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Transient Torsional Vibrations in

Multiple-Inertia Systems
LESLIE C. GALLOWAY

Abstract-Torque amplification in a steel mill or impact phe-
nomena in a general elastic system can be analyzed by a similarity
transformation of the linear equations of motion using their eigen-
vector or modal matrix. Response to initial displacement or velocity
and to step function forces are developed in a way that forms the
principle of a fast accurate computer program. Torque amplification
is the result of ill conditioning of the modal matrix and the distur-
bance but is mostly related to the modal matrix and is, therefore,
mostly a function of the rotor system. Steel mills and other multiple
inertia systems such as motor generator sets should be analyzed by
this method at an early stage of their design.

INTRODUCTION

N RECENT years, a phenomenon called "torque
1amplification" has caused much difficulty in steel mills
and has been the subj ect of intense study by many in-
vestigators [1]- [5]. Torque amplification is a phenomenon
involving transient vibrationis that is likely to occur in any
large multiple-rotor system that is subjected to impact or
abrupt changes in torque. This paper is to present an ex-
planation of the mechanics of the phenomenon and also a
corresponding mathematical method of analysis.

REDUCTION AND DEFINITION OF A SYSTEM

Fig. l(a) might represent the rotating elements in a
steel mill. These elemeints may be represented with ade-
quate accuracy by a system of discrete masses intercon-
nected by linearly-responding springs and appropriate gear
ratios (Fig. 1(b)). Furthermore, the system may be tranls-
formed by the well-known methods (see [1], [9], or [11 ]) to
the single-speed system shown in Fig. l(c). Our further
discussion will concern such idealized systems. It would
also apply to more general systems which include "earth"
connections, and, in fact, the "torque amplification"
phenomenon might occur in any large multiple-inertia
system.

VIBRATIONS IN AN ELASTIC SYSTEM

Since torque amplification is caused by transient
vibrations in the rotor system, a brief review of the phe-
nomena of elastic vibrations will clarify the discussion that
follows.
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Fig. 1. (a) Rotating elements as typical finishing stand in hot-strip
mill. (b) Discrete-mass and linear spring representation of rotating
elements of typical mill with gear ratios of nj:1 and n2:1. (c)
Idealized single-speed system.

The configuration of an elastic system can be defined by
displacements on coordinates which are called the "de-
grees of freedom" of the system. The set of relative dis-
placements that an elastic system reaches at some instant
is called the "mode" of the vibration.
A simple harmonic motion that can occur in an elastic

system after an appropriate disturbance is called a
"natural" vibration. \'Iost systems are capable of several
natural vibrations each characterized by a "natural"
frequency and a "principal" mode.
Some systems are capable of one or more motions that

do not incur elastic strain and, therefore, are not vibratory
and are called "rigid-body" motions. For example, the
rotating elements of a steel mill can rotate as a rigid body.
The number of natural vibrations plus the number of
rigid-body motions equals the number of degrees of free-
dom.

After an event that leaves the system disturbed from
its state of equilibrium a free vibration occurs. In all real
systems free vibrations are transient because damping
dissipates the vibratory energy. In the systems discussed
here damping is slight so that it has a negligible effect on

the natural frequencies, on their phase position and on the
amplitude of vibration for the first few cycles.
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The free vibration is the sum of one or more natural
vibrations. Initially, the amplitudes of the natural vibra-
tions, that is some multiples of the principal modes, with
due consideration for phase displacement must equal in
sum the initial disturbance.

RESPONSE TO IMPACT

The events which cause torque amplification may be
divided into three categories.

1) Initial Displacement: The event may leave the sys-
tem stationary or moving as a rigid body but displaced
from static equilibrium. For example, when an ingot is
being rolled the mill is strained by the rolling torque but at
the instant after the ingot leaves, since the rolling torque
has disappeared, the mill is initially displaced from its new
state of equilibrium. This event is sometimes called
"snap-back."

2) Initial Velocity: Events of very short duration-
impulsive events-can cause an initial disturbance in
velocity. For example, if an ingot being rolled strikes
another lying on the roll-out tables the resulting impulse
will cause an abrupt change in velocity to the rolls but
not to the rest of the mill and hence the system is dis-
turbed from equilibrium.

