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[1] The Colorado River basin experienced the worst drought on record during 2000–
2004. Paleoreconstructions of streamflow for the preobservational period show droughts
of greater magnitude and duration, indicating that the recent drought is not unusual.
The rich information provided by paleoreconstructions should be incorporated in
stochastic streamflow models, enabling the generation of realistic flow scenarios required
for robust water resources planning and management. However, the magnitudes of
reconstructed streamflow have a high degree of uncertainty. This apparent weakness of the
paleodata has made their use in water resources planning contentious, despite their
availability for many decades. However, few contest the accuracy of hydrologic state (i.e.,
dry and wet periods). A key question is how to combine the long paleoreconstructed
streamflow information of lower reliability with the shorter observational data to develop a
framework for streamflow simulation. We propose a unique stochastic streamflow
simulation framework combining these two data sets. This has two components: (1) a
nonhomogeneous Markov chain model, developed using the paleodata, which is used to
simulate the hydrologic state, and (2) a nonparametric K-nearest neighbor (K-NN) time
series bootstrap of observational flow magnitudes conditioned on the hydrologic state,
thus combining the respective strengths of the two data sets. The framework is
demonstrated for the Lees Ferry, Arizona, stream gauge on the Colorado River. The
simulations show the ability to reproduce relevant statistics of the observational period and
generate a rich variety of wet and dry sequences for use in sustainable management of
water resources.
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1. Introduction

[2] Effective long-term planning and management of
water resources requires (1) a tool that can generate plau-
sible streamflow scenarios and (2) a decision model to
evaluate policy alternatives. Stochastic models are typically
built on observed streamflow data and are then used to
generate flow scenarios. There is a rich literature on models
to simulate basin-wide flows in a linear [Valencia and
Schaake, 1973;Mejia and Rousselle, 1976; Tao and Delleur,
1976; Lane and Frevert, 1990; Salas et al., 1980; Todini,
1980; Stedinger and Vogel, 1984; Stedinger et al., 1985;
Koutsoyiannis, 1992; Santos and Salas, 1992; Salas, 1993;
Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 2001] or

nonlinear [Tarboton et al., 1998; Kumar et al., 2000;
Sharma and O’Neill, 2002; Srinivas and Srinivasan,
2005] framework. Observational data are usually limited
in time, and thus the simulations have a limited range of
interannual variability, especially for the magnitude and
frequency of the extremes, which are crucial for robust
long-term planning. This was underscored on the Colorado
River basin during the recent severe and sustained drought.
The basin experienced the worst drought on record from
2000 to 2004. Though this drought was unprecedented in
the observed record (1906–2005), paleoreconstructions of
streamflow from tree ring chronologies have shown
droughts of greater magnitude and duration. A recent
paleoreconstructed streamflow for the period 1490–1997,
on the Colorado River at Lees Ferry, Arizona, a key gauge
on the river [Woodhouse et al., 2006], is shown in Figure 1
along with the observed flows. It is evident that the recent
drought is unprecedented during the observed period, but
the reconstructed streamflows prior to 1906 show severe
droughts of 5 years in length at least four times over the
approximately 500-year period, indicating that the recent
drought is not unusual.
[3] Clearly, the rich information provided by paleorecon-

structed streamflows should be incorporated in stochastic
streamflow models to enable the generation of a realistic
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variety of plausible flow scenarios. However, the magni-
tudes of reconstructed streamflow have a high degree of
uncertainty. Typically, a regression model is fit to the
observed streamflow with a suite of tree ring observations
as the predictors. This fitted model is then used to estimate
streamflows in the preobservational period using the tree
ring observations [Meko et al., 1995]. The reconstructed
streamflows can be sensitive to the choice of model as
demonstrated by Hidalgo et al. [2000]. This apparent
weakness of the paleoreconstructed flow data has made
their use in a water resources planning context contentious,
despite the availability of paleoreconstructed data for
many decades. In spite of these apparent weaknesses, few
argue about the duration and frequency of dry and wet (i.e.,
the hydrologic state) periods from the reconstructions
[Woodhouse et al., 2006]. The key question is how to
combine the long paleoreconstructed streamflow informa-
tion of lower reliability with the shorter but reliable obser-
vational data to develop a framework for simulation of
streamflow scenarios.
[4] To address this question, we propose a new two-step

