
TOWARDS A DISCIPLINE OF EXPERIMENTALALGORITHMICSBERNARD M.E. MORETAbstrat. The last 20 years have seen enormous progress in the design of al-gorithms, but very little of it has been put into pratie, even within aademia;indeed, the gap between theory and pratie has ontinuously widened overthese years. Moreover, many of the reently developed algorithms are veryhard to haraterize theoretially and, as initially desribed, su�er from largerunning-time oeÆients. Thus the algorithms and data strutures ommunityneeds to return to implementation as the standard of value; we all suh anapproah Experimental Algorithmis.Experimental Algorithmis studies algorithms and data strutures by join-ing experimental studies with the more traditional theoretial analyses. Ex-perimentation with algorithms and data strutures is proving indispensablein the assessment of heuristis for hard problems, in the design of test ases,in the haraterization of asymptoti behavior of omplex algorithms, in theomparison of ompeting designs for tratable problems, in the formulationof new onjetures, and in the evaluation of optimization riteria in human-related ativities. Experimentation is also the key to the transfer of researhresults from paper to prodution ode, providing as it does a base of well-testedimplementations.We present our views on what is a suitable problem to investigate with thisapproah, what is a suitable experimental setup, what lessons an be learnedfrom the empirial sienes, and what pitfalls await the experimentalist whofails to heed these lessons. We illustrate our points with examples drawnfrom our researh on solutions for NP-hard problems and on omparisons ofalgorithms for tratable problems, as well as from our experiene as reviewerand editor. 1. IntrodutionImplementation, although perhaps not rigorous experimentation, was harater-isti of early work in algorithms and data strutures. It is only reently, however,that the algorithms ommunity has shown signs of returning to implementation andtesting as an integral part of algorithm development. Publiation outlets remainrare: the ORSA J. Computing and Math. Programming have published severalstrong papers in the area, but the standard journals in the algorithm ommunity,suh as the J. Algorithms, J. ACM, SIAM J. Computing, and Algorithmia, as wellas the more speialized journals in omputational geometry and other areas, havebeen slow to publish experimental studies. The new on-line ACM J. ExperimentalAlgorithmis should help, as will two new onferenes targeted at experimental workin algorithms, the Workshop on Algorithm Engineering (WAE) and the Workshopon Algorithm Engineering and Experiments (ALENEX). Support for an experimen-tal omponent in algorithms researh is growing among funding agenies as well.The author's work on various related projets has been supported for the last six years by theOÆe of Naval Researh. 1



2 BERNARD M.E. MORETWe may thus be poised for a revival of experimentation as a researh methodologyin the development of algorithms and data strutures, a most welome prospet,but also one that should prompt some reetion.As we ontemplate approahes based on (or at least making extensive use of)experimentation, we may want to reet on the meanings of the two adjetives usedto denote suh approahes. Aording to the Collegiate Webster, these adjetivesare de�ned as follows.� experimental: 1. relating to or based on experiene; 2. founded uponexperiments; 3. serving the ends of experimentation; 4. tentative.� empirial: 1. relying on experiene or observation alone; 2. based on ex-periene or observation; 3. apable of being veri�ed or disproved throughexperiene or observation.Certainly, part (2) of the de�nition of \experimental" and parts (2) and (3) of thede�nition of `empirial" apture muh of what most of us would agree is essential inthe use of experiments. Unfortunately, both words have problemati onnotations:the \tentative" meaning of \experimental" and the exlusion of theory in the �rstde�nition of \empirial." An empirial approah may be perfetly suitable for anatural siene, where the �nal arbiter is nature as revealed to us through experi-ments and measurements, but it is inomplete in the arti�ial and mathematiallypreise world of omputing, where the behavior of an algorithm or data struturean, at least in priniple, be haraterized entirely from �rst priniples. Naturalsientists run experiments beause they have no other way of learning from nature,but algorithm designers, again in priniple, learn nothing from an experiment thatthey did not build in: the results are, by de�nition, ompletely preditable. Inother words, we do not so muh ondut experiments as use the omputer to alu-late numerial values for our preditions. Muh the same is done by omputationalsientists in physis, hemistry, and biology, but