3) Suddenly Applied Force: When a force is suddenly
applied to the system and then maintained the system
acquires a new state of equilibrium which is determined
by the applied force and the steady mass accelerations of
the system. For example, when an ingot enters a steel mill
the system decelerates for a brief interval. During this
interval, the state of equilibrium is determined by the
twist in the shafts caused by the rolling torque and
the opposing decelerating torques on each rotor. Since the
shafts are initially unstrained the rotors are initially dis-
placed from this new state of equilibrium.

MATHEMATICAL PREDICTION OF FREE VIBRATIONS

Methods used to predict free vibrations and torque
amplification include the following. The "integral equa-
tion" method wherein the equations of motion in integral
form are solved simultaneously. The "analog" method
wherein the system is modeled by an analog computer.
The "differential equation" method wherein the equations
of motion in differential form are integrated successively
and this process is repeated for short intervals of time.

Nonlinearity can be handled by the last two methods
which is their great advantage. However, they provide
little insight into the nature of the phenomenon. A fourth
method, which may be called the "transformation"
method, that uses techniques of linear algebra, will now
be presented.

TRANSFORMATION OF EQUATIONS OF MIOTION

An outline will be presented here of a method of analysis
that is described in detail in several works (such as [6]
and [9]). Consider an elastic system such as that shown in
Fig. l(c) comprising n discrete masses, mi, interconnected
by linear springs kk. Assume that its instantaneous con-

figuration can be stated by the n displacements xi of these
masses, that is, the system has n degrees of freedom. A
displacement xi will incur spring forces on mass i and on
masses connected to it. If kij is defined as the force on mass
i caused by a unit displacement xj of mass j then the
Newton law of motion provides the following n equations:

-klix -- -- ..- - k1,x. + F, =m=:l
-k21X - k22X2 - * * - kl2nxn + F2 = M2:2

-klxl - kn2X2 - * * * - knenX + Ftn =Mnen (1)
or in the usual matrix notation

[m]{x}4 + [k]{x} = {FJ (2)

where [m] is a matrix with the diagonal ml, n2, *.., iMn
and zeros elsewhere. The matrix [k] is shown in [6] to be
symmetric according to the reciprocal theorem of Betti.
Equations (1) and (2) are systems of second-order

differential equations. Consider first the complementary
functions, which are solutions to

[m]{x} + [k]{x} = 101. (3)
These are of the form

{x} = {rJ sinwt (4)

where the amplitudes Dj generally may be complex. The
natural frequency w is in general multivalued. Differenti-
ating (4) provides

(5)
and substitution of (4) and (5) into (3), division by xi, and
premultiplication by [m]-l provides

[[m]-l[k]- [I]w2]{ } = 101 (6)
which is an eigenvalue, or characteristic value form of the
problem.
Methods are described for finding the eigenvalues and

eigenvectors {cI4 for this particular nonsymmetric matrix
in [7] and [8]. For each eigenvalue W,2, we can write

[[mn]-[k] - [I]cil]} i-= {O} . (7)
The eigenvector I 4l} is the principal mode correspond-

ing to natural frequency w.i. Since (7) can be multiplied by
any scalar, {1} i can be normalized for convenience so that

fol}IO),{= 1. (8)
Furthermore, for convenience, let all sets such as the
equations in (7) be arranged in order of decreasing eigen-
value.

The displacements I x} can be expressed as a linear com-
bination of the principal modes or in matrix form, where
[p] is the matrix of eigenvectors,

{X} = [+]{q} (9)
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and differentiating twice provides

{X} = [4]{q}. (10)

Substituting (9) and (10) into the equations of motion (2)
provides

[m][+fq]{'} + [k][p]{q} = {F}. (11)
It is shown in [6] that [cu] will reduce [in] or [k] to

diagonal form by a similarity transformation

[0]r[m][0] = [M] (12)

The nth system, in which K,, = wl = 0, is not vibratory
and represents the rigid-body mode. Since shaft torques
are sought, and rigid-body motion does not incur any
shaft torque, the rigid-body mode can be excluded from
further consideration.