process in which the hydrologic state (i.e., wet or dry) is
modeled using the paleoreconstruction data and the flow
magnitudes derived from the observational data. Specifically,
a nonhomogeneous Markov chain model [Rajagopalan et
al., 1996, 1997] is built on the paleodata that is then used to
simulate the hydrologic state. The flow magnitudes are then
generated conditioned on the simulated hydrologic state
using a K-nearest neighbor (K-NN) conditional time series
bootstrap [Lall and Sharma, 1996], thereby using the
strengths of both of these data sets. The data sets used,
the proposed framework, and the application to the Lees
Ferry, Arizona, stream gauge on the Colorado River are
described in the following sections.

2. Data Sets

[5] As mentioned earlier, two data sets, paleorecon-
structed streamflow and observed flows, are used in this
study. These are described below.

2.1. Natural Streamflow

[6] The natural streamflow data for the Colorado River
basin are developed by the Bureau of Reclamation (Recla-
mation) and updated regularly. Annual updates addressing
data changes and additions are typical. Naturalized stream-
flows are computed by removing anthropogenic impacts
(i.e., reservoir regulation, consumptive water use, etc.) from

the recorded historic flows. Prairie and Callejo [2005]
present a detailed description of methods and data used
for the computation of natural flows in the Colorado River
basin. This study uses the annual water year (September–
October) natural streamflow at Lees Ferry, Arizona, for the
period 1906–2005.

2.2. Paleoreconstructed Streamflow

[7] This study also uses the annual water year streamflow
reconstructions from tree ring information at the Lees Ferry,
Arizona, gauge, completed by Woodhouse et al. [2006] for
the period 1490–1997. Tree ring widths are influenced by
climate and available soil moisture and thus are good
integrators of the weather fluctuations, just as streamflow
is a watershed integration of hydrologic and climatologic
processes. Consequently, the tree ring widths are well
correlated with annual runoff. To gather ring width data, a
series of trees are cored at multiple locations, chosen such
that the tree species have annual rings sensitive to moisture
availability. Selecting the species and the location is very
important for this effort [Meko et al., 1995]. Two core
samples are taken from each tree for cross dating, and the
ring widths are measured, obtaining the chronology of tree
ring widths. The attractive aspect of tree-ring-based recon-
structions, unlike other paleoproxy data, is that trees that put
on annual rings have natural dating, with the outer ring
corresponding to the current year and the subsequent inner
rings corresponding to past years. A standard series of
techniques [Stokes and Smiley, 1968; Swetnam et al.,
1985] are employed to process the ring width series.
Typically, the series is first detrended to remove the effects
of reduced ring width with aging. Next, the ring width series
from various cores at a single location are combined to
develop a ‘‘site chronology’’ [Cook et al., 1990]. The site
chronology is related to observed streamflow during the
overlap period; typically, a multiple linear regression model
is fit [Weisberg, 1985]. For the Colorado River at the Lees
Ferry, Arizona, gauge, the regression model developed by
Woodhouse et al. [2006], using all the available pool of
chronologies (30 in total), explains approximately 84% of
the annual variance of the observed streamflow. The fitted
regression model is then used to estimate the streamflow
during the preobservation period when tree ring information
is available, thus obtaining the reconstructed streamflow
series.
[8] Especially during high streamflow periods it is known

that the tree ring widths are influenced by variables other

Figure 1. Five-year running means of historic and paleoreconstructed streamflow at Lees Ferry.
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than moisture availability, thus degrading their ability in
accurately representing high flow years. Further, different
data sets and techniques to process tree ring information can
result in substantial differences in the reconstructed flows
[Hidalgo et al., 2000]. This can be seen in Figure 2, where
four different streamflow reconstructions at the Lees Ferry,
Arizona, gauge are shown, including the earliest reconstruc-
tion of Stockton and Jacoby [1976], later reconstructions by
Hidalgo et al. [2000], that of Hirschboeck and Meko [2005]
as part of the Salt River Project, and the most recent
reconstruction by Woodhouse et al. [2006]. Each recon-

