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Abstract: Climatic fluctuations have profound effects on water resources variability in the western United States. The research reported
herein centers on streamflow predictability at the medium- and long-range scales in rivers that originate in Colorado. Specifically, we want to
improve forecasting seasonal and yearly streamflows based on atmospheric-oceanic forcing factors, such as geopotential height, wind, and
sea surface temperature, as well as hydrologic factors, such as snow water equivalent. The approach followed in the study involves searching
for potential predictors, applying principal component analysis (PCA) and multiple linear regression (MLR) for forecasting at individual sites,
canonical correlation analysis (CCA) for forecasting at multiple sites, and testing the forecasts using various performance measures. The
analysis includes comparisons of forecasts by using various combinations of possible predictors, such as hydrologic, atmospheric, and oce-
anic variables. The study brought into relevance the significant benefits of using atmospheric, oceanic, and hydrological predictors for long-
range streamflow forecasting. It has been shown that forecasts based on PCA applied to individual sites give very good results for both
seasonal and yearly timescales. We also found that although PCA has been applied on a site-by-site basis, the forecasts approximated well
the historical cross correlations, although some underestimation was noted for two sites. Furthermore, the forecasts based on CCAwere less
efficient than those based on PCA. DOI: 10.1061/(ASCE)HE.1943-5584.0000343. © 2011 American Society of Civil Engineers.
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Introduction

Although the state of Colorado is located in a semiarid climate, it
has important water resources because of its high elevation and
significant amount of snowfall every year. Several major rivers
originate in Colorado, such as the Colorado, Arkansas, and Rio
Grande. Agriculture, municipal water supply, hydropower genera-
tion, and recreational activities from the headwater regions heavily
rely on streamflows. Water demand has been increasing as the
western states continue to develop and the population continues
to grow. Thus, balancing a limited and variable water supply
and competing increasing water demands must be tackled by water
resources managers to make a sufficient amount of water available
when it is needed. However, water availability is highly affected
by hydroclimatic events. Understanding the predictability of such
phenomena is the main focus of the research reported here.

There is growing evidence of the effects of atmospheric-oceanic
features on the hydrology of the western basins (e.g., Piechota et al.
1997; McCabe and Dettinger 1999; Regonda et al. 2006). Quanti-
fying such effects in the headwaters of Colorado rivers is difficult
because of the varied topography in the Rocky Mountains. The

rivers that originate in the Colorado and flow downstream across
semiarid and arid lands are prone to frequent periods of low flows.
As important sources of water supply for many users, the rivers
have been developed and controlled with many river diversions
and dams. Operating such systems requires reliable streamflow
forecasts. Every year, management decisions (for operating the sys-
tems) are made early in the year in anticipation of the forthcoming
spring and summer streamflows. Thus, long-range streamflow fore-
casting is of particular interest for improving system operations.

Colorado is a mountainous region, and a major source of
streamflows is melting snow. Thus, snowfall and the ensuing snow-
pack in the preceding months of the season of interest are important
factors for streamflow forecasting. However, several other factors
affect the fluctuations of streamflows, such as the water content in
the atmosphere and its transportation to the area of interest.
For example, geopotential height (GH) is an indicator of the con-
ditions leading to precipitation and eventually streamflows. Also,
temperature and humidity are very much related to the amount of
moisture in the air, and wind is a determinant factor for moisture
transport in the atmosphere. Likewise, as the oceans are the largest
resource of water on earth, ocean dynamics play a significant role
in streamflow variability. Perhaps the most important variable
representing oceanic conditions is sea surface temperature (SST),
and many oceanic climatic indexes have been developed, such as
the Pacific Decadal Oscillation (PDO) index. Because streamflow
is part of the global water circulation, its variability is very much
related to those of atmospheric and oceanic conditions. Thus,
streamflow-forecast models must include key atmospheric and oce-
anic variables as predictors, in addition to hydrological variables.

The scope of the study described herein centers on streamflow
predictability at the seasonal and yearly scales in the headwaters of
rivers that originate in Colorado. To this end, the specific objective
of the study has been to develop and assess models and methods
for forecasting seasonal April through July (Apr.–Jul.) and yearly
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April through March (Apr.–Mar.), October through September
(Oct.–Sep.), January through December (Jan.–Dec.), and February
through January (Feb.–Jan.) streamflows for the Yampa, Gunnison,
San Juan, Poudre, Arkansas, and Rio Grande Rivers. The models
will include forecasting at single and multiple sites. The forecasts
will be based on identifying hydrologic predictors, such as snow
water equivalent (SWE); atmospheric predictors, such as GH
and wind; and oceanic predictors, such as SST. This study builds
on previous studies in which the effects of climatic variables have
been identified to be useful for long-range forecasting of hydrolog-
ical variables such as streamflows. The main contribution of our
study is to quantify the role and effect that each group of predictors
has on long-range streamflow forecasting and the effect of the be-
ginning of the year in forecast efficiency. This may be particularly
useful in cases of ungauged basins in which hydrologic predictors
may not be readily available.

Brief Review of Related Studies

Existing medium- and long-range streamflow-forecast models for
Colorado rivers commonly rely on multiple linear regression,
where previous records of SWE, precipitation, and streamflows
are used as predictors. In studies of the Rio Grande basin, Haltiner
and Salas (1988) and Wang and Salas (1991) showed that signifi-
cant improvements in forecasting efficiency can be achieved using
time-series analysis techniques. Also, literature has demonstrated
the significant effects of climatic signals, such as SST, ENSO,
and PDO, on precipitation and streamflow variations (e.g., Cayan
and Webb 1992; Mantua et al. 1997; Clark et al. 2001; Hidalgo
and Dracup 2003), and that seasonal and longer-term streamflow
forecasts can be improved using climatic factors (e.g., Hamlet and
Lettenmaier 1999; Clark et al. 2001; Eldaw et al. 2003; Grantz et al.
2005; Tootle et al. 2007). Thus, the literature suggests that it may be
worthwhile to examine in closer detail forecasting schemes that in-
clude not only the usual hydrologic predictors (e.g., SWE) but also
climatic factors that may improve streamflow forecasting in the
headwaters of Colorado streams. Also, previous studies suggested
that despite the influence of major climatic factors, such as ENSO,
on the hydrology of the Colorado River Basin, there are significant
differences in their effects from basin to basin (McCabe and
Dettinger 2002). For this reason, in our research we considered
three streams in the Colorado River headwaters (Yampa, Gunnison,
and San Juan), and three other rivers that flow in other directions
(Poudre, Arkansas, and Rio Grande.)

