

Cálculo de número o estado de oxidación

8. In all oxidation-reduction reactions there is a balance between the oxidized and reduced products. To calculate an oxidation-reduction balance, the number of molecules of each product is multiplied by its oxidation state. For instance, in calculating the oxidation-reduction balance for alcohol fermentation, there are two molecules of ethanol at -4 = -8 and two molecules of CO₂ at +4 = +8 so the net balance is zero. When constructing model reactions, it is useful to calculate redox balances to be certain that the reaction is possible (electroneutrality must be maintained).

Ingeniera Cuil PADURAD DE CIENCIAS DEVENSIONAD DE CIENCIAS DEVENSIONAD DE CIENCIAS CI7115 - Biotecnología Ambiental

Table 15.4. Summary of the Principal Oxidation-Reduction Chemistry of Chlorine				
Oxidation State	Species	Remarks		
+7	ClO ₄	Perchlorate ion, a powerful oxidizing agent.		
+5	ClO ₃	Chlorate ion, a powerful oxidizing agent.		
+4	ClO ₂	Chlorine dioxide, a yellow-orange gas. Not a common oxidation state of chlorine, but it is formed when ClO_3^- reacts with a number of re- ducing agents. Chlorine dioxide can serve as an oxidizing agent also.		
+3	ClO_2^-	Chlorite ion, in basic solution. Serves as an oxidizing agent in bleaches In acid solution HClO ₂ disproportionates to ClO ₂ (g) and Cl ⁻ .		
+1	CIO- HOCI	Hypochlorite ion, in basic solution. Hypochlorous acid, in acid solution. Both serve as oxidizing agents. CIO ⁻ disproportionates when warmed to yield Cl ⁻ and ClO ₃ .		
0	Cl ₂	Chlorine, a good oxidizing agent.		
-1	Cl-	Chloride ion, a moderately good reducing agent.		

	e acceptor	Half reaction	E°' (V)
best	N ₂ O	$N_2O + 2H' + 2e = N_2 + H_2O$	+1.31
	CIO ₃	$CIO_3^{-} + 6H^{-} + 6e^{-} = CI^{-} + 3H_2O$	+1.04
	NO ₂ ⁻	$2NO_2^- + 8H^+ + 6e^- = N_2 + 4H_2O$	+0.94
	O ₂	$O_2 + 4H^+ + 4e^- = 2H_2O$	+0.82
	Fe³⁺	$Fe^{3+} + e^{-} = Fe^{2+}$	+0.77
	NO ₃ ⁻	$2NO_3^{-} + 12H^{+} + 10e^{-} = N_2 + 6H_2O$	+0.74
	NO ₃ ⁻	$NO_3^{-} + 2H^{+} + 2e^{-} = NO_2^{-} + H_2O$	+0.43
	NO ₃ ⁻	$NO_{3}^{-} + 10H^{+} + 8e^{-} = NH_{4}^{+} + 3H_{2}O$	+0.36
	C ₆ H ₄ CICOO ⁻	$C_6H_4CICOO^- + H^+ + 2e^- = C_6H_5COO^- + CI^-$	+0.26
	(CH ₃) ₂ SO	$(CH_3)_2SO + 2H^+ + 2e = (CH_3)_2S + H_2O$	+0.23
	$S_2O_3^{2-}$	$S_2O_3^{2^-} + 8H^+ + 8e^- = 2HS^- + 3H_2O$	-0.21
	SO42-	$SO_4^{2-} + 9H^+ + 8e^- = HS^- + 4H_2O$	-0.22
ţ	CO ₂	$CO_2 + 8H^+ + 8e^- = CH_4 + 2H_2O$	-0.24
orst	S	$S + H^{+} + 2e^{-} = HS^{-}$	-0.27

3) Balance the carbon with CO₂ and HCO₃⁻. Use the negative charge on HCO₃⁻ to cancel the positive charge on NH₄⁺. $CO_2 + HCO_3 + NH_4^+ + ? = CH_2NH_2COOH$ *NOTE. If the electron donor is both organic and a conjugate base (i.e., a species that can pick up a proton), then the negative charge on the conjugate base should be balanced by the negative charge on HCO₃⁻. e.g. for acetate: $CH_3COO^- + 3H_2O = CO_2 + HCO_3^- + 8H^+ + 8e^-$ Why is this? When acetate or another conjugate base is added to water, it is added as a salt with a cation, such as Na⁺ or K⁺. Degradation of acetate does not destroy its associated cation, but electroneutrality must still be maintained. Therefore, the oxidation of a conjugate base, such as acetate, must be balanced in the half reaction by an equivalent concentration of HCO₃⁻.

