
Synergistic Solutions on MultiSets

Jérémy Barbay1, Carlos Ochoa1, and Srinivasa Rao Satti2

1 Departamento de Ciencias de la Computación, Universidad de Chile, Chile
jeremy@barbay.cl, cochoa@dcc.uchile.cl

2 Department of Computer Science and Engineering, Seoul National University,
South Korea ssrao@cse.snu.ac.kr

Abstract
Karp et al. (1988) described Deferred Data Structures for Multisets as “lazy” data structures which
partially sort data to support online rank and select queries, with the minimum amount of work
in the worst case over instances of size n and number of queries q fixed. Barbay et al. (2016)
refined this approach to take advantage of the gaps between the positions hit by the queries (i.e., the
structure in the queries). We develop new techniques in order to further refine this approach and
take advantage all at once of the structure (i.e., the multiplicities of the elements), some notions of
local order (i.e., the number and sizes of runs) and global order (i.e., the number and positions of
existing pivots) in the input; and of the structure and order in the sequence of queries. Our main
result is a synergistic deferred data structure which outperforms all solutions in the comparison
model that take advantage of only a subset of these features. As intermediate results, we describe
two new synergistic sorting algorithms, which take advantage of some notions of structure and order
(local and global) in the input, improving upon previous results which take advantage only of the
structure (Munro and Spira 1979) or of the local order (Takaoka 1997) in the input; and one new
multiselection algorithm which takes advantage of not only the order and structure in the input, but
also of the structure in the queries.

1998 ACM Subject Classification E.1 Data Structures (Arrays); F.2.2 Nonnumerical Algorithms
and Problems (Sorting and searching); H.3.3 Information Search and Retrieval (Search and Selection
process).

Keywords and phrases Deferred Data Structure, Multivariate Analysis, Quick Sort, Rank, Select.

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.06

1 Introduction

Consider a multiset M of size n. The multiplicity of an element x ofM is the number mx of
occurrences of x inM. We call the distribution of the multiplicities of the elements inM the
input structure. As early as 1976, Munro and Spira [17] described a variant of the algorithm
MergeSort using counters, which optimally takes advantage of the input structure when
sorting a multisetM of n elements. Munro and Spira measure the “difficulty” of the instance
in terms of the “input structure” by the entropy function H(m1, . . . ,mσ) =

∑σ
i=1

mi

n log n
mi

,
where σ is the number of distinct elements inM and m1, . . . ,mσ are the multiplicities of
the σ distinct elements inM (such that

∑σ
i=1mi = n), respectively. The time complexity of

the algorithm is within O(n(1 +H(m1, . . . ,mσ))) ⊆ O(n(1+ log σ)) ⊆ O(n log n).
Any array A representing a multiset lists its element in some order, which we call the

input order and denote by a tuple. Maximal sorted subblocks in A are a local form of input
order and are called runs [14]. As early as 1973, Knuth [14] described a variant of the
algorithm MergeSort using a prepossessing step taking linear time to detect runs in the
array A. Takaoka [18] described a new sorting algorithm that optimally takes advantage of

© Jérémy Barbay, Carlos Ochoa and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 06; pp. 06:1–06:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.06
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

06:2

the distribution of the sizes of the runs in the array A, which yields a time complexity within
O(n(1 +H(r1, . . . , rρ))) ⊆ O(n(1+ log ρ)) ⊆ O(n log n), where ρ is the number of runs in A
and r1, . . . , rρ are the sizes of the ρ runs in A (such that

∑ρ
i=1 ri = n), respectively.

Given an element x of a multisetM and an integer j ∈ [1..n], the rank rank(x) of x is the
number of elements smaller than x inM, and selecting the j-th element inM corresponds
to computing the value select(j) of the j-th smallest element (counted with multiplicity) in
M. Those operations are central to the navigation of the Burrows-Wheeler transform [15] of
a text when searching for occurrences of a pattern in it. As early as 1961, Hoare [10] showed
how to support rank and select queries in average linear time, a result later improved
to worst case linear time by Blum et al. [5]. Twenty years later, Dobkin and Munro [8]
described a MultiSelection algorithm that supports several select queries and whose
running time is optimal in the worst case over all multisets of size n and all sets of q queries
hitting positions in the multisets separated by gaps (differences between consecutive select
queries in sorted order) of sizes g0, . . . , gq. Karp et al. [13] further extended Dobkin and
Munro’s result [8] to the online context, where the multiple rank and select queries arrive
one by one. They called their solution a Deferred Data Structure and describe it as
“lazy”, as it partially sorts data, performing the minimum amount of work necessary in the
worst case over all instances for a fixed n and q. Barbay et al. [2] refined this result by taking
advantage of the gaps between the positions hit by the queries (i.e., the query structure).
This suggests the following questions:

1. Is there a sorting algorithm for multisets which takes the best advantage of
both its input order and its input structure in a synergistic way, so that it
performs as good as previously known solutions on all instances, and much
better on instances where it can take advantage of both at the same time?