Studies have pointed out the connections between the extreme
phases of ENSO and the fluctuations of precipitation and stream-
flow in various parts of the world (e.g., Ropelewski and Halpert
1987; Cayan et al. 1998). For example, significant relationships
were found between El Niño and extreme drought years in the
Pacific Northwest and between La Niña events and dry conditions
in the southern United States (e.g., Piechota and Dracup 1996).
Also, during El Niño above-normal precipitation was found in
the desert Southwest (e.g., Cayan and Webb 1992; Dettinger et al.
1998). In forecasting studies of precipitation and air temperature in
the United States based on ENSO, SST, tropical precipitation (TP),
GH, winds, and the Artic Oscillation (AO), Higgins et al. (2000)
found that TP and AO were the dominant factors. Also, ENSO in-
fluences have been observed on snow water equivalent (Clark et al.
2001) and streamflows (e.g., Piechota et al. 1997). In studying the
Mississippi River, Maurer and Lettenmaier (2003) found that in the
eastern part of the basin and for 3 months or greater lead times,
ENSO and AO indexes were more important than land-surface-
state indicators, such as soil moisture and snow. Also, Maurer

et al. (2004) studied the predictability of seasonal runoff in the
continental United States between 25° and 53°N as a function of
North Atlantic Oscillation (NAO), North Pacific Pattern (NP),
Pacific North American (PNA) index, Atlantic Multidecadal Oscil-
lation (AMO), AO, Niño 3.4, and PDO and found that the positive
phase of El Niño 3.4 was useful for forecasting the March to May
runoff, while a negative phase Niño 3.4 was useful for forecasting
the December to February runoff. Furthermore, effects on decadal
timescales primarily driven by the PDO have been found
(e.g., Mantua et al. 1997; McCabe and Dettinger 1999; McCabe
et al. 2004).

Moss et al. (1994) used the Southern Oscillation Index (SOI) as
a predictor of the probability of low flows in New Zealand. Eltahir
(1996) showed that up to 25% of the natural variability of the Nile
River annual flows is associated with ENSO events, and Eldaw et
al. (2003) reported that SST in the Pacific and Atlantic oceans and
precipitation at Guinea Gulf were very useful for long-range fore-
casting of seasonal streamflows in the Blue Nile River. Also, Salas
et al. (2005) in studying droughts in the Poudre River, utilized SSTs
in the Pacific to forecast the next years flows that may occur in the
basin. And, Grantz et al. (2005) developed a forecast model using
SST, GH, and SWE as predictors for forecasting April to July
streamflows at the Truckee and Carson rivers in Nevada. They
found that forecast skills are significant for up to 5 months lead
time based on SST and GH. Also, Regonda et al. (2006) reported
successful streamflow forecasts in the Gunnison River by using
various climatic factors. Tootle and Piechota (2006) studied the
connections between the Pacific and Atlantic SSTs and stream-
flows in the United States. Tootle et al. (2005), in a study of
639 U.S. rivers, found significant relationships between ENSO,
PDO, AMO, and NAO indexes and streamflows, which suggested
that they may be useful for streamflow forecasts. In addition, Canon
et al. (2007) studied the Colorado River and found significant re-
lationships between SPI (standardized precipitation index), PDO,
and BEST (bivariate ENSO time series). And, Sveinsson et al.
(2008) studied the variability of spring streamflows in the Quebec
region and suggested that they are influenced by SSTs, winds, and
pressure in the Pacific and Atlantic oceans, as well as by winds and
pressure over the Arctic and North America.

Study Area and Data

Six streamflow sites in rivers that originate in the state of Colorado
were selected for the study. They include the Arkansas, Gunnison,
Poudre, Rio Grande, San Juan, and Yampa rivers. Fig. 1 shows the
locations of the sites, and additional information is given in Table 1.
The data for Poudre are naturalized streamflows from the Northern
Colorado Water Conservation District; those for the Arkansas
and Rio Grande are from the Hydrology and Climate Data Network
(HCDN) of the USGS (Slack and Landwehr 1992); and data for the
Gunnison, San Juan, and Yampa are naturalized streamflows that
are available at the U.S. Bureau of Reclamation (USBR) website
(http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html).

Other data, such as SWE, were obtained from the Natural
Resources Conservation Services of the USDA, and the Palmer
drought severity index (PDSI) from the National Climatic Data
Center (NCDC) of the National Oceanic and Atmospheric
Administration (NOAA). In addition, the atmospheric and oceanic
data were obtained from NOAA’s Climate Diagnostic Center
website (http://www.cdc.noaa.gov). They include climatic data
such as SST, GH, temperature, relative humidity (RH), outgoing
longwave radiation (OLWR), and wind, which are available on
a 2:2° × 2:2° grid worldwide from the NCEP-NCAR reanalysis
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(Kalnay et al. 1996). Furthermore, key climatic indexes, such as
SOI, PDO, NAO, and the SST observations for the El Niño regions
are also available from the same source. The data length used for
the study is 53 years (1949–2001).

Methodology

The approach followed in the research included searching for po-
tential predictors, applying MLR and principal component analysis
(PCA) for forecasting at single sites, and using canonical correla-
tion analysis (CCA) for forecasting at multiple sites. The forecast
models have been tested in two modes: fitting and evaluation.
The approach assumes that a suitable number of hydrologic, atmos-
pheric, and oceanic predictors can be found to forecast streamflows
for different time frames and river sites in the study area. The
potential hydrologic predictors include SWE, precipitation, stream-
flows, and PDSI. The potential atmospheric predictors include
variables such as GH (700 mb); meridional wind (MW) and zonal
wind (ZW) at 700 mb; air temperature (AT); OLWR; RH; and AO,
SOI, and NAO indexes. The oceanic predictors include variables
such as PDO, SST, and SSTs related to El Niño-1, 2, 3, 4, and 3.4.

Correlation Analysis for Selecting Potential Predictors

Correlation analysis between the predictand (streamflow data) and
the potential predictors were performed. A potential predictor, e.g.,
SST at a given location (pixel), is defined at a time period lagged
before the time period specified for the predictand. For example,
if we wish to forecast the total flows for the period April through
July, then possible predictors may be the average SST for the
preceding months, i.e., SST(JFM), SST(OND), SST(ONDJFM),

and so on (where OND is the period October through December
of the previous year). Because there are many potential predictors,
those selected for further analysis have statistical significant
correlations. For those variables that are available worldwide for
every pixel (e.g., GH), correlation maps are created that use color
codes to show the values of the correlations. From these maps,
areas not less than 5°× 5° with significant correlations are identified
and selected as the potential predictors. Also, for other variables,
such as SWE and PDO where correlation maps are not applicable,
the same statistical criterion for selecting potential predictors is
utilized. The significance of the correlation between the stream-
flow data and the predictor considered is determined from

rc ¼ t:95=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2:95 þ N � 2

q
, where rc = critical correlation coefficient;

t:95 = 95% quantile of the t-distribution with N � 2 degrees of free-
dom; and N = sample size. Thus, a potential predictor is selected for
further analysis if the calculated correlation coefficient r (in abso-
lute value) is larger than rc. In all cases, the sample size of the data
used in this study is 53 (1949–2001), therefore, the critical corre-
lation coefficient is approximately 0.27.

Principal Component Analysis

Although PCA and CCAmethods are well known in literature (e.g.,
Manly 1994; Wilks 2006), they are summarized here for the benefit
of readers and ease of explanation. In PCA, a linear transformation
is made on the potential predictors to obtain uncorrelated Principal
Components (PCs). Consider the vector of p standardized variables
x1 ¼ ½x1x2…:xp�. A linear transformation can be made as zj ¼ xW,
i.e.,

z ¼ x1w1j þ x2w2j þ � � � þ xpwpj; j ¼ 1;…; pj ð1Þ

where z and x are 1 × p vectors and W is a p × p coefficient matrix
given by

W ¼ ½w1w2…wp� ¼

w11 w12 … w1p

w21 w22 … w2p

..

. ..
. . .

. ..
.

wp1 wp2 … wpp

2
6664

3
7775 ð2Þ

Thus the x variables are transformed to the z variables, which are
called the PCs of x.

