any deficit node; that is, we do not necessarily 
assume that e(l) ::S - ~. Will this modification affect the worst-case complexity of the 
capacity scaling algorithm? 

10.3. Prove or disprove the following statements. 
(a) During the ~-scaling phase of the capacity scaling algorithm, I e(i) I ::S 2 ~ for each 

node i E N. 
(b) While solving a specific instance of the minimum cost flow problem, the capacity 

scaling algorithm might perform more augmentations than the successive shortest 
path algorithm. 

10.4. Consider the minimum cost flow problem given in Figure 1O.14(a) and the feasible 
flow x shown in Figure 1O.14(b). Starting with e = 0, apply two phases of the cost 
scaling algorithm. 

10.5. Show that if the cost-scaling algorithm finds that arc (i, j) is inadmissible at some stage, 
this arc remains inadmissible until the algorithm relabels node i. 

10.6. Let x and x' be two distinct (feasible) flows in a network. The flow decomposition 
theorem implies that we can always express x' as x plus the flow along at most m 
directed cycles WI> W2 , ••• , Wp in G(x). For every 1 ::S i ::S p, let Wi denote the 
directed cycle obtained by reversing each arc in Wi' Show that we can express x as 
x' plus the flow along the cycles Wi, Wz, ... , W;. 

10.7. For the cost scaling algorithm, we showed that whenever e < lin, any e-optimal flow 
is O-optimal. Show that if we multiply all arc costs by n + 1, then any flow that is 
e-optimal flow for the modified problem when e ::S 1 is O-optimal for the original prob
lem. 

10.8. In the cost scaling algorithm, during a relabel operation we increase node potentials 
by e/2 units. Show that we can increase node potentials by as much as e/2 + 
min{cij : (i, j) in G(x) and rij > O} and still maintain e/2-optimality of the pseudoflow. 

10.9. Let x' be a feasible flow of the minimum cost flow problem and let x be a pseudoflow. 
Show that in the pseudoflow x, for every node v with an excess, there exists a node 
w with a deficit and a sequence of nodes v = VO, VI> V2, ••• , VI = w that satisfies 
the property that the path P = Vo - VI - V2 - ... - VI is a directed path in G(x) and 
its reversal P = VI - VI-I - ... - Vo is a directed path in G(X'). (Hint: This exercise 
is similar to Exercise 10.6.) 

10.10. In this exercise we study the non scaled version of the cost scaling algorithm. 
(a) Modify the algorithm described in Section 10.3 so that it starts with a O-optimal 
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pseudoflow, maintains an l/(n + 1)-optimal pseudoflow at every step, and ter
minates with an lI(n + 1)-optimal flow. 

(b) Determine the number of relabel operations, the number of saturating and non
saturating pushes, and the running time of the algorithm. Compare these numbers 
with those of the cost scaling algorithm. 

10.11. In the wave implementation of the cost scaling algorithm described in Section 10.3, 
we scaled costs by a factor of 2. Suppose, instead, that we scaled costs by a factor 
of k 2 2. In that case we start with 11 = k l10g CJ and decrease e by a factor of k between 
two consecutive scaling phases. Outline the changes required in the algorithm and 
determine the number of scaling phases, relabel operations, and saturating and non
saturating pushes within a scaling phase. For what value of k is the running time 
minimum? 

10.12. Generalized cost scaling algorithm (Goldberg and Tarjan [1987]). As we noted in the 
text, by using some of the ideas of the minimum mean cycle-canceling algorithm (de
scribed in Section 10.5), we can devise a strongly polynomial-time version of the cost 
scaling algorithm that we described in Section 10.3. The modified algorithm, which 
we call the generalized cost scaling algorithm, is the same as the cost scaling algorithm 
except that it performs the following additional step after it has called the procedure 
improve-approximation, but before resetting e : = e/2 (see Figure 10.3). 

Additional step: Solve a minimum mean cycle problem to determine the minimum 
mean cycle cost /L(x), set e = -/L(x), and then determine a set of potential 'IT so that 
the flow x is e-optimal with respect to 'IT (as described in the proof of Lemma 10.12). 

Show that the generalized cost scaling fixes a distinct arc after O(log n) scaling 
phases. What is the resulting running time of the algorithm? 

10.13. In the double scaling algorithm described in Section lOA, we scaled costs by a factor 
of 2. Suppose that as described in Exercise 10.2, we scale costs by a factor of k instead 
of 2. Show that within a cost scaling phase, the algorithm performs O(knm) retreat 
steps. How many advance steps does the algorithm perform within a scaling phase? 
How many scaling phases does it require? For what value of k does the algorithm run 
in the least time? What is the time bound for this value of k? 

10.14. An arc (i, j) in the network G = (N, A) is critical if increasing Cij causes the cost of 
the optimal flow to increase and decreasing Cij causes the cost of the optimal flow to 
decrease. Does a network always contain a critical arc? Show that we can identify all 
critical arcs by solving O(m) maximum flow problems. (Hint: Use' the fact that an arc 
is critical if it carries a positive flow in every optimal flow.) 

10.15. In some minimum cost flow problem, each arc capacity and each supply/demand is a 
mUltiple of ex and lies in the range [0, exK] for some constant K. Will the algorithms 
discussed in this chapter run any faster when applied to minimum cost flow problems 
with this special structure? 

10.16. Suppose that in some minimum cost flow problem, each arc cost is a mUltiple of ex 
and lies in the range [0, exK] for some constant K. Will this special structure permit 
us to solve the minimum cost flow problem any faster by the cost scaling and double 
scaling algorithms? 

10.17. Minimum cost flows in unit capacity networks. A network is a unit capacity network 
if each arc has a capacity of 1. 
(a) What is the running time of the capacity scaling algorithm for unit capacity net

works? 
(b) What is the running time of the cost scaling algorithm for unit capacity networks? 

(Hint: Will the algorithm make any non saturating pushes?) 
10.lS. Minimum cost flows in bipartite networks. Let G = (N1 U N 2 , A) be a bipartite network. 

Let nl = I NI I :5 I N2 I = n2' 
(a) Show that when applied to a bipartite network, the cost scaling algorithm relabels 

any node O(nl) times during a scaling phase. 
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(b) Develop an implementation of the generic cost scaling algorithm that runs in 
O(nrm log(nC)) time for bipartite networks. (Hint: Generalize the bipartite 
preflow-push algorithm for the maximum flow problem discussed in Section 8.3.) 

10.19. What is the running time of the double scaling algorithm for bipartite networks G == 
(Nt U N 2, A), assuming that nt == I Nt I :5 I N2 I = n2? 

10.20. Two minimum cost flow problems pI and P" are capacity adjacent if P" differs from 
P' only in one arc capacity and by 1 unit. Given an optimal solution of pI, describe 
an efficient method for solving P". (Hint: Reoptimize by solving a shortest path prob
lem.) 

10.21. Two minimum cost flow problems pI arid P" are cost adjacent if P" differs from pI 
only in one arc cost, and by 1 unit. Given an optimal solution of pI, describe an efficient 
method for solving P". (Hint: Reoptimize by solving a maximum flow problem.) 

10.22. Bit scaling of capacities (Rock [1980]). In this capacity scaling algorithm, we consider 
binary representations of the arc capacities (as described in Section 3.3) and define 
problem p k to be the minimum cost flow problem with each arc capacity equal to the 
k leading bits of the actual capacity. Given an optimal solution of pk, how would you 
obtain an optimal solution of pk+ t by solving at most m capacity adjacent problems 
(as defined in Exercise 10.20). Write a pseudocode for the minimum cost flow problem 
assuming the availability of a subroutine for solving capacity adjacent problems (Le., 
solving one from the solution to the other). What is the running time of your algorithm? 

10.23. Bit scaling of costs (Rock [1980]). In this cost scaling algorithm, we consider binary 
representations of the arc costs and define problem p k to be the minimum cost flow 
problem with each arc cost equal to the k leading bits of the actual cost. Given an 
optimal solution of Pk, how would you obtain an optimal solution of p k + 1 by solving 
at most m cost adjacent problems (as defined in Exercise 1O.21)? Write a pseudocode 
for the minimum cost flow problem assuming the availability of a subroutine for solving 
cost adjacerit-problems (Le., solving one from the solution to the other). What is the 
running time of your algorithm? 

10.24. Suppose that we define the contraction of an arc as in Section 10.5. Let GC denote 
the network of G = (N, A) we obtain when we contract the endpoints of an arc 
(k, l) E A into a single node p. In addition, let G' = (N, A - {(k, I)}). Show that if 
a(G) denotes the number of (distinct) spanning trees of G, then a(G) = a(GC

) + 
a(G' ). 

10.25. Constrahwd maximum flow problem. In the constrained maximum flow problem, we 
wish to maximize the flow from the source node s to the sink node t subject to an 
additional linear constraint. Consider the following linear programming formulation 
of this problem: 
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subject to 

Maximize v 

~ xij - ~ Xji = { ~ 
{j:(i,j)EA} {j:(j,i)EA} -v 

o :5 xij :5 uij, 

~ cijXij:5 D. 
(ij)EA 

for i = s 
for all i E N - {s,t} 
for i = t, 

(a) Let v* be any integer and let x* be an optimal solution of a minimum cost flow 
problem with the objective function ~(i,j)EA cijxij and with the supply/demand 
data b(s) = v*, b(t) = -v*, and b(i) = 0 for all other nodes. Let z* = 
~(iJ)EA CijXt· Show that x* solves the constrained maximum flow problem when 
D = z*. Assume that cij ;:::: 0 for each arc (i, j) E A. 

(b) Assume that all of the data in the constrained maximum flow problem are integer. 
Use the result in part (a) to develop an algorithm for the constrained maximum 
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flow problem that uses a minimum cost flow algorithm as a subroutine. What is 
the running time of your algorithm? (Hint: Perform binary search on v.) 

10.26. In the enhanced capacity scaling algorithm, suppose we maintain an index with each 
arc that stores whether the arc is an abundant or a nonabundant arc. Suppose further 
that at some stage the algorithm adds an arc (i, j) to the abundant subgraph. Show 
how you would perform each of the following operations in Oem) time: (i) identifying 
the root nodes, ir and jn of the abundant components containing the nodes i and j; 
(ii) determining whether the nodes i and j belong to the same abundant component; 
and (iii) identifying a path from node i to j, or vice versa. Using these operations, 
explain how you would perform a merge operation and the subsequent imbalance
property augmentation in Oem) time. (Hint: Observe that each abundant arc can be 
traversed in either direction because it has sufficient residual capacity in both the 
directions. Then use the search algorithm described in Section 3.4.) 
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MINIMUM COST FLOWS: NETWORK 
SIMPLEX ALGORITHMS 

Chapter Outline 
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11.2 Cycle Free and Spanning Tree Solutions 
11.3 Maintaining a Spanning Tree Structure 
11.4 Computing Node Potentials and Flows 
11.5 Network Simplex Algorithm 
11.6 Strongly Feasible Spanning Trees 

... seek, and ye shall find. 
-The Book of Matthew 

11.7 Network Simplex Algorithm for the Shortest Path Problem 
11.8 Network Simplex Algorithm for the Maximum Flow Problem 
11.9 Related Network Simplex Algorithms 
11.10 Sensitivity Analysis 
11 .11 Relationship to Simplex Method 
11.12 U nimodularity Property 
11.13 Summary 

11.1 INTRODUCTION 

The simplex method for solving linear programming problems is perhaps the most 
powerful algorithm ever devised for solving constrained optimization problems. In
deed, many members of the academic community view the simplex method as not 
only one of the principal computational engines of applied mathematic,s, computer 
science, and operations research, but also as one of the landmark contributi6ns to 
computational mathematics of this century. The algorithm has achieved this lofty 
status because of the pervasiveness of its applications throughout many problem 
domains, because of its extraordinary efficiency, and because it pertp.its ~s to not 
only solve problems numerically, but also to gain considerable practical and theo-
retical insight through the use of sensitivity analysis and duality theory. ", 

Since minimum cost flow problems define a special class of linear programs, 
we might expect the simplex method to be an attractive solution procedure for solving 
many of the problems that we consider in this text. Then again, because network 
flow problems have considerable special structure, we might also ask whether the 
simplex method could possibly compete with other "combinatorial" methods, such 
as the many variants of the successive shortest path algorithm, that exploit the 
underlying network structure. The general simplex method, when implemented in 
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a way that does not exploit underlying network structure, is not a competitive so
lution procedure for solving minimum cost flow problems. Fortunately, however, if 
we interpret the core concepts of the simplex method appropriately as network 
operations, we can adapt and streamline the method to exploit the network structure 
of the minimum cost flow problem, producing an algorithm that is very efficient. 
Our purpose in this chapter is to develop this network-based implementation of the 
simplex method and show how to apply it to the minimum cost flow problem, the 
shortest path problem, and the maximum flow problem. 

We could adopt several different approaches for presenting this material, and 
each has its own merits. For example, we could start by describing the simplex 
method for general linear programming problems and then show how to adapt the 
method for minimum cost flow problems. This approach has the advantage of placing 
our development in the broader context of more general linear programs. Alterna
tively, we could develop the network simplex method directly in the context of 
network flow problems as a particular type of augmenting cycle algorithm. This 
approach has the advantage of not requiring any background in linear programming 
and of building more directly on the concepts that we have developed already. We 
discuss both points of view. Throughout most of this chapter we adopt the network 
approach and derive the network simplex algorithm from the first principles, avoiding 
the use of linear programming in any direct way. Later, in Section 11.11, we show 
that the network simplex algorithm is an adaptation of the simplex method. 

The central concept underlying the network simplex algorithm is the notion of 
spanning tree solutions, which are solutions that we obtain by fixing the flow of 
every arc not in a spanning tree either at value zero or at the arc's flow capacity. 
As we show in this chapter, we can then solve uniquely for the flow on all the arcs .. 
in the spanning tree. We also show that the minimum cost flow problem always has 
at least one optimal spanning tree solution and that it is possible to find an optimal 
spanning tree solution by "moving" from one such solution to another, at each step 
introducing one new nontree arc into the spanning tree in place of one tree arc. This 
method is known as the network simplex algorithm because spanning trees corre
spond to the so-called basic feasible solutions of linear programming, and the move
ment from one spanning tree solution to another corresponds to a so-called pivot 
operation of the general simplex method; In Section 11.11 we make these connec
tions. 

In the first three sections of this chapter we examine several fundamental ideas 
that either motivate the network simplex method or underlie its development. In 
Section 11.2 we show that the minimum cost flow problem always has at least one 
spanning tree solution. We also show how the network optimality conditions that 
we have used repeatedly in previous chapters specialize when applied to any span
ning tree solution. In keeping with our practice in previous chapters, we use these 
conditions to assess whether a candidate solution is optimal and, ifnot, how to modify 
it to construct a better spanning tree solution. 

To implement the network simplex algorithm efficiently we need to develop a 
method for representing spanning trees conveniently in a computer so that we can 
perform the basic operations of the algorithm efficiently and so that we can efficiently 
manipUlate the computer representation of a spanning tree structure from step to 
step. We describe one such approach in Section 11.3. 
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In Section 11.4 we show how to compute the arc flows corresponding to any 
spanning tree and associated node potentials so that we can assess whether the 
particular spanning tree is optimal. These operations are essential to the network 
simplex algorithm, and since we need to make these computations repeatedly as we 
move from one spanning tree to another, we need to be able to implement these 
operations very efficiently. Section 11.5 brings all these pieces together and describes 
the network simplex algorithm . 

. In the context of applying the network simplex algorithm and establishing that 
the algorithm properly solves any given minimum cost flow problem, we need to 
address a technical issue known as degeneracy (which occurs when one of the arcs 
in a spanning tree, like the nontree arcs, has a flow value equal to zero or the arc's 
flow capacity). In Section 11.6 we describe a very appealing and simple way to 
modify the basic network simplex algorithm so that it overcomes the difficulties 
associated with degeneracy. 

Since the shortest path and maximum flow problems are special cases of the 
minimum cost flow problem, the network simplex algorithm applies to these prob
lems as well. In Sections 11.7 and 11.8 we describe these specialized implementa
tions. When applied to the shortest path problem, the network simplex algorithm 
closely resembles the label-correcting algorithms that we discussed in Chapter 5. 
When applied to the maximum flow problem, the algorithm is essentially an aug
menting path algorithm. 

The network simplex algorithm maintains a feasible solution at each step; by 
moving from one spanning tree solution to another, it eventually finds a spanning 
tree solution that satisfies the network optimality conditions. Are there other span
ning tree algorithms that iteratively move from one infeasible spanning tree solution 
to another and yet eventually find an optimal solution? In Section 11. 9 we describe 
two such algorithms: a parametric network simplex algorithm that satisfies all of the 
optimality conditions except the mass balance constraints at two nodes, and a dual 
network simplex algorithm that satisfies the mass balance constraints at all the nodes 
but might violate the arc flow bounds. These algorithms are important because they 
provide alternative solution strategies for solving minimum cost flow problems; they 
also illustrate the versatility of spanning tree manipUlation algorithms for solving 
network flow problems. 

We next consider a key feature of the optimal spanning tree solutions generated 
by the network simplex algorithm. In Section 11.10 we show that it is easy to use 
these solutions to conduct sensitivity analysis: that is, to determine a new solution 
if we change any cost coefficient or change the capacity of any arc. This type of 
information is invaluable in practice because problem data are often only approxi
mate and/or because we would like to understand how robust a solution is to changes 
in the underlying data. 

To conclude this chapter we delineate connections between the network sim
plex algorithm and more general concepts in linear and integer programming. In 
Section 11.11 we show that the network simplex algorithm is a special case of the 
simplex method for general linear programs, although streamlined to exploit the 
special structure of network flow problems. In particular, we show that spanning 
trees for the network flow problem correspond in a one-to-one fashion with bases 
of the linear programming formulation of the problem. We also show that each of 
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the essential steps of the network simplex algorithm, for example, determining node 
potentials or moving from one spanning tree to another, are specializations of the 
usual steps of the simplex method for solving linear programs. 

As we have noted in Section 9.6, network flow problems satisfy one very 
remarkable property: They have optimal integral flows whenever the underlying data 
are integral. In Section 11.12 we show that this integrality result is a special case of 
a more general result in linear and integer programming. We define a set of linear 
programming problems with special constraint matrices, known as unimodular ma
trices, and show that these linear programs also satisfy the integrality property. That 
is, when solved as linear programs with integral data, problems with these specialized 
constraint matrices always have integer solutions. Since node-arc incidence ma
trices satisfy the unimodularity property, this integrality property for linear pro
gramming is a strict generalization of the integrality property of network flows. This 
result provides us with another way to view the integrality property of network flows; 
it is also suggestive of more general results in integer programming and shows how 
network flow results have stimulated more general investigations in combinatorial 
optimization and integer programming. 

11.2 CYCLE FREE AND SPANNING TREE SOLUTIONS 

Much of our development in previous chapters has relied on a simple but powerful 
algorithmic idea: To generate an improving sequence of solutions to the minimum 
cost flow problem, we iteratively augment flows along a series of negative cycles 
and shortest paths. As one of these variants, the network simplex algorithm uses a 
particular strategy for generating negative cycles. In this-section, as a prelude to 
our discussion of the method, we introduce some basic background material. We 
begin by examining two important concepts known as cycle free solutions and span
ning tree solutions." 

For any feasible solution, x, we say that an arc (i, j) is afree arc if 0 < Xij < 
Uu and is a restricted arc if Xu = 0 or Xu = uu. Note that we can both increase and 
decrease flow on a free arc while honoring the bounds on arc flows. However, in a 
restricted arc (i, j) at its lower bound (i.e., Xu = 0) we can only increase the flow. 
Similarly, for flow on a restricted arc (i, j) at its upper bound (i.e., Xij = Uij) we can 
only decrease the flow. We refer to a solution X as a cycle free solution if the network 
contains no cycle composed only of free arcs. Note that in a cycle free solution, we 
can augment flow on any augmenting cycle in only a single direction since some arc 
in any cycle will restrict us from either increasing or decreasing that arc's flow. We 
also refer to a feasible solution X and an associated spanning tree of the network as 
a spanning tree solution if every nontree arc is a restricted arc. Notice that in a 
spanning tree solution, the tree arcs can be free or restricted. Frequently, when we 
refer to a spanning tree solution, we do not explicitly identify the associated tree; 
rather, it will be understood from the context of our discussion. 