2. Is there a multiselection algorithm and a deferred data structure for answer-
ing rank and select queries which takes the best advantage not only of both
of those notions of easiness in the input, but also of notions of easiness in the
queries, such as the query structure and the query order?

We answer both questions affirmatively: In the context of Sorting, this improves
upon both algorithms from Munro and Spira [17] and Takaoka [18]. In the context of
MultiSelection and Deferred Data Structure for rank and select on Multisets,
this improves upon Barbay et al.’s results [2] by adding three new measures of difficulty
(input order, input structure and query order) to the single one previously considered (query
structure). Additionally, we correct the analysis of the Sorted Set Union algorithm by
Demaine et al. [7] (Section 2.2), and we define a simple yet new notion of “global” input
order (Section 2.4), not mentioned in previous surveys [9, 16] nor extensions [3].

We present our results incrementally, each building on the previous one, such that the
most complete and complex result is in Section 4. In Section 2 we describe how
to measure the interaction of the order (local and global) with the structure in the input,
and two new synergistic Sorting algorithms based on distinct paradigms (i.e., merging vs
splitting) which take advantage of both the input order and structure. We refine the second
of those results in Section 3 with the analysis of a MultiSelection algorithm which takes
advantage of not only the order and structure in the input, but also of the query structure, in
the offline setting. In Section 4 we analyze an online Deferred Data Structure taking
advantage of the order and structure in the input on one hand, and of the order and structure
in the queries on the other hand. We conclude with a discussion of our results in Section 5.

J. Barbay, C. Ochoa and S. R. Satti 06:3

2 Sorting Algorithms

We review in Section 2.1 the algorithms MergeSort with Counters described by Munro
and Spira [17] and Minimal MergeSort described by Takaoka [18]: each takes advantage of
distinct features in the input. In Sections 2.2 and 2.3, we describe two synergistic Sorting
algorithms, which outperform both MergeSort with Counters and Minimal MergeSort by
taking advantage of both the order (local and global) and the structure in the input, in a
synergistic way.

2.1 Known Algorithms

The algorithm MergeSort with Counters described by Munro and Spira [17] is an adapta-
tion of the traditional sorting algorithm MergeSort that optimally takes advantage of the
input structure when sorting a multisetM of size n. When two elements of same value v
are found, one is discarded and a counter holding the number of occurrences of v is updated.
Munro and Spira measure the “difficulty” of the instance in terms of the input structure by
the entropy function H(m1, . . . ,mσ) =

∑σ
i=1

mi

n log n
mi

, where σ is the number of distinct
elements inM and m1, . . . ,mσ are the multiplicities of the σ distinct elements inM (such
that

∑σ
i=1mi = n), respectively. The time complexity of the algorithm is then within

O(n(1 +H(m1, . . . ,mσ))) ⊆ O(n(1+ log σ)) ⊆ O(n log n).
The algorithm Minimal MergeSort described by Takaoka [18] optimally takes advantage

of the local input order, as measured by the decomposition into runs when sorting an array
A of size n. The main idea is to detect the runs first and then merge them pairwise. The
runs are detected in linear time. Merging the two shortest runs at each step further reduces
the number of comparisons, making the running time of the merging process adaptive to the
entropy of the sequence formed by the sizes of the runs. If the array A is formed by ρ runs
and r1, . . . , rρ are the sizes of the ρ runs (such that

∑ρ
i=1 ri = n), then the algorithm sorts

A in time within O(n(1 +H(r1, . . . , rρ))) ⊆ O(n(1+ log ρ)) ⊆ O(n log n).
The algorithms MergeSort with Counters and Minimal MergeSort are incomparable,

in the sense that neither one performs always better than the other. Simple modifications
and combinations of these algorithms do not take full advantage of both the local input order
and the input structure (see the extended version [4] for detailed counter examples).

In the following sections we describe two sorting algorithms that take the best advantage
of both the order (local and global) and structure in the input all at once when sorting a
multiset. The first one is a straightforward application of previous results, while the second
one prepares the ground for the MultiSelection algorithm (Section 3) and the Deferred
Data Structures (Section 4), which take advantage of the order (local and global) and
structure in the input and of the order and structure in the queries.

