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[1] Often hydrologic regression models are developed with ordinary least squares (OLS)
procedures. The use of OLS with highly correlated explanatory variables produces
multicollinearity, which creates highly sensitive parameter estimators with inflated
variances and improper model selection. It is not clear how to best address multicollinearity
in hydrologic regression models. Here a Monte Carlo simulation is developed to compare
four techniques to address multicollinearity: OLS, OLS with variance inflation factor
screening (VIF), principal component regression (PCR), and partial least squares regression
(PLS). The performance of these four techniques was observed for varying sample sizes,
correlation coefficients between the explanatory variables, and model error variances
consistent with hydrologic regional regression models. The negative effects of
multicollinearity are magnified at smaller sample sizes, higher correlations between the
variables, and larger model error variances (smaller R2). The Monte Carlo simulation
indicates that if the true model is known, multicollinearity is present, and the estimation and
statistical testing of regression parameters are of interest, then PCR or PLS should be
employed. If the model is unknown, or if the interest is solely on model predictions, is it
recommended that OLS be employed since using more complicated techniques did not
produce any improvement in model performance. A leave-one-out cross-validation case
study was also performed using low-streamflow data sets from the eastern United States.
Results indicate that OLS with stepwise selection generally produces models across study
regions with varying levels of multicollinearity that are as good as biased regression
techniques such as PCR and PLS.
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1. Introduction

[2] Applications of regression analyses in the field of
water resources are extensive. One of the widest applica-
tions of regression in hydrology is its use in developing re-
gional models that relate hydrologic characteristics, such as
low-flow and flood-flow statistics, to watershed characteris-
tics. Such models have been developed for most states in
the United States [Riggs, 1972; U.S. Geological Survey,
2010] and have been incorporated into StreamStats, an
interactive web-based application to estimate streamflow
statistics at ungauged river sites [Reis et al., 2008]. Regres-
sion has been used to estimate both the mean and variance
of annual watershed runoff for all regions of the United
States as a function of climate and basin characteristics
[Vogel et al., 1999]. In addition, regression has been used

to estimate sediment loads [Syvitski and Milliman, 2007;
Roman et al., 2012], water quality constituents [Tasker and
Driver, 1988; Driver and Troutman, 1989] such as fecal
coliform [Kelsey et al., 2004] and pesticides [Kreuger and
Tornqvist, 1998], urban runoff magnitudes and chemistry
[Gallo et al., 2012], groundwater levels [Thomas and
Vogel, 2012], groundwater quality [Gardner and Vogel,
2005], and a host of other applications.

[3] A linear regression model can be represented by

Y ¼ X� þ E ð1Þ

where Y is a vector of dependent variables, X is a matrix of
explanatory variables (typically augmented by a column of
ones), b is a vector of model parameters, and E is a vector
of model residuals. Often ordinary least squares (OLS)
regression procedures are used to estimate the model pa-
rameters by minimizing the sum of squared residual terms.
Via the Gauss Markov theorem, for OLS estimators to be
the best linear unbiased estimators of the parameters, the
residuals have a mean of zero, a constant variance (homo-
scedastic), and be independent from the explanatory varia-
bles and each other [McElroy, 1967]. In hydrologic
regression analyses, weighted least squares procedures
have been applied to address heteroscedasticity of the

1Baker Lab, Environmental Resources Engineering, SUNY ESF, Syra-
cuse, New York, USA.

2Anchor QEA, LLC, Montvale, New Jersey, USA.

Corresponding author: C. N. Kroll, 402 Baker Lab, Environmental
Resources Engineering, SUNY ESF, Syracuse, NY 13210, USA.
(cnkroll@esf.edu)

©2013. American Geophysical Union. All Rights Reserved.
0043-1397/13/10.1002/wrcr.20315

3756

WATER RESOURCES RESEARCH, VOL. 49, 3756–3769, doi:10.1002/wrcr.20315, 2013

diego
Resaltado



residuals [Tasker, 1980], while generalized least squares
procedures address the lack of independence [Stedinger
and Tasker, 1985; Kroll and Stedinger, 1998].

[4] To create unique model parameter estimators, the
explanatory variables should be linearly independent. A
violation of this condition is referred to as multicollinear-
ity. Multicollinearity can yield highly variable parameter
estimators, erroneous selection of explanatory variables
from a data set, and the inability to understand the precise
effects of certain explanatory variables [Johnston, 1972;
Greene, 1990]. This linear dependence exists in many
hydrologic regression models because correlated watershed
characteristics representing topography, geology, meteorol-
ogy, and geomorphology are often employed as explana-
tory variables. For example, watershed area and stream
length are typically correlated throughout a region, as are
different estimators of watershed slope. This problem is
exacerbated by the availability of large geographic infor-
mation system (GIS)-derived databases of watershed char-
acteristics for model development [Kroll et al., 2004;
Falcone et al., 2010]. The use of standard model selection
criteria, such as stepwise selection, may also be adversely
impacted by multicollinearity. Graham [2003] has shown
that with increasing multicollinearity, significant explana-
tory variables are more vulnerable to erroneous variable
exclusion.

[5] It is currently unclear as to the best method to
employ when confronted with multicollinearity in hydro-
logic regression modeling. Common techniques include
using variance inflation factors (VIFs) to screen for multi-
collinearity [Mansfield and Helms, 1982; Kroll et al.,
2004; O’brien, 2007], transforming the original explana-
tory variables into new uncorrelated variables such as prin-
cipal component regression (PCR) [Haan and Allen, 1972;
Jolliffe, 1986], adding a constant to the diagonal of the
cross product matrix (X0X) such as ridge regression (RR)
[Hoerl and Kennard, 2000], using an alternative model
selection criterion such as Mallow’s Cp [Laaha and
Bloschl, 2007], or completely ignoring the problem and
performing OLS. Outside of the hydrologic literature other
techniques have been explored that take advantage of the
correlation between the dependent variables and the
response variable, such as partial least squares regression
(PLS) [Wold et al., 2001; Tootle et al., 2007].