In this section we establish a fundamental result of network flows: minimum 
cost flow problems always have optimal cycle free and spanning tree solutions. The 
network simplex algorithm will exploit this result by restricting its search for an 
optimal solution to only spanning tree solutions. To illustrate the argument used to 
prove these results, we use the network example shown in Figure 11.1. 
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Figure 11.1 Improving flow around a cycle: (a) feasible solution; (b) solution after aug
menting 9 amount of flow along a cycle. 

2+9 

For the time being let us assume that all arcs are uncapacitated [i.e., Uij = 00 

for each (i,j) E AJ. The network shown in Figure 11.1 contains positive flow around 
a cycle. We define the orientation of the cycle as the same as that of arc (4, 5). Let 
us augment 6 units of flow along the cycle in the direction of its orientation. As 
shown in Figure 11.1, this augmentation increases the flow on arcs along the ori
entation of the cycle (i.e., forward arcs) by 6 units and decreases the flow on arcs 
opposite to the orientation of the cycle (i.e., backward arcs) by 6 units. Also note 

. that the per unit incremental cost for this flow change is the sum of the costs of 
forward arcs minus the sum of the costs of backward arcs in the cycle, that is, 

per unit change in cost Ll = 2 + 1 + 3 - 4 - 3 = - 1. 

Since augmenting flow in the cycle decreases the cost, we set 6 as large as 
possible while preserving nonnegativity of all arc flows. Therefore, we must satisfy 
the inequalities 3 - 6 2:: ° and 4 - 6 2:: 0, and hence we set 6 = 3. Note that in the 
new solution (at e = 3), some arc in the cycle has a flow at value zero, and moreover, 
the objective function value of this solution is strictly less than the value ofthe initial 
solution. 

In our example, if we change C12 from 2 to 5, the per unit cost of the cycle is 
Ll = 2. Consequently, to improve the cost by the greatest amount, we would decrease 
6 as much as possible (i.e., satisfy the restrictions 5 + 6 2:: 0, 2 + 6 2:: 0, and 4 + 
6 2:: 0, or e 2:: - 2) and again find a lower cost solution with the flow on at least one 
arc in the cycle at value zero. We can restate this observation in another way: To 
preserve nonnegativity of all the arc flows, we must select e in the interval - 2 ::; 
e ::; 3. Since the objective function depends linearly on e, we optimize it by selecting 
6 = 3 or 6 = - 2, at which point one arc in the cycle has a flow value of zero. 

We can extend this observation in several ways: 

1. If the per unit cycle cost Ll = 0, we are indifferent to all solutions in the interval 
- 2 ::; e ::; 3 and therefore can again choose a solution as good as the original 
one, but with the flow of at least one arc in the cycle at value zero. 

2. If we impose upper bounds on the flow (e.g., such as 6 units on all arcs), the 
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range offlow that preserves feasibility (i.e., the mass balance constraints, lower 
and upper bounds on flows) is again an interval, in this case -2::.; 6 ::.; 1, and 
we can find a solution as good as the original one by choosing 6 = - 2 or 
6 = 1. At these values of 6, the solution is cycle free; that is, some arc on the 
cycle has a flow either at value zero (at the lower bound) or at its upper bound. 

In general, our prior observations apply to any cycle in a network. Therefore, 
given any initial flow we can apply our previous argument repeatedly, one cycle at 
a time, and establish the following fundamental result. 

Theorem 11.1 (Cycle Free Property). If the objective function of a minimum 
cost flow problem is bounded from below over the feasible region, the problem 
always has an optimal cycle free solution. • 

It is easy to convert a cycle free solution into a spanning tree solution. Our 
results in Section 2.2 show that the free arcs in a cycle free solution define a forest 
(i.e., a collection of node-disjoint trees). If this forest is a spanning tree, the cycle 
free solution is already a spanning tree solution. However, if this forest is not a 
spanning tree, we can add some restricted arcs and produce a spanning tree. 

Figure 11.2 illustrates a spanning tree corresponding to a cycle free solution. 

(2,3) 

(1,2) 

Sec. 11.2 

(fj) (xU'ui) .(]) 
". 

(4,4) 

(3,3) (1, 1) (1,6) 

(0,5) 

(a) (b) 

@ .~ ~, ~ 

(c) 

Figure 11.2 Converting a cycle free solution into a spanning tree solution: 
(a) example network; (b) set of free arcs; (c) 2 spanning tree solutions. 
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The solution in Figure 11.2(a) is cycle free. Figure 11.2(b) represents the set of free 
arcs, and Figure 11.2(c) shows two spanning tree solutions corresponding to the 
cycle free solution. As shown by this example, it might be possible (and often is) to 
complete the set of free arcs into a spanning tree in several ways. Adding the arc 
(3, 4) instead of the arc (2, 4) or (3, 5) would produce yet another spanning tree 
solution. Therefore, a given cycle free solution can correspond to several spanning 
trees. Nevertheless, since we assume that the underlying network is connected, we 
can always add some restricted arcs to the free arcs of a cycle free solution to produce 
a spanning tree, so we have established the following fundamental result: 

Theorem 11.2 (Spanning Tree Property). If the objective function of a minimum 
cost flow problem is bounded from below over the feasible region, the problem 
always has an optimal spanning tree solution. • 

A spanning tree solution partitions the arc set A into three subsets: (1) T, the 
arcs in the spanning tree; (2) L, the nontree arcs whose flow is restricted to value 
zero; and (3) U, the nontree arcs whose flow is restricted in value to the arcs' flow 
capacities. We refer to the triple (T, L, U) as a spanning tree structure. 

Just as we can associate a spanning tree structure with a spanning tree solution, 
we can also obtain a unique spanning tree solution corresponding to a given spanning 
tree structure (T, L, U). To do so, we set Xij = 0 for all arcs (i, j) E L, Xij = Uij for 
all arcs (i, j) E U, and then solve the mass balance equations to determine the flow 
values for arcs in T. In Section 11.4 we show that the flows on the spanning tree 
arcs are unique. We say that a spanning tree structure is feasible if its associated 

. spanning tree solution satisfies all of the arcs' flow bounds. In the special case in 
which every tree arc in a spanning tree solution is a free arc, we say that the spanning 
tree is nondegenerate; otherwise, we refer to it as a degenerate spanning tree. We 
refer to a spanning tree structure as optimal if its associated spanning tree solution 
is an optimal solution of the minimum cost flow problem. The following theorem 
states a sufficient condition for a spanning tree structure to be an optimal structure. 
As shown by ?ur disc~ssion in pr~vious chap~e.rs, th~Fredu~~ed .costs de~n~d as 
cIl = Cij - 'TI'(I) + 'TI'(j) are useful m charactenzmg optimal solutlOns to mllllmum 
cost flow problems. 

Theorem 11.3 (Minimum Cost Flow Optimality Conditions). A spanning tree 
structure (T, L, U) is an optimal spanning tree structure of the minimum cost flow 
problem if it is feasible and for some choice of node potentials 'TI', the arc reduced 
costs cIl satisfy the following conditions: 

(a) cIl = 0 for all (i, j) E T. 

(b) cij ~ 0 for all (i, j) E L. 

(c) cij:5 0 for all (i, j) E U. 

(11.1a) 

(l1.1b) 

(11.1c) 

Proof Let X* be the solution associated with the spanning tree structure (T, 
L, U). We know that some set of node potentials 'TI', together with the spanning tree 
structure (T, L, U), satisfies (11.1). 

We need to show that X* is an optimal solution of the minimum cost flow 

408 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



problem. In Section 2.4 we showed that minimizing LU,j)EA CijXij is equivalent to 
minimizing LU,j)EA cijxij. The conditions stated in (11.1) imply that for the given 
node potential 'IT , minimizing LU,j)EA cijxij is equivalent to minimizing the following 
expression: 

Minimize L cijxij - L I cij I Xij. (11.2) 
U,j)EL U,j)EU 

The definition of the solution x* implies that for any arbitrary solution x, 
Xij ;:::: xt for all (i, j) ELand xij :5 Xu for all (i, j) E U. The expression (11.2) implies 
that the objective function value of the solution X will be greater than or equal to 
that of x*. • 

These optimality conditions have a nice economic interpretation. As we shall 
see later in Section 11.4, if'IT(1) = 0, the equations in (11.1a) imply that -'IT(k) 
denotes the length of the tree path from node 1 to node k. The reduced cost cij = 

Cij - 'IT(i) + 'IT(j) for a nontree arc (i, j) E L denotes the change in the cost of the 
flow that we realize by sending 1 unit of flow through the tree path from node 1 to 
node i through the arc (i, j), and then back to node 1 along the tree path from node 
j to node 1. The condition ( 11.1 b) implies that this circulation of flow is not profitable 
(i.e., does not decrease cost) for any nontree arc in L. The condition (11.1c) has a 
similar interpretation. 

The network simplex algorithm maintains a feasible spanning tree structure 
and moves from one spanning tree structure to another until it finds an optimal 
structure. At each iteration, the algorithm adds one arc to the spanning tree in place 
of one of its current arcs. The entering arc is a nontree arc violating its optimality 
condition. The algorithm (1) adds this arc to the spanning tree, creating a negative 
cycle (which might have zero residual capacity), (2) sends the maximum possible 
flow in this cycle until the flow on at least one arc in the cycle reaches its lower or 
upper bound, and (3) drops an arC whose flow has reached its lower or upper bound, 
giving us a new spanning tree structure. Because of its relationship to the primal 
simplex algorithm for the linear programming problem (see Appendix C), this op
eration of moving from one spanning tree structure to another is known as a pivot 
operation, and the two spruming trees structures obtained in consecutive iterations 
are called adjacent spdhning tree structures. In Section 11.5 we give a detailed 
description of this algorithm. 

11.8 MAINTAINING A SPANNING TREE STRUCTURE 

Since the network simplex algorithm generates a sequence of spanning tree solutions, 
to implement th~ algorithm effectively, we need to be able to represent spanning 
trees conveniently in a computer so that the algorithm can perform its basic oper
ations efficiently and can update the representation quickly when it changes the 
spanning tree. Over the years, researchers have suggested several procedures for 
maintaining and manipulating a spanning tree structure. In this section we describe 
one of the more popular representations. 

We consider the tree as "hanging" from a specially designated node, called 
the root. Throughout this chapter we assume that node 1 is the root node. Figure 
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11.3 gives an example of a tree. We associate three indices with each node i in the 
tree: a predecessor index, pred(i) , a depth index depth(O, and a thread index, 
thread(i). 
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(a) (b) 

Figure 11.3 Example of a tree indices: (a) rooted tree; (b) corresponding tree indices. 

Predecessor index. Each node i has a unique path connecting it to the root. 
The index pred(i) stores the first node in that path (other than node 0. For example, 
the path 9-6-5-2-1 connects node 9 to the root; therefore, pred(9) = 6. By con
vention, we set the predecessor node of the root node, node 1, equal to zero. Figure 
11.3 specifies these indices for the other nodes. Observe that by iteratively using 
the predecessor indices, we can enumerate the path from any node to the root. 

A node j is called a successor of node i if pred(j) = i. For example, node 5 
has two successors: nodes 6 and 7. A leaf node is a node with no successors. In 
Figure 11.3, nodes 4, 7, 8, and 9 are leaf nodes. The descendants of a node i are 
the node i itself, its successors, successors of its successors, and so on. For example, 
in Figure 11.3, the elements of node set {5, 6, 7, 8, 9} are the descendants of node 
5. 

Depth index. We observed earlier that each node i has a unique path con
necting it to the root. The index depth(i) stores the number of arcs in that path. For 
example, since the path 9-6-5-2-1 connects node 9 to the root, depth(9) = 4. Figure 
11.3 gives depth indices for all of the nodes in the network. 

Thread index. The thread indices define a traversal of a tree, that is, a 
sequence of nodes that walks or threads its way through the nodes of a tree, starting 
at the root node, and visiting nodes in a "top-to-bottom" order, and finally returning 
to the root. We can find thread indices by performing a depth-first search of the tree 
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as described in Section 3.4 and setting the thread of a node to be the node in the 
depth-first search encountered just after the node itself. For our example, the depth
first traversal would read 1-2-5-6-8-9-7-3-4-1, so thread(1) = 2, thread(2) = 5, 
thread(5) = 6, and so on (see the dashed lines in Figure 11.3). 

The thread indices provide a particularly convenient means for visiting (or 
finding) all descendants of a node i. We simply follow the thread starting at that 
node and record the nodes visited, until the depth of the visited node becomes at 
least as large as that of node i. For example, starting at node 5, we visit nodes 6, 
8, 9, and 7 in order, which are the descendants of node 5 and then visit node 3. 
Since the depth of node 3 equals that of node 5, we know that we have left the 
"descendant tree" lying below node 5. We shall see later that finding the descendant 
tree of a node efficiently is an important step in developing an efficient implemen
tation of the network simplex algorithm. 

In the next section we show how the tree indices permit us to compute the 
feasible solution and the set of node potentials associated with a tree. 

11.4 COMPUTING NODE POTENTIALS AND FLOWS 

As we noted in Section 11.2, as the network simplex algorithm moves from one 
spanning tree to the next, it always maintains the condition that the reduced cost of 
every arc (i, j) in the current spanning tree is zero (i.e. cij = 0). Given the current 
spanning tree structure (T, L, U), the method first detennines values for the node 
potentials 'IT that will satisfy this condition for the tree arcs. In this section we show 
how to find these values of the node potentials. _-

Note that we can set the value of one node potential arbitrarily because adding 
a constant k to each node potential does not alter the reduced cost of any arc; that 
is, for any constant k, Cil = Cij - 'IT(i) + 'IT(j) = Cij - ['IT(i) + k]:r- ['IT(j) + k]. 
So for convenience, we henceforth assume that 'IT(1) = O. We compute the remaining 
node potentials using the fact that the reduced cost of every spanning tree arc is 
zero; that is, 

Cij = Cij - 'IT(i) + 'IT(j) = 0 for every arc (i, j) E T. (11.3) 

In equation (11.3), if we know one of the node potentials 'IT(i) or 'IT(j), we can 
easily compute the other one. Consequently, the basic idea in the procedure is to 
start at node 1 and fan out along the tree arcs using the thread indices to compute 
other node potentials. By traversing the nodes using the thread indices, we ensure 
that whenever the procedure visits a node k, it has already evaluated the potential 
of its predecessor, so it can compute 'IT(k) using (11.3). Figure 11.4 gives a formal 
statement of the procedure compute-potentials. 

The numerical example shown in Figure 11.5 illustrates the procedure. We first 
set 'IT(1) = O. The thread of node 1 is 2, so we next examine node 2. Since arc 
(1, 2) connects node 2 to its predecessor, using (11.3) we find that 'IT(2) = 'IT(1) -
C12 = - 5. We next examine node 5, which is connected to its parent by arc (5, 2). 
Using (11.3) we obtain 'IT(5) = 'IT(2) + C52 = -5 + 2 = -3. In the same fashion 
we compute the rest of the node potentials; the numbers shown next to each node 
in Figure 11.5 specify these values. 
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procedure compute-potentials; 
begin 

7T(1) : = 0; 
j: = thread(1); 
while j ~ 1 do 
begin 

i : = pred( j); 
if (i, j) E A then 7r(j) : = 7r(i) - Cij; 

if (j, t) E A then 7r(j) : = 7r(t) + Cji; 

j: = thread(j); 
end; 

end; 
Figure 11.4 Procedure compute
potentials. 

Figure 11.5 Computing node 
potentials for a spanning tree. 

Let P be the tree path in T from the root node 1 to some node k. Moreover, 
let P and r., respectively, denote the sets of forward and backward arcs in P. Now 
let us examine arcs in P starting at node 1. The procedure compute-potentials implies 
that 'IT(j) = 'IT(i) - Cij whenever arc (i, j) is a forward arc in the path, and that 
'IT(j) = 'IT(i) + Cji whenever arc (j, i) is a backward arc in the path. This observation 
implies that 'IT(k) = 'IT(k) - 'IT(1) = - LU,j)EP Cij + L(i,j)Et: cij' In other words, 
'IT(k) is the negative of the cost of sending 1 unit of flow from node 1 to node k along 
the tree path. Alternatively, 'IT(k) is the cost of sending 1 unit of flow from mode k 
to node 1 along the tree path. The procedure compute-potentials requires 0(1) time 
per iteration and performs (n - 1) iterations to evaluate the node potential of each 
node. Therefore, the procedure runs in O(n) time. 

One important consequence of the procedure compute-potentials is that the 
minimum cost flow problem always has integer optimal node potentials whenever 
all the arc costs are integer. To see this result, recall from Theorem 11.2 that the 
minimum cost flow problem always has an optimal spanning tree solution. The po
tentials associated with this tree constitute optimal node potentials, which we can 
determine using the procedure compute-potentials. The description ofthe procedure 
compute-potentials implies that if all arc costs are integer, node potentials are integer 
as well (because the procedure performs only additions and subtractions). We refer 
to this integrality property of optimal node potentials as the dual integrality property 
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since node potentials are the dual linear programming variables associated with the 
minimum cost flow problem. 

Theorem 11.4 (Dual Integrality Property). If all arc costs are integer, the min-
imum cost flow problem always has optimal integer node potentials. • 

Computing Arc Flows 

We next consider the problem of determining the flows on the tree arcs of a given 
spanning tree structure. To ease our discussion, for the moment let us first consider 
the uncapacitated version of the minimum cost flow problem. We can then assume 
that all nontree arcs carry zero flow. 

If we delete a tree arc, say arc (i,j), from the spanning tree, the tree decomposes 
into two subtrees. Let T, be the subtree containing node i and let T2 be the subtree 
containing node j. Note that LkETJ b(k) denotes the cumulative supply/demand 
of nodes in T, [which must be equal to - LkET2 b(k) because LkETJ b(k) + 
LkET2 b(k) = 0]. In the spanning tree, arc (i, j) is the only arc that connects the 
subtree T, to the subtree T2 , so it must carry LkETJ b(k) units of flow, for this is 
the only way to satisfy the mass balance constraints. For example, in Figure 11.6, 
if we delete arc (1, 2) from the tree, then T, = {I, 3, 6, 7}, T2 = {2, 4, 5}, and 
LkETJ b(k) = 10. Consequently, arc (1, 2) carries 10 units of flow. 
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Figure 11.6 Computing flows for a spanning tree. 
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U sing this observation we can devise an efficient method for computing the 
flows on all the tree arcs. Suppose that (i, j) is a tree arc and that node j is a leaf 
node [the treatment of the case when (i, j) is a tree arc and node i is a leaf node is 
similar]. Our observations imply that arc (i, j) must carry - b(j) units of flow. For 
our example, arc (3, 7) must carry 15 units of flow to satisfy the demand of node 7. 
Setting the flow on this arc to this value has an effect on the mass balance of its 
incident nodes: we must subtract 15 units from b(3) and add 15 units to b(7) [which 
reduces b(7) to zero]. Having determined X37, we can delete arc (3, 7) from the tree 
and repeat the method on the smaller tree. Notice that we can identify a leaf node 
in every iteration because every tree has at least two leaf nodes (see Exercise 2.13). 
Figure 11.7 gives a formal description of this procedure. 
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procedure compute-flows; 
begin 

b'(i) : = b(i), for all i E N; 
for each (i, j) E L do set xli: = 0; 
T': = T; 
while T' ¥o {1} do 
begin 

select a leaf node j (other than node 1) in the subtree T'; 
i: = pred( j); 
if (i, j) E T' then Xif : = - b' (j) 
else xii: = b'(j); 
add b'(j) to b'(i); 
delete node j and the arc incident to it from T'; 

end; 
end; 

Figure 11.7 Procedure compute-flows. 

This method for computing the flow values assumes that the minimum cost 
flow problem is uncapacitated. For the capacitated version of the problem, we add 
the following statement immediately after the first statement [i.e., b' (i): = b(i) for 
all i E N] in the procedure compute-jlows. We leave the justification of this modi
fication as an exercise (see Exercise 11.19). 

for each (i, j) E U do 
set xif: = Uij. subtract Uli from b'U) and add Ulf to b'(j); 

The running time of the procedure compute-jlows is easy to determine. Clearly, 
the initialization of flows and modification of supplies/demands b(i) and b(j) for 
arcs (i, j) in U requires O(m) time. If we set aside the time to select leaf nodes of 
T, then each iteration requires 0(1) time, resulting in a total of O(n) time. One way 
of identifying leaf nodes in T is to select nodes in the reverse order of the thread 
indices. Note that in the thread traversal, each node appears prior to its descendants 
(see Property 3.4). We identify the reverse thread traversal of the nodes by examining 
the nodes in the order dictated by the thread indices, putting all the nodes into a 
stack in the order of their appearance and then taking them out from the top of the 
stack one at a time. Therefore, the reverse thread traversal examines each node only 
after it has examined all of the node's descendants. We have thus established that 
for the uncapacitated minimum cost flow problem, the procedure compute-flows 
runs in O(m) time. For the capacitated version of the problem, the procedure also 
requires O(m) time. 