2.2 “Kind-of-new” Sorting Algorithm DLM Sort

In 2000, Demaine et al. [7] described the algorithm DLM Union, an algorithm that computes
the union of ρ sorted sets. The algorithm scans the sets from left to right identifying blocks
of consecutive elements in the sets that are also consecutive in the sorted union (see Figure 1
for a graphical representation of such a decomposition on a particular instance of the Sorted
Set Union problem). In a minor way we refine their analysis as follows:

These blocks induce a partition π of the output into intervals such that any singleton
corresponds to a value that has multiplicity greater than 1 in the input, and each other
interval corresponds to a block as defined above. Each member i of π has a value mi

CPM 2017

06:4

g1 g3

g2

g4

g5

g6
g7

g8

ρ

Figure 1 An instance of the Sorted Set Union problem with ρ = 3 sorted sets. In each set, the
entry A[i] is represented by a point of x-coordinate A[i]. The sizes of the blocks that form the sets
are noted. The sizes g4, g5 and g6 are 1 because they correspond to elements of equal value and they
induce the 4-th member of the partition π with value m4 equals 3. The vertical bars separate the
members of π.

associated with it: if the member i of π is a block, then mi is 1, otherwise, if the member i
of π is a singleton corresponding to a value of multiplicity q, then mi is q. If the instance is
formed by δ blocks of sizes g1, . . . , gδ such that these blocks induce a partition π of size χ
whose members have values m1, . . . ,mχ, we express the time complexity of DLM Union as
within Θ(

∑δ
i=1 log gi +

∑χ
i=1 log

(
ρ
mi

)
). This time complexity is within a constant factor of

the complexity of any other algorithm computing the union of these sorted sets (i.e., the
algorithm is instance optimal).

We adapt the DLM Union algorithm for sorting a multiset. The algorithm DLM Sort
detects the runs first through a linear scan and then applies the algorithm DLM Union. After
that, transforming the output of the union algorithm to yield the sorted multiset takes only
linear time. The following corollary follows from our refined analysis above:

I Corollary 1. Given a multisetM of size n formed by ρ runs and δ blocks of sizes g1, . . . , gδ
such that these blocks induce a partition π of size χ of the output whose members have values
m1, . . . ,mχ, the algorithm DLM Sort performs within n + O(

∑δ
i=1 log gi +

∑χ
i=1 log

(
ρ
mi

)
)

data comparisons. This number of comparisons is optimal in the worst case over multisets
of size n formed by ρ runs and δ blocks of sizes g1, . . . , gδ such that these blocks induce a
partition π of size χ of the output whose members have values m1, . . . ,mχ.

While the algorithm DLM Sort answers the Question 1 from Section 1, it does not yield
a MultiSelection algorithm nor a Deferred Data Structure answering Question 2.
In the following section we describe another sorting algorithm that also optimally takes
advantage of the local order and structure in the input, but which is based on a distinct
paradigm, more suitable to such extensions.

2.3 New Sorting Algorithm Quick Synergy Sort

Given a multisetM, the algorithm Quick Synergy Sort identifies the runs in linear time
through a scanning process. It computes a pivot µ, which is the median of the set formed by
the middle elements of each run, and partitions each run by µ. This partitioning process
takes advantage of the fact that the elements in each run are already sorted. It then recurses
on the elements smaller than µ and on the elements greater than µ. (See Algorithm 1 for a
more formal description).

I Definition 2 (Median of the middles). Given a multisetM formed by runs, the “median of
the middles” is the median element of the set formed by the middle elements of each run.

The number of data comparisons performed by the algorithm Quick Synergy Sort is
asymptotically the same as the number of data comparisons performed by the algorithm DLM

J. Barbay, C. Ochoa and S. R. Satti 06:5

Algorithm 1 Quick Synergy Sort

Input: A multisetM of size n
Output: A sorted sequence ofM
1: Compute the ρ runs of respective sizes (ri)i∈[1..ρ] inM such that

∑ρ
i=1 ri = n;

2: Compute the median µ of the middles of the runs, note j ∈ [1..ρ] the run containing µ;
3: Perform doubling searches for the value µ in all runs except the j-th, starting at both

ends of the runs in parallel;
4: Find the maximum max` (minimum minr) among the elements smaller (resp., greater)

than µ in all runs except the j-th;
5: Perform doubling searches for the values max` and minr in the j-th run, starting at the

position of µ;
6: Recurse on the elements smaller than o equal to max` and on the elements greater than

or equal to minr.

Sort described in the previous section. We divide the proof into two lemmas. We first bound
the number of data comparisons performed by all the doubling searches of the algorithm
Quick Synergy Sort (i.e., steps 3 and 5 of the Algorithm 1).

I Lemma 3. Let g1, . . . , gk be the sizes of the k blocks that form the r-th run. The overall
number of data comparisons performed by the doubling searches of the algorithm Quick
Synergy Sort to find the values of the medians of the middles in the r-th run is within
O(
∑k
i=1 log gi).

Proof. Every time the algorithm finds the insertion rank of one of the medians of the middles
in the r-th run, it partitions the run by a position separating two blocks. The doubling
search steps can be represented as a tree. Each node of the tree corresponds to a step. Each
internal node has two children, which correspond to the two subproblems into which the step
partitions the run. The cost of the step is less than four times the logarithm of the size of
the child subproblem with smaller size, because of the two doubling searches in parallel. The
leaves of the tree correspond to the blocks themselves.

