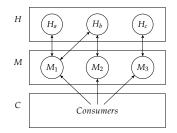
ORGANIZACIÓN INDUSTRIAL EMPÍRICA IN7E0

Carlos Noton

Clase 12 - Miercoles 5 de Septiembre Primavera - 2018


2 Theoretical framework

3 Empirical analysis

Motivation

- Multiple recent changes in U.S. health insurance markets:
 - Multiple horizontal mergers recently proposed (e.g. Aetna and Humana)
 - Hospital allegations of non-competitive agreements by insurers
- Insurer competition may increase quality and reduce premiums and costs...
 - ...but effects on other outcomes are ambiguous, particularly on hospital prices
 - ...and may not be welfare improving
- This paper provides an equilibrium framework to study health markets
 - Emphasis on price setting: bargaining rather than Nash-Bertrand

U.S. health care market

- Consumers enroll in insurers offered by employer, accessing to a hospital network
- Networks, premiums and prices are determined by bilateral negotiation
- Increased insurer competition can:
 - Lead to reductions in premiums
 - Increase hospital leverage to negotiate higher prices
- Net price effect theoretically ambiguous and context dependent

Ho and Lee (Econometrica 2017)

Develop a theoretical framework including:

- Employer-insurer bargaining over premiums
- Hospital-insurer bargaining over prices
- Households demand for insurance
- Individual demand for health services
- A decomposition of the effects of insurer competition
- Stimate the model:
 - Setting is the California Public Employees' Retirement System (CalPERS)
 - Recover preferences over insurers and hospitals, and bargaining parameters
- Implement counterfactual simulations:
 - Study the effect of decreases in insurer competition
 - Results show that premiums in general increase, but not always...
 - ...and that prices may increase or decrease

Related literature

Market concentration on hospital prices

- Mostly regressions of prices on HHI:
 - Insurer concentration: Melnick et al (2010), Dafny et al (2010, 2012),...
 - Hospital concentration: Capps Dranove (2004), Dafny (2009),...
- \rightarrow Propose formal model able to conduct out-of-sample counterfactuals and measure welfare effects
- Structural models of hospital-insurer demand and bargaining:
 - Most of them simplify aspects of the market and focus on hospital mergers
 - Capps et al (2003), Lewis Pflum (2013), Gowrisankaran et al (2014), ...
 - $\rightarrow~$ Allow for both insurer and hospital competition
- Broader literature on bargaining in vertical markets in IO:
 - Add to recent literature: Crawford Yurukoglu (2012), Crawford et al (2015)

Model

- Sets of insurers and hospitals in market are \mathcal{M} and \mathcal{H} , denoted by j and i
- $\bullet\,$ Network of insurers and hospitals denoted by ${\cal G}$
- Three stages of the game:
 - Price and premium determination:
 - Employer and insurers bargain over premiums ϕ
 - Hospitals and insurers $ij \in \mathcal{G}$ bargain over prices p
 - Onsumers purchase health insurance:
 - Choice is conditional on premiums and networks, market demand $D_j(\mathcal{G}, \phi)$
 - Onsumers get sick and choose hospital:
 - Choice is conditional on insurance choice, market demand is $D^{H}_{ij}(\mathcal{G},\phi)$

Profits

Insurers

$$\pi_j^M(\mathcal{G}, p, \phi) = D_j(\cdot)(\phi_j - \eta_j) - \sum_{h \in \mathcal{G}_j^M} D_{hj}^H(\cdot) p_{hj}$$

Hospitals

$$\pi_i^H(\mathcal{G}, p, \phi) = \sum_{n \in \mathcal{G}_i^H} D_{in}^H(\cdot)(p_{in} - c_i)$$

Bargaining over premiums

- Premiums determined by Nash bargaining (Horn and Wollinsky, 1988):
 - Simultaneously maximize weighted gains from trade of parts
 - Weights determined by bargaining power
- Employer maximizes employees' welfare net of premium payments
- For every insurer, premiums satisfy:

$$\phi_{j} = \arg \max_{\phi_{j}} \left[\underbrace{\pi_{j}^{M}(\mathcal{G}, p, \phi)}_{GFT_{j}^{M}} \right]^{\tau^{\phi}} \times \left[\underbrace{W^{E}(\mathcal{M}, \phi) - W^{E}(\mathcal{M} \setminus j, \phi_{-j})}_{GFT_{j}^{E}} \right]^{(1 - \tau^{\phi})}$$

