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4: Minimum Cost Flow

Profesor: Fernando Ordóñez

1 Introduction

We are given a network G = (N,A) with

uij - capacity of arc (i, j)

cij - unit cost of sending flow on arc (i, j)

xij - value of flow on arc (i, j) (decision variable)

We want to decide the transportation from our sources to destinations at minimum cost:

min
∑

(i,j)∈A

cijxij

s.t.
∑

{j | (i,j)∈A}

xij −
∑

{k | (k,i)∈A}

xki = bi for any i ∈ N

0 ≤ xij ≤ uij for any (i, j) ∈ A .

Assumptions

- Data is integral

- Network is directed

-
∑

i∈N bi = 0 (wlog)

- There is a feasible flow (wlog)

2 Applications/ Examples

Shortest Path and Max Flow can be seen as examples of min cost flow.

1



2.1 Transportation Problem

Consider K production facilities, L warehouses, and M demand centers. Let cij be the

transportation cost from i to j, and uij the maximum amount that can be transported in

one week. Decide the weekly minimum cost transportation schedule that meets demand.

2.2 Scheduling with Deferral Costs

You want to schedule p jobs on q identical machines. Assume that each job has a release

time rj , a processing time αj , and a deferral cost cj(τ), which is a monotonically increasing

function of its completion time τ . The jobs do not have a fixed due date, and assume there

is no job preemption. Find a schedule of jobs that minimizes the total deferral cost. This

problem is tractable if we add the assumption that αj = α for all j.
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2.3 Optimal Capacity Scheduling

You need to contract d(i) units of warehouse capacity for periods i = 1, . . . , n. Let cij be

the price of contracting 1 unit of capacity in period i that will be available from period i

to j − 1. Find the minimum cost capacity schedule that meets your demand needs.

2.4 The caterer problem

Assume there is a demand di for napkins on day i = 1, . . . , 7. Cost of

a new napkin is a cents

2-day laundry is b cents per napkin

1-day laundry is c cents per napkin

Minimize the cost of meeting the demand.
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3 Optimality Conditions

Theorem 1. (Negative Cycle Optimality Conditions). A feasible flow x∗ is optimal for the

minimum cost flow problem if and only if the residual network G(x∗) contains no negative

cost directed cycle

proof:

Reduced Costs

Let πi denote node potentials (dual prices) for each node i. Define cπij = cij − πi + πj . Idea

is to reward exports and penalize imports.

Recall that for any directed path P from k to l
∑

(i,j)∈P c
π
ij =

∑
(i,j)∈P cij − πk + πl.

Theorem 2. (Reduced Cost Optimality Conditions). A feasible flow x∗ is optimal min cost

flow if and only if some node potentials π satisfy cπij ≥ 0 for every (i, j) ∈ G(x∗).

proof:

Reduced cost optimality in terms of the original network:

A feasible flow x∗ is optimal min cost flow iff there exist node potentials π such that

If cπij > 0 then x∗ij = 0

If 0 < x∗ij < uij then cπij = 0

If cπij < 0 then x∗ij = uij
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4 Negative Cycle Algorithm

Set x a feasible flow

while G(x) contains a negative cost cycle do

Find a negative cost cycle C in G(x)

Let δ = min{rij | (i, j) ∈ C}
Augment the flow x by δ on cycle C, update G(x)

endwhile

If supplies/demands and capacities are integral we maintain integral flow solutions.

The Negative Cycle Algorithm is finite if all data are finite and integral.

Work per iteration

Total complexity

Room for improvement

If look for minimum mean average cost cycle (i.e. minimizes 1
|W |
∑

(i,j)∈W cij over all cycles

W ), The algorithm is strongly polynomial, running in O(n2m3 log n) time.
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5 Successive Shortest Path Algorithm

A flow x such that 0 ≤ x ≤ u is a pseudo-flow. We denote the excess (or deficit) of this

flow at each node by e(i), that is

e(i) = b(i) +
∑

{j | (j,i)∈A}

xji −
∑

{j | (i,j)∈A}

xij .

The infeasibility of the pseudo-flow x is
∑

e(i)>0 e(i).

Example:

This algorithm will maintain

node potentials π

a pseudo-flow x

The pair (x, π) is dual feasible if x is a pseudo-flow and cπ ≥ 0 for every arc in G(x).

Idea: Keep cπ ≥ 0 for all arcs in G(x) throughout the algorithm, while improving the

feasibility of the pseudo-flow x.

Example What happens when we send flow from an excess to deficit node
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Need to construct paths of reduced cost 0. How do we update the node potentials to make

paths of cost 0?