We prove that at each step the total cost is bounded by eight times the sum of the
logarithms of the sizes of the leaf subproblems. This is done by induction over the number
of steps. If the number of steps is zero then there is no cost. For the inductive step, if the
number of steps increases by one, a new doubling search step is done and a leaf subproblem is
partitioned into two new subproblems. At this step, a leaf of the tree is transformed into an
internal node and two new leaves are created. Let a and b such that a ≤ b be the sizes of the
new leaves created. The cost of this step is less than 4 log a. The cost of all the steps then
increases by 4 lg a, and hence the sum of the logarithms of the sizes of the leaves increases by
8(lg a+ lg b)− 8 lg(a+ b). But if a ≥ 4 and b ≥ a, then 2 lg(a+ b) ≤ lg a+ 2 lg b. The result
follows. J

As shown in the following lemma, the overall number of data comparisons performed
during the computation of the medians of the middles (i.e., step 2 of the Algorithm 1) is
within O(

∑χ
i=1 log

(
ρ
mi

)
), where m1, . . . ,mχ are the values of the member of the partition π

(see Section 2.2 for the definition of π) and ρ is the number of runs inM.

I Lemma 4. LetM be a multiset formed by ρ runs and δ blocks such that these blocks induce
a partition π of size χ of the output whose members have values m1, . . . ,mχ. Consider the
steps that compute the medians of the middles and the steps that find the elements max`

CPM 2017

06:6

and minr in the algorithm Quick Synergy Sort, the overall number of data comparisons
performed during these steps is within O(

∑χ
i=1 log

(
ρ
mi

)
).

Proof. We prove this lemma by induction over the size χ of π and the number of runs ρ.
The number of data comparisons performed by one of these steps is linear in the number
of runs in the sub-instance (i.e., ignoring all the empty sets of this sub-instance). Let
T (π, ρ) be the overall number of data comparisons performed during the steps 2 and 4

of the algorithm Quick Synergy Sort. We prove that T (π, ρ) ≤
∑χ
i=1mi log ρ

mi
− ρ. Let

µ be the first median of the middles computed by the algorithm. Let ` and r be the
number of runs that are completely to the left and to the right of µ, respectively. Let
b be the number of runs that are split in the doubling searches for the value of µ in all
runs. Let π` and πr be the partitions induced by the blocks yielded to the left and to the
right of µ, respectively. Then, T (π, ρ) = T (π`, ` + b) + T (πr, r + b) + ρ because of the
two recursive calls and the step that computes µ. By Induction Hypothesis, T (π`, `+ b) ≤∑χ`

i=1mi log `+b
mi
− `− b and T (πr, r+ b) ≤

∑χr

i=1mi log r+b
mi
− r− b. Hence, we need to prove

that ` + r ≤
∑χ`

i=1mi log
(

1 + r
`+b

)
+
∑χr

i=1mi log
(

1 + `
r+b

)
, but this is a consequence of∑χ`

i=1mi ≥ ` + b,
∑χr

i=1mi ≥ r + b (the number of blocks is greater than or equal to the
number of runs); ` ≤ r + b, r ≤ `+ b (at least ρ

2 runs are left to the left and to the right of
µ); and log

(
1 + y

x

)x ≥ y for y ≤ x. J

Consider the step that performs doubling searches for the values max` and minr in the
run that contains the median µ of the middles, this step results in the finding of the block g
that contains µ in at most 4 log |g| data comparisons, where |g| is the size of g. Combining
Lemma 3 and Lemma 4 yields an upper bound on the number of data comparisons performed
by the algorithm Quick Synergy Sort:

I Theorem 5. LetM be a multiset of size n formed by ρ runs and δ blocks of sizes g1, . . . , gδ
such that these blocks induce a partition π of size χ of the output whose members have
values m1, . . . ,mχ. The algorithm Quick Synergy Sort performs within n+O(

∑δ
i=1 log gi+∑χ

i=1 log
(
ρ
mi

)
) data comparisons onM. This number of comparisons is optimal in the worst

case over multisets of size n formed by ρ runs and δ blocks of sizes g1, . . . , gδ such that these
blocks induce a partition π of size χ of the output whose members have values m1, . . . ,mχ.

We extend these results to take advantage of the global order of the multiset in a way
that can be combined with the notion of runs (local order).

2.4 Taking Advantage of Global Order

Given a multisetM, a pivot position is a position p inM such that all elements in previous
position are smaller than or equal to all elements at p or in the following positions. In
1962, Iverson [11] described an improved version of BubbleSort [14] that identifies such
pivot positions. We show that detecting such positions also yields an improved version of
QuickSort in general, and of our QuickSort-inspired solutions in particular. More formally:

I Definition 6 (Pivot positions). Given a multiset M = (x1, . . . , xn) of size n, the “pivot
positions” are the positions p such that xa ≤ xb for all a, b such that a ∈ [1..p − 1] and
b ∈ [p..n].