Bargaining over hospital prices

- Hospital prices also determined via simultaneous Nash bargaining
- For every insurer and hospital, prices satisfy:

$$p_{ij} = \arg \max_{p_{ij}} \left[\underbrace{\pi_j^M(\mathcal{G}, p, \phi) - \pi_j^M(\mathcal{G} \setminus ij, p_{-ij}, \phi)}_{GFT_{ij}^M} \right]^{\tau_j} \times \left[\underbrace{\pi_i^H(\mathcal{G}, p, \phi) - \pi_i^H(\mathcal{G} \setminus ij, p_{-ij}, \phi)}_{GFT_{ij}^I} \right]^{(1-\tau_j)} \quad \forall ij \in \mathcal{G}$$

Equilibrium premiums

• From the FOCs of the employer-insurer bargaining equation:

$$\frac{\partial \pi_{j}^{M}}{\partial \phi_{j}} = \frac{1 - \tau^{\phi}}{\tau^{\phi}} \times \frac{\pi_{j}^{M} \times -\frac{\partial GFT_{j}^{E}}{\partial \phi_{j}}}{GFT_{j}^{E}} \quad \forall_{j}$$

such that:

- $\tau^{\phi} = 1$ yields Nash-Bertrand premium pricing
- $\tau^{\phi} \in (0, 1)$ implies that employers constrain insurers away from Nash-Bertrand
- $\tau^{\phi} = 0$ implies that premiums are sub that insurer cover costs

4 Effects on Equilibrium hospital prices

• From the FOCs of the hospital-insurer bargaining equation:

$$\underbrace{\underbrace{p_{ij}^{*}D_{ij}^{H}}_{Payments} = (1 - \tau_{j}) \left[\underbrace{[\Delta_{ij}D_{j}](\phi_{j} - \eta_{j})}_{(1)} - \underbrace{\sum_{h \in \mathcal{G}_{j}^{M} \setminus ij} p_{hj}^{*}[\Delta_{ij}D_{hj}^{H}]}_{(2)} \right] \\ + \tau_{j} \left[\underbrace{c_{i}D_{ij}^{H}}_{(3)} - \underbrace{\sum_{n \in \mathcal{G}_{i}^{H} \setminus ij} [\Delta_{ij}D_{in}^{H}](p_{in}^{*} - c_{i})}_{(4)} \right] \quad \forall ij \in \mathcal{G}$$

- Premium and enrollment: effect on insurer revenues
- Price reinforcement: effect on insurer payments to hospitals other than *i*
- Obstitution Hospital cost: increases in costs result in *τ_j*-unit increases in payments
- **(1)** Recapture: effect over hospital revenues from insurers other than $j_{12/32}$

The effects of insurer competition

- From the employer-insurer bargaining equation:
 - If $\tau^{\phi} = 1$, back to Nash-Bertrand and less competition increases premium of *j*
 - If $\tau^{\phi} < 1$, the effect on premiums is ambiguous:
 - Less competition may increase or decrease GFT_i^E
 - Effect hinges on relative effect of less competition on GFT_i^E and π_i^M
- From the hospital-insurer bargaining equation:
 - For reduced competition:
 - *Premium effect* depends on change in premium \rightarrow likely higher prices
 - *Enrollment effect* becomes smaller \rightarrow higher insurer leverage, lower prices
 - Moreover, different effects affected in different directions by competition
 - Thus, not possible to theoretically sign the effect of competition in this model
- Effects of competition depends on primitives and context: demand, firm heterogeneity, institutional details

Setting and data

- California (CalPERS 2004):
 - Agency that manages pension and health benefits of CA employees
 - Market definition based on HSAs, 14 markets
 - Institutional constraints on premiums depending on household composition
- Choice set includes 3 insurers:
 - Blue Shield HMO (BS): 45%
 - Blue Cross PPO (BC): 16%
 - Kaiser Permanente (K): 39%
- Data:
 - Inpatient admissions
 - Claims: Observed prices per admission and DRG weights
 - Enrollment: Household composition, income
 - Networks: 400 insurer-hospital pairs with > 10 admissions
 - Other: AHA hospital data, including costs, system, characteristics
 - Caveat: Admissions and claims data not available for Kaiser