Suppose there are N observations for each of the variables
x1;…; xp. Then, x is an N × p matrix representing the data of
the p variables and z is another N × p matrix. Thus, the z variables
z1; z2;…; zp (PC scores) are obtained from Eq. (1). It may be shown
that the columns of the W matrix are the eigenvectors correspond-
ing to each eigenvalue of the variance-covariance matrix of the x
variables, i.e., Sxx ¼ ðxTxÞ=ðN � 1Þwhere Sxx is a p × p symmetric
matrix. The eigenvalues of Sxx, i.e., λ1;…;λp can be found by solv-
ing the determinant equation jSxx � λIj ¼ 0 where I is the p × p

Fig. 1. Map of study area and flow sites

Table 1. Brief Description of River Basins and Stream Gauging Stations Utilized in Study

River and site names Basin USGS ID

Coordinates

Elevation (ft) Drainage area (mi2)Latitude Longitude

Cache la Poudre River at Mouth of Canyon, CO South Platte 06752000 40°3905200 105°1302600 5,220 1,056

Arkansas River at Canon City, CO Arkansas 07096000 38°2600200 105°1502400 5,342 3,117

Gunnison River above Blue Mesa Dam, CO Colorado 09124700 38°2700800 107°2005100 7,149 3,453

Rio Grande below Taos Junction Bridge near Taos, NM Rio Grande 08276500 36°1901200 105°4501400 6,050 9,730

San Juan River near Archuleta, NM Colorado 09355500 36°4800500 107°4105100 5,653 3,260

Yampa River near Maybell, CO Yampa-White 09251000 40°3001000 108°0105800 5,900 3,410
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identity matrix. Then, the eigenvectors wi corresponding to each
eingenvalue λi are determined by solving (ðSxx � λiIÞwi ¼ 0,
i ¼ 1; 2;…; p. To have nontrivial solutions, the following con-
straint wT

i wi ¼ 1 must hold because we assumed the original data
was standardized.

In summary, PCA amounts to solving for the eigenvalues of
matrix Sxx then solving for the eigenvectors corresponding to each
eigenvalue, and the PC scores are obtained from Eq. (1). After
obtaining the PCs, one must decide on how many of them are
to be used for further analysis. One criterion is to select the PCs
that explain a given amount of the variance. Further selection
may be made using stepwise regression. Detailed procedures using
PCs as the predictors in a multiple linear-regression framework are
given in a subsequent section.

Canonical Correlation Analysis

CCA is a method used to determine the relationship between two
groups of variables. Assume p = independent variables x ¼
½x1x2…xp� and q = dependent variables ½y ¼ ½y1y2…yq�, where x
= 1 × p vector; y = 1 × q vector; and each xi and yi = column
vectors of observations, i.e., vectors of size 1 × N. CCA creates
two new variables u ¼ ½u1u2…un� and v ¼ ½v1v2…vn�, where

n ¼ minðp; qÞ, i.e., u and v = 1 × n vectors, and each ui and vj
= column vectors of size 1 × N. The u variables are formed by
a linear combination of the x variables, i.e., u ¼ xa, where a = p ×
n matrix and the v variables are formed by a linear combination of
the y variables, i.e., v ¼ yb where b = q × n matrix. It follows that

uj ¼ x1a1j þ x2a2j þ � � � þ xpapj; j ¼ 1;…; n ð3Þ

and

vj ¼ y1b1j þ y2b2j þ � � � þ yqbqj; j ¼ 1;…; n ð4Þ

where the transformation matrices a and b are given by

a ¼
a11 a12 … a1n
a21 a22 … a2n
..
. ..

. ..
. ..

.

ap1 ap2 … apn

2
6664

3
7775 b ¼

b11 b12 … b1n
b21 b22 … b2n
..
. ..

. ..
. ..

.

bq1 bq2 … bqn

2
6664

3
7775

The variables u and v are called canonical variates and are paired
so that u1 and v1 are correlated with the so-called canonical
correlation coefficient ρ1, then, u2 and v2 are correlated with ρ2,
etc. A schematic description of CCA is

y1
y2
..
.

yq

9>>>=
>>>;

¼ yT → yb ¼ v → vT ¼

8>>><
>>>:

v1 ←ρ1 → u1
v2 ←ρ2 → u2
..
.

… ..
.

vn ←ρn → un

9>>>=
>>>;

¼ uT←u ¼ xa←xT ¼

8>>><
>>>:

x1
x2
..
.

xp

where ρ1 > ρ2 > � � � > ρn (i.e., the canonical correlations have
been arranged to comply with ρ1 being the largest, and so on.)
The values of the canonical variates are often called the scores
of the canonical variates, and the matrices a and b are called
canonical loadings.

The canonical correlation coefficients ρ and matrices a and b
may be estimated as follows (Manly 1994). First, matrix Sa is ob-
tained as Sa ¼ S�1

xx SxyS�1
yy S T

xy, in which Swz is the covariance ma-
trix of w and z. Then, matrix a is estimated using the eigenvalues
and eigenvectors of matrix Sa. Likewise, matrix Sb is determined by
Sb ¼ S�1

yy STxyS�1
xx Sxy, and matrix b is obtained by calculating the ei-

genvalues and eigenvectors of matrix Sb. It may be shown that the
eigenvalues of matrix Sb, i.e., λ1;…;λn are related to the canonical
correlation coefficients ρ0s as λ1 ¼ ρ21;λ2 ¼ ρ22;…;λn ¼ ρ2n.

The significance of the canonical correlation coefficients may be
tested considering the null hypothesis H0 : ρ1 ¼ ρ2 ¼ � � � ¼ ρr ¼
0 against the alternative hypothesis Ha: at least ρi ≠ 0,
i ¼ 1; 2;…; r, where r is taken successively as r ¼ 1;…; n. The
test statistic is (Manly 1994)

C ¼ �
�
n� 1

2
ðpþ qþ 6Þ

�
×
Xr

i¼1

lnð1� ρ2i Þ ð5Þ

which is χ2 distributed with p × q degrees of freedom. A large
value of C suggests that the null hypotheses must be rejected. After
testing for the significance of the ρ0s, the relationships between the
v and the u are established by fitting simple linear regressions as

vi ¼ βiui; i ¼ 1;…; n0 ð6Þ
where the βi; i ¼ 1;…; n0 = parameters of the regression equations,
and n0 ≤ n = number of significant canonical correlations. Then, the
forecast for y is obtained by inverting v ¼ yb as

y ¼ vb�1 ð7Þ
Detailed procedures for the models using CCA are given in sub-
sequent sections of this paper.

Forecast Models for Single Sites

Stepwise-regression analysis was applied for specifying the fore-
cast model at single sites. The model is fitted using either the origi-
nal variables or the PCs as the predictors. The stepwise regression
selects the most suitable combination of predictors and the forecast
model based on MLR is written as

ŷ ¼
Xm
j¼1

βjxj ð8Þ

where ŷ = streamflow forecast (standardized), βi, i ¼ 1;…;m =
parameters; xi, i ¼ 1;…;m = predictors, such as SST and SWE
(standardized); and m = number of predictors.

Alternatively, the forecast model using MLR can be set up based
on PCs as the predictors as

ŷ ¼
Xm
i¼1

βiPCi ð9Þ
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where ŷ = streamflow forecast (standardized), βi; i ¼ 1;…;m are
the parameters, and PCi; i ¼ 1;…;m are the predictors (principal
components). The PCs in Eq. (9) are obtained using stepwise
regression analysis.

