```
Part 1:
```

1a)- True. b)- False. Basically the Phillips curve vanished after 1970. It is not stable, because it is a function of expected price level. c)- True. While aggregate supply relation always reflects the reality. d)- True. e)- False. Before 1970, when $\pi^e = 0$, then if $\pi = 0 \rightarrow u = u_n$. f)- True.

3-

a)- $\pi=0 \rightarrow u=u_n \rightarrow u_n = 0.1/2=5\%$ b)- $\pi_t = 0.1 - 2 u_t \rightarrow \pi_t = 0.1 - 2 u_t = 0.1 - 2 *3\% = 4\%, \quad \pi_{t+1} = \pi_{t+2} = \pi_{t+10} = \pi_{t+15} = 4\%$

c)- No. Because, $\pi_t^e = 0$, and $\pi_t = 4\%$ forever, which means people are continuously wrong for ever. This does not seem to be reasonable.

d)- Because, finally, people realize that inflation is positive. But there will not change in natural rate of unemployment.

e)- $\pi_{t+1} = \pi_{t+2} = \dots = \pi_{t+4} = 4\%$ Year 5, and on: $\pi_t = \pi_t^e + 0.1 - 2 u_t \Rightarrow \pi_t = \pi_{t-1} + 0.1 - 2 u_t, \ \pi_{t+5} = 4\% + 0.1 - (2 * 3\%) \Rightarrow \pi_{t+5} = 8\%$ By continuous substitution: $\pi_{t+10} = \pi_{t+9} + (0.1 - 2 * 3\%) = \pi_{t+8} + 2*(0.1 - 2 * 3\%) = \dots \Rightarrow$ $\pi_{t+10} = \pi_{t+5} + 5*(0.1 - 2 * 3\%) = 8\% + 5*(0.1 - 2 * 3\%) = 28\%.$ $\pi_{t+15} = \pi_{t+10} + 5*(0.1 - 2 * 3\%) = 28\% + 5*(0.1 - 2 * 3\%) = 48\%.$

f)- There is still and always a 4% difference between expected and actual inflation, which is not reasonable.

5-

a)- $\pi_t = \pi_t^e + 0.1 - 2 u_t \Rightarrow \pi_t = \pi_{t-1} + 0.1 - 2 u_t, \quad \pi_t = 0\% + 0.1 - (2 * 4\%) \Rightarrow \pi_t = 2\%$ $\pi_{t+1} = 2\% + 0.1 - (2 * 4\%) \Rightarrow \pi_{t+1} = 4\% \qquad \pi_{t+2} = 4\% + 0.1 - (2 * 4\%) \Rightarrow \pi_{t+2} = 6\%$ $\pi_{t+3} = 6\% + 0.1 - (2 * 4\%) \Rightarrow \pi_{t+3} = 8\%$

b)- $\pi_t^e = 0.5 * \pi_t + 0.5 * \pi_{t-1}$, and $\pi_t = \pi_t^e + 0.1 - 2 u_t \Rightarrow$ By substitution: $\pi_t = (0.5 * \pi_t + 0.5 * \pi_{t-1}) + 0.1 - 2 u_t$, After simplification, we get the new Phillips curve: $\pi_t = \pi_{t-1} + 0.2 - 4 u_t$,

c)- $\pi_t = \pi_{t-1} + 0.2 - 4 u_t$, $\pi_t = 0\% + 0.2 - (4 * 4\%) \Rightarrow \pi_t = 4\%$ $\pi_{t+1} = 4\% + 0.2 - (4 * 4\%) \Rightarrow \pi_{t+1} = 8\% \qquad \pi_{t+2} = 8\% + 0.2 - (4 * 4\%) \Rightarrow \pi_{t+2} = 12\%$ $\pi_{t+3} = 12\% + 0.2 - (4 * 4\%) \Rightarrow \pi_{t+3} = 16\%$

d)- Indexation leads to higher inflation rate at any level of unemployment.

4-

a)- Because higher price of oil means higher production cost and higher output price at any given level of wage rate. We can characterize this using higher markup.

b)- $\pi^e = \pi \rightarrow u = u_n$. Therefore: $u_n = 0.04 + 0.05 \mu$

→ Before the oil shock: $u_n = 0.04 + 0.05 \times 0.2 = 0.05$. After the oil shock: $u_n = 0.04 + 0.05 \times 0.4 = 0.06$ So, oil shock increases the natural rate of unemployment. Part 2:

1a)- False. Using Okun's law for Canada: $u_t - u_{t-1} = -0.33(g_{vt} - 3.7\%)$, output growth rate must be 3.7% to have constant unemployment rate. b)- True. c)- True. d)- False. The growth rate of the money supply has a crucial role too, $\pi_t = g_{mt} - g_{vt}$. e)- False. $\pi_t = g_{mt} - g_{vt}$, so inflation rate is equal to money growth rate minus output growth rate. g)- True. f)- True. h)- True. 2a)- $u_t - u_{t-1} = -0.33(g_{vt} - 3.7\%) \rightarrow 1\% = -0.33(g_{vt} - 3.7\%) \rightarrow g_{vt} = 0.7\%$. Output growth rate should be large enough to cover the expansion of the labor force, and increase in the labor productivity. b)- We need to decrease unemployment 0.25% a year. So: $-0.25 = -0.33(g_{vt} - 3.7\%) \rightarrow 4.45\%$ a year. c)- Okun's law changes to: $u_t - u_{t-1} = -0.33(g_{vt} - 5.7\%)$ 3)a)-Phillips curve for the US: $\pi_t - \pi_{t-1} = -(u_t - 5\%), \pi_t = \pi_{t-1} \rightarrow u_n = 5\%$ Phillips curve for Canada: $\pi_t - \pi_{t-1} = -0.5 (u_t - 8.6\%), \pi_t = \pi_{t-1} \rightarrow u_n = 8.6\%$ b)- $u_t - u_{t-1} = -0.4(g_{vt} - 3\%), u_t = u_{t-1} \rightarrow g_{vt} = 3\%$ $\pi_t = g_{mt} - g_{vt}, \ 8\% = g_{mt} - 3\% \Rightarrow g_{mt} = 11\%$ c)- $\pi_{t-1} = 8\%$, $u_{t-1} = 5\%$, $g_{vt-1} = 3\%$, $g_{mt-1} = 11\%$ $\pi_{t} = 4\%$ $\pi_t - \pi_{t-1} = -(u_t - 5\%) \rightarrow 4\% - 8\% = -(u_t - 5\%) \rightarrow u_t = 9\%$ $u_t - u_{t-1} = -0.4 (g_{vt} - 3\%) \rightarrow 9\% - 5\% = -0.4 (g_{vt} - 3\%) \rightarrow g_{vt} = -7\%$ $\pi_t = g_{mt} - g_{vt}, \ 4\% = g_{mt} + 7\% \quad \Rightarrow \quad g_{mt} = -3\%$ _____ $\pi_{t+1} = 4\%$ $\pi_{t+1} - \pi_t = -(u_{t+1} - 5\%) \rightarrow 4\% - 4\% = -(u_{t+1} - 5\%) \rightarrow u_{t+1} = 5\%$ $u_{t+1} - u_t = -0.4 (g_{yt+1} - 3\%) \rightarrow 5\% - 9\% = -0.4 (g_{yt+1} - 3\%) \rightarrow g_{yt+1} = 13\%$ $\pi_{t+1} = g_{mt+1} - g_{yt+1}, 4\% = g_{mt+1} - 13\% \Rightarrow g_{mt+1} = 17\%$ $\pi_{t+2} = 4\%$ $\pi_{t+2} - \pi_{t+1} = -(u_{t+2} - 5\%) \rightarrow 4\% - 4\% = -(u_{t+2} - 5\%) \rightarrow u_{t+2} = 5\%$ $u_{t+2} - u_{t+1} = -0.4 (g_{vt+2} - 3\%) \rightarrow 5\% - 5\% = -0.4 (g_{vt+2} - 3\%) \rightarrow g_{vt+2} = 3\%$ $\pi_{t+2} = g_{mt+2} - g_{vt+2}, 4\% = g_{mt+2} - 3\% \Rightarrow g_{mt+2} = 7\%$

4)-
a)-

$$\pi_{t} - \pi_{t-1} = -(u_{t} - 5\%), u_{t} - u_{t-1} = -0.4 (g_{yt} - 3\%), \pi_{t} = g_{mt} - g_{yt}$$

 $\Rightarrow \pi_{t} - \pi_{t-1} = -(u_{t} - 5\%), u_{t} - u_{t-1} = -0.4 (g_{mt} - \pi_{t} - 3\%)$
 $\pi_{t} = 10\%, u_{t-1} = u_{t} = 5\%, g_{yt-1} = 3\%, g_{mt} = 13\%$
b)-
 $\pi_{t+1} - \pi_{t} = -(u_{t+1} - 5\%), u_{t+1} - u_{t} = -0.4 (g_{mt+1} - \pi_{t+1} - 3\%)$
 $\pi_{t+1} - 10\% = -(u_{t+1} - 5\%) \Rightarrow \pi_{t+1} + u_{t+1} = 15\%$
 $u_{t+1} - 5\% = -0.4 (0 - \pi_{t+1} - 3\%) \Rightarrow u_{t+1} - 0.4 \pi_{t+1} = 6.2\% \Rightarrow u_{t+1} = 8.71\%, \pi_{t+1} = 6.29\%$
 $\pi_{t+2} - \pi_{t+1} = -(u_{t+2} - 5\%), u_{t+2} - u_{t+1} = -0.4 (g_{mt+2} - \pi_{t+2} - 3\%)$
 $\pi_{t+2} - 8.71\% = -0.4 (0 - \pi_{t+2} - 3\%) \Rightarrow u_{t+2} - 0.4 \pi_{t+2} = 9.91\% \Rightarrow u_{t+1} = 10.3\%, \pi_{t+2} = 1\%$
 $c) - \pi_{t+1} - \pi_{t} = -(u_{t+1} - 5\%), u_{t+1} - u_{t} = -0.4 (g_{mt+1} - \pi_{t+1} - 3\%)$
In medium run $u_{t+1} = u_{t} \Rightarrow \pi_{t+1} = -3\% \Rightarrow u_{t} = 5\% \Rightarrow g_{yt} = 3\%.$

6- $\pi_t - \pi_{t-1} = -(u_t - 8.6\%) + 0.1\mu \Rightarrow \pi_t - \pi_{t-1} = -(u_t - u_n) \text{ and } u_n = 8.6\% + 0.1\mu$

a)- After the shock, natural rate of unemployment goes up. Therefore, current unemployment would fall below natural rate of unemployment; therefore, inflation starts increasing (see the Phillips Curve form).b)- They should let the unemployment go up, to higher level of natural rate of unemployment.

7a)- $\pi_t = \pi_t^e + K - 2 u_t$, $\pi_t = \pi_t^e$ → Natural rate of unemployment: $u_n = u_t = K/2$

 $\pi_t - \pi_t^e = -2(u_t - K/2) \Rightarrow$ Sacrifice ratio = 1/2. Sacrifice ration does not depend on natural rate of unemployment

b)- $\pi_t - \pi_t^e = -2(u_t - K/2)$, and $\pi_t^e = \pi_{t-1}$ $\pi_t - \pi_{t-1} = -2(u_t - K/2) \rightarrow \pi_t - 12\% = -2*1\% \rightarrow \pi_t = 10\%$ $\pi_{t+1} - \pi_t = -2(u_{t+1} - K/2) \rightarrow \pi_{t+1} - 10\% = -2*1\% \rightarrow \pi_{t+1} = 8\%$

- c)-

So, The authorities need to hold on the policy for 5 year, from t to t+4. Sacrifice ratio= 5 point years of excess unemployment/10 percentage point reduction in inflation rate=0.5 Which is consistent with the sacrifice ratio calculated from Phillips curve in part (a).

d)- $\pi_t - \pi_t^e = -2(u_t - K/2)$, and $\pi_t = \pi_{t-1} \rightarrow \pi_t^e = 0.25 * 2\% + 0.75 * \pi_{t-1} \rightarrow \pi_t^e = 0.5\% + 0.75 * \pi_{t-1}$ $\pi_t - 0.5\% - 0.75 * \pi_{t-1} = -2(u_t - K/2) \rightarrow \pi_t - 0.75 * \pi_{t-1} = -2(u_t - K/2) + 0.5\%$

 $\pi_t - 0.75 * \pi_{t-1} = -2(u_t - K/2) + 0.5\% \Rightarrow \pi_t - 0.75 * 12\% = -2*1\% + 0.5\% \Rightarrow \pi_t = 7.5\%$ $\pi_{t+1} - 0.75 * \pi_t = -2(u_{t+1} - K/2) + 0.5\% \Rightarrow \pi_{t+1} - 0.75 * 7.5\% = -2*1\% + 0.5\% \Rightarrow \pi_{t+1} = 4.125\%$ $\pi_{t+2} - 0.75 * \pi_{t+1} = -2(u_{t+2} - K/2) + 0.5\% \Rightarrow \pi_{t+2} - 0.75 * 4.125\% = -2*1\% + 0.5\% \Rightarrow \pi_{t+2} = 1.594\%$ So, The authorities need to hold on the policy for 3 year, from t to t+2. Sacrifice ratio= 3 point years of excess unemployment/10 percentage point reduction in inflation rate=0.3 Which is less than the sacrifice ratio calculated from Phillips curve in part (a).

e)- At the same time t+1, authorities can return to natural rate of unemployment. $\pi_{t+1} = \pi_{t+1}^{e} = 2\%$, $u_n = u_{t+1} = K/2$

f)- They need to make sure to their policy has the highest credibility.