their aim is to ompare the pre-ditions given by a model with the measurements made from nature; in ontrast,algorithm designers are measuring the atual algorithm, not a model, and the re-sults are not assessed against some gold standard (nature), but simply reported assuh or ompared with other \experiments" of the same type. (Of ourse, we doalso build models and gauge them against the real system; typially, our modelsare mathematial funtions that haraterize some aspet of the algorithm, suh asits asymptoti running time.)Why this epistemologial digression? Beause it points to the neessity of bothlearning from the natural sienes, where experimentation has been used for en-turies and where the methodology known as \the sienti� method" has been devel-oped to optimize the use of experiments, and of staying aware of the fundamentaldi�erene between the natural sienes and omputer siene, sine the goal of ex-perimentation in algorithmi work di�ers fundamentally from that in the naturalsienes. 2. Bakground and MotivationFor over thirty years, the standard mode of theoretial analysis (and thus alsothe main tool used to guide new designs) has been the asymptoti analysis (\bigOh" and \big Theta") of worst-ase behavior (running time or quality of solution).The asymptoti mode eliminates potentially onfusing behavior on small instanesdue to start-up osts and learly shows the growth rate of the running time. The



TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 3worst-ase mode gives us lear bounds and also simpli�es the analysis by removingthe need for any assumptions about the data. The resulting presentation is easyto ommuniate and reasonably well understood, as well as mahine-independent.However, we pay a heavy prie for these gains:� The range of values in whih the asymptoti behavior is learly exhibited(\asymptopia," as it has been named by many authors) may inlude onlyinstane sizes that are well beyond any oneivable appliation. A typialexample is the algorithm of Fredman and Tarjan for minimum spanning trees.Its asymptoti worst-ase running time is O(jEj�(jEj; jV j))|where �(m;n) isgiven by minfi j log(i) n � m=ng, so that, in partiular, �(n; n) is just log� n.This bound is muh better for dense graphs than that of Prim's algorithm,whih is O(jEj log jV j), but experimentation [20℄ veri�es that the rossoverpoint ours for dense graphs with well over a million verties|beyond thesize of any reasonable data set.� The worst-ase behavior may be restrited to a very small subset of instanesand thus not at all harateristi of instanes enountered in pratie. Alassi example here is the running time of the simplex method for linearprogramming; for over thirty years, it has been known that the worst-asebehavior of this method is exponential and also that its pratial runningtime appears bounded by a low-degree polynomial [1℄.� The onstants hidden in the asymptoti analysis may prevent any pratialimplementation from running to ompletion, even if the growth rate is quitereasonable. An extreme example of this problem is provided by the theory ofgraph minors: Robertson and Seymour (see [24℄) gave a ubi-time algorithmto determine whether a given graph is a minor of another, but the propor-tionality onstants are giganti|on the order of 10150|and have not beensubstantially lowered yet, making the algorithm entirely impratial.� Even in the absene of any of these problems, deriving tight asymptotibounds may be very diÆult. Almost all interesting approximation algo-rithms for NP-hard problems su�er from this drawbak: by onsidering alarge number of parameters and often a substantial slie of reent history,they reate a omplex state spae whih is very hard to analyze with existingmethods, whether to bound the running time or to estimate the quality ofthe returned solution.These are the most obvious drawbaks. A more insidious drawbak, yet one thatould prove muh more damaging in the long term, is that worst-ase asymptotianalysis tends to promote the development of \paper-and-penil" algorithms, thatis, algorithms that never get implemented. This problem ompounds itself quikly,as further developments rely on earlier ones, with the result that many of the mostinteresting algorithms published over the last �ve years rely on several layers ofomplex, unimplemented algorithms and data strutures. In order to implement oneof these reent algorithms, a omputer sientist would fae the daunting prospetof developing implementations for all suessive layers. Moreover, the \paper-and-penil" algorithms often ignore issues ritial in making implementations eÆient(from elementary ideas suh as the use of sentinels to more elaborate ones suh asthe use of \saks" in sophistiated priority queues [20℄); the implementer will haveto resolve these issues \on the y," possibly with very poor results.