Constructing hospital prices

• The model is tailored to bargaining over a price index

- They construct DRG-adjusted prices
- DRG weights adjust for cost intensity of admissions
- Assumption is:

$$p_a = p_{ij}^* \times DRG_a + \varepsilon_a$$

and estimate p_{ij}^* as:

$$\hat{p}_{ij} = \frac{\sum_{\forall a \in \mathcal{A}_{ij}} p_a}{\sum_{\forall a \in \mathcal{A}_{ij}} DRG_a} = p_{ij}^* + \varepsilon_{ij}^A$$

where ε_{ij}^A is a mean zero error term

Summary statistics

		BS	BC	Kaiser
Premiums	Single	3782.64	4192.92	3665.04
(per year)	2-Party	7565.28	8385.84	7330.08
	Family	9834.84	10901.64	9529.08
	Revenues (per individual)	2860.34	3179.39	2788.05
Insurer	# Hospitals in Network	187	220	27
Characteristics	# Hospital Systems in Network	119	147	-
	Hospital Prices (per admission)	7146.29	6029.46	-
	Hospital Payments (per individual)	621.55	554.91	-
	Hospital Costs (per admission)	1599.43	1601.90	-
Household	Single	19313	8254	20319
Enrollment	2-Party	16376	7199	15903
	Family	35058	11170	29127
	Avg. $\#$ Individuals/Family	3.97	3.99	3.94

• Relevant features:

- Households pay \sim 20% of annual premiums, state covers \sim 80%
- Premiums effectively increasing with family size (multiples are 2×, 2.6×)

Taking the model to the data

Model	Inputs	Outputs
3. Hospital demand	Admissions w/demographics, hospital attributes, hospital networks	Hospital demand system WTP for networks
2. Insurer demand	HH enrollment w/demograph plan premiums, WTP for networks	ics, Insurer demand system
1. Bargaining over premium and price	Premiums, prices, networks, hospital demand system, ^s insurer demand systems	Insurer costs, bargaining weights

Hospital demand

- Estimate by MLE a Discrete choice model at individual level, conditional on HH insurance plan
- Upon admission, a diagnosis *l* is assigned
- Observable heterogeneity at the age-sex level
- Utility of individual *k* assumed to be:

$$u_{kilm}^{H} = \delta_i + z_i v_{kl} \beta^z + d_{ik} \beta_m^d + \varepsilon_{kilm}^{H}$$

- Shocks ε_{kilm}^{H} uncorrelated with hospital characteristics
- No selection into insurance plans on unobservable preferences for hospitals

WTP for network of plan *j* in market *m*:

$$WTP_{kjm}(\mathcal{G}_{jm}) = \gamma^{a}_{\kappa(k)} \sum_{l \in \mathcal{L}} \gamma_{\kappa(k)l} \log \sum_{h \in \mathcal{G}_{jm}} \exp(\hat{\delta}_{h} + z_{h} v_{kl} \hat{\beta}^{z} + d_{hk} \hat{\beta}^{d}_{m})$$

where $\gamma^a_{\kappa(k)}$ and $\gamma_{\kappa(k)l}$ are sickness/diagnosis probabilities taken from data

Insurer demand

- Discrete choice model at HH level, considering individual preferences
- Choice set is given by three available plans
- Utility of household f from $j \in \{BS, BC\}$ is given by:

$$u_{fjm}^{M} = \delta_{jm} + \alpha_{f}^{\phi} \phi_{\lambda(f)j} + \sum_{\forall \kappa} \alpha_{\kappa}^{W} \sum_{k \in f, \kappa(k) = \kappa} WTP_{kjm} + \varepsilon_{fjm}^{M}$$

where $\lambda(f)$ indicates HH type and α_f^{ϕ} is a function of income y_f

- Kaiser is the outside option
- Identification:
 - Within-plan variation in premiums across HH types
 - Within-plan and within-market variation in *WTP* due to variation in distance to hospitals in network