We can use the procedure compute-jlows to obtain an alternative proof of the 
(primal) integrality property that we stated in Theorem 9.10. Recall from Theorem 
11.2 that the minimum cost flow problem always has an optimal spanning tree so
lution. The flow associated with this tree is an optimal flow and we can determine 
it using the procedure compute-flows. The description of the procedure compute
flows implies that if the capacities of all the arcs and the supplies/demands of all the 
nodes are integer, arc flows are integer as well (because the procedure performs 
only additions and subtractions). We state this result again because of its importance 
in network flow theory. 
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Theorem 11.5 (Primal Integrality Property). If capacities of all the arcs and 
supplies/demands of all the nodes are integer, the minimum cost flow problem always 
has an integer optimal flow. • 

In closing this section we observe that every spanning tree structure (T, L, U) 
defines a unique flow x. If this flow satisfies the flow bounds 0 :5 Xij :5 Uij for every 
arc (i, j) E A, the spanning tree structure is feasible; otherwise, it is infeasible. We 
refer to the spanning tree T as degenerate if xij = 0 or Xij = Uij for some arc (i, j) 
E T, and nondegenerate otherwise. In a nondegenerate spanning tree, 0 < Xij < Uij 

for every tree arc (i, j). 

11.5 NETWORK SIMPLEX ALGORITHM 

The network simplex algorithm maintains a feasible spanning tree structure at each 
iteration and successively transforms it into an improved spanning tree structure 
until it becomes optimal. The algorithmic description in Figure 11.8 specifies the 
essential steps of the method. 

algorithm network simplex; 
begin 

determine an initial feasible tree structure (T, L, U); 
let x be the flow and 11" be the node potentials associated with this tree structure; 
while some nontree arc violates the optimality conditions do 
begin 

select an entering arc (k, I) violating its optimality condition; 
add arc (k, I) to the tree and determine the leaving arc (p, q); 
perform a tree update and update the solutions x and 11"; 

end; 
end; 

Figure 11.8 Network simplex algorithm. 

In the following discussion we describe in greater detail how the network sim
plex algorithm uses tree indices to perform these various steps. This discussion 
highlights the value of the tree indices in designing an effident implementation of 
the algorithm. 

Obtaining an Initial Spanning Tree Structure 

Our connectedness assumption (i.e., Assumption 9.4 in Section 9.1) provides one 
way of obtaining an initial spanning tree structure. We have assumed that for every 
nodej EN - {I}, the network contains arcs (1,j) and (j, 1), with sufficiently large 
costs and capacities. We construct the initial tree T as follows. We examine each 
node j, other than node 1, one by one. If b(j) ;:::: 0, we include arc (1, j) in T with 
a flow value of b(j). If b(j) < 0, we include arc (j, 1) in T with a flow value of 
-b(j). The set L consists of the remaining arcs, and the set U is empty. As shown 
in Section 11.4, we can easily compute the node potentials for this tree using the 
equations Cij - 7r(i) + 7r(j) = 0 for all (i, j) E T. Recall that we set 7r(1) = o. 

If the network does not contain the arcs (1, j) and (j, 1) for each node j E 
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N - {I} (or, we do not wish to add these arcs for some reason), we could construct 
an initial spanning tree structure by first establishing a feasible flow in the network 
by solving a maximum flow problem (as described in Application 6.1), and then by 
converting this solution into a spanning tree solution using the method described in 
Section 11.2. 

Optimality Testing and the Entering Arc 

Let (T, L, U) be a feasible spanning tree structure of the minimum cost flow problem, 
and let 'IT be the corresponding node potentials. To determine whether the spanning 
tree structure is optimal, we check to see whether the spanning tree structure satisfies 
the following conditions: 

cij 2: 0 for every arc (i, j) E L, 

cij :5 0 for every arc (i, j) E U. 

If the spanning tree structure satisfies these conditions, it is optimal and the 
algorithm terminates. Otherwise, the algorithm selects a nontree arc violating the 
optimality condition to be introduced into the tree. Two types of arcs are eligible 
to enter the tree: 

1. Any arc (i, j) E L with cij < 0 

2. Any arc (i, j) E U with cij > 0 

For any eligible arc (i, j), we refer to I cij I as its violation. The network simplex 
algorithm can select any eligible arc to enter the tree and still would terminate finitely 
(with some provisions for dealing with degeneracy, as discussed in Section 11.6). 
However, different rules for selecting the entering arc produce algorithms with dif
ferent empirical and theoretical behavior. Many different rules, called pivot rules, 
are possible for choosing the entering arc. The following rules are most widely 
adopted. 

Dantzig's pivot rule. This rule was suggested by George B. Dantzig, the 
father of linear programming. At each iteration this rule selects an arc with the 
maximum violation to enter the tree. The motivation for this rule is that the arc with 
the maximum violation causes the maximum decrease in the objective function per 
unit change in the value of flow on the selected arc, and hence the introduction of 
this arc into the spanning tree would cause the maximum decrease per pivot if the 
average increase in the value of the selected arc were the same for all arcs. Com
putational results confirm that this choice of the entering arc tends to produce rel
atively large decreases in the objective function per iteration and, as a result, the 
algorithm performs fewer iterations than other choices for the pivot rule. However, 
this rule does have a major drawback: The algorithm must consider every nontree 
arc to identify the arc with the maximum violation and doing so is very time con
suming. Therefore, even though this algorithm generally performs fewer iterations 
than other implementations, the running time of the algorithm is not attractive. 
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First eligible arc pivot rule. To implement this rule, we scan the arc list 
sequentially and select the first eligible arc to enter the tree. In a popular version 
of this rule, we examine the arc list in a wraparound fashion. For example, in an 
iteration if we find that the fifth arc in the arc list is the first eligible arc, then in the 
next iteration we start scanning the arc list from the sixth arc. If we reach the end 
of the arc list while we are performing some iteration, we continue by examining 
the arc list from the beginning. One nice feature of this pivot rule is that it quickly 
identifies the entering arc. The pivot rule does have a counterbalancing drawback: 
with it, the algorithm generally performs more iterations than it would with other 
pivot rules because each pivot operation produces a relatively small decrease in the 
objective function value. The overall effect of this pivot rule on the running time of 
the algorithm is not very attractive, although the rule does produce a more efficient 
implementation than Dantzig's pivot nile. 

Dantzig's pivot rule and the first pivot ruie represent two extreme choices of 
a pivot rule. The candidate list pivot rule, which we discuss next, strikes an effective 
compromise between these two extremes and has proven to be one of the most 
successful pivot rules in practice. This rule also offers ·sufficient flexibility for fine 
tuning to special circumstances. 

Candidate list pivot rule. When implemented with this rule, the algorithm 
selects the entering arc using a two-phase pr9cedure consisting of major iterations 
and minor iterations. In a major iteration we construct a candidate list of eligible 
arcs. Having constructed this list, we then perform a number of minor iterations; 
in each of these iterations, we select an eligible arc from the candidate list with the 
maximum violation. 

In a major iteration we construct the candidate list as follows. We first examine 
arcs emanating from node 1 and add eligible arcs to the candidate list. We repeat 
this process for nodes 2, 3, ... , until either the list has reached its maximum 
allowable size or we have examined all the nodes. The next major iteration begins 
with the node where the previous major iteration ended and examines nodes in a 
wraparound fashion. 

Once the algorithm has formed the candidate list in a major iteration, it performs 
a number of minor iterations. In a minor iteration, the algorithm scans all the arcs 
in the candidate list and selects an arc with the maximum violation to enter the tree. 
As we scan the arcs, we update the candidate list by removing those arcs that are 
no longer eligible (due to changes in the node potentials). Once the candidate list 
becomes empty or we have reached a specified limit on the number of minor iter
ations to be performed within each major iteration, we rebuild the candidate list by 
performing another major iteration. 

Notice that the candidate list approach offers considerable flexibility for fine 
tuning to special problem classes. By setting the maximum allowable size of the 
candidate list appropriately and by specifying the number of minor iterations to be 
performed within a major iteration, we can obtain numerous different pivot rules. 
In fact, Dantzig's pivot rule and the first eligible pivot rule are special cases of the 
candidate list pivot rule (see Exercise 11.20). . 

In the preceding discussion, we described several important pivot rules. In the 
reference notes, we supply references for other pivot rules. Our next topic of study 
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is deciding how to choose the arc that leaves the spanning tree structure at each 
step of the network simplex algorithm. 

Leaving Arc 

Suppose that we select arc (k, l) as the entering arc. The addition of this arc to the 
tree T creates exactly one cycle W, which we refer to as the pivot cycle. The pivot 
cycle consists of the unique path in the tree T from node k to node I, together with 
arc (k, I). We define the orientation of the cycle Was the same as that of (k, l) if 
(k, I) ELand opposite the orientation of (k, l) if (k, I) E U. Let Wand W denote 
the sets of forward arcs (i.e., those along the orientation of W) and backward arcs 
(those opposite to the orientation of W) in the pivot cycle. Sending additional flow 
around the pivot cycle W in the direction of its orientation strictly decreases the 
cost of the current solution at the per unit rate of 1 Crt I. We augment the flow as 
much as possible until one of the arcs in the pivot cycle reaches its lower or upper 
bound. Notice that augmenting flow along W increases the flow on forward arcs and 
decreases the flow on backward arcs. Consequently, the maximum flow change &ij 

on an arc (i, j) E W that satisfies the flow bound constraints is 

if (i, j) E W 
if (i, j) E W 

To maintain feasibility, we can augment & = min{&ij : (i, j) E W} units of flow 
along W. We refer to any arc (i, j) E W that defines & (Le., for which & = &ij) as a 
blocking arc. We then augment & units of flow and select an arc (p, q) with &pq = 
& as the leaving arc, breaking ties arbitrarily. We say that a pivot iteration is a 
nondegenerate iteration if & > 0 and is a degenerate iteration if & == O. A degenerate 
iteration occurs only if T is a degenerate spanning tree. Observe that if two arcs tie 
while determining the value of &, the next spanning tree will be degenerate. 

The crucial step in identifying the leaving arc is to identify the pivot cycle. If 
P(i) denotes the unique path in the tree from any node i to the root node, this cycle 
consists of the arcs {(k, I)} U P(k) U P(l) - (P(k) n P(l». In other words, W 
consists of the arc (k, I) and the disjoint portions of P(k) and P(l). Using the pre
decessor indices alone permits us to identify the cycle Was follows. First, we des
ignate all the nodes in the network as unmarked. We then start at node k and, using 
the predecessor indices, trace the path from this node to the root and mark all the 
nodes in this path. Next we start at node I and trace the predecessor indices until 
we encounter a marked node, say w. The node w is the first common ancestor of 
nodes k and I; we refer to it as the apex of cycle W. The cycle W contains the portions 
of the paths P(k) and P(l) up to node w, together with the arc (k, I). This method 
identifies the cycle Win O(n) time and so is efficient. However, it has the drawback 
of backtracking along those arcs of P(k) that are not in W. If the pivot cycle lies 
"deep in the tree," farfrqm its root, then tracing the nodes back to the root will be 
inefficient. Ideally, we would like to identify the cycle W in time proportional to 
1 W I. The simultaneous use of depth and predecessor indices, as indicated in Figure 
11.9, permits us to achieve this goal. 

This method scans the arcsin the pivot cycle W twice. During the first scan, 
we identify the apex of the cycle and also identify the maximum possible flow that 
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procedure identify-cycle; 
begin· 

i: = k and j : = I; 
while i ¥o j do 
begin 

if depth(i) > depth( j) then i: = pred(i) 
else if depth (j) > depth (i) then j : = pred( j) 

else i: = pred(i) and j: = pred(j); 
end; 

end; 
Figure 11.9 Procedure for identifying 
the pivot cycle. 

can be augmented along W. In the second scan, we augment the flow. The entire 
flow change operation requires O(n) time in the worst case, but typically it examines 
only a small subset of nodes (and arcs). 

Updating the Tree 

When the network simplex algorithm has determined a leaving arc (p, q) for a given 
entering arc (k, I), it updates the tree structure. If the leaving arc is the same as the 
entering arc, which would happen when 8 = 8kt = Uk/, the tree does not change. In 
this instance the arc (k, I) merely moves from the set L to the set U, or vice versa. 
If the leaving arc differs from the entering arc, the algorithm must perform more 
extensive changes. In this instance the arc (p, q) becomes a nontree arc at its lower 
or upper bound, depending on whether (in the updated flow) Xpq = 0 or Xpq = U pq • 

Adding arc (k, I) to the current spanning tree and deleting arc (p, q) creates a new 
spanning tree. , 

For the new spanning tree, the node potentials also change; we can update 
them as follows. The deletion of the arc (p, q) from the previous tree partitions the 
set of nodes into two subtrees, one, TI, containing the root node, and the other, T2 , 

not containing the root node. Note that the subtree T2 hangs from node p or node 
q. The arc (k, I) has one endpoint in TJ and the other inT2 • As is easy to verify, 
the conditions 71'(1) == 0 and Cij - 71'(i) + 71'(j) = 0 for all arcs in the new tree imply 
that the potentials of nodes in the subtree TJ remain unchanged, and the potentials 
of nodes in the subtree T2 change by a constant amount. If k E TJ and I E T2, all 
the node potentials in T2 increase by - Crt; if I E TJ and k E T2, they increase by 
the amount Crt. Using the thread and depth indices, the method described in Figure 
11.10 updates the node potentials quickly. 

procedure update-potentials; 
begin 

if q E T2 then y: = q else y: = p; 
if k E T1 then change: = - cJ:, else change: = cJ:,; 
1T(Y) : = 1T(Y) + change; 
z: = thread(y); 
while depth(z) > depth(y) do 
begin 

1T(Z) : = 1T(Z) + change; 
z: = thread(z); 

end; 
end; 

Sec. 1J.5 Network Simplex Algorithm 

Figure 11.10 Updating node potentials 
in a pivot operation. 
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The final step in the updating of the tree is to recompute the various tree indices. 
This step is rather involved and we refer the reader to the references given in ref
erence notes for the details. We do point out, however, that it is possible to update 
the tree indices in O(n) time. In fact, the time required to update the tree indices 
is 0(1 WI + min{1 TI I, I T2 1}), which is typically much less than n. 

Termination 

The network simplex algorithm, as just described, moves from one feasible spanning 
tree structure to another until it obtains a spanning tree structure that satisfies the 
optimality condition (11.1). If each pivot operation in the algorithm is nondegenerate, 
it is easy to show that the algorithm terminates finitely. Recall that 1 ci:z 1 is the net 
decrease in the cost per unit flow sent around the pivot cycle W. Mter a nonde
generate pivot (for which & > 0), the cost of the new spanning tree structure is 
&1 ci:z 1 units less than the cost of the previous spanning tree structure. Since any 
network has a finite number of spanning tree structures and every spanning tree 
structure has a unique associated cost, the network simplex algorithm will encounter 
any spanning tree structure at most once and hence will terminate finitely. Degen
erate pivots, however, pose a theoretical difficulty: The algorithm might not ter
minate finitely unless we perform pivots carefully. In the next section we discuss a 
special implementation, called the strongly feasible spanning tree implementation, 
that guarantees finite convergence of the network simplex algorithm even for prob
lems that are degenerate. 

We use the example in Figure l1.11(a) to illustrate the network simplex al
gorithm. Figure l1.11(b) shows a feasible spanning tree solution for the problem. 
For this solution, T = {(1, 2), (1, 3), (2,4), (2, 5), (5, 6)}, L = {(2, 3), (5, 4)}, and 
U = {(3, 5), (4, 6)}. In this solution, arc (3, 5) has a positive violation, which is 1 
unit. We introduce this arc into the tree creating a cycle whose apex is node 1. Since 
arc (3, 5) is at its upper bound, the orientation of the cycle is opposite to that of arc 
(3, 5). The arcs (1, 2) and (2, 5) are forward arcs in the cycle and arcs (3, 5) and 
(1, 3) are backward arcs. The maximum increase in flow permitted by the arcs 
(3, 5), (1, 3), (1, 2), and (2, 5) is, respectively, 3, 3, 2, and 1 units. Consequently, 
& = 1 and we augment 1 unit of flow along the cycle. The augmentation increases 
the flow on arcs (1, 2) and (2, 5) by one unit and decreases the flow on arcs (1, 3) 
and (3, 5) by one unit. Arc (2, 5) is the unique blocking arc and so we select it to 
leave the tree. Dropping arc (2, 5) from the tree produces two subtrees: Tl consisting 
of nodes 1, 2, 3, 4 and T2 consisting of nodes 5 and 6. Introducing arc (3, 5), we 
again obtain a spanning tree, as shown in Figure 11.11 (c). Notice that in this spanning 
tree, the node potentials of nodes 5 and 6 are 1 unit less than that in the previous 
spanning tree. 

In the feasible spanning tree solution shown in Figure l1.l1(c), L = {(2, 3), 
(5, 4)} and U = {(2, 5), (4, 6)}. In this solution, arc (4, 6) is the only eligible arc: its 
violation equals 1 unit. Therefore, we introduce arc (4,6) into the tree. Figure 11.11(c) 
shows the resulting cycle and its orientation. We can augment 1 unit of additional 
flow along the orientation of this cycle. Sending this flow, we find that arc (3, 5) is 
a blocking arc, so we drop this arc from the current spanning tree. Figure 11.11(d) 
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Figure 11.11 Numerical example for the network simplex algorithm. 
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shows the new spanning tree. As the reader can verify, this solution-has no eligible 
arc, and thus the network simplex algorithm terminates with this solution. 

11.6 STRONGLY FEASIBLE SPANNING TREES 

The network simplex algorithm does not necessarily terminate in a finite number of 
iterations unless we impose some additional restriction on the choice of the entering 
and leaving arcs. Very small network examples show that a poor choice leads to 
cycling (i.e., an infinite repetitive sequence of degenerate pivots). Degeneracy in 
network problems is not only a theoretical issue, but also a practical one. Compu
tational studies have shown that as many as 90% of the pivot operations in com
monplace networks can be degenerate. As we show next, by maintaining a special 
type of spanning tree, called a strongly feasible spanning tree, the network simplex 
algorithm terminates finitely; moreover, it runs faster in practice as well. 

Let (T, L, U) be a spanning tree structure for a minimum cost flow problem 
with integral data. As before, we conceive of a spanning tree as a tree hanging from 
the root node. The tree arcs are either upward pointing (toward the root) or are 
downward pointing (away from the root). We now state two alternate definitions of 
a strongly feasible spanning tree. 
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1. Strongly feasible spanning tree. A spanning tree T is strongly feasible if every 
tree arc with zero flow is upward pointing and every tree arc whose flow equals 
its capacity is downward pointing. 

2. Strongly feasible spanning tree. A spanning tree T is strongly feasible if we 
can send a positive amount of flow from any node to the root along the tree 
path without violating any flow bound. 

If a spanning tree T is strongly feasible, we also say that the spanning tree 
structure (T, L, U) is strongly feasible. 

It is easy to show that the two definitions of the strongly feasible spanning 
trees are equivalent (see Exercise 11.24). Figure 11.12(a) gives an example of a 
strongly feasible spanning tree, and Figure 11.12(b) illustrates a feasible spanning 
tree that is not strongly feasible. The spanning tree shown in Figure 11.12(b) fails 
to be strongly feasible because arc (3, 5) carries zero flow and is downward pointing. 
Observe that in this spanning tree, we cannot send any additional flow from nodes 
5 and 7 to the root along the tree path. 

To implement the network simplex algorithm so that it always maintains a 
strongly feasible spanning tree, we must first find an initial strongly feasible spanning 
tree. The method described in Section 11.5 for constructing the initial spanning tree 
structure always gives such a spanning tree. Note that a nondegenerate spanning 
tree is always strongly feasible; a degenerate spanning tree might or might not be 
strongly feasible. The network simplex algorithm creates a degenerate spanning tree 
from a nondegenerate spanning tree whenever two or more arcs are qualified as 
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Figure 11.12 Feasible spanning trees: (a) strongly feasible; (b) nonstrongly feasible. 
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leaving arcs and we drop only one of these. Therefore, the algorithm needs to select 
the leaving arc carefully so that the next spanning tree is strongly feasible. 

