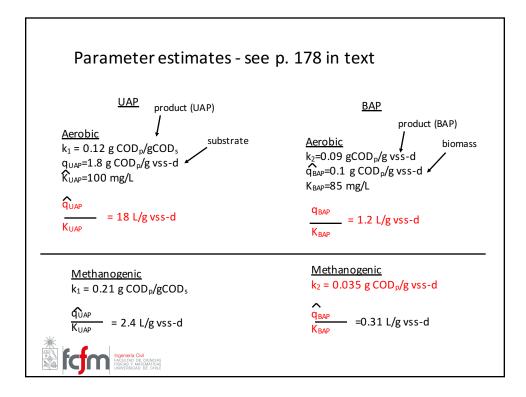
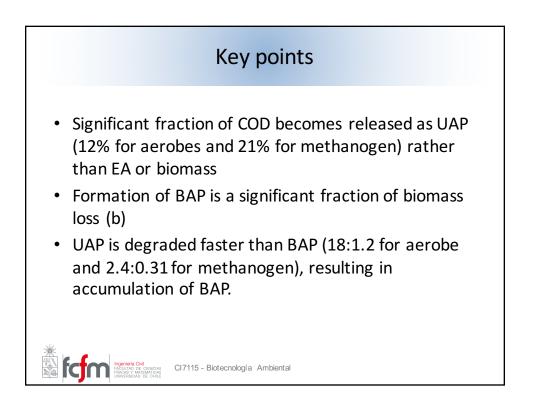
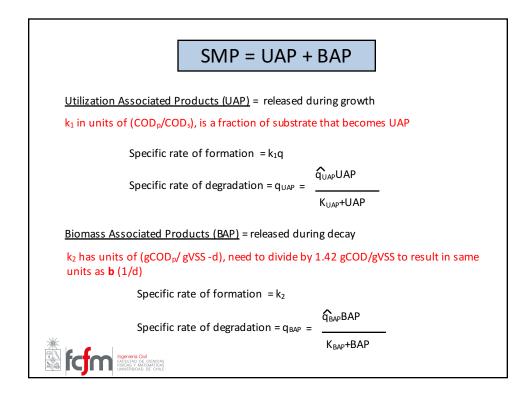
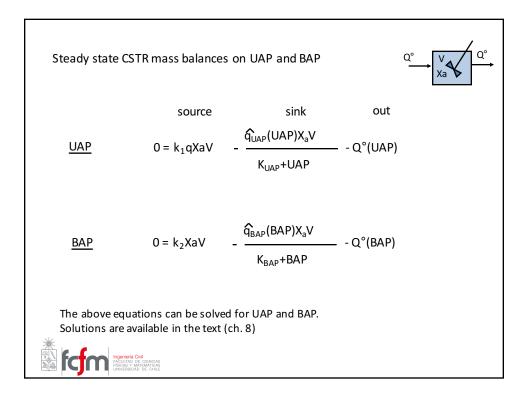
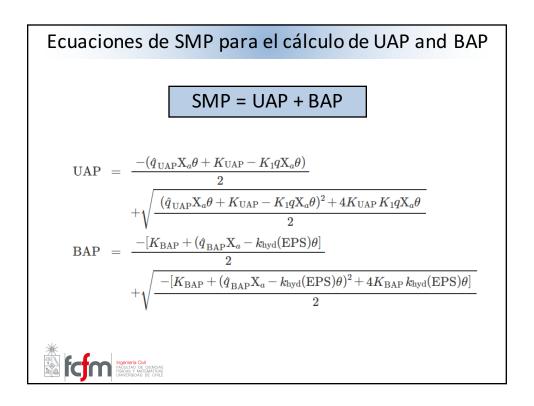