Let

[U] = diagonal matrix whose diagonal terms are qi,,=o.

(19)
Then

[0]T[k] [ ] = [K] (13)

where [M] and [K] are diagonal matrices. Then pre-
multiplying terms in (11) by [4]T provides

[M]{j} + [K]{q} = {P}

{P} = [0]T{ F}.
Since M
written

(14)

(15)

= Kij = 0, i z4- j, the equations in (15) can be

M14, + Klql = Pi
M2q2 + K2q2 = P2

(20){q} = [U]{cos}
where

COS} = { COS COlt,Cos W2t,.-,**cos wn-lt °}

and displacements in the original system are

{x} = [ ][U]{cos}

(21)

(22)
= [A]{cos}. (23)

Matrix [A ] contains the amplitude of each mass at each
natural frequency coi.

Let {x} t= be the vector whose elements are the initial
differences of the velocities of the masses from the mean

velocity. In the transformed system

{1}t=O = (24)

The motion of a simple system with an initial velocity is

Mn?n + Knqn = Pn. (16)

Thus the original coupled equations of motion (2) have
been transformed into a set of simple uncoupled systems
by choice of a suitable set of coordinates { q}. The solutions
for (16) in terms of qi may be derived and may then be
inversely transformed to find the motion in terms of xi,
the original coordinates.

It can be shown that transformation is very general.
The inertias mi and spring rates kij and displacements xi
may refer either to rotation or to straight-line motion.
While [m] must be symmetrical it need not be diagonal.
Rigid-body motions, which are indicated by zero eigen-
values, cause no problems in the transformation. Steel mill
drives always have one rigid-body motion which will be
indicated by the last zero eigenvalue equation in (16) in
which K,, will vanish. Hereafter, in this development, one

rigid-body motion will be assumed to be possible.

INITIAL CONDITION PROBLEMS
In [10] the free vibrations resulting from initial dis-

placements or velocities are derived though the derivation
must be altered somewhat to facilitate computation. Let
{ x} ,0 be the initial displacements from equilibrium.
In the transformed systems the initial displacements are

{q}t=0 = [41]1{X}It=0 (17)

Solutions for motion in simple systems after such initial
conditions are well known to be of the form

qi = qi,t=O cos Wit.

qi sln v it,

Ci
Wi 0. (25)

Letting [V] = diagonal matrix whose diagonal terms are

4i t=O

(i
(26)

provides

{x} = [.]{q}
= ['][V]{sinj
= [B]{sinj

(27)

(28)

(29)
where

I sin} = I sin w1t,sin w2t, - ,sin co,,it,0} (30)

again assuming one rigid-body mode. Matrix [B] con-

tains the amplitudes of each mass at each natural fre-
quency w. It is convenient to eliminate the consideration
of the rigid body in computation simply by causing the
final columns of [A], [B], and [V] to vanish.

EXCITATION BY FORCES

The response of the system shown in Fig. 1(c) to the
external forces { Fl will depend on their temporal nature.
Usually all nonzero terms in {F} have the same temporal
dependence, and, if this is the case, the terms in {P} also
will have that temporal dependence. Computation is then
facilitated.
The most common problem assumes that the nonzero

terms in {F} and, therefore, in {P}, represent forces that

where
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are abruptly applied as in a step function of t. In such a
case the solutions to (16) are of the form

qi= -(1 - cos At),Ki Ki 5 0.

SPRING RATES
1.23 .2355

11g
(31)

.25Other situations can be analyzed, for example, when
Fi is a ramp function of time or a pulse. Solutions for step
functions, ramp functions, and pulses are generally of the
form

Ki1 O

18.8 Hz

22.3 Hz

25.1 Hz

(32)

where 4al', is a steady term and 41,j is a vibratory term with
frequency wi.

Let [W] = the diagonal matrix whose diagonal terms
are Pi/Ki, for Ki p 0. Then we can write

tq} = [WI]{{C + iP}
and

{x} = [0][W]{i'c + 4r}
- [Cl]tHld + [C2]{H2}

where

{H2} - {Icos} or {sin}
as appropriate to the nature of { A14} and

{H1} ={ 1,1, .**1,0i}.