struction used a different set of tree ring chronologies and
different processing methods. Of particular interest is the
increased severity of drought and reduced overall mean
displayed by the Hidalgo reconstruction. Unfortunately, the
variability across reconstructions has not helped instill
confidence in use of these data by policy makers and water
managers in the Colorado River basin, even with growing
interest in wanting to use them. Despite their differences,
reconstructions tend to agree quite well on ‘‘wet’’ and
‘‘dry’’ years [Woodhouse et al., 2006], as seen in Figure 3.
We found that three or more reconstructions agree on the

Figure 2. Five-year running means of recent and previous streamflow reconstructions at Lees Ferry.

Figure 3. System state, i.e., wet (1) or dry (0), derived from 5-year running means for recent and
previous streamflow reconstructions at Lees Ferry.
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hydrologic state 88% of the time, while all four methods
agree 65% of the time on an annual basis. This offers the
potential to use the paleoreconstructed streamflows to model
the hydrologic state (i.e., wet or dry) of the system and use the
observational data for the flow magnitude. This forms the
basis of our proposed framework.

3. Proposed Framework

[9] As mentioned above, the proposed framework com-
bines the paleoreconstructed streamflows with the observa-
tional data in a framework for simulating robust streamflow
scenarios for use in water resources management. The
paleoreconstructed data are used to model the hydrologic
state of the system. The median of the observed flows is
used to define periods as wet if flow is greater than this
threshold and dry if flow is less than this threshold. Epochs
of wet and dry periods identified using this criterion are
illustrated in Figures 2 and 3. They illustrate the persistence
in wet/dry regimes that suggests a Markov chain based
model. Because the state transition appears to be varying
through time, a nonhomogeneous Markov chain modeling
approach is appropriate. The streamflow magnitudes are
then simulated from the conditional probability density
function, given the wet or dry state using a nonparametric
K-nearest neighbor bootstrap approach. The framework is
shown in Figure 4. The description of these two compo-
nents of the framework along with background information
are provided below. Hereinafter we refer to this framework
as nonparametric paleoconditioning (NPC).

3.1. Modeling the Hydrologic State

[10] Markov chains have been extensively used to model
daily precipitation occurrence [Gabriel and Neumann,
1962; Todorovic and Woolhiser, 1975; Smith and Schreiber,
1974; Salas, 1993, and references within]. Typically, for a
two-state (wet, dry) first-order model (i.e., state transition at
the current time step depends on the previous state), the
transition probabilities are directly estimated from the data

by counting the proportion of transitions to a wet year from
a dry year, Pdw, and the probability of a wet year followed
by a dry year, Pwd. The probability of a dry year followed
by a dry year can be obtained as Pdd = 1 � Pdw; likewise,
the probability of a wet year followed by a wet year can be
obtained as Pww = 1 � Pwd. The transition probabilities can
be readily used to simulate the hydrologic states and
consequently, their frequencies. If these transition probabil-
ities are assumed to be stationary and calculated from the
entire data, then it is a ‘‘stationary’’ Markov chain. Here,
though (Figures 2 and 3), the frequencies of wet and dry
periods are varying (i.e., nonstationary) over time.
[11] The nonstationarity can be addressed in several