Suppose that we have a strongly feasible spanning tree and, during a pivot 
operation, arc (k, I) enters the spanning tree. We first consider the case when (k, I) 
is a nontree arc at its lower bound. Suppose that W is the pivot cycle formed by 
adding arc (k, I) to the spanning tree and that node w is the apex of the cycle W; 
that is, w is the first common ancestor of nodes k and I. We define the orientation 
of the cycle Was compatible with that of arc (k, I). After augmenting 8 units of flow 
along the pivot cycle, the algorithm identifies the blocking arcs [i.e., those arcs 
(i, j) in the cycle that satisfy 8ij = 8]. If the blocking arc is unique, we select it to 
leave the spanning tree. If the cycle contains more than one blocking arc, the next 
spanning tree will be degenerate (i.e., some tree arcs will be at their lower or upper 
bounds). In this case the algorithm selects the leaving arc in accordance with the 
following rule. 

Leaving Arc Rule. Select the leaving arc as the last blocking arc encountered 
in traversing the pivot cycle W along its orientation starting at the apex w. 

To illustrate the leaving arc rule, we consider a numerical example. Figure 
11.13 shows a strongly feasible spanning tree for this example. Let (9, 10) be the 
entering arc. The pivot cycle is 10-8-6-4-2-3-5-7-9-10 and the apex is node 2. 
This pivot is degenerate because arcs (2, 3) and (7, 5) block any additional flow in 
the pivot cycle. Traversing the pivot cycle starting at node 2, we encounter arc 
(7, 5) later than arc (2, 3); so we select arc (7, 5) as the leaving arc. 

We show that the leaving arc rule guarantees that in the next spanning tree 
every node in the cycle W can send a positive amount of flow to the root node. Let 

Entering arc Figure 11.13 Selecting the leaving arc. 
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(p, q) be the arc selected by the leaving arc rule. Let WI be the segment of the cycle 
W between the apex wand arc (p, q) when we traverse the cycle along its orientation. 
Let W2 = W - WI - {(p, q)}. Define the orientation of segments WI and W2 as 
compatible with the orientation of W. See Figure 11.13 for an illustration of the 
segments WI and W2 • We use the following property about the nodes in the segment 
W2 • 

Property 11.6. Each node in the segment W2 can send a positive amount of 
flow to the root in the next spanning tree. 

This observation follows from the fact that arc (p, q) is the last blocking arc 
in W; consequently, no arc in W2 is blocking and every node in this segment can 
send a positive amount of flow to the root via node w along the orientation of W2 • 

Note that if the leaving arc does not satisfy the leaving arc rule, no node in the 
segment W2 can send a positive amount of flow to the root; therefore, the next 
spanning tree will not be strongly feasible. 

We next focus on the nodes contained in the segment WI. 

Property 11.7. Each node in the segment WI can send a positive amount of 
flow to the root in the next spanning tree. 

We prove this observation by considering two cases. If the previous pivot was 
a nondegenerate pivot, the pivot augmented a positive amount of flow 8 along the 
arcs in WI; consequently, after the augmentation, every node in the segment WI can 
send a positive amount of flow back to the root opposite to the orientation of WI 
via the apex node w (each node can send at least 8 units to the apex and then at 
least some of this flow to the root since the previous spanning tree was strongly 
feasible). If the previous pivot was a degenerate pivot, WI must be contained in the 
segment of W between node w and node k because the property of strong feasibility 
implies that every node on the path from node I to node w can send a positive amount 
of flow to the root before the pivot, and thus no arc on this path can be a blocking 
arc in a degenerate pivot. Now observe that before the pivot, every node in WI 
could send a positive amount of flow to the root, and therefore since the pivot does 
not change flow values, every node in WI must be able to send a positive amount 
of flow to the root after the pivot as well. This conclusion completes the proof that 
in the next spanning tree every node in the cycle W can send a positive amount of 
flow to the root node. 

We next show that in the next spanning tree, nodes not belonging to the cycle 
W can also send a positive amount of flow to the root. In the previous spanning tree 
(before the augmentation), every node j could send a positive amount of flow to the 
root and if the tree path from node j does not pass through the cycle W, the same 
path is available to carry a positive amount of flow in the next spanning tree. If the 
tree path from node j does pass through the cycle W, the segment of this tree path 
to the cycle W is available to carry a positive amount of flow in the next spanning 
tree and once a positive amount of flow reaches the cycle W, then, as shown earlier, 
we can send it (or some of it) to the root node. This conclusion completes the proof 
that the next spanning tree is strongly feasible. 
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We now establish the finiteness of the network simplex algorithm. Since we 
have previously shown that each nondegenerate pivot strictly decreases the objective 
function value, the number of nondegenerate pivots is finite. The algorithm can, 
however, also perform degenerate pivots. We will show that the number of succes
sive degenerate pivots between any two nondegenerate pivots is finitely bounded. 
Suppose that arc (k, l) enters the spanning tree at its lower bound and in doing so 
it defines a degenerate pivot. In this case, the leaving arc belongs to the tree path 
from node k to the apex w. Now observe from Section 11.5 that node k lies in the 
subtree T2 and the potentials of all nodes in T2 change by an amount Ckt. Since 
Ckt < 0, this degenerate pivot strictly decreases the sum of all node potentials (which 
by our prior assumption is integral). Since no node potential can fall below - nC, 
the number of successive degenerate pivots is finite. 

So far we have assumed that the entering arcs are always at their lower bounds. 
If the entering arc (k, l) is at its upper bound, we define the orientation of the cycle 
Was opposite to the orientation of arc (k, I). The criteria for selecting the leaving 
arc remains unchanged-the leaving arc is the last blocking arc encountered in tra
versing W along its orientation starting at the apex w. In this case node I is contained 
in the subtree T 2 , and thus after the pivot, the potentials of all the nodes T2 decrease 
by the amount Ckt > 0; consequently, the pivot again decreases the sum of the node 
potentials. 

11.7 NETWORK SIMPLEX ALGORITHM FOR THE 
SHORTEST PATH PROBLEM 

In this section we see how the network simplex algorithm specializes when applied 
to the shortest path problem. The resulting algorithm bears a close resemblance to 
the label-correcting algorithms discussed in Chapter 5. In this section we study the 
version of the shortest path problem in which we wish to determine shortest paths 
from a given source node s to all other nodes in a network. In other words, the 
problem is to send 1 unit of flow from the source to every other node along minimum 
cost paths. We can formulate this version of the shortest path problem as the fol
lowing minimum cost flow model: 

subject to 

Minimize .L CijXij 
(i,j)EA 

.L Xij - .L Xji = {n - 1 
{j:(i,j)EA} {j:(j,i)EA} - 1 

for i == s 
for all i E N - {s} 

for all (i, j) E A. 

If the network contains a negative (cost)-directed cycle, this linear program
ming formulation would have an unbounded so~ution since we could send an infinite 
amount of flow along this cycle without violating any of the constraints (because 
the arc flows have no upper bounds). The network simplex algorithm we describe 
is capable of detecting the presence of a negative cycle, and if the network contains 
no such cycle, it determines the shortest path distances. 
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Like other minimum cost flow problems, the shortest path problem has a span
ning tree solution. Because node s is the only source node and all the other nodes 
are demand nodes, the tree path from the source node to every other node is a 
directed path. This observation implies that the spanning tree must be a directed 
out-tree rooted at node s (see Figure 11.14 and the discussion in Section 4.3). As 
before, we store this tree using predecessor, depth, and thread indices. In a directed 
out-tree, every node other than the source has exactly one incoming arc but could 
have several outgoing arcs. Since each node except node s has unit demand, the 
flow of arc (i, j) is 1 D(j) I. [Recall that D(j) is the set of descendants of node j in 
the spanning tree and, by definition, this set includes nodej.] Therefore, every tree 
of the shortest path problem is nondegenerate, and consequently, the network sim
plex algorithm will never perform degenerate pivots. 

5 

2 Figure 11.14 Directed out-tree rooted 
at the source. 

Any spanning tree· for the shortest path problem contains a unique directed 
path from node s to every other node. Let P(k) denote the path from node s to node 
k. We obtain the node potentials corresponding to the tree T by setting'IT(s) = 0 
and then using the equation Cij - 'IT(i) + Ti(j) = 0 for each arc (i, j) E T by fanning 
out from node s (see Figure 11.15). The directed out-tree property of the spanning 
tree implies that Ti(k) = - LUJ)EP(k) Cij. Thus Ti(k) is the negative of the length of 
the path P(k). 

Since the variables in the minimum cost flow formulation of the shortest path 
problem have no upper bounds, every nontree arc is at its lower bound. The algorithm 
selects a nontree arc (k, l) with a negative reduced cost to introduce into the spanning 
tree. The addition of arc (k, 1) to the tree creates a cycle which we orient in the 
same direction as arc (k, I). Let w be the apex of this cycle. (See Figure 11.16 for 
an illustration.) In this cycle, every arc from node I to node w is a backward arc 
and every arc from node w to node k is a forward arc. Consequently, the leaving 
arc would lie in the segment from node I to node w. In fact, the leaving arc would 
be the arc (pred(l), l) because this arc has the smallest flow value among all arcs in 
the segment from node I to node w. The algorithm would then increase the potentials 
of nodes in the subtree rooted at the node I by an amount 1 Crt I, update the tree 
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potentials. 

Figure 11.16 Selecting the leaving arc. 

indices, and repeat the computations until all nontree arcs have nonnegative reduced 
costs. When the algorithm terminates, the final tree would be a shortest path tree 
(i.e., a tree in which the directed path from node s to every other node is a shortest 
path). 

Recall that in implementing the network simplex algorithm for the minimum 
cost flow problem, we maintained flow values for all the arcs because we needed 
these values to identify the leaving arc. For the shortest path problem, however, 
we can determine the leaving arc without considering the flow values. If (k, l) is the 
entering arc, then (pred(l), I) is the leaving arc. Thus the network simplex algorithm 
for the shortest path problem need not maintain arc flows. Moreover, updating of 
the tree indices is simpler for the shortest path problem. 

The network simplex algorithm for the shortest path problem is similar to the 
label-correcting algorithms discussed in Section 5.3. Recall that a label-correcting 
algorithm maintains distance labels d(i), searches for an arc satisfying the condition 
d(j) > d(i) + Cij, and sets the distance label of node j equal to d(i) + cu. In the 
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network simplex algorithm, if we define d(i) = - 'IT(i), then d(i) are the valid distance 
labels (i.e., they represent the length of some directed path from source to node i). 
At each iteration the network simplex algorithm selects an arc (i, j) with cij < O. 
Observe that cij = Cij - 'IT(i) + 'IT(j) = Cij + d(i) - d(j). Therefore, like a label
correcting algorithm, the network simplex algorithm selects an arc that satisfies the 
condition d(j) > d(i) + Cij. The algorithm then increases the potential of every node 
in the subtree rooted at nodej by an amount I cijl which amounts to decreasing the 
distance label of all the nodes in the subtree rooted at node j by an amount I cij I. 
In this regard the network simplex algorithm differs from the label correcting al
gorithm: instead of updating one distance label at each step, it updates several of 
them. 

Ifthe network contains no negative cycle, the network simplex algorithm would 
terminate with a shortest path tree. When the network does contain a negative cycle, 
the algorithm would eventually encounter a situation like that depicted in Figure 
11.17. This type of situation will occur only when the tail of the entering arc (k, I) 
belongs to D(l), the set of descendants of node l. The network simplex algorithm 
can detect this situation easily without any significant increase in its computational 
effort: Mter introducing an arc (k, I), the algorithm updates the potentials of all 
nodes in D(l); at that time, it can check to see whether k E D(l), and if so, then 
terminate. In this case, tracing the predecessor indices would yield a negative cycle. 

Figure 11.17 Detecting a negative 
cycle in the network. 

The generic version of the network simplex algorithm for the shortest path 
problem runs in pseudopolynomial time. This result follows from the facts that (1) 
for each node i, - nC ~ 'IT(i) ~ nC (because the length of every directed path from 
s to node i lies between - nC to nC), and (2) each iteration increases the value of 
at least one node potential. We can, however, develop special implementations that 
run in polynomial time. In the remainder of this section, in the exercises, and in the 
reference notes at the end of this chapter, we describe several polynomial-time 
implementations of the network simplex algorithm for the shortest path problem. 
These algorithms will solve the shortest path problem in O(n 2m), O(n3

), and O(nm 
log C) time. We obtain these polynomial-time algorithms by carefully selecting the 
entering arcs. 

First eligible arc pivot rule. We have described this pivot rule in Section 
11.5. The network simplex algorithm with this pivot rule bears a strong resemblance 
with the FIFO label-correcting algorithm that we described in Section 5.4. Recall 
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that the FIFO label-correcting algorithm examines the arc list in a wraparound fash
ion: If an arc (i, j) violates its optimality condition (i.e., it is eligible), the algorithm 
updates the distance label of nodej. This orderfor examining the arcs ensures that 
after the kth pass, the algorithm has computed the shortest path distances to all 
those nodes that have a shortest path with k or fewer arcs. The network simplex 
algorithm with the first eligible arc pivot rule also examines the arc list in a wrap
around fashion, and if an arc (i, j) is eligible (i.e., violates its optimality condition), 
it updates the distances label of every node in D(j), which also includes j. Conse
quently, this pivot rule will also, within k passes, determine shortest path distances 
to all those nodes that are connected to the source node s by a shortest path with 
k or fewer arcs. Consequently, the network simplex algorithm will perform at most 
n passes over the arc list. As a result, the algorithm will perform at most nm pivots 
and run in O(n2 m) time. In Exercise 11.30 we discuss a modification ofthis algorithm 
that runs in O(n3) time. 

Dantzig's pivot rule. This pivot rule selects the entering arc as an arc with 
the maximum violation. Let C denote the largest arc cost. We will show that the 
network simplex algorithm with this pivot rule performs O(n2 10g(nC)) pivots and 
so runs in O(n2m 10g(nC)) time. 

Scaled pivot rule. This pivot is a scaled variant of Dantzig's pivot nile. In 
this pivot rule we perform a number of scaling phases with varying values of a scaling 
parameter Ll. Initially, we let Ll = 2PogCl (i.e., we set Ll equal to the smallest power 
of 2 greater than or equal to C) and pivot in any nontree arc with a violation of at 
least Ll/2. When no arc has a violation of at least Ll/2, we replace Ll by Ll/2.. and 
repeat the steps. We terminate the algorithm when Ll < 1. 

We now show that the network simplex algorithm with the scaled pivot rule 
solves the shortest path problem in polynomial time. It is easy to verify that Dantzig's 
pivot rule is a special case of scaled pivot rule, so this result also shows that when 
implemented with Dantzig's pivot rule, the network simplex algorithm requires 
polynomial time. 

We call the sequence of iterations for which Ll remains unchanged as the 
Ll-scaling phase. Let 'iT denote the set of node potentials at the beginning of a 
Ll-scaling phase. Moreover, let P*(p) denote a shortest path from node s to node 
p and let 'iT* (p) = - ~(i,j)EP* Cij denote the optimal node potential of node p. Our 
analysis of the scaled pivot rule uses the following lemma: 

Lemma 11.8. If'iT denotes the current node potentials at the beginning of the 
Ll-scaling phase, then 'iT*(p) - 'iT(p) :5 2nLlfor each node p. 

Proof In the first scaling phase, Ll ;::: C and the lemma follows from the facts 
that - nC and nC are the lower and upper bounds on any node potentials (why?). 
Consider next any subsequent scaling phase. Property 9.2 implies that 

clf = cij - 'iT(s) + 'iT(p) = 'iT(p) - 'iT*(p). (11.4) 
(i,j)EP*(k) (i,j)EP*(k) 

Since Ll is an upper bound on the maximum arc violation at the beginning of 
the Ll-scaling phase (except the first one), clf ;::: - Ll for every arc (i, j) E A. Sub-
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stituting this inequality in (11.4), we obtain 

'IT(p) - 'IT*(p);;;:: -ill P*(p) I ;;;:: -nil, 

which implies the conclusion of the lemma. 

N ow consider the potential function <I> = ~PEN ('1'1'* (p) - 'IT(p)). The preceding 
lemma shows that at the beginning of each scaling phase, <I> is at most 2n2il. Now, 
recall from our previous discussion in this section that in each iteration, the network 
simplex algorithm increases at least one node potential by· an amount equal to the 
violation of the entering arc. Since the entering arc has violation at least 
il/2, at least one node potential increases by il/2 units, causing <I> to decrease by at 
least il/2 units. Since no node potential ever decreases, the algorithm can perform 
at most 4n2 iterations in this scaling phase. So, after at most 4n2 iterations, either 
the algorithm will obtain an optimal solution or will complete the scaling phase. 
Since the algorithm performs O(log C) scaling phases, it will perform O(n2 log C) 
iterations and so require O(n2 m log C) time. It is, however, possible to implement 
this algorithm in O(nm log C) time; the reference notes provide a reference for this 
result. 

11.8 NETWORK SIMPLEX ALGORITHM FOR THE 
MAXIMUM FLOW PROBLEM 

In this section we describe another specialization of the network simplex algorithm: 
its implementation for solving the maximum flow problem. The resulting algorithm 
is essentially an augmenting path algorithm, so it provides an alternative proof of 
the max-flow min-cut theorem we discussed in Section 6.5. 

As we have noted before, we can view the maximum flow problem as a par
ticular version of the minimum cost flow problem, obtained by introducing an ad
ditional arc (t, s) with cost coefficient Cts == -1 and an upper bound Uts == 00, and 
by setting Cu == 0 for all the original arcs (i, j) in A. To simplify our notation, we 
henceforth assume that A represents the set A U {(t, s)}. The resulting formulation 
is to 

Minimize - Xts 

subject to 

~ Xu - 2: Xji == 0 for all i E lV, 
{j:(i,j)EA} {j:(j,i)EA} 

for all (i, j) E A. 

Observe that minimizing - Xts is equivalent to maximizing Xts, which is equiv
alent to maximizing the net flow sent from the source to the sink, since this flow 
returns to the source via arc (t, s). This observation explains why the inflow equals 
the outflow for every node in the network, including the source and the sink nodes. 

Note that in any feasible spanning tree solution that carries a positive amount 
of flow from the source to the sink (i.e., Xts > 0), arc (t, s) must be in the spanning 
tree. Consequently, the spanning tree for the maximum flow problem consists of 
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two subtrees of G joined by the arc (t, s) (see Figure 11.18). Let Ts and Tt denote 
the subtrees containing nodes sand t. 

Figure 11.18 Spanning tree for the 
maximum flow problem. 

We obtain node potentials corresponding to a feasible spanning tree of the 
maximum flow problem as follows. Since we can set one node potential arbitrarily, 
let'lT(t) = O. Furthermore, since the reduced cost of arc (t, s) must be zero, 0 = 
cYs = Cts - 'IT(t) + 'IT(s) = -1 + 'IT(s), which implies that 'IT(s) = 1. Since (1) the 
reduced cost of every arc in Ts and Tt must be zero, and (2) the costs of these arcs 
are also zero, the node potentials have the following values: 'IT(i) = 1 for every node 
i E Ts , and 'IT(i) = 0 for every node i E Tt • 

Notice that every spanning tree solution of the maximum flow problem defines 
an s-t cut [S, S] in the original network obtained by setting S =; Ts and S = Tt • 

Each arc in this cut is a nontree arc; its flow has value zero or equals the arc's 
capacity. For every forward arc (i,j) in the cut, cij = -1, and for every backward 
arc (i, j) in the cut, cij = 1. Moreover, for every arc (i,-j) not in the cut, cij = o. 
Consequently, if every forward arc in the cut has a flow value equal to the arc's 
capacity and every backward arc has zero flow, this spanning tree solution satisfies 
the optimality conditions (11.1), and therefore it must be optimal. On the other hand, 
if in the current spanning tree solution, some forward arc in the cut has a flow of 
value zero or the flow on some backward arc equals the arc's capacity, all these 
arcs have a violation of 1 unit. Therefore, we can select any of these arcs to enter 
the spanning tree. Suppose that we select arc (k, I). Introducing this arc into the 
tree creates a cycle that contains arc (t, s) as a forward arc (see Figure 11.19). The 
algorithm augments the maximum possible flow in this cycle and identifies a blocking 
arc. Dropping this arc again creates two subtrees joined by the arc (t, s). This new 
tree constitutes a spanning tree for the next iteration. 

Notice that this algorithm is an augmenting path algorithm: The tree structure 
permits us to determine the path from the source to the sink very easily. In this 
sense the network simplex algorithm has an advantage over other types of aug
menting path algorithms for the maximum flow problem. As a compensating factor, 
however, due to degeneracy, the network simplex algorithm might not send a positive 
amount of flow from the source to the sink in every iteration. 
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Figure 11.19 Forming a cycle. 