Summary: We showed that if we push flow along a path of zero reduced cost, then we

keep cπ ≥ 0 on the new residual network. Consider the following example, and try to set

node potentials that will create paths of 0 reduced cost:

Algorithm:

Set (x, π) dual feasible

While x is infeasible (
∑

e(i)>0 e(i) > 0) do

Select s such that e(s) > 0, t such that e(t) < 0

For all i determine d(i) the shortest distance from s to i, with costs cπ on G(x)

Update π = π − d
Send as much flow on the 0 reduced cost path from s to t

Update x

endwhile
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Complexity of Successive Shortest Path Algorithm

Each augmentation reduces the infeasibility by at least 1:

Finite number of iterations:

Work per iteration (the hard part is running Dijkstra):

6 Some efficient variations

6.1 Primal-Dual Algorithm

Same algorithm, but now send flow from many excess nodes to many deficit nodes at the

same time.

How would you do this? Hint consider the subgraph of G(x) only with arcs where cπij = 0,

and formulate a max flow problem.

6.2 Capacity Scaling Successive Shortest Path

Just like successive shortest path, but try to send at least ∆ units of flow from s to t, where

e(s) ≥ ∆ and e(t) ≤ −∆. If no such path exists reduce ∆.
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Algorithm:

Set (x, π) dual feasible, ∆ large

While ∆ ≥ 1 do

For all (i, j) ∈ G(x) such that rij ≥ ∆ and cij < 0, send rij from i to j.

While there is e(s) ≥ ∆, e(t) ≤ ∆, and a path from s to t in G(x,∆) do

For all i determine d(i) the shortest distance from s to i, with costs cπ on G(x,∆)

Update π = π − d
Send as much flow on the 0 reduced cost path from s to t

Update x

endwhile

endwhile

Complexity

Change in total number of iterations. Let B be an upper bound on the infeasibility at a

node.

Total infeasibility at the end of a 2∆-scaling phase is n2∆:

At the beginning of a ∆-scaling phase, infeasibility can increase by m∆:

The total infeasibility at the beginning of ∆-scaling phase is 2n∆ +m∆ = O(m∆).

Initial infeasibility is O(mB), which implies there will be O(logB) scaling phases. The

number of augmentations per scaling phase is O(m), Total complexity O(m logB(m +

n log nC)).

With modifications this algorithm can be made strongly polynomial, with best complexity

of O((m log n)(m+ n log n)).
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7 Linear Programming and Min Cost Flow

Optimization problem with all linear functions. The Simplex method introduced in 1947

is still one of the methods to solve LPs. In vector notation, a linear program in standard

form is the following:

z∗ = min cTx

s.t. Ax = b

x ≥ 0

7.1 Graphic Example

Lets solve:
z = max x1 + x2

s.t. 2x1 + 3x2 ≤ 12

x1 ≤ 4

−x1 + x2 ≤ 2

x1, x2 ≥ 0

The feasible region is a polyhedron, the corners of a polyhedron are extreme points. Extreme

points can not be written as a convex combination of points in the feasible region.
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7.2 Dual Problem

Associated to any LP there is a related dual linear program. For the LP in standard form,

the dual is
z∗ = max bT y

s.t. AT y ≤ c
y free

Theorem 3. Weak duality: If x and y are primal and dual feasible solutions, then cTx ≥
bT y.

proof:

Implications.

Theorem 4. Strong duality: If either the primal or the dual have a finite optimal solution,

so does the other and both have the same optimal objective function value.

Complimentary slackness condition:

xi
(
AT y − c

)
i

= 0 for any i = 1, . . . , n .

Theorem 5. Complimentary slackness optimality conditions: The primal and dual feasible

solutions x and y are optimal solutions if and only if they satisfy complimentary slackness.

proof:
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7.3 Dual of a min-cost flow

Consider the dual of the shortest path problem as a min cost flow:

min cTx

s.t. Nx = b

x ≥ 0

where b is such that bs = 1, bt = −1, and bi = 0 for i 6= s, t.

Derive the dual for the general min-cost flow problem, with arbitrary b:

min cTx

s.t. Nx = b

0 ≤ x ≤ u .

What do the complementarity slackness conditions look like for a min-cost flow problem?
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7.4 Network Simplex Algorithm

Simplex algorithm visits adjacent extreme points until it is can prove its optimal. For a

min-cost network flow, the algorithm does the same, it visits adjacent tree solutions until

its optimal.

Algorithm 1 Network Simplex Algorithm

1: determine an initial feasible tree (T, L, U)

2: let x be the flow and π be the node potentials

3: while some non-tree arc violates optimality conditions do

4: select an arc (k, l) violating its optimality conditions

5: add (k, l) to T and determine the leaving arc (p, q)

6: update the tree and solutions x and π

7: STOP. The solution x, π are a primal-dual optimal pair.
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