Forecast Models for Multiple Sites

One may perform CCA analysis by following the procedure pre-
viously outlined for all the potential predictors that may be appli-
cable for all six sites. However, because the number of potential
predictors was large, before CCA, a preorthogonal analysis was
made, where PCA was performed on the potential predictors to
reduce the dimensionality of the problem. Thus, CCA was con-
ducted based on PCs (instead of the original variables) and the
performance of the CCA model relied on which PCs were used.
Although the first several PCs may account for the majority of
the variances, not all of them may be good predictors for the
CCA model. To select the PCs, the model residuals were analyzed.
The sum of squared residuals SSR is computed as

SSR ¼
Xq
j¼1

XN
i¼1

ðŷji � yjiÞ2 ð10Þ

where ŷji = forecasted flows; yji = observed flows; i = time; j = site;
and N and q = total number of time steps and sites, respectively.
The PCs that cause an increase of SSR are eliminated from the fore-
cast model. After the PCs of the predictors are selected, CCA is
then carried out based on the streamflows and the selected PCs.
Significance tests are then conducted for the canonical correlation
coefficients between the canonical variate pairs as indicated in the
“Canonical Correlation Analysis” section.

Next, the relationships between the pairs of canonical variates v
and u are established, as in Eq. (6), where v and u = canonical
variates used in the CCA model [obtained from Eqs. (3) and
(4), respectively]. To perform the forecasts, Eq. (3) is applied to
obtain u1;…; un0 given the predictors x1;…; xp (now in the form
of PCs), and the values vi are obtained from Eq. (6). They are
inverted back to the real space by Eq. (7) as ŷ ¼ vb�1. If PCs
for the streamflows were used for the CCA model, then another
inversion would be needed to retrieve the streamflows from the
forecasted PCs.

Model Performance: Fitting and Validation Analysis

The coefficient of determination R2 and its adjusted value R2
a are

used for measuring the performances of forecast models. They are
calculated as (Donald and Lindgren 1996)

R2 ¼ 1�
P

N
i¼1ðŷi � yiÞ2P
N
i¼1ðyi � �yÞ2 ð11Þ

R2
a ¼ 1� ½ð1� R2ÞðN � 1Þ=ðN � m� 1Þ� ð12Þ

where ŷi = forecasted streamflow; yi = observed streamflow;
�y = mean of the observations; N = number of observations; and
m = number of parameters. We also used the forecast skill scores
Accuracy (AC) and Heidke Skill Scores (HSS). AC indicates the
fraction of the forecasts that are in the same category as the obser-
vations (the streamflow categories are determined based on the
25th, 50th, and 75th percentiles.) It is given by (Wilks 2006)

AC ¼ 1
N

Xk
i¼1

nðFiOiÞ ð13Þ

where nðFiOiÞ = number of the forecasts that are in the same
category i as the corresponding observations, and k = number of

categories. AC ranges between 0 and 1, where 1 indicates a perfect
forecast. HSS measures the fraction of correct forecasts after elimi-
nating those that would be correct because of purely random
chance. It is given by (Wilks 2006) as

HSS ¼
1
N

P
k
i¼1 nðFiOiÞ � 1

N2

P
k
i¼1 nðFiÞnðOiÞ

1� 1
N2

P
k
i¼1 nðFiÞnðOiÞ

ð14Þ

where nðFiÞ and nðOiÞ = number of forecasts and observations in
category i. HSS ranges from �∞ to 1. A value of 0 indicates no
forecast skill and 1 indicates a perfect forecast.

In evaluating the performance of the forecast models, two pro-
cedures were utilized. In the first one (fitting method), a forecast
model is fitted based on the total data, which is then applied to
forecast the streamflows successively. In the second one procedure,
part of the streamflow data are removed from the historical sample
and a model is fitted based on the remaining data, which is then
applied for forecasting the streamflows that were removed. Thus,
the forecast errors can be evaluated. Subsequently, the removed
data are put back into the original data set and a second part of
the data are removed, a model is fitted based on the remaining data,
and the 2nd model is now used to forecast the 2nd set of values
removed and to estimate the ensuing forecast errors. And this
procedure continues until the data set permits. For example, in
the drop-1 approach, a single data is removed at a time, and the
model fitting and forecast error evaluation are determined one
at a time. Another example is the drop-10% approach where
10% of the data set are dropped each time and the model fitting,
forecast, and error estimation are made successively, as previously
explained.

Results and Discussion

The basic statistics of the April to July streamflows for the 6 study
sites were calculated (not shown because of space limitation). The
means of the streamflows for these sites fell basically into two
groups, the first one (Poudre and Arkansas) approximately
200,000 to 400,000 m3 [thousand acre-feet (TAF)] and the second
(Gunnison, San Juan, Rio Grande, and Yampa) approximately 700
to 1,000 m3 TAF. The coefficients of variation for all sites were less
than 1, and the lag-1 correlation coefficients were generally small
(less than 0.25). The skewness coefficients varied from 0.27 to
1.30, and logarithmic transformations were needed to decrease
the skewness for some sites. Table 2 gives the cross-correlation co-
efficients of the April to July streamflows for the six sites, which
vary in from 0.41 to 0.95. As expected, the magnitude of the cor-
relations becomes smaller as the distance between the stations in-
creases. Also, similar basic statistics for the annual streamflows
were determined (not shown).

Table 2. Cross-Correlation Coefficients for April through July Historical
Streamflows in the Study Area

Sites Poudre Arkansas Gunnison
Rio

Grande
San
Juan Yampa

Poudre 1 0.68 0.65 0.41 0.47 0.72

Arkansas 0.68 1 0.95 0.73 0.70 0.82

Gunnison 0.65 0.95 1 0.69 0.72 0.87

Rio Grande 0.41 0.73 0.69 1 0.88 0.46

San Juan 0.47 0.70 0.72 0.88 1 0.49

Yampa 0.72 0.82 0.87 0.46 0.49 1
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Selection of Potential Predictors

Correlation analysis between the April to July streamflows and the
potential predictors showed that for the 6 study sites the hydrolog-
ical variables, such as SWE, generally have the highest correlations
compared with those for other types of variables. The correlation
coefficients between streamflows and SWE varied from 0.46 to
0.85, depending on the basin. Also, the correlations between
streamflows and PDSI varied from 0.28 to 0.70. On the other hand,
the correlations with the April to July streamflows of the previous
year (i.e., lag-1 correlation) are small and not significant. For illus-
tration purposes, Table 3 shows the 15 potential predictors having
the highest correlations for the Gunnison River. Similar correlations
were estimated for all six streamflow sites (all results are not
shown). They showed that atmospheric variables, such as GH
and wind, also have significant correlations with streamflows, vary-
ing from�0:67 toþ0:61. For example, Fig. 2 shows the correlation
map for the April to July streamflows of the Gunnison River versus
the previous year October to December global GH (700 mb). It may
be observed that correlations in the range from�0:50 toþ0:50 and
for several areas the correlations are approximately �0:45 or
þ0:45. The western United States has a correlation of approxi-
mately �0:45. Fig. 3 show the correlation map for the April to July
streamflows versus global meridional wind (700 mb) for October to
December of the previous year. It shows correlations of approxi-
mately �0:5 at the northeast Pacific and over the northwest Atlan-
tic, while the correlations are approximately þ0:5 over the eastern
United States and Canada.

