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E. Paul Goldenberg, June Mark, and Al Cuoco

An algebraic-habits-
of-mind perspective on
elementary school

Bar graphs, among the
earliest graphs that
children make, require
attention to two
dimensions: which bar
(horizontal position)
and the bar’s height.
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Although it is necessary to infuse courses and cur-
ricula with modern content, what is even more
important is to give students the tools they will need
in order to use, understand, and even make mathe-
matics that does not yet exist. A curriculum organized
around habits of mind tries to close the gap between
what the users and makers of mathematics do and
what they say (Cuoco, Goldenberg, and Mark 1996,
p. 376).

The three articles in this cross-journal “contempo-
rary curriculum issues” series are written by Al Cuoco,
E. Paul Goldenberg, June Mark, and Sarah Sword—a
team of curriculum developers at the Educational
Development Center who pioneered work using
mathematical habits of mind that are central to the
work of mathematicians for organizing school math-
ematics curricula. Regardless of the level at which you
teach, each article has an important message that is
relevant across the grades.

This month, the article in Teaching Children
Mathematics considers the ideas, logic, techniques,
and habits of mind that algebra entails. When and
to what extent can they be learned with intellectual
integrity in the elementary school grades prior to a
formal course on algebra? '

In the Mathematics in the Middle School article,
the authors argue that developing mathematical hab-
its of mind in the middle grades is essential for mak-
ing the crucial transition from arithmetic to algebra.

The authors of the Mathematics Teacher article
reflect on their work in using the habits-of-mind
approach for organizing high school curricula. They
indicate that the approach offers a vehicle for paring
down the collection of methods and techniques one
needs in high school, leaving a small set of general-
purpose tools that tie together many seemingly differ-
ent mathematical terrains.

As we seek improvement in students’ mathemati-
cal learning in the United States, a key component is
to build coherence in the development of mathemati-
cal ideas across the grades. Knowing the mathemati-
cal experiences, understandings, skills, and habits
of mind that students bring to your grade level and
what the expectations are for grades following yours
can help you build a smoother transition on each end
for your students.
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Common wisdom tells teachers to

introduce arithmetic first, algebra later.

Reality is not so simple. Some algebraic
ideas—for instance, those about the proper-
ties of binary operations apart from the num-
bers these operations may combine—develop
naturally before children learn arithmetic. In
fact, they must develop before arithmetic can
make sense.

Using children’s natural algebraic ideas
to develop mathematical habits of mind can
lead to deeper understanding in both algebra
and arithmetic (Cuoco, Goldenberg, and Mark
1996; Cuoco, Goldenberg, and Mark 2010;
Goldenberg 1996; Goldenberg and Shteingold
2003; Goldenberg and Shteingold 2007; Mark et
al. 2010). If children are to become competent
at mathematics, including arithmetic, those
habits of mind must take precedence over
rules, formulas, and procedures that do not
derive from logic that the child can grasp. The
fact that algebraic ideas, logic, and techniques
can be organized around the development
of mind makes clear that we are truly talking
about habits of mind rather than features of
mathematics or idiosyncrasies of mathemati-
cians. This article describes two of these natu-
ral habits of mind.

A property of addition
before addition
For young children, what will later be for-
malized as the commutative and associative
laws of addition begins as an intuitive sense
of stability, or invariance, of quantity under
rearrangement. Piaget (1952) called it con-
servation of number; Wirtz and others (1962)
and Sawyer (2003) called it the any-order,
any-grouping property. Before conservation,
arrangement trumps number, but figure la
may not have a fixed number associated with
it. Later, the new conserver may not yet know
how many fingers figure 1a shows without
counting but will be sure that the number,
whatever it is, stays put if the hands are moved
as in figure 1b or even as in figure 1c. That
algebraic idea, a property of aggregation, must
exist before the arithmetic fact—knowing
what number 2 + 5 is—can make sense.

In a similar way, if an instructor hides a
group of coins and asks, How much money is
there? children for whom the question makes
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Before children learn conservation
of number, they may not associate a
fixed number with an image.

(a) Later, new conservers may not yet know
how many fingers are showing without
counting them.

(b) But they will be sure that the number
stays the same if the hands move this way.

(c) And even if the hands move as in this
image, they will be sure that the number
stays the same.

any sense will be absolutely certain that an
answer exists and that only one answer is
correct. They may be unsure about counting
methods and may think that some methods
might give incorrect answers, but conservers
will know that just one correct answer exists.
In fact, any child who really believes that the
hidden amount can vary is not cognitively
ready for the question of what the amount is.
There is no “the amount” if it can vary. Most
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six-year-olds do not yet conserve number; by
age seven, nearly all children do.