ways. A moving window of some W time steps can be
selected and the transition probabilities can be estimated for
each time window and repeated by moving forward every
time step. The transition probability estimates for each year
are based on state observations present in the window
length. An alternative, hidden Markov models, has been
gaining popularity. In these, the underlying epochal (or
regime) changes are modeled probabilistically and the
transition probabilities are then conditionally estimated
based on the epoch. These models have been applied
to precipitation, climate, and streamflow data [see, e.g.,
Zucchini and Guttorp, 1991; MacDonald and Zucchini,
1997; Lu and Berliner, 1999; Thyer and Kuczera, 2000,
2003a, 2003b; Ak�ntuğ and Rasmussen, 2005]. Another
approach to dealing with nonstationarity is the nonhomo-
geneous Markov models [Hughes and Guttorp, 1994;
Hughes et al., 1999; Bellone et al., 2000; Lambert et al.,
2003]. For example, Fourier series were fit to model the
changing transition probability with season for precipitation
[Woolhiser and Pegram, 1979; Roldan and Woolhiser,
1982; Feyerherm and Bark, 1965].
[12] Nonparametric alternatives [e.g., Rajagopalan et

al., 1996, 1997; Mehrotra et al., 2004; Mehrotra and
Sharma, 2005] offer a more general and flexible approach.
In particular, here we use the nonhomogeneous Markov
model (NHM) developed by Rajagopalan et al. [1996], in
which the transition probability at any time t is estimated
as a weighted average of the transitions within a window
of size H centered on t. The window size H is obtained
from objective criteria. This was developed to model a
daily precipitation process and subsequently applied for
modeling the occurrence of El Niño–Southern Oscillation
[Rajagopalan et al., 1997]. We adapt the NHM framework
for modeling the streamflow states described below.
[13] The transition probabilities, Pdw (t) and Pwd (t), for a

given year are estimated by a discrete nonparametric kernel
estimator given as

Pdw tð Þ ¼

Pn
i¼2

K
t � ti

hdw

� �
St 1� St�1½ �

Pn
i¼2

K
t � ti

hdw

� �
St

ð1Þ

Pwd tð Þ ¼

Pn
i¼2

K
t � ti

hwd

� �
1� St½ �St�1

Pn
i¼2

K
t � ti

hwd

� �
1� St½ �

; ð2Þ

Figure 4. The nonparametric paleoconditioning (NPC)
modeling framework description.
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where K() = the kernel function, St = system hydrologic
state (1 = wet, 0 = dry) at time t, St�1 = system hydrologic
state at time t � 1, h() = the kernel bandwidth, t = year of
interest, and n = the number of values in the window t � h()
to t + h(). The discrete quadratic kernel function developed
by Rajagopalan and Lall [1995] is used, which is given as

K xð Þ ¼ 3h

4h2 � 1ð Þ 1� x2
� �

for xj j � 1; ð3Þ

where x = (t � t())/h() measures the distance for event t()
from the year of interest t within the bandwidth h(), where
h() is an integer. The weights from the kernel function are
positive and sum to unity. It can be seen that the estimates of
transition probabilities at any year t are based only on the
transitions within a window t � h() to t + h().
[14] The transition probability estimators (1) and (2) are

fully defined once the bandwidth h() is determined for each.
An objective method based on a least squares cross-valida-
tion (LSCV) procedure [Scott, 1992] is used to select the
optimal bandwidth that was developed by Rajagopalan et
al. [1996] for the NHM case,

LSCV hð Þ ¼ 1

n

Xn
i¼1

1� P̂�ti tið Þ
� �2

; ð4Þ

where n = the number of observations (ndw or nwd), and
p̂�ti

(ti) = the estimate of the transition probability (p̂WD or
p̂DW) at year t, based on data ranging from t � h to t + h,
with the exclusion of t (the transition at t should not be
included when attempting to approximate that value). The 1
in equation (4) results from an assumption that the prior
probability of transition is 1 for the years on which a
transition has occurred. The value of h that minimizes the
LSCV function is selected as the optimal bandwidth. The
bandwidths hdw and hwd are objectively determined and
subsequently used in the estimators (1) and (2) to estimate
the transition probabilities for each year. The LSCV
function does not always yield a clear minimum; therefore
it is preferable to find an estimate for all available
transitions to obtain a range of bandwidths. When a clear
minimum is not found, it is recommended that a minimum
delta h value (i.e., 0.0001) be determined to objectively find
a minimum LSCV based on reaching the minimum delta h.
We chose the clear minimum found within each comple-
mentary transition, but found little sensitivity over the range
of possible bandwidths.
[15] Best Markov chain model orders are generally se-

lected as the minimizers of the Akaike information criterion
[Gates and Tong, 1976]. For the Lees Ferry paleorecon-
structed data we found the two-state, first-order to be
optimal.