The network simplex algorithm for the maximum flow problem gives another 
proof of the max-flow min-cut theorem. The algorithm terminates when every for
ward arc in the cut is capacitated and every backward arc has a flow of value zero. 
This termination condition implies that the current maximum flow value equals the 
capacity of the s-t cut defined by the subtrees Ts and Tt , and thus the value of a 
maximum flow from node s to node t equals the capacity of the minimum s-t cut. 

Just as the mechanics of the network simplex algorithm becomes simpler in 
the context of the maximum flow problem, so does the concept of a strongly feasible 
spanning tree. If we designate the sink as the root node, the definition of a strongly 
feasible spanning tree implies that we can send a positive amount of flow from every 
node in Tt to the sink node t without violating any of the flow bounds. Therefore, 
every arc in Tt whose flow value is zero must point toward the sink node t and every 
arc in Tt whose flow value equals the arc's upper bound must point away from node 
t. Moreover, the leaving arc criterion reduces to selecting a blocking arc in the pivot 
cycle that is farthest from the sink node when we traverse the cycle in the direction 
of arc (t, s) starting from node t. Each degenerate pivot selects an entering arc that 
is incident to some node in Tt • The preceding observation implies that each blocking 
arc must be an arc in Ts. Consequently, each degenerate pivot increases the size of 
Tt " so the algorithm can perform at most n consecutive degenerate pivots. We might 
note that the minimum cost flow problem does not satisfy this property: For the 
more general problem, the number of consecutive degenerate pivots can be expo
nentially large. 

The preceding discussion shows that when implemented to maintain a strongly 
feasible spanning tree, the network simplex algorithm performs O(n2 U) iterations 
for the maximum flow problem. This result follows from the fact that the number 
of nondegenerate pivots is at most nU, an upper bound on the maximum flow value. 
This bound on the number of iterations is Iionpolynomial, so is not satisfactory from 
a theoretical perspective. Developing a polynomial-time network simplex algorithm 
for the maximum flow problem remained an open problem for quite some time. 
However, researchers have recently suggested an entering arc rule that performs 
only O(nm) iterations and can be implemented to run in O(n2m) time. This rule 
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selects entering arcs so that the algorithm augments flow along shortest paths from 
the source to the sink. We provide a reference for this result in the reference notes. 

11.9 RELATED NETWORK SIMPLEX ALGORITHMS 

In this section we study two additional algorithms for the minimum cost flow prob
lem-the parametric network simplex algorithm and the dual network simplex al
gorithm-that are close relatives of the network simplex algorithm. In contrast to 
the network simplex algorithm, which maintains a feasible solution at each inter
mediate step, both of these algorithms maintain an infeasible solution that satisfies 
the optimality conditions; they iteratively attempt to transform this solution into a 
feasible solution. The solution maintained by the parametric network simplex al
gorithm satisfies all of the problem constraints except the mass balance constraints 
at two specially designated nodes, sand t. The solution maintained by the dual 
network simplex algorithm satisfies all of the mass balance constraints but might 
violate the lower and upper bound constraints on some arc flows. Like the network 
simplex algorithm, both algorithms maintain a spanning tree at every step and per
form all computations using the spanning tree. 

Parametric Network Simplex Algorithm 

For the sake of simplicity, we assume that the network has one supply node (the 
source s) and one demand node (the sink t). We incur no loss of generality in imposing 
this assumption because we can always transform a network with several supply 
and demand nodes into one with a single supply and a single demand nod~. 
The parametric network simplex algorithm starts with a solution for which b'(s) = 
-b'(t) = 0, and gradually increases b'(s) and -b'(t) until b'(s) = b(s) and b'(t) 
= b(t). Let T be a shortest path tree rooted at the source node s in the underlying 
network. The parametric network simplex algorithm starts with zero flow and with 
(T, L, U) with L = A - T and U = 0 as the initial spanning.tree structure. Since, 
by Assumption 9.5, all the arc costs are nonnegative, the zero flow is an optimal 
flow provided that b(s) = b(t) = O. Moreover, since T is a shortest path tree, the 
shortest path distances d(·) to the nodes satisfy the condition d(j) = d(i) + Cij for 
each (i, j) E T, and d(j) :5 d(i) + Cij for each (i, j) ~ T. By setting 'IT(j) = - d(j) 
for each node j, these shortest path optimality conditions become the optimality 
conditions (11.1) of the initial spanning tree structure (T, L, U). 

Thus the parametric network simplex algorithm starts with an optimal solution 
of a minimum cost flow problem that violates the mass balance constraints only at 
the source and sink nodes. In the subsequent steps, the algorithm maintains opti
mality of the solution and attempts to satisfy the violated constraints by sending 
flow from node s to node t along tree arcs. The algorithm stops when it has sent the 
desired amount (b(s) = -b(t)) of flow. 

In each iteration the algorithm performs the following computations. Let (T, 
L, U) be the spanning tree structure at some iteration. The spanning tree T contains 
a unique path P from node s to node t. The algorithm first determines the maximum 
amount of flow 3 that can be sent from s to 1 along P while honoring the flow bounds 
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on the arcs. Let P and f.. denote the sets offorward and backward arcs in P. Then 

3 = min[min{uij - Xij: (i, j) E P}, min{xij: (i, j) E f..}]. 

The algorithm either sends 3 units of flow along P, or a smaller amount if it 
would be sufficient to satisfy the mass balance constraints at nodes sand t. As in 
the network simplex algorithm, all the tree arcs have zero reduced costs; therefore, 
sending additional flow along the tree path from node s to node t preserves the 
optimality of the solution. If the solution becomes feasible after the augmentation, 
the algorithm terminates. If the solution is still infeasible, the augmentation creates 
at least one blocking arc (Le., an arc that prohibits us from sending additional flow 
from node s to node t). We select one such blocking arc, say (p, q), as the leaving 
arc and replace it by some nontree arc (k, I), called the entering are, so that the 
next spanning tree both (1) satisfies the optimality condition, and (2) permits addi
tional flow to be sent from node s to node t . We accomplish this transition from one 
tree to another by performing a dual pivot. Recall from Section 11.5 that a (primal) 
pivot first identifies an entering arc and then the leaving arc. In contrast, a dual 
pivot first selects the leaving arc and then identifies the entering arc. 

We perform a dual pivot in the following manner. We first drop the leaving 
arc from the spanning tree. Doing so gives us two subtrees Ts and Tt , with sETs 
and t E Tt • Let Sand 8 be the subsets of nodes spanned by these two subtrees. 
Clearly, the cut [S, 8] is an s-t cut and the entering arc (k, I) must belong to [S, 8] 
if the next solution is to be a spanning tree solution. As earlier, we let (S, 8) denote 
the set of forward arcs and (8, S) the set of backward arcs in the cut [S, 8]. Each 
arc in the cut [S, 8] is at its lower bound or at its upper bound. We define the set 
Q of eligible arcs as the set 

Q = «S, S) n L) U «S, S) n U), 

that is, the set of forward arcs at their lower bound and the set of backward arcs at 
their upper bound. Note that if we add a noneligible arc to the subtrees Ts and Tt , 

we cannot increase the flow from node s to node t along the new tree path joining 
these nodes (since the arc lies on the path and would be a forward arc at its upper 
bound or a backward arc at its lower bound). If we introduce an eligible arc, the 
new path from node s to node t might be able to carry a positive amount of flow. 
Next, notice that if Q = 0, we can send no additional flow from node s to node t. 
In fact, the cut [S, 8] has zero residual capacity and the current flow from node s 
to node t equals the maximum flow. If b(s) is larger than this flow vahle, the minimum 
cost flow problem is infeasible. We now focus on situations in which Q #- 0. Notice 
that we cannot select an arbitrary eligible arc as the entering arc, because the new 
spanning tree must also satisfy the optimality condition. For each eligible arc (i, j), 
we define a number eu in the following manner: 

e .. = { cij 
IJ - cij 

if (i, j) E L, 
if(i,j)EU. 

Since the spanning tree structure (T, L, U) satisfies the optimality condition 
(11.1), eu ;::: 0 for every eligible arc (i, j). Suppose that we select some eligible arc 
(k, I) as the entering arc. It is easy to see that adding the arc (k, I) to Ts U Tt decreases 
the potential of each node in 8 by ekl units (throughout the computations, we maintain 
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that the node potential of the source node s has value zero). This change in node 
potentials decreases the reduced cost of each arc in (S, S) by fJ kl units and increases 
the reduced cost of each arc in (S, S) by fJ kl units. We have four cases to consider. 

Case 1. (i, j) E (S, S) n L 

The reduced cost of the arc (i, j) becomes eij - fJkl • The arc will satisfy the 
optimality condition (11.1b) if fJ kl $ eij = fJij. 

Case 2. (t, j) E (S, S) n u 
The reduced cost of the arc (i, j) becomes elf - fJ kl • The arc will satisfy the 
optimality condition (11.1c) regardless of the value of fJ kl because elf $ O. 

Case 3. (i, j) E (S, S) n L 

The reduced cost of the arc (i, j) becomes elf + fJ kl • The arc will satisfy the 
optimality condition (11.1b) regardless of the value of fJ kl because elf;::: O. 

Case 4. (t, j) E (S, S) n u 
The reduced cost of the arc (i, j) becomes elf + fJ kl . The arc will satisfy the 
optimality condition (11.1c) provided that fJ kl $ - elf = fJij. 

The preceding discussion implies that the new spanning tree structure will 
satisfy the optimality conditions provided that 

fJ kl $ fJij for each (i, j) E ((S, S) n L) U ((S, S) n U) == Q. 

Consequently, we select the entering arc (k, I) to be an eligible arc for whi,ch 
fJ kl = min{fJij: (i, j) E Q}. Adding the arc (k, l) to the subtrees Ts and Tt gives us a 
new spanning tree structure and completes an iteration. We refer to this dual pivot 
as degenerate if fJ kl = 0, and as nondegenerate otherwise. We repeat this process 
until we have sent the desired amount of flow from node s to node t. 

It is easy to implement the parametric network simplex algorithm so that it 
runs in pseudopolynomial time. In this implementation, if an augmentation creates 
several blocking arcs, we select the one closest to the source as the leaving arc. 
Using inductive arguments, it is possible to show that in this implementation, the 
subtree Ts will permit us to augment a positive amount of flow from node s to every 
other node in Ts along the tree path. Moreover, in each iteration, when the algorithm 
sends no additional flow from node s to node t, it adds at least one new node to Ts. 
Consequently, after at most n iterations, the algorithm will send a positive amount 
of flow from node s to node t. Therefore, the parametric network simplex algorithm 
will perform O(nb(s)) iterations. 

To illustrate the parametric network simplex algorithm, let us consider the same 
example we used to illustrate the network simplex algorithm. Figure 11.20(a) gives 
the minimum cost flow problem if we choose s = 1 and t = 6. Figure 11.20(b) shows· 
the tree of shortest paths. All the nontree arcs are at their lower bounds. In the first 
iteration, the algorithm augments the maximum possible flow from node 1 to node 
6 along the tree path 1-2-5-6. This path permits us to send a maximum of 3 = 
min{u12' U25, U56} = min{8, 2, 6} = 2 units of flow. Augmenting 2 units along the 
path creates the unique blocking arc (2, 5). We drop arc (2, 5) from the tree, creating 
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Figure 11.20 Illustrating the parametric network simplex algorithm. 

the s-t cut [S, S] with S = {I, 2, 3, 4} [see Figure 11.20(c)]. This cut contains two 
eligible arcs: arcs (3, 5) and (4, 6) with 835 = 1 and 846 = 2. We select arc (3, 5) as 
the entering arc, creating the spanning tree shown in Figure 11.20(d). Notice that 
the potentials of the nodes 5 and 6 increase by 1 unit. In the new spanning tree, 1-
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3-5-6 is the tree path from node 1 to node 6. We augment 3 = min{u13, U35, U56 -

X56} = min{3, 3, 6 - 2} = 3 units of flow along the path, creating two blocking arcs, 
(1,3) and (3,5). The arc (1, 3) is closer to the source and we select it as the leaving 
arc. As shown in Figure 11.20(e), the resulting s-t cut contains two eligible arcs, 
(2,3) and (4, 6). Since 846 < 823 , we select (4,6) as the entering arc. We leave the 
remaining steps of the algorithm as an exercise for the reader. 

Notice the resemblance between the parametric network simplex algorithm 
and the successive shortest path algorithm that we discussed in Section 9.7. Both 
algorithms maintain the optimality conditions and gradually satisfy the mass balance 
constraints at the source and sink nodes. Both algorithms send flow along shortest 
paths from node s to node t. Whereas the successive shortest path algorithm does 
so by explicitly solving a shortest path problem, the parametric network simplex 
algorithm implicitly solves a shortest path problem. Indeed, the sequence of itera
tions that the parametric network simplex algorithm performs between two consec
utive positive-flow iterations are essentially the steps of Dijkstra's algorithm for the 
shortest path problem. 

Dual Network Simplex Algorithm 

The dual network simplex algorithm maintains a solution that satisfies the mass 
balance constraints at all nodes, but that violates some of the lower and upper bounds 
imposed on the arc flows. The algorithm maintains a spanning tree structure (T, L, 
U) that satisfies the optimality conditions (11.1); the flow on the arcs in Land U are 
at their lower and upper bounds, but the flow on the tree arcs might not satisfy their 
flow bounds. We refer to a tree arc (i, j) as feasible if 0 :s Xu :s uij and as infeasible 
otherwise. The algorithm attempts to make infeasible arcs feasible by sending flow 
along cycles; it terminates when the network contains no infeasible arc. 

The dual network simplex algorithm performs a dual pivot at every iteration. 
Let (T, L, U) be the spanning tree structure at some iteration. In this solution some 
tree arcs might be infeasible. The algorithm selects anyone of these arcs as the 
leaving arc. (Empirical evidence suggests that choosing an infeasible arc with the 
maximum violation of its flow bound generally results in a fewer number of itera
tions.) Suppose that we select the arc (p, q) as the leaving arc and Xpq > upq • We 
later address the casexpq < O. To make the flow on the arc (p, q) feasible, we must 
decrease the flow on this arc. We decrease the flow by introducing some nontree 
arc (k, l) that creates a unique cycle W containing arc (p, q) and augment enough 
flow along this cycle. Let us see which entering arc (k, I) would permit us to ac
complish this objective. 

If we drop the arc (p, q) from the spanning tree, we create two subtrees TJ 
and T2 , with p E TJ and q E T2 • Let Sand 8 be the sets of nodes spanned by TJ 
and T2 • In addition, let (S, 8) and (8, S) denote the sets of forward and backward 
arcs in the cut [S, 8]. Each arc in the cut [S, 8], except the arc (p, q), is at its lower 
or upper bound. Adding any arc (i, j) in [S, 8] to T creates a unique cycle W that 
contains the arc (p, q). Suppose that we define the orientation of the cycle W along 
the arc (i, j) if (i, j) ELand opposite to the arc (i, j) if (i, j) E U. Each nontree arc 
in the cut [8, S] is (1) either a forward arc or a backward arc, and (2) either belongs 
to L or belongs to U. Consider any arc (i,j) E (S, 8) n L. In this case, the orientation 
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of the cycle is along arc (i, j); consequently, arc (p, q) will be a backward arc in 
the cycle Wand sending additional flow along the orientation of the cycle will de
c.!.ease flow on the arc (p, q) [see Figure 11.21(a»). Next, consider any arc (i, j) E 
(8,8) n U. In this case the orientation of the cycle is opposite to arc (i,j); therefore, 
sending additional flow along the orientation of the cycle again decreases flow on 
the arc (p, q) [see Figure 11.21(b»). The reader can easily verify that in the other 
two cases when (i, j) E (8, 8) n U or (i, j) E (8, 8) n L, increasing flow along the 
orientation of the cycle does not decrease flow on the arc (p, q). Consequently, we 
define the set of eligible arcs as 

Q = «8, 8) n L) U «8, 8) n U). 

s s s s 

(a) (a) 

Figure 11.21 Identifying eligible arcs in the dual network simplex algorithm. 

If Q = 0, we cannot reduce the flow on arc (p, q) and the minimum cost flow 
problem is infeasible (see Exercise 11.37). If Q # 0, we must select as the entering 
arc an eligible arc that would create a new spanning tree structure satisfying the 
optimality conditions. This step is similar to the same step in the parametric network 
simplex algorithm. We define a number Su for each eligible arc (i, j) in the following 
manner: 

S .. = { cij 
IJ - cij 

if (i, j) E L, 
if (i,j) E u, 

and select an arc (k, l) as the entering arc for which Ski = min{Sij: (i, j) E Q}. As 
before, we say this dual pivot is degenerate if Ski = 0 and is nondegenerate otherwise. 
We augment Xpq - Upq units of flow along the cycle created by the arc (k, /); doing 
so decreases the flow on the arc (p, q) to value upq • Note that as a result of the 
augmentation, the arc (p, q) becomes feasible; other feasible arcs, however, might 
become infeasible. In the next spanning tree structure, the arc (k, I) replaces the 
arc (p, q), and (p, q) becomes a nontree arc at its upper bound. Replacing the arc 
(p, q) by the arc (k, l) in the spanning tree decreases the potential of each node in 
8 by Ski units. (In the dual network simplex algorithm, the potential of node 1 might 
not always be zero.) As in our discussion of the parametric network simplex algo
rithm, it is possible to show that the new spanning tree structure satisfies the op
timality conditions. 

So far we have addressed situations in which the leaving arc (p, q) is infeasible 
because Xpq > Upq • We now consider the case when Xpq < O. In this instance, to 
make this arc feasible, we will increase its flow. The computations in this case are 
exactly the same as in the previous case except that we define the subtrees TJ and 
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T2 so that p E T2 and q E T1 • We define the set of eligible arcs as Q = «S, S) n 
L) U «S, S) n U) and select an eligible arc (k, I) with the minimum value of Skt as 
the entering arc. We augment I Xpq I units of flow along the cycle created by the arc 
(k, I); doing so increases the flow on arc (p, q) to value zero. In the next spanning 
tree structure, arc (k, I) becomes a tree arc and (p, q) becomes a nontree arc at its 
lower bound. 

Proving the finiteness of the dual network simplex algorithm is easy if each 
dual pivot is nondegenerate. As before, we assume that Xpq > u pq (a similar proof 
applies when Xpq < 0). In this case the entering arc (k, I) belongs to (S, S) n L or 
belongs to (S, S) n U. In the former case, cft > 0 and the flow on the arc (k, I) 
increases by (xpq - u pq ) > 0 units. In the latter case, cft < 0 and the flow on the 
arc decreases by (xpq - u pq ) > 0 units. In either case, the cost of the flow increases 
by cft(xpq - u pq ) > O. Since mCU is an upper bound on the objective function value 
of the minimum cost flow problem and each nondegenerate pivot increases the cost 
by at least 1 unit, the dual network simplex algorithm will terminate finitely whenever 
every pivot is nondegenerate. In a degenerate pivot, the objective function value 
does not change because the entering arc (k, I) satisfies the condition cft = O. In 
Exercise 11.38 we describe a dual perturbation technique that avoids the degenerate 
dual pivots altogether and yields a finite dual network simplex algorithm. 

11.10 SENSITIVITY ANALYSIS 

The purpose of sensitivity analysis is to determine changes in the optimal solution 
of the minimum cost flow problem resulting from changes in the data (supply/demand 
vector, capacity, or cost of any arc)~ In Section 9.11 we described methods for 
conducting sensitivity analysis llSingilOnsimplex algorithms. In this section we de
scribe network simplex based algorithms for performing sensitivity analysis. 

Sensitivity analysis adopts the following basic approach. We first determine 
the effect of a given change in the data on the feasibility and optimality of the solution 
assuming that the spanning tree structure remains unchanged~If the change affects 
the optimality of the spanning tree structure, we perform (primal) pivots to achieve 
optimality. Whenever the change destroys the feasibility of the spanning tree struc
ture, we perform dual pivots to achieve feasibility. 

Let x* denote an optimal solution of the minimum cost flow problem. Let (T*, 
L*, U*) denote the corresponding spanning tree structure and 'IT* denote the cor
responding node potentials. We first consider sensitivity analysis with respect to 
changes in the cost coefficients. 

Cost Sensitivity Analysis 

Suppose that the cost of an arc (p, q) increases by A units. The analysis would be 
different when arc (p, q) is a tree or a nontree arc. 