Existing pivot positions in the input order ofM divide the input into subsequences of
consecutive elements such that the range of positions of the elements at each subsequence
coincide with the range of positions of the same elements in the sorted sequence ofM: the

J. Barbay, C. Ochoa and S. R. Satti 06:7

more there are of such positions, the more “global” order there is in the input. Detecting
such positions takes only a linear number of comparisons by applying the first phase of the
algorithm BubbleSort [14], which sequentially compares the elements, from left to right in a
first phase and then from right to left in a second phase. The positions of the elements that
do not interchange their values during both executions are the pivot positions inM.

When there are φ such positions, they simply divide the input of size n into φ+ 1 sub-
instances of sizes n0, . . . , nφ (such that

∑φ
i=0 ni = n). Each sub-instance Ii for i ∈ [0..φ] then

has its own number of runs ri and alphabet size σi, on which the synergistic solutions described
in this work can be applied, from mere Sorting (Section 2) to supporting MultiSelection
(Section 3) and the more sophisticated Deferred Data Structures (Section 4).

I Corollary 7. LetM be a multiset of size n with φ pivot positions. The φ pivot positions di-
videM into φ+1 sub-instances of sizes n0, . . . , nφ (such that

∑φ
i=0 ni = n). Each sub-instance

Ii of size ni is formed by ρi runs and δi blocks of sizes gi1, . . . , giδi such that these blocks induce
a partition πi of size χi of the output whose members have values mi1, . . . ,miχi

for i ∈ [0..φ].
There exists an algorithm that performs within 3n+O(

∑φ
i=0

{∑δi
j=1 log gij +

∑χi

j=1 log
(
ρi
mij

)}
)

data comparisons for sortingM. This number of comparisons is optimal in the worst case
over multisets of size n with φ pivot positions which divide the multiset into φ+1 sub-instances
of sizes n0, . . . , nφ (such that

∑φ
i=0 ni = n) and each sub-instance Ii of size ni is formed by

ρi runs and δi blocks of sizes gi1, . . . , giδi such that these blocks induce a partition πi of size
χi of the output whose members have values mi1, . . . ,miχi

for i ∈ [0..φ].

Next, we generalize the algorithm Quick Synergy Sort to an offline multiselection
algorithm that partially sorts a multiset according to the set of select queries given as input.
This serves as a pedagogical introduction to the online Deferred Data Structures for
answering rank and select queries presented in Section 4.

3 MultiSelection Algorithm

Given a linearly ordered multiset M and a sequence of ranks r1, . . . , rq, a multiselection
algorithm must answer the queries select(r1), . . . , select(rq) inM, hence partially sorting
M. We describe a MultiSelection algorithm based on the sorting algorithm Quick
Synergy Sort introduced in Section 2.3. This algorithm is an intermediate result leading to
the Deferred Data Structure described in Section 4.

Given a multisetM and a set of q select queries, the algorithm Quick Synergy Multi-
Selection follows the same first steps as the algorithm Quick Synergy Sort. But once it
has computed the ranks of all elements in the block that contains the pivot µ, it determines
which select queries correspond to elements smaller than or equal to max` and which ones
correspond to elements greater than or equal to minr (see Algorithm 1 for the definitions of
max` and minr). It then recurses on both sides.

We extend the notion of blocks to the context of partial sorting. Next, we introduce the
definitions of pivot blocks and selection blocks (see Figure 2 for a graphical representation of
these definitions).

I Definition 8 (Pivot Blocks). Given a multiset M formed by ρ runs and δ blocks. The
“pivot blocks” are the blocks ofM that contain the pivots and the elements of value equals
to the pivots during the steps of the algorithm Quick Synergy MultiSelection.

In each run, between the pivot blocks and the insertion ranks of the pivots, there are
consecutive blocks that the algorithm Quick Synergy MultiSelection has not identified
as separated blocks, because no doubling searches occurred inside them.

CPM 2017

06:8

p1p2

s
ρ

m

Figure 2 An instance of the MultiSelection problem where the multiset M is formed by ρ = 5

runs. In each run, the entry M[i] is represented by a point of x-coordinate M[i]. The dash lines
represent the answers of the two select queries. The solid vertical lines represent the positions
p1 and p2 of the first two pivots computed by the Quick Synergy MultiSelection algorithm. The
pivot blocks corresponding to the pivots p1 and p2 are marked by contiguous open disks. The
algorithm divide the runs into selection blocks. s = 7 is the size of the second selection block, from
left to right, into which the third run is divided by the algorithm. m = 2 is the number of pivot
blocks of size 1 corresponding to the pivot p2.