3.2. Modeling the Flow Magnitudes

[16] The streamflow magnitudes, as mentioned earlier,
are modeled based on the observed data and conditioned
upon the hydrologic state simulated using the paleodata.
This model can be described as the conditional probability
density function (PDF),

f xtjSt; St�1; xt�1ð Þ; ð5Þ

where the flow at the current time t = xt conditioned on the
current system state = St, previous system state = St�1, and
previous flow = xt�1.
[17] Simulation from this conditional PDF is achieved

by a K-NN bootstrap method [Lall and Sharma, 1996;
Rajagopalan and Lall, 1999]. Typically, K-NN are identi-
fied in the observational data of the current feature vector
[St, St�1, xt�1]. One of the neighbors is selected, based on a
metric that gives the highest probability to the nearest
neighbor and the lowest to the farthest. The corresponding
streamflow of the year that sequentially follows the selected
neighbor is the simulated value for the current time.
[18] This case is unique in that the feature vector includes

discrete and continuous variables. Further, the discrete
variables indicate system state as 0 or 1, i.e., dry or wet,
while the continuous variable is a considerably larger value.
If this disparity in magnitude is not considered in the
neighbor choice, the state information will not influence
the neighbor choice. The neighbor would be chosen based
solely on xt�1. Therefore determination from the feature
vector [St, St�1, xt�1] is split into two steps. First the discrete
variables are identified as members in one of the four
categories (ww, wd, dw, dd) identified from the state vector
[St, St�1]. In the second step, the K-nearest neighbors of xt�1

that lie within the appropriate category are identified. The
flow for the following year, xt, corresponding to the neigh-
bor selected for xt�1, is then sampled.
[19] In this work, Kj = nj, where j = 1, ..,4 represent the

four state categories and n is the number of values in each
category. With a larger observational data set the number of
nearest neighbors can also be based on the heuristic scheme
K =

ffiffiffi
n

p
[Lall and Sharma, 1996], following the asymptotic

arguments of Fukunaga [1990]. Objective criteria such as
generalized cross validation (GCV) can also be used [Lall
and Sharma, 1996, Prairie et al., 2005] The Kj neighbors
were weighted with the function

W ið Þ ¼ 1

i

� �
 XK
i¼1

1

i

 !
:

3.3. Implementation Algorithm

[20] The complete framework combines the two models.
The simulation proceeds as follows. First, a simulation
horizon is identified, which is application dependent. Sup-
pose a T-year horizon is chosen.
[21] 1. Randomly resample a block of T years from the

paleoreconstructed streamflows, say 1651–1680.
[22] 2. Generate flow states S(t) where t = 1, 2,. . .,T using

the transition probabilities of the resampled years from
step 1 above.
[23] 3. Generate flow magnitudes x(t) for each t =

1,2,. . .,T from the conditional PDF f (xtjSt, St�1, xt�1) using
the K-NN bootstrap approach described in the previous
section.
[24] 4. Repeat steps 2 and 3 to obtain as many simulations

as required.

