MA1101-6 Introducción al Álgebra

Profesor: Martín Matamala Auxiliar: Matías Azócar Carvajal

Auxiliar 3 : Conjuntos

6 de Abril de 2018

Recordemos algunas cosas vistas en las cátedras de conjuntos

Conjunto vacío: ϕ

Conjunto que no posee elementos.

Conjunto de Referencia: E

Conjunto que posee a todos los elementos. (A veces podría ser $\mathbb{N},\,\mathbb{Z}$ o \mathbb{R})

Igualdad de conjuntos: A = B

Aes
 <u>igual</u> a Bssi tienen exactamente los mismos elementos.

Inclusión de un conjunto en otro: $A \subseteq B$

A está contenido en Bssi un elemento está en A implica que está en B.

Algunas propiedades útiles:

$$\cdot A \subseteq A$$

$$\cdot A \subseteq B \wedge B \subseteq A \Longleftrightarrow A = B$$

 $(\forall A, B \text{ conjuntos})$ se tiene $A \cap B \subseteq A \subseteq A \cup B$

 $\cdot A \subseteq B \Leftrightarrow B^c \subseteq A^c$

Unión de conjuntos: $A \cup B$

Es el conjunto de todos los elementos que están solo en A, solo en B o bien, están en ambos simultáneamente.

Intersección de conjuntos: $A \cap B$

Es el conjunto de todos los elementos que están en A y, además, en B.

Complemento de un conjunto: A^c

Es el conjunto de todos los elementos que <u>no</u> están en A.

Resta de conjuntos: $A \setminus B$

Es el conjunto de todos los elementos que están en A y que además \underline{no} están en B.

Diferencia simétrica: $A\triangle B$

Es el conjunto formado por los elementos que están solo en A o están solo en B.

 $\cdot (\forall A, \text{ conjunto}) \text{ se tiene } \phi \subseteq A$

 $\cdot (\forall A, \text{ conjunto}) \text{ se tiene } A \subseteq E$

 $\cdot (A \setminus B) = A \cap B^c$

 $\cdot (A \triangle B) = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

 $\cdot (A \cap B)^c = A^c \cup B^c \; ; \; (A \cup B)^c = A^c \cap B^c$

 $\cdot (A^c)^c = A$

P1. Sean A, B, C, D conjuntos. Demuestre que:

- 1. $(A \cup B) \cap (A \cup B^c) = A$.
- 2. $(A \cap B^c) \cup A = A$
- 3. $(B \setminus A) \subseteq C \Leftrightarrow C^c \subseteq (B^c \cup A)$

- 4. $[A \setminus (B \setminus A)] \cup [(B \setminus A) \setminus A] = A \cup B$
- 5. $(A\triangle B) \cup (A^c \cap B^c)^c = A \cup B$
- 6. $A \subseteq A^c \Rightarrow A = \phi$

P2. Sean A, B, C tres conjuntos (no vacíos) del conjunto universo E. Demuestre que:

$$(A \cap B \cap C) \cup (A^c \cup B^c \cup C^c) = E$$

· Desafío: Generalícelo por inducción para n conjuntos.

P3. Sean A,B y C conjuntos con A,B,C cualesquiera, demuestre:

- a) $A \triangle B = A \triangle C \Rightarrow B = C$
- b) Use lo anterior para probar que:

$$B = (A \cap B^c) \cup (A^c \cap B) \Leftrightarrow A = \phi$$

c) Sea $A \subseteq E$, con A fijo. Use a) para probar que $\forall X, Y \subseteq E$ se tiene:

$$(X \cup A) = (Y \cup A) \land (X \cap A) = (Y \cap A) \Rightarrow X = Y$$

 $\mathbf{P4.}$ a) Sean A, B dos conjuntos no vacíos. Demuestre que

$$A\cap B=\phi \Leftrightarrow (A\cup B)\setminus B=A$$

b) Sean A, B dos conjuntos no vacíos. Encuentre un conjunto X que verifique las siguientes ecuaciones:

$$A \cup X = A \cup B \wedge A \cap X = \phi$$

c) ¿La solución que encontró es única?

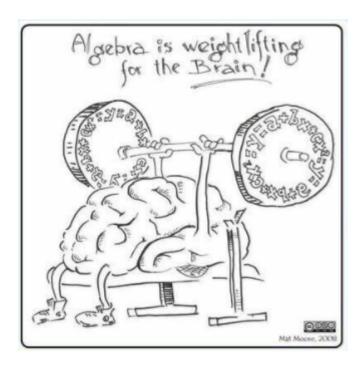


Figura 1: Ánimo! El control uno ya pasó. Ahora a prepararse para el que viene :)