I Definition 9 (Selection Blocks). Given the i-th run, formed of various blocks, and q select
queries, the algorithm Quick Synergy MultiSelection computes ξ pivots in the process
of answering the q queries. During the doubling searches, the algorithm Quick Synergy
MultiSelection finds the insertion ranks of the ξ pivots inside the i-th run. These positions
determine a partition of size ξ + 1 of the i-th run where each element of the partition is
formed by consecutive blocks or is empty. We call the elements of this partition “selection
blocks”. The set of all selection blocks include the set of all pivot blocks.

Using these definitions, we generalize the results proven in Section 2.3 to the more general
problem of MultiSelection.

I Theorem 10. Given a multisetM of size n formed by ρ runs and δ blocks; and q offline
select queries overM corresponding to elements of ranks r1, . . . , rq. The algorithm Quick
Synergy MultiSelection computes ξ pivots in the process of answering the q queries. Let
s1, . . . , sβ be the sizes of the β selection blocks determined by these ξ pivots in all runs.
Let m1, . . . ,mλ be the numbers of pivot blocks corresponding to the values of the λ pivots
with multiplicity greater than 1, respectively. Let ρ0, . . . , ρξ be the sequence where ρi is the
number of runs that have elements with values between the pivots i and i + 1 sorted by
ranks, for i ∈ [1..ξ]. The algorithm Quick Synergy MultiSelection answers the q select
queries performing within n+O

(∑β
i=1 log si + β log ρ−

∑λ
i=1mi logmi −

∑ξ
i=0 ρi log ρi

)
⊆

O (n log n−
∑q
i=0 ∆i log ∆i) data comparisons, where ∆i = ri+1 − ri, r0 = 0 and rq+1 = n.

Proof. The pivots computed by the algorithm Quick Synergy MultiSelection for answer-
ing the queries are a subset of the pivots computed by the algorithm Quick Synergy Sort
for sorting the whole multiset. Suppose that the selection blocks determined by every two
consecutive pivots form a multisetMj such that for every pair of selection blocks inMj

the elements of one are smaller than the elements of the other one. The algorithm Quick
Synergy Sort would perform within n + O

(∑β
i=1 log si + β log ρ−

∑λ
i=1mi logmi

)
data

comparisons in this supposed instance (see the proof of Lemmas 3 and 4 analyzing the
algorithm Quick Synergy Sort for details). The number of comparisons needed to sort the
multisetsMj is within Θ(

∑ξ
i=0 ρi log ρi). The result follows. J

J. Barbay, C. Ochoa and S. R. Satti 06:9

The process of detecting the φ pre-existing pivot positions seen in Section 2.4 can be
applied as the first step of the multiselection algorithm. The φ pivot positions divide the
input of size n into φ + 1 sub-instances of sizes n0, . . . , nφ. For each sub-instance Ii for
i ∈ [0..φ], the multiselection algorithm determines which select queries correspond to Ii
and applies then the steps of the algorithm Quick Synergy MultiSelection inside Ii in
order to answer these queries.

In the result above, the queries are given all at the same time (i.e., offline). In the context
where they arrive one at the time (i.e., online), we define a Deferred Data Structure
for answering online rank and select queries, inspired by the algorithm Quick Synergy
MultiSelection.

4 Rank and Select Deferred Data Structures

We describe a Deferred Data Structure that answers a set of rank and select queries,
arriving one at the time, over a multisetM, progressively sortingM. The deferred data
structure is based in the Quick Synergy MultiSelection algorithm of the previous section.
This data structure takes advantage of the order (local and global) and structure in the
input, and of the order and structure in the queries.

To take advantage of the order in the queries, we introduce a data structure that finds
the nearest pivots to the left and to the right of a position p ∈ [1..n], while taking advantage
of the distance between the position of the last computed pivot and p. This distance is
measured in the number of computed pivots between the two positions. For that we use a
finger search tree [6] which is a search tree maintaining fingers (i.e., pointers) to elements in
the search tree. Finger search trees support efficient updates and searches in the vicinity of
the fingers. Brodal [6] described an implementation of finger search trees that searches for an
element x, starting the search at the element given by the finger f in time within O(log d),
where d is the distance between x and f in the set (i.e, the difference between rank(x) and
rank(f) in the set).

The structure uses a finger search tree Fselect to find the two successive pivots between
which the query fits. Once a block g is identified, every element in g is a valid pivot for the
rest of the elements inM. In order to capture this idea, we modify the structure Fselect

so that it contains blocks (i.e., a sequence of consecutive values) instead of singleton pivots.
Each element in Fselect points in M to the beginning and the end of the block g that it
represents and in each run to the position where the elements of g partition the run. This
modification allows the structure to answer select queries, taking advantage of the structure
and order in the queries and of the structure and order in the input. But in order to answer
rank queries taking advantage of the features in the queries and the input, the structure
needs another finger search tree Frank. In Frank the structure stores for each block g identified,
the value of one of the elements in g, and pointers inM to the beginning and the end of g
and in each run to the position where the elements of g partition the run. We name this
structure Full-Synergistic Deferred Data Structure.