4. Model Evaluation

[25] The proposed framework (NPC) is applied to the
paleoreconstructed streamflows (1490–1997) and observed
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natural flows (1906–2005) at Lees Ferry, Arizona, on the
Colorado River. For this work, 500 simulations, each 100
years in length (same as the length of the observed flows),
were generated.
[26] A suite of basic distributional statistics are computed

including the annual (1) mean, (2) standard deviation,
(3) coefficient of skew, (4) maximum, (5) minimum, and
(6) lag-1 autocorrelation. Surplus and drought statistics
include the average length surplus (avgLS), average length
drought (avgLD), average surplus (avgS), and deficit
(avgD) volume. Surplus (drought) is defined as values
above (below) a threshold, here the median of the observed
record. Figure 5 describes the computation of these surplus
and drought statistics based on the threshold.
[27] The results are displayed as box plots where the box

represents the interquartile range (IQR) and whiskers extend
to the 5th and 95th percentiles of the simulations and
outliers are shown as points beyond the whiskers. The
statistics of the observed record are represented as a
triangle, and the statistics of the paleoreconstructed record
are represented as a circle. Performance on a given statistic
is judged as good when the observed or paleostatistic,
depending on the statistic of interest, falls within the
interquartile range of the box plots, while increased vari-
ability is indicated by a wider box plot.

5. Results

[28] First the four sets of time-varying transition proba-
bilities estimated from the NHM estimator (equations, (2),
(3), and (4)) over the paleoperiod are shown in Figure 6.
The optimal bandwidth minimizing the LSCV was found to
be 37 years for the wet-wet transition and 19 for the dry-dry
transition. The other two transition probabilities are comple-
ments of these. The epochal behavior in the transition
probabilities is quite apparent. We draw attention to two
epochs, (1) the early 1900s when the probability of transi-
tion to a wet state is higher than 0.5 and the transition to dry
state is much lower than 0.5, which is also the epoch when
the water sharing compact agreements on the Colorado
River basin were developed, the wettest epoch in the past

500 years. In contrast, (2) the early 1600s is when the
probability of transition to a dry state is much higher than
0.5, which is one of the driest periods in the paleorecord.
There is also a steady decline in the probability of transition
to a wet state in recent decades and a corresponding increase
to dry states. Thus using these varied transition probabilities
will provide a richer variety of wet and dry sequences, as
seen in the results that follow.
[29] The simulations capture the basic distributional sta-

tistics of the observed streamflow within the IQR (Figure 7).
This is consistent with the methodology in that the K-NN
bootstrap approach resamples the observed data. Since the
generated sequences are of the same length as the observed,
the basic statistics of the observed streamflows are well
captured, as to be expected. These distributional statistics of
the paleorecord are not expected to be captured.
[30] Box plots of surplus and drought statistics are shown

in Figure 8, along with the corresponding values from the
observed record represented as a triangle and those from the
paleorecord represented as a circle. The simulations from
NPC generate longer drought and surplus sequences relative
to observed, which can be seen by the observed statistics

Figure 5. Definition of surplus and drought statistics.

Figure 6. Transition probabilities from the paleostream-
flows using the nonhomogeneous Markov estimator.
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falling low within or below the IQR in Figure 8. The avgLS
and avgLD of the paleodata are well reproduced in the NPC
simulations. The avgS and avgD are influenced by both the
magnitudes of flow, which are resampled from the observed
record, and the state sequences from the paleorecord;
therefore these statistics represent a blend of both these
records. For comparison, a simple K-NN lag-1 model as
described by Lall and Sharma [1996] was used to resample
the observed natural flow record with no influence from the
paleorecord. Figure 9 shows the drought and surplus statis-
tics from this simple model. The avgLS and avgLD as well
as the avgS and avgD of the observed record are captured
well within the IQR from this simulation, but the
corresponding statistics from the paleorecord are not, as to
be expected. Also, these simulations display reduced vari-

ability, as a tightened IQR, compared with Figure 8. The
NPC framework is able to produce more varied drought and
surplus sequences than what can be obtained from resam-
pling only the observed data.
[31] The distribution of surplus and drought lengths is

displayed in Figures 10 and 11 as histograms, respectively,
for the observed, paleo, and NPC simulations. The histo-
gram from the NPC simulations appear to be a smoothed
version of that from the paleorecord, and also, the observed
record has limited longest wet and dry spell lengths.
Visually, the tail behavior of the histograms from the
paleorecord and NPC simulations can be seen to be different
from the observed record. The risk of a 6-year or longer dry
spell (i.e., probability of exceedance) is 0% from the
observed, 10.1% from the paleo, and 8.6% from the NPC
simulations. The NPC provides a better sense of this risk,
while the observed data show no risk of this. Also, the tails
of the NPC drought and surplus plots extend to include
event durations not seen in either the paleo or the observed.
This is a new contribution to the field and is valuable in

Figure 7. Box plots of basic statistics from NPC
simulations. Statistics of the observed period are shown as
blue triangles, and those of the paleoflows are shown as red
circles.