(33)
Fig. 2.

50.5 Hz

6

61.0 Hz

.262 .115

INERTIAS

1010 IN LB/RAD

.039 .00532
.00532

n n

I.1.00272
.00356 .00272

106 LB IN SEC2

TII
System data, natural frequencies, and principle modes of

example problem.
(34)

(35) and [D] contains the amplitudes of vibratory torque or
the mean torque at each natural frequency for each shaft.
The main objective of the analysis is to predict the

(36) torque amplification factor (TAF), which we may define
for the kth shaft as:

(37) TAFk = Fpeakk/Fsteadyk (43)
Here C, represents constant displacements and C2

represents amplitudes of each mass at each natural fre-
quency. Again, it is convenient to cause any columns in
W, Cl, and C2 corresponding to rigid-body modes, for
which Ki = 0, to vanish.

SHAFT TORQUES

The torques in any shaft can be calculated from the
relative displacements of the two rotors that it connects.
The torque for each problem must be calculated separately.

Displacements for various problems are given by (23),
(29), and (35) which are of the form

{x} = [a]{:} (38)
whence one can write

Xi = (W)f3d} (39)
where (a) is the vector representing the ith row of matrix
[a]. Thus the torque in the kth shaft is

Felk = kk (Xi - X1) (40)
= kk((a)i - (a)A'0} (41)

where kk is the spring rate of the kth shaft and i and j are
the two rotors which it connects. Suppose that there are
nk shafts. It is easy to construct an nk X n matrix [D]
whose nk rows are kk((ai) - (aj)) and then

{Fel} = [D ]{ A} (42)

where Fpeakk is the maximum instantaneous torque and
Fsteadyk is the steady-state torque occurring on shaft k.

In principle Felk could be computed for various times t
from (42) and the largest value in absolute magnitude
selected as Fpeak.

In practice, it is adequate to add the absolute ampli-
tudes of the variable components of the torque for initial
displacement or initial velocity problems and, thereby,
obtain the upper bound of magnitude of torque as an
estimate of Fpeak.
For the step force case, the force prevailing after the

abrupt increase implies an acceleration or deceleration.
This acceleration plus the applied steady force forms the
steady state and causes the shaft torques corresponding to
[Cj]{H1} in (35). The algebraic sum of corresponding
terms in [D ] must be added to the sum of absolute ampli-
tudes to obtain Fpeak.

Example Problem

The first stand of an 80-in hot strip mill that was
studied is taken as an example. Fig. 2 shows a reduced
system representing this mill. Table I shows conditions of
two problems that were considered.
The results of the eigenvalue analysis, i.e., the eigen-

values, natural frequencies, and principal modes, are
listed on Table II. The principal modes are also plotted on
Fig. 2. Table III lists the characteristics of the trans-
for,med systems including the transformed problem.
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TABLE I
PROBLEM CONDITIONS

Initial bisnlacernent Suddenly-applied Tornue
(Snap-back) (Inqot-entry)

Rotor 14o. Torque Displacement in lb.
in lb. rad

1 -.544 X 10 -.00241 0

2 -.544 X 10 -.00197 0

3 0 .00265 0

4 0 .0305 0

5 .544 X 107 .1328 .544 X 107
6 .544 X 10 .1328 .544 X 10

TABLE II
EIGENANALYSIS OF FINISH STAND NUMBER I

2

Einenvalues -

1.47 X 105 1.01 X 105 .249 X 10 .196 X 105 .140(X10 negligible

Natural frequency - w/2w Hertz

61.0 50.5 25.1 22.3 18.8 0

Rotor Principoa i'lodes - Eiqenvectors
No.

