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Chapter 7 

 Direct-Current Circuits 

7.1 Introduction 
 
Electrical circuits connect power supplies to loads such as resistors, capacitors, motors, 
heaters, or lamps. The connection between the supply and the load is made by soldering 
with wires that are often called leads, or with many kinds of connectors and terminals. 
Energy is delivered from the source to the user on demand at the flick of a switch. 
Sometimes many circuit elements are connected to the same lead, which is the called a 
common lead for those elements. Various parts of the circuits are called circuit elements, 
which can be in series or in parallel, as we have already seen in the case of capacitors. 
 
A node is a point in a circuit where three or more elements are soldered together. A 
branch is a current path between two nodes. Each branch in a circuit can have only one 
current in it although a branch may have no current. A loop is a closed path that may 
consist of different branches with different currents in each branch.  
 
A direct current (DC) circuit is a circuit is which the current through each branch in the 
circuit is always in the same direction. When the power supply is steady in time, and then 
the circuit is a purely resistive network then the current in each branch will be steady, that 
is the currents will not vary in time. In later chapters, when we introduce inductors into 
circuits with capacitance, transient power supplies initiate free oscillating currents. 
Finally when the power supply itself oscillates in time, then an alternating current (AC) 
is set up in the circuit.   
 
 

 
 

 

 
Figure 7.1.1 Elements connected (a) in parallel, and (b) in series. 
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Example 7.1.1: Junctions, branches and loops 
 
In the circuit shown in Figure 7.1.1(a), there are two junctions, A and B, on either side of 
light bulb 1. There are three branches: branch 1 goes from A to B through the battery, 
branch 2 goes from A to B through light bulb 1, and branch 3 goes from A to B through 
light bulb 2. There are three closed loops. We shall describe the loops by arbitrarily 
starting at junction A. Loop 1 consists of branches 1 and 2; it starts at junction A, passes 
through the battery to junction B, and then from junction B back to junction A through 
light bulb 1. Loop 2 consists of branches 2 and 3; it starts at junction A, passes through 
light bulb 1 to junction B, then continues through light bulb 2 back to junction A. Loop 3 
consists of branches 1 and 3; it stars at junction A, passes through the battery to junction 
B, then continues through bulb 2 back to junction A. The circuit shown in Figure 7.1.1(b) 
has no junctions, one branch and one closed loop. 
 
Elements are said to be in parallel when they are connected across the same potential 
difference. Both light bulbs in Figure 7.1.1(a) are connected across the battery. Generally, 
loads are connected in parallel across the power supply.  On the other hand, when the 
elements are connected one after another in a branch, the same current passes through 
each element, and the elements are in series (see Figure 7.1.1b).  
 
There are pictorial diagrams that show wires and components roughly as they appear, and 
schematic diagrams that use conventional symbols, somewhat like road maps. Some 
frequently used symbols are shown in the Table below. 
 
Often there is a switch in series; when the switch is open the load is disconnected; when 
the switch is closed, the load is connected.  
 
 

Electromotive Source 
Seat of emf  

Resistor 
 

Switch 
 

 
 
One can have closed circuits, through which current flows, or open circuits in which there 
are no currents. Usually by accident, wires may touch, causing a short circuit. Most of 
the current flows through the short, very little will flow through the load.  This may burn 
out a piece of electrical equipment such as a transformer. To prevent damage, a fuse or 
circuit breaker is put in series. When there is a short the fuse blows, or the breaker opens. 
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In electrical circuits, a point (or some common lead) is chosen as the ground.  This point 
is assigned an arbitrary voltage, usually zero, and the voltage V at any point in the circuit 
is defined as the potential difference between that point and ground. 
 
7.2 Electromotive Force 
 
Consider an electric circuit shown in Figure 7.2.1(a). To drive the current around the 
circuit, the battery undergoes a discharging process that converts chemical energy into 
electric energy that eventually gets dissipated as heat in the resistor.  
 
In the external circuit, the electrostatic field,   


E , is directed from the positive terminal of 

the battery to the negative terminal of the battery, exerting a force on the charges in the 
wire to produce a current from the positive to the negative terminal. The electrostatic 
field also insures that the current in the wire is uniform. Recall that the electrostatic field 
is a conservative vector field and so the line integral around the loop in Figure 7.2.1(b) is 
zero, 
 

    


E ⋅ds = 0

loop
∫  (7.2.1) 

 

 
 

Figure 7.2.1(a) A simple circuit 
consisting of a battery and a resistor 

 

 
 
Figure 7.2.1(b) Integral of electrostatic 
field is zero around loop. 

 
Inside the battery, in the region close to the positive terminal, the electrostatic field points 
away from the positive terminal. In the region close to the negative terminal, the 
electrostatic field points towards the negative terminal. (In the region in between, the 
electrostatic field may point in either direction depending on the nature of the battery.) 
The current is directed from the negative to the positive terminals. Near both terminals, 
the electrostatic field points in the opposite direction of the current.  
 
In order to maintain the current, there must that be some force that transports charge 
carriers in the opposite direction in which the electrostatic field is trying to move them. 
The origin of this source force,    


Fs , in batteries is a chemical force. In the regions near the 

terminal where chemical reactions are taking place, chemical forces move charge carriers 
in the opposite direction in which the electrostatic field is trying to move them. The work 
done per unit charge by this source force in moving a charge carrier with charge  q  from 
the negative to the positive terminal is given by the expression, 
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
Fs

q
⋅ ds

neg

pos

∫ =

fs ⋅ d
s

neg

pos

∫ , (7.2.2) 

 
where    


fs  is the source force per unit charge. Outside the battery    


fs =

0 , so we extend the 

path in Eq. (7.2.2) to the entire loop. In that case, the work done per unit charge by the 
non-electrostatic force,    


Fs , around a closed path is commonly referred to as the 

electromotive force, or emf  (symbol ε ). 
 

 

   

ε ≡

fs ⋅ d
s

closed
path

∫ =

Fs

q
⋅ ds

−

+

∫ =

fs ⋅ d
s

−

+

∫ . (7.2.3) 

 
This is a poor choice of name because it is not a force but work done per unit charge. The 
SI unit for emf is the volt (V).     
 
Inside our ideal battery without any internal resistance, the sum of the electrostatic force 
and the source force on the charge is zero, 
 
    q


E + q


fs =

0 . (7.2.4) 

 
Therefore the electrostatic field is equal in magnitude to the source force per unit charge 
but opposite in direction, 
    


E = −


fs . (7.2.5) 

 
The electric potential difference between the terminals is defined in terms of the 
electrostatic field 

 
    
V (+) −V (−) = −


E ⋅ ds

−

+

∫ =

fs ⋅ d
s

−

+

∫ = ε . (7.2.6) 

 
The potential difference VΔ  between the positive and the negative terminals of the 
battery is called the terminal voltage, and in this case is equal to the emf . 
  