Insurer demand results

- Higher income HHs are less price sensitive
- HHs overall prefer plans that provide higher network WTP
- Estimated elasticities are in line with literature:

	Single	2-Party	Family
\mathbf{BS}	-1.25	-2.18	-2.56
\mathbf{BC}	-1.62	-2.50	-2.94
Kaiser	-1.20	-2.04	-2.41

Insurer costs, premium and price bargaining

Objective is $\theta = {\eta, \tau}$, with $\eta = {\eta_{BC}, \eta_{BS}, \eta_K}$ and $\tau = {\tau_{BC}, \tau_{BS}, \tau^{\phi}}$ Strategy is to construct 3 moments based on FOCs and outside data

Premium bargaining:

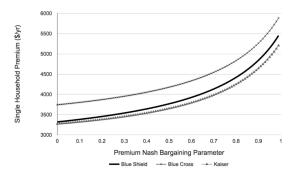
$$\omega^{1}(\theta) = \tau^{\phi} \times \frac{\partial \pi_{j}^{M}}{\partial \phi_{j}} - (1 - \tau^{\phi}) \times \frac{\pi_{j}^{M} \times \frac{\partial GFT_{j}^{E}}{\partial \phi_{j}}}{GFT_{j}^{E}} \quad \forall j$$

Insurer margins:

$$\omega^{2}(\theta) = \underbrace{MLR_{j}^{o}}_{\text{data}} - \underbrace{\frac{\hat{D}^{E}(\cdot)\eta_{j} + \sum_{h \in \mathcal{G}_{j}} \hat{D}_{hj}^{H}(\cdot)\hat{p}_{hj}}{\phi_{j}\Phi'\hat{D}_{j}(\cdot)}}_{\text{model}} \quad \forall j$$

where instruments are a constant and the number of hospital systems in insurers' networks

Insurer costs, premium and price bargaining


Price bargaining:

$$\begin{split} \omega^{3}(\theta) &= p_{ij}^{*}D_{ij}^{H} - (1 - \tau_{j}) \left[[\Delta_{ij}D_{j}](\phi_{j} - \eta_{j}) - \sum_{h \in \mathcal{G}_{j}^{M} \setminus ij} p_{hj}^{*}[\Delta_{ij}D_{hj}^{H}] \right] \\ &- \tau_{j} \left[c_{i}D_{ij}^{H} - \sum_{n \in \mathcal{G}_{i}^{H} \setminus ij} [\Delta_{ij}D_{in}^{H}](p_{in}^{*} - c_{i}) \right] \quad \forall ij \in \mathcal{G} \end{split}$$

- Instruments are constructed replacing prices in each term by c_i or ΔWTP
- Identification relies on the correlation of prices with costs and changes in enrollment
- θ is estimated by 2-step GMM using all moments jointly

Identification of premium bargaining parameter

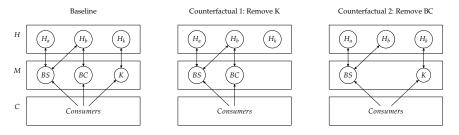
- Using estimates, compute optimal premiums for $au^{\phi} \in [0,1]$
- Premiums are increasing in τ^{ϕ} :
 - Roughly cover costs at $\tau^{\phi} = 0$
 - Substantially larger than observed at $\tau^{\phi} = 1$
 - Employers effectively constrain premium setting!

Supply side estimates

Comparing Nash-Bertrand and bargaining premium setting

- Margins implied under Nash-Bertrand larger, estimated costs lower
- Employer bargaining power estimated to be substantial, constrains pricing

		(i)	(ii)
Insurer Non-Inpatient	η_{BS}	948.90	1,697.66
Marginal Costs		68.30	12.25
(per individual)	η_{BC}	1,416.96	1,959.32
		120.31	84.41
	η_K	1,442.00	2,491.37
		-	1.21
Nash Bargaining Parameters	$ au_{BS}$	0.34	0.32
		0.03	0.06
	$ au_{BC}$	0.42	0.34
		0.03	0.02
	$ au^{\phi}$	1.00	0.51
		-	0.00
Use Margin Moments		Ν	Y
Number of Bilateral Pairs		266	266


Decomposing hospital prices

- Using estimates, decompose hospital prices:
- Premium, enrollment and price reinforcement effects dominate others

		(i) Premium &	(ii) Price	(iii) Hospital	(iv) Recapture
	Price	Enrollment	Reinforcement	Costs	Effect
BS	7146.29	24.6%	65.9%	8.9%	0.7%
		[19.5%, 26.4%]	[53.1%, 71.1%]	[2.4%, 7.5%]	[0.2%,0.5%]
\mathbf{BC}	6029.46	33.0%	54.0%	10.4%	2.7%
		[28.0%,31.5%]	[46.0%,51.8%]	[7.8%, 9.8%]	[2.0%,2.6%]

Removing an insurer from the market

- Objective is to study equilibrium effects of a decrease in insurer competition
- Simulate removal of Kaiser and of BC:

- Use model to recompute equilibrium prices, premiums, enrollment, utilization
- Hold fixed networks, hospital characteristics, entry and exit in both markets

Results for insurance outcomes

- Recall theoretical predictions for premiums:
 - Employers effectively constrain prices away from Nash-Bertrand
 - If removing an insurer increases *GFT^E*, then premiums may increase
 - But, *GFT^E* may decrease if removed insurer is of high cost for employer

Results for insurance outcomes

- Removing K induces premium increases by BC and BS:
 - Market power effect
 - $\bullet\,$ Increased GFT for employer $\rightarrow\,$ upward pressure on premiums towards B-N
- Removing BC induces premium decreases by K and BS:
 - BC is the most expensive plan in the market
 - Removing it actually decreases *GFT^E* with K and BS for employer
 - Bargaining effect overcomes market power effect

		Baseline	(i) Remove Kaiser		(ii) Rei	move BC
		Amount	Amount	% Change	Amount	% Change
Premiums	BS	3.78	4.43	17.19%	3.65	-3.44%
(per year)		[3.75, 3.79]	[4.33, 4.44]	[14.9%, 17.3%]	[3.59, 3.66]	[-4.8%, -3.3%]
	BC	4.19	4.82	14.86%	-	
		[4.16, 4.20]	[4.72, 4.83]	[13.0%, 15.0%]		
	Kaiser	3.67		-	3.61	-1.43%
		[3.65, 3.67]			[3.59, 3.61]	[-1.9%, -1.4%]
Household	BS	72.12	124.38	72.45%	85.31	18.28%
Enrollment		[71.86, 72.89]	[124.36, 124.52]	[70.5%, 73.1%]	[85.17, 86.81]	[18.1%, 20.0%]
	\mathbf{BC}	26.92	38.34	42.43%	-	-
		[26.91, 26.94]	[38.20, 38.36]	[41.9%, 42.5%]		
	Kaiser	63.68	-	-	67.45	5.92%
		[62.89, 63.94]			[65.96, 67.58]	[4.0%, 6.1%]

Results for hospital outcomes

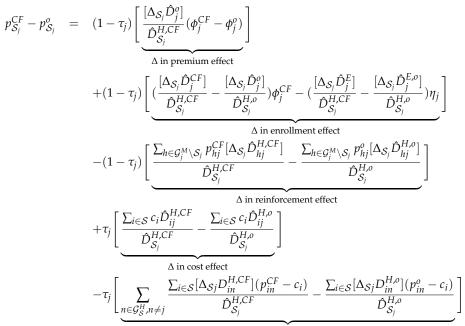
- Recall theoretical predictions for hospital prices:
 - Premium effect: weaker competition, higher *p*_{ij}
 - Enrollment effect: enrollment decrease for an insurer from dropping a hospital is lower, improves proves insurer outside option, lower p_{ij}
 - Recapture effect: fewer consumers may switch plans to keep access to a dropped hospital; hospital outside option becomes worse, lower p_{ij}
 - Price reinforcement effect: mixture of changes in both enrollment and other hospital prices; ambiguous effect on *p*_{ij}
- Overall prediction not clear, but can decompose effects