Case 1. Arc (p, q) is a nontree arc. 

In this case, changing the cost of arc (p, q) does not change the node potentials 
of the current spanning tree structure. The modified reduced cost of arc (p, 
q) is c;; + A. If the modified reduced cost satisfies condition (1l.lb) or (Il.1c), 
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whichever is appropriate, the current spanning tree structure remains optimal. 
Otherwise, we reoptimize the solution using the network simplex algorithm 
with (T*, L*, U*) as the starting spanning tree structure. 

Case 2. Arc (p, q) is a tree arc. 

In this case, changing the cost of arc (p, q) changes some node potentials. If 
arc (p, q) is an upward-pointing arc in the current spanning tree, potentials of 
all the nodes in D(p) increase by l\, and if (p, q) is a downward-pointing arc, 
potentials of all the nodes in D(q) decrease by l\. Note that these changes alter 
the reduced costs of those nontree arcs that belong to the cut [D(q), D(q)]. If 
all nontree arcs still satisfy the optimality condition, the current spanning tree 
structure remains optimal; otherwise, we reoptimize the solution using the 
network simplex algorithm. 

Supply/Demand Sensitivity Analysis 

To study changes in the supply/demand vector, suppose that the supply/demand b(k) 
of node k increases by l\ and the supply/demand bel) of another node I decreases by 
l\. [Recall that since :LiEN b(i) = 0, the supplies of two nodes must change simul
taneously, by equal magnitudes and in opposite directions.] The mass balance con
straints require that we must ship l\ units of flow from node k to node t. Let P be 
the unique tree path from node k to node t. Let P and l!., respectively, denote the 
sets of arcs in P that are along and opposite to the direction ofthe path. The maximum 
flow change &ij on an arc (i, j) E P that preserves the flow bounds is 

Let 

if (i,j) E P, 
if (i, j) E f.. 

& = min{&ij:(i,j) E Pl. 
If l\ ~ &, we send l\ units of flow from node k to node t along the path P. The 

modified solution is feasible to the modified problem and since the modification in 
b(i) does not affect the optimality of the solution, the resulting solution must be an 
optimal solution of the modified problem. 

If l\ > &, we cannot send l\ units of flow from node k to node t along the arcs 
of the current spanning tree and preserve feasibility. In this case we send & units of 
flow along P and reduce l\ to l\ - &. Let x 1 denote the updated flow . We next perform 
a dual pivot (as described in the preceding section) to obtain a new spanning tree 
that might allow additional flow to be sent from node k to node I along the tree path. 
In a dual pivot, we first decide on the leaving variable and then identify an entering 
variable. Let (p, q) be an arc in P that blocks us from sending additional flow from 
node k to node t. If (p, q) E P, then X;q = upq and if (p, q) E f., then X~q = O. We 
drop arc (p, q) from the spanning tree. Doing so partitions the set of nodes into two 
subtrees. Let S denote the subtree containing node k and S denote the subtree 
containing node t. Now consider the cut [S, S]. Since we wish to send additional 
flow through the cut [S, S]' the arcs eligible to enter the tree would be the forward 
arcs in the cut at their lower bound or backward arcs at their upper bounds. If the 
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· network contains no eligible arc, we can send no additional flow from node k to 
node I and the modified problem is infeasible. If the network does contain qualified 
arcs, then among these arcs, we select an arc, say (g, h), whose reduced cost has 
the smallest magnitude. We introduce the arc (g, h) into the spanning tree and update 
the node potentials. 

We then again try to send A' = A - 3 units of flow from node k to node I on 
the tree path. If we succeed, we terminate; otherwise, we send the maximum possible 
flow and perform another dual pivot to obtain a new spanning tree structure. We 
repeat these computations until either we establish a feasible flow in the network 
or discover that the modified problem is infeasible. 

Capacity Sensitivity Analysis 

Finally, we consider sensitivity analysis with respect to arc capacities. Consider the 
analysis when the capacity of an arc (p, q) increases by A units. (Exercise 11.40 
considers the situation when an arc capacity decreases by A units.) Whenever we 
increase the capacity of any arc, the previous optimal solution always remains fea
sible; to determine whether this solution remains optimal, we check the optimality 
conditions (11.1). If arc (p, q) is a tr..ee..llrC or is a nontree arc at its lower bound, 
increasing uPC!. py A does not affect the optimality condition for that arc. If, however, 
arc (p, q) is a nontree arc at its upper bound and its capacity increases by A units, 
the optimality condition (11.1 c) dictates that we must increase the flow on the arc 
by A units. Doing so creates an excess of A units at node q and a deficit of A units 
at node p. To achieve feasibility, we must send A units from node q to node p. We 
accomplish'this objective by using the method described earlier in our discussion 
of supply/demand sensitivity analysis. 

11.11 RELATIONSHIP TO SIMPLEX METHOD 

So far in this chapter, we have described the network simplex algorithm as a com
binatorial algorithm and used combinatorial arguments to show that the algorithm 
correctly solves the minimum cost flow problem. This development has the advan
tage of highlighting the inherent combinatorial structure of the minimum cost flow 
problem and of the network simplex algorithm. The approach has the disadvantage, 
however, of not placing the network simplex method in the broader context of linear 
programming. To help to rectify this shortcoming, in this section we offer a linear 
programming interpretation of the network simplex algorithm. We show that the 
network simplex algorithm is indeed an adaptation ofthe well-known simplex method 
for general linear prQgrams. Because the minimum cost flow problem is a highly 
structured linear programming problem, when we apply the simplex method to it, 
the resulting computations become considerably streamlined. In fact, we need not 
explicitly maitititn the matrix representation (known as the simplex tableau) of the 
linear program and can perform all the computations directly on the network. As 
we will see, the resulting computations are exactly the same as those performed by 
the network simplex algorithm. Consequently, the network simplex algorithm is not 
a new minimum cost flow algorithm; instead, it is a special implementation of the 
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well-known simplex method that exploits the special structure of the minimum cost 
flow problem. 

Our discussion in this section requires a basic understanding of the simplex 
method; Appendix C provides a brief review of this method. As we have noted 
before, the minimum cost flow problem is the following linear program: 

Minimize cx 

subject to 

Xx = b, 

0:5 X :5 U. 

The bounded variable simplex method for linear programming (or, simply, the 
simplex method) maintains a basis structure (B, L, U) at every iteration and moves 
from one basis structure to another until it obtains an optimal basis structure. The 
set B is the set of basic variables, and the sets Land U are the nonbasic variables 
at their lower and upper bounds. Following traditions in linear programming, we 
also refer to the variables in B as a basis. Let (%, X, and au denote the sets of columns 
in X corresponding to the variables in B, L, and U. We refer to (% as a basis matrix. 
Our first result is a graph-theoretic characterization of the basis matrix. 

Bases and Spanning Trees 

We begin by establishing a one-to-one correspondence between bases of the mini
mum cost flow problem and spanning trees of G. One implication of this result is 
that the basis matrix is always lower triangular. The triangularity of the basis matrix 
is a key in achieving the efficiency of the network simplex algorithm. 

We define the jth unit vector ej as a column vector of size n consisting of all 
zeros except a 1 in thejth row. We let Xij denote the column of X associated with 
the arc (i, j). In Section 1.2 we show that Xu = ei - ej. The rows of X are linearly 
dependent since summing all the rows yields the redundant constraint 

o = ~ b(i), 
iEN 

which is our assumption that the supplies/demands of all the nodes sum to zero. For 
convenience we henceforth assume that we have deleted the first row in X (corre
sponding to node 1, which is treated as the root node). Thus X has at most n - 1 
independent rows. Since the number of linearly independent rows of a matrix is the 
same as the number of linearly independent columns, X has at most n - 1 linearly 
independent columns. We show that the n - 1 columns associated with arcs of any 
spanning tree are linearly independent and thus define a basis matrix of the minimum 
cost flow problem. 

Consider a spanning tree T. Let 0'3 be the (n - 1) x (n - 1) matrix defined 
by the arcs in T. As an example, consider the spanning tree shown in Figure 11.22(a) 
which corresponds to the matrix (% shown in Figure 11.22(b). The first row in 
this matrix corresponds to the redundant row in X and deleting this row yields an 
(n - 1) x (n - 1) square matrix. For the sake of clarity, however, we shall some
times retain the first row. We order the rows and columns of \% in a certain specific 
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/ 
/ 

;('/ 
(1,2) (3, 1) (3,5) (2,4) (2,4) (l,2) (3,5) (3,1) 

-1 0 0 4 -1 0 0 0 
-------------
2 -1 0 0 2 -1 0 0 

3 0 0 5 0 0 -1 0 

4 0 0 0 -1 3 0 0 
-------------

5 0 0 -1 0 0 0 -1 

(b) (c) 

Figure 11.22 (a) Spanning tree and its reverse thread traversal; (b) basis matrix corre
sponding to the spanning tree; (c) bas~ matrix after rearranging the rows and columns. 

manner. Doing so requires the reverse thread traversal of the nodes in the tree. 
Recall that a reverse thread traversal visits each node before visiting its predecessor. 
We order nodes and arcs in the following manner. 

1. We order nodes of the tree in order of the reverse thread traversal. For our 
example, this order is 4-2-5-3-1 [see Figure 11.22(a)]. 

2. We order the tree arcs by visiting the nodes in order of the reverse thread 
traversal, and for each node i visited, we select the unique arc incident to it 
on the path to the root node. For our example, this order is (2, 4), (1, 2), 
(3, 5), and (3, 1). 

We now arrange the rows and columns of 0"3 as specified by the preceding node 
and arc orderings. Figure 11.22(c) shows the resulting matrix for our example. In 
this matrix, if we ignore the row corresponding to node 1, we have a lower triangular 
(n - 1) x (n - 1) matrix. The triangularity of the matrix is not specific to our 
example: The matrix would be triangular in general. It is easy-to see why. Suppose 
that the reverse thread traversal selects node i at some step. Letj = pred(i). Then 
either (j, i) E T, or (i, j) E T. Without any loss of generality, we assume that 
(i, j) E T. The reverse thread traversal ensures that we have not visited node j so 
far. Consequently, the column corresponding to arc (i, j) will contain a +1 entry in 
the row r corresponding to node i, will contain all zero entries above this row, and 
will contain a-I entry corresponding to node j below row r (because we will visit 
node j later). We have thus shown that this rearranged version of 0"3 is a lower 
triangular matrix and that all of its diagonal elements are + 1 or - 1. We, therefore, 
have established the following result. 

Theorem 11.9 (Triangularity Property). The rows and columns of the node
arc incidence matrix of any spanning tree can be rearranged to be lower triangular . 

• 
The determinant of a lower triangular matrix is the product of its diagonal 

elements. Since each diagonal element in the matrix is ± 1, the determinant is ± 1. 
We now use the well-known fact from linear algebra that a set of (n -1) column 
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vectors, each of size (n - 1), is linearly independent if and only if the matrix con
taining these vectors as columns has a nonzero detenninant. This result shows that 
the columns corresponding to arcs of a spanning tree constitute a basis matrix of N. 

We now establish the converse result: Every basis matrix 0'3 of N defines a 
spanning tree. The fact that every basis matrix has the same number of columns 
implies that every basis matrix 0'3 has (n - 1) columns. These columns correspond 
to a subgraph G' of G having (n - 1) arcs. Suppose that G' contains a cycle 
W. We assign any orientation to this cycle and consider the expression ~(i.j)EW 
(± 1)Nij = ~(i.j)EW (± 1)(ei - ej); the leading coefficient of each term is + 1 for 
those arcs aligned along the orientation of the cycle and is - 1 for arcs aligned 
opposite to the orientation of the cycle. It is easy to verify that for each node j 
contained in the cycle, the unit vector ej appears twice, once with a + 1 sign and 
once with a-I sign. Consequently, the preceding expression sums to zero, indi
cating that the columns corresponding to arcs of a cycle are linearly dependent. 
Since the columns of 0'3 are linearly independent, G' must be an acyclic graph. Any 
acyclic graph on n nodes containing (n - 1) arcs must be a spanning tree. So we 
have established the following theorem. 

Theorem 11.10 (Basis Property). Every spanning tree ofG defines a basis of 
the minimum cost flow problem and, conversely, every basis of the minimum cost 
flow problem defines a spanning tree of G. • 

Implications of Triangularity 

In the preceding discussion we showed that we can arrange every basis matrix of 
the minimum cost flow problem so that it is lower triangular and has an associated 
spanning tree. We now show that the triangularity of the basis matrix allows us to 
simplify the computations of the simplex method when applied to the minimum cost 
flow problem. 

When applied to the minimum cost flow problem, the simplex method maintains 
a basis structure (B, L, U) at every step. Our preceding discussion implies that the 
arcs in the set B constitute a spanning tree and the arcs in the set L U U are nontree 
arcs. Therefore, this basis structure is no different from the spanning tree structure 
that the network simplex algorithm maintains. Moreover, the process of moving 
from one spanning tree structure to another corresponds to moving from one basis 

\ structure to another in the simplex method. 
The simplex method perfonns the following operations: 

1. Given a basis structure (B, L, U), determine the associated basic feasible so
lution. 

2. Given a basis structure (B, L, U), determine the associated simplex multipliers 
'iT (or, dual variables). 

3. Given a basis structure (B, L, U), check whether it is optimal, and if not, then 
detennine an entering nonbasic variable Xkl. 

4. Given a basis structure (B, L, U) and a nonbasic variable Xkl, determine the 
representation, N kl, of the column N kl, corresponding to this variable in terms 
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of the basis matrix 0'3. We require this representation to perform the pivot 
operation while introducing the variable Xkl into the current basis. 

We consider these simplex operations one by one. 

Computing the Basio Feasible Solution 

Given the basis structure (B, L, U), the simplex method determines the associated 
basic feasible solution by solving the follow~ng system of equations: 

(11.5) 

In this expression, XB denotes the set of basic variables, and XL and Xu denote 
the sets of nonbasic variables at their lower and upper bounds. The simplex method 
sets each nonbasic variable in XL to value zero, each nonbasic variable in Xu to its 
upper bound, and solves the resulting system of equations. Let Uu be the vector of 
upper bounds for variables in U and let b I = b - OUuu. The simplex method solves 
the following system of equations: 

0'3XB = b'. (11.6) 

Let,us see how can we solve (11.6) for the minimum cost flow problem. For 
simplicity of exposition, assume that XB = (X2, X3, ... , xn). (Assume that the row 
corresponding to node 1 is the redundant row.) Since 0'3 is a lower triangular matrix, 
the first row of 0'3 has exactly one nonzero element corresponding to X2. Therefore, 
we can uniquely determine the value of X2. Since the coefficient of X2 is ± 1, the 
value of X2 is integral. The second row of 0'3 has at most two nonzero elements, 
corresponding to the variables X2 and X3. Since we have already determined the value 
of X2, we can determine the value of X3 uniquely. Continuing to solve successively 
for one variable at a time by this method of forward substitution, we can determine 
the entire vector XB. Since the nonzero coefficients in the basis matrix 0'3 all have 
the value ± 1, the only operations we perform are additions ang,subtractions, which 
preserve the integrality of the solution. 

It is easy to see that the computations required to solve the system of equations 
0'3XB = b I are exactly same as those performed by the procedure compute-flows 
described in Section 11.4. Recall that the procedure first modifies the supply/demand 
vector b by setting the flows on the arcs in U equal to their upper bounds. The 
modified supply/demand vector b ' equals b - OUuu. Then the procedure examines 
the nodes in order of the reverse thread traversal and computes the flows on the 
arcs incident to these nodes. To put the matrix 0'3 into a lower triangular form, we 
ordered its rows using the reverse thread traversal of the nodes. As a result, the 
procedure compute-flows computes flows on the arcs exactly in the same order as 
solving the system of equation 0'3XB = b I by forward substitution. 

Determining the Simplex Multipliers 

The simplex algorithm determines the simplex multipliers 'iT associated with a basis 
structure (B, L, U) by solving the following system of equations: 

(11.7) 
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In this expression, CB is the vector consisting of cost coefficients of the variables 
in B. Assume, for simplicity of exposition, that 'IT = ('IT(2), 'IT(3), ... , 'IT(n)). Since 
0'3 is a lower triangular matrix, the last column of 0'3 has exactly one nonzero element. 
Therefore, we can immediately determine 'IT(n). The second to last column of 0'3 has 
at most two nonzero elements, corresponding to 'IT(n - 1) and 'IT(n). Since we have 
already computed 'IT(n), we can easily compute 'IT(n - 1), and so on. We can thus 
solve (11. 7) by backward substitution and compute all the simplex multipliers by 
performing only additions and subtractions. Since we have arranged the rows of 0'3 
in the order of the reverse thread traversal of the nodes, and we determine simplex 
multipliers in the opposite order, we are, in fact, determining the simplex multipliers 
of nodes in the order dictated by the thread traversal. Recall from Section 11.4 that 
the procedure compute-potentials also examines nodes and computes the node po
tentials by visiting the nodes via the thread traversal. Consequently, the procedure 
compute-potentials is in fact solving the system of equations 'lT0'3 = CB by backward 
substitution. Also, notice that the node potentials are the simplex multipliers main
tained by the simplex method. 

optimality Testing 

Given a basis structure (B, L, U), the simplex method computes the simplex mul
tipliers 'IT, and then tests whether the basis structure satisfies the optimality con
ditions (11.1) (see Appendix C). As expressed in terms of the reduced costs cli, the 
optimality conditions are 

for each (i, j) E A. 

For the minimum cost flow problem, Xu = ei - ej and, therefore, cli = Cij -

'IT(i) + 'IT(j). Consequently, the reduced costs of the arcs as defined in the network 
simplex algorithm are the linear programming reduced costs and the optimality con
ditions (11.1) for the network simplex algorithm are the same as the linear program
ming optimality conditions (see Section C.S). The selection of the entering arc 
(k, l) in the network simplex algorithm corresponds to selecting the nonbasic variable 
Xkl as the entering variable. To simplify our subsequent exposition, we assume that 
the entering arc (k, l) is at its lower bound. 

Representation of a Nonbasic Column 

Once the simplex algorithm has identified a nonbasic variable Xkl to enter the basis, 
it next obtains the representation X kl of the column corresponding to Xkl with respect 
to the current basis matrix. We use this representation to determine the effect on 
the basic variables of assigning a value e to Xkl, that is, to solve the system 

XB = b' - Xk1e. 

In this expression, b' = 0'3 - 1 b' and X kl = 0'3 - 1 X kl. Observe that - X kl denotes 
the change in the values of basic variables as we increase the value of the entering 
nonbasic variable Xkl by 1 unit (i.e., set e to value 1) and maintain all other nonbasic 
variables at their current lower and upper bounds. What is the graph-theoretic sig
nificance of X kl? 

446 Minimum Cost Flows: Network Simplex Algorithms Chap. 11 



The addition of arc (k, I) to the spanning tree T creates exactly one cycle, say 
W. Define the orientation of the cycle W to align with the orientation of the arc 
(k, I). Let Wand W denote the sets of forward and backward arcs in W. Observe 
that if we wish to increase the flow on arc (k, I) by 1 unit, keeping the flow on all 
other nontree arcs intact, then to satisfy the mass balance constraints we must aug
ment 1 unit of flow along W. This change would increase the flow on arcs in W by 
1 unit and decrease the flow on arcs in W by 1 unit. This discussion shows that the 

. fundamental cycle W created by the nontree.arc (k, l) defines the representation .Nkl 

in the following manner. All the basic Ivariables corresponding to the arcs in W have 
a coefficient of -1 in the column veqtor .Nkl , all the basic variables corresponding 
to the arcs in W have a coefficient df" + 1, and all other basic variables have a 
coefficient of O. This discussion also shows that in the network simplex algorithm, 
augmenting flow in the fundamental cycle created by the entering arc (k, I) and 
obtaining a new spanning tree solution corresponds to performing a pivot operation 
and obtaining a new basis structure in the simplex method. 

To summarize, we have shown that the network simplex algorithm is the same 
as the simplex method applied to the minimum cost flow problem. The triangularity 
of the basis matrix permits us to apply the simplex method directly on the network 
without explicitly maintaining the simplex tableau. This possibility permits us to use 
the network structure to greatly improve the efficiency of ' the simplex method for 
solving the minimum cost flow problem. 

In this section we have shown that the network simplex algorithm is an ad
aptation of the simplex method for solving general linear programs. A similar de
velopment would permit us to show that the parametric network simplex algorithm 
is an adaptation of the right-hand-side parametric algorithm of linear programmi.ng, 
and that the dual network simplex algorithm is an adaptation 'of the well-known dual 
simplex method for solving linear programs. We leave the details of these results 
as exercises (see Exercises 11.35 and 11.36). 