Electromotive force is not restricted to chemical forces. In Figure 7.2.2, the inner 
working of a Van de Graaff generator are displayed. An electric motor drives a non-
conducting belt that transports charge carriers in a direction opposite the electric field. 
The positive charge carriers are moved from lower to higher potential, and negative 
charge carriers are moved from higher to lower potential. Strong local fields at the 
brushes of the terminals both add and remove charge carriers from the belt. An electric 
motor provides the energy to move the belt and hence is the source of the electromotive 
force. 
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Figure 7.2.2 Van de Graaff generator 

 
Solar cells and thermocouples are also examples of emf source.  They can also be thought 
of as a “charge pump” that moves charges from lower potential to higher potential. 
 
Consider a simple circuit consisting of a battery as the emf source and a resistor of 
resistance R, as shown in Figure 7.2.3.  
 

 
 
Figure 7.2.3(a) Electric potential 
difference for leg 1 and leg 2 sum to 
zero. 
 

 
Figure 7.2.3(b) Circuit diagram. 

The circuit diagram in Figure 7.2.3(b) corresponds to the circuit in Figure 7.2.3(a). The 
electric potential difference around the loop is zero because the electrostatic field is 
conservative, Eq. (7.2.1). We can divide the loop into two legs; leg 1 goes from the 
positive terminal to the negative terminal through the external circuit, and leg 2 goes 
from the negative terminal to the positive terminal through the battery, 
 

 
    
0 = −


E ⋅ ds = 0

loop
∫ = −


E ⋅ ds1

+

−

∫ −

E ⋅ ds2

−

+

∫ , (7.2.7) 

 
The integral via leg 1 in the external circuit is just the potential difference across the 
resistor, which is given by Ohm’s Law, where we have assumed that the wires have 
negligible resistance,  
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ΔV1 = −


E ⋅ ds1

+

−

∫ = − IR . (7.2.8) 

 
The integral via leg 2 through the battery is the emf  (Eq. (7.2.6),  
 

 
    
ΔV2 = −


E ⋅ ds

−

+

∫ = ε . (7.2.9) 

Eq. (7.2.7) becomes 
   0 = ΔV1 + ΔV2 = − IR + ε . (7.2.10) 
 
Therefore the current in the loop is given by 

 I
R
ε= . (7.2.11) 

 
However, a real battery always carries an internal resistance r (Figure 7.2.4a), and the 
potential difference across the battery terminals becomes 
 
 V IrεΔ = − . (7.2.12) 
 
 

  
 
Figure 7.2.4 (a) Circuit with an emf source having an internal resistance r and a resistor 
of resistance R. (b) Change in electric potential around the circuit.  
 
 
Because there is no net change in potential difference around a closed loop, we have 
 
 0Ir IRε − − = . (7.2.13) 
 
Therefore the current through the circuit is 
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 I
R r
ε=
+

. (7.2.14) 

 
Figure 7.2.4(b) depicts the change in electric potential as we traverse the circuit 
clockwise. From the figure, we see that the highest potential is immediately after the 
battery. The potential drops as each resistor is crossed. Note that the potential is 
essentially constant along the wires. This is because the wires have a negligibly small 
resistance compared to the resistors. 
 
7.3 Electrical Energy and Power 
 
Consider a circuit consisting of an ideal battery (zero internal resistance) and a resistor 
with resistance R (Figure 7.3.1). The potential difference between two points a and b be 

  ε =Vb −Va > 0 . If a charge  Δq  is moved through the battery, its electric potential energy 
is increased by  ΔU = Δqε . On the other hand, as the charge moves across the resistor, 
the potential energy is decreased due to collisions with atoms in the resistor. If we neglect 
the internal resistance of the battery and the connecting wires, upon returning to a, the 
change in potential energy of  Δq  is zero. 
 

 
 

Figure 7.3.1 A circuit consisting of an ideal battery with emf ε  and a resistor of 
resistance R. 

 
The rate of energy loss through the resistor is given by 
 

 
 
P = ΔU

Δt
= Δq

Δt
⎛
⎝⎜

⎞
⎠⎟
ε = Iε . (7.3.1) 

 
This is equal to the power supplied by the battery. Using  ε = IR  in Eq. (7.3.1), one may 
rewrite the rate of energy loss through the resistor as  
   P = I 2 R . (7.3.2) 
 
Using   I = ε / R  in Eq. (7.3.1), the power delivered by the battery is 
 
   P = ε 2 / R . (7.3.3) 
 
 



 

 
 

7-10 

 
 

 
Figure 7.3.2 A circuit consisting of a battery with emf ε  and a resistor of resistance R. 

 
For a battery with emf ε  and internal resistance  r  (Figure 7.3.2), the power or the rate at 
which chemical energy is delivered to the circuit is 
 
 2 2( )P I I IR Ir I R I rε= = + = + . (7.3.4) 
 
The power of the source emf is equal to the sum of the power dissipated in both the 
internal and load resistance as required by energy conservation.   
 
 
7.4 Resistors in Series and in Parallel 
 
The two resistors with resistance   R1  and   R2  in Figure 7.4.1 are connected in series to a 
source of emf ε .  By current conservation, the same current,  I , is in each resistor.   
 

  
 

Figure 7.4.1 (a) Resistors in series. (b) Equivalent circuit. 
 
The total voltage drop from a to c across both elements is the sum of the voltage drops 
across the individual resistors: 
 
   ε = ΔV = I R1 + I R2 = I(R1 + R2 ) . (7.4.1) 
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The two resistors in series can be replaced by one equivalent resistor   
Req   (Figure 7.4.1b) 

with the identical voltage drop   
ε = ΔV = I Req  that implies that 

 
   

Req = R1 + R2 . (7.4.2) 
 
The above argument can be extended to N resistors placed in series. The equivalent 
resistance is just the sum of the original resistances,  
 

 eq 1 2
1

N

i
i

R R R R
=

= + + =∑ . (7.4.3) 

 
Notice that if one resistance 

� 

R1 is much larger than the other resistances iR , then the 
equivalent resistance eqR  is approximately equal to the largest resistor 

� 

R1. 
 
Next let’s consider two resistors 

� 

R1 and 

� 

R2 that are connected in parallel across a source 
of emf ε ,  (Figure 7.4.2a).   
 