1 -.00173 -.604 -.101 0 -.0201 .408

2 .00360 .667 -.0482 0 - .0142 .408

3 -.0275 -.161 .360 0 -.0385 .408

4 .977 -.383 .177 0 .198 .408

5 .150 .0925 -.643 -.707 .692 .408

6 .150 .0925 -.643 .707 .692 .408

TABLE III
TRANSFORMED SYSTEMS

A Ki ql

Sorinq Rate Inertia Torque Initial Displacement
K M P U

109 in lb 10 in lb.sec2 107 in lb 10-3 rad

.5311 .3611 -.163 -3.09

21.53 21.41 .1007 .0305

.5115 2.051 -.6994 -12.1

.0532 .272 0 0

.0429 .3075 .7532 180.0

0 10.73 .4442 0

TABLE IV
TORQUE AMPLITUDES CAUSED BY INITIAL DISPLACEMENT (SNAP-

BACK)

Frequency Hz 61.0 50.5 25.2 22.6 18.8 0

Shaft No. Torque 107 in lb

1 .0201 -.0731 .885 0 -1.27 0

2 -.0225 .0091 1.32 0 -2.18 0

3 .120 .0004 -.0978 0 -1.10 0

4 .0184 -.0001 -.0596 0 -.461 0

5 -.0184 -.0001 -.0596 0 -.461 0

TABLE V
TORQUE AMPLITUDES CAUSED BY SUDDENLY

(INGOT ENTRY)
APPLIED TORQUE

Frequency Hz 61.0 50.5 25.2 22.8 18.8 0

Shaft No. Torque 107 in lb
1 .0203 -.0476 .782 0 -1.30 0

2 -.0226 -.0060 1.160 0 -2.23 0

3 .121 -.0003 -.0865 0 -1.12 0
4 -.0185 0 -.0527 0 .473 0
5 -.0185 0 -.0527 0 .473 0

TABLE VI
PEAK TORQUES AND TAF-COMPARISON TO DIFFERENTIAL-

EQUATION (DE) METHOD

Initial Disnlacement Suddenly Anplied Torque
(Snap-back) (Inqot-entrv)

Shaft Peak Torque TAF Peak Torque TAF Peak Torque by
No. n7 D .E. Method

10 in lb 10 n lb 107 in lb

1 2.15 3.97 2.68 4.93 2.50

2 3.43 3.15 4.41 4.06 4.38

3 1.33 1.22 2.39 2.20 2.33
4 .544 1.0 1.08 1.99 1.05
5 .544 1.0 1.08 1.99 1.05

When the torques are calculated the amplitudes in
Table IV for the initial displacement problem and in
Table V for the suddenly-applied force problem are
obtained. The peak torques and TAF for these problems
are shown on Table VI.
Some TAF values are very large indicating that if this

mill were built it would experience large torque amplifica-
tions.

COMPARISON WITH DIFFERENTIAL-EQUATION METHOD

The validity of the transformation method is verified by
comparing its TAF with those from the differential-
equation method which are also listed on Table VI. As
expected, the TAF by linear transformation are slightly
higher because they represent the upper bound.
The differential-equation method inherently tends to

accumulate rounding errors and so it is limited to predic-
tions over a few hundred time intervals or a few cycles of
the lowest frequency in a typical steel mill problem. This
is usually quite adequate.
The linear transformation method is mathematically

exact, and the precise torque at any instant can be com-
puted. However, the upper bound is an adequate predic-
tion of the TAF for ordinary purposes.
The transformation method is strictly limited to linear

problems. However, many systems are nearly linear and
the transformation method will provide a useful adjunct
to the differential-equation method in quasi-linear cases
if only because it provides insight into the nature of the
problem.

CAUSE OF TORQUE AMPLIFICATION

A close examination of the principal modes in this ex-
ample reveals the cause of the large amplitudes. To
simplify matters, the 22.3-Hz mode may be neglected
because it obviously cannot be excited by the conditions
under consideration. The modes at the second and third
rotors and in the interconnecting shaft, for the 61.0-Hz,
25.2-Hz, and 18.8-Hz vibrations are interesting. They are
plotted on a larger scale on Fig. 3. The 50.5-Hz vibration
is conveniently ignored because it can be shown by other
requirements to be small in amplitude.
The disturbances from equilibrium due to ingot leaving

and due to deceleration from ingot entry are also shown
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Fig. 3. Enlarged diagram comparing three principal modes with
initial displacement and showing separation of the nodes.

in Fig. 3. Note that the nodes of the three principal modes
are rather closely clustered and quite widely separated
from the nodes of the disturbed states. Recall the earlier
statement that initially the sums of the amplitudes of the
natural vibrations, i.e., multiples of the principal modes,
must equal the initial displacement. In the vicinity of their
nodes all the principal modes are relatively small but the
initial displacements are not small. Therefore, large
amplitudes of the natural vibrations are required to
meet the initial requirements.
In systems which do not have high torque amplifica-

tions the node in the displacement is found to lie near or
within the cluster of nodes of the principal modes that are
excited. This explanation of the mechanics of the system
permits some generalizations.