Furthermore, SST and some oceanic indexes, such as PDO, are
significantly correlated with the April through July streamflows for
some of the sites in the study area. For example, the correlation map
of the April to July streamflows of the Gunnison River versus the
October through December (previous year) global SST (not shown)
indicated two large regions in the northern Pacific Ocean with
significant correlation coefficients. One region showed positive
correlation of approximately 0.45 and the other showed negative
correlation of approximately �0:45. Thus, from the correlation

analysis several variables having significant correlations with the
streamflows were identified for each site. They were used as the
potential predictors for further analysis. The number of the poten-
tial predictors for the April through July streamflow forecasts for
the six sites ranged from 21 (Arkansas) to 48 (Rio Grande).

Likewise, correlation analysis was conducted for the Gunnison
River yearly streamflows (October through September, January
through December, February through January, and April through
March) versus hydrologic, atmospheric, and oceanic variables.
For example, correlation maps and tables (not shown) gave corre-
lation coefficients in the range from �0:49 to þ0:82 for April
through March and �0:45 to þ0:52 for Oct.–Sep. SWE is the var-
iable with the highest correlation (0.82) for April through March
yearly streamflows, but for October through September, the corre-
lation with SWE drops to 0.33. Clearly, the time period where the
year is defined is important, e.g., for the year April through March,
the April 1 SWE plays a significant role because much of the runoff
in the following months arises from the snowmelt that has been on
the ground by April 1. On the other hand, for the year October
through September, either the effect of SWE is small or not signifi-
cant at all because much of the snow that has been on the ground by
April 1 has been melted and does not contribute to the streamflow
in the year that begins in October.

Several studies have identified the link between large-scale
climatic features and regional hydroclimatic variability in North
America (e.g., McCabe and Dettinger 2002; Grantz et al. 2005;
Regonda et al. 2006; Tootle and Piechota 2006; Sveinsson et al.
2008). These studies have all identified large-scale climate indica-
tors (similar to those found in this paper) and their potential for
long-range streamflow forecasting. Also, these previous studies
have documented not only the statistical associations between
climatic factors and hydrologic variables, such as streamflows,
but also provided the underlying physical mechanisms (arguments)
supporting such statistical associations. For example, in studying
the predictability of the Gunnison River (using similar data as
we have in this study) Regonda et al. (2006) showed correlation
maps between the first PC of Spring flows and Nov.–Mar. GH

Table 3. Fifteen Potential Predictors for the April through July Streamflows of the Gunnison River

No. Name Variable Time Location General description Corr. coef.

3 SST2 Sea surface temperature Jan.–Mar. 25°N–30°N 155°E–175°E Northwest Pacific, southeast

of Japan

�0:45

5 SST4 Sea surface temperature Previous Oct.–Dec. 25°N–32°N 158°E–168°E Northwest Pacific, southeast

of Japan

�0:45

11 SSST1 Seesaw SST Jan.–Mar. SST1-SST2 0.50

12 SSST2 Seesaw SST Previous Oct.–Dec. SST3-SST4 0.53

15 GH3 Geopotential height

(700 mb)

Previous Oct.–Dec. 40°N–60°N 60°W–75°W Over eastern Canada and

eastern United States

0.43

19 MW1 Meridiona-1 wind

(700 mb)

Previous Oct.–Dec. 35°N–55°N 80°W–95°W Eastern Canada and eastern

United States

0.51

21 MW3 Meridiona-l wind

(700 mb)

Previous Oct.–Dec. 30°N–55°N 40°W–65°W Northwest Atlantic, east

of Canada and United States

�0:44

24 ZW3 Zonal wind (700 mb) Previous Oct.–Dec. 25°N–35°N 100°W–120°W Southern United States 0.44

26 AT1 Air temperature Previous Oct.–Dec. 45°N–55°N 105°W–110°W Western mountain states �0:44

28 OLR2 Outgoing long-wave

radiation

Previous Oct.–Dec. 31°N–46°N 105°W–120°W Central states and western

mountain states

�0:44

31 RH3 Relative humidity Previous Oct.–Dec. 30°N–35°N 70°W–80°W Southeast United States 0.48

35 PDSI1 Palmer index Jan.–Mar. Climate division 0.70

37 SWE1 Snowwater equivalent Feb. 1 Basin average 0.73

38 SWE2 Snowwater equivalent Mar. 1 Basin average 0.76

39 SWE3 Snowwater equivalent Apr. 1 Basin average 0.85
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(700 mb), surface air temperature, zonal and meridional winds
(700 mb), and SST. Their correlation maps for GH and meridional
wind [Figs. 5(a)–5(d)] are quite similar to our maps in Figs. 2 and 3,
respectively. Regonda et al. also showed composite maps of vector
wind (700 mb) anomalies for wet and dry years, and found that
negative GH anomalies tend to direct the storm tracks into the ba-
sin, resulting in increased streamflows. They also found that cor-
relation maps of zonal and meridional winds (700 mb) are

consistent with the 700 mb GH, in that winds over the southwestern
United States bring moisture into the Gunnison River Basin, lead-
ing to above-average spring streamflows. Also, Grantz et al. (2005)
showed the connection between climate and streamflow by using
composite analysis of sea level pressures and winds during high
and low streamflow years in the western United States. The physi-
cal mechanisms as previously described are the reasons for the suite
of SST-, pressure-, and wind-based predictors that emerged in

Fig. 2. Correlation map for the Apr.–Jul. streamflows of the Gunnison River and the previous year’s Oct.–Dec. global 700 mb geopotential heights

Fig. 3. Correlation map for the Apr.–Jul. streamflows of the Gunnison River and the previous year’s Oct.–Dec. global meridional wind (700 mb)
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studies aimed at improving long-range streamflow forecasting
based on climatic indicators. The physical arguments they provided
are certainly valid for the analysis carried out in this paper.

Forecast Results for April to July Streamflows at
Single Sites

MLR forecast models were built for the standardized April through
July streamfllows using all variables (predictand and predictors) in
their original form. For ease of reference, we refer to these forecast
models (Table 4) as MLR. Generally, there are 3 to 8 predictors and
as expected, SWE is the most important predictor for every site
except for the Yampa River, where it is second-best. Also, atmos-
pheric variables, such as Zonal or Meridional wind (at 700 mb), GH
(700 mb), and RH, are also good predictors for most of the 6 sites.
And, SST are important predictors for 4 sites (Poudre, Arkansas,
Gunnison, and Rio Grande), but they are not included as predictors
for the San Juan and Yampa Rivers, although for these two sites,
OLRD is included. Although SST are important predictors for most
sites, other oceanic indexes, such as PDO and El Niño-related
indexes, were not included as predictors, which confirms the results
found by Regonda et al. (2006) in their studies of the Gunnison
River.

The R-squares and forecast skill scores for forecasting the April
through July streamflows based on MLR were determined (not
shown). In general, the results obtained were quite good. For ex-
ample, the adjusted R2 for the drop-1 results gave values in the
0.48–0.80, where the smaller values 0.48 and 0.49 corresponded
to the Arkansas and Poudre Rivers, respectively, while values in
the 0.68–0.80 range were obtained for the other four sites. Also,
the forecast skill scores were quite reasonable with drop-1 AC
in the 0.49–0.68 range and HSS in the 0.32–0.57 range. Consid-
ering the various metrics, it was clear that the better values were
obtained for the Gunnison, Rio Grande, San Juan, and Yampa Riv-
ers than for the Arkansas and Poudre Rivers. The cross-correlation
coefficients obtained for the drop-1 forecasted April through July
streamflows were somewhat lower than the historical correlations
(Table 2). This was especially noticeable for the Poudre and Arkan-
sas Rivers, where the underestimation could be as high as 32%. The
lower values obtained for the cross correlations were expected
because the forecasts were made on a site by site basis.