[6] While some researchers have examined the impact of
multicollinearity when sample sizes are large [Frank and
Friedman, 1993; Grewal et al., 2004], only limited studies
have addressed the issue of multicollinearity on small sam-
ple regression [Mason and Perreault, 1991; Kiers and
Smilde, 2007], a common problem in hydrology. Mason
and Perreault [1991] found that the adverse impact of mul-
ticollinearity is magnified at a sample size of 30 observa-
tions and poor overall model fit. When comparing the
model development techniques with highly correlated
explanatory variables, Kiers and Smilde [2007] found that
PCR and PLS produce the most accurate parameter estima-
tors at a sample size of 50 observations, while OLS pro-
duces the best model predictions for sample sizes of 10, 20,
and 50 observations. For asymptotic calculations where the
number of observations is large, Mela and Kopalle [2002]
show that the prediction differences between PCR and PLS
is small. The results from these previous studies are not

directly applicable to the hydrologic regional regression
problem because they assume that the true model is known.
The true model is seldom known in practice, and even
when the true model is known there is often uncertainty
regarding how best to estimate the model parameters.

[7] Frank and Friedman [1993] conducted a Monte
Carlo simulation with 50 observations to compare the pre-
diction performances of various regression model building
techniques. Their study found that RR performs the best,
closely followed by PCR and PLS, while OLS performed
worst when comparing the average squared prediction
error. While Frank and Friedman [1993] provide a detailed
description of these techniques, their simulation was for a
very limited case, and the trade-offs between these estima-
tion techniques were not fully explored. Note that we do
not compare RR in this analysis for a variety of reasons.
There is no definitive technique for selecting the proper
constant to add to the X0X matrix in RR. As the RR con-
stant increases, the variance of the parameter estimators
decreases, and thus, one avoids the inflated variances of
multicollinearity. Subsequently, as the RR constant
increases, the bias of the parameter estimators also
increases. The RR constant is often chosen to balance the
variance and bias of the parameter estimators, or a cross-
validation is employed. Since PCR and PLS performed
similarly to RR in Frank and Friedman’s [1993] limited
analysis, RR was not considered here.

[8] Employing a Monte Carlo simulation, we extend
Frank and Friedman’s analysis by comparing OLS, VIF,
PCR, and PLS model development techniques for various
sample sizes and at higher degrees of collinearity. We also
examine how these techniques are impacted by stepwise
(forward and backward) variable selection. Techniques are
compared based on their ability to estimate model parame-
ters, the predictions from the developed model, and the
probability of selecting the correct model. An example for
low-streamflow prediction in the eastern United States is
also presented which supports the results of the Monte
Carlo simulation.

2. Model Development Techniques

[9] The four model development techniques employed in
this experiment are briefly described later and are summar-
ized in Table 1.

2.1. Ordinary Least Squares (OLS)

[10] For OLS, the model parameters are determined by
minimizing the sum of squared residual terms. In this analy-
sis, models are developed using standard stepwise variable
selection procedures based on an F test with an �¼ 0.05
[Draper and Smith, 1981]. Use of stepwise variable selection
(both forward and backward) with an F test to determine the
model explanatory variables has been criticized for a number
of reasons, including biased parameter estimators, incorrect
p values, and an upwardly biased coefficient of determina-
tion [Pope and Webster, 1972; Rencher and Pun, 1980;
Arditi, 1989]. In spite of this, the F test was employed in this
analysis due to its common use in practice.

2.2. Variance Inflation Factor With OLS (VIF)

[11] The VIF statistic is commonly employed to screen
for multicollinearity [Greene, 1990; Johnston, 1972; Kroll
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et al., 2004]. Each explanatory variable is regressed against
the other remaining explanatory variables, and the VIF is
calculated as

VIF ¼ 1

1� R2
ð2Þ

where R2 is the regression model coefficient of determina-
tion [Rawlings et al., 1988]. A VIF greater than 10 is a
common threshold for detecting severe multicollinearity
[Chatterjee and Price, 1990; O’brien, 2007]. In our analy-
sis, highly correlated explanatory variables are sequentially
removed if the VIF> 10, and the model with the lowest
sum of squared errors is kept as the best model. Similar to
OLS, standard stepwise regression procedures are
employed with this method, which will be referred to as
VIF throughout this paper.

2.3. Principal Component Regression (PCR)

[12] In PCR, the original correlated explanatory varia-
bles are linearly transformed into a new set of uncorrelated
variables known as principal components (PCs). This linear
transformation involves weighting each explanatory vari-
able by the eigenvectors of the explanatory variable corre-
lation or covariance matrix. Each PC explains a fraction of
the total variance within the data set. In this study, weights
based on the correlation matrix were used because the co-
variance matrix can be sensitive to the units of measure-
ment, which vary across different watershed characteristics
[Jolliffe, 1986]. The PCs are defined as

T ¼ XWþ E2 ð3Þ

where T is a matrix of PCs (scores), X is the original ex-
planatory variable matrix, W are the weights (sometimes
referred to as the loadings) found as eigenvectors of the
correlation matrix, and E2 is a vector of residuals. The PCs
(T) are then used to model the response variable Y

Y ¼ T�
0 þ Epc ð4Þ

where b0 are the transformed parameter estimators and Epc

are the model residuals.

[13] A two-step, stepwise variable selection technique is
employed to determine the explanatory variables in the PCR
model. In the first step, a new potential explanatory variable
is either entered into or removed from the current model,
and a set of PCs are calculated for the new explanatory vari-
able data set. In the second step stepwise variable selection
procedures, based on an F test, are performed using the PCs.
The selected PCs are then used to develop the regression
model, and this model is then transformed back to the origi-
nal explanatory variable space (b¼Wb0) to create the final
model. If all of the PCs are retained, then the final model is
identical to OLS. One common use of PCR is to reduce the
dimensionality of the regression model by including fewer
PCs than the original explanatory variables.

2.4. Partial Least Squares Regression (PLS)

[14] OLS is based upon minimizing the sum of squared
differences between the observed Y and predicted Y, calcu-
lated from Xb. PCR is based upon maximizing the variance
of the linear combinations of X. PLS is based upon maxi-
mizing the covariance between the Y and the linear combi-
nations of X [Helland and Almoy, 1994].