Results for hospital outcomes

- Removing K increases prices for BC, but not for BS:
 - Premium effect dominates other bargaining effects for BC
 - Premium effect is offset by other bargaining effects for BS
- Removing BC decreases prices for BS:
 - Likely the case that other insurers gain leverage
 - Countervailing effects dominate in this case

		Baseline	(i) Remove Kaiser		(ii) Re	move BC
		Amount	Amount	% Change	Amount	% Change
Hospital	BS	0.66	0.66	0.82%	0.60	-8.08%
Payments		[.64, .67]	[.60, .67]	[-8.3%, 1.0%]	[.53, .61]	[-19.5%, -7.8%]
(per individual)	BC	0.56	0.70	23.95%		-
		[.55, .58]	[.67, .72]	[21.6%, 26.2%]		
Hospital Prices	BS	7.15	7.21	0.89%	6.55	-8.36%
(per admission)		[6.99, 7.29]	[6.47, 7.31]	[-8.6%, 1.1%]	[5.66, 6.64]	[-20.3%, -8.1%]
	BC	6.03	7.46	23.72%		
		[6.00, 6.42]	[7.21, 7.67]	[21.4%, 26.0%]		

Results for profits and surplus


- Consumer welfare may decrease:
 - Particularly when premiums, prices increase
 - Removal of valued hospital networks part of the explanation as well
- However, welfare losses are smaller when premiums, prices decrease

		Baseline	(i) Remove Kaiser		(ii) Remove BC		
		Amount	Amount	% Change	Amount	% Change	
Surplus	Insurer	0.45	1.00	122.75%	0.39	-13.10%	
(per individual)		[.45, .45]	[.99, 1.00]	[120.9%, 123.4%]	[.39, .40]	[-13.3%, -9.3%]	
	Hospitals	0.29	0.52	75.98%	0.27	-8.55%	
	(Non-K)	[.29, .30]	[.47, .53]	[60.1%, 76.9%]	[.23, .27]	[-20.7%, -8.0%]	
	Δ Cons.		-0.20		-0.01	-	
			[20,19]		[01, .00]		

Conclusions

- Equilibrium effects of changes in competition in insurer markets ambiguous:
 - Premiums likely but always increase
 - Effects on prices are ambiguous
 - Results support plausible countervailing effects
 - Potential cost savings from reduced insurer competition in some settings
- Pricing institutions crucial: bargaining vs Nash-Bertrand
- Limitations and further work:
 - No market responses to changes in competition: entry/exit, mergers
 - Are bargaining parameters structural?
 - Limited scope for *steering* by insurers

The effect of competition on prices **Back**

A im magametumo offect

Looking closer at prices **Back**

- Substantial variation across markets \rightarrow effects depend on *local* context
- Premium effect depends on actual change in premiums
- Enrollment effect always negative → less competition, higher insurer leverage