Ingeniería Civil FACULTAD DE CIENCIAS FÍSICAS Y MATEMATICAS

11

4) Balance the oxygen with H_2O . $CO_2 + HCO_3 + NH_4 + ? = CH_2NH_2COOH + 3H_2O$ 5) Balance the hydrogen with protons. $CO_2 + HCO_3^- + NH_4^+ + 6H^+ = CH_2NH_2COOH + 3H_2O$ 6) Add electrons as needed to give the same net charge on both sides of the equals sign. $CO_2 + HCO_3^- + NH_4^+ + 6H^+ + 6e^- = CH_2NH_2COOH + 3H_2O$ 7) Final checks: When adding half reactions, e- must cancel Correct the acid-base chemistry. Acids such as $\rm H^{+}$ or $\rm CO_{2}$ and bases such as NH₃ or OH⁻ will not appear together on the same side of the equals sign because they neutralize one another. Ex. Acid-base reactions: $H^+ + OH^- = H_2O$ $H^{+} + NH_3 = NH_4^{+}$ $NH_3 + CO_2 + H_2O = NH_4^+ + HCO_3^$ fcfm $CO_2 + OH = HCO_3$

Equivalentes de O ₂	para la célula
$\frac{\text{COD of cells}}{\text{C}_5\text{H}_7\text{O}_2\text{N}+5\text{O}_2} = 5\text{CO}_2 + \text{NH}_3 + 2\text{H}_2\text{O}$	$\frac{\text{COD}}{\text{WT}} = \frac{5(32)}{113} = 1.416$
<u>NOD of cells</u> When oxidized, each mole of C ₅ H ₇ O ₂ N yield	ds 1 mole NH $_3$. When the NH $_3$ is
oxidized: $NH_3 + 2O_2 = HNO_3 + H_2O$	$\frac{\text{NOD}}{\text{WT}} = \frac{2(32)}{113} = 0.566$
$\frac{\text{ThOD of cells (COD + NOD)}}{\text{C}_{5}\text{H}_{7}\text{O}_{2}\text{N} + 7\text{O}_{2} = 5\text{CO}_{2} + \text{HNO}_{3} + 3\text{H}_{2}\text{O}}$	$\frac{\text{ThOD}}{\text{WT}} = \frac{7(32)}{113} = 1.98$
PLAN FORMATION PROVIDE CIENCIAS FORMATION DE CIENCIAS FORMATION DE CIENCIAS UNIVERSIDAD DE CIENCIAS	