[15] Similar to PCR, in PLS the score matrix is found by
multiplying the X matrix by a weight matrix (equation (3)).
While the W matrix in PCR is computed to reflect the cor-
relation structure between the explanatory variables, the W
matrix in PLS is computed to represent the covariance
structure of the response and explanatory variables. One
method for computing the W matrix is using the Non-linear
Iterative PArtial Least Squares (NIPALS) algorithm
[Geladi and Kowlaski, 1986]. Y is decomposed to compute
Q by performing OLS of Y on T :

Y ¼ TQþ Epls ; ð5Þ

where T is the same score matrix previously found for X
(equation (3)), Y is the original response (dependent) variable,
Epls is the residual vector, and Q are the loadings. Once Q has
been found, PLS employs the following prediction model:

Y ¼ XWQþ Epls ; ð6Þ

where the regression coefficients for PLS are computed as
WQ. As with PLS, a two-step stepwise variable selection
technique is employed to determine the explanatory varia-
bles in the model. PLS can be geometrically represented as
a plane bounded by components and projected on a slope
with respect to the original coordinate axes [Wold et al.,
2001]. The components describe the data set variability,
while the slope defines the best correlation of X with Y.

3. Monte Carlo Simulation

3.1. Experimental Design

[16] For the Monte Carlo simulation, the following
model is examined:

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ "; ð7Þ

where y is a vector of the dependent variable, xi is a vector of
the ith explanatory variable, bi is the ith model parameter,
and " is the model residual. The explanatory variables were
randomly generated following a standard normal distribution
(N(0,1)) where x2 and x3 are correlated with a Pearson

Table 1. Summary of Model Development Techniques

Model Development
Technique Description

OLS Standard OLS regression with original
watershed characteristics as explanatory
variables. Employ stepwise variable selection
to develop model.

OLS with variance
inflation factor
screening (VIF)

Same as OLS except add a screening procedure
to sequentially remove highly correlated
watershed variables from model.

PCR Transform watershed characteristics into inde-
pendent components. Use a two-step stepwise
variable selection procedure to develop
model.

PLS Same as PCR except transform watershed
characteristics and response variable into
independent components.
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correlation coefficient �, and x1 is independent of x2 and x3.
While a different model could be used to generate xi, in
hydrologic regression models these variables often represent
the log of watershed characteristics (such as in a log-linear
regression model), which often appear normally distributed
in a region. In addition a fourth random independent potential
explanatory (x4) is also generated and is available for variable
selection. The true value for all parameters (bi) is set to 1.
The model residual, ", was randomly generated from a nor-
mal distribution with a mean of zero and constant variance of
�2
" . Changing �2

" varies the model’s coefficient of deter-
mination (R2). The dependent variable, y, was generated
using the true values of the parameters, and random realiza-
tions of the explanatory variables and model error.

[17] In the Monte Carlo simulation, the performance of the
model development techniques was observed for changing sim-
ulation parameters. The sample size was set to values of
n¼ 20, 50, 100, and 1000 observations, the Pearson correlation
coefficient between x2 and x3 was set to values of �¼ 0.90,
0.95, and 0.99, and the model error variance was set to value of
�2
" ¼ 0:15 and 1.5. The model error variances produced mod-

els with average R2 values of 0.75 �2
" ¼ 1:5

� �
and 0.95

�2
" ¼ 0:15

� �
when n¼ 1000. For the Monte Carlo simulation,

the number of simulation replications was set to m¼ 100,000.
[18] In this experiment two simulations are per-

formed: one with the true model known, and one
where the true model is unknown and stepwise proce-
dures are employed to develop the model. When the
true model is known (i.e., x1, x2, and x3 are in the
model), only the first two of the three PCs for PCR
and PLS are retained in the model. This reduces the
dimensionality of the problem, as keeping all three PCs
would yield the same result as OLS. For the situation
where the true model is unknown, it is important to
note that this assumes that the form of the true model
is known, and that the true model is included as a sub-
set of the potential explanatory variables. In practice,
one would expect that neither situation might actually
be true.

3.2. Performance Metrics

[19] A number of statistics were calculated to analyze
the performance of the model development techniques.
Model performance was assessed based on three results :
(1) properties of the parameter estimators, (2) model pre-
dictions, and (3) probability of selecting the correct model.
Properties of the parameter estimators were based on an
estimator’s bias, mean-square error (MSE), and variance,
which were calculated as

BiasðbbjÞ ¼
Xm

i¼1

bbji � 1

m
ð8Þ

MSE b̂j

� �
¼
Xm

i¼1

bbij � 1
� �2

m
ð9Þ

Var b̂j

� �
¼
Xm

i¼1

bbij � bj

� �2

m� 1
; ð10Þ

where bbji is the ith estimate of jth parameter estimator, and
bj is the average of bji .

[20] To determine the predictive ability of the model de-
velopment techniques, an analysis was performed to exam-
ine how well each technique predicted the median of the
data set as well as an extrapolated value outside the range
of the data set. To examine the median, a leave-one-out
cross-validation was performed where the median value of
y was removed from the data set, the remaining data set of
size n� 1 was employed to develop regression models with
each of the model development techniques, and then the
resulting model was used to estimate the removed value of
y. To examine how well each technique estimates an
extrapolated value of y, a new value of y was generated for
each data set using equation (7) by generating random real-
izations of the explanatory variables (x1, x2, and x3) from a
N(3,1) distribution and the model residuals from a N(0, �2

")
distribution, and setting bi¼ 1 for all i. It is important to
note that this assumes the true model is valid outside the
range of measurements, which may not be true in practice.
Also note that predicting the largest value of original data
set via a leave-one-out cross-validation would create a bias
for all methods since the largest value is typically associ-
ated with an observation generated with a large value of ".
To examine model predictions, three performance metrics
were calculated:

Bias ŷð Þ ¼
Xm

i¼1

byi � yi

m
ð11Þ

MSE ŷð Þ ¼
Xm

i¼1

byi � yið Þ2

m
ð12Þ

Var ŷð Þ ¼
Xm

i¼1

byi � yð Þ2

m� 1
; ð13Þ

where byi is the ith prediction of the observed medium or ex-
trapolated value of y.

[21] The frequency of accepting or rejecting explana-
tory variables is examined to determine how well the
model development techniques select the correct model
when multicollinearity is present. One would expect
that when � is high, the information in x2 and x3 is
nearly identical, and thus, the model performance
would be similar if x2, x3, or both x2 and x3 were
selected, resulting in a situation where the incorrect
model is more frequently chosen.