11.12 UNIMODULARITY PROPERTY 

In Section 11.4, using network flow algorithms, we established one of the funda
mental results of network flows, the integrality property, stating that every minimum 
cost flow problem with integer supplies/demands and integer capacities has an integer 
optimal solution. The type of constructive proof that we used to establish this result 
has the obvious advantage of actually permitting us to compute integer optimal so
lutions. In that sense, constructive proofs have enormous value. However, con
structive proofs do not always identify underlying structural (mathematical) reasons 
for explaining why results are true. These structural insights usually help in under
standing a subject matter, and often suggest relationships between the subject matter 
and other problem domains or help to define potential limitations and generalization 
of the subject matter. In this section we briefly examine the structural properties of 
the integrality property, by providing an algebraic proof of this result. This discussion 
shows relationships between the integrality property and certain integrality results 
in linear programming. 

Let .sa be a p x q matrix with integer elements and p linearly independent rows 
(the matrix's rank is p). We say that the matrix .sa is unimodular if the determinant 
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of every basis matrix ~ of sIl has value + 1 or -1 [i.e., det(~) = ± 1]. Recall from 
Appendix C that a p x p submatrix of sIl is a basis matrix if its columns are linearly 
independent. The following classical result shows the relationship between uni
modularity and the integer solvability of linear programs. 

Theorem 11.11 (Unimodularity Theorem). Let sIl be an integer matrix with lin
early independent rows. Then the following three conditions are equivalent: 
(a) sIl is unimodular. 
(b) Every basic feasible solution defined by the constraints sIlx = b, x 2: 0, is integer 

for any integer vector b. 
(c) Every basis matrix ~ of sIl has an integer inverse ~ -1 . 

Proof. We prove the theorem by showing that (a) =? (b), (b) =? (c), and 
(c) =? (a). 

(a) =? (b). Each basic feasible solution XB has an associated basic matrix ~ 
for which ~XB = b. By Cramer's rule, any component Xj of the solution XB will be 
of the form 

det(integer matrix) 
Xj = det(~) 

We obtain the integer matrix in this formula by replacing the jth column of ~ 
with the vector b. Since, by assumption, sIl is unimodular, det(~) is ± 1, so Xj is 
integer. 

(b) =? (c). Let ~ be a basis matrix of sIl. Since ~ has a nonzero determinant, 
its inverse ~ -1 exists. Let ej denote the jth unit vector (i.e., a vector with a 1 at 
thejth position and 0 elsewhere). Let 05 = ~-1 and 05j denote thejth column of 05. 
We will show that the column vector 05j is integer for eachj whenever condition (b) 
holds. Select an integer vector IX so that 05j + IX 2: O. Let x = 05j + IX. Notice that 

(11.8) 

Multiplying the expression (11.8) by 05 = ~ -1, we see that x = 05j + IX. Since 
ej + ~IX is integer (by definition), condition (b) implies that 05j + IX is integer. 
Recalling that IX is integer, we find that 05j is also integer. This conclusion completes 
the proof of part (b). 

(c) =? (a). Let ~ be a basis matrix of sIl. By assumption, ~ is an integer matrix, 
so det(~) is an integer. By condition (c), ~-1 is an integer matrix; consequently, 
det( ~ -1) is also an integer. Since ~ . ~ - 1 = I (i. e., an identity matrix), 
det(~) . det(~-l) = 1, which implies that det(~) = det(~-l) = ± 1. • 

This result shows us when a linear program of the form minimize ex, subject 
to sIlx = b, x 2: 0, has integer optimal solutions for all integer right-hand-side vectors 
b and for all cost vectors c. Network flow problems are the largest important class 
of models that satisfy this integrality property. To establish a formal connection 
between network flows and the results embodied in this theorem, we consider an
other noteworthy class of matrices. 

Totally unimodular matrices are an important special subclass of unimodular 
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matrices. We say that a matrix :il is totally unimodular if each square submatrix of 
:il has determinant 0 or ± 1. Every totally unimodular matrix :il is unimodular because 
each basis matrix ~ must have determinant ± 1 (because the zero value of the de
terminant would imply the linear dependence of the columns of ~). However, a 
unimodular matrix need not be totally unimodular. Totally unimodular matrices are 
important, in large part, because the constraint matrices of the minimum cost flow 
problems are totally unimodular. 

Theorem 11.12. The node-arc incidence matrix .N of a directed network is 
totally unimodular. 

Proof To prove the theorem, we need to show that every square submatrix 
<iF of.N of size k has determinant 0, + 1, or -1. We establish this result by performing 
induction on k. Since each element of N is 0, + 1, or -1, the theorem is true for 
k = 1. Now suppose that the theorem holds for some k. Let <iF be any (k + 1) x 
(k + 1) submatrix of .N. The matrix <iF satisfies exactly one of the three following 
possibilities: (1) <iF contains a column with no nonzero element; (2) every column of 
<iF has exactly two nonzero elements, in which case, one of these must be a + 1 and 
the another a -1; and (3) some column <iF I has exactly one nonzero element, in, say, 
the ith row. In case (1) the determinant of <iF is zero and the theorem holds. In case 
(2) summing all of the rows in <iF yields the zero vector, implying that the rows in 
<iF are linearly dependent and, consequently, det(<iF) = 0. In case (3) let <iF' denote 
the submatrix of <iF obtained by deleting the ith row and the lth column. Then 
det(<iF) = ± 1 det(<iF'). By the induction hypothesis, det(<iF') is 0, + 1, or -1, so 
det(<iF) is also 0, + 1, or -1. This conclusion establishes the theorem. • 

This result, combined with Theorem 11.11, provides us with an algebraic proof 
of the integrality property of network flows: Network flow models have integer 
optimal solutions because every node-arc incidence matrix is totally unimodular 
and therefore unimodular. As we will see in later chapters,-the constraint matrices 
for many extensions of the basic network flow problem, for example, generalized 
flows and multicommodity flows, are not unimodular. Therefore, we would not ex
pect the optimal solutions of these models to be integer even when all of the un
derlying data are integer. Therefore, to find integer solutions to these problems, we 
need to rely on methods of integer programming. Although our development of the 
minimum cost flow problem has not stressed this point, one of the primary reasons 
that we are able to solve this problem so efficiently, and still obtain integer solutions, 
is because, as reflected by the integrality property, the basic feasible solutions of 
the linear programming formulation of this problem are integer whenever the un
derlying data are integer. 

To close this section, we might note that the unimodularity properties provide 
us with a very strong result: any basic feasible solution is guaranteed to be integer
valued whenever the right-hand-side vector b is integer. It is possible, however, that 
basic feasible solutions to a linear program might be integer valued for a particular 
right-hand side even though they might be fractional for some other right-hand sides. 
We illustrate this possibility in Section 13.8 when we give an integer programming 
formulation of the minimal spanning tree problem. 
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11.18 SUMMARY 

The network simplex algorithm is one of the most popular algorithms in practice for 
solving the minimum cost flow problem. This algorithm is an adaptation for the 
minimum cost flow problem of the well-known simplex method of linear program
ming. The linear programming basis of the minimum cost flow problem is a spanning 
tree. This property permits us to simplify the operations of the simplex method 
because we can perform all of its operations on the network itself, without main
taining the simplex tableau. Our development in this chapter does not require linear 
programming background because we have developed and proved the validity of the 
network simplex algorithm from first principles. Later in the chapter we showed the 
connection between the network simplex algorithm and the linear programming sim
plex method. 

The development in this chapter relies on the fact that the minimum cost flow 
problem always has an optimal spanning tree solution. This result permits us to 
restrict our search for an optimal solution among spanning tree solutions. The net
work simplex algorithm maintains a spanning tree solution and successively trans
forms it into an improved spanning tree solution until it becomes optimal. At each 
iteration, the algorithm selects a nontree arc, introduces it into the current spanning 
tree, augments the maximum possible amount of flow in the resulting cycle, and 
drops a blocking arc from the spanning tree, yielding a new spanning tree solution. 
The algorithm is flexible in the sense that we can select the entering arc in a variety 
of ways and obtain algorithms with different worst-case and empirical attributes. 

The network simplex algorithm does not necessarily terminate in a finite num
ber of iterations unless we impose some additional restrictions on the choice of the 
entering and leaving arcs. We described a special type of spanning tree solution, 
called the strongly feasible spanning tree solution; when implemented in a way that 
maintains strongly feasible spanning tree solutions, the network simplex algorithm 
terminates finitely for any choice of the rule used for selecting the entering arc. We 
can maintain strongly feasible spanning tree solutions by selecting the leaving arc 
appropriately whenever several arcs qualify to be the leaving arc. 

We also specialized the network simplex algorithm for the shortest path and 
maximum flow problems. When specialized for the shortest path problem, the al
gorithm maintains a directed out-tree rooted at the source node and iteratively mod
ifies this tree until it becomes a tree of shortest paths. When we specialize the 
network simplex algorithm for the maximum flow problem, the algorithm maintains 
an s-t cut and selects an arc in this cut as the entering arc until the associated cut 
becomes a minimum cut. 

The network simplex algorithm has two close relatives that might be quite useful 
in some circumstances: the parametric network simplex algorithm and the dual net
work simplex algorithm. The parametric network simplex algorithm maintains a 
spanning tree solution and parametrically increases the flow from a source node to 
a sink node until the algorithm has sent the desired amount of flow between these 
nodes. This algorithm is useful in situations in which we want to maximize the amount 
of flow to be sent from a source node to a sink node, subject to an upper bound on 
the cost of flow (see Exercise 10.25). The dual network simplex algorithm maintains 
a spanning tree solution in which spanning tree arcs do not necessarily satisfy the 
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flow bound constraints. The algorithm successively attempts to satisfy the flow 
bound constraints. The primary use of the dual network simplex algorithm has been 
for reoptimizing the minimum cost flow problem procedures for solving the minimum 
cost flow problem after we have changfd the supply/demand or capacity data. 

We also described methods for usiQg the network simplex algorithm to conduct 
sensitivity analysis for the minimum cost flow problem with respect to the changes 
in costs, supplies/demands, and capacities. The resulting methods maintain a span
ning tree solution and perform primal or dual pivots. Unlike the methods described 
in Section 9.11, these methods for conducting sensitivity analysis do not necessarily 
run in polynomial time (without further refinements). However, network simplex
based sensitivity analysis is excellent in practice. 

The minimum cost flow problem always has an integer optimal solution; at the 
beginning of the chapter, we gave an algorithmic proof of this integrality property. 
We also examined the structural properties of the integrality property by providing 
an algebraic proof of this result. We showed that the constraint matrix of the min
imum cost flow problem is totally unimodular and that, consequently, every basic 
feasible solution (or, equivalently, spanning tree solution) is an integer solution. 

REFERENCE NOTES 

Dantzig [1951] developed the network simplex algorithm for the uncapacitated trans
portation problem by specializing his linear programming simplex method. He 
proved the spanning tree property of the basis and the integrality property of the 
optimal solution. Later, his development of the upper bounding technique for linear 
programming led to an efficient specialization of the simplex method for the minimulV 
cost flow problem. Dantzig's [1962] book discusses these topics. . 

The network simplex algorithm gained its current popularity in the early 1970s 
when the research community began to develop and test algorithms using efficient 
tree indices. Johnson [1966] suggested the first tree indices. Srinivasan and Thomp
son [1973], and Glover, Karney, Klingman, and Napier [1974] implemented these 
ideas; these investigations found the network simplex algorithm to be substantially 
faster than the existing codes that implemented the primal-dual and out-of-kilter 
algorithms. Subsequent research has focused on designing improved tree indices and 
determining the best pivot rule. The book by Kennington and Helgason [1980] de
scribes a variety of tree indices and specifies procedures for updating them from 
iteration to iteration. The book by Bazaraa, Jarvis, and Sherali [1990] also describes 
a method for updating tree indices. The following papers describe a variety of pivot 
rules and the computational performance of the resulting algorithms: Glover, Kar
ney, and Klingman [1974], Mulvey [1978], Bradley, Brown, and Graves [1977], Gri
goriadis [1986], and Chang and Chen [1989]. The candidate list pivot rule that we 
describe in Section 11.5 is due to Mulvey [1978]. The reference notes of Chapter 9 
contain information concerning the computational performance of the network sim
plex algorithm and other minimum cost flow algorithms. 

Experience with solving large-scale minimum cost flow problems has shown 
that for certain classes of problems, more than 90% of the pivots in the network 
simplex algorithm can be degenerate. The strongly feasible spanning tree technique, 
proposed by Cunningham [1976] for the minimum cost flow problem, and indepen-
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dently by Barr, Glover, and Klingman [1977] for the assignment problem, helps to 
reduce the number of degenerate steps in practice and ensures that the network 
simplex algorithm has a finite termination. Although the strongly feasible spanning 
tree technique prevents cycling during a sequence of consecutive degenerate pivots, 
the number of consecutive degenerate pivots can be exponential. This phenomenon 
is known as stalling. Cunningham [1979] and Goldfarb, Hao, and Kai [1990b] describe 
several antistalling pivot rules for the network simplex algorithm. 

Researchers have attempted, with partial success, to develop polynomial-time 
implementations of the network simplex algorithm. TaIjan [1991] and Goldfarb and 
Hao [1988] have described polynomial-time implementations of a variant of the net
work simplex algorithm that permits pivots to increase value of the objective func
tion. A monotone polynomial-time implementation, in which the value of the ob
jective function is nonincreasing (as it does in any natural implementation), remains 
elusive to researchers. 

Several FORTRAN codes of the network simplex algorithm are available in 
the public domain. These include (1) the RNET code developed by Grigoriadis and 
Hsu [1979], (2) the NETFLOW code developed by Kennington and Helgason [1980], 
and (3) a recent code by Chang and Chen [1989]. 

We next give selected references for several specific topics. 

Shortest path problem. We have adapted the network simplex algorithm 
for the shortest path problem from Dantzig [1962]. Goldfarb, Hao, and Kai [1990a] 
and Ahuja and arlin [1992a] developed the polynomial-time implementations of this 
algorithm that we have presented in Section 11.7. Additional polynomial-time im
plementations can be found in arlin [1985] and Akgiil [1985a]. 

Maximum flow problem. Fulkerson and Dantzig [1955) specialized the net
work simplex algorithm for the maximum flow problem. Goldfarb and Hao [1990] 
gave a polynomial-time implementation of this algorithm that performs at most nm 
pivots and runs in O(n2m) time; Goldberg, Grigoriadis, and Trojan [1988] describe 
an O(nm log n) implementation of this algorithm. 

Assignment problem. One popular implementation of the network simplex 
algorithm for the assignment problem is due to Barr, Glover, and Klingman [1977]. 
Roohy-Laleh [1980], Hung [1983], arlin [1985], Akgiil [1985b], and Ahuja and arlin 
[1992a] have presented polynomial-time implementations of the network simplex 
algorithm for the assignment problem. Balinski [1986) and Goldfarb [1985] present 
polynomial-time dual network simplex algorithms for the assignment problem. 

Parametric network simplex algorithm. Schmidt, Jensen, and Barnes 
[1982], and Ahuja, Batra, and Gupta [1984) are two sources for additional information 
on the parametric network simplex algorithm. 

Dual network simplex algorithm. Ali, Padman, and Thiagarajan [1989] 
have described implementation details and computational results for the dual net
work simplex algorithm. Although no one has yet devised a (genuine) polynomial
time primal network simplex algorithm, arlin [1984] and Plotkin and Tardos [1990] 
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have developed polynomial-time dual network simplex algorithms. The algorithm of 
Orlin [1984J is more efficient if capacities satisfy the similarity assumption; other
wise, the algorithm of Plotkin and Tardos [1990J is more efficient. The latter algorithm 
performs O(m2 log n) pivots and runs in O(m3 log n) time. 

Sensitivity analysis. Srinivasan and Thompson [1972J have described para
metric and sensitivity analysis for the transportation problem, which is similar to 
that for the minimum cost flow problem. Ali, Allen, Barr, and Kennington [1986J 
also discuss reoptimization procedures for the minimum cost flow problem. 

Unimodularity. Hoffman and Kruskal [1956J first proved Theorem 11.11; 
the proof we have given is due to Veinott and Dantzig [1968J. The book by Schrijver 
[1986J presents an in-depth treatment of the unimodularity property and related 
topics. 

EXERCISES 

11.1. Nurse scheduling problem. A hospital administrator needs to establish a staffing sched
ule for nurses that will meet the minimum daily requirements shown in Figure 11.23. 
Nurses reporting to the hospital wards for the first five shifts work for 8 consecutive 
hours, except nurses reporting for the last shift (2 A.M. to 6 A.M.), when they work 
for only 4 hours. The administrator wants to determine the minimal number of nurses 
to employ to ensure that a sufficient number of nurses are available for each period. 
Formulate this problem as a network flow problem. 

Shift 1 2 3 4 5 6 

Clock 6 A.M. 10 A.M. 2 P.M. 6 P.M. 10 P.M. 2 A.M. 

time to to to to to to 
10 A.M. 2 P.M. 6 P.M. 10 P.M. 2 A.M. 6 A.M. 

-." 

Minimum 70 80 50 60 40 30 
nurses 
required 

Figure 11.23 Nurse scheduling problem. 

11.2. Caterer problem. As part of its food service, a caterer needs dj napkins for each day 
of the upcoming week. He can buy new napkins at the price of u cents each or have 
his soiled napkins laundered. Two types of laundry service are available: regular and 
expedited. The regular laundry service requires two working days and costs 13 cents 
per napkin, and the expedited service requires one working day and costs "I cents per 
napkin ("I > 13). The problem is to determine a purchasing and laundry policy that 
meets the demand at the minimum possible cost. Formulate this problem as a minimum 
costs flow problem. (Hint: Define a network on 15 nodes, 7 nodes corresponding to 
soiled napkins, 7 nodes corresponding to fresh napkins, and 1 node for the supply of 
fresh napkins.) 

11.3. Project assignment. In a new industry-funded academic program, each master's degree 
student is required to undertake a 6-month internship project at a company site. Since 
the projects are such an important component of the student's educational program 
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and vary considerably by company (e.g., by the problem and industry context) and 
by geography, each student would like to undertake a project of his or her liking. To 
assure that the project assignments are' 'fair," the students and program administrators 
have decided to use an optimization approach: Each student ranks the available 
projects in order of increasing preference (lowest to highest). The objective is to assign 
students to projects to achieve the highest sum of total ranking of assigned projects. 
The project assignment has several constraints. Each student must work on exactly 
one project, and each project has an upper limit on the number of students it can 
accept. Each project must have a supervisor, drawn from a known pool of eligible 
faculty. Finally, each faculty member has bounds (upper and lower) on the number 
of projects that he or she can supervise. Formulate this problem as a minimum cost 
flow problem. 

11.4. Passenger routing. United Airlines has six daily flights from Chicago to Washington. 
From 10 A.M. until 8 P.M., the flights depart every 2 hours. The first three flights have 
a capacity of 100 passengers and the last three flights can accommodate 150 passengers 
each. If overbooking results in insufficient room for a passenger on a scheduled flight, 
United can divert a passenger to a later flight. It compensates any passenger delayed 
by more than 2 hours from his or her regularly scheduled departure by paying $200 
plus $20 for every hour of delay. United can always accommodate passengers delayed 
beyond the 8 P.M. flight on the 11 P.M. flight of another airline that always has a great 
deal of spare capacity. Suppose that at the start of a particular day the six United 
flights have 110, 160, 103, 149, 175, and 140 confirmed reservations. Show how to 
formulate the problem of determining the most economical passenger routing strategy 
as a minimum cost flow problem. 

11.5. Allocating receivers to transmitters (Dantzig [1962]). An engine testing facility has four 
types of instruments: u. thermocouplers, U2 pressure gauges, U3 accelerometers, and 
U4 thrust meters. Each instrument measures one type of engine characteristic and 
transmits its measurements over a separate communication channel. A set of receivers 
receive and record these data. The testing facility uses four types of receivers, each 
capable of recording one channel of information: 131 cameras, 132 oscilloscopes, 133 
instruments called "Idiots," and 134 instruments called "Hathaways." The setup time 
of each receiver depends on the measurement instruments that are transmitting the 
data; let elj denote the setup time needed to prepare a receiver of type i to receive 
the information transmitted from any measurement taken by the jth instrument. The 
testing facility wants to find an allocation of receivers to transmitters that minimizes 
the total setup time. Formulate this problem as a network flow problem. 