	Avg. Hospital Price (\$ / admission)				De	composition of	of Change (\$	/ admission	ı)	
		Fix F	remiums	Adjust	Premiums	(ia) Prem	(ib) Enroll	(ii) Price	(iii) Cost	(iv) Re-
	Baseline	CF	% Change	CF	% Change	Effect	Effect	Reinforce	Effect	Capture
(ia) REMOVE	KAISER	: BS PR	ICES							
All Mkts	7146.31	6439.32	-9.89%	7164.86	0.26%	649.50	-1176.44	504.16	0.54	40.78
2. Sacramento	8217.80	7419.97	-9.71%	7842.85	-4.56%	635.67	-1616.02	580.04	1.63	23.74
SF Bay W.	8830.07	8027.74	-9.09%	8620.39	-2.37%	642.37	-1476.35	563.38	-0.96	61.89
 E. Bay 	7339.10	6017.12	-18.01%	6578.92	-10.36%	732.20	-1814.24	274.26	0.13	47.49
9. C. Valley	6551.47	6323.72	-3.48%	7280.30	11.12%	576.33	-581.93	675.46	0.04	58.92
S. Barbara	7975.46	7820.59	-1.94%	8737.12	9.55%	410.05	-195.67	516.33	3.11	27.84
11. LA	5725.24	4711.52	-17.71%	5537.66	-3.28%	674.08	-1151.90	261.95	0.52	27.78
14. SD	6707.39	6119.59	-8.76%	6681.55	-0.39%	476.29	-914.89	393.69	-0.09	19.16
(ib) REMOVE	KAISEF	l: BC PF	LICES							
All Mkts	6029.43	5981.34	-0.80%	7385.22	22.49%	737.35	-142.33	691.20	0.17	69.39
2. Sacramento	6586.68	6647.51	0.92%	8322.99	26.36%	912.66	-148.31	874.75	1.58	95.63
SF Bay W.	7615.43	7737.98	1.61%	9391.44	23.32%	917.17	-174.15	876.10	-0.65	157.53
5. E. Bay	7183.67	7157.43	-0.37%	8777.37	22.18%	922.62	-242.61	801.68	0.08	111.93
9. C. Valley	5192.68	5190.33	-0.05%	6956.22	33.96%	965.62	-147.99	834.89	0.06	110.97
10. S. Barbara	5143.06	5097.44	-0.89%	6577.43	27.89%	767.44	-97.00	717.45	2.86	43.62
11. LA	6096.05	5777.28	-5.23%	7102.05	16.50%	750.50	-415.79	640.07	0.19	31.03
14. SD	5345.53	5445.44	1.87%	6952.33	30.06%	879.05	-148.40	806.08	-0.07	70.15
(ii) REMOVE	BLUE C	ROSS: B	S PRICES							
All Mkts	7146.31	6878.10	-3.75%	6610.39	-7.50%	-129.76	-232.74	-146.57	0.02	-26.88
2. Sacramento	8217.80	8129.33	-1.08%	7843.47	-4.56%	-126.99	-120.31	-112.50	-0.02	-14.52
SF Bay W.	8830.07	8663.20	-1.89%	8398.56	-4.89%	-128.33	-178.36	-88.73	0.14	-36.22
5. E. Bay	7339.10	7230.69	-1.48%	6908.12	-5.87%	-146.28	-104.30	-158.90	0.00	-21.49
9. C. Valley	6551.47	5951.51	-9.16%	5789.31	-11.63%	-115.14	-461.97	-125.26	-0.02	-59.77
10. S. Barbara	7975.46	7342.01	-7.94%	7266.15	-8.89%	-81.92	-586.06	12.59	-0.37	-53.54
11. LA	5725.24	5483.53	-4.22%	5180.87	-9.51%	-134.67	-204.99	-185.21	-0.03	-19.48
14. SD	6707.39	6437.35	-4.03%	6240.80	-6.96%	-95.15	-218.51	-139.88	0.00	-13.05

		Baseline	(iii) Remove BO	C (Nash-Bertrand)
		Amount	Amount	% Change
Premiums	BS	3.78	4.19	10.87%
(per year)		[3.75, 3.79]	[4.14, 4.21]	[10.5%, 11.1%]
	\mathbf{BC}	4.19	-	-
		[4.18, 4.21]		
	Kaiser	3.67	3.99	8.82%
		[3.65, 3.67]	[3.96, 4.00]	[8.3%, 9.1%]
Household	BS	72.12	81.06	12.40%
Enrollment		[71.74, 73.21]	[80.76, 81.91]	[11.7%, 12.7%]
	BC	26.92	-	-
		[26.18, 27.20]		
	Kaiser	63.68	73.05	14.72%
		[63.34, 63.80]	[72.46, 73.29]	[14.4%, 14.9%]
Hospital Payments	BS	0.66	0.66	-0.09%
(per individual)		[.64, .67]	[.64, .67]	[4%, .5%]
	BC	0.56	-	-
		[.55, .58]		
Hospital Prices	BS	7.15	7.09	-0.73%
(per admission)		[6.98, 7.29]	[6.94, 7.25]	[-1.0%,1%]
	\mathbf{BC}	6.03	-	-
		[6.02, 6.44]		
Surplus	Insurer	1.28	1.59	23.76%
(per individual)		[1.28, 1.29]	[1.57, 1.59]	[22.5%, 24.3%]
	Hospitals	0.29	0.29	-2.44%
	(Non-K)	[.29, .30]	[.28, .29]	[-3.5%, -1.6%]
	Δ Cons.	-	-0.08	-
			[09,08]	