Mathematically the requirement that the sum of
amplitudes of natural vibrations must equal the initial
conditions can be stated in the equation

[]{ q} t=o = {x} t=o. (44)

High torque amplification is represented mathematically
by "ill-conditioning" in these linear equations. It seems

proper, therefore, to speak of a physical state which dis-
plays this type of phenomenon as an "ill-conditioned"
state.

Paralleling the mathematical theory (see [12, ch. 8]) ill-
conditioning and, therefore, torque amplification are more

a function of the system than of the disturbance. For
any system some disturbances can be conceived which
cause ill-conditioning as can other disturbances which do
not. However, systems with narrowly clustered nodes are

likely to respond violently to most disturbances and such
systems may be considered ill-conditioned in their own

right.

CLOSURE
The foregoing has presented the methods of similarity

transformation with modifications that facilitate com-

putation and new methods for calculating torques as a

means for analyzing the behavior of steel mills subjected
to impact A computer program based on this principle can
be completely general, inherently accurate, and quite fast.
Most of the operations required are available as ready-
made subroutines.
Torque amplification is shown to be a problem of ill-

conditioning and especially ill-conditioning of the modal
matrix. This implies that it is more a problem of the sys-
tem than of the impact that excites it. A system which has
high TAF after one event is likely to have high TAF
after other events. Contrariwise, a "dead" system is likely
to stay dead.
Because a linear transformation computer program is

economical to use it is now practical to study preliminary
proposals for steel mills to avoid badly conditioned sys-
tems before extensive design work is done. For the same
reason all large multiple-rotor systems, and especially
motor generator sets, should be analyzed by this method
to discover and avoid unfortunate combinations of com-
ponents that, when assembled, are unduly sensitive to
shocks.
Future developments should include the refinements

required for computation to response to ramp functions
and to pulses. The latter would simulate circuit-breaker
openings. Of great value would be mathematical studies
that revealed the properties of ill-conditioned modal
matrices.

NOMENCLATURE

Zi

{z}

[z]

(z)

[A], [B], [C1], [C2]
{ cost, {sin}, {H1}, {H2}

{F}
{Felt
i Fsteady}
{ Fpeak}
k7c
kij, [k]

Kk, [K]

mi, [m]

M1,[M]
n

nk

Represents dz/dt.
Represents d2z/dt2.
ith value of z.
An ordered set of z, as a column
vector.
A matrix, an ordered set of vec-
tors {z}.
An ordered set of zi as a row
vector alternatively, a function
of z.
Amplitudes of displacement.
Time dependent functions of
unit amplitude.
Applied torques.
Shaft torques.
Shaft torques in steady state.
Peak shaft torques.
Spring rate of kth shaft.
Spring force on ith rotor due to
unit deflection of jth rotor,
matrix of IIfkij |I.
Spring rates of transformed
system, matrix of spring rates.
Inertia of ith rotor, matrix of
rotor inertias.
Inertias of transformed system.
Number of degrees of freedom.
Number of shafts.
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Displacement, velocity, acceler-
ation in a transformed system.
Applied forces in the trans-
formed system.
Time.
Torque amplification factor.
Initial displacements, velocity/
frequency in transformed sys-
tem.
Applied force/K in the trans-
formed system.
Displacement, velocity, and
acceleration of the ith rotor.
[A], [B], [C] in general.
{cosl, {sin}, {H1}, {H2} in gen-
eral.
ith eigenvector (ith mode), ma-
trix of eigenvectors (modal ma-
trix).
Amplitudes in general.
Function of time and frequency
in general.
Natural frequency (rad/s).
ith eigenvalue.
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