MA1101-5 Introducción al Álgebra

Profesor: Mauricio Telias Auxiliar: Arturo Merino

Auxiliar 7: Relaciones

4 de mayo del 2017

Recordemos:

- Dados dos conjuntos no-vacíos A y B, diremos que \mathcal{R} es una relación en $A \times B$ si $\mathcal{R} \subseteq A \times B$. Denotaremos $a\mathcal{R}b$ cuando $(a,b) \in \mathcal{R}$. Si A=B simplemente diremos que \mathcal{R} es una relación en A.
- Sea \mathcal{R} un relación en A, diremos que \mathcal{R} es:
 - 1. **Refleja** si y sólo si:

$$(\forall x \in A)(x\mathcal{R}x)$$

2. Simétrica si y sólo si:

$$(\forall x, y \in A)(x\mathcal{R}y \implies y\mathcal{R}x)$$

3. Antisimétrica si y sólo si:

$$(\forall x, y \in A)([x\mathcal{R}y \land y\mathcal{R}x] \implies x = y)$$

4. **Transitiva** si y sólo si:

$$(\forall x, y, z \in A)([x\mathcal{R}y \land y\mathcal{R}z] \implies x\mathcal{R}z)$$

■ Sea \mathcal{R} una relación en A, diremos que \mathcal{R} es un orden en A si es una relación refleja, antisimétrica y transtiva. Si además \mathcal{R} verifica la propiedad:

$$(\forall a, b \in A)(a\mathcal{R}b \vee b\mathcal{R}a)$$

lo llamaremos orden total.

■ Sea \mathcal{R} una relación en A, diremos que \mathcal{R} es una relación de equivalencia si es refleja, simétrica y transitiva.

Sea \mathcal{R} una relación de equivalencia en A. Para todo $a \in A$ definimos la clase de equivalencia de a como:

$$[a]_{\mathcal{R}} = \{x \in A : a\mathcal{R}x\}$$

Y construiremos el conjunto cuociente como:

$$A/\mathcal{R} = \{ X \subseteq A : \exists x \in A, X = [x]_{\mathcal{R}} \}$$

Es decir el conjunto de las clases de equivalencias.

- Sean $x, y \in A$ y \mathcal{R} una relación de equivalencia en A, entonces:
 - 1. $[x]_{\mathcal{R}} \neq \emptyset$.
 - $2. x\mathcal{R}y \iff [x]_{\mathcal{R}} = [y]_{\mathcal{R}}.$
 - 3. $\overline{(x\mathcal{R}y)} \iff [x]_{\mathcal{R}} \cap [y]_{\mathcal{R}} = \emptyset$
- Sea \mathcal{R} una relación de equivalencia, entonces A/\mathcal{R} es una partición de A.
- Si $\mathcal{P} = \{P_i\}_{i \in I}$ una partición de A, entonces \mathcal{R} definida por:

$$x\mathcal{R}y \iff \exists i \in I \text{ tal que } x, y \in P_i$$

es una relación de equivalencia.

• Ejemplos importantes de relaciones:

$$x \equiv_n y \iff \exists k \in \mathbb{Z} \text{ tal que } x - y = kn$$

 $x|y \iff \exists k \in \mathbb{Z} \text{ tal que } y = kx$

■ Teo. de la división Sean $a, m \in \mathbb{Z}$. Existe un único par $q, r \in \mathbb{Z}$ tal que a = qm + r y $0 \le r < |m|$.

P1. [Varios]

- a) Se define la relación \mathcal{R} en $\mathbb{R} \setminus \{0\}$ por $x\mathcal{R}y \Leftrightarrow xy > 0$.
 - (i) Determine si \mathcal{R} es una relación de equivalencia o de orden (podría no ser ninguna de las dos)
 - (ii) Si la relación es de equivalencia, calcule todas las clases de equivalencia. Si es de orden determine si el orden es parcial o total.

b) Sea E un conjunto no vacío y considere $K \in \mathcal{P}(E)$ fijo, con $K \neq \emptyset$. Se define en $\mathcal{P}(E)$ la relación \mathcal{R}_K por:

$$A\mathcal{R}_K B \Leftrightarrow B \cap K \subseteq A$$
.

- (i) Demuestre que \mathcal{R}_K es refleja y transitiva.
- (ii) Demuestre que \mathcal{R}_K es de orden si y sólo si K = E.

P2. [Módulo]

Sea \mathcal{R} la siguiente relación en \mathbb{Z}^2 definida por:

$$(a,b)\mathcal{R}(c,d) \iff a+b \equiv_2 c+3d$$

- a) Demuestre que \mathcal{R} es una relación de equivalencia.
- b) Demuestre que $[(0,0)]_{\mathcal{R}} \cup [(1,0)]_{\mathcal{R}} = \mathbb{Z}^2$, pero que $[(0,0)]_{\mathcal{R}} \cap [(1,0)]_{\mathcal{R}} = \emptyset$.
- c) ¿Cuántos elementos tiene \mathbb{Z}^2/\mathcal{R} ?

P3. [Orden de los divisores]

Sea D_n el conjunto de todos los divisores de n. Definimos la relación | como:

$$a|b\iff a$$
 divide a b

- a) Demuestre que \mid es una relación de orden en D_n .
- b) Demuestre que | es un orden total en D_n si y sólo si $n=p^k$ donde p es un primo y $k \in \mathbb{N}$.

P4. [Fibras]

Sean A y B dos conjuntos no vacíos y $f:A\to B$ una función. Definimos la relación de equivalencia \sim en A como:

$$x \sim y \iff f(x) = f(y)$$

- a) Explique como es el conjunto A/\sim ; Que pasa si f es inyectiva?.
- b) Demuestre que $\tilde{f}: (A/\sim) \to B$ definida por:

$$\tilde{f}([a]) = f(a)$$

esta bien definida (i.e. da lo mismo cual representante de [a] tomar) y es inyectiva.

c) Demuestre que $f^*: A \to (A/\sim)$ como:

$$f^*(x) = [x]$$

es sobreyectiva.

d) Demuestre que $f = \tilde{f} \circ f^*$.

P5. [Relaciones de proposiciones lógicas]

Sobre un conjunto de proposiciones lógicas \mathcal{P} , se define la relación \mathcal{R} por:

$$p\mathcal{R}q \Leftrightarrow ((p \land q) \Leftrightarrow q).$$

Además, para $p, q \in \mathcal{P}$ se dice que p = q si y sólo si $p \Leftrightarrow q$.

- a) Demuestre que \mathcal{R} es una relación de orden sobre \mathcal{P} .
- b) Pruebe que \mathcal{R} es una relación de orden total.