I Theorem 11. Consider a multisetM of size n formed by ρ runs and δ blocks. The Full-
Synergistic Deferred Data Structure identifies γ blocks in the process of answering
q online rank and select queries overM. The q queries correspond to elements of ranks
r1, . . . , rq. Let s1, . . . , sβ be the sizes of the β selection blocks determined by the pivots in
the γ blocks in all runs. Let m1, . . . ,mλ be the numbers of pivot blocks corresponding to
the values of the λ pivots with multiplicity greater than 1, respectively. Let ρ0, . . . , ργ be the
sequence where ρi is the number of runs that have elements with values between the elements

CPM 2017

06:10

p1p2

ρ

p3q1 q2

d

g

Figure 3 The state of the Full-Synergistic Deferred Data Structure on an instance where
the multiset M is formed by ρ = 5 runs. In each run, the entry M[i] is represented by a point
of x-coordinate M[i]. The dash lines represent the positions q1 and q2 of the answers of the first
two queries. The solid vertical lines represent the positions p1, p2 and p3 of the first three pivots
computed by the Full-Synergistic Deferred Data Structure. The pivot blocks corresponding
to the pivots p1, p2 and p3 are marked by contiguous open disks. d = 4 is the distance (i.e., the
number of identified blocks) between the queries q1 and q2. If q1 is a rank query, then g = 4 is the
size of the identified block that contains the answer of the query q1.

in the blocks i and i + 1 sorted by ranks, for i ∈ [1..γ]. Let d1, . . . , dq−1 be the sequence
where dj is the number of identified blocks between the block that answers the j − 1-th query
and the one that answers the j-th query before starting the steps to answer the j-th query, for
j ∈ [2..q]. Let u and g1, . . . , gu be the number of rank queries and the sizes of the identified
and searched blocks in the process of answering the u rank queries, respectively. The Full-
Synergistic Deferred Data Structure answers the q online queries performing within
n+O(

∑β
i=1 log si + β log ρ−

∑λ
i=1mi logmi−

∑γ
i=0 ρi log ρi +

∑q−1
i=1 log di +

∑u
i=1 log gi) ⊆

O (n log n−
∑q
i=0 ∆i log ∆i + q log n) data comparisons, where ∆i = ri+1 − ri, r0 = 0 and

rq+1 = n.

Proof. The algorithm answers a new select(i) query by searching in Fselect for the nearest
pivots to the left and right of the query position i. If i is contained in an element of Fselect,
then the block g that contains the element in the position i has already been identified. If
i is not contained in an element of Fselect, then the returned finger f points the nearest
block b to the left of i. The block that follows f in Fselect is the nearest block to the right
of i. It then applies the same steps as the algorithm Quick Synergy MultiSelection in
order to answer the query. Given f , the algorithm inserts in Fselect each block identified
in the process of answering the query in constant time and stores the respective pointers
to positions inM. In Frank the algorithm searches for the value of one of the elements in
b. Once the algorithm obtains the finger returned by this search, the algorithm inserts in
Frank the value of one of the elements of each block identified in constant time and stores the
respective pointers to positions inM (see Figure 3 for a graphical representation of some of
the parameters used in the analysis).

The algorithm answers a new rank(x) query by finding the selection block sj in the
j-th run such that x is between the smallest and the greatest value of sj for all j ∈ [1..ρ].
For that the algorithm searches for the value x in Frank. The number of data comparisons
performed by this searching process is within O(log d), where d is the number of blocks in
Frank between the last inserted or searched block and the returned finger f . Given the finger
f , there are three possibilities for the rank r of x: (i) r is between the ranks of the elements
at the beginning and the end of the block pointed by f , (ii) r is between the ranks of the

J. Barbay, C. Ochoa and S. R. Satti 06:11

elements at the beginning and the end of the block pointed by the finger following f , or
(iii) r is between the ranks of the elements in the selection blocks determined by f and the
finger following f . In the cases (i) and (ii), a binary search inside the block yields the answer
of the query. In case (iii), the algorithm applies the same steps as the algorithm Quick
Synergy MultiSelection in order to compute the median µ of the middles and partitions
the selection blocks by µ. The algorithm then decides to which side x belongs. J

The process of detecting the φ pivot positions seen in Section 2.4 allows the Full-
Synergistic Deferred Data Structure to insert these pivots in Fselect and Frank. For
each pivot position p in Fselect and Frank, the structure stores pointers to the end of the
runs detected on the left of p; to the beginning of the runs detected on the right of p; and to
the position of p in the multiset. This concludes the description of our synergistic results. In
the next section, we discuss how these results relate to various past results and future work.

