Vertical Integration between Hospitals and Insurers

José Ignacio Cuesta SIEPR Carlos Noton U. de Chile Benjamín Vatter Northwestern U.

NBER, July 2019

Motivation

- Increasing role of insurer-provider vertical integration in health care
 - e.g., Kaiser, Aetna-CVS
- · Longstanding concern about concentration in healthcare markets
 - Most of the work on horizontal mergers
- Ambiguous theoretical effect of vertical integration
 - Solves double marginalization
 - Aligns incentives to reduce cost within the vertical chain
 - Market power, foreclosure and exclusion
- · Limited empirical evidence due to lack of data/settings

This Paper

Develop a model to study competition and vertical incentives

- · Bargaining between insurers and hospitals, some of which are VI
- · Consumers demand both insurance and health care
- VI creates patient- and enrollee-steering incentives
- 2 Estimate the model using data from Chile
 - Market structure combines VI and non-VI firms
 - Administrative data for private insurance: plans, claims
- Ounterfactual analysis to study welfare effects of banning VI
 - Role of cost efficiencies and consumer preferences

Main Findings

1 VI firms use prices to steer consumers towards affiliated partners:

• 20% lower OOP costs in VI hospitals for patients from the related insurer

2 Banning VI increases consumer surplus and total welfare

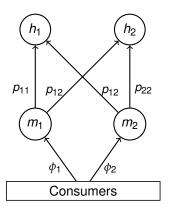
- VI hospitals would decrease prices to rival insurers by 19.8%
- VI insurers would increase premiums by 4.7%
- VI cost efficiencies do not change the results qualitatively

3 VI can increase CS if consumers more sensitive to premiums than prices

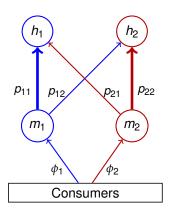
- Elastic to prices, less elastic to premiums \longrightarrow VI decreases CS
- Less elastic to prices, elastic to premiums \longrightarrow VI increases CS

Outline

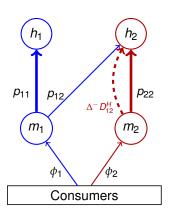
1 Vertical Incentives



3 Structural Model and Estimates

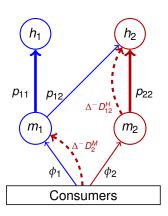


A Simple 2×2 Example


- Hospitals: h₁, h₂, Insurers: m₁, m₂
 - Hospital prices $p_m = (p_{m,h_1}, p_{m,h_2})$
- Insurance
 - Premium φ_m
 - Coinsurance rate $0 < c_m < 1$
- Consumers
 - 1 Demand for insurance
 - 2 Demand for healthcare
- Non-standard vertical structure
 - · Consumers buy upstream and downstream

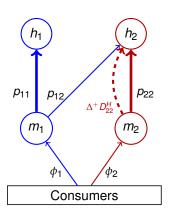
Price Setting under VI

- VI: $Firm_1 = (h_1, m_1)$ and $Firm_2 = (h_2, m_2)$
- p₁₁, p₂₂ are set optimally within VI firms:
 - Joint profit maximization
 - No double marginalization
- p₁₂, p₂₁ are bargained over:
 - Simultaneous Nash bargaining
 - Disagreement implies disconnection
 - VI affects disagreement payoffs and all equilibrium prices


Standard Bargaining Effects

Suppose disagreement between h_1 and m_2 :

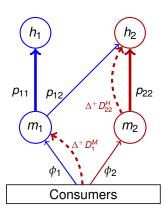
- · All other prices and premiums fixed
- 1 Hospital bargaining effect:
 - h_1 no longer available for m_2 plans
 - $\longrightarrow h_1$ demand falls
 - \longrightarrow Profit of $Firm_1$ falls


Standard Bargaining Effects

Suppose disagreement between h_1 and m_2 :

- · All other prices and premiums fixed
- 1 Hospital bargaining effect:
 - h_1 no longer available for m_2 plans
 - $\longrightarrow h_1$ demand falls
 - \longrightarrow Profit of $Firm_1$ falls
- 2 Insurer bargaining effect:
 - Value of network of m₂ decreases
 - $\longrightarrow m_2$ demand falls
 - \longrightarrow Profit of $Firm_2$ falls

Additional Bargaining Effects under VI


Suppose disagreement between h_1 and m_2 :

· All other prices and premiums fixed

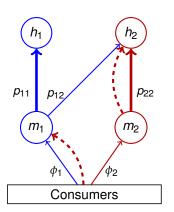
3 Patient-steering effect:

- Enrollees of m₂ must go to h₂
 - \longrightarrow h_2 demand increases
 - \longrightarrow Profit of $Firm_2$ increases

Additional Bargaining Effects under VI

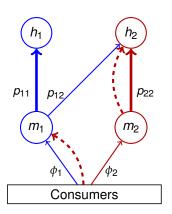
Suppose disagreement between h_1 and m_2 :

• All other prices and premiums fixed


3 Patient-steering effect:

- Enrollees of m₂ must go to h₂
 - \longrightarrow h_2 demand increases
 - \longrightarrow Profit of $Firm_2$ increases

4 Enrollee-steering effect:


- Network of m₁ improves relative to m₂
 - $\longrightarrow m_1$ demand increases
 - \longrightarrow Profit of *Firm*₁ increases

Effect of Vertical Incentives

- · VI reduces loss from disagreement
- Patient-steering + Enrollee-steering:
 - $\Rightarrow \uparrow \text{pressure on negotiated vs own prices}$

Effect of Vertical Incentives

- VI reduces loss from disagreement
- Patient-steering + Enrollee-steering:
 ⇒ ↑ pressure on negotiated vs own prices
- What is the net effect on prices?
 - Depends on demand elasticity to p and ϕ
 - Depends on costs and product differentiation
 - \longrightarrow Overall effect an empirical question

Outline

2 Institutions and Data

3 Structural Model and Estimates

The Chilean Health Market

- Public-Private provision: focus on private sector (low interaction)
- Insurers:
 - 6 insurers offer multiple plans, discriminatory pricing
 - 2 insurers are VI
- Hospitals:
 - 12 main private hospitals in Santiago
 - 6 hospitals are VI
- Interaction between insurers and hospitals:
 - VI insurers offer complete networks (unlike e.g. Kaiser)
 - All insurers interact with all hospitals
 - 59% of VI hospital admissions come from integrated insurer

Distribution of admissions

Administrative Data for 2013–2016

- 1 Plans and membership:
 - For each plan: policyholder ID, plan ID, coverage rates, premium
 - · For each policyholder: household size, dependents, income
- 2 Claims/admissions:
 - · Prices, copayment and coverage (i.e. observable insurer cost)
 - Basic consumer demographics: age, gender, location
- 3 Admission prices in public hospitals
- 4 Hospital and insurer attributes:
 - Ownership structure
 - Financial statements

Model-free Evidence

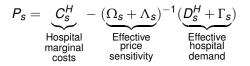
- 1 VI, prices and coverage:
 - Total admission prices 8% lower for patients from VI
 - Patient OOP payment 20% lower for patients from VI
- 2 VI and hospital choice:
 - After joining a VI insurer, patients more likely to choose VI hospitals
- 3 VI and hospital cost-control:
 - No evidence VI hospitals provide different medical treatments to VI patients
- Evidence is consistent with two very different scenarios
 - VI firms have lower costs vs VI firms distort prices to steer demand
 - \longrightarrow Use model to disentangle effects of VI

Outline

3 Structural Model and Estimates

Model Structure and Timing

1 Hospital prices: hospital h and insurers m determine p_{mh}


- Joint profit maximization: If m and h are VI
- Nash bargaining: If *m* and *h* are not VI
- 2 Insurance premiums: insurer *m* sets vector ϕ_m
 - · VI insurers internalize effect on integrated hospitals
 - Premiums set after observing prices
 - \longrightarrow respond to off-path disagreements between hospitals and insurers

Insurance demand:

- Depends on premiums, WTP for hospital network and health risk
- 4 Hospital demand:
 - Depends on hospital prices given insurance plan, distance

Equilibrium Hospital Prices

• Optimal prices of hospital system s to all insurers (including VI):

where:

- C_s^H : hospital marginal cost
- Ω_s: hospital price sensitivity
- Λ_s: bargaining effect

- D_s^H : hospital demand
- Γ_s: vertical incentives

• Our model nests other models:

$$\underbrace{\underbrace{\mathsf{Nash-Bertrand}}_{\Omega} + \underbrace{\mathsf{Bargaining}}_{\Lambda} + \underbrace{\mathsf{Vertical incentives}}_{\Gamma}$$

Identification and Estimation

- Demand side: Estimate consumer preferences using Logit demands
 - · Identified from individual-level variation over time
 - Allow for rich set of fixed effects across heterogeneous demographic groups
 - Average price elasticity: -2.4, Average premiums elasticity: -1.3

Identification and Estimation

- Demand side: Estimate consumer preferences using Logit demands
 - · Identified from individual-level variation over time
 - Allow for rich set of fixed effects across heterogeneous demographic groups
 - Average price elasticity: -2.4, Average premiums elasticity: -1.3
- Supply side: Estimate hospital costs and bargaining weights using GMM
 - 1 Hospital mark-up moments
 - \longrightarrow Identify average hospital marginal costs
 - 2 Orthogonality conditions based on WTP using public system prices
 - Endogeneity: prices capture across-insurer within-hospital cost variation
 - Instrument: public system prices paid to public hospitals, by medical procedure
 - Exclusion: set for different hospitals and population of consumers
 - Relevance: public and private sectors subject to common cost shifters
 - \longrightarrow Given hospital cost, bargaining weights identified by hospital prices FOC

Estimated Vertical Incentives

- Enrollee-steering: VI insurer gain if related hospital forecloses rival insurer
- Patient-steering: VI hospital gain if related insurer excludes rival hospital

	Steering effects on bargaining surplus					
VI Firm	Enrollee-steering	Patient-steering				
Firm 1	-29.8%	-22.2%				
Firm 2	-1.7%	-15.9%				

 \Rightarrow Banning VI should have significant effects on negotiated prices

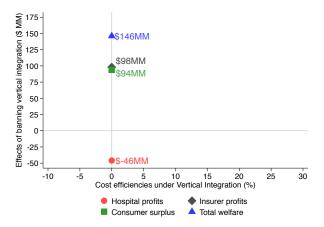
Outline

3 Structural Model and Estimates

4 Counterfactuals

Equilibrium Effects of Vertical Integration

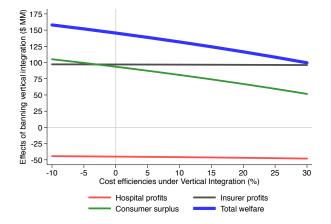
- What are the effects of banning vertical integration?
 - Simulate equilibrium outcomes under alternative market structure
- · Counterfactual exercise on observed plans, policyholders and admissions:
 - Break up vertical ownership linkages
 - 2 Hospitals renegotiate hospital prices
 - Insurers reoptimize premiums
 - 4 Consumers choose plans and hospitals


Banning VI: Price Effects

Panel A: Insurers	Δ % Premium	Δ % Share		
VI at baseline	4.72%	-1.67%		
Non-VI at baseline	-0.32%	3.87%		
Panel B: Hospitals	Δ % Price	Δ % Share		
VI to own-VI	-2.44%	-18.53%		
VI to non-VI	-19.84%	16.68%		
Non-VI to VI	-0.41%	-1.85%		
Non-VI to non-VI	0.63%	-5.50%		
Non-VI to all	0.35%	-4.47%		

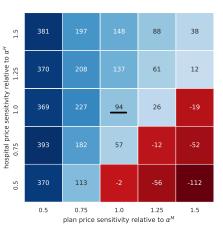
VI insurers increase premiums when VI is banned

- VI insurers used to charge lower premiums to attract enrollees
- VI insurers used to negotiate higher prices with rival hospitals to steer patients
- VI hospitals decrease prices to non-VI insurers when VI is banned
 - VI hospitals used to charge higher prices to rival insurers to steer enrollees


Banning VI: Welfare Effects

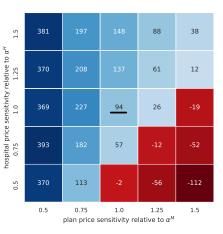
- Banning VI increases overall welfare by \$146 MM
- Consumers are willing to pay \$55/year to ban VI, or 4% higher premiums

▲CS by group


Banning VI: Welfare Effects and Cost Efficiencies

- Cost efficiencies reduce but do not overturn results
- Hospital-insurer specific cost efficiencies \longrightarrow limited effect on total profits

19/21


Banning VI: CS and Demand Elasticity

 Δ CS from banning VI (USD millions)

- Effective enrollee-steering (^K)
 - \uparrow prices to rivals profitable
 - ↑ premium profitable
- Ineffective enrollee-steering (\scalar)
 - Non-sensitive to hospital prices
 - \downarrow premiums to attract enrollees

Banning VI: CS and Demand Elasticity

 Δ CS from banning VI (USD millions)

- Effective enrollee-steering (^K)
 - \uparrow prices to rivals profitable
 - ↑ premium profitable
- Ineffective enrollee-steering (\scalar)
 - Non-sensitive to hospital prices
 - \downarrow premiums to attract enrollees
- Differences between Chile and U.S.
 - Hospital price sensitivity lower in U.S.
 - Chile: -2.40; U.S.: -0.12 (Prager, 2018)

Outline

3 Structural Model and Estimates

4 Counterfactuals

Conclusion

- Develop a model for healthcare markets
 - Highlights steering incentives under VI
- Estimate the model using data from Chile
 - Patient and enrollee steering effects substantially distort market outcomes
 - Banning VI is welfare enhancing even under cost-efficiencies
- Antitrust implications
 - VI incentives to steer demand can substantially increase prices
 - · If VI efficiency is shared across insurers it can offset adverse VI effects

Additional Slides

Related Literature

Competition in healthcare market:

- General: Gaynor and Town (2011); Gaynor et al (2015)
- Insurer mergers: Chorniy et al (2016), Ho and Lee (2017)
- Hospital mergers: Dafny (2009), Dafny et al (2012), Gowrisankaran et al (2015), Lewis and Pflum (2015, 2017), Craig et al (2018), Dafny et al. (2018)
- \longrightarrow Study competition against VI systems

2 Competition and bargaining in vertical markets:

- Theory: Horn and Wolinsky (1988), Collard-Wexler et al. (2017)
- Empirics: Crawford and Yurukoglu, (2012), Prager (2016), Gowrisankaran et al (2015), Ghili (2017), Ho and Lee (2017, 2018), Crawford et al (2018), Diebel (2018), Liebman (2018)
- \longrightarrow Extend toolkit to allow for VI as well as horizontal mergers

3 Vertical integration:

- Hastings (2004), Hortaçsu and Syverson (2007), Crawford et al (2018)
- \longrightarrow Improve downstream flexibility and study of distortions on bargaining

Admission Distribution for Private Hospitals

Hospital / Insurer	Banmédica	Colmena	Consalud	Cruz Blanca	Masvida	Vida Tres	VI share
Alemana	15.24	37.53	5.56	24.34	7.57	9.77	0.00
Avansalud	10.05	10.34	52.62	22.26	3.12	1.61	52.62
Bicentenario	6.30	6.55	63.17	21.80	1.89	0.29	63.17
Dávila	67.89	5.21	12.24	9.43	1.86	3.38	71.27
Indisa	11.57	25.46	8.46	24.28	27.61	2.62	0.00
Las Condes	17.98	37.42	5.33	21.12	9.06	9.09	0.00
Santa María	44.73	17.88	4.59	17.45	6.14	9.21	53.94
Tabancura	12.14	17.25	43.38	18.71	4.57	3.95	43.38
UC	0.43	11.13	22.36	65.14	0.78	0.15	0.00
UC San Carlos	7.84	64.03	3.20	15.49	5.90	3.54	0.0
Vespucio	63.30	6.30	16.64	9.63	2.51	1.62	64.92
U. de Chile	21.60	9.34	46.20	19.78	1.81	1.26	0.00

Sample Restrictions for Estimation

- · Geography: metropolitan region of Santiago
 - Over 2 million covered lives per year
- Service type: Inpatient care only
 - About half of the market in dollar value
 - Outpatient market is very dispersed and providers are hard to track
- Hospitals: focus on the 12 largest providers
 - 80% of value of claims and 69% of number of claims
- Insurers: open insurers, and plan-groups with enough claims information
 - 7 closed insurers that serve specific industries or firms

VI, Prices, Coverage and Organization

• Exploit within-hospital variation in outcomes from VI and non-VI insurers:

$$\log(\mathbf{y}_{\textit{idjh}}) = \beta V I_{\textit{m}(j)\textit{h}} + \mathbf{X}'_{\textit{ij}} \gamma + \tau_{\textit{d}} + \eta_{\textit{m}(j)} + \zeta_{\textit{h}} + \varepsilon_{\textit{idjh}}$$

where $VI_{m(i)h}$ indicates that admission *i* comes from a VI insurer

VI, Prices, Coverage and Organization

• Exploit within-hospital variation in outcomes from VI and non-VI insurers:

$$\log(\mathbf{y}_{\textit{idjh}}) = \beta \mathbf{V} \mathbf{I}_{m(j)h} + \mathbf{X}'_{ij}\gamma + \tau_d + \eta_{m(j)} + \zeta_h + \varepsilon_{\textit{idjh}}$$

where $VI_{m(i)h}$ indicates that admission *i* comes from a VI insurer

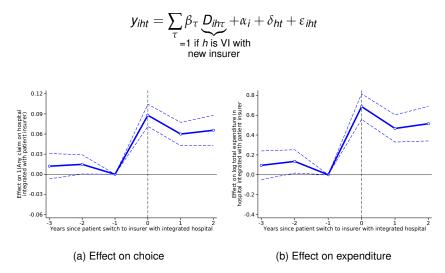
	log(Charge)	log(Payment)	log(OOP)
VI	-0.079***	0.039*	-0.230***
	(0.017)	(0.022)	(0.031)
Ν	545,716	545,716	545,716
R^2	0.45	0.42	0.38

- Relationship between VI, prices and coverage:
 - Prices 8% lower, patient OOP 20% lower for patients from VI

VI, Prices, Coverage and Organization

• Exploit within-hospital variation in outcomes from VI and non-VI insurers:

$$\log(\mathbf{y}_{\textit{idjh}}) = \beta \mathbf{V} \mathbf{I}_{m(j)h} + \mathbf{X}'_{ij}\gamma + \tau_{d} + \eta_{m(j)} + \zeta_{h} + \varepsilon_{\textit{idjh}}$$


where $VI_{m(i)h}$ indicates that admission *i* comes from a VI insurer

	log(Charge)	log(Payment)	log(OOP)	1(Hemogram)	1(C-section)
VI	-0.079***	0.039*	-0.230***	0.064***	-0.049**
	(0.017)	(0.022)	(0.031)	(0.021)	(0.019)
Ν	545,716	545,716	545,716	62,662	77,019
R^2	0.45	0.42	0.38	-	-

- Relationship between VI and hospital cost-control behavior:
 - · Mixed evidence that physicians in VI firms reduce costs
 - No evidence that patients in VI firms receive fewer services

VI, Hospital Choice and Expenditure

· Exploit insurance switchers to study whether VI affects choice

Hospital and Insurer Profits

• Hospital system s profits:

$$\pi_{s}^{H}(\boldsymbol{\phi}, \boldsymbol{p}) = \sum_{h \in \mathcal{H}_{s}} \sum_{m \in \mathcal{M}} \sum_{j \in \mathcal{J}_{m}} \underbrace{D_{hj}^{H}(\boldsymbol{\phi}, \boldsymbol{p})}_{\text{Hospital demand}} (p_{mh} - \underbrace{c_{mh}^{H}}_{\text{Hospital cost}})$$

Insurer *m* profits:

$$\pi_m^M(\boldsymbol{\phi}, \boldsymbol{p}) = \sum_{j \in \mathcal{J}_m} \underbrace{D_j^M(\boldsymbol{\phi}, \boldsymbol{p})}_{\text{Plan demand}} (\phi_j - \underbrace{c_j^M}_{\text{Plan cost}})$$

• Integrated system (*m*, *s*) profits:

$$\pi_{ms}^{VI}(\boldsymbol{\phi}, \boldsymbol{p}) = \theta_{ms} \pi_m^M(\boldsymbol{\phi}, \boldsymbol{p}) + \pi_{s(m)}^H(\boldsymbol{\phi}, \boldsymbol{p})$$

Price and Premium Determination

Insurers offer differentiated plans and compete on premiums:

$$\boldsymbol{\phi}_{m}^{*} \in \arg \max_{\boldsymbol{\phi}_{j}} \begin{cases} \pi_{m}^{M}(\boldsymbol{\phi}_{j}, \boldsymbol{\phi}_{-j}^{*}, \boldsymbol{p}) & \text{ if m not VI} \\ \pi_{ms(m)}^{VI}(\boldsymbol{\phi}_{j}, \boldsymbol{\phi}_{-j}^{*}, \boldsymbol{p}) & \text{ if m VI} \end{cases}$$

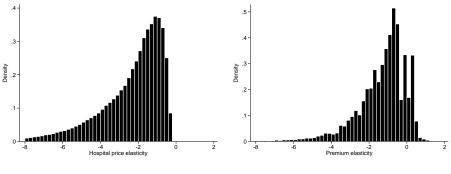
Hospital prices determined by Nash-in-Nash bargaining or optimally by VI:

$$\boldsymbol{p}_{mh}^{*} \in \arg \max_{p_{mh}} \begin{cases} \pi_{ms(h)}^{VI} & \text{if m,h VI} \\ \left(\pi_{s(h)}^{H} - \pi_{s(h)\backslash m}^{H}\right)^{(1-\lambda_{mh})} \left(\pi_{m}^{M} - \pi_{m\backslash s(h)}^{M}\right)^{\lambda_{mh}} & \text{otherwise} \end{cases}$$

- Timing assumption implies: $\phi^*(p)$
- Disagreements affect all off-path premiums, but not prices
- Disagreeing hospital systems remove all hospitals

Demand for Hospitals and Insurance Plans

• Hospital demand: Indirect utility from hospital h, diagnosis d and plan j:


 \longrightarrow Average hospital price elasticity: -2.40

• Plan demand: Indirect utility from plan *j* for household *f*:

where WTP is expected utility from plan j in terms of health care

 \longrightarrow Average plan premium elasticity: -1.32

Hospital and Insurer Demand Elasticities

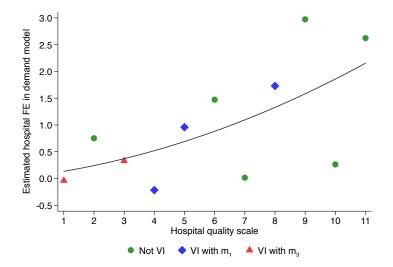
Hospital price elasticity

Plan premium elasticity

- Average hospital price elasticity: -2.40
- Average plan premium elasticity: -1.32

Hospital Demand Estimation Sample

	Ν	Mean	Std	Min	25%	50%	75%	Max
Copayment	8,290,164	1.078	0.768	0.049	0.514	0.859	1.438	7.418
Public price	690,847	0.086	0.066	0.003	0.040	0.067	0.113	0.596
# Dependents	8,981,011	1.455	1.386	0.000	0.000	1.000	2.000	14.000
Female	8,981,011	0.555	0.497	0.000	0.000	1.000	1.000	1.000
Distance	8,290,164	9.090	6.479	0.000	4.948	7.747	11.855	65.144
Age	8,981,011	27.895	20.260	0.000	0.000	25.000	45.000	60.000
Preferential provider	8,981,011	0.123	0.328	0.000	0.000	0.000	0.000	1.000
Observations	8,981,011							
Choices	690,847							
Consumers	409,512							


Plan Demand Estimation Sample

	Ν	Mean	Std	Min	25%	50%	75%	Max
Premium	41,496,906	0.164	0.074	0.025	0.118	0.149	0.192	1.634
Female	41,496,906	0.409	0.492	0.000	0.000	0.000	1.000	1.000
# Dependents	41,496,906	0.012	0.181	0.000	0.000	0.000	0.000	10.000
WTP	41,496,906	0.156	0.152	-0.536	0.050	0.124	0.220	2.827
Income	41,496,906	1.518	1.079	0.000	0.700	1.444	2.441	31.852
Observations	41,496,906							
Choices	1,420,518							
Consumers	599,926							

Hospital Demand Estimates

	All	$\text{Age} \leq 45$	Age > 45
Panel A - Preferences estimates	(1)	(2)	(3)
α ^H - Hospital price			
Age \leq 25	-2.133***	-2.639***	
	(0.011)	(0.017)	
Age ∈ (25, 45]	-2.168***	-2.644***	
	(0.010)	(0.015)	
Age ∈ (45, 60]	-2.078***		-1.558***
	(0.011)		(0.013)
Age > 60	-1.970***		-1.489***
	(0.011)		(0.013)
Single female	0.441***	0.796***	0.165***
	(0.010)	(0.015)	(0.012)
Dependents	0.375***	0.682***	0.169***
	(0.009)	(0.014)	(0.011)
Income 2 nd quartile	-0.294***	-0.285***	-0.288***
	(0.007)	(0.010)	(0.010)
Income 3 rd quartile	0.083***	0.167***	-0.040***
	(0.007)	(0.009)	(0.010)
Income 4 th quartile	0.495***	0.631***	0.295***
	(0.007)	(0.009)	(0.010)
β_v - Distance to hospital	-0.094***	-0.101***	-0.083***
	(0.000)	(0.001)	(0.001)
Observations	7,899,554	5,098,860	2,800,694

Hospital Unobservables and Hospital Quality

Insurance Demand Estimates

	All	$\text{Age} \leq 45$	Age > 45	All	$\text{Age} \leq 45$	Age > 45
	(1)	(2)	(3)	(1)	(2)	(3)
Panel A - Preferences estimates	α٨	¹ - Plan premi	um	β - Ne	twork expected	d utility
Age \leq 25	-15.839***	-19.889***		5.871***	11.027***	
	(0.223)	(0.321)		(0.071)	(0.106)	
Age ∈ (25, 45]	-6.486***	-14.385***		5.492***	10.347***	
	(0.097)	(0.253)		(0.034)	(0.083)	
Age ∈ (45, 60]	-8.552***		-3.945***	4.910***		5.246***
	(0.092)		(0.133)	(0.036)		(0.048)
Age > 60	-4.805***		0.375***	2.283***		2.416***
	(0.082)		(0.108)	(0.030)		(0.038)
Single female	-0.409***	0.606**	0.724***	-0.116***	-5.464***	0.781***
	(0.087)	(0.257)	(0.113)	(0.029)	(0.076)	(0.037)
Dependents	-2.747***	-2.484***	-1.609***	-2.630***	-8.175***	-2.076***
	(0.068)	(0.244)	(0.082)	(0.028)	(0.077)	(0.032)
Income 2 nd quartile	-9.407***	-7.743***	-8.128***	-0.059***	0.309***	-0.192***
	(0.070)	(0.103)	(0.095)	(0.017)	(0.022)	(0.025)
Income 3 rd quartile	1.268***	8.157***	-3.287***	0.748***	1.269***	0.492***
	(0.058)	(0.088)	(0.077)	(0.016)	(0.022)	(0.023)
Income 4 th quartile	9.101***	19.940***	2.569***	0.674***	1.199***	0.714***
	(0.053)	(0.086)	(0.058)	(0.017)	(0.024)	(0.024)
Observations	44,276,610	30,234,540	14,042,070	44,276,610	30,234,540	14,042,07

Identification of the Supply Side

- If **c** and θ are identified then λ is identified
- Conditional on **c**, premium and insurer financial moments (mainly) identify θ
- Orthogonality conditions identify within-insurer marginal cost variation:
 - Decompose $c_{hmt} = \bar{c}_{ht} + \zeta_{hmt}$ such that:

$$P_{s} - \bar{C}_{s}^{H} = F(P, \bar{C}, \zeta | \lambda, \theta)$$

for $F(\cdot)$ known function of rival system prices and preferences

Non-linear IV logic, need Z orthogonal to ζ and predictor of P

 $\mathbb{E}[\zeta|P] \neq 0$

where for Z we use:

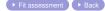
- WTP for the hospital given public prices
- Mean WTP for other hospitals in the system given public prices
- Mean over competing hospital WTP using public system prices
- Mean over rival systems WTP using public system prices

GMM Instrument First Stage

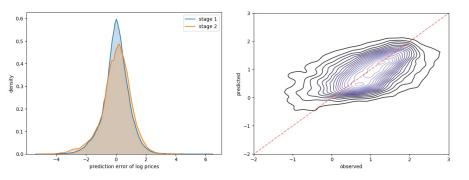
• The first stage regression is:

$$p_{hmt} = z'_{hmt}\beta + \varepsilon_{hmt}$$

	β	S.E.	Ζ	P > z	[0.025	0.975]
WTP hospital	-0.0596	0.051	-1.164	0.244	-0.160	0.041
WTP system	0.0631	0.052	1.207	0.227	-0.039	0.166
WTP rivals	-0.2873	0.058	-4.922	0.000	-0.402	-0.173
WTP system rivals	0.3046	0.060	5.110	0.000	0.188	0.421
Observations	288					
R-squared	0.854					
F-statistic	437.0					


Preliminaries: Risk and Prices

- Diagnosis risk: mean diagnosis frequency over the sample by gender-age
 Negotiated prices:
 - Model assumes a single price is negotiated p_{hmt}, but observe p_{ihmdt}.
 - Assumption: common condition-weight


$$\ln(\tilde{p}_{ihm\tilde{d}t}) = \ln(p_{mht}) + \ln(\omega_{i\tilde{d}t}) + \epsilon_{ihm\tilde{d}t}, \quad \mathbb{E}[\epsilon|p, \omega] = 0$$

- Problem: ω_{idt} unobserved and id is too rich, want lower dimension κ(i)d.
- Solution: use public system prices and average:

$$\ln(\tilde{p}_{ihm\tilde{d}t}) = \underbrace{FE_{mht}}_{p_{mht}} + \alpha \ln(p_{i\tilde{d}t}^{pub}) + \epsilon_{ihm\tilde{d}t}$$
$$\hat{\alpha} \ln(p_{i\tilde{d}t}^{pub}) = \underbrace{FE_{\kappa(i)dt}}_{\omega_{ct}} + \epsilon_{\tilde{d}t}$$

Negotiated Price Fit

Back

Supply Side Estimates

Hospitals	Marginal Cost	Negotiated Price	Mark-up
All Hospitals	3.02	4.50	0.386
VI Hospitals	2.09	3.40	0.406
Non-VI Hospitals	3.94	5.60	0.366
VI Hospitals to VI-own insurer	2.29	3.33	0.341
VI Hospitals to non VI-own insurer	2.04	3.42	0.422

- Marginal cost of VI slightly higher for own-VI
- Average price for non-VI distorted upward by two premium hospitals
- No double-marginalization does not imply no mark-up

Bargaining Weight Estimates

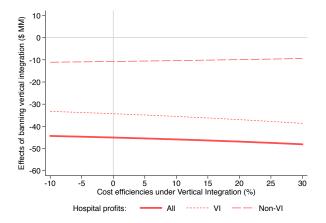
· Bargaining weights are estimated as:

$$\lambda_{hm} = \bar{\lambda}_{h} \alpha_{VI(h,m)} + (1 - \alpha_{VI(h,m)}) \bar{\lambda}_{m}$$

where underlined number are VI weights on insurer profits

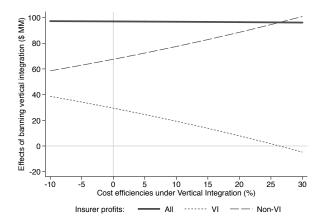
Hospital / Insurer	Banmedica	Colmena	Consalud	Cruzblanca	Masvida
UC	1	0.892	1	0.765	0.655
UC San Carlos	0.942	0.475	0.942	0.347	0.238
U. de Chile	1	0.891	1	0.763	0.653
Alemana	0.909	0.237	0.909	0.109	1e-08
Avansalud	0.695	1.69e-08	<u>0.466</u>	1.32e-08	1e-08
Bicentenario	0.695	1.69e-08	0.466	1.32e-08	1e-08
Davila	0.204	0.178	0.749	0.178	0.178
Indisa	0.948	0.519	0.948	0.392	0.282
Las Condes	0.913	0.267	0.913	0.14	0.0303
Santa Maria	0.204	0.178	0.749	0.178	0.178
Tabancura	0.695	1.69e-08	0.466	1.32e-08	1e-08
Vespucio	<u>0.204</u>	0.178	0.749	0.178	0.178

Banning VI: Consumer Surplus


Consumers	Market share	Premium sensitivity (α)	∆ Consumer surplus
Female 0-24	1.482%	-21.480	-0.002
Female 25-44	22.747%	-11.332	0.025
Female 45-60	9.510%	-7.954	0.075
Female 60+	4.204%	-4.151	0.200
Male 0-24	4.633%	-24.093	-0.007
Male 25-44	36.839%	-9.879	0.043
Male 45-60	14.562%	-7.069	0.070
Male 60+	6.022%	-3.758	0.132
Weighted average		-9.838	0.055

- Consumers willing to pay \$55/year to ban VI, or ${\sim}4\%$ higher premiums
- · Heterogeneity driven by premium-sensitivity and preferences over hospitals

Banning VI: Welfare Effects and Cost Efficiencies


Cost Efficiency	Consumers	Hospitals	Insurers	Total
-10%	101.342	-44.090	100.915	158.167
-5%	95.850	-44.433	100.827	152.244
0%	90.104	-44.803	100.732	146.032
5%	84.088	-45.204	100.629	139.514
10%	77.787	-45.638	100.517	132.666
15%	71.180	-46.111	100.397	125.466
20%	64.248	-46.627	100.268	117.888
25%	56.971	-47.194	100.130	109.907
30%	49.327	-47.817	99.983	101.493

Banning VI: Hospital Profits

Back

Banning VI: Insurer Profits

Back