In addition, we also applied PCA on all the potential predictors
for each site. Then, the PCs that explained most of the variance
were used to fit a forecast model based on MLR (referred to as
PCA model). The results for all sites showed that the first 15
PCs generally accounted for at least 90% of the variance. For
illustration, Table 5 shows the variances of the first 15 PCs for
the Gunnison River. Thus, we considered the first 15 PCs for
further analysis, the other PCs were ignored, and the stepwise
MLR model was applied for predicting the April through July

streamflows based on PCs. Table 6 shows the PCs that were
obtained for each site and the estimated model parameters. For
most of the sites, the first 3 PCs are included, and the total number
of PCs in the models is either 5 or 6. The performance measures of
the forecasts based on PCA models are shown in Table 7. In general
the forecasts using the PCA models are pretty good for most sites.
The values of the drop-1 adjusted R2 are in the 0.49–0.77 range.
Again, the smallest values are 0.49 and 0.54 for the Poudre and
Arkansas Rivers, respectively, and the values for the other sites
varied in the 0.70–0.77 range. Also, the drop-1 forecast skill scores
AC are in the 0.49–0.68 range and HSS vary from approximately
0.32–0.57. The AC values for the Poudre and Arkansas Rivers are
0.49 and 0.53, respectively, while the average AC for the other four
rivers are approximately 0.61. Likewise, the HSS scores for the
Poudre and Arkansas Rivers are 0.32 and 0.37, respectively, while
the average HSS for the other sites are approximately 0.49.
The cross-correlation coefficients of the forecasted streamflows
among the six sites are shown in Table 8. As expected, the
cross-correlation coefficients are somewhat smaller than those of
the observed streamflows. Overall, however, the cross correlations
obtained using PCA models are better than those obtained from the
MLR models previously described. Furthermore, the plots compar-
ing the historical versus the forecasted flows (not shown) suggested
that the forecasts obtained based on PCA give quite good results.
The various results as previously described confirm that there is
some noted difference in the forecast performances of the six rivers,
where the better performances are obtained for the Gunnison,
Rio Grande, San Juan, and Yampa Rivers than for the Poudre
and Arkansas Rivers.

Comparing Forecasts for Various Types of Predictors

In the previous section, we assessed the forecast performances
based on MLR and PCA using all the hydrologic, atmospheric,

Table 4. Models Obtained Based on MLR for Forecasting April through July Streamflows for Six Study Sites

Site Equations

Poudre River y ¼ �0:24 × SST8ðA� JÞ þ 0:412 × ZW3ðJ�MÞ þ 0:616 × SWE3 (Apr. 1)

Arkansas River y ¼ �0:294 × SST4ðJ� SÞ � 0:140 ×MW2ðO� DÞ þ 0:423 × RHðO� DÞ þ 0:392 × SWE3 (Apr. 1)

Gunnison River y ¼ 0:192 × SST2ðJ�MÞ þ 0:124 × SST7ðA� JÞ � 0:194 × SST9ðA� JÞ � 0:231 × GH5ðO� DÞ þ 0:209 × ZW2ðJ�MÞ
þ 0:203 × RH4ðO� DÞ þ 0:288 × PDSI1ðJ�MÞ þ 0:518 × SWE3 (Apr. 1)

Rio Grande River y ¼ 0:249 × SSST1ðJ�MÞ � 0:213 × GH6ðO� DÞ � 0:176 × ZW4ðO� DÞ þ 0:360 × RH2ðO� DÞ þ 0:425 × SWE3 (Apr. 1)

San Juan River y ¼ 0:187 × GH3ðO� DÞ � 0:172 × GH5ðJ� SÞ � 0:170 × OLR1ðJ�MÞ � 0:130 × OLR2ðO� DÞ þ 0:623 × SWE3 (Apr. 1)

Yampa River y ¼ �0:307 × GH1ðJ�MÞ � 0:174 ×MW3ðO� DÞ � 0:235 × OLR2ðJ�MÞ þ 0:829 × PDSI1ðJ�MÞ � 0:583 × PDSI2ðO� DÞ
þ 0:273 × SWE2 (Mar. 1)

Note: The parenthesis in the equations indicate the time period. For example, SST8 (A-J) indicates the SST for the time period April through June of the
previous year.

Table 5. Variances of PCs of Potential Predictors for Forecasting April
through July Streamflows of Gunnison River

PCs Variance %
Accumulation

% PCs Variance %
Accumulation

%

1 11.50 29.5 29.5 10 1.17 3.0 80.1

2 3.77 9.7 39.2 11 0.99 2.5 82.7

3 3.09 7.9 47.1 12 0.89 2.3 85.0

4 2.77 7.1 54.2 13 0.74 1.9 86.9

5 2.40 6.2 60.3 14 0.67 1.7 88.6

6 2.12 5.4 65.8 15 0.63 1.6 90.2

7 1.69 4.3 70.1 ↓ ↓ ↓ ↓

8 1.44 3.7 73.8

9 1.30 3.3 77.1 39 0.00 0.0 100.0
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and oceanic predictors. Here, we analyze the performances ob-
tained by different groups of predictors considering the Gunnison
River. For example, because SWE and PDSI are the most important
predictors of streamflows from April through July, we examined
the results we would obtain if we eliminated SWE and PDSI from
the pool of predictors. This case is relevant especially for ungauged
basins where no rainfall and snowfall data nor snowpack over
the basin may be available. Thus, five cases were considered:

(1) oceanic variables only, (2) atmospheric variables only, (3) oce-
anic and atmospheric variables only, (4) hydrologic variables only,
and (5) all variables for forecasting the April through July stream-
flows. Table 9 gives the results of the model performances. For
instance, considering the drop-1 adjusted R2, it is clear that using
oceanic predictors only gives the smallest value (0.28), while using
atmospheric predictors alone gives a larger value (0.48). Using both
oceanic and atmospheric predictors increases the R2 to 0.52. In
turn, using the hydrologic predictors only gives even a larger value
(0.65), and using all predictors gives the highest value 0.73.

As expected, the model using all predictors has better perfor-
mance than those using only the predictors of individual groups
or a combination of predictors. The results are similar for the other
forecast skill scores, such as AC and HSS (Table 9). But the
comparison, rather than highlighting the fact that the model that
includes all predictors has better performance than the others,
actually points out how beneficial it may be for long-range fore-
casting the use of atmospheric/oceanic predictors. In addition, Fig. 4
shows the scatter plots of drop-1 forecasts based on PCA models
versus historical values using each of the 5 groups of predictors
(1 through 5). Comparing the plots helps us to understand the role
and benefit of each group of predictors. For instance, comparing
Figs. 4(a) and 4(b) it is clear the benefit of using atmospheric
predictors especially in the low flow and high flow ranges. Also
Fig. 4(c) suggests some improved forecasts using both oceanic
and atmospheric predictors. Likewise, comparing Figs. 4 (d) and
4(e) confirm the advantage of using all predictors if they are avail-
able. Also, the importance of climatic predictors for long-range
streamflow forecasting are explained in the analysis of yearly fore-
casts shown in a subsequent section.