3.3. Results

[22] A Monte Carlo simulation was performed with the
four model development techniques with varying correla-
tion coefficients, sample sizes, and model error variances.
The results are broken into three subsections: (1) properties
of the parameter estimators, (2) model predictions, and (3)
probability of selecting the correct models. For subsections
(1) and (2), we examine results for each of the model devel-
opment techniques when the true model is known and
unknown. When the true model is known, equation (7) is
employed for OLS, PCR, and PLS, and if the VIF> 10,
then either x2 or x3 is included for VIF. For PCR and PLS,
only the first two components are retained in the regression
equations. When the true model is unknown, each model
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development technique selects the explanatory variables
using stepwise procedures, with VIF screening for situa-
tions with a VIF> 10.
3.3.1. Properties of the Parameter Estimators
3.3.1.1. True Model Known

[23] Figure 1a presents the MSE and variance of the
uncorrelated parameter estimator b1, when �2

" ¼ 1:5 and
the true model is known. Higher values of MSE and var-
iance indicate poorer performance of the model develop-
ment technique parameter estimators. Since the MSE �
Varianceþ (Bias)2, differences in the MSE and variance
are an indirect measure of bias. All four model develop-
ment techniques perform well when the true model is
known, with MSE values of b1 close to zero (<0.1).
Slightly lower MSE values of PCR and PLS were observed
for n¼ 20; however, the difference in the MSE compared
to the other model development techniques was relatively
small. The MSE values for all techniques decreases as the
sample size increases. Increasing the correlation coefficient
between x2 and x3 generally did not affect the performance
of the b1 parameter estimator. Results for �2

" ¼ 0:15 (not
shown here) followed similar patterns but were smaller in
magnitude.

[24] Figure 1b presents the MSE and variance of the cor-
related parameter estimator b2 when �2

" ¼ 1:5 and the true
model is known. The MSE and variance of the OLS b2 esti-
mators increases as the sample size decreases, the correla-
tion coefficient between x2 and x3 increases, and the model
error variance increases. At the highest correlation, VIF b2

estimators consistently produces MSE values close to 1
because the b2 estimator is compensating for the absence of
b3 in the model (which is screened since the VIF> 10),
thus doubling b2 from a value of 1 to �2. Only VIF pro-
duced biased parameter estimators. PCR and PLS produce
the best b2 estimators for all correlations and samples sizes,
with MSE values close to zero. PCR and PLS estimators
produced nearly identical results. Performance metrics for
b3 were identical to b2, while the performance for b1 was
better than for b2. These results are consistent with reported
results that when multicollinearity is present in a model,
OLS produces parameter estimators with inflated variances,
and that the use of PCR or PLS can reduce these parameter
estimator variances [Kiers and Smilde, 2007; Mela and
Kopalle, 2002; Frank and Friedman, 1993].
3.3.1.2. True Model Unknown (Stepwise Selection)

[25] Figure 1c shows that when the true model is
unknown, OLS and VIF b1 estimators have smaller MSE
values than PCR and PLS estimators. This is especially
true when the sample size is small, where PCR b1 estima-
tors have the largest MSE. When the sample size increases,
the difference between the OLS, VIF, PCR, and PLS b1

estimators narrows. Interestingly, OLS and VIF b1 estima-
tors produce smaller MSE values when the true model is
unknown than when the true model is known. When the
true model is unknown, OLS and VIF can choose the ex-
planatory variables that can best minimize the variance of
the model residuals and thus minimize the variance of the
parameter estimators. The variance of the b1 estimators for

Figure 1. MSE and variance (Var) of b1 when the true model is (a) known and (c) unknown and b2

when the true model is (b) known and (d) unknown. Correlation coefficient is indicated in parentheses.
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PCR and PLS increases when the techniques choose the
model using stepwise selection. Regardless, all four model
development techniques generally perform well when esti-
mating uncorrelated explanatory variables using stepwise
regression.

[26] The results of the Monte Carlo simulation with step-
wise variable selection for b2 when �2

" ¼ 1:5 is summar-
ized in Figure 1d. At the highest correlation, the MSE of
the VIF b2 estimators was again approximately one for all
sample sizes. It can be seen from Figure 1d that VIF b2 esti-
mators perform better than the other techniques when the
correlation is high and the sample size is low. The adverse
impacts of multicollinearity decrease as the sample size
increases for OLS, PCR, and PLS. OLS, PCR, and PLS all
had similar results. Interestingly, when OLS is allowed to
choose the model using stepwise selection (i.e., Figure 1d
versus Figure 1b), the variance of the parameter estimator
decreases, indicating that only one of the two correlated
variables is entering the model. This observation is sup-
ported in section 3.3.3.
3.3.2. Model Predictions
3.3.2.1. True Model Known

[27] Figure 2a presents the MSE and variance of estima-
tors of the median observation when �2

" ¼ 1:5 and the true
model is known. Although PCR and PLS produced better
parameter estimators when the true model is known, these
model development techniques produced only slight
improvements over OLS in predicting the median observa-
tion at 20 observations, and nearly no improvement at
higher sample sizes. As sample size increased, MSE and
variance decreased, though the magnitude of this decrease
was relatively small (<10%) when moving from 50 to

1000 observations. Except for VIF when the sample size is
20, increasing the correlation between the variables had no
effect on the MSE and variance of the median estimators.
The MSE and variance of the estimators were nearly identi-
cal, indicating no bias from any of the techniques when
estimating the median. While not shown here, the MSE and
variance for when �2

" ¼ 0:15 are similar to when
�2
" ¼ 1:5, though smaller in magnitude. This is also true

for other results presented in this section.
[28] As the presence of multicollinearity inflates the var-

iance of the parameter estimators and the model predic-
tions, of concern is the impact of multicollinearity on
predicting observations where one must extrapolate outside
of the range of observations used to develop the model.
Figure 2b presents the MSE and variance of the extrapo-
lated observation when �2

" ¼ 1:5 and the true model is
known. While the pattern of MSE and variance of the ex-
trapolated estimators is similar to that of the median esti-
mators, the MSE and variance are over twice a big for the
extrapolated estimators when the sample size is 20. This
difference decreases substantially as the sample size
increases. Again the OLS estimators have a MSE and var-
iance that is slightly larger than PCR and PLS when the
sample size is 20, but for all other sample sizes the MSE
and variance of the OLS estimators are similar to those
from PCR and PLS. As seen with the median estimators,
the extrapolated estimators exhibited no bias, and changing
the correlation between x2 and x3 had no impact on the
MSE and variance.