  
 

Figure 7.4.2 (a) Two resistors in parallel. (b) Equivalent resistance 
 
By current conservation, the current I that passes through the source of emf must divide 
into a current 

� 

I1 that passes through resistor 

� 

R1 and a current 

� 

I2  that passes through 
resistor 

� 

R2.  Each resistor individually satisfies Ohm’s law,   ΔV1 = I1 R1  and   ΔV2 = I2 R2 . 
However, the potential across the resistors are the same,   ΔV1 = ΔV2 = ε . Current 
conservation then implies 

   
  
I = I1 + I2 =

ε
R1

+ ε
R2

= ε 1
R1

+ 1
R2

⎛

⎝⎜
⎞

⎠⎟
 .           (7.4.4) 

 
The two resistors in parallel can be replaced by one equivalent resistor eqR  with   

ε = IReq  
(Figure 7.4.2b). Comparing these results, the equivalent resistance for two resistors that 
are connected in parallel is given by 
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eq 1 2

1 1 1
R R R

= +   .                       (7.4.5) 

 
This result easily generalizes to N resistors connected in parallel 
 

 
1eq 1 2 3

1 1 1 1 1N

i iR R R R R=

= + + + =∑ . (7.4.6)                                       

 
When one resistance 

� 

R1 is much smaller than the other resistances iR , then the equivalent 
resistance eqR  is approximately equal to the smallest resistor 1R .  In the case of two 
resistors, 

1 2 1 2
eq 1

1 2 2

R R R RR R
R R R

= ≈ =
+

. 

 
This means that almost all of the current that enters the node point will pass through the 
branch containing the smallest resistance.  So, when a short develops across a circuit, all 
of the current passes through this path of nearly zero resistance. 
 
 
7.5 Kirchhoff’s Circuit Rules 
 
In analyzing circuits, there are two fundamental (Kirchhoff’s) rules. 
 
Junction Rule   
 
At any point where there is a node formed by the junction of various current carrying 
branches, by current conservation, the sum of the currents into the node must equal the 
sum of the currents out of the node (otherwise charge would build up at the junction); 
 
 in outI I=∑ ∑ . (7.5.1) 
 
As an example, consider Figure 7.5.1 below:  
 

 
 

Figure 7.5.1 Kirchhoff’s junction rule. 
 
According to the junction rule, the three currents are related by 
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 1 2 3I I I= + .  
Loop Rule 
  
The sum of the voltage drops VΔ , across any circuit elements that form a closed circuit 
is zero: 
 

closed loop

0VΔ =∑ . (7.5.2) 

 
The rules for determining VΔ across a resistor and a battery with a designated travel 
direction are shown below: 
 

  

  
 

Figure 7.5.2 Rules for determining potential difference across resistors and batteries. 
 
Note that the choice of travel direction is arbitrary. The same equation is obtained 
whether the closed loop is traversed clockwise or counterclockwise. 
 
Example 7.5.1: Voltage divider  
 
Consider a source of emf   ε =Vin  that is connected in series to two resistors, 

� 

R1 and 

� 

R2 

 
Figure 7.5.3 Voltage divider. 

 

The potential difference, outV , across resistor 

� 

R2 will be less than inV .  This circuit is 
called a voltage divider.  From the loop rule, 
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 in 1 2 0V IR IR− − = . (7.5.3) 
 
Therefore the current in the circuit is given by 
 

 in

1 2

VI
R R

=
+

 (7.5.4) 

 
Thus the potential difference, outV , across resistor 

� 

R2 is given by 
 

 2
out 2 in

1 2

RV IR V
R R

= =
+

. (7.5.5) 

 
Note that the ratio of the potential differences characterizes the voltage divider and is 
determined by the resistors: 

 
  

Vout

Vin

=
R2

R1 + R2

 (7.5.6) 

 
7.6 Voltage-Current Measurements 
 
Any instrument that measures potential difference or current will disturb the circuit under 
observation.  In some devices, known as ammeters, the current in a coil will cause meter 
movement (arising from the torque on a magnetic dipole in an magnetic field, a topic will 
soon study) or some change will result in a digital display. There will be some potential 
difference due to the resistance of the current through the ammeter.  An ideal ammeter 
has zero resistance. However in the case of an ammeter that has resistance of   

� 

1Ω on the 
 250 mA  range. The drop of 0.25 V may or may not be negligible; knowing the meter 
resistance allows one to correct for its effect on the circuit. 
 
An ammeter can be converted to a voltmeter by putting a resistor 

� 

R in series with the coil 
movement.  The potential difference across some circuit element can be determined by 
connecting the coil movement and resistor in parallel with the circuit element.  This 
causes a small amount of current to flow through the coil movement.  The voltage drop 
across the element can now be determined by measuring 

� 

I  and computing the voltage 
drop from 

� 

ΔV = IR  , which is read on a calibrated scale. The larger the resistance 

� 

R, the 
smaller the amount of current is diverted through the coil.  Thus an ideal voltmeter would 
have an infinite resistance.  
 

Resistor Value Chart 
0 Black 4 Yellow 8 Gray 
1 Brown 5 Green 9 White 
2 Red 6 Blue −1 Gold 
3 Orange 7 Violet −2 Silver 
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The colored bands on a composition resistor specify numbers according to the chart 
above (2-7 follow the rainbow spectrum). Starting from the end to which the bands are 
closest, the first two numbers specify the significant figures of the value of the resistor 
and the third number represents a power of ten by which the first two numbers are to be 
multiplied  (gold is 10 –1). The fourth specifies the “tolerance,” or precision, gold being 
5% and silver 10%. As an example, a 43-

� 

Ω (43 ohms) resistor with 5% tolerance is 
represented by yellow, orange, black, and gold. 
 
7.7 Capacitors in Electric Circuits  
 
A capacitor can be charged by connecting the plates to the terminals of a battery, which 
are maintained at a potential difference VΔ , (terminal voltage). 
 

 
 

Figure 7.7.1 Charging a capacitor. 
 
The connection results in sharing the charges between the terminals and the plates. For 
example, the plate that is connected to the positive terminal will acquire some positive 
charge, the plate that is connected to the negative terminal will acquire some negative 
charge. The sharing causes a momentary reduction of charges on the terminals, and a 
decrease in the terminal voltage. Chemical reactions are then triggered to transfer more 
charge from one terminal to the other to compensate for the loss of charge to the 
capacitor plates, and maintain the terminal voltage at its initial level. The battery can thus 
be thought of as a charge pump that brings a charge Q from one plate to the other.  
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7.7.1  Parallel Connection 

   
 

Figure 7.7.2(a) Capacitors connected in parallel. 
 
Suppose we have two capacitors 

� 

C1  with charge Q1 and 

� 

C2  with charge 

� 

Q2  that are 
connected in parallel, as shown in Figure 7.7.2(a). The left plates of both capacitors C1 
and C2 are connected to the positive terminal of the battery and have the same electric 
potential as the positive terminal. Similarly, both right plates are negatively charged and 
have the same potential as the negative terminal. Thus, the potential difference | |VΔ  is 
the same across each capacitor. This gives 
 

 
  
C1 =

Q1

| ΔV |
, C2 =

Q2

| ΔV |
. (7.7.1) 

 
 

   
 

Figure 7.7.3(b) Capacitors in parallel and an equivalent capacitor. 
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These two capacitors can be replaced by a single equivalent capacitor eqC  with a total 
charge Q  supplied by the battery (Figure 7.7.2(b)). However, since Q is shared by the two 
capacitors, we must have 
 
 ( )1 2 1 2 1 2| | | | | |Q Q Q C V C V C C V= + = Δ + Δ = + Δ . (7.7.2) 
 
The equivalent capacitance is given by 
 

 eq 1 2| |
QC C C
V

= = +
Δ

. (7.7.3) 

 
Thus, capacitors that are connected in parallel add.  The generalization to any number of 
capacitors is 
 

 eq 1 2 3
1

(parallel)
N

N i
i

C C C C C C
=

= + + + + =∑ . (7.7.4) 

 

7.7.2 Series Connection 

 
 

Figure 7.7.3(a) Capacitors in series and an equivalent capacitor. 
 
Suppose two initially uncharged capacitors 

� 

C1 and 

� 

C2  are connected in series, as shown 
in Figure 7.7.3(a).  A potential difference | |VΔ  is then applied across both capacitors.  
The left plate of capacitor 1 is connected to the positive terminal of the battery and 
becomes positively charged with a charge +Q, while the right plate of capacitor 2 is 
connected to the negative terminal and becomes negatively charged with charge –Q as 
electrons flow in. What about the inner plates? They were initially uncharged; now the 
outside plates each attract an equal and opposite charge. So the right plate of capacitor 1 
will acquire a charge –Q and the left plate of capacitor +Q. 
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Figure 7.7.3(b) Capacitors in series and an equivalent capacitor. 
 

The potential differences across capacitors 

� 

C1 and 

� 

C2  are 
 

 1 2
1 2

  Q Q| V | , | V |
C C

Δ = Δ = . (7.7.5) 

 
respectively. From Figure 7.7.3(b), the total potential difference is the sum of the two 
individual potential differences: 
 
 1 2  | V | | V | | V |Δ = Δ + Δ . (7.7.6) 
 
In fact, the potential difference across any number of capacitors in series connection is 
equal to the sum of potential differences across the individual capacitors. These two 
capacitors can be replaced by a single equivalent capacitor eq / | |C Q V= Δ . Using the fact 
that the potentials add in series, 
 

eq 1 2

Q Q Q
C C C

= + . 

 
and so the equivalent capacitance for two capacitors in series becomes 
 

 
eq 1 2

1 1 1
C C C

= + . (7.7.7)    

 
The generalization to any number of capacitors connected in series is 
 

 ( )
1eq 1 2

1 1 1 1 1 series
N

iN iC C C C C=

= + + + =∑ . (7.7.8) 
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Example 7.7.1: Equivalent Capacitance 
 
Find the equivalent capacitance for the combination of capacitors shown in Figure 7.7.4(a) 
 

 
 

Figure 7.7.4 (a) Capacitors connected in series and in parallel 
 
Solution:  Because C1 and C2 are connected in parallel, their equivalent capacitance C12 
is given by  
 12 1 2C C C= + . 

  

  
 

ε Figure 7.7.4 (b) and (c) Equivalent circuits. 
 

Now capacitor C12 is in series with C3, as seen from Figure 7.7.4(b). So, the equivalent 
capacitance C123 is given by 

123 12 3

1 1 1
C C C

= + , 

or 

 
( )1 2 312 3

123
12 3 1 2 3

C C CC CC
C C C C C

+
= =

+ + +
. 

 
We also comment that the configuration is equivalent to two capacitors connected in 
series, as shown in Figure 7.7.4(a). 
 
Example 7.7.2: Capacitance with Dielectrics 
 
A non-conducting slab of thickness t, area A and dielectric constant eκ  is inserted into the 
space between the plates of a parallel-plate capacitor with spacing d, charge Q and area A, 
as shown in Figure 7.7.5(a). The slab is not necessarily halfway between the capacitor 
plates. What is the capacitance of the system? 
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    (a)      (b) 

       
Figure 7.7.5 (a) Capacitor with a dielectric. (b) Electric field between the plates. 

 

 
Figure 7.7.6 Equivalent configuration. 

 
Using Eq. ((7.7.7)) for capacitors connected in series and Eq. 5.4.19 for the capacitance 
of a parallel plate capacitor with a dielectric, we have that 
 

 
  

1
Ceq

= 1
C1

+ 1
C2

= d − t
ε0 A

+ t
κ eε0 A

. (7.7.9) 

 
Therefore the equivalent capacitance is 

 
  
Ceq =

(ε0 A)(κ eε0 A)
(d − t)κ eε0 A+ tε0 A

. (7.7.10) 

 
7.8 RC Circuit  
 
We now consider capacitive circuits with a steady source of emf in which the current will 
vary in time. 
 
7.8.1 Charging a Capacitor 
 
Consider the circuit shown below. The capacitor is connected to a steady source of emf ε  
that does not vary in time. At time 

� 

t = 0 , the switch 

� 

S  is closed. The capacitor initially is 
uncharged, ( 0) 0q t = = . In particular for 0t < , there is no potential difference across the 
capacitor. 
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Figure 7.8.1 (a) RC circuit diagram for t < 0. (b) Circuit diagram for t > 0. 
 
At 0t = , the switch is closed and current begins to flow according to  
 

 0I R
ε= . (7.8.1). 

 
At this instant, the potential difference from the battery terminals is the same as that 
across the resistor. This initiates the charging of the capacitor. As the capacitor starts to 
charge, the potential difference across the capacitor increases in time 
 

 ( )( )C
q tV t
C

= . (7.8.2) 

 

  
 

Figure 7.8.2 Rules for determining potential difference across capacitors. 
 
We now use the loop rule that the sum of the potential differences around a closed loop is 
zero. We traverse the loop in the clockwise direction, and according the rules shown in 
Figure 7.8.2 for capacitors,   ΔVC = −q / C . Therefore the loop rule becomes  
 
   0 = ε − I(t) R − q / C . (7.8.3) 
 
The charge on the positive plate is increasing due to the addition charge that flows 
towards it,  

 
  
I = +

dq
dt

, (charging) . (7.8.4) 

Therefore Eq. (7.8.3) becomes 
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0 = ε − dq

dt
R − q

C
. (7.8.5) 

 
The current flow in the circuit will continue to decrease because the charge already 
present on the capacitor makes it harder to put more charge on the capacitor. Once the 
charge on the capacitor plates reaches its maximum value Q, the current in the circuit will 
drop to zero. This is evident by rewriting the loop law as 
 
   I(t) R = ε − ΔVC (t) . (7.8.6). 
 
Thus, the charging capacitor satisfies a first order differential equation that relates the rate 
of change of charge to the charge on the capacitor according to 
 

 1dq q
dt R C

ε⎛ ⎞= −⎜ ⎟⎝ ⎠
. (7.8.7) 

 
This equation can be solved by the method of separation of variables. The first step is to 
separate terms involving charge and time, (this means putting terms involving dq and q 
on one side of the equality sign and terms involving 

� 

dt  on the other side), 
 

 1 1      dq dqdt dt
q R C RC
C

q εε
= ⇒ = −

⎛ ⎞−⎜ ⎟⎝ ⎠
−

. (7.8.8). 

 
Now we can integrate both sides of the above equation, 
 

 
  

d ′q
′q −Cε0

q

∫ = − 1
RC

d ′t
0

t

∫ . (7.8.9) 

which yields  

 ln q C t
C RC
ε
ε

−⎛ ⎞ = −⎜ ⎟−⎝ ⎠
. (7.8.10) 

 
Exponentiate both sides of Eq. (7.8.10) using the fact that 

� 

exp(ln x) = x  to yield 
 
   q(t) = Cε(1− e− t / R C ) = Q(1− e− t / R C ) , (7.8.11) 
 
where Q Cε=  is the maximum amount of charge stored on the plates.  The time 
dependence of ( )q t  is plotted in Figure 7.8.3 below: 
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Figure 7.8.3 Plot of charge   q(t)  on capacitor as a function of time during the charging 

process. 
 
Once we know the charge on the capacitor we also can determine the potential difference 
across the capacitor,  

 
  
ΔVC (t) = q(t)

C
= ε(1− e− t / R C ) . (7.8.12) 

 
The graph of potential difference as a function of time has the same form as Figure 7.8.3. 
From the figure, we see that after a sufficiently long time the charge on the capacitor 
approaches the value 
 ( )q t C Qε= ∞ = = . (7.8.13). 
 
At that time, the potential difference across the capacitor is equal to the source emf and 
the charging process effectively ends, 
 

 
  
ΔVC = q(t = ∞)

C
= Q

C
= ε . (7.8.14). 

 
The current that flows in the circuit is equal to the derivative in time of the charge, 
 

 
  
I(t) = dq

dt
= ε

R
⎛
⎝⎜

⎞
⎠⎟

e− t / R C = I0 e− t / R C . (7.8.15). 

 
The coefficient in front of the exponential,   I0 = ε / R , is equal to the initial current that 
flows in the circuit when the switch was closed at 

� 

t = 0 . The graph of current as a 
function of time is shown in Figure 7.8.4. 
 

 

 
Figure 7.8.4 Plot of current   I(t)  as a 
function of time during the charging 
process. 
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Figure 7.8.5 Plot of potential difference 

  ΔVC (t) across capacitor as a function of 
time during the charging process. 

 
The current in the charging circuit decreases exponentially in time,   I(t) = I0 e− t / R C .  This 

function is often written as   I(t) = I0 e− t /τ  where 

� 

τ = RC  is called the time constant.  The 
SI units of 

� 

τ  are seconds, as can be seen from the dimensional analysis: 
 

[Ù][F]=([V] [A])([C] [V])=[C] [A]=[C] ([C] [s])=[s] . 
 
The time constant 

� 

τ  is a measure of the decay time for the exponential function.  This 
decay rate satisfies the following property, 
 
 1( ) ( )I t I t eτ −+ = , (7.8.16) 
  
which shows that after one time constant 

� 

τ  has elapsed, the current falls off by a factor of 

� 

e−1 = 0.368 , as indicated in Figure 7.8.4. Similarly, the potential difference across the 
capacitor, Figure 7.8.5, can also be expressed in terms of the time constant 

� 

τ , 
 
   ΔVC (t) = ε(1− e− t /τ ) . (7.8.17) 
 
Notice that initially at time 

� 

t = 0 , ΔVC (t = 0) = 0 . After one time constant 

� 

τ  has elapsed, 
the potential difference across the capacitor plates has increased by a factor 

� 

(1−e−1) = 0.632  of its final value, 
 
   ΔVC (τ ) = ε(1− e−1) = 0.632ε . (7.8.18) 
 
7.8.2 Discharging a Capacitor 
 
Suppose initially the capacitor has been charged to some value Q.  For 0t < , the switch is 
open and the potential difference across the capacitor is given by   ΔVC = Q / C . The 
potential difference across the resistor is zero because there is no current through it, 0I = . 
Now suppose at 0t =  the switch is closed (Figure 7.8.6). The capacitor will begin to 
discharge. 
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Figure 7.8.6 Discharging the RC circuit 
 
The charged capacitor is now acting like a voltage source to drive current around the 
circuit, however the force on the charges is due to the electric fields. When the capacitor 
discharges (electrons flow from the negative plate through the wire to the positive plate), 
the potential difference across the capacitor decreases. The capacitor is losing strength as 
a voltage source. Traverse the loop counterclockwise,  applying   ΔVC = +q / C , (Figure 
7.8.2) then the loop rule that describes the discharging process is given by 
 

 0q IR
C
− = . (7.8.19) 

 
The charge on the positive plate is decreasing as charge flows away from the positive 
plate, 

 dqI
dt

= − . (7.8.20) 

 
Thus, charge satisfies a first order differential equation: 
 

 0q dqR
C dt
+ = . (7.8.21). 

 
This equation can also be integrated by the method of separation of variables 
 

 1dq dt
q RC

= − , (7.8.22) 

which yields 

 
0

1         ln
q t

Q

dq q tdt
q RC Q RC
′ ⎛ ⎞′= − ⇒ = −⎜ ⎟′ ⎝ ⎠∫ ∫ . (7.8.23) 

 
After exponentiation,  
   q(t) = Q e− t / RC . (7.8.24) 
 
The potential difference across the capacitor is then 
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ΔVC (t) = q(t)

C
= Q

C
⎛
⎝⎜

⎞
⎠⎟

e− t / RC ; (7.8.25) 

 
A plot of potential difference across the capacitor vs. time for the discharging capacitor is 
shown in Figure 7.8.7. 
 

 
 

Figure 7.8.7 Plot of potential difference 

  ΔVC (t)  across the capacitor as a 
function of time for discharging 
capacitor. 
 

 
Figure 7.8.8 Plot of current   I(t)  as a 
function of time for discharging 
capacitor.

The current also exponentially decays in the circuit as can be seen by differentiating the 
charge on the capacitor 

 
  
I(t) = − dq

dt
= Q

RC
⎛
⎝⎜

⎞
⎠⎟

e− t / RC . (7.8.26) 

 
A plot of the current flowing in the circuit as a function of time also has the same form as 
the potential difference graph depicted in Figure 7.8.8. 
 
 
7.9 Summary 
 

• The equivalent resistance of a set of resistors connected in series: 
 

 eq 1 2 3
1

N

i
i

R R R R R
=

= + + + =∑ .  

 
• The equivalent resistance of a set of resistors connected in parallel: 

 

 
1eq 1 2 3

1 1 1 1 1N

i iR R R R R=

= + + + =∑ .  

 
• Kirchhoff’s rules: 
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(1) The sum of the currents directed into a node (junction of branches) is equal to 
the sum of the currents directed out of the node: 

  
 in outI I=∑ ∑ .  
 

(2) The algebraic sum of the changes in electric potential in a closed-circuit loop 
is zero. 

 
closed loop

0VΔ =∑ . 

 
• Power, or rate at which energy is delivered to the resistor is  

 

 
  
P = IΔV = I 2 R =

ΔV( )2

R
. 

 
• Power, or rate at which energy is delivered from source of emf  

   
  P = Iε . 
 

• The equivalent capacitance of capacitors connected in parallel and in series are 
 
 eq 1 2 3    (parallel)C C C C= + + + ,  
 

eq 1 2 3

1 1 1 1   (series)
C C C C

= + + + . 

 
• In a charging capacitor, the charge and the current as a function of time are 

  

  
q(t) = Q(1− e− t / RC ),       I(t) = ε

R
e− t / RC . 

  
• In a discharging capacitor, the charge and the current as a function of time are 
 

 
  
q(t) = Q e− t / RC ,     I(t) = Q

RC
e− t / RC .   

 
 
7.10 Problem-Solving Strategy: Applying Kirchhoff’s Rules 
 
In this chapter we have seen how Kirchhoff’s rules can be used to analyze multi-loop 
circuits. The steps are summarized below: 
 
(1) Draw a circuit diagram, and label all the quantities, both known and unknown. The 
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number of unknown quantities is equal to the number of linearly independent 
equations we must look for. 

 
(2) Assign a direction to the current in each branch of the circuit. (If the actual direction 

is opposite to what you have assumed, your result at the end will be a negative 
number.) Let  B  equal to the number of branches. 

 
(3) If there are  M  junctions, apply the junction rule to   M −1  junctions. Applying the 

junction rule to the last junction will not yield a new independent relationship among 
the currents. 

 
(4) If there are  N  loops, apply the loop rule to   N −1 loops. Applying the loop rule to the 

last loop will not yield a new independent relationship among the loop equations. 
 
Then 
   B = ( M −1)+ (N −1)  (7.10.1) 
 
For example, if there are three branches with three unknown currents than there must be 
two junctions and three loops. Therefore we must write down one junction equation and 
two loop equations to total three linearly independent equations in order to have a unique 
solution.  
 
Traverse the loops using the convention below for electric potential difference VΔ  across 
each circuit element: 

 

resistor 

  

emf 
source 

  

capacitor 

  
 

The same equation is obtained whether the closed loop is traversed clockwise or 
counterclockwise.  
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(5) Solve the simultaneous equations to obtain the solutions for the unknown quantities. 
 
As an example of illustrating how the above procedures are executed, let’s analyze the 
circuit shown in Figure 7.10.1. 
 

 
 

Figure 7.10.1 A multi-loop circuit. 
 
Suppose the emf sources 1ε  and 2ε , and the resistances 1R , 2R and 3R  are all given, and 
we would like to find the currents through each resistor, using the methodology outlined 
above. 
 
(1) The unknown quantities are the three currents 1I , 2I  and 3I , associated with the three 
resistors. Therefore, to solve the system, we must look for three independent equations.  
 
(2) The directions for the three currents are arbitrarily assigned, as indicated in Figure 
7.10.2.  

      
 

Figure 7.10.2 
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(3) Applying Kirchhoff’s junction rule to node b yields 
 
 1 2 3I I I+ = ,  
 
because 1I and 2I  are leaving the node while 3I  is entering the node. The same equation 
is obtained if we consider node c. 
 
(4) The other two equations can be obtained by using the loop rule, which states that the 
sum of the potential difference across all elements in a closed circuit loop is zero. 
Traversing the first loop befcb in the clockwise direction yields 
 
 2 2 1 1 1 2 0I R I Rε ε− − + − = .  
 
Similarly, traversing the second loop abcda clockwise gives 
 
 2 1 1 3 3 0I R I Rε − − = .  
  
Note however, that one may also consider the big loop abefcda. This leads to 
 
 2 2 1 3 3 0I R I Rε− − − = .  
 
However, the equation is not linearly independent of the other two loop equations since it 
is simply the sum of those equations.  
 
(5) The solutions to the above three equations are given by, after tedious but 
straightforward algebra, 
 

 

  

I1 =
ε1R3 + ε2 R3 + ε2 R2

R1R2 + R1R3 + R2 R3

,

I2 = −
ε1R1 + ε1R3 + ε2 R3

R1R2 + R1R3 + R2 R3

,

I3 =
ε2 R2 − ε1R1

R1R2 + R1R3 + R2 R3

.

  

 
Note that I2 is a negative quantity. This simply indicates that the direction of I2 is 
opposite of what we have initially assumed. 
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7.11 Solved Problems 
 
7.11.1 Equivalent Resistance 
 
Consider the circuit shown in Figure 7.11.1. For a given resistance 0R , what must be the 
value of 1R  so that the equivalent resistance between the terminals is equal to 0R ? 
 

 
 

Figure 7.11.1 Resistor network 
 
Solution: We first add resistances   ′R = R0 + R1  because those resistors are in series to 
obtain our first equivalent network (Figure 7.11.2(a).)  
 

         
       (a)              (b) 

 
Figure 7.11.2 (a) and (b) Equivalent networks 

 
Because the two resistors in the equivalent network are in parallel the inverse of the 
equivalent resistance,  ′′R , is obtaining by adding the resistances inversely,  
 

 
  

1
′′R
=

1
R1

+
1
′R
=

1
R1

+
1

R0 + R1

=
R0 + 2R1

R1(R0 + R1)
.  

 
Therefore after some algebra,  

 
  
′′R =

R1(R0 + R1)
R0 + 2R1

.  

 
The second equivalent network is shown in Figure 7.11.2(b). Because the new equivalent 
resistor with resistance  ′′R  is in series with the fourth resistor with resistance R1, the 
equivalent resistance of the entire configuration becomes  
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Req = R1 + ′′R = R1 +

R1(R0 + R1)
R0 + 2R1

=
3R1

2 + 2R1R0

R0 + 2R1

.  

If eq 0R R= , then 

 
  
R0 (R0 + 2R1) = 3R1

2 + 2R1R0 ⇒ R0
2 = 3R1

2 ⇒ R1 =
R0

3
.   

 
7.11.2 Variable Resistance 
 
Show that, if a battery of fixed emf ε  and internal resistance r  is connected to a variable 
external resistance R , the maximum power is delivered to the external resistor when 
R r= . 

 
Solution: Using Kirchhoff’s rule, 
 
   ε = I(R + r) ,  
which implies 

 I
R r
ε=
+

.  

 
The power dissipated in the resistor is equal to 
 

 
  
P = I 2 R =

ε 2

(R + r)2 R .  

 
To find the value of R  which gives out the maximum power, we differentiate P  with 
respect to R  and set the derivative equal to 0, 
 

 
  

dP
dR

= ε 2 1
(R + r)2 −

2R
(R + r)2

⎡

⎣
⎢

⎤

⎦
⎥ = ε 2 r − R

(R + r)3 = 0 ,  

 
which implies 
  R = r . 
 
This is an example of “impedance matching,” in which the variable resistance R is 
adjusted so that the power delivered to it is maximized. The behavior of P as a function 
of R is depicted in Figure 7.11.2. 
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Figure 7.11.2 Plot of power dissipated   P(R) as a function of  R . 
 
7.11.3 RC Circuit 
 
In the circuit in Figure 7.11.3, suppose the switch has been open for a very long time. At 
time 0t = , it is suddenly closed. 
 

               
Figure 7.11.3 

 
(a) What is the time constant before the switch is closed? 
 
(b) What is the time constant after the switch is closed? 
 
(c) Find the current through the switch as a function of time after the switch is closed.  
 
 
Solutions: (a) Before the switch is closed, the two resistors with resistances   R1  and   R2  
are in series with the capacitor. Since the equivalent resistance is   

Req = R1 + R2 , the time 
constant is given by 
   

τ = ReqC = (R1 + R2 )C .  
 
The amount of charge stored in the capacitor is  
 
   q(t) = Cε(1− e− t /τ ) .  
 
(b) After the switch is closed, the closed loop on the right becomes a decaying RC circuit 
with time constant 2R Cτ ′ = . Charge begins to decay according to  
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   ′q (t) = Cεe− t / ′τ .  
 
(c) The current passing through the switch consists of two sources: the steady current I1 
from the left circuit, and the decaying current 2I  from the RC circuit. The currents are 
given by 

 

  

I1 =
ε
R1

′I (t) = d ′q
dt

= −
Cε
τ '

e− t / ′τ = −
ε
R2

e− t / R2C .
  

 
The negative sign in ( )I t′  indicates that the direction of flow is opposite of the charging 
process. Thus, since both 1I  and I ′  move downward across the switch, the total current is  
 

 
  
I(t) = I1 + ′I (t) = ε

R1

+
ε
R2

e− t / R2C .  

 
 
7.11.4 Parallel vs. Series Connections 
 
Figure 7.11.4 show two resistors with resistances   R1  and   R2  connected in parallel and in 
series. The battery has emf ε .  
 

 
(a) 

 
(b) 

 
Figure 7.11.4 (a) parallel, (b) series 

 
Suppose   R1  and   R2  are connected in parallel (Figure 7.11.4(a)). 
 
(a) Find the power delivered to each resistor. 
 
(b) Show that the sum of the power used by each resistor is equal to the power supplied 
by the battery. 
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 Suppose   R1  and   R2  are now connected in series. 
 
(c) Find the power delivered to each resistor. 
 
(d) Show that the sum of the power used by each resistor is equal to the power supplied 
by the battery. 
 
(e) Which configuration, parallel or series, uses more power? 
 
Solutions: 
 
(a) When two resistors are connected in parallel, the current through each resistor is  
 

 
  
I1 =

ε
R1

, I2 =
ε
R2

,  

 
and the power delivered to each resistor is given by 
 

 
2 2

2 2
1 1 1 2 2 2

1 2

,P I R P I R
R R
ε ε= = = = .  

 
The results indicate that the smaller the resistance, the greater the amount of power 
delivered. If the loads are the light bulbs, then the one with smaller resistance will be 
brighter since more power is delivered to it.  
 
(b) The total power delivered to the two resistors is  
 

 
2 2 2

1 2
1 2 eq

RP P P
R R R
ε ε ε= + = + = ,  

where  

 1 2
eq

eq 1 2 1 2

1 1 1 R RR
R R R R R

= + ⇒ =
+

  

 
is the equivalent resistance of the circuit. On the other hand, the total power supplied by 
the battery is P Iε ε= , where 1 2I I I= + , as seen from Figure 7.11.4(a). Thus, 
 

 
2 2 2

1 2
1 2 1 2 eq

RP I I P
R R R R Rε
ε ε ε ε εε ε ε ε

⎛ ⎞ ⎛ ⎞
= + = + = + = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,  

 
as required by energy conservation. 
 
(c) When the two resistors are connected in series (Figure 7.11.4(b)), the equivalent 
resistance becomes  
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 eq 1 2R R R′ = + ,  
 
and the currents through the resistors are  
 

 1 2
1 2

I I I
R R

ε= = =
+

.  

 
Therefore, the power delivered to each resistor is 
 

 
2 2

2 2
1 1 1 1 2 2 2 2

1 2 1 2

,P I R R P I R R
R R R R

ε ε⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

.  

 
Contrary to what we have seen in the parallel case, when connected in series, the greater 
the resistance, the greater the fraction of the power delivered. Once again, if the loads are 
light bulbs, the one with greater resistance will be brighter.  
 
(d) The total power delivered to the resistors is  
 

 
2 2 2 2

1 2 1 2
1 2 1 2 1 2 eq

RP P P R R
R R R R R R R

ε ε ε ε⎛ ⎞ ⎛ ⎞′ = + = + = =⎜ ⎟ ⎜ ⎟ ′+ + +⎝ ⎠ ⎝ ⎠
.  

 
On the other hand, the power supplied by the battery is  
 

 
2 2

1 2 1 2 eq

P I
R R R R Rε

ε ε εε ε
⎛ ⎞′ = = = =⎜ ⎟ ′+ +⎝ ⎠

.  

 
Again, we see that ' 'RP Pε = , as required by energy conservation. 
 
(e) Comparing the results obtained in (b) and (d), we see that  
 

 
2 2 2

1 2 1 2

P P
R R R Rε ε
ε ε ε ′= + > =

+
,  

 
which means that the parallel connection uses more power. The equivalent resistance of 
two resistors connected in parallel is always smaller than that connected in series.  
 
 
7.11.5 Resistor Network 
 
Consider a cube that has identical resistors with resistance R along each edge, as shown 
in Figure 7.11.5. 
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Figure 7.11.5 Resistor network 
 
Find the equivalent resistance between points a and b . 
  
Solution: From symmetry arguments, the current which enters a must split evenly, with 
/ 3I  going to each branch. At the next junction, say c, / 3I  must further split evenly with 
/ 6I  going through the two paths ce and cd. The current going through the resistor in db 

is the sum of the currents from fd and cd , therefore 
 

/ 6 / 6 / 3I I I+ = . 
 
Thus, the potential difference between a and b can be obtained as 
 

 5
3 6 3 6ab ac cd db
I I IV V V V R R R IR= + + = + + = .  

 
Hence the equivalent resistance is  

 eq
5
6

R R= .  

7.11.6 Equivalent Capacitance 
 
Consider the configuration shown in Figure 7.11.6. Find the equivalent capacitance, 
assuming that all the capacitors have the same capacitance C. 

 
 

Figure 7.11.6 Combination of Capacitors  
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Solution: For capacitors that are connected in series, the equivalent capacitance is  
 

 
eq 1 2

1 1 1 1       (series)
i iC C C C

= + + =∑ .  

  
On the other hand, for capacitors that are connected in parallel, the equivalent 
capacitance is 
 eq 1 2          (parallel)i

i
C C C C= + + =∑ .  

 
Using the above formula for series connection, the equivalent configuration is shown in 
Figure 7.11.7. 

 
 

Figure 7.11.7 
 
Now we have three capacitors connected in parallel. The equivalent capacitance is given 
by 

 eq
1 1 111
2 3 6

C C C⎛ ⎞= + + =⎜ ⎟⎝ ⎠
.  

 
7.12 Conceptual Questions 
 
1. Given three resistors of resistances 1R , 2R  and 3R , how should they be connected to (a) 
maximize (b) minimize the equivalent resistance?  
 
2. Why do the headlights on the car become dim when the car is starting? 
 
3. Does the resistor in an RC circuit affect the maximum amount of charge that can be 
stored in a capacitor? Explain.  
 
4. Can one construct a circuit such that the potential difference across the terminals of the 
battery is zero? Explain.  
 
5. Two conductors A and B of the same length and radius are connected across the same 
potential difference. The resistance of conductor A is twice that of B. To which conductor 
is more power delivered? 
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7.13 Additional Problems 
 
7.13.1 Resistive Circuits 
 
Consider two identical batteries of emf ε  and internal resistance  r . They may be 
connected in series or in parallel and are used to establish a current in resistance  R  as 
shown in Figure 7.13.1. 

 

 
(a)  

(b) 
 

Figure 7.13.1 Two batteries connected in (a) series, and (b) parallel. 
 
(a) Derive an expression for the current in  R  for the series connection shown in Figure 
7.13.1(a). Be sure to indicate the current on the sketch (to establish a sign convention for 
the direction) and apply Kirchhoff's loop rule.  

 
(b) Find the current for the parallel connection shown in Figure 7.13.1(b).  

 
(c) For what relative values of  r  and  R  would the currents in the two configurations be 
the same; be larger in Figure 7.13.1(a); be larger in 7.13.1(b)? 
 
 
7.13.2 Multi-loop Circuit 
 
Consider the circuit shown in Figure 7.13.2. Neglecting the internal resistance of the 
batteries, calculate the currents through each of the three resistors. 
 

 
Figure 7.13.2 
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7.13.3 Power Delivered to the Resistors 
 
Consider the circuit shown in Figure 7.13.3. Find the power delivered to each resistor. 
 

  
Figure 7.13.3 

 
7.13.4 Resistor Network 
 
Consider an infinite network of resistors of resistances 0R  and 1R  shown in Figure 7.13.4. 
Show that the equivalent resistance of this network is  
 
 2

eq 1 1 1 02R R R R R= + + . 
 

 
Figure 7.13.4 

 
7.13.5 RC Circuit 
 
Consider the circuit shown in Figure 7.13.5. Let 40 Vε = , 1 8.0 R = Ω , 2 6.0 R = Ω , 

3 4.0 R = Ω  and   C = 4.0 µF . The capacitor is initially uncharged.  

     
 

Figure 7.13.5 
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At 0t = , the switch is closed. 
 
(a) Find the current through each resistor immediately after the switch is closed. 
 
(b) Find the final charge on the capacitor. 
 
 
7.13.6 Resistors in Series and Parallel 
 
A circuit containing five resistors and a 12 V battery is shown in Figure 7.13.6.  Find the 
potential drop across the 5Ω  resistor.  [Ans. 7.5 V]. 
 

             
 

Figure 7.13.6 
 

7.13.7 Capacitors in Series and in Parallel 
 
A 12-Volt battery charges the four capacitors shown in Figure 7.13.7.  
 

    
 

Figure 7.13.7 
 
Let C1 = 1 µF, C2 = 2 µF, C3 = 3 µF, and C4 = 4 µF.  
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(a) What is the equivalent capacitance of the group C1 and C2 if switch S is open (as 
shown)?  
 
(b) What is the charge on each of the four capacitors if switch S is open?  
 
(c) What is the charge on each of the four capacitors if switch S is closed?  
 
 
7.13.8 Power Loss and Ohm’s Law 
 
A 1500 W radiant heater is constructed to operate at 115 V.  

(a) What will be the current in the heater? [Ans. ~10 A] 
 
(b) What is the resistance of the heating coil? [Ans. ~10 Ω]  
 
(c) How many kilocalories are generated in one hour by the heater? (1 Calorie = 4.18 J)  
 
7.13.9 Power, Current, and Potential difference 
 
A 100-W light bulb is plugged into a standard 120-V outlet.  (a) How much does it cost 
per month (31 days) to leave the light turned on?  Assume electricity costs 6 cents per 
 kW ⋅ h.  (b) What is the resistance of the bulb?  (c) What is the current in the bulb?  [Ans.  
(a) $4.46; (b) 144 Ω; (c) 0.833 A]. 
 