Having confidence that all three images in
figure 1 represent the same quantity is not the
same as knowing the commutative property,
which is not about the arrangement of physi-
cal objects in space but about the behavior of
a particular element (here, the +, or the plus
sign) in a formal syntactic system of written
symbols. In some contexts, children can make
perfect sense of written symbols—even sig-
nificant parts of algebraic notation—but most
young children cannot make sense of formal
operations on a string of symbols. So, at this
early stage, commutativity remains largely an
intuitively obvious idea about the physics of
mathematics: the nature of aggregation, not

AT,
e

Such expressionsas 7 + 7 + 7 and
3 x 7 are both language and are
best introduced as mathematical
descriptions that communicate
partly without analyzing the
language formally.

(a) Images require visual rather than
linguistic analysis. This array shows
something threeish and something sevenish.
It is twenty-one because of its twenty-one
squares, but it is also a picture of three
sevens: a multiplication fact.

(b) To connect three sevens with twenty-one,
we must agree that what makes this figure
seven is its seven squares.

(LTI TTT]

(c) Three sevens and two sevens makes five
sevens.
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the nature of symbols. Even so, educators can
support a young child’s logic better by recog-
nizing that it already relies on the underlying
ideas that formal mathematics will later codify.
Children see that the principle applies regard-
less of the numbers. The principle captures
the essential algebraic aspect of the structure
of addition that commutativity is about.

Logical precursors

Pick a number. Multiply it by five; also multi-
ply your original number by two. Now add the
results. You get the same answer you would
get if you multiplied your original number by
seven. A general statement of that fact, the
distributive property, is possibly the most cen-
tral idea in elementary school arithmetic, key
to understanding the algorithms, at the core
of fluent mental calculations (e.g., 102 x 27
can be computed in two parts, as 100 x 27
+ 2 x 27), and the logical basis for many rules
of algebra that might otherwise seem arbi-
trary. This property relates multiplication and
addition, but children know it long before they
ever meet multiplication. The property is in
the language (and logic) that youngsters use
when they say that five (fingers, pennies, or
27s) plus two (fingers, pennies, or 27s) makes
seven (fingers, pennies, or 27s). The following
dialogues with six-year-olds late in their kin-
dergarten year give a sense of what their logic
does and does not handle. What distinguishes
the questions the children get right from those
they get wrong? What logic might explain the
particular wrong answers they get? (T indi-
cates the teacher’s comments; S1 and S2 are
both female students.)

T: What'’s a really big number?

S1: A million!

T: Supposelasked, “How much is a thousand

plus a thousand?” What would you say?

[with a big smile] I have no idea!

T: And suppose I asked, “How much is two

thousand plus three thousand?”

[thinking, then with confidence] Five

thousand! '

T: Suppose I asked, “How much is a hundred
plus a hundred?” What would you say?

$2: A hundred.

T: What about, “How much is two hundred
plus three hundred?”

www.nctm.org



$2: Five hundred.

T: [playfully] And what if I asked, “How much
is a thousand plus a thousand?”

$2: A million!

As soon as children are comfortable enough
with the idea, the language, and the knowl-
edge—perhaps late in kindergarten or early
in first grade—to answer the question, How
much is three sheep plus two sheep? they will
happily apply the idea, the language, and the
knowledge to give the correct answer to the
spoken question, How much is three hundred
plus two hundred? or even to the question,
How much is three-eighths plus two-eighths?
However, what they have in mind may well be
quite different from what adults have in mind
when we give the same answer.

When teachers ask a slightly different ques-
tion, How much is a hundred plus a hundred?
(with no audible preceding small numbers
such as two or three), young six-year-olds may
repeat the words a hundred or say something
such as a million.

If, instead, a teacher asks, How much is an
eighth plus an eighth? little ones may give just
a puzzled stare and no answer at all. If their
arithmetic is strong enough, they might possibly
count and answer sixteen (or, sometimes, nine).

Why such errors are made and why hundred
and eighth lead to different errors are beyond
the scope of this article. The point is that when
no audible small numbers are given, little chil-
dren tend to give wrong answers. But when the
numbers are not too large, even some kinder-
gartners tend to answer correctly; more first
graders do; and we can absolutely count on it
in second grade. Whatever an eighth or a hun-
dred is, children are sure that three of them
plus two of them is five of them! Although
this does not constitute knowing the distribu-
tive property, it does tell us that the children
already grasp the underlying idea that the dis-
tributive property will later formally encode.