[29] It is important to note that while the variance of the
extrapolated estimators converges to 1.5 as the sample size
increases (Figures 2b and 2d), the variance of the median

Figure 2. MSE and variance (Var) of median estimator when the true model is (a) known and (c)
unknown and extrapolated estimator when the true model is (b) known and (d) unknown. Correlation
coefficient is indicated in parentheses.
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estimators converges to a value less than 1.5 (Figures 2a
and 2c). The reason is that when large residuals are used to
generate observations in equation (7), those observations
generally are not the median of the data set. Thus, the var-
iance of the residuals for the median observations and the
variance of the median estimators are less than 1.5. For the
extrapolated estimators, the observations and residuals are
generated independently of the data set used to fit the
model, and thus the variance of these estimators converges
to 1.5, the variance of the residuals.
3.3.2.2. True Model Unknown

[30] Figure 2c presents the MSE and variance of estima-
tors of the median observation when �2

" ¼ 1:5, and step-
wise selection is employed to develop the models. Unlike
when the true model is known, when one builds a model
with stepwise regression and a sample size of 20, OLS and
VIF perform slightly better than PCR and PLS, though
these differences diminish as the sample size increases. At
a sample size of 20, the MSE and variance of the median
estimators were slightly larger when the true model was
unknown compared to when it was known, though at larger
sample sizes these differences are small. As sample size
increased, MSE and variance decreased, though the magni-
tude of this decrease was relatively small for sample sizes
of 50, 100, and 1000. When the sample size was 20 or 50,
increasing the correlation between the variables produced a
decrease in the MSE and variance of the median estimators,
a result not observed when the true model was known. The
reason for this result is that at lower correlations, the incor-
rect model (with just one explanatory variable) is chosen
nearly as often as at higher correlations, and the model per-
forms worse because more model information is missing
due to the variable being left out of the model. The MSE
and variance of the median estimators were nearly identi-
cal, indicating no bias from any of the techniques when
estimating the median.

[31] Figure 2d presents the MSE and variance of the ex-
trapolated observation when �2

" ¼ 1:5 and the true model
is unknown. While the pattern of MSE and variance of the
extrapolated estimators is again similar to that of the me-
dian estimators, the MSE and variance are much larger for
the extrapolated estimators when the sample size is 20.
This difference decreases substantially as the sample size
increases. Again the OLS and VIF estimators have a MSE
and variance that are slightly smaller than PCR and PLS
when the sample size is 20, but for all other sample sizes
the MSE and variance of the OLS estimators are similar to
those from PCR and PLS. As seen with the median estima-
tors, the extrapolated estimators exhibited no bias except
for when the sample size is 20, where a slight bias was
observed for all methods. Changing the correlation between
x2 and x3 had no impact on the MSE and variance of the
extrapolated estimators unless the sample size was 20.
3.3.3. Probability of Selecting the Correct Model

[32] Also of interest is how often the correct set of ex-
planatory variables is chosen when the true model is
unknown. Table 2 contains the frequency at which the true
model is chosen by each model development technique for
different sample sizes and �¼ 0.90 and 0.99. The correct
model is more frequently selected when the sample size
increases, especially when �¼ 0.90, which is just below the
threshold indicating a high level of multicollinearity. At

higher levels of multicollinearity, all model development
techniques have a lower frequency of choosing the correct
model for all sample sizes, choosing x2 or x3 but not both
variables. As expected, VIF, which screen for multicolli-
nearity, always chooses the incorrect model when �¼ 0.99.
The other methods also choose the incorrect model fre-
quently because the first variable entered into the model
explains most of the information in the second variable,
and thus adding the second variable does not provide a
large decrease in the sum of squared errors so that the sec-
ond variable is rejected from the model. A higher fre-
quency of choosing the correct model, though, did not
translate into better model predictions, as shown in section
3.3.2. At higher levels of multicollinearity, exclusion of
one variable did not have large impact on model predic-
tions since much of the information in the excluded vari-
able was contained within the highly correlated variable
that was included in the model.

4. Low-Streamflow Regional Regression Analysis

[33] Low-streamflow statistics are needed for a variety
of water quality and water quantity management purposes.
At ungauged river sites, a common technique to estimate
low-streamflow statistics is to employ a regional regression
model which has been developed between low-streamflow
statistics and watershed characteristics at sites in the region
of interest [Riggs, 1972; Vogel and Kroll, 1992]. Here an
analysis is performed to compare the four regression model
development techniques at 130 gauged river sites in the
Blue Ridge, Piedmont, and Valley and Ridge physiographic
provinces in the eastern United States (Figure 3). These
three physiographic provinces were the focus of a U.S.
Geological Survey (USGS) Regional Aquifer-System Anal-
ysis study, and thus, information is available regarding the
hydrogeologic (and thus, low flow) characteristics within
this region [Sun and Weeks, 1991]. This study area was
chosen because low-streamflow regression models have
been shown to perform poorly in this region of the United
States [Kroll et al., 2004].

4.1. Study Sites

[34] Using the guidance provided by Falcone et al.
[2010], the sites employed in this study were identified as
having minimal anthropogenic disturbances based on three

Table 2. Probability of Selecting the Correct Model

Sample Size

Frequencies
of Selected
Variables

Model Development
Techniques

n x1, x2, x3 OLS VIF PCR PLS

Correlation Coefficient¼ 0.90
20 1.2% 1.2% 2.6% 1.8%
50 28.1% 28.0% 28.3% 28.6%
100 80.1% 80.1% 71.1% 75.7%
1000 95.0% 95.0% 95.0% 95.5%
Correlation Coefficient¼ 0.99
20 1.3% 0.0% 1.8% 1.2%
50 0.6% 0.0% 0.9% 1.1%
100 0.2% 0.0% 0.2% 1.3%
1000 85.7% 0.0% 75.8% 80.0%
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criteria: a GIS-based index to quantify anthropogenic mod-
ification in a watershed, visual inspection of every site and
its watershed using recent high-resolution imagery, and
anthropogenic influences as described in the State USGS
Annual Water Data Reports. The drainage area of these
sites ranged from 25 to 3000 km2. The low-streamflow sta-
tistic of interest in this analysis was the 7 day, 10 year low
streamflow (Q7,10), a common design statistic [Smakhtin,
2001]. At site, estimates of the Q7,10 were obtained by a
frequency analysis with a log-Pearson type 3 distribution
whose parameters were estimated by method of moments
[Stedinger et al., 1992]. Since a log-linear regression model
was employed in this study, sites where the Q7,10 was esti-
mated as zero were removed from the analysis. A Tobit
model could be used to include sites where Q7,10 is esti-
mated as zero [Kroll and Stedinger, 1999]. In addition,
only sites that were included in the watershed characteristic
databases developed by Kroll et al. [2004] and Falcone et
al. [2010] were included so that information from both
databases could be utilized in this study. Both of these data-
bases were developed using spatially explicit raster data
sets and automated GIS processing and contain watershed

characteristics that are highly correlated. It is hypothesized
that addressing multicollinearity within these regions may
improve the low-streamflow regression models. Table 3
presents the 78 watershed characteristics considered in this
study.