Figure 8. Box plots of drought and surplus statistics from
NPC simulations. Statistics of the observed period are
shown as blue triangles, and those of the paleo are shown as
red circles.

Figure 9. Box plots of drought and surplus statistics from
K-NN lag-1 resampling of the observed data. Statistics of
the observed period are shown as blue triangles, and those
of the paleo are shown as red circles.
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quantifying risk and planning for extreme events. The
impacts on results from a decision support system that
incorporated alternate hydrologic simulations including
NPC simulations were published by Bureau of Reclamation
[2007] for the Colorado River basin operations. This study
found that use of NPC simulations indicated greater risk of
lower reservoir conditions than when only using simulation
based on the observed or paleorecord alone. These findings
indicated the importance of developing sequences of flows
not seen in the observed period but probable based on state
information from the paleorecord.
[32] In the Colorado River basin the critical sequence of

concern is a series of droughts connected over 12 years with

surplus years interspersed. Such sequences are not repre-
sented in the drought statistics described above; Timilsena et
al. [2007] address this through the use of a 5-year moving
average to determine the hydrologic variable and thus
periods of drought. Furthermore, the drought and surplus
statistics estimated above are based on a preselected thresh-
old (here it is the median streamflow of the observed
period). Thus the results are sensitive to this selected
threshold. To avoid this, a better approach is to determine
the required storage for a given streamflow sequence to
meet various demand levels. This incorporates the effect of
multiple linked droughts and thus is more realistic in
representing critical droughts. The algorithm, termed the

Figure 10. Histogram of surplus lengths from (a) observed, (b) paleo, and (c) NPC simulations.

Figure 11. Histogram of drought lengths from (a) observed, (b) paleo, and (c) NPC simulations.
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sequent peak algorithm [Loucks et al., 1981], used for this
purpose is given as

S0i ¼
S0i�1 þ d � yi

0

8<
: ð6Þ

Sc ¼ max S0i ; . . . ; S
0
N

� �
; ð7Þ

where Si
0 is the storage at time step i, d is the demand or

yield, yi is the streamflow from a sequence of N values at

time i, and Sc is the storage capacity. This is also widely
used for designing reservoir capacities.
[33] The algorithm is run for various demand (yield)

levels with the historic flow (triangle), and each trace of
the 500 simulations (box plots) shown in Figure 12. The
sequences generated from the NPC framework introduce
significant and realistic flow variability and as a result,
reduced system reliability. For example, consider a demand
of 16.5 million acre feet (MAF; 1.233 � 109 m3). To
reliably meet this demand, based on the historic inflow
sequence (triangle), a storage capacity of 325 MAF is
required. The box plot shows considerable variability in
the required storage capacity based on the 500 traces
simulated from the combined framework. Furthermore, the
box plot, shown as a PDF (Figure 13a) or a cumulative
distribution function (CDF) (Figure 13b), can easily be used
to find the reliability. It is clear that a demand of 16.5 MAF
cannot reliably be met 98.9% of the time for a storage
capacity of 60 MAF (the approximate current storage
capacity of the Colorado River basin). The reliability is
the area under the PDF curve below 60 MAF which is
1 minus the area of the hatched region in Figure 13a, or (1–
0.989 = 0.011) as read from the CDF. The reliability of
alternate storage capacities can be found from Figure 13a or
13b in a similar manner.
[34] The sequent peak method assumes that the demand

level is constant through time and must be met in all years.
In real operations, however, this is not the case. As a result,
the reliability estimates obtained above tend to be too
simplistic and conservative and provide only a coarse repre-
sentation of the actual system reliability. Therefore we urge
caution in using these results to read policy implications. To
fully appreciate the actual operations of the water resources
in a river basin, a decision support system that incorporates
variable demand schedules, proper topographic layout for
river system reservoir, diversion points, and operating
policies must be used. This will help provide realistic
estimates of reliability for the various decision components

Figure 12. Box plots of demand-storage from the sequent
peak algorithm on the NPC simulations. The corresponding
values from the observed data are shown as triangles.