Forecast Results for April through July Streamflows
Based on Multisite Models

Forecast models were also fitted for all six sites simultaneously
using CCA, and the results were compared with those obtained
using the single-site MLR and PCA. The potential predictors that

Table 6. Parameters of PCA Model for Forecasting April through July Streamflows for Each Site

Poudre Arkansas Gunnison Rio Grande San Juan Yampa

PCs β PCs β PCs β PCs β PCs β PCs β

PC1 �0:645 PC1 �0:731 PC1 �0:788 PC1 �0:809 PC1 �0:837 PC1 0.815

PC2 �0:315 PC3 0.189 PC2 �0:230 PC2 0.263 PC2 0.136 PC2 0.160

PC4 �0:173 PC4 �0:371 PC3 0.174 PC3 0.254 PC3 �0:143 PC3 0.190

PC10 0.228 PC10 �0:169 PC4 0.245 PC6 �0:160 PC7 �0:115 PC12 �0:163

PC12 �0:197 PC12 0.177 PC6 0.146 PC9 �0:152 PC8 �0:223 PC17 0.256

PC12 0.162 PC11 0.115

Table 7. Model Performance Measures for Forecasting April through July
Streamflows Based on PCA

Method Item Poudre Arkansas Gunnison
Rio

Grande
San
Juan Yampa

Fitting R2 0.67 0.70 0.87 0.86 0.85 0.88

Adj. R2 0.63 0.66 0.85 0.84 0.83 0.87

Drop-1 R2 0.54 0.58 0.76 0.73 0.77 0.79

Adj. R2 0.49 0.54 0.73 0.70 0.74 0.77

Fitting Accuracy 0.55 0.57 0.60 0.66 0.74 0.70

HSS 0.39 0.42 0.47 0.56 0.65 0.60

Drop-1 Accuracy 0.49 0.53 0.57 0.58 0.68 0.62

HSS 0.32 0.37 0.42 0.46 0.57 0.50

Table 8. Cross-Correlation Coefficients between April through July
Drop-1 Forecasted Streamflows Based on PCA Models

Sites Poudre Arkansas Gunnison
Rio

Grande
San
Juan Yampa

Poudre 1 0.67 0.66 0.45 0.48 0.72

Arkansas 0.67 1 0.78 0.61 0.64 0.72

Gunnison 0.66 0.78 1 0.60 0.67 0.86

Rio Grande 0.45 0.61 0.60 1 0.82 0.56

San Juan 0.48 0.64 0.67 0.82 1 0.61

Yampa 0.72 0.72 0.86 0.56 0.61 1

Table 9. Model Performances Using Various Combinations of Predictors for Forecasting April through July Streamflows of the Gunnison River

Method Item

Models based on

Oceanic variables
Atmospheric
variables

Oceanic and
atmospheric variables Hydrological variables All variables

Fitting R2 0.45 0.62 0.67 0.72 0.87

Adj. R2 0.41 0.59 0.65 0.71 0.85

Drop-1 R2 0.32 0.51 0.56 0.66 0.76

Adj. R2 0.28 0.48 0.52 0.65 0.73

Fitting Accuracy AC 0.43 0.47 0.50 0.54 0.60

HSS 0.25 0.31 0.35 0.42 0.47

Drop-1 Accuracy AC 0.41 0.45 0.48 0.50 0.57

HSS 0.23 0.29 0.32 0.37 0.42
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were considered for all six rivers were determined by pooling all
the potential predictors identified for the individual sites. Thus, a
total of 207 potential predictors were utilized. Because this is a
large number of predictors, one could trim it down by judiciously
selecting a certain correlation coefficient threshold. By using a
smaller number of predictors, one could directly apply the CCA
method previously described. Instead, PCA was performed on
all 207 predictors, and a selected number of PCs were used for
CCA. To select the PCs, the variance loadings of each PC were
examined (not shown). The variance dropped steadily as the num-
ber of PCs increased. The first 23 PCs accounted for approximately
90% of the variance, and each of the PCs beyond the 20th counted
for less than 1% of the variances. Thus, the first 20 PCs were con-
sidered for further analysis. The first 20 PCs were entered into the
CCA model one at a time (beginning with the 1st PC) until all 20
PCs were added. In each step, the sum of squared residuals (SSR)
[Eq. (10)] was determined, and the PCs that caused increases in
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Fig. 4. Scatter plots of the drop-1 Apr.–Jul. forecasted streamflows of the Gunnison River versus the observed values for PCA models
based on (a) oceanic predictors only; (b) atmospheric predictors only; (c) oceanic and atmospheric predictors; (d) hydrologic predictors only;
(e) all predictors
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20 PCs
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SSR were eliminated. For illustration, Fig. 5 shows that for the Pou-
dre River, the SSRs obtained from CCAmodels fitted by adding the
PCs sequentially up to 20 PCs. Adding PC5 sharply increases the
SSR. For other sites, this was also observed for PC8. Consequently,
these two PCs were removed from the CCA model. Meanwhile, the
PCs beyond the 11th either caused additional errors or had little
effect. Therefore, the CCA model used 9 PCs, namely, 1, 2, 3,
4, 6, 7, 9, 10, and 11, as the predictors. Then, the final CCA model
(using 9 PCs) gave 6 eigen values: λ1 ¼ 0:929; λ2 ¼ 0:781;
λ3 ¼ 0:755; λ4 ¼ 0:587; λ5 ¼ 0:396; and λ6 ¼ 0:207 (the square
roots of the λ’s are the canonical correlation coefficients ρ’s). The
significant test was then performed on the ρs. The value of the test
statistic for r ¼ 6 [Eq. (5)] gave 81.6, which is greater than the
critical value. Therefore, the 6 canonical correlations became sig-
nificant, and all the canonical variates were used in the CCAmodel.

The forecast performances using the CCA model were deter-
mined (not shown). Considering the various performance measures,
it was clear that the better results were obtained for the Gunnison,
Rio Grande, San Juan, Yampa, and Arkansas Rivers with respect to
those obtained for the Poudre. In previous results (MLR and PCA
for single sites), the forecasts for the Poudre and Arkansas Rivers
were inferior to the other four, but in this case, only the Poudre
River is inferior to the other five. The cross-correlation coefficients
(not shown) indicated some underestimation relative to those ob-
tained from the observations. The main differences occurred with
cross correlations that involved the Arkansas River, although the
largest underestimation was for the cross correlation between
the Gunnison and Rio Grande Rivers. The scatter plot and time
series (not shown) indicated a reasonable resemblance between
the drop-1 streamflow forecasts and the historical flows; however,
they also revealed some underestimation of the forecasted stream-
flows, particularly for low- and high-magnitude flows. Fig. 6 com-
pares the drop-1 adjusted R2s obtained for the forecasts based on
the PCA, CCA, and MLR models for all sites. As expected, the R2s
for the PCA and MLR models are somewhat better (higher) than
those obtained from the CCA models (except for the Arkansas
River). The biggest difference in R2 is for the San Juan River,
0.22 between PCA and CCA and 0.25 between MLR and CCA.
Also, comparing the forecast skill scores obtained for PCA,
CCA, and MLR suggested that PCA and MLR forecast perfor-
mances are generally better than those for CCA. Comparing the
cross correlations it was also clear that the correlations obtained
from CCAwere not better than those from PCA, and in two cases,
they were much worse. This may appear to be contradicting what
one may have expected, but because the forecasts obtained from

PCAwere generally better than those obtained from CCA, the cross
correlations were also better. Also, comparing the time series of the
forecasts versus the historical one as well as the corresponding
scatter plots (not shown) indicated that in many cases the CCA
underestimated the low flows and high flows while the PCA did
a better job.