4.2. Low-Flow Regression Model

[35] The regional regression model employed in this
analysis had the form:

Q7;10 ¼ ebo xb1
1 xb2

2 xb3
3 . . . e" ð14Þ

where xi are the model’s explanatory variables (watershed
characteristics), bi are model parameters to be estimated,
and " is the model residual. By taking the logarithm of both
sides of equation (14), a log-linear model is obtained. In
this study, sites were regionalized based on both state boun-
daries and physiographic regions. State boundaries are
sometimes used as regional boundaries because many
watershed characteristics are independently developed and
stored in state-based GIS clearinghouses [Kroll et al.,
2004], and often regression models are developed by and

Figure 3. Gauging stations employed in low-streamflow regional regression analysis in the Blue
Ridge, Piedmont, and Valley and Ridge physiographic regions.
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Table 3. Watershed Characteristics Included in Low Streamflow Analysis

Data Type/Source Name Variable Description

USGS DRN_SQKM Watershed drainage area, sq km
SNOW_PCT_PRECIP Snow percent of total precipitation estimate, mean for period 1901–2000
STREAMS_KM_SQ_KM Stream density, km of streams per watershed sq km, from NHD 100k streams
BFI Base Flow Index (BFI), The BFI is a ratio of base flow to total streamflow
ELEV_MEAN_M_BASIN Mean watershed elevation (meters) from 100 m National Elevation Dataset
ELEV_MAX_M_BASIN Maximum watershed elevation (meters) from 100 m National Elevation Dataset
ELEV_MIN_M_BASIN Minimum watershed elevation (meters) from 100 m National Elevation Dataset (may

include sinks)
ELEV_MEDIAN_M_BASIN Median watershed elevation (meters) from 100 m National Elevation Dataset
ELEV_STD_M_BASIN Standard deviation of elevation (meters) across the watershed from 100m National

Elevation Dataset
RRMEAN Dimensionless elevation� relief ratio, calculated as (ELEV_

MEAN�ELEV_MIN)/(ELEV_MAX�ELEV_MIN)
RRMEDIAN Dimensionless elevation� relief ratio, calculated as (ELEV_

MEDIAN�ELEV_MIN)/(ELEV_MAX�ELEV_MIN)
SLOPE_PCT Mean watershed slope, percent. Derived from 100 m resolution National Elevation

Dataset
Precipitation-elevation PPTAVG_BASIN Mean annual precip (cm) for the watershed, from 800 m PRISM data

Regressions on
Independent Slopes

PPTAVG_SITE Mean annual precip (cm) at the gauge location, from 800 m PRISM data. 30 years pe-
riod of record 1971–2000

Model (PRISM) PPTMAX_BASIN Watershed average of maximum monthly precipitation (cm) from 2 km PRISM,
derived from 30 years of record (1961–1990)

PPTMIN_BASIN Watershed average of minimum monthly precipitation (cm) from 2 km PRISM,
derived from 30 years of record (1961–1990)

PPTMAX_SITE Site average of maximum monthly precipitation (cm) from 2 km PRISM, derived
from 30 years of record (1961–1990)

PPTMIN_SITE Site average of minimum monthly precipitation (cm) from 2 km PRISM, derived from
30 years of record (1961–1990)

T_AVG_BASIN Average annual air temperature for the watershed (
�
C), from 800 m PRISM data. 30

years period of record 1971–2000
T_AVG_SITE Average annual air temperature at the gauge location(

�
C), from 2 km PRISM data. 30

years period of record 1971–2000
T_MAX_BASIN Watershed average of maximum monthly air temperature (

�
C) from 800 m PRISM,

derived from 30 years of record (1971–2000)
T_MAXSTD_BASIN Standard deviation of maximum monthly air temperature (

�
C) from 800 m PRISM,

derived from 30 years of record (1971–2000)
T_MIN_BASIN Watershed average of minimum monthly air temperature (

�
C) from 800 m PRISM,

derived from 30 years of record (1971–2000)
T_MINSTD_BASIN Standard deviation of minimum monthly air temperature (

�
C) from 800 m PRISM,

derived from 30 years of record (1971–2000)
T_MAX_SITE Gauge location maximum monthly air temperature (

�
C) from 800 m PRISM, derived

from 30 years of record (1971–2000)
T_MIN_SITE Gauge location minimum monthly air temperature (

�
C) from 800 m PRISM, derived

from 30 years of record (1971–2000)
RH_BASIN Watershed average relative humidity (percent), from 2 km PRISM, derived from 30

years of record (1961–1990)
RH_SITE Site average relative humidity (percent), from 2 km PRISM, derived from 30 years of

record (1961–1990)
FST32F_BASIN Watershed average of mean day of the year (1–365) of first freeze, derived from 30

years of record (1961–1990), 2 km PRISM
LST32F_BASIN Watershed average of mean day of the year (1–365) of last freeze, derived from 30

years of record (1961–1990), 2 km PRISM
FST32F_SITE Site average of mean day of the year (1–365) of first freeze, derived from 30 years of

record (1961–1990), 2 km PRISM
LST32F_SITE Site average of mean day of the year (1–365) of last freeze, derived from 30 years of

record (1961–1990), 2 km PRISM
WD_BASIN Watershed average of annual number of days (days) of measurable precipitation,

derived from (1961–1990) 2 km PRISM
WDMAX_BASIN Watershed average of monthly maximum number of days of measurable precipitation,

derived from(1961–1990) 2 m PRISM
WDMIN_BASIN Watershed average of monthly minimum number of days (days) of measurable precip-

itation, derived from (1961–1990) 2 m PRISM
WD_SITE Site average of annual number of days (days) of measurable precipitation, derived

from (1961–1990) 2 km PRISM
WDMAX_SITE Site average of monthly maximum number of days (days) of measurable precipitation,

derived from (1961–1990) 2 km PRISM
WDMIN_SITE Site average of monthly minimum number of days (days) of measurable precipitation,

derived from (1961–1990) 2 km PRISM
PET Mean-annual potential evapotranspiration (PET), estimated using the Hamon (1961)

equation
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Table 3. (continued)