4 BERNARD M.E. MORETWhat an we do to improve this situation? There is no reason to abandon asymp-toti worst-ase analysis: it has served the ommunity very well for over thirty yearsand led to major algorithmi advanes. But there is a de�nite need to supplementit with experimentation, whih implies that algorithms should be implemented,not just designed. Indeed, many algorithms are quite diÆult to implement, inwhih ase the theoretiian needs to help the pratitioner, beause the pratitionerhas little hane of ompleting a suessful implementation independently. Manyexamples of suh an be found in omputational geometry: Chazelle's linear-timesimpliity testing, Chazelle's onvex deomposition algorithm, and Chang and Yap's\potato-peeling" algorithm all are very intriate and remain|to my knowledge|unimplemented. But the pratitioner is not the only one who stands to bene�tfrom implementation: often an implementation fores the theoretiian to fae issuesglossed over in the high-level design phase. Resolving these issues may bring abouta deeper understanding of the algorithm and a resulting simpli�ation or moremodestly may lead the theoretiian to new onjetures. Major theoretial break-throughs, suh as Chazelle's linear-time simpliity test or Robertson and Seymour'spolynomial-time minor test, are their own justi�ation, but many inremental re-sults should be judged on more pratial grounds: do they lead to better, faster,more robust implementations? Finally, experimentation should also test the verygoals of algorithm design: too many theoretiians spend time solving small puz-zles of little importane to anyone. Any type of sienti� visualization, inludingmany that have seen onsiderable e�orts in algorithm design, suh as automatedmap labeling and graph drawing, provides an obvious example; in the ase of graphdrawing, there would be little reason to spend years developing algorithms thatdraw graphs with a minimum number of rossings, for instane, if we did not haveempirial evidene (see, for instane, [22℄) that suh drawings are more easily in-terpreted by humans than drawings with large numbers of rossings.3. Modes of Empirial AssessmentWe an lassify modes of empirial assessment into a number of non-exlusiveategories:� Cheking for auray or orretness in extreme ases (e.g., standardized testsuites for numerial omputing).� Measuring the running time of exat algorithms on real-world instanes ofNP-hard problems.� Assessing the quality of heuristis for the approximate solution of NP-hardproblems (and, inidentally, generating hard instanes).� Comparing the atual performane of ompeting algorithms for tratableproblems.� Disovering the speed-up ahieved by parallel algorithms on real mahines.� Investigating and re�ning optimization riteria direted at human use.� Testing the quality and robustness of simulations, of optimization strategiesfor omplex systems, et.The �rst ategory has reahed a high level of maturity in numerial omputing,where standard test suites are used to assess the quality of new numerial odes.Similarly, the operations researh ommunity has developed a number of test asesfor linear program solvers. We have no omparable emphasis to date in ombinato-rial and geometri omputing. The last ategory is the target of large e�orts within



TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 5the Department of Defense, whose inreasing reliane on modeling and simulationhas plaed it at the forefront of a movement to develop validation and veri�ationtools; the algorithm ommunity an help by providing erti�ation levels for thevarious data strutures and optimization algorithms embedded within large simu-lation systems. Studying speed-ups in parallel algorithms remains for now a ratherspeialized endeavor, mostly beause of the dediated nature of software (whihtypially annot be run on another mahine without major performane losses)and beause of our attending lak of a good model of parallel omputation. As tothe study of optimization riteria direted at human use|i.e., the assessment oftheir value to human users, this is a relatively new area motivated in part by therenewed attention being paid to human-omputer interation. We disuss the otherthree ategories, whih have seen the bulk of researh to date, in some detail below.3.1. Assessment of Heuristis and Generation of Hard Instanes. Here thegoal is to measure the performane of heuristis on real and arti�ial instanes andto improve the theoretial understanding of the problem, presumably with the aimof produing yet better heuristis or proving that urrent heuristis are optimal.By performane is implied both the running time and the quality of the solutionprodued.Sine the behavior of heuristis is very diÆult to haraterize analytially, exper-imental studies have been the rule; the Operations Researh ommunity �rst gavesome guidelines for experimentation with integer programming problems (see [1℄,Chapter 18). The �rst large-sale ombinatorial study to inlude both real-worldand generated instanes was probably our work on the minimum test set prob-lem [19℄, but other large-sale