Compound	Electron equivalent conversion factor	Oxygen equivalent conversion factor	
Electron donors]
methane	2.0 g CH₄/eq	4.0 g COD/g CH ₄	
carbohydrate	7.5 g carbohydrate/eq	1.067 g COD /g carbohydrate	
protein	5.333 g protein/eq	1.50 g COD /g protein	
grease (fat)	2.778 g grease/eq	2.88 g COD /g grease	
sewage organics	4.02 g sewage organic/eq	1.99 g COD /g sewage organic	
ammonium (to nitrate)	2.254 g NH₄ ⁺ /eq	3.55 g NOD /g NH4 ⁺	
	1.75 g NH4 ⁺ as N/eq	4.57 g NOD /g NH4 ⁺ as N	
ammonium (to nitrite)	3.0 g NH4 ⁺ /eq	2.667 g NOD/g NH4 ⁺	
nitrite (to nitrate)	23 g NO2 ⁻ /eq	0.36 g NOD /g NO2	
	7 g NO2 ⁻ as N/eq	1.14 g NOD/g NO ₂ ⁻ as N	
S (to sulfate)	5.333 g S/eq	1.50 g Sulfur OD /g S	
H ₂ (to H ⁺)	1.0 g H ₂ /eq	8.0 g Hydrogen OD/g H ₂	
Biomass (C ₅ H ₇ O ₂ N)		· · · · · · · · · · · · · · · · · · ·	
N source: NH4 ⁺	5.65 g biomass/eq	1.42 g COD /g biomass	
N source: nitrate	4.04 g biomass /eq	1.98 g ThOD/g biomass	
Electron acceptors			
oxygen (to water)	8.0 g O ₂ /eq	1.0 g O ₂ /g O ₂	a OD / ea
nitrate (to nitrogen)	12.4 g NO ₃ ⁻ /eq	0.645 g O ₂ /g NO ₃	900700
	2.8 g NO ₃ as N/eq	2.857 g O ₂ /g NO ₃ as N	
sulfate (to H ₂ S)	12.0 g SO42 /eq	0.667 g O ₂ /g SO ₄ ^{2*}	
oo // // \	4.0 g SO ₄ ⁻ as S/eq	$2.0 \text{ g } O_2/\text{g } SO_4^2$ as S	
CO ₂ (to methane)	5.5 g CO ₂ /eq	1.45 g O ₂ /g CO ₂	
$C_{2} = O_{2}^{2} (4 - C_{2}^{3+})$	1.5 g CO ₂ as C/eq	$5.33 \text{ g} \text{ O}_2/\text{g} \text{ CO}_2 \text{ as C}$	
$Cr_2O_7 = (to Cr^2)$	36 g Cr ₂ O ₇ ⁻ /eq	0.222 g O ₂ /g Cr ₂ O ₇ =	
(oxidant in COD test)			
Reduced electron			
acceptors	2.8 × N /**	2 957 - OD/- N	
muogen (nom muate)		2.637 y UD/g N ₂	
H & (from oulfoto)	2.24 L N2/EY ALSTP	1 99 a OD/a U S	
mothene (from CO)	4.20 y H20/eq		
methalie (nom OO_2)			
		2.007 y COD/L CH at 25°C	

E,	jemplo c	le estequ	liometría	a	
A meat packing waste Determine the oxygen	with the emport	pirical formula gram of was	a: $C_3H_7O_2N$ ste for aerob	(M.W. = 89 ic treatme	9). Int.
	Klar	ucans et al., 2018. (10	.4028/www.scientif	ic.net/KEM.762.6	5 <u>1)</u>
	Parameter	See food processing wastewaters [mg/L]	Meat processing wastewaters [mg/L]	Restaurant wastewaters [mg/L]	Typical municipal wastewaters [mg/L]
	Total COD	8 000-18 700	9 600-12 900	1250-4500	210-740
	Total BOD	1000-72 000	2 500-8 000	820-3000	150-350
	(TSS)	500-2000	790–3 350	220-2700	120-450
	Total Nitrogen (Ntot)	200 - 300	230-260	-	20-80
	Total Phosphorus (P tot)	-	30–50	-	6-23
	FOG [mg/L]	250-5000	100-2000	140-4100	-
$C_{3}H_{7}O_{2}N + 3O_{2} \rightarrow 3CC$ COD/WT = 3(32)/89 =	0 ₂ + NH ₃ + 2H 1.08	₂ O Will a waste	erobic biolog water require	ical treatme e 1.08 g O ₂ /	nt of this gwaste?
If Y for aerobic growth $f_s = 0.32 \times 1.42 = 0.45 \times 10^{-10}$ so the amount of oxyg With the amount of oxyg Provide the the second	is 0.32 g vss and f _e = 1-0.4 en required i	/g COD 5 = 0.55 s 0.55 x 1.08	= 0.59 g O ₂ /	/g.	

$\begin{array}{rcl} 0.083C_3H_7OeT & 0.005C_5H_7O_2N\\ 0.078H_2O &+ & 0.078NH_3 &+ & 0.078CO_2 &\rightarrow & 0.078NH_4^* &+ & HCO_3^- \end{array}$
NET: $0.083C_{3}H_{7}O_{2}N + 0.146H_{2}O \rightarrow$ 0.113CH ₄ + 0.0.035CO ₂ + 0.078NH ₄ ⁺ + 0.078HCO ₃ ⁻ + 0.005C ₅ H ₇ O ₂ N
With the balanced acid-base reaction, we can calculate the % methane in the biogas:
%CH ₄ = 0.113 / (0.113 + 0.035) x 100 = 76% (so there is 24% CO ₂)
<u>Methane production @ STP</u> (0.113)(22.4 L methane/mole) ÷ (0.083)(89) = 0.342 L/g waste
This is for STP conditions, the temperature is 0° C.
Do you know how to adjust for different temperatures?

€ €

Alcalinidad
Alkalinity: The ability to neutralize strong acids
the cumulative proton concentration taken up by basic species when a solution is titrated to the CO_2 equiv pt (around pH 4.3-4.7):
Alkalinity = -(H ⁺) + (HCO ₃ ⁻) + 2(CO ₃ ²⁻) + (NH ₃) + (HS ⁻) + (OH ⁻)
Example: Dissolve CaCO ₃ in water
CO_3^{2-} equilibrates with HCO_3^{-} and $H_2CO_3^{+}$ according to:
$CO_3^{2-} + H_2O \iff HCO_3^{-} + OH^{-}$
$HCO_3^- + H^+ \leftarrow \rightarrow H_2CO_3^*$
Popriera Cill Recent Vierna Recent Vierna Livivereidad de cille

Alkaline buffer (salt/base)	Dissolution and Neutralization reactions	How many kg of the buffer are <u>equivalent</u> to one kmol of alkalinity?	Comments	1995 Cost(\$) per kmo Alkalinit
CaCO ₃	$CaCO_3 + 2H^{*} = Ca^{4^{*}} + H_2OO_3$ $CaCO_3 + H_2O + CO_2 = Ca^{2^{*}} + 2HCO_3^{-1}$	100 g of CaCO ₃ neutralizes 2 moles of strong acid, 100 g of CaCO ₃ reacts with CO ₂ to make 2 moles of HCO ₃ . We have 100 + 2 = 50 kg CaCO ₃ per kmol of alkalinity.	Poor solubility restricts alkalinity to 1400-1500 mg/L as CaCO ₃	Not available (cheap)
Na ₂ CO ₃	$Na_2CO_3 + 2H^+ = 2Na^+ + H_2CO_3$ $Na_2CO_3 + H_2O + CO_2 = 2Na^+ + 2HCO_3^-$	106 ÷ 2 = 53 kg	Na is inhibitory at 3,500 mg/L. Na deflocculates soil.	11.55
K ₂ CO ₃	Like Na ₂ CO ₃	136+2 = <mark>68 kg</mark>	K is inhibitory at > 2,500 mg/L.	Not available
(NH ₄) ₂ CO ₃	$(NH_4)_2CO_3 = 2NH_4^+ + CO_3^{2^-}$ $CO_3^- + 2H^+ = H_2CO_3$	96 ÷ 2 = <mark>48 kg</mark>		Not available
CaO (lime)	$\begin{array}{l} CaO + 2H_2O = Ca(OH)_2 \\ Ca(OH)_2 + 2H^+ = Ca^{2+} + 2H_2O \\ Ca(OH)_2 + 2CO_2 = Ca^{2+} + 2HCO_3^- \end{array}$	56+ 2 = <mark>28 kg</mark>	Can cause severe scaling @ pH>6.8. Can create a vacuum in a closed system.	3.74
MgO	Like CaO	40 ÷ 2 = 20 kg	Low solubility reduces chance of pH overshoot.	7.71
NaHCO ₃	$NaHCO_3 + H_2O = Na^+ + HCO_3^-$ $HCO_3^- + H^+ = H_2CO_3$	84 kg	Exactly the right form, but expensive.	36.89
NaOH	NaOH + H ⁺ = Na ⁺ + H ₂ O NaOH + CO ₂ = Na ⁺ + HCO ₃ ⁻	40 kg	Can create a vacuum in a closed system	35.20
кон	Like NaOH	56 kg	Can create a vacuum in a closed system	Not available
	$NH_3 + H^+ = NH_4^+$ $NH_4 + CO_2 + H_2O = NH_4^+ + HCO_3^-$ TWO UP CIENCIAL TWO UP CIENCIAL	17 kg	Can be toxic. Released as	Not available