Process	Typical θ_x^d days	Safety factor	Volumetric loading kg BOD ₅ /m ³ -d	F/M kg BOD ₅ /kg X _v -d	Typical BOD₅ removal efficiency
Extended aeration	>14	>70	0.3	0.05-0.2	85-95
Conventional	4-14	20-70	0.6	0.2-0.5	95
Tapered Aeration	4-14	20-70	0.6	0.2-0.5	95
Step Aeration	4-14	20-70	0.8	0.2-0.5	95
Contact Stabilization	4-14	20-70	1.0	0.2-0.5	90
Modified Aeration	0.8-4	4-20	1.5-6	0.5-3.5	60-85

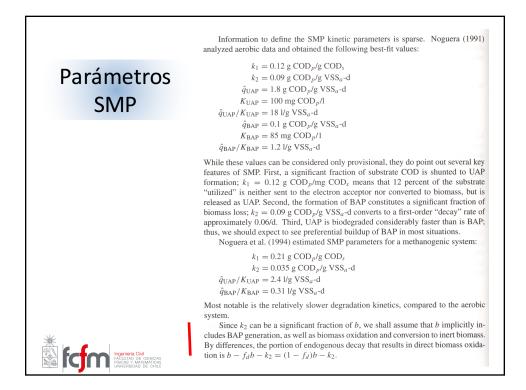

Check table 6.2 of your book for more details

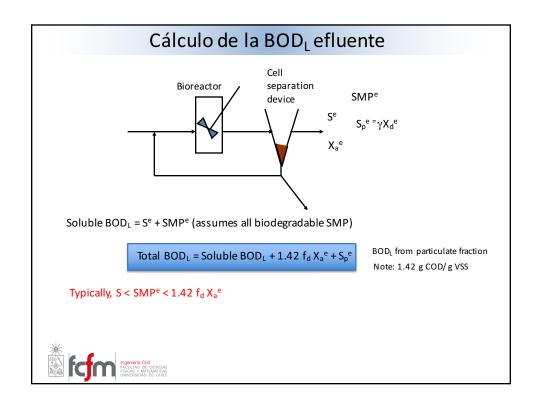

Ingeniería Civil FACULTAD DE CIVIL FISICAS Y MATEMATICAS FISICAS Y MATEMATICAS

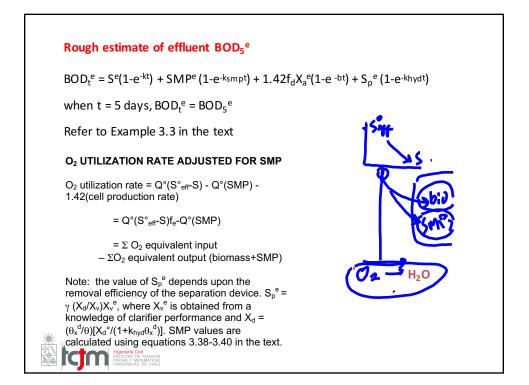


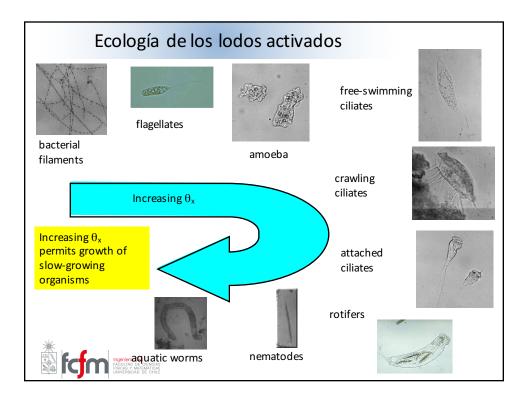


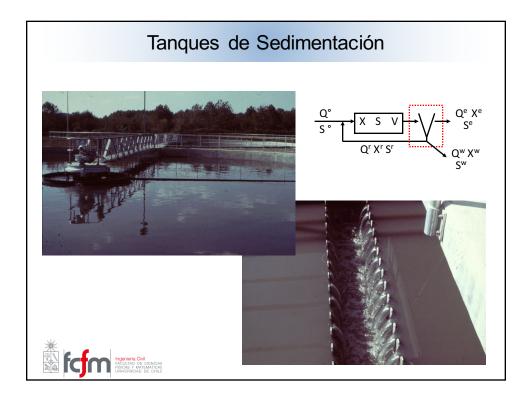


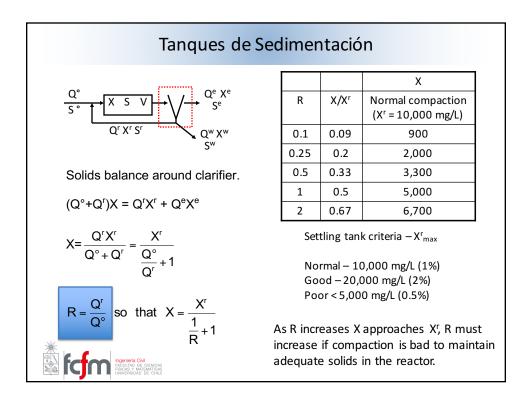


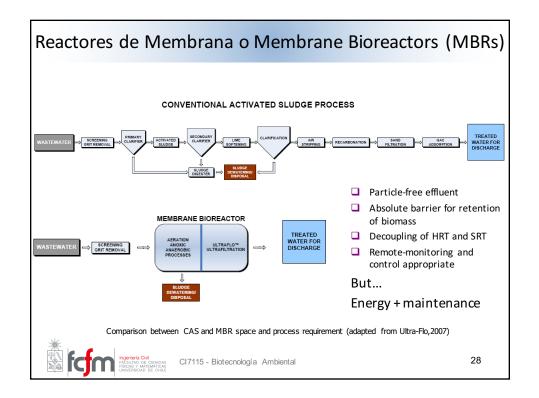


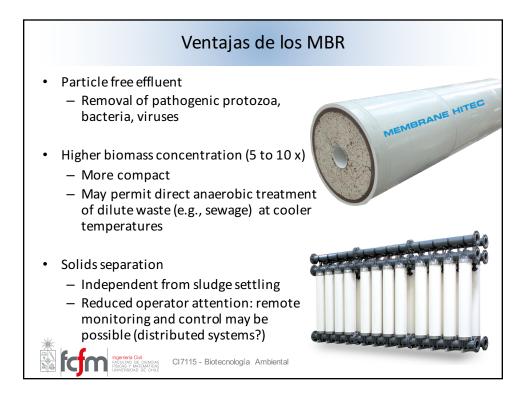


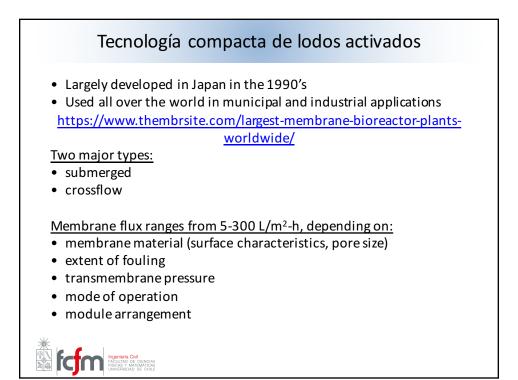


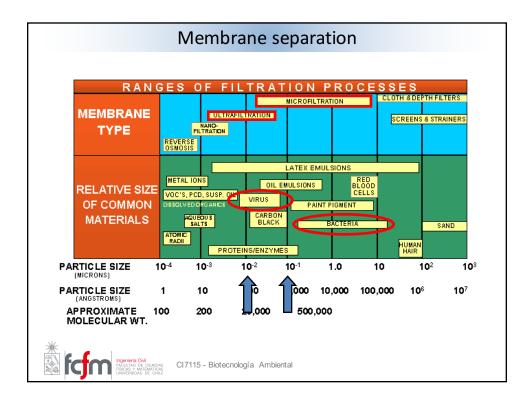

Parameter Name	Parameter Symbol	Units	Typical Value	All Microbial Types of Only Heterotrophs
EPS-formation fraction	K EP S	g CODEPS/g CODS	0.18	All
UAP-formation fraction	<i>k</i> ¹	g COD ^{UAP} /g COD ^S	0.05	All
Net biomass- formation fraction	$1 - k^{\text{EPS}} - k^1$	g COD ^x /g COD ^s	0.77	All
EPS-hydrolysis rate	<i>k</i> hyd	1/d	0.17	Heterotrophs
UAP maximum specific utilization rate	qUAP	g CODUAP/g CODX-d	1.3	Heterotrophs
BAP maximum specific utilization rate	qBAP	g COD ^{BAP} /g COD ^X -d	0.35	Heterotrophs
UAP half-maximum- rate concentration	KUAP	g COD ^{UAP} /I	0.1	Heterotrophs
BAP half-maximum- rate concentration	Квар	g COD ^{BAP} /I	0.085	Heterotrophs
	V DAL	g CODoxe/1	0.085	neterotrophs

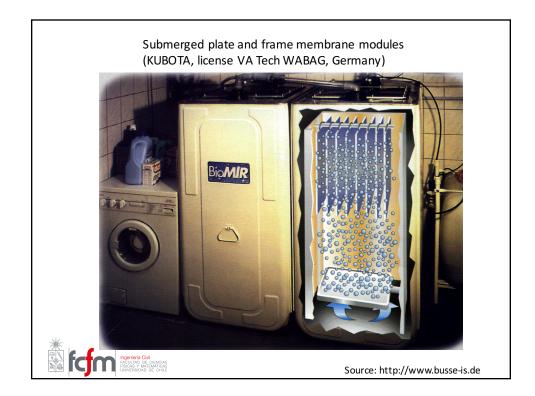

Parameters and Units	Aerobic Heterotrophs	Denitrifying Heterotrophs	Denitrifying H2- Oxidizing Autotrophs	Ammonium- Oxidizing Autotrophs	Acetate-Cleaving Methanogens
Y, g COD ^{xa} /g COD ^s	0.64	0.50	0.20	0.14	0.04
Ƴ, g CODxa∕g CODs	0.49	0.39	0.15	0.11	0.031
^qq^, g CODs/g COD ^x -d	7	7	5	5.6	8
^µ,1/dµ^,1/d	4.5	3.5	1.0	0.78	0.32
^μ',1/dμ^',1/d	3.4	2.7	0.77	0.68	0.25
<i>b</i> , 1/d	0.3	0.15	0.05	0.05	0.03
K, mg CODs/l	10	10	0.6	0.5	30
θminx]'lim[θxmi n]lim', d	0.32	0.39	1.4	1.8	4.5
S'min,mgCODS/IS min ,mgCODS/I	0.96	0.59	0.04	0.045	4.4
2					

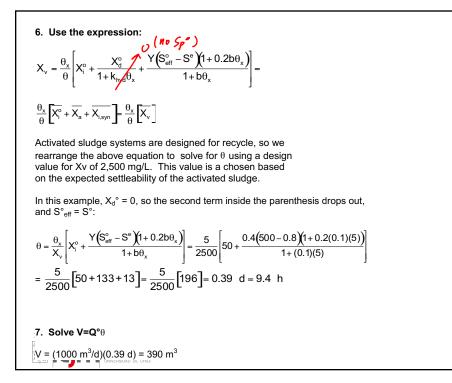







Biosolids Separation Problem	Cause of Problem	Effect of Problem
	Filamentous organisms extend from flocs into the bulk solution and interfere with compaction and settling	High SVI with clear supernatant. Overflow of sludge blanket can occur. Solids handling processes become hydraulically overloaded
Viscous bulking or nonfilamentous bulking	Microorganisms present in large amounts of exocellular slime. In severe cases, the slime imparts a jelly-like consistency	Reduced settling and compaction rates. Can resu in overflow of sludge blanket from secondary clarifier or formation of a viscous foam
Dispersed growth	Microorganisms do not form flocs, but are dispersed, forming onlysmall clumps or single cells	Turbid effluent. No zone settling of sludge
Pin floc or pinpoint floc	Small, compact, weak, roughly spherical flocs. Larger aggregates settle rapidly, smaller ones slowly	Low SVI and cloudy turbid effluent
Foaming/Scum formation	Caused by (i) nondegradable surfactants or (ii) the presence of Nocardia sp. and/or Microthrix parvicella	Foams float large amounts of biosolids to surface of treatment units. Causes solids overflow into secondary effluent and onto walkways. Anaerobic-digestor foaming also can result
Rising sludge	Denitrification in the settler releases poorly soluble N ₂ gas which attaches to activated sludge flocs and floats them to the clarifier surface 992), Jenkins et al. (2004), Wanner and Grau (1983	"Chunks" of activated sludge collect on the surface of the settler and may result in turbid effluent




MBR concerns	
The major concern is biofouling Strategies to combat biofouling: • periodic cleaning of membranes • backwash	
 highly turbulent aeration high energy needed to shear biomass (2-10 kWh-m³) for crossflow applications, but is reportedly 10 times lower for submerged membranes. Advances in biofouling control Our model of the provision of matter physical scouring the biomass age of the physical scouring the ph	
Image: Second	

Design Example 1: Activated Slu (Example 6.2 in the text, pages 34	•
1. Determine waste characteristics an requirements:	d effluent
Q° = 1000 m ³ /d S° = 500 mg/L Sp°= 0 (not typical of sewage) Xi°= 50 mg/L	3. Calculate $\left \theta_x^{\min}\right _{in} = 1/[(0.4)(10)-0.1] = 0.26 \text{ d}$
X _{in} °= 20 mg/L S ^e _{max} = 20 mg/L Nonbiodegradable COD = 0	4. Select $\theta_x^d = S.F. \cdot [\theta_x^m]_m = (20)(0.26) = 5.2$ days
2. Select coefficients and design factor Y= 0.4 mg vss/mg BOD	5. Solve $S^e = \frac{K[1+b\theta_x^d]}{\theta_x^d(Y\dot{q}-b)-1} = \frac{10[1+(0.1)(5.2)]}{5[(0.4)(10)-0.1]-1} = 0.81 \text{ mg/}$
\hat{q} = 10 mg BOD _L /mg vs-d b = 0.1 d ⁻¹ K = 10 mg BOD _L /d f _d = 0.8 S.F. = 20 X _v (if recycle) = 2500 mg/L X _v ^e = 15 mg/L (expected perform	S ^e _{max} = 20 mg/L which is >>0.81 , so we are OK.
Province CMI Province CMI Province Collections Province Collections Prov	

8. Solve for waste sludge production and biomass production rate: $X_{v} \text{ production rate} = \frac{X_{v} V}{\theta_{x}^{d}} = \left(\frac{(2500 \text{ g/m}^{3})(390 \text{ m}^{3})}{5 \text{ d}}\right) \left(\frac{\text{kg}}{1000 \text{ g}}\right) = 196 \text{ kg/d}$ Alternatively, X_{v} production rate = $Q \overline{X_{v}} = (1000 \text{ m}^{3}/\text{d})(196 \text{ g/m}^{3})(\text{kg}/1000 \text{ g}) = 196 \text{ kg/d}$ The wasting rate of volatile suspended solids is obtained by subtracting out solids that are accidentally lost from the system in the clarifier effluent (=Q^{\circ} X_{v}^{\circ})
Wasting rate = production rate - accidental loss rate = 198-(1000)(15)/1000=181 \text{ kg vs/d}

8. Continued

 X_{in} removal rate = rate at which X_{in} enters system = Q° X_{in} = (1000)(20)/1000 = 20 kg ss/d

Some X_{in} is also generated as Xv is produced because MLVSS is 90% organic and 10% inorganic (ash). For that ratio, the additional inorganic solids produced = (196)(10/90) = 22 kg/d.

Suspended solids (organic + inorganic) production rate = 196 + 20 + 22 = 238 kg/d

What is the biological suspended solids production rate?

$$\overline{X_{syn}} = \overline{X_a} + \overline{X_{i,syn}} = 133 + 13 = 146 \text{ g/m}^3$$

Biological solids production rate = $Q \overline{X_{syn}}$ = (1000 m³/d)(146 g/m³)(kg/1000 g) = 146 kg/d

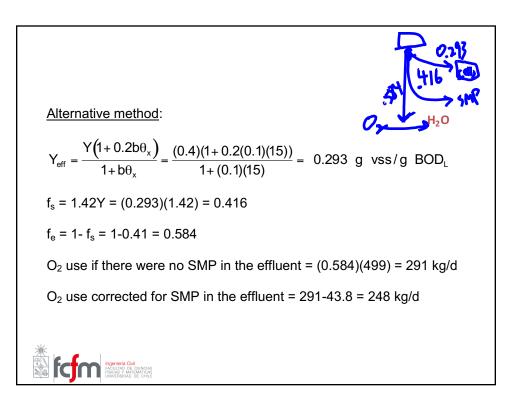
Ingeniería Civil FACULTAD DE CIENCIA ERICAS Y MATEMATICA UNIVERSIDAD DE CHIL

Ictm

9. Stoichiometry and materials balance:

Substrate removal rate = Q°(S°-S) = 1000(500-0.81)/1000 = 499 kg BOD_L/d

Volumetric BOD_L removal rate = 499/390 = 1.28 kg BOD_L/m³-d


N requirement = 0.124 x Cell production rate = (0.124)(146) = 18 kg N/d

P requirement = $0.025 \times \text{Cell production rate} = (0.025)(146) = 3.6 \text{ kg P/d}$

```
10. Computation of SMP - use equation 3.38 and 3.39 and coefficients in the book
```

UAP = f(volumetric BOD_L removal rate, X_a , θ) = 4.8 mg/L BAP = f(X_a , θ) = 39 mg/L SMP = 4.8 + 39 = 43.8 mg COD/L 11. Estimate effluent quality:How much COD is in the effluent?Effluent COD = Se + (1.42)(X_v^e) + SMP = 0.8 + 21.3 + 44 = 66 mg COD/LHow much BOD_ is in the effluent?Assume X_a^e=X_ve(X_a/X_v)=15(133/196) = 10.2 mg vss/LSince f_d = 0.8,Effluent BOD_L = S^e + (1.42)(0.8)(X_a^e) + SMP = 0.8 + 11.6 + 44 = 56 mg BOD_L/LHow much BOD₅ is in the effluent?For this we need to know the first order decay rates for the BOD test, the decay rates of the cells, and the decay rate of SMP.Assume k = 0.23d⁻¹b = 0.1 d⁻¹b = 0.1 d⁻¹BOD₅^e = S^e(1-e^{-5k})+f_d(1.42)X_a^e(1-e^{-5b})+SMP(1-e^{-5ksmp}) = S^e(0.68)+0.8(1.42)X_a^e(0.4)+SMP(0.14) = 0.5+4.6+6.1=11.2 mg/L

12. Estimate O₂ use rate: Oxygen equivalents entering system: Substrate: Q°S° = (1000)(500)/1000 = 500 kg/d VSS: 1.42 Q°X_i° = (1.42)(1000)(50)/1000 = 71 kg/d (Note: Since Xi does not exert an O2 demand, it could be omitted from the oxygen equivalents balance, but if X_i is not separated out in the computation of oxygen equivalents leaving the system, then it must be included here and multiplied by 1.42, so that it cancels out X_i leaving the system that is of nonbiological origin). Sum: 500 + 71 = 571 kg/d Oxygen equivalents leaving system: Substrate: Q°S^e = (1000)(0.81)/1000 = 0.8 kg/d SMP: Q°SMP° = (1000)(43.8)/1000 = 43.8 kg/d VSS discharged in effuent or wasted = (1.42)(196)=278 kg/d (Note that this value includes Xi° that has passed through the system undegraded) Sum: 0.8 + 43.8 + 278 = 323 kg/d <u>O₂ uptake rate = Oxygen equivalents entering system - Oxygen equivalents leaving system</u> O₂ uptake rate = 571 - 323 = 248 kg O₂/d