Forecast Results for Yearly Streamflows

Forecasts for yearly October through September, January through
December, February through January, and April through March
streamflows have been made for the Gunnison River. We wanted
to examine how PCA forecast models performed for a longer time
period, i.e., a year, and for different definitions of years, because the
antecedent conditions may be quite different. The procedure fol-
lowed was the same as described for building and testing PCA
models. Table 10 gives the parameters of the PCA models and
Table 11 gives the forecast performance results. The results for
the yearly periods October through September and January through
December are generally comparable, while those for February
through January, and April through March are markedly better.
The main reason for this result is the effect that SWE plays depend-
ing on the definition of the year. For October through September,
the effect of SWE of previous months (e.g., April or May) SWE is
small because by the end of September, most of the snowpack
accumulated since the previous fall and winter seasons has melted.
For the yearly period January through December, SWE if available
by December 31 (previous year) would be important for forecasting
the yearly January through December streamflows, but such infor-
mation is not available. On the other hand, for the yearly period
February through January, SWE is available (as of February 1),
and, certainly, the results show some improvement of the forecast
performance. Thus, although February 1, SWE provides only
partial information on the snowpack that may be available in the
basin for the next year’s (February through January) streamflows,

Fig. 6. Comparison of drop-1 adjusted R2s for the MLR, PCA, and
CCA models for forecasting the Apr.–Jul. streamflows for the six sites

Table 10. PCA Models Obtained for Forecasting the Annual Streamflows
of Gunnison River

Annual flows Equations

Oct.–Sep. y ¼ �0:670 × PC1� 0:271 × PC5� 0:298 × PC10

þ 0:188 × PC11

Jan.–Dec. y ¼ �0:699 × PC1� 0:347 × PC3þ 0:143 × PC8

Feb.–Jan. y ¼ �0:717 × PC1� 0:350 × PC3þ 0:156 × PC8

þ 0:185 × PC16

Apr.–Mar. y ¼ �0:785 × PC1þ 0:275 × PC6� 0:175 × PC7

þ 0:165 × PC11

Table 11. PCA Model Performances for Forecasting Annual Streamflows
of Gunnison River

Method Item

Annual streamflows

Oct.–Sep. Jan.–Dec. Feb.–Jan. Apr.–Mar.

Fitting R2 0.65 0.63 0.70 0.75

Adjusted R2 0.62 0.61 0.67 0.73

Drop-1 R2 0.54 0.53 0.62 0.67

Adjusted R2 0.50 0.50 0.59 0.64

Fitting Accuracy 0.55 0.57 0.60 0.62

HSS 0.40 0.42 0.58 0.50

Drop-1 Accuracy 0.47 0.53 0.55 0.57

HSS 0.30 0.37 0.40 0.42
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it helps the forecast. Likewise, for the yearly period April through
March, SWE is indeed the most important factor (predictor). Thus,
it is clear that for the forecast of April through March streamflows,
the forecast performances are better than for the other three yearly
periods for the reasons previously explained. It is also clear that for
October through September and January through December,
atmospheric and oceanic factors become the most important for
forecasting the flows for those yearly periods.

Final Remarks and Conclusion

The research reported herein is concerned with streamflow fore-
casting on a seasonal and yearly basis. Models were developed
for forecasting total streamflows during April through July, and
yearly streamflows for different periods. Also, different modeling
schemes were adopted, and the role of hydrologic, atmospheric,
and oceanic factors on forecast performance examined. We did
not include in this paper results regarding forecast uncertainty.
Because our procedures rely on linear regression models, estimat-
ing confidence limits on forecasts is straightforward and can be
found in any standard textbook. The various forecast models,
applications, and comparisons thereof led to the following
conclusions:
1. Correlation analysis conducted for forecasting seasonal and

annual streamflows for six rivers in Colorado indicates that hy-
drological variables such as SWE have the highest significant
correlations, especially with seasonal April through July
streamflows. SWE is still the predictor with highest correlation
for forecasting yearly February through January and April
through March streamflows. But for forecasting yearly Octo-
ber through September streamflows, SWE (April 1 or May 1)
becomes less important or negligible, and for forecasting
yearly January through December flows, SWE is not available.
However, a number of atmospheric and oceanic variables, such
as global GH, wind, RH, and SST, also have significant cor-
relations that can be useful predictors for forecasting seasonal
and yearly streamflows.

2. The forecast performances of MLR and PCA models for fore-
casting April through July streamflows of six major rivers in
the Colorado by using hydrologic, atmospheric, and oceanic
predictors are very good. The performances measures obtained
from MLR and PCA models are comparable. The advantage of
using MLR models over PCA is in the direct specification
and identification of the various predictors in the models. In
contrast, PCA models involve predictors in terms of principal
components. On the other hand, the advantage of using PCA
models has been in a better reproduction of historical cross
correlations among sites (compared with MLR models).

3. It has shown that atmospheric and oceanic factors play a sig-
nificant role in forecasting seasonal and yearly streamflows in
Colorado rivers. For example, for forecasting the April through
July streamflows for the Gunnison River using only atmo-
spheric and oceanic predictors, the drop-1 adjusted R2 is ap-
proximately 0.5, which is pretty good. Likewise, forecasting
the yearly October through September and January through
December streamflows is essentially based on atmospheric
and oceanic predictors, yet the results are quite good (the
drop-1 adjusted R2 is also 0.5 in both cases). It is concluded
that atmospheric and oceanic predictors alone can predict
reasonably well the streamflow variations of the Gunnison
River on seasonal and yearly timescales.

4. PCA models were applied for forecasting yearly October
through September, January through December, February

through January, and April through March streamflows. It
has been shown that good forecasting performance can be
achieved for yearly timescales. Better results are obtained
for forecasting the yearly February through January, and April
through March than for the other two because the former has
the advantage of including hydrologic predictors, such as
SWE, whereas for October through September, such informa-
tion is less significant or not useful because for the year that
begins in October, most if not all potential snowpack in the
basin may have already melted. Thus, the forecasts for the
yearly October through September rely almost solely on atmo-
spheric and oceanic data. Likewise, the forecast for the yearly
streamflows during January through December relies largely
on atmospheric and oceanic predictors because SWE is not
available in December of the previous year, which could help
in obtaining better forecast.

5. We applied CCA to forecasts for the April through July stream-
flows at the six study sites jointly. The forecast performance
obtained based on CCA is good. However, the results are in-
ferior to those obtained from PCA applied individually at each
site. This is also the case when comparing cross correlations.
Thus, it is concluded that in forecasting the April through July
streamflows for Colorado rivers using CCA we did not find
any advantage over the forecasts obtained using PCA at single
sites.

6. In applying the various forecasting methods for six rivers in
Colorado, namely, Poudre, Arkansas, Rio Grande, San Juan,
Gunnison, and Yampa, it has been clear that much better fore-
cast performance is achieved for the last four rivers than for the
Poudre and Arkansas Rivers. It appears that the main reