
Testing and Debugging
Alexandre Bergel
http://bergel.eu

30/08/2017

Source

 I. Sommerville, Software Engineering, Addison-
Wesley, 9th Edn., 2015.

 www.eclipse.org

2

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

3

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

4

Testing

5

Unit testing: test individual (stand-alone) components

Module testing: test a collection of related components (a
module)

Sub-system
testing: test sub-system interface mismatches

System testing:
(i) test interactions between sub-systems, and
(ii) test that the complete systems fulfils
functional and non-functional requirements

Acceptance
testing (alpha/beta

testing):
test system with real rather than simulated
data.

Testing is always iterative!

Regression testing

 Regression testing means testing that everything that
used to work still works after changes are made to the
system!

 tests must be deterministic and repeatable

 should test “all” functionalities

 every interface (black-box testing)

 all boundary situations

 every feature

 every line of code (white-box testing)

 everything that can conceivably go wrong!
6

Regression testing

 Writing tests costs extra work to define tests up front,
but they more than pay off in debugging &
maintenance!

7

Caveat: Testing and Correctness

8

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

—Edsger Dijkstra, 1970

Testing and Correctness

 This has a number of serious consequences

 xUnit works well for testing your tareas and most
industrial projects

 However, critical software systems (e.g., medical,
nuclear, air industry), software drivers requires
complementary or different techniques

 Validation using Coq, FramaC, Esterel, …

 Mathematical proofs of a software, including theorem, offer
guaranties that unit tests cannot offer

 But such mathematical proofs are much harder to write!

9

StackInterface

 Interfaces let us abstract from concrete implementations:

10

public interface StackInterface {
public boolean isEmpty();
public int size();
public void push(Object item);
public Object top() ;
public void pop();

}

How can clients accept multiple implementations
of an Abstract Data Type?

Make them depend only on an interface or an abstract class.

Interfaces in Java

 Interfaces reduce coupling between objects and their
clients:

 A class can implement multiple interfaces ... but can only extend
one parent class

 Clients should depend on an interface, not an implementation ...
so implementations do not need to extend a specific class

 Define an interface for any concept will have more
than one implementation

 As soon as different classes offer the same contract,
then using interface is necessary

11

Testing a Stack

12

We define a simple regression test that
exercises all StackInterface methods and checks

the boundary situations:
public class LinkStackTest {

protected StackInterface stack;

@Before public void setUp() {
stack = new LinkStack();

}

@Test public void empty() {
assertTrue(stack.isEmpty());
assertEquals(0, stack.size());

}
…

Build simple test cases

13

Construct a test case and check the obvious conditions:

@Test public void oneElement() {
 int size;

stack.push("a");
assertFalse(stack.isEmpty());
assertEquals(1, size = stack.size());
stack.pop();
assertEquals(size -1, stack.size());

}

What other test cases do you need to fully exercise a Stack
implementation?

Check that failures are caught

14

How do we check that an assertion fails when it should?

@Test(expected=AssertionError.class)
public void emptyTopFails() {

stack.top();
}

@Test(expected=AssertionError.class)
public void emptyRemoveFails() {

stack.pop();
}

ArrayStack

15

We can also implement a (variable) Stack using a
(fixed-length) array to store its elements:

public class ArrayStack implements StackInterface {
private Object[] store;
private int capacity;
private int size;

public ArrayStack() {
store = null; // default value
capacity = 0; // available slots
size = 0; // used slots

}

What would be a suitable class invariant for ArrayStack?

Handling overflow

16

Whenever the array runs out of space, the Stack “grows” by
allocating a larger array, and copying elements to the new array.

public void push(Object item)
{

if (size == capacity) {
grow();

}
store[++size] = item; // NB: subtle error!

}

How would you implement the grow() method?

Checking pre-conditions

17

public boolean isEmpty() { return size == 0; }
public int size() { return size; }

public Object top() {
if(this.isEmpty())

throw new AssertionError("Cannot be empty”);
return store[size-1];

}
public void pop() {

if(this.isEmpty())
throw new AssertionError("Cannot be empty”);

size--;
}

NB: we only check pre-conditions in this version!

Checking pre-conditions

18

public boolean isEmpty() { return size == 0; }
public int size() { return size; }

public Object top() {
assert(!this.isEmpty());
return store[size-1];

}
public void pop() {

assert(!this.isEmpty());
size--;

}

Equivalent notation: assert(Boolean) is available only
with the proper compiler parameters

Enabling Assert on Eclipse

19

Adapting the test case

20

We can easily adapt our test case by overriding
the setUp() method in a subclass.

public class ArrayStackTest extends LinkStackTest {
@Before public void setUp() {

stack = new ArrayStack();
}

}

All the test methods defined in
the superclass are inherited

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

21

Testing ArrayStack

22

When we test our ArrayStack, we get a surprise:

java.lang.ArrayIndexOutOfBoundsException: 2
at cc3002.stack.ArrayStack.push(ArrayStack.java:27)
at cc3002.stack.LinkStackTest.twoElement(LinkStackTest.java:46)
at ...

The stack trace tells us exactly where the exception occurred ...

The Run-time Stack

23

The run-time stack is a fundamental data structure used to record
the context of a procedure that will be returned to at a later point in

time.

This context (AKA “stack frame”) stores the arguments to the
procedure and its local variables.

Practically all programming languages
use a run-time stack, in principle

The Run-time Stack

24

public static void main(String args[]) {
System.out.println("fact(3) = " + fact(3));

}
public static int fact(int n) {

if (n<=0) {
 return 1;
 } else {
 return n * fact(n - 1) ;
 }

}

The run-time stack in action ...

25

main …

fact(3)=? n=3; ...

fact(3)=? n=3;fact(2)=? n=2;fact(2) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(1) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? n=0;fact(0) ...

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? n=1;fact(0)=? return 1

fact(3)=? n=3;fact(2)=? n=2;fact(1)=? return 1

fact(3)=? n=3;fact(2)=? return 2

fact(3)=? return 6

fact(3)=6

A stack frame is
pushed with each
procedure call ...

... and popped with
each return.

The Stack and the Heap

26

The Heap grows with
each new Object

created,

and shrinks
when

Objects are
garbage-
collected

Cleaning the heap

 A garbage collector is a form of automatic memory
management

 The basic principles of garbage collection are:
 Find data objects in a program that cannot be accessed in the
future

 Reclaim the resources used by those objects

 Objects that are not referenced anymore are simply
removed from the memory

27

Roadmap

1.Testing — definitions and strategies

2.Understanding the run-time stack and heap

3.Debuggers

28

Debuggers

 A debugger is a tool that allows you to examine the
state of a running program:

 step through the program instruction by instruction

 view the source code of the executing program

 inspect (and modify) values of variables in various formats

 set and unset breakpoints anywhere in your program

 execute up to a specified breakpoint

 examine the state of an aborted program (in a “core file”)

29

Using Debuggers

 Interactive debuggers are available for most mature
programming languages and integrated in IDEs.

 Classical debuggers are line-oriented (e.g., jdb); most
modern ones are graphical.

 When should you use a debugger?

 When you are unsure why (or where) your program is not working

30

Debugging in Eclipse

31

When
unexpected
exceptions
arise, you

can use the
debugger to
inspect the
program
state …

Debugging Strategy: development time

 Develop tests as you program

 Develop unit tests to exercise all paths through your program

 You may apply Design by Contract to decorate classes with
invariants and pre- and post-conditions, using the assert() keyword

 Use assertions (not print statements) to probe the program state

 After every modification, do regression testing!

32

Debugging Strategy: when testing

 If errors arise during the unit tests execution

 Use the test results to track down and fix the bug:

 Test may be obsolete and need to be updated. The bug is
therefore in the tests.

 If the tests are right, the bug is therefore in the application.

 If you can’t tell where the bug is, then use a debugger to identify
the faulty code

 1 - identify and add any missing tests!

 2 - fix the bug

 All software bugs are a matter of false assumptions. If you make
your assumptions explicit, you will find and stamp out your bugs!

33

Debugging Strategy: when running
the application

 If errors arise during the application execution

 You first need to understand what is the running scenario that
caused the bug

 It is essential to be sure we got the problematic scenario. Write a
test that reproduce the scenario

 Run this new test to be sure that it fails

 Fix the bug in the application

 Run the test again to be sure we have fixed the bug

34

Fixing our mistake

35

We erroneously used the incremented size as an index into the
store, instead of the new size of the stack - 1:

public void push(Object item) ... {
if (size == capacity) { grow(); }
store[size++] = item;
assert(this.top() == item);

}

store[this.topIndex()] = item;

1
0

NB: perhaps it would be clearer to write:

item

Wrapping Objects

 Wrapping is a fundamental programming technique
for systems integration.

 What do you do with an object whose interface
doesn’t fit your expectations?

 You wrap it

 What are possible disadvantages of wrapping?

36

client
wrapper

java.util.Stack

37

Java also provides a Stack implementation,
but it is not compatible with our interface:

public class Stack extends Vector {
public Stack();
public Object push(Object item);
public synchronized Object pop();
public synchronized Object peek();
public boolean empty();
public synchronized int search(Object o);

}

If we change our programs to work with the Java Stack,
we won’t be able to work with our own Stack implementations ...

A Wrapped Stack

38

A wrapper class implements a required interface, by delegating
requests to an instance of the wrapped class:

public class SimpleWrappedStack implements StackInterface {
private Stack stack;
public SimpleWrappedStack() { stack = new Stack(); }
public boolean isEmpty() { return stack.empty(); }
public int size() { return stack.size(); }
public void push(Object item) { stack.push(item); }
public Object top() { return stack.peek(); }
public void pop() { stack.pop(); }

}

Stack is a standard Java class, contained
in the package java.util

A contract mismatch

39

But running the test case yields:

java.lang.Exception: Unexpected exception,
expected<java.lang.AssertionError> but
was<java.util.EmptyStackException>

...
Caused by: java.util.EmptyStackException

at java.util.Stack.peek(Stack.java:79)
at cc3002.stack.SimpleWrappedStack.top(SimpleWrappedStack.java:32)
at cc3002.stack.LinkStackTest.emptyTopFails(LinkStackTest.java:28)
...

What went wrong?

Fixing the problem

40

Our tester expects an empty Stack to throw an exception
when it is popped, but java.util.Stack doesn’t do this —

so our wrapper should check its preconditions!

public class WrappedStack implements StackInterface {
public Object top() {

assert(!this.isEmpty());
return super.top();

}
public void pop() {

assert(!this.isEmpty());
super.pop();

}
…

}

What you should know!

 What is a regression test? Why is it important?

 What strategies should you apply to design a test?

 What are the run-time stack and heap?

 How can you adapt client/supplier interfaces that
don’t match?

41

Can you answer these questions?

 Why can’t you use tests to demonstrate absence of
defects?

 How would you implement ArrayStack.grow()?

 Why doesn’t Java allocate objects on the run-time stack?

 What are the advantages and disadvantages of
wrapping?

 What is a suitable class invariant for WrappedStack?

42

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