11.6. Faculty-course assignment (Mulvey [1979]). In 1973, the Graduate School of Manage
ment at UCLA revamped its M.B.A. curriculum. This change necessitated an in
creased centralization of the annual scheduling of faculty to courses. The large size 
of the problem (100 faculty, 500 courses, and three quarters) suggested that a mathe
matical model would be useful for determining an initial solution. The administration 
knows the courses to be taught in each of the three teaching quarters (fall, winter, 
and spring). Some courses can be taught in either of the two specified quarters; this 
information is available. A faculty member might not be available in all the quarters 
(due to leaves, sabbaticals, or other special circumstances) and when he is available 
he might be relieved from teaching some courses by using his project grants for "fac
ulty offset time." Suppose that the administration knows the quarters when a faculty 
member will be available and the total number of courses he will be teaching in those 
quarters. The school would like to maximize the preferences of the faculty for teaching 
the courses. The administration determines these preferences through an annual fac
ulty questionnaire. The preference weights range from - 2 to + 2 and the administra
tion occasionally revises the weights to reflect teaching ability and student inputs. 
Suggest a network model for determining a teaching schedule. 

11.7. Optimal rounding ofa matrix (Bacharach [1966], Cox and Ernst [1982]). In Application 
6.3 we studied the problem of rounding the entries of a table to their nearest integers 
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while preserving the row and column sums of the matrix. We refer to any such rounding 
as a consistent rounding. Rounding off an element of the matrix introduces some error. 
If we round off an element aij to bij and bij = laijJ or bij = r aij 1, we measure the 
error as (aij - b;)2. Summing these terms for all the elements of the matrix gives us 
an error associated with any consistent rounding scheme. We say that a consistent 
rounding is an optimal rounding if the error associated with this rounding is as small 
as the error associated with any consistent rounding. Show how to determine an op
timal rounding by solving a circulation problem. (Hint: Construct a network similar 
to the one used in Application 6.3. Define the arc costs appropriately.) 

11.8. Describe an algorithm that either identifies p arc-disjoint directed paths from node s 
to node t or shows that the network does not contain any such set of paths. In the 
former case, show how to determine p arc-disjoint paths containing the fewest number 
of arcs. Suggest modifications of this algorithm to identify p node-disjoint directed 
paths from node s to node t containing the fewest number of arcs. 

11.9. Show that a tree is a directed out-tree T rooted at node s if and only if every node in 
T except node s has indegree 1. State (but do not prove) an equivalent result for a 
directed in-tree. 

11.10. Suppose that we permute the rows and columns of the node-arc incidence matrix .N 
of a graph G. Is the modified matrix a node-arc incidence matrix of some graph G'? 
If so, how are G' and G related? 

11.11. Let T be a spanning tree of G = (N, A). Every nontree arc (k, l) has an associated 
fundamental cycle which is the unique cycle in T U {(k, I)}. With respect to any 
arbitrary ordering of the arcs U], h), (i2 , j2), ... , Urn, jrn), we define the incidence 
vector of any cycle Win G as an m-vector whose kth element is (1) 1, if (h, A) is a 
forward arc in W; (2) - 1, if Uk. A) is a backward arc in W; and (3) 0, if Uk, A) E w. 
Show how to express the incidence vector of any cycle Was a sum of incidence vectors 
of fundamental cycles. 

11.12. Figure 11.24(b) gives a feasible solution of the minimum cost flow problem shown in 
Figure 11.24(a). Convert this solution into a spanning tree solution with the same ,or 
lower cost. . 

60 

b(i) b(j) 

®f--(~Clj,--.' u--,ij_) ~~ 0 
-15 -60 

10 -5 
(a) 

(1,35) 

(b) 

Figure 11.24 Example for Exercise 11.12: (a) problem data; (b) feasible solution. 

25 

11.13. Figure 11.25 specifies two spanning trees for the minimum cost flow problem shown 
in Figure 11.24(a). For Figure 11.25(a), compute the spanning tree solution assuming 
that all nontree arcs are at their lower bounds. For Figure 11.25(b), compute the 
spanning tree solution assuming that all nontree arcs are at their upper bounds. 
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(a) (b) 

Figure 11.25 Two spanning trees of the network in Figure I I .24. 

11.14. Assume that the spanning trees in Figure 11.25 have node 1 as their root. Specify the 
predecessor, depth, thread, and reverse thread indices of the nodes. 

11.15. Compute the node potentials associated with the trees shown in Figure 11.25, which 
are the spanning trees of the minimum cost flow problem given in Figure 11.24(a). 
Verify that for each node j, the node potential 'IT(j) equals the length of the tree path 
from node j to the root. 

11.16. Consider the minimum cost flow problem shown in Figure 11.26. Using the network 
simplex algorithm ini.plemented with the first eligible pivot rule, find an optimal so
lution of this problem. Assume, as always, that arcs are arranged in the increasing 
order of their tail nodes, and for the same tail node, they are arranged in the increasing 
order of their head nodes. Use the following initial spanning tree structure: T = 
{(t, 2), (3, 2), (2, 5), (4, 5), (4, 6)}, L = {(3, 5)}, and U = {(I, 3), (2, 4), (5, 6)}. 

20 

(4, 15) 

b(i) b(j) 

~I-_(-,Ci},-.' u-,,",--) -.. ~ 

o o 

(3,10) 

(2, 10) ~ 
(7,20) (8, 10) ~-20 

fl"3'Jil-__ -.V'5l 

o 0 

Figure 11.26 Example for Exercises 
11.16 and 11.17. 

11.17. Using the network simplex algorithm implemented with Dantzig's pivot rule, solve 
the minimum cost flow problem shown in Figure 11.26. Use the same initial spanning 
tree structure as used in Exercise 11.16. 

11.18. In the procedure compute-potentials, we set 'ITO) = 0 and then compute other node 
potentials. Suppose, instead, that we set 'IT(1) = C/. for some C/. > 0 and then recompute 
all the node potentials. Show that all the node potentials increase by the amount C/.. 

Also show that this change does not affect the reduced cost of any arc. 
11.19. Justify the procedure compute-jlows for capacitated networks. 
11.20. In the candidate list pivot rule, let size denote the ma~imum allowable size of the 

candidate list and iter denote the maximum number of minor iterations to be performed 
within a major iteration. 
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(a) Specify values of size and iter so that the candidate list pivot rule reduces to 
Dantzig's pivot rule. 

(b) Specify values of size and iter so that the candidate list pivot rule reduces to the 
first eligible arc pivot rule. 

11.21. In Section 11.5 we showed how to find the apex of the pivot cycle Win 0(/ Wi) time 
using the predecessor and depth indices. Show that by using predecessor indices alone, 
you can find the apex of the pivot cycle in O(/wl) time. (Hint: Do so by scanning at 
most 2/WJ arcs.) 

11.22. Given the predecessor indices of a spanning tree, describe an O(n) time method for 
computing the thread and depth indices. 

11.23. Desciibe methods for updating the predecessor and depth indices of the nodes when 
performing a pivot operation. Your method should require O(n) time and should run 
faster than recomputing these indices from scratch. 

11.24. Prove that in a spanning tree we can send a positive amount of flow from any 'node 
to the root without violating any flow bound if and only if every tree arc with zero 
flow is upward pointing and every tree arc at its upper bound is downward pointing. 

11.25. Let G(x) denote the residual network corresponding to a flow x. Show that a spanning 
tree T is a strongly feasible spanning tree if and only if for every node i E N - {I}, 
G(x) contains the arc (i, pred(i». 

11.26. Primal perturbation. In the minimum cost flow problem on a network G, suppose that 
we alter the supplyldemand vector from value b to value b + E for some vector E. 
Let us refer to the modified problem as a perturbed problem. We consider the per
turbation E defined by E(i) = lin for all i = 2,3, ... , n, and E(1) = -en - l)ln. 
(a) Let T be a spanning tree of G and let D(j) denote the set of descendants of node 

j in T. Show that the perturbation decreases the flow on a downward-pointing arc 
(i, j) by the amount I D(j) lin and increases the flow on an upward-pointing arc 
(i, j) by the amount I D(i) lin. Conclude that in a strongly feasible spanning tree 
solution, each arC flow is nonzero and is an integral multiple of lin. 

(b) Use the result in part (a) to show that the network simplex algorithm solves the 
perturbed problem in pseudopolynomial time irrespective of the pivot rule used 
for selecting entering arcs. 

11.27. Perturbation and strongly feasible solutions. Let (T, L, U) be a feasible spanning tree 
structure of the minimum cost flow problem and let E be a perturbation as defined in 
Exercise 11.26. Show that (T, L, U) is strongly feasible if and only if (T, L, U) remains 
feasible when we replace b by b + E. Use this equivalence to show that when im
plemented to maintain a strongly feasible basis, the network simplex algorithm runs 
in pseudopolynomial time irrespective of the pivot rule used for selecting entering 
arcs. 

11.28. Apply the network simplex algorithm to the shortest path problem shown in Figure 
11.27(a). Use a depth-first search tree with node 1 as the source node in the initial 
spanning tree solution and perform three iterations of the algorithm. 

11.29. Apply the network simplex algorithm to the maximum flow problem shown in Figure 
11.27(b). Use the following spanning tree as the initial spanning tree: a breadth-first 
search tree rooted at node 1 and spanning the nodes N - it} plus the arc (t, s). Show 
three iterations of the algorithm. 

11.30. Consider the application of the network simplex algorithm, implemented with the fol
lowing pivot rule, for solving the shortest path problem. We examine all the nodes, 
one by one, in a wraparound fashion. Each time we examine a node i, we scan all 
incoming arcs at that node, and if the incoming arcs contain an eligible arc, we pivot 
in the arc with the maximum violation. We terminate when during an entire pass of 
the nodes, we find that no arc is eligible. Show when implemented with this pivot 
rule, the network simplex algorithm would perform O(n2) pivot operations and would 
run in O(n3) time. (Hint: The proof is similar to the proof of the first eligible arc pivot 
rule that we discussed in Section 11.7.) 
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8 5 

2 
10 3 4 

(b) 

Figure 11.27 Examples for Exercises 11.28 and 11.29. 

11.31. The assignment problem, as formulated as a linear programming in (12.1), is a special 
case of the minimum cost flow problem. Show that every strongly feasible spanning 
tree of the assignment problem satisfies the following properties: (1) every downward
pointing arc carries unit flow; (2) every upward-pointing arc carries zero flow; and (3) 
every downward-pointing arc is the unique arc with flow equal to 1 emanating from 
node i. 

11.32. In a strongly feasible spanning tree of the assignment problem, a nontree arc (k, l) is 
a downward arc if node I is a descendant of node k. Show that when the network 
simplex algorithm, implemented to maintain strongly feasible spanning trees, is applied 
to the assignment problem, a pivot is nondegenerate if and only if the entering arc is 
a downward arc. 

11.33. Solve the minimum cost flow problem shown in Figure 11.26 by the parametric network 
simplex algorithm. 

11.34. Show how to solve the constrained maximum flow problem, as defined in Exercise 
10.25, by a single application of the parametric network simplex algorithm. 

11.35. Show that the parametric network simplex algorithm described in Section 11.9 is an 
adaptation of the right-hand-side parametric simplex method of linear programming. 
(Consult any linear programming textbook for a review of the parametric simplex 
method of linear programming.) 

11.36. Show that the dual network simplex algorithm described in Section 11.9 is an adap
tation of the dual simplex method of linear programming. (Consult any linear pro
gramming textbook for a review of the dual simplex method of linear programming). 

11.37. At some point during its execution, the dual network simplex algorithm that we dis
cussed in Section 11.9 might find that the set Q of eligible arcs is empty. In this case 
show that the minimum cost flow problem is infeasible. (Hint: Use the result in Ex
ercise 6.43.) 

11.38. Dual perturbation. Suppose that we modify the cost vector c of a minimum cost flow 
problem on a network G in the following manner. After arranging the arcs in some 
order, we add! to the cost of the first arc, ~ to the cost of the second arc, ~ to the 
cost of the third arc, and so on. We refer to the perturbed cost as c', and the minimum 
cost flow problem with the cost c' as the perturbed minimum cost flow problem. 

458 

(a) Show that if x* is an optimal solution of the perturbed problem, x* is also an 
optimal solution of the original problem. (Hint: Show that if G(x*) does not contain 
any negative cycle with cost c', it does not contain any negative cycle with cost 
c.) 

(b) Show that if we apply the dual network simplex algorithm to the perturbed prob
lem, the reduced cost of each nontree arc is nonzero. Conclude that each dual 
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pivot in the algorithm will be nondegenerate and that the algorithm will terminate 
finitely. (Hint: Use the fact that the reduced cost of a nontree arc (k, l) is the cost 
of the fundamental cycle created by adding arc (k, l) to the spanning tree.) 

11.39. In Exercise 9.24 we considered a numerical example concerning sensitivity analysis 
of a minimum cost flow problem. Solve the same problem using the simplex-based 
methods described in Section 11.10. 

11.40. In Section 11.10 we described simplex-based procedures for reoptimizing a minimum 
cost flow solution when some cost coefficient Cij increases or some flow bound uij 

decreases. Modify these procedures so that we can use them to handle situations in 
which (1) some cij decreases, or (2) some uij decreases. 

11.41. Let ~ denote the basis matrix associated with the columns of the spanning tree in 
Figure 11.25(a). Rearrange the rows and columns of ~ so that it is lower triangular. 

11.42. Let G' = (N, A') be a subgraph of G = (N, A) containing I A' I = n - 1 arcs. Let 
~' be the square matrix defined by the columns of arcs in A' (where we delete one 
redundant row). Show that A' is a spanning tree of G if and only if the determinant 
of~' is ± 1. 

11.43. Computation of ~ -1. In this exercise we discuss a combinatorial method for computing 
the inverse of a basis matrix ~ of the minimum cost flow problem. (We assume that 
we have deleted a redundant row from ~.) By definition, ~~ -I = !P, an identity 
matrix. Therefore, thejth column ~j-I of the inverse matrix ~ -I satisfies the condition 
~~j-I = ej. Consequently, ~j-I is the unique solution x of the system of equations 
~x = ej. Assuming that we have deleted the row corresponding to node 1, x is the 
flow vector obtained from sending 1 unit of flow from node j to node 1 on the tree 
arcs corresponding to the basis. Use this result to compute ~ -I for the basis ~ defined 
by the spanning trees shown in Figure 11.25(a). 

11.44. Show that a matrix sIl whose components are 0, + 1, or -1 is totally unimodular if it 
satisfies both of the following conditions: (1) each column of sIl contains at most two 
nonzero elements; and (2) the rows of sIl can be partitioned into two subsets sill and 
sIl2 so that the two nonzero entries in any column are in the same set of rows if they 
have different signs and are in different set of rows if they have the same sign. 

11.45. Let.N be a totally unimodular matrix. Show that .NT and [.N, -.N] ar~ also totally 
unimodular. 

11.46. Show that a matrix .N is totally unimodular if and only if the matrix [.N, !P] is uni
modular. 

11.47. Let T be a spanning tree of a directed network G = (N, A) with node 1 as a designated 
root node. Let d(i, j) denote the number of arcs on the tree path from node i to node 
j in T. 
(a) For the given tree T, the average depth is (kEN d(1 , j))/n, and the average cycle 

length is (Lnontree arcs (i,j) d(i, j) + l)/(m - n + 1). Show that if G is a complete 
graph, the average cycle length is at most twice the average depth. Show that this 
relationship is not necessarily valid if the graph is not complete. (Hint: Use the 
fact that the length of the cycle created by adding the arc (i, j) to the tree is at 
most d(1, i) + d(1, j) + 1.) 

(b) For a given tree T, let D(j) denote the set of descendants of node j. The average 
subtree size ofT is (kEN I D(j) I)/n. Show that the average subtree size is 1 more 
than the average depth. (Hint: Let E(j) denote the number of ancestors of node 
j in the tree T. First show that kEN I E(j) I = LjEN I D(j) I.) 

11.48. Cost parametrization (Srinivasan and Thompson [1972]). Suppose that we wish to solve 
a parametric minimum cost flow problem when the cost Cij for each arc (i, j) E A is 
given by Cij = c~ + ~c'lJ for some constants c~ and c'lJ and we want to find an optimal 
solution for all values of the parameter ~ in a given interval [a, 13]. 
(a) Let (T, L, U) be an optimal spanning tree structure for the minimum cost flow 

problem for some value ~ of the parameter. Let 'ITo denote the node potentials for 
the tree T when c~ are the arc costs, and let 'IT* denote node potentials when 
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ct are the arc costs in T (we can compute these potentials using the procedure 
compute-potentials). Show that 'ITo + ~'IT* are the node potentials for the tree T 
when t!!e arc costs are cg + ~ct. Use this result to identify the largest value of 
~, say ~, for which (T, L, U) satisfies the optimality conditions. 

(b) Show that at ~ = X:, some nontree arc (k, l) satisfies its optimality condition as 
an equality and violates the optimality condition when ~ > X:. Show that if we 
perform the pivot operation with arc (k, I) as the entering ars the new spanning 
tree structure also satisfies the optimality conditions at ~ = ~. 

(c) Use the results in parts (a) and (b) to solve the minimum cost flow problem for 
all values of the parameter ~ in a given interval [u, 13]. 

11.49. Supply/demand parametrization (Srinivasan and Thompson [1972]). Suppose that we 
wish to solve a parametric minimum cost flow problem in which the supply/demand 
b(i) of each node i E N is given by b(i) = b°(i) + ~b*(i) for some constants bO(i) 
and b*(i) and we want to find an optimal solution for all values of the parameter ~ in 
a given interval [u, 13]. We assume that LiEN b°(i) = LiEN b*(i) = O. 
(a) Let (T, L, U) be an optimal spanning tree structure of the minimum cost flow 

problem for some value ~ of the parameter. Let xg· and xt denote the flows on 
spanning tree arcs when bO and b* are the supply/demand vectors (we can compute 
these flows using the procedure compute-flows). Show that xg + ~t is the flow 
on the spanning tree arcs when bO + ~b* is the supply/demand vector. Use this 
result to identify the largest value of A., say X:, for which spanning tree arcs satisfy 
the flow bound constraints. 

(b) Show that at ~ = X:, some tree arc (p, q) satisfies one of its bounds (lower or 
upper bound) as an equality and violate its flow bound for ~ > X:. Show that if we 
perform a dual pivot (as described in Section 11.9) with arc (p, q) as the leaving 
arc, !!Ie new spanning tree structure also satisfies the optimality conditions at 
~ = ~. 

(c) Use the results in parts (a) and (b) to solve the minimum cost flow problem for 
all values of the parameter ~ in a given interval [u, 13]. 

11.50. Capacity parametrization (Srinivasan and Thompson [1972]). Consider a parametric 
minimum cost flow problem when the capacity uij of each arc (i, j) E A is given by 
Uij = ug + ~ut for some constants ug and ut. Describe an algorithm for solving the 
minimum cost flow problem for all values of the parameter ~ in an interval [u, 13]. 
(Hint: Let (T, L, U) be the basic structure at some state. Maintain the flow on each 
arc in the set U as the arc's upper flow bound (as a function of ~), determine the impact 
of this choice on the flows on the arcs in the spanning tree, and identify the maximum 
value of ~ for which all the arc flows satisfy their flow bounds.) 

11.51. Constrained minimum cost flow problem. The constrained minimum cost flow problem 
is a minimum cost flow problem with an additional constraint Lu.j)EA dijxij ~ D, called 
the budget constraint. 
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(a) Show that the constrained minimum cost flow problem need not satisfy the in
tegrality property (i.e., the problem need not have an integer optimal solution, 
even when all the data are integer). 

(b) For the constrained minimum cost flow problem, we say that a solution x is an 
augmented tree solution if some partition of the arc set A into the subsets T U 
{(p, q)}, L, and U satisfies the following two properties: (1) T is a spanning tree, 
and (2) by setting xij = 0 for each arc (i, j) ELand xij = Uij for each arc (i, j) E 
U, we obtain a unique flow on the arcs in T U {(p, q)} that satisfies the mass 
balance constraints and the budget constraint. Show that the constrained minimum 
cost flow problem always has an optimal augmented tree solution. Establish this 
result in two ways: (1) using a linear programming argument, and (2) using a com
binatorial argument like the one we used in proving Theorem 11.2. 
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s-t planar networks, 263-65 
Saturating push, 225, 364 
Scaling algorithms 

basic ideas, 68-70 
for convex cost flows, 556-61 
for maximum flows, 210-12, 

237-39, 246 
for minimum cost flows, 
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