Figure 13. (a) Probability density function and (b) cumulative distribution function for 16.5 million
acre feet demand box plot from Figure 12.
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of the system, as demonstrated by Prairie [2006] and
Bureau of Reclamation [2007, Appendix N].
[35] As seen from the results, the utility of the proposed

framework of combining information from paleoreconstruc-
tions and observations is to produce a rich variety of wet
and dry spells, which are crucial for robust water resources
planning. Investigation of the spell distribution shows that
the combination approach generates a higher risk of extended
wet and dry spells. This risk will have a significant impact
on the water resources management in the basin, especially
when the current modeling framework does not model
events greater than 5 years in length. The spell variability
generated here is much richer than what can be obtained
from traditional time series modeling of the observed data
[Prairie, 2006].

6. Summary and Discussion

[36] A novel framework for combining information from
multiple sources in generating scenarios was developed.
The methodology is data driven, flexible, and easy to
implement. Other variations of the framework are possible,
especially for generating state information, such as (1) fitting
a stationary Markov chain separately on different epochs
specified by the user, or (2) bootstrapping blocks of pale-
odata and using the state information.
[37] The presented framework combines the long paleo-

reconstructed streamflow information of lesser reliability
with the shorter but reliable observational data. The frame-
work has two components: (1) a nonhomogeneous Markov
chain model developed on the paleodata that is then used to
simulate the hydrologic state, and (2) a K-nearest neighbor
(K-NN) time series bootstrap to simulate the streamflow
magnitude from the observational data conditioned on the
hydrologic state and the previous flow magnitude. This
framework combines the respective strengths of the two
data sets. Furthermore, it is robust and parsimonious. The
framework was applied to paleoreconstructed streamflow
and observational data for the Lees Ferry, Arizona, stream-
flow gauge on the Colorado River. The simulations showed
the ability to capture all the distributional statistics of the
observational period and also generate a rich variety of wet
and dry sequences that will benefit the sustainable manage-
ment of water resources in the basin.
[38] It is difficult to quantify the significance of combin-

ing the paleodata with the observational data in comparison
with solely using the observational period data when
generating simulations. A Kolmogorov-Smirnov test was
used to compare the distributions from both methods, and a
significant difference in the overall distributions was not
found. However, the distributions do present different
tail probabilities that cannot be demonstrated with the
Kolmogorov-Smirnov test. These differing tail probabilities
present a revised picture of risk that is typically determined
with a decision support system. Prairie [2006, chapter 5]
presents results from a decision support system that dem-
onstrate using the combine data set versus the observational
data alone influences decision variables sensitive to tail
probabilities such as those affected by extreme events, for
instance, protracted drought or surplus.
[39] In the presented results, currently the threshold used

to determine system state as well as drought and surplus
statistics is based on the median of the observed flow. This

threshold can be modified or more states could be included
as required on a case by case basis.
[40] A slightly modified version of this technique can be

used to generate streamflow sequences based on climate
change projections. In this modification the state sequence
would be generated using the paleo and observed data and
the streamflow magnitudes would be resampled from the
PDF of flows from climate change projections.
[41] The annual streamflow generated at Lees Ferry,

Arizona, from this approach can be spatially and temporally
disaggregated [Prairie et al., 2007] obtaining monthly flow
scenarios at all the gauges in the basin. These scenarios are
used in a basin-wide decision model [Prairie, 2006] and
help determine realistic estimations for risk and reliability of
various decision components in the water resources system,
facilitating effective long-term planning.
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