If we use sevens (a fully understood fixed
quantity) in place of hundreds (which may still
be a nonspecific zillions for young children),
youngsters still know that three of them plus
two of them yields five of them. Once a child
has a meaning for three sevens and that mean-
ing is a specific number (even if the child does
not yet remember which number), the child’s
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long-standing logic, intuition, or linguistic
knowledge that three sevens plus two sevens is
five sevens becomes arithmetically usable.

The meaning might be given as an image
(see fig. 2a), a sum (7 + 7 + 7), a product (3 x 7),
or in other ways. Each way shows something
threeish and something sevenish. Because
7 + 7 + 7 and 3 x 7 are both language, such
expressions are best introduced as (math-
ematical) descriptions of a situation—for
example, the array image—that communi-
cate partly without analyzing the language
formally. The image, of course, requires some
analysis, too—visual rather than linguistic—to
see the three sevens. To connect three sevens
with twenty-one, we must agree that what
makes figure 2b seven is its seven squares.
Figure 2a is twenty-one because of its twenty-
one squares, but it is also a picture of three
sevens: a multiplication fact. Then, figure 2c
shows that three sevens and two sevens makes
five sevens.

The spoken form is familiar: “Three sev-
ens plus two sevens makes five sevens.” The
pictures support the semantics of the situa-
tion, helping to establish the role of sevens
and preserve its numerical meaning rather
than letting it degenerate into a nonnumeric
object, like sheep. In contrast, the classical
written form—(3 x 7) + (2 x 7) = 5 x 7—is quite
another story.

Spoken versus written symbols

A child’s knowledge that the finger collections
in figure 1 can be described by the same num-
ber does not guarantee that he or she will know
that the print statements 5 + 2 and 2 + 5 refer
to the same number. The written language of
mathematics presents challenges that can be
finessed by spoken language and by appro-
priate visual presentations. Perhaps the most
glaring example is the canonically incorrect
fourth-graderesponse to 3/8 +2/8 =2 Although
5/16 is a common answer from fourth grad-
ers (and beyond), no first grader would ever
respond, “Five-sixteenths.” It is uninforma-
tive—in fact, misleading—to explain such
errors simply by claiming that these expres-
sions are too abstract or that children cannot
handle symbols. Spoken words are symbols,
too, and such words as the—which young
children use flawlessly—are about as abstract

teaching children mathematics * May 2010
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as one can get. It is worth understanding the
difference between figure 1 and 5+2=2+5
to see why the challenge of print for children
may not be a mathematical challenge.
Humans have evolved to be quite flexible
about visual order and orientation, but in the
life of any individual human, it takes some
learning. Infants who have come to recognize a
bottle when it is handed to them in the proper
orientation (see fig. 3a) do not, at first, reach for
itwhen itis handed to them in some unfamiliar
orientation, for example, with the nipple visible
but facing away (see fig. 3b). Very soon they do
learn to recognize objects regardless of their
orientation. Considering the visual processing
required, this is quite an impressive accom-
plishment. Even if the bottle is presented in
the same orientation but at different distances,
very different images are projected onto the
retina. The distortion of parts relative to each
other can be extreme, and yet babies recognize
all these projections—most of which they have
never seen before—as the same object.
Although this complex neural computation
needs data (learning) to tune it up, the ability
is hard wired, an evolutionary gift essential for
survival. Otherwise, we would have been meals
for tigers that we did not recognize because they
did not happen to be facing exactly the same
way as when we first saw them. Our ancestors
had to interpret different retinal images as being

Infants recognize a bottle handed to them in

(a) a familiar orientation

(b) but not when the

orientation is unfamiliar.

May 2010 ¢ teaching children mathematics

the same object as long as those images could be
made the same under rotation, reflection, dila-
tion, or certain projective transformations. As a
result, our brains are adept at them.

But those ancestors did not read. The let-
ters d, b, q, and p are all the same shape and
differ only by rotation or reflection. To read,
children must learn to see them as different
objects, not as the same object in different ori-
entations. So, young children’s letter reversals
are part of evolution’s gift. To decode print,
children must unlearn a principle that applies
nearly everywhere else. They must treat print
as an exception to the usual rules of seeing.

Moreover, was and saw—each just three
print squiggles arranged in a different order—
must not be recognized as the same. Alas,
then come 2 + 5 and 5 + 2, two perfectly good
examples of print squiggles that are to be
treated as the same. (As always, the truth is not
so simple. On a number line, numbers repre-
sent addresses—the names of specific points
or locations along the line—and also distances
between addresses. The child who enacts 2 + 5,
perhaps by jumping along a large number line
on the floor, would enact 5 + 2 differently.) It is
therefore not surprising that the notation can
cause confusion in some contexts, but this is
an issue of notation, not of concept. Such writ-
ten descriptions as (3x7) + 2x7)=(3+2)x7
are typically opaque, unless they arise as
abbreviations of language that the children
themselves use to describe such displays as
figure 2c.

The trouble is not with the underlying math-
ematical idea but with the notation through
which it is communicated. In fact, the way
instructors of kindergartners and early first
graders teach writing can help here, too. Chil-
dren tell stories. The teacher encodes their lan-
guage in writing. For example, children say that

combines with

to make

www.nctm.org



As they speak, the teacher writes
Bx7)+(2x7)=(5x7).

Getting arithmetically good enough to use
this valuable property takes time and practice.
But the underlying idea is part of the child’s
cognitive structure as soon as the child can
meaningfully make such statements as, “Two
sheep plus three sheep is five sheep.” Again,
the underlying idea must be there before any
practice of it can make sense.

Possibly because of print’s special status,
the logic that children apply when informa-
tion is presented in spoken symbols may not
be applied when the same information is
presented in print. The canonical error with
fractions is a perfect example. The spoken
question, “How much is three-eighths plus
two-eighths?” focuses attention on three plus
two and tends to evoke the correct reasoning
and get the correct answer. By contrast, the
written question does not focus attention on
the top numbers only:

o™ |w

+2:?
8

Children for whom the meaning is not already
established tend to interpret the plus sign as
add everything in sight. Mathematical reading
and writing are different from prose reading
and writing. Prose flows strictly left to right,
in one dimension. Bar and coordinate graphs,
histograms, charts, tables, and so on are two-
dimensional records. One must attend to hori-
zontal and vertical positions to interpret them.
Even such symbolic expressions as

o |w
+
e J 1\

require attention to vertical position, as does
3%, which is not the same as 32. Mathematical
writing that is only horizontal cannot be read

www.nctm.org

strictly left to right. Both
2x(B3+5and7+___=5+4

require attention to the right side of the equa-
tion before attention to the left. In fact, 7+ 6 + 2
requires both left-to-right and right-to-left
analysis: 6 + 2 must be evaluated left to right
(because 2 + 6 is different), and yet the conven-
tion about order of operations dictates that the
6 + 2 part be evaluated before the addition that
is specified by the 7 + part.

Algebra as a language
Algebraic notation is used in two distinct
ways: for describing what we know and for
deriving what we do not know. In the former,
algebra is a language for describing the struc-
ture of a computation, a numerical pattern we
have observed, a relationship among varying
quantities, and so on. Young children are phe-
nomenal language learners.

Exercises such as the one in table 1 (but
without the leftmost column) are familiar
enough in many curricula. Children look for a

\4

In the photograph, the

distance from the tip
of the nipple to the

top of the bottle is th
same as the length of

e

the bottle. Measure to
see for yourself.

teaching children mathematics « May 2010
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pattern in the inputs and outputs, determine a
rule, and complete the table. The Think Math!
curriculum (EDC 2008) often adds a pattern
indicator (the leftmost column) to problems
of this kind.

Michelle, a second grader in a classroom
using Think Math! completed table 1 before
her teacher had finished distributing copies to
all the children. When the teacher asked how
she had done it so fast, Michelle answered,
“Well, I saw it was take away eight, because I
looked at the twenty-eight and the twenty, and
then I saw that ten and two was take away eight
again, and then I saw eight and zero.” Pointing
to the leftmost column and grinning as if the
teacher had left a clue by mistake, Michelle
exclaimed, “Besides, it says it right here!”

How did she know? Nobody had ever
discussed variables or letters standing for
numbers or had even mentioned that first col-
umn. If Michelle had seen only table 2, with
no examples to infer from, she most likely
would not have felt that the symbols say any-
thing. But having discovered the pattern, she
thought that the symbols looked close enough
to mean the same thing, so she then assigned
them that meaning.

In other words, she did what little children
excel at: She learned language (in this case,
n - 8) from context. If algebraic language is
part of the environment, used where context
gives it meaning, children can apply their nat-
ural—and extraordinary—language-learning
prowess to it and learn to use it descriptively.

A pattern indicator gains meaning from context when it
accompanies a find-a-rule exercise.

28 | 18 [ 17 | | 58 | 57
20 | A 3 | a4

A pattern indicator without a
pattern from which to infer its
meaning would be simply more
to learn.

n [ 1817 ] | 58 [ 57 |
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Just as children learning their native language
understand, at first, more than they can say,
Michelle could not immediately produce such
descriptive language, but she and others try
these interesting ways of writing what they
know and, over time, become good at it. For
instance, fourth graders learn this trick:

Think of a number; add three; double that;
subtract four; cut it in half; subtract your
original number; your result is one.

They love the trick and want to show their
parents and friends. They also want to know
how it works. To explain, we can add pictures
(see fig. 4). The act of doubling, which most
fourth graders find quite natural and: obvi-
ous, is, again, the distributive property in
action. Although the expression 2(b + 3) does
not make obvious what the result is, children
readily learn to describe the third picture (see
fig. 4c) as two bags plus six and abbreviate
that description as 2b + 6. They do not have
to talk about variables or letters standing for
numbers; they simply describe what they
know and then write it as simply as they can.
See a detailed description of this algebraic
thinking with children on the Think Math! Web
site (EDC 2009), and see Sawyer (1964) for the
original source of the idea. Furthermore, Mark
and her colleagues describe yet another way in
which Think Math! gives students this algebra-
as-description-of-what-you-know experience
(Mark et al. 2010).

Why not teach algebra in grade 4?
The other use of algebra—deriving what we do
not know—is a formal syntactic operation on
a set of symbols. Children are generally unable
to divorce symbols from meanings before
roughly age twelve; so, algebra as a course
is not taught before fourth grade. This is not
because fourth graders cannot handle sym-
bols or abstract ideas—words are symbols;
pictures are symbols; little children can be
symbolic and abstract from babyhood—but
because the use of the symbols differs. Formal
operations on strings of algebraic symbols—
rearranging them, apart from their semantics,
to create other strings of symbols that solve
a problem—are, well, formal operations, and
children are not, by and large, formally opera-
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tional before age eleven and not reliably so
before about age thirteen, thus the common
need to wait until that age for algebra.
However, only the part of algebra that
requires deduction by formal rules must wait
that long. The part of algebra that is expressive
of what we already know—that is, essentially,
shorthand for semantic content clearly tied
to a context we already understand—that
part can be learned earlier. It is just language
to express oneself, and children are excellent
language learners. They do not learn language
from explanations or formal lessons; they learn
it from use in context. And, if it is learned all
along, as it becomes developmentally possible,
then, when the child is in late middle school,

the transition to the new use of that language -

for deductive purposes could, presumably,
be much easier, much more accessible for all
children, much less of a brick wall of a million
seemingly new things to learn all at once.

What about elementary school?
Taking advantage of children’s natural algebraic
ideas and honing them is a focus on habits of
mind rather than on rules that can otherwise
seem arbitrary. The precursors of commutative
and distributive properties described earlier
must be refined, honed, extended, practiced,
codified, and generalized, but they are already
there as natural logic, the child’s natural hab-
its of mind and the building blocks of higher
mathematics. If children are to become com-
petent at mathematics, including arithmetic,
those habits of mind must take precedence
over rules, formulas, and procedures that do
not derive from logic that the child can grasp.
In fact, children can grasp a lot more if the
foundations for their learning are grounded in
their logic, which gives students all the tools to
understand, not just memorize, the algorithms
for arithmetic with whole numbers and frac-
tions. The dramatically disappointing result of
learning rules apart from understanding is the
tendency to easily get mixed up and use proce-
dures that do not work (Carpenter et al. 1997).
Organizing the arithmetic part of the
elementary school mathematics curriculum
around mathematical habits of mind would
not shift the curriculum dramatically in con-
tent, except to give more attention to mental
arithmetic than is usual. Paper-and-pencil

www.nctm.org

Children simply describe what they
know and write it as simply as they
can.

(a) For the “Think of a number” activity,
picture a bag with a certain number of
grapes in it.

(b) For add three, picture this:

(c) Double that number is shown as the
following:

methods are engineered to make the work
easy and to reduce the cognitive load of cal-
culation, the amount of thinking one needs
to do. Judiciously chosen mental arithmetic
tasks both exercise and depend on math-
ematical ways of thinking that the paper-and-
pencil algorithms deliberately try to avoid—
mathematical ways of thinking that are the
backbone of the successful preparation for
algebra that we want for our students. What
would shift if we were to emphasize habits of
mind is the order in which students acquire
content. Instead of being the preparatory step
for computing, algorithms would become the

teaching children mathematics « May 2010



culmination of understanding how the com-
putation works, another case of describing
what we already know and abbreviating that
description. Taking full advantage of the natu-
ral logic and algebraic ideas of young learners,
and helping them refine and communicate
those ideas in mathematical language, would
produce students who are better at arithme-
tic as well as better prepared for and familiar
with algebra.
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