studies were published in the same time frame, mostnotably the lassi and exemplary study of simulated annealing by David Johnson'sgroup [8, 9℄. The Seond DIMACS Computational Challenge [11℄ was devoted tosatis�ability, graph oloring, and lique problems and thus saw a large olletionof results in this area. Proeedings of the ACM/SIAM Symposium on DisreteAlgorithms (SODA) have inluded a few suh studies for eah of the last few years;an outstanding reent example is the study of ut algorithms by Chekuri et al. [3℄.The Traveling Salesperson problem has seen large numbers of experimental stud-ies (inluding the well publiized study of Jon Bentley [2℄), made possible in partby the development of a library of test ases [23℄. Graph oloring, whether in itsNP-hard version of hromati number determination or in its muh easier (yet stillhallenging) version of planar graph oloring, has seen muh work as well; the se-ond study of simulated annealing onduted by Johnson's group [8℄ disussed manyfaets of the problem, while Morgenstern and Shapiro [21℄ provided a detailed studyof algorithms to olor planar graphs.3.2. Assessment of Competing Algorithms and Data Strutures for TratableProblems. The goal here is to measure the atual performane of ompeting algo-rithms for well-solved problems. This is fairly new work in ombinatorial algorithmsand data strutures, but ommon in Operations Researh; early (1960s) work indata strutures typially inluded ode and examples, but no systemati study.More reent and omprehensive work began with Jones' omparison of data stru-tures for priority queues [12℄ and Stasko and Vitter's ombination of analytialand experimental work in the study of pairing heaps [25℄. The �rst experimentalstudy on a large sale was that of Moret and Shapiro on sorting algorithms [18℄(Chapter 8), followed by that of the same authors on algorithms for onstruting



6 BERNARD M.E. MORETminimum spanning trees [18, 20℄. In 1991, Johnson and others initiated the verysuessful DIMACS Computational Challenges, the �rst of whih [10℄ foused onnetwork ow and shortest path algorithms, indiretly giving rise to two modern,thorough studies, by Cherkassky et al. on shortest paths [4℄ and by Cherkassky etal. on the implementation of the push-relabel method for network ows [5℄. The DI-MACS Computational Challenges (the �fth, in 1996, foused on another tratableproblem, priority queues and point loation data strutures) have served to high-light work in the area, to establish ommon data formats (partiularly formats forgraphs and networks), and to set up the �rst tailored test suites for a host of prob-lems. Reent onferenes (suh as the Workshop on Algorithm Engineering and theWorkshop on Algorithm Enginering and Experiments1) have emphasized the needto develop libraries of robust, well-tested implementations of the basi disrete andombinatorial algorithms, a task that only the LEDA projet [17℄ has suessfullyundertaken to date. 4. Worthwhile ProblemsIn view of the preeding, what should researhers in the area be working on?We propose below a partial list and briey disuss the reasons for our hoies.4.1. Testing and improving algorithms for hard problems. Understandinghow a heuristi works to ut down on omputational time is generally too diÆultto ahieve through formal derivations; muh the same goes for bounding the qualityof approximations obtained with most heuristis. Yet both aspets are ruial inevaluating performane and in helping us design better heuristis.In the same vein, understanding when an exat algorithm runs quikly is gen-erally too diÆult for formal methods; experimentation an help us assess its per-formane on real-world instanes (a ruial point) and develop at least ad hoboundaries between instanes where it runs fast and instanes that exhibit theexponential worst-ase behavior.4.2. Comparing existing algorithms and data strutures for tratableproblems. Our task is somewhat easier with algorithms for tratable problemsthan with heuristis for intratable problems, yet haraterizing the behavior ofeither on real-world instanes is generally very hard simply beause we often lakthe ruial instane parameters with whih to orrelate running times. Experimen-tation an quikly pinpoint good and bad implementations and whether theoretialadvantages are retained in pratie. In the proess, newer insights may be gleanedthat might enable a re�nement or simpli�ation of the algorithm. Experimentationan also enable us to determine the atual onstants in the running time analy-sis; determining suh onstants beforehand is quite diÆult (see [7℄ for a possiblemethodology), but a simple regression analysis from the data an gives us quiteaurate values.4.3. Supporting and re�ning onjetures. Any theoretiian knows the pangsof ommitting to a researh question without being too sure of the outome andof attempting to prove a statement that might not even be true. Having a meansof testing a onjeture over a range of instanes might, in the best ase, set one's1See the front page of the ACM J. Experimental Algorithmis at www.jea.am.org for linksto these onferenes.



TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 7mind at rest and, in the worst ase, avoid a lot of wasted work. More importantly,good experiments are a rih soure of new onjetures and theorems.4.4. Developing libraries of basi algorithms and data strutures. Anyoneontemplating the oding of a library module for some data struture or basialgorithm must take reasonable preautions to ensure that her implementation willbe as eÆient as possible and to doument onditions under whih it will performwell or poorly.4.5. Developing tools to failitate the design and analysis of algorithms.Under this ategory ome statistial and graphial tools to analyze experiments,but also animation tools to visualize the progress of an experiment. We should notunderestimate the value of experimentation with algorithms as a disovery tool; inorder to make suh experimentation even more valuable, animation and analysistools are urgently needed. Algorithm animations have been shown to ommuniatea large amount of information in a very suint manner but are urrently veryhard to develop for lak of suitable tools.4.6. Conduting human experiments on the value of optimization fordata presentation. The pure theoretiian has only one answer when asked why(s)he worked on a problem: beause it was there (and, inidentally, beause itwas attrative). But it is fatally easy to generate volumes of intriguing, unsolvedoptimization problems; before ommitting sare resoures to their solution, it be-hooves us to evaluate their importane and relevane as well as we an. In thease of various failities problems, eonomi analyses may be available that pointout the most important fators; in the ase of human interation, we may have toondut experiments to assess the worth of various riteria.5. Experimental SetupHow should an experimental study be onduted, one a topi has been identi-�ed? Surely the most important riterion to keep in mind is that an experiment isrun either as a disovery tool or as a means to answer spei� questions. Experi-ments as explorations are ommon to all endeavors, in omputing, in the sienes,and indeed in any human ativity; the setup is essentially arbitrary|in partiu-lar it should not be allowed to limit one's reativity. So we shall fous insteadon experiments as means to answer spei� questions|the essene of the sienti�method used in all physial sienes. In this methodology, we begin by formulatinga hypothesis or a question, then set about gathering data to test or answer it, whileensuring reproduibility and signi�ane. In terms of experiments with algorithms,these harateristis give rise to the following proedural rules:� Begin the work with a lear set of objetives: whih questions will you beasking, whih statements will you be testing?� One the experimental design is omplete, simply gather data. (No alterationsare to be made until all data have been gathered, so as to avoid bias or drift.)� Analyze the data to answer only the original objetives. (Later, onsider howa new yle of experiments an improve your understanding.)However, as we noted earlier, the experiments do little more than predit theirown outomes|there is no �nal arbiter as in the natural sienes. Thus we shouldbeware of a number of potential pitfalls, inluding various biases due to:



8 BERNARD M.E. MORET� The hoie of mahine (ahing, addressing, data movement), of language(register manipulation, built-in types), or of ompiler (quality of optimizationand ode generation).� The quality of the oding (onsisteny and sophistiation of programmers).� The seletion or generation of instanes (we must use suÆient size and varietyto ensure signi�ane).� The method of analysis (to minimize the impat of hoie of mahine)Cahing, in partiular, may have very strong e�ets when omparing eÆient al-gorithms. For instane, in our study of MST algorithms, we observed 3:1 ratiosof running time depending on the order in whih the adjaeny lists were stored.Reent studies by LaMara and Ladner [14, 15℄ have quanti�ed many aspets ofahing and o�ers suggestions on how to work around ahing e�ets.Other typial pitfalls that arise in experimental work with algorithms inlude� Uninteresting work: omparing programming languages or spei� platforms,in partiular unusual ones; omparing algorithms with widely di�erent be-havior (linear and quadrati, say); et.� Bad setup: testing up to some �xed running time or spae without verifyingwhether the asymptoti behavior has manifested; testing too few instanes;using rough ode without any attempt at optimization and measuring runningtimes; using \found ode" without any doumentation (a temptation thesedays on the net); ignoring existing test suites; ignoring existing libraries andusing only sui generis ode; and any other introdution of possible onfound-ing fators.� Bad analysis or presentation: disarding data that do not �t without anyexplanation or even warning; presenting all of the data without analysis; usingomparisons to unde�ned \standards" (e.g., to the system sort routine).Most of these an be avoided with the type of routine are used by experimentalistsin any of the natural sienes; however, we should point out that onfounding fatorsan assume rather subtle forms, as any ursory study of publi health will attest.Computer systems have not yet reahed the level of omplexity of human behavior,but the aution remains valid: it pays to go over the design of an experimentalstudy a few times just to assess its sensitivity to potential onfounding fators.6. What to Measure?One of the key elements of an experiment is the metrology. What do we measure,how do we measure it, and how do we ensure that measurements do not interferewith the experiments? If there is one universal piee of advie in this area, itis always look beyond the obvious measures! Obvious measures may inlude thevalue of the solution (for approximation algorithms), the running time (for exatalgorithms and for algorithms for well-solved problems), the running spae, et.These measures are indeed useful, but a good understanding of the algorithm isunlikely to emerge from suh global quantities. We also need strutural measuresof various types (number of iterations; number of alls to a ruial subroutine;et.), if only to serve as a sale for determining suh things as onvergene rates.Knuth [13℄ has advoated the use of mems, or memory referenes, as a struturalsubstitute for running time. Other authors have used the number of omparisons,the number of data moves (both lassial measures for sorting algorithms), thenumber of assignments, et.



TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 9In our own experiene, we have found that there is no substitute, when evaluatingompeting algorithms for tratable problems, for measuring the atual runningtime; indeed, time and mems measurements, to take one example, may lead one toentirely di�erent onlusions. However, the obvious measures are often the hardestto interpret as well as the hardest to measure aurately and reproduibly. Runningtime, for instane, is inuened by ahing, whih in turn is a�eted by any otherrunning proesses and thus e�etively not reproduible exatly. In the ase ofompeting algorithms for tratable problems, the running time is often extremelylow (we an obtain a minimum spanning tree for a graph of a million vertiesin a seond or so on a typial desktop mahine), so that the granularity of thesystem lok may reate problems|this is a ase where it pays to repeat the entirealgorithm many times over on the same data, in order to obtain running timeswith at least two digits of preision. In a similar vein, measuring the quality of asolution an be quite diÆult, due to the fat that the optimal solution an be verylosely approahed on instanes of small to medium size or due to the fat that thesolution is essentially a zero-one deision (as in determining the hromati index ofa graph or the primality of a number), where the appropriate measure is statistialin nature (how often is the orret answer returned?) and thus requires a very largenumber of test instanes.7. How to Present and Analyze the DataPerhaps the �rst requirement in data presentation is to ensure reproduibilityby other researhers: we need to desribe in detail what instanes were used (howthey were generated or olleted), what measurements were olleted and how,and, preferably, where the reader an �nd all of this material on-line. The seondrequirement is rather obvious, but often ignored for all that: we annot just disardwhat appear to be anomalies, at least not unless we an explain their presene; ananomaly without an explanation is not an error, but an indiator that somethingunusual (and possibly interesting) is going on. We have already mentioned severaltimes that every e�ort should be made to minimize the inuene of the environment:platform, oding, ompiling, paging, ahing, et., through ross-heking arossmultiple platforms and environments, through the use of normalization routines,and through environmental preautions (suh as running on otherwise quiesentmahines).The data should then be analyzed with suitable statistial methods. Sine at-taining levels of statistial signi�ane may be quite diÆult in the large state spaeswe ommonly use, various tehniques to make the best use of available experimentsshould be applied (see MGeoh's exellent survey [16℄ for a disussion of severalsuh methods). Cross-heking the measurements with any available theoretialresults, espeially those that attempt to predit the atual running time (suh asthe \equivalent ode fragments" approah of [7℄), is ruial; any serious disrepanyneeds to be investigated.Finally, the data need to be presented to the readers in a form that humans aneasily proess|not in tabular form, not as raw plots with multiple rossing urves,but with suitable saling and normalization and with the use of good graphis, ol-ors, et. Animations an onvey enormous amounts of information very suintly,so onsider providing suh if the work needed to produe them is not exessive.



10 BERNARD M.E. MORET8. Illustration: Algorithms for Construting a Minimum SpanningTreeWe shall not repeat here the results given in [20℄, but rather highlight the prob-lems enountered during the study and some of the solutions we found to be e�e-tive. We studied MST algorithms beause of their pratial importane, beauseinstanes enountered in pratie an be very large, and beause the implementerfaes a very large number of algorithmi hoies, eah with its own hoie of sup-porting data strutures. In 1989, when we started the study, we had at least thefollowing hoie of algorithms: Kruskal's (with a priority queue, with prior sorting,or with sorting on demand), Prim's (with any of a large number of priority queues,from binary heaps to rank- and run-relaxed heaps), Cheriton and Tarjan's (with andwithout the lazy variation) Fredman and Tarjan's, Gabow et al.'s, and the entirelydi�erent algorithm of Fredman and Willard; to this list we ould now add neweralgorithms by Klein and Tarjan, by Karger, and by Chazelle. Prim's algorithm,the most ommonly used (for good reason, as our study demonstrated), ould inturn be implemented with binary heaps, d-heaps, pairing heaps, leftist heaps, skewheaps, binomial heaps, or splay trees, or with more sophistiated strutures suh asFibonai heaps, rank-relaxed heaps, or run-relaxed heaps, in eah ase with heapsbuilt dynamially or pre-built statially before starting the algorithm. Few of thesehoies had been implemented at that time.We ran an experimental study using three di�erent platforms (two CISC and oneRISC) and multiple languages and ompilers, but with one programmer writing allof the ode, so as to keep the level of oding onsistent throughout. We explored low-level deisions (pointers vs. array indies, data moves vs. indiretion, et.) beforeommitting to spei� implementations. We used �ve di�erent graph families inthe tests and also onstruted spei� worst-ase families with adversaries; all ofour families inluded very large graphs (up to a million verties and over a millionedges). We ran at least 20 instanes at eah size, heking independent series ofexperiments for onsisteny in the results. Finally, we took preautions from thestart to minimize the e�ets of paging (easy) and of ahing (hard).Our data olletion and analysis had four goals: (i) to eliminate any residuale�ets of ahing and any other mahine dependenies; (ii) to normalize runningtimes aross mahines; (iii) to gauge the inuene of lower-order terms and to ver-ify the asymptoti behavior; and (iv) to visualize quikly the relative eÆieny ofeah algorithm for eah type and size of graph. We realized all four goals at oneby the simple strategy of normalizing, independently on eah platform, the run-ning times measured for the various MST algorithms by the running times of asimple, linear-time proedure with roughly similar memory referene patterns|inour ase a proedure that ounted the number of edges of the graph by traversingthe adjaeny lists. The similar memory addressing patterns aneled out most ofthe ahing e�ets; the similar work in dereferening pointers aneled out most ofthe CISC mahines peuliarities; and the diret omparison to the (then unattain-able) lower bound of a linear-time proedure immediately showed the asymptotibehavior and highlighted the relative eÆieny of eah algorithm.Early in the implementation phase, we realized that Fibonai heaps and relaxedheaps were not ompetitive. We then took a suggestion made in the original paperof Drisoll et al. [6℄ for implementing relaxed heaps: to group nodes into largerunits so that hanges in key would most often be resolved within a unit and not



TOWARDS A DISCIPLINE OF EXPERIMENTAL ALGORITHMICS 11require restruturing the heap. We then deided to implement this idea, whih wealled saks, for other types of heaps; it turned out that it was a ruial deisionfor Fibonai heaps, whih beame muh more ompetitive with the addition ofsaks|a new result that ould only have ome about through implementation.At the onlusion of our work, we had omforting �ndings for the pratitioner,if not for the theoretiian: the fastest algorithm by far was Prim's, implementedwith pairing heaps or simple binary heaps. The more sophistiated implementa-tions ould not pay o� for reasonable graph sizes, nor ould the more sophistiatedalgorithms. But we also had a sobering report: our last implementations of Prim'swith Fibonai heaps were nearly ten times faster than our �rst! Thus even ex-periened programmers who understand the details of their data strutures andalgorithms an re�ne implementations to the point of evolving entirely new onlu-sions. In our ase, we ould onlude that Prim's algorithm with Fibonai heaps,whih had appeared entirely and hopelessly impratial at �rst, might in fat be-ome ompetitive at the extreme end of sizes for dense graphs. The somewhatobvious onlusion for theoretiians was that polylogarithmi fators are unlikelyto be worth muh e�ort: the di�erene between jEj log jV j and jEj is not suÆientto make up for signi�ant di�erenes in leading oeÆients.This study, along with an earlier study on sorting algorithms, enables us todraw some onlusions regarding experimental studies of algorithms for well-solvedproblems:� Multi-mahine, multi-ompiler trials are needed. The preferene of one ar-hiteture for data moves over indiretion, for instane, ould easily maskother e�ets. The �rst DIMACS hallenge proposed some simple measures toassess the e�et of ompilers and ode optimization; these measures form agood starting point, but will often need to be supplemented.� A very large range of sizes is indispensable. Sine the algorithms omparedare all eÆient and sine sophistiated algorithms tend to demonstrate theirasymptoti behavior for larger sizes than simpler algorithms, we should runour tests up to the largest sizes that an be aommodated on our platforms,even if these sizes may exeed any likely to be enountered in pratie. Alarge range of sizes will also help visualizing the asymptoti behavior andmay unover unexpeted problems attributable to ahing.� Extreme are must be used when generating instanes. This problem is parti-ularly aute when instanes are de�ned by multiple parameters, as in graphsand networks: large numbers of di�erent families an be de�ned, with poten-tially very di�erent behaviors. We should ensure that realisti instanes arebeing generated, that large instanes generated with pseudo-random num-ber generators do not present arti�ial patterns aused by problems with thegenerator, and also that some worst-ase families are inluded in the study.� Normalization by a suitable baseline routine is very suessful in smoothingout variations in arhiteture and ahing, as well as in highlighting the as-ymptoti behavior and relative eÆieny of the ompeting algorithms. When-ever our ompeting algorithms are losely tied, data presentation is of ruialimportane.



12 BERNARD M.E. MORET9. ConlusionsExperimentation should beome one again the \gold standard" in algorithmdesign, for several ompelling reasons:� Experimentation an lead to the establishment of well tested and well dou-mented libraries of routines and instanes.� Experimentation an bridge the gap between pratitioner and theoretiian.� Experimentation an help theoretiians develop new onjetures and new al-gorithms, as well as a deeper understanding (and thus perhaps a leanerversion) of existing algorithms.� Experimentation an point out areas where additional researh is most needed.However, experimentation in algorithm design needs some methodologial develop-ment. While it an and, to a large extent, should follow guidelines from the physialsienes, its di�erent setting (a purely arti�ial one in whih the experimental pro-edure and the subjet under test are unavoidably mixed) requires at least extrapreautions. Fortunately, a number of authors have blazed what appear to be agood trail to follow; hallmarks of good experiments inlude:� learly de�ned goals;� large-sale testing, both in terms of a range of instane sizes and in terms ofthe number of instanes used at eah size;� a mix of real-world instanes and generated instanes, inluding any signi�-ant test suites in existene;� learly artiulated parameters, inluding those de�ning arti�ial instanes,those governing the olletion of data, and those establishing the test envi-ronment (mahines, ompilers, et.);� statistial analysis of the results and attempts at relating them to the natureof the algorithms and test instanes; and� publi availability of instanes and instane generators to allow other re-searhers to run their algorithms on the same instanes and, preferably, publiavailability of the ode for the algorithms themselves.Referenes[1℄ Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. Network Flows. Prentie Hall, NJ, 1993.[2℄ Bentley, J.L. Experiments on geometri traveling salesman heuristis. AT&T Bell Laborato-ries, CS TR 151, 1990.[3℄ Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., and Stein, C., \Experimentalstudy of minimum ut algorithms," Pro. 8th ACM/SIAM Symp. on Disrete Algs. (1997),324{333.[4℄ Cherkassky, B.V., Goldberg, A.V., and Radzik, T., \Shortest paths algorithms: theory andexperimental evaluation," Math. Progr. 73 (1996), 129{174.[5℄ Cherkassky, B.V., and Goldberg, A.V., \On implementing the push-relabel method for themaximum ow problem," Algorithmia 19 (1997), 390{410.[6℄ Drisoll, J.R., Gabow, H.N., Shrairman, R., and Tarjan, R.E., \Relaxed heaps: an alternativeto Fibonai heaps with appliations to parallel omputation," Commun. ACM 11 (1988),1343{1354.[7℄ Finkler, U., and Mehlhorn, K., \Runtime predition of real programs on real mahines,"Pro. 8th ACM/SIAM Symp. on Disrete Algs. (1997), 380{389.[8℄ Johnson, D.S., Aragon, C.R., MGeoh, L.A., and Shevon, C., \Optimization by simu-lated annealing: an experimental evaluation. 1. Graph partitioning," Operations Researh37 (1989), 865{892.
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