5 Discussion

Kaligosi et al.’s multiselection algorithm [12] and Barbay et al’s deferred data structure [2]
use the very same concept of runs as the one described in this work. The difference is, we
describe algorithms that detect the existing runs in the input in order to take advantage of
them, but the algorithms described by those previous works do not take into consideration
any pre-existing runs in the input and rather build and maintain such runs as a strategy
to minimize the number of comparisons performed while partially sorting the multiset. We
leave the combination of both approaches as a topic for future work which could probably
shave a constant factor off the number of comparisons performed by the Sorting and
MultiSelection algorithms and by the Deferred Data Structures supporting rank
and select queries on Multisets.

Barbay and Navarro [3] described how Sorting algorithms, taking advantage of speci-
ficities in the input, directly imply compressed encodings of permutations. By using the
similarity of the execution tree of the algorithm MergeSort with the Wavelet Tree data
structure, they described a compressed data structure for permutations taking advantage of
the local order, i.e., using space proportional to H(r1, . . . , rρ) and supporting direct access
(i.e. π()) and inverse access (i.e. π−1()) in worst time within O(1 + lg ρ) and average
time within O(1 +H(r1, . . . , rρ)). We leave the definition of a compressed data structure for
multisets taking additional advantage of its structure and global order as future work.

Another perspective is to generalize the synergistic results to related problems in com-
putational geometry: Karp et al. [13] defined the first deferred data structure not only
to support rank and select queries on multisets, but also to support online queries in a
deferred way on Convex Hull in two dimensions and online Dominance queries on sets of
multi-dimensional vectors. One could refine the results from Karp et al. [13] to take into
account the blocks between each queries (i.e., the structure in the queries) as Barbay et
al. [2] did for multisets; but also for the relative position of the points (i.e., the structure in
the input) as Afshani et al. [1] did for Convex Hulls and Maxima; the order in the points
(i.e., the order in the data), as computing the convex hull in two dimension takes linear time
if the points are sorted; and potentially the order in the queries.

References
1 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal geometric algo-

rithms. In Proceedings of the Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 129–138. IEEE Computer Society, 2009.

CPM 2017

06:12

2 Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti, and Jonathan Sorenson. Near-optimal
online multiselection in internal and external memory. Journal of Discrete Algorithms (JDA),
36:3–17, 2016.

3 Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theoretical Computer Science (TCS), 513:109–123, 2013.

4 Jérémy Barbay, Carlos Ochoa, and S. Srinivasa Rao. Synergistic Sorting and Deferred Data
Structures on MultiSets. ArXiv e-prints, August 2016. arXiv:1608.06666.

5 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre Tarjan.
Time bounds for selection. Journal of Computational System Science (JCSS), 7(4):448–461,
1973.

6 G. S. Brodal. Finger search trees with constant insertion time. In Proceedings of the ninth
annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 540–549. Society for
Industrial and Applied Mathematics, 1998.

7 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set intersections, unions,
and differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 743–752, 2000.

8 David P. Dobkin and J. Ian Munro. Optimal time minimal space selection algorithms. Journal
of the ACM (JACM), 28(3):454–461, 1981.

9 Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys (ACMCS), 24(4):441–476, 1992.

10 C. A. R. Hoare. Algorithm 65: Find. Communication of the ACM (CACM), 4(7):321–322,
1961.

11 Kenneth E. Iverson. A Programming Language. John Wiley & Sons, Inc., New York, NY,
USA, 1962.

12 Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders. Towards optimal multiple
selection. In Proceedings of the International Conference on Automata, Languages, and
Programming (ICALP), pages 103–114, 2005.

13 Richard M. Karp, Rajeev Motwani, and Prabhakar Raghavan. Deferred data structuring.
SIAM Journal on Computing (SICOMP), 17(5):883–902, 1988.

14 Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching (2nd
Edition). Addison-Wesley Professional, April 1998.

15 V. Mäkinen and G. Navarro. Rank and select revisited and extended. Theoretical Computer
Science, 387(3):332–347, 2007.

16 Alistair Moffat and Ola Petersson. An overview of adaptive sorting. Australian Computer
Journal (ACJ), 24(2):70–77, 1992.

17 J. Ian Munro and Philip M. Spira. Sorting and searching in multisets. SIAM Journal on
Computing (SICOMP), 5(1):1–8, 1976.

18 Tadao Takaoka. Partial solution and entropy. In Rastislav Královič and Damian Niwiński,
editors, Mathematical Foundations of Computer Science (MFCS) 2009: 34th International
Symposium, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings, pages
700–711, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

http://arxiv.org/abs/1608.06666

	Introduction
	Sorting Algorithms
	Known Algorithms
	``Kind-of-new'' Sorting Algorithm DLM Sort
	New Sorting Algorithm Quick Synergy Sort
	Taking Advantage of Global Order

	MultiSelection Algorithm
	Rank and Select Deferred Data Structures
	Discussion

