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ИЯшЗиидге^ I E. Paul Goldenberg, June Mark, and Al Cuoco 

An algebraic-habits- 
of-mind perspective on 

elementary school 

1 

Although it is necessary to infuse courses and cur- 
ricula with modern content, what is even more 
important is to give students the tools they will need 
in order to use, understand, and even make mathe- 
matics that does not yet exist. A curriculum organized 
around habits of mind tries to close the gap between 
what the users and makers of mathematics do and 
what they say (Cuoco, Goldenberg, and Mark 1996, 
p. 376). 

The three articles in this cross-journal "contempo- 
rary curriculum issues" series are written by Al Cuoco, 
E. Paul Goldenberg, June Mark, and Sarah Sword - a 
team of curriculum developers at the Educational 
Development Center who pioneered work using 
mathematical habits of mind that are central to the 
work of mathematicians for organizing school math- 
ematics curricula. Regardless of the level at which you 
teach, each article has an important message that is 
relevant across the grades. 

This month, the article in Teaching Children 
Mathematics considers the ideas, logic, techniques, 
and habits of mind that algebra entails. When and 
to what extent can they be learned with intellectual 
integrity in the elementary school grades prior to a 
formal course on algebra? 

In the Mathematics in the Middle School article, 
the authors argue that developing mathematical hab- 
its of mind in the middle grades is essential for mak- 
ing the crucial transition from arithmetic to algebra. 

The authors of the Mathematics Teacher article 
reflect on their work in using the habits-of-mind 
approach for organizing high school curricula. They 
indicate that the approach offers a vehicle for paring 
down the collection of methods and techniques one 
needs in high school/leaving a small set of general- 
purpose tools that tie together many seemingly differ- 
ent mathematical terrains. 

As we seek improvement in students' mathemati- 
cal learning in the United States, a key component is 
to build coherence in the development of mathemati- 
cal ideas across the grades. Knowing the mathemati- 
cal experiences, understandings, skills, and habits 
of mind that students bring to your grade level and 
what the expectations are fór grades following yours 
can help you build a smoother transition on each end 
for your students. 
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wisdom tells teachers to 

»Common 
introduce arithmetic first, algebra later. 
Reality is not so simple. Some algebraic 

ideas - for instance, those about the proper- 
ties of binary operations apart from the num- 
bers these operations may combine - develop 
naturally before children learn arithmetic. In 
fact, they must develop before arithmetic can 
make sense. 

Using children's natural algebraic ideas 
to develop mathematical habits of mind can 
lead to deeper understanding in both algebra 
and arithmetic (Cuoco, Goldenberg, and Mark 
1996; Cuoco, Goldenberg, and Mark 2010; 
Goldenberg 1996; Goldenberg and Shteingold 
2003; Goldenberg and Shteingold 2007; Mark et 
al. 2010). If children are to become competent 
at mathematics, including arithmetic, those 
habits of mind must take precedence over 
rules, formulas, and procedures that do not 
derive from logic that the child can grasp. The 
fact that algebraic ideas, logic, and techniques 
can be organized around the development 
of mind makes clear that we are truly talking 
about habits of mind rather than features of 
mathematics or idiosyncrasies of mathemati- 
cians. This article describes two of these natu- 
ral habits of mind. 

A property of addition 
before addition 
For young children, what will later be for- 
malized as the commutative and associative 
laws of addition begins as an intuitive sense 
of stability, or invariance, of quantity under 
rearrangement. Piaget (1952) called it con- 
servation of number; Wirtz and others (1962) 
and Sawyer (2003) called it the any-order, 
any-grouping property. Before conservation, 
arrangement trumps number, but figure la 
may not have a fixed number associated with 
it. Later, the new conserver may not yet know 
how many fingers figure la shows without 
counting but will be sure that the number, 
whatever it is, stays put if the hands are moved 
as in figure lb or even as in figure lc. That 
algebraic idea, a property of aggregation, must 
exist before the arithmetic fact - knowing 
what number 2 + 5 is - can make sense. 

In a similar way, if an instructor hides a 
group of coins and asks, How much money is 
there? children for whom the question makes 

any sense will be absolutely certain that an 
answer exists and that only one answer is 
correct. They may be unsure about counting 
methods and may think that some methods 
might give incorrect answers, but conservers 
will know that just one correct answer exists. 
In fact, any child who really believes that the 
hidden amount can vary is not cognitively 
ready for the question of what the amount is. 
There is no "the amount" if it can vary. Most 
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I 
I 

Before children learn conservation 
of number, they may not associate ; 
fixed number with an image. 

(a) Later, new conservers may not yet know 
how many fingers are showing without 
counting them. 

(b) But they will be sure that the number 
stays the same if the hands move this way. 

(c) And even if the hands move as in this 

image, they will be sure that the number 
stays the same. 
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six-year-olds do not yet conserve number; by 
age seven, nearly all children do. 

Having confidence that all three images in 
figure 1 represent the same quantity is not the 
same as knowing the commutative property, 
which is not about the arrangement of physi- 
cal objects in space but about the behavior of 
a particular element (here, the +, or the plus 
sign) in a formal syntactic system of written 
symbols. In some contexts, children can make 
perfect sense of written symbols - even sig- 
nificant parts of algebraic notation - but most 
young children cannot make sense of formal 
operations on a string of symbols. So, at this 
early stage, commutativity remains largely an 
intuitively obvious idea about the physics of 
mathematics: the nature of aggregation, not 

1 
I 

Such expressions as 7 + 7 + 7 and 
3x7 are both language and are 
best introduced as mathematical 
descriptions that communicate 
partly without analyzing the 
language formally. 

(a) Images require visual rather than 
linguistic analysis. This array shows 

something threeish and something sevenish. 
It is twenty-one because of its twenty-one 
squares, but it is also a picture of three 
sevens: a multiplication fact. 

(b) To connect three sevens with twenty-one, 
we must agree that what makes this figure 
seven is its seven squares. 

(c) Three sevens and two sevens makes five 
sevens. 

the nature of symbols. Even so, educators can 
support a young child's logic better by recog- 
nizing that it already relies on the underlying 
ideas that formal mathematics will later codify. 
Children see that the principle applies regard- 
less of the numbers. The principle captures 
the essential algebraic aspect of the structure 
of addition that commutativity is about. 

Logical precursors 
Pick a number. Multiply it by five; also multi- 
ply your original number by two. Now add the 
results. You get the same answer you would 
get if you multiplied your original number by 
seven. A general statement of that fact, the 
distributive property, is possibly the most cen- 
tral idea in elementary school arithmetic, key 
to understanding the algorithms, at the core 
of fluent mental calculations (e.g., 102 x 27 
can be computed in two parts, as 100 x 27 
+ 2 x 27), and the logical basis for many rules 
of algebra that might otherwise seem arbi- 
trary. This property relates multiplication and 
addition, but children know it long before they 
ever meet multiplication. The property is in 
the language (and logic) that youngsters use 
when they say that five (fingers, pennies, or 
27s) plus two (fingers, pennies, or 27s) makes 
seven (fingers, pennies, or 27s). The following 
dialogues with six-year-olds late in their kin- 
dergarten year give a sense of what their logic 
does and does not handle. What distinguishes 
the questions the children get right from those 
they get wrong? What logic might explain the 
particular wrong answers they get? (T indi- 
cates the teacher's comments; SI and S2 are 
both female students.) 

T: What's a really big number? 
SI: A million! 
T: Suppose I asked, "How much is a thousand 

plus a thousand?" What would you say? 
SI: [with a big smile] I have no idea! 
T: And suppose I asked, "How much is two 

thousand plus three thousand?" 
SI: [thinking, then with confidence] Five 

thousand! 
T: Suppose I asked, "How much is a hundred 

plus a hundred?" What would you say? 
S2: A hundred. 
T: What about, "How much is two hundred 

plus three hundred?" 
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S2: Five hundred. 
T: [playfully] And what if I asked, "How much 

is a thousand plus a thousand?" 
S2: A million! 

As soon as children are comfortable enough 
with the idea, the language, and the knowl- 
edge - perhaps late in kindergarten or early 
in first grade - to answer the question, How 
much is three sheep plus two sheep? they will 
happily apply the idea, the language, and the 
knowledge to give the correct answer to the 
spoken question, How much is three hundred 
plus two hundred? or even to the question, 
How much is three-eighths plus two-eighths? 
However, what they have in mind may well be 
quite different from what adults have in mind 
when we give the same answer. 

When teachers ask a slightly different ques- 
tion, How much is a hundred plus a hundred? 
(with no audible preceding small numbers 
such as two or three), young six-year-olds may 
repeat the words a hundred or say something 
such as a million. 

If, instead, a teacher asks, How much is an 
eighth plus an eighth? little ones may give just 
a puzzled stare and no answer at all. If their 
arithmetic is strong enough, they might possibly 
count and answer sixteen (or, sometimes, nine). 

Why such errors are made and why hundred 
and eighth lead to different errors are beyond 
the scope of this article. The point is that when 
no audible small numbers are given, little chil- 
dren tend to give wrong answers. But when the 
numbers are not too large, even some kinder- 
gartners tend to answer correctly; more first 
graders do; and we can absolutely count on it 
in second grade. Whatever an eighth or a hun- 
dred is, children are sure that three of them 
plus two of them is five of them! Although 
this does not constitute knowing the distribu- 
tive property, it does tell us that the children 
already grasp the underlying idea that the dis- 
tributive property will later formally encode. 

If we use sevens (a fully understood fixed 
quantity) in place of hundreds (which may still 
be a nonspecific zillions for young children), 
youngsters still know that three of them plus 
two of them yields five of them. Once a child 
has a meaning for three sevens and that mean- 
ing is a specific number (even if the child does 
not yet remember which number), the child's 

long-standing logic, intuition, or linguistic 
knowledge that three sevens plus two sevens is 
five sevens becomes arithmetically usable. 

The meaning might be given as an image 
(see fig. 2a), a sum (7 + 7 + 7), a product (3x7), 
or in other ways. Each way shows something 
threeish and something sevenish. Because 
7 + 7 + 7 and 3 x 7 are both language, such 
expressions are best introduced as (math- 
ematical) descriptions of a situation - for 
example, the array image - that communi- 
cate partly without analyzing the language 
formally. The image, of course, requires some 
analysis, too - visual rather than linguistic - to 
see the three sevens. To connect three sevens 
with twenty-one, we must agree that what 
makes figure 2b seven is its seven squares. 
Figure 2a is twenty-one because of its twenty- 
one squares, but it is also a picture of three 
sevens: a multiplication fact. Then, figure 2c 
shows that three sevens and two sevens makes 
five sevens. 

The spoken form is familiar: "Three sev- 
ens plus two sevens makes five sevens." The 
pictures support the semantics of the situa- 
tion, helping to establish the role of sevens 
and preserve its numerical meaning rather 
than letting it degenerate into a nonnumeric 
object, like sheep. In contrast, the classical 
written form - (3 x 7) + (2 x 7) = 5 x 7 - is quite 
another story. 

Spoken versus written symbols 
A child's knowledge that the finger collections 
in figure 1 can be described by the same num- 
ber does not guarantee that he or she will know 
that the print statements 5 + 2 and 2 + 5 refer 
to the same number. The written language of 
mathematics presents challenges that can be 
finessed by spoken language and by appro- 
priate visual presentations. Perhaps the most 
glaring example is the canonically incorrect 
fourth-grade response to 3/8 + 2/8 = ? Although 
5/16 is a common answer from fourth grad- 
ers (and beyond), no first grader would ever 
respond, "Five-sixteenths." It is uninforma- 
tive - in fact, misleading - to explain such 
errors simply by claiming that these expres- 
sions are too abstract or that children cannot 
handle symbols. Spoken words are symbols, 
too, and such words as the - which young 
children use flawlessly - are about as abstract 
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as one can get. It is worth understanding the 
difference between figure 1 and 5 + 2 = 2 + 5 
to see why the challenge of print for children 
may not be a mathematical challenge. 

Humans have evolved to be quite flexible 
about visual order and orientation, but in the 
life of any individual human, it takes some 
learning. Infants who have come to recognize a 
bottle when it is handed to them in the proper 
orientation (see fig. 3a) do not, at first, reach for 
it when it is handed to them in some unfamiliar 
orientation, for example, with the nipple visible 
but facing away (see fig. 3b). Very soon they do 
learn to recognize objects regardless of their 
orientation. Considering the visual processing 
required, this is quite an impressive accom- 
plishment. Even if the bottle is presented in 
the same orientation but at different distances, 
very different images are projected onto the 
retina. The distortion of parts relative to each 
other can be extreme, and yet babies recognize 
all these projections - most of which they have 
never seen before - as the same object. 

Although this complex neural computation 
needs data (learning) to tune it up, the ability 
is hard wired, an evolutionary gift essential for 
survival. Otherwise, we would have been meals 
for tigers that we did not recognize because they 
did not happen to be facing exactly the same 
way as when we first saw them. Our ancestors 
had to interpret different retinal images as being 

i 
Ш 

Infants recognize a bottle handed to them in 

(a) a familiar orientation 

(b) but not when the Ш -Ж^НВБР^^^^^^В 
orientation is unfamiliar. Ш $ ®шЩШШЕ^Ш^^^Ш 

the same object as long as those images could be 
made the same under rotation, reflection, dila- 
tion, or certain projective transformations. As a 
result, our brains are adept at them. 

But those ancestors did not read. The let- 
ters d} b, q, and p are all the same shape and 
differ only by rotation or reflection. To read, 
children must learn to see them as different 
objects, not as the same object in different ori- 
entations. So, young children's letter reversals 
are part of evolution's gift. To decode print, 
children must unlearn a principle that applies 
nearly everywhere else. They must treat print 
as an exception to the usual rules of seeing. 

Moreover, was and saw - each just three 
print squiggles arranged in a different order - 
must not be recognized as the same. Alas, 
then come 2 + 5 and 5 + 2, two perfectly good 
examples of print squiggles that are to be 
treated as the same. (As always, the truth is not 
so simple. On a number line, numbers repre- 
sent addresses - the names of specific points 
or locations along the line - and also distances 
between addresses. The child who enacts 2 + 5, 
perhaps by jumping along a large number line 
on the floor, would enact 5 + 2 differently.) It is 
therefore not surprising that the notation can 
cause confusion in some contexts, but this is 
an issue of notation, not of concept. Such writ- 
ten descriptions as (3 x 7) + (2 x 7) = (3 + 2) x 7 
are typically opaque, unless they arise as 
abbreviations of language that the children 
themselves use to describe such displays as 
figure 2c. 

The trouble is not with the underlying math- 
ematical idea but with the notation through 
which it is communicated. In fact, the way 
instructors of kindergartners and early first 
graders teach writing can help here, too. Chil- 
dren tell stories. The teacher encodes their lan- 
guage in writing. For example, children say that 

combines with 

to make 
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As they speak, the teacher writes 

(3x7) + (2x7) = (5x7). 

Getting arithmetically good enough to use 
this valuable property takes time and practice. 
But the underlying idea is part of the child's 
cognitive structure as soon as the child can 
meaningfully make such statements as, "Two 
sheep plus three sheep is five sheep." Again, 
the underlying idea must be there before any 
practice of it can make sense. 

Possibly because of print's special status, 
the logic that children apply when informa- 
tion is presented in spoken symbols may not 
be applied when the same information is 
presented in print. The canonical error with 
fractions is a perfect example. The spoken 
question, "How much is three-eighths plus 
two-eighths?" focuses attention on three plus 
two and tends to evoke the correct reasoning 
and get the correct answer. By contrast, the 
written question does not focus attention on 
the top numbers only: 

8 8 
' 

Children for whom the meaning is not already 
established tend to interpret the plus sign as 
add everything in sight. Mathematical reading 
and writing are different from prose reading 
and writing. Prose flows strictly left to right, 
in one dimension. Bar and coordinate graphs, 
histograms, charts, tables, and so on are two- 
dimensional records. One must attend to hori- 
zontal and vertical positions to interpret them. 
Even such symbolic expressions as 

¿+2 
8 8 

require attention to vertical position, as does 
32, which is not the same as 32. Mathematical 
writing that is only horizontal cannot be read 

strictly left to right. Both 

2 x (3 + 5) and 7 +  = 5 + 4 

require attention to the right side of the equa- 
tion before attention to the left. In fact, 7 + 6 + 2 
requires both left-to-right and right-to-left 
analysis: 6 + 2 must be evaluated left to right 
(because 2 + 6 is different), and yet the conven- 
tion about order of operations dictates that the 
6 + 2 part be evaluated before the addition that 
is specified by the 7 + part. 

Algebra as a language 
Algebraic notation is used in two distinct 
ways: for describing what we know and for 
deriving what we do not know. In the former, 
algebra is a language for describing the struc- 
ture of a computation, a numerical pattern we 
have observed, a relationship among varying 
quantities, and so on. Young children are phe- 
nomenal language learners. 

Exercises such as the one in table 1 (but 
without the leftmost column) are familiar 
enough in many curricula. Children look for a 
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pattern in the inputs and outputs, determine a 
rule, and complete the table. The Think Math! 
curriculum (EDC 2008) often adds a pattern 
indicator (the leftmost column) to problems 
of this kind. 

Michelle, a second grader in a classroom 
using Think Math! completed table 1 before 
her teacher had finished distributing copies to 
all the children. When the teacher asked how 
she had done it so fast, Michelle answered, 
"Well, I saw it was take away eight, because I 
looked at the twenty-eight and the twenty, and 
then I saw that ten and two was take away eight 
again, and then I saw eight and zero." Pointing 
to the leftmost column and grinning as if the 
teacher had left a clue by mistake, Michelle 
exclaimed, "Besides, it says it right here!" 

How did she know? Nobody had ever 
discussed variables or letters standing for 
numbers or had even mentioned that first col- 
umn. If Michelle had seen only table 2, with 
no examples to infer from, she most likely 
would not have felt that the symbols say any- 
thing. But having discovered the pattern, she 
thought that the symbols looked close enough 
to mean the same thing, so she then assigned 
them that meaning. 

In other words, she did what little children 
excel at: She learned language (in this case, 
n - 8) from context. If algebraic language is 
part of the environment, used where context 
gives it meaning, children can apply their nat- 
ural-and extraordinary- language-learning 
prowess to it and learn to use it descriptively. 

A pattern indicator gains meaning from context when it 
accompanies a find-a-rule exercise. 

n 10 8 28 18 17  58 57 
л -8 | 2 I 0 | 20 I | 

 
| 3 4  

1 H 
A pattern indicator without a 
pattern from which to infer its 
meaning would be simply more 
to learn. 

n 18 17 I I 58 I 57 
n-8' I I 3 I 4  

Just as children learning their native language 
understand, at first, more than they can say, 
Michelle could not immediately produce such 
descriptive language, but she and others try 
these interesting ways of writing what they 
know and, over time, become good at it. For 
instance, fourth graders learn this trick: 

Think of a number; add three; double that; 
subtract four; cut it in half; subtract your 
original number; your result is one. 

They love the trick and want to show their 
parents and friends. They also want to know 
how it works. To explain, we can add pictures 
(see fig. 4). The act of doubling, which most 
fourth graders find quite natural and obvi- 
ous, is, again, the distributive property in 
action. Although the expression 2(b + 3) does 
not make obvious what the result is, children 
readily learn to describe the third picture (see 
fig. 4c) as two bags plus six and abbreviate 
that description as 2b + 6. They do not have 
to talk about variables or letters standing for 
numbers; they simply describe what they 
know and then write it as simply as they can. 
See a detailed description of this algebraic 
thinking with children on the Think Math! Web 
site (EDC 2009), and see Sawyer (1964) for the 
original source of the idea. Furthermore, Mark 
and her colleagues describe yet another way in 
which Think Math! gives students this algebra- 
as-description-of-what-you-know experience 
(Mark et al. 2010). 

Why not teach algebra in grade 4? 
The other use of algebra - deriving what we do 
not know - is a formal syntactic operation on 
a set of symbols. Children are generally unable 
to divorce symbols from meanings before 
roughly age twelve; so, algebra as a course 
is not taught before fourth grade. This is not 
because fourth graders cannot handle sym- 
bols or abstract ideas - words are symbols; 
pictures are symbols; little children can be 
symbolic and abstract from babyhood - but 
because the use of the symbols differs. Formal 
operations on strings of algebraic symbols - 
rearranging them, apart from their semantics, 
to create other strings of symbols that solve 
a problem - are, well, formal operations, and 
children are not, by and large, formally opera- 
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tional before age eleven and not reliably so 
before about age thirteen, thus the common 
need to wait until that age for algebra. 

However, only the part of algebra that 
requires deduction by formal rules must wait 
that long. The part of algebra that is expressive 
of what we already know - that is, essentially, 
shorthand for semantic content clearly tied 
to a context we already understand - that 
part can be learned earlier. It is just language 
to express oneself, and children are excellent 
language learners. They do not learn language 
from explanations or formal lessons; they learn 
it from use in context. And, if it is learned all 
along, as it becomes developmentally possible, 
then, when the child is in late middle school, 
the transition to the new use of that language 
for deductive purposes could, presumably, 
be much easier, much more accessible for all 
children, much less of a brick wall of a million 
seemingly new things to learn all at once. 

What about elementary school? 
Taking advantage of children's natural algebraic 
ideas and honing them is a focus on habits of 
mind rather than on rules that can otherwise 
seem arbitrary. The precursors of commutative 
and distributive properties described earlier 
must be refined, honed, extended, practiced, 
codified, and generalized, but they are already 
there as natural logic, the child's natural hab- 
its of mind and the building blocks of higher 
mathematics. If children are to become com- 
petent at mathematics, including arithmetic, 
those habits of mind must take precedence 
over rules, formulas, and procedures that do 
not derive from logic that the child can grasp. 
In fact, children can grasp a lot more if the 
foundations for their learning are grounded in 
their logic, which gives students all the tools to 
understand, not just memorize, the algorithms 
for arithmetic with whole numbers and frac- 
tions. The dramatically disappointing result of 
learning rules apart from understanding is the 
tendency to easily get mixed up and use proce- 
dures that do not work (Carpenter et al. 1997). 

Organizing the arithmetic part of the 
elementary school mathematics curriculum 
around mathematical habits of mind would 
not shift the curriculum dramatically in con- 
tent, except to give more attention to mental 
arithmetic than is usual. Paper-and-pencil 

I 
Children simply describe what they 
know and write it as simply as they 
can. 

(a) For the "Think of a number" activity, 
picture a bag with a certain number of 

grapes in it. 

I 
(b) For add three, picture this: 

I... 
(c) Double that number is shown as the 

following: 

II::: 
methods are engineered to make the work 
easy and to reduce the cognitive load of cal- 
culation, the amount of thinking one needs 
to do. Judiciously chosen mental arithmetic 
tasks both exercise and depend on math- 
ematical ways of thinking that the paper-and- 
pencil algorithms deliberately try to avoid - 
mathematical ways of thinking that are the 
backbone of the successful preparation for 
algebra that we want for our students. What 
would shift if we were to emphasize habits of 
mind is the order in which students acquire 
content. Instead of being the preparatory step 
for computing, algorithms would become the 
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culmination of understanding how the com- 
putation works, another case of describing 
what we already know and abbreviating that 
description. Taking full advantage of the natu- 
ral logic and algebraic ideas of young learners, 
and helping them refine and communicate 
those ideas in mathematical language, would 
produce students who are better at arithme- 
tic as well as better prepared for and familiar 
with algebra. 
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