Data Type/Source Name Variable Description

PRECIP_SEAS_IND Index of annual precipitation falling seasonally (1) or spread over the year (0). Based
on monthly precip values from (1971–2000) PRISM

JAN_PPT7100_CM Mean January precip (cm) for the watershed, from 800 m PRISM data. 30 years period
of record 1971–2000

FEB_PPT7100_CM Mean February precip (cm) for the watershed, from 800 m PRISM data. 30 years pe-
riod of record 1971–2000

MAR_PPT7100_CM Mean March precip (cm) for the watershed, from 800 m PRISM data. 30 years period
of record 1971–2000

APR_PPT7100_CM Mean April precip (cm) for the watershed, from 800 m PRISM data. 30 years period
of record 1971–2000

MAY_PPT7100_CM Mean May precip (cm) for the watershed, from 800 m PRISM data. 30 years period of
record 1971–2000

JUN_PPT7100_CM Mean June precip (cm) for the watershed, from 800 m PRISM data. 30 years period of
record 1971–2000

JUL_PPT7100_CM Mean July precip (cm) for the watershed, from 800 m PRISM data. 30 years period of
record 1971–2000

AUG_PPT7100_CM Mean August precip (cm) for the watershed, from 800 m PRISM data. 30 years period
of record 1971–2000

SEP_PPT7100_CM Mean September precip (cm) for the watershed, from 800 m PRISM data. 30 years pe-
riod of record 1971–2000

OCT_PPT7100_CM Mean October precip (cm) for the watershed, from 800 m PRISM data. 30 years pe-
riod of record 1971–2000

NOV_PPT7100_CM Mean November precip (cm) for the watershed, from 800 m PRISM data. 30 years pe-
riod of record 1971–2000

DEC_PPT7100_CM Mean December precip (cm) for the watershed, from 800 m PRISM data. 30 years pe-
riod of record 1971–2000

JAN_TMP7100_DEGC Average January air temperature for the watershed (
�
C), from 800 m PRISM data. 30

years period of record 1971–2000
FEB_TMP7100_DEGC Average February air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
MAR_TMP7100_DEGC Average March air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
APR_TMP7100_DEGC Average April air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
MAY_TMP7100_DEGC Average May air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
JUN_TMP7100_DEGC Average June air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
JUL_TMP7100_DEGC Average July air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
AUG_TMP7100_DEGC Average August air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
SEP_TMP7100_DEGC Average September air temperature for the watershed (

�
C), from 800 m PRISM data.

30 years period of record 1971–2000
OCT_TMP7100_DEGC Average October air temperature for the watershed (

�
C), from 800 m PRISM data. 30

years period of record 1971–2000
NOV_TMP7100_DEGC Average November air temperature for the watershed (

�
C), from 800 m PRISM data.

30 years period of record 1971–2000
DEC_TMP7100_DEGC Average December air temperature for the watershed (

�
C), from 800 m PRISM data.

30 years period of record 1971–2000
RFACT Rainfall and runoff factor (1R factor1 of universal soil loss equation); average annual

value for period 1971–2000
State Soil Geographic PERMAVE Average permeability (inches/hour)

(STATSGO) Data
Base

AWCAVE Average value for the range of available water capacity for the soil layer or horizon
(inches of water per inches of soil depth)

BDAVE Average value of bulk density (grams per cubic centimeter)
OMAVE Average value of organic matter content (percent by weight)
WTDEPAVE Average value of depth to seasonally high water table (feet)
ROCKDEPAVE Average value of total soil thickness examined (inches)
NO4AVE Average value of percent by weight of soil material less than 3 inches in size and pass-

ing a no. 4 sieve (5 mm)
NO200AVE Average value of percent by weight of soil material less than 3 inches in size and pass-

ing a no. 200 sieve (.074 mm)
NO10AVE Average value of percent by weight of soil material less than 3 inches in size and pass-

ing a no. 10 sieve (2 mm)
CLAYAVE Average value of clay content (percentage)
SILTAVE Average value of silt content (percentage)
SANDAVE Average value of sand content (percentage)
KFACT_UP Erodibility factor which quantifies the susceptibility of soil particles to detachment

and movement by water.
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for state agencies. If a state did not have at least 10 sites, it
was combined with an adjacent state with the fewest sites.
Each physiographic region was divided in half to create
regions with a smaller number of sites. A total of 11 subre-
gions were developed for this study, and the number of
sites within each subregion ranged from 14 to 48. Due to
the limited number of sites within each subregion and to
prevent overfitting, the stepwise selection procedure
stopped if three explanatory variables had been entered in
the model. Standard assumptions of regression analyses
(homoscedastic, independent, and normally distributed
residuals) were verified for each model.

[36] To compare the performance of the model develop-
ment techniques, the adjusted coefficient of determination
(Adj-R2), the predicted coefficient of determination (Pred-
R2), and the percent standard error of prediction (SE) were
calculated. The Pred-R2 is calculated by sequentially
removing one observation from the data set, developing the
model with all observations except the removed observa-
tion, and evaluating how well the model predicts the
removed observation (a leave-one-out cross-validation). SE
is calculated using Hardison’s [1971] unbiased estimator of
the variance of the residuals

4.3. Results

[37] Regression models were developed in 12 different
regions across the eastern United States (1 for entire region,
5 subregions based on state boundaries, and 6 subregions
based on physiographic provinces). The parameter estima-
tors were derived by the four model development techni-
ques: OLS, VIF, PCR, and PLS. Model selection was
based on the same stepwise selection procedures employed
in the Monte Carlo analysis. Table 4 lists the regional
regression models across the 12 regions. Most regions con-
tained at least one topographic watershed characteristic.
Drainage area (DRN_SQKM) entered the models most fre-
quently and was generally the first watershed characteris-
tics to enter all model development techniques. Drainage
area is often an important variable in low-streamflow
regional regression models [Kroll et al., 2004; Vogel et al.,
1999] given that the size of the watershed has a direct
impact on the magnitude of streamflows. Maximum (ELE-
V_MAX_M_BASIN) or minimum (ELEV_MIN_M_BA-
SIN) basin elevations were also commonly entered
variables. These watershed characteristics can be surro-
gates for temperature and thus evapotranspiration, which
can impact low-streamflow conditions.

[38] Watershed characteristics derived from the
STATSGO soils data set frequently entered the models. No
particular soil characteristic entered the models most fre-
quently. Soil characteristics generally present were average
total soil thickness (ROCKDEPAVE) and the average
depth to the seasonally high water table (WTDEPAVE).
These watershed characteristics have an impact on ground-
water storage characteristics; hydrogeologic characteristics
of a watershed have been shown to have an influence on
low streamflows [Kroll et al., 2004]. The watershed charac-
teristic from the PRISM temperature and precipitation data
set that most often entered models was the average April
basin precipitation (APR_PPT7100_CM), which may rep-
resent groundwater recharge characteristics in this region.

[39] While many of the potential watershed characteris-
tics were highly correlated, multicollinearity was only
detected (with a VIF >10) for one regression model devel-
oped, the Georgia and South Carolina region. Here a
basin’s monthly average number of measurable precipita-
tion events (WDMAX_BASIN) was highly correlated with
soil erosion potential following rainfall (RFACT). In this
case, OLS, PCR, and PLS all developed models with the
same explanatory variables, while VIF screened for multi-
collinearity and developed a model with only DRN_SQKM
and WDMAX_BASIN.

[40] Figures 4a and 4b present the Adj-R2, Pred-R2, and
the SE for each model development technique for subre-
gions developed based on physiographic regions and states,
respectively. In general, the Valley and Ridge and the
southern half of the Blue Ridge physiographic regions pro-
duced the best regression models. These regions yielded
Adj-R2 and Pred-R2 greater than 75%. Strong performances
within these regions are attributed to watersheds of similar
sizes. However, with the exception of the South Blue
Ridge, all regional regression models produced relatively
large SE% (>60%). Surprisingly, regionalization by states
tended to produce better regression models than regionali-
zation by physiographic regions. This result may be due to
having sites in closer proximity when state boundaries
were employed.

[41] Across all of the subregions, results indicate that all
techniques perform similarly. VIF mimics OLS, as the

Figure 4. Adjusted R2, predicted R2, and standard error
for OLS, VIF, PCR, and PLS for each subregion based on
(a) physiographic regions and (b) States.
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calculated VIF was greater than 10 for only one subregion.
For this case of high multicollinearity (Georgia and South
Carolina region), all techniques performed similarly except
for VIF, which performed much worse when a highly cor-
related explanatory variable was omitted from the model.
Even though many watershed characteristics considered
were highly correlated, OLS performed as well as PCR and
PLS across these regions. This is because models with
highly correlated variables were not selected for all but one
region. This supports the results of the Monte Carlo simula-
tion that when the true model is unknown OLS generally
performs as well as other more complicated techniques
which have been developed to address multicollinearity.

5. Conclusions

[42] This study used a Monte Carlo simulation to com-
pare the performance of regional regression techniques
when multicollinearity is present. The four model develop-
ment techniques include OLS, OLS with variance inflation
factor screening (VIF), PCR, and PLS. The purpose of this
study was to understand the performance of model develop-
ment techniques with respect to the (a) properties of the pa-
rameter estimators, (b) model predictions, and (c)
probability of selecting the correct model. Performances of
these techniques were observed with changing sample
sizes, correlations between variables, and model error var-
iances. Of particular interest was how these techniques
compare when the true model is both known and unknown.

[43] When the true model is known:
The presence of multicollinearity greatly inflates the var-

iance of the correlated OLS parameter estimators but does
not influence the variance of the uncorrelated parameter
estimators.

[44] Correlated parameter estimators for PCR and PLS
are less affected by multicollinearity and consistently yield
the parameter estimators with smaller MSE and variances
than OLS parameter estimators, especially as smaller sam-
ple sizes.

[45] The MSE and variance of the parameter estimators
decreases with increasing sample sizes.

[46] The predictive ability of the four techniques
improves with increasing sample sizes.

[47] Multicollinearity has little effect on the performance
of the predictions from the techniques within the data set
range exampled (n¼ 20, 50, 100, and 1000).

[48] PCR and PLS, which produced the best parameter
estimators, produced prediction with properties similar to
OLS.

[49] When the true model is unknown:
[50] The presence of multicollinearity inflates the var-

iance of the correlated parameters for all models, including
PCR and PLS.

[51] At 20 observations, incorporating stepwise selection
impairs model predictions compared to predictions when
the true model is known.

[52] At 50 or more observations, the performance of
model predictions is similar between models when the true
model is known and or unknown.

[53] A higher presence of multicollinearity leads to
incorrect selection of the true model; however, choosing

the correct model more frequently did not improve model
predictions at small sample sizes.

[54] The model’s predictive ability and its ability to
select the correct model are primarily influenced by the
number of observations as opposed to the magnitude of the
multicollinearity.

[55] A case study developing low-streamflow regional
regression models in the eastern United States was also per-
formed. Even though explanatory variables were highly
correlated for this case study, only 1 of the 12 regional
models has a high level of multicollinearity. In all regions,
OLS performed as well as any of the other techniques in
terms of model adjusted coefficient of determination, pre-
dicted coefficient of determination, and percent standard
error of prediction. This result supports those from the
Monte Carlo analysis: (1) when the true model is unknown,
standard selection techniques rarely select a model with a
high level of multicollinearity and (2) in the presence of
highly correlated potential explanatory variables, OLS per-
forms as well as more complicated techniques which have
been proposed to address multicollinearity.

[56] The results of this study show that multicollinearity
should not be viewed in isolation; instead, one should con-
sider the sample size and overall model fit which provides
a model framework for the correlated explanatory varia-
bles. If one is only interested in model predictions within
the data set range of the model development techniques,
the use of OLS for hydrologic regional regression analyses
appears warranted; employing complex, biased regression
techniques, such as PCR and PLS, to address multicolli-
nearity does little to improve model predictions. In prac-
tice, models can exhibit a myriad of possible conditions,
and no one technique exists to address the combination of
problems that may be present in the data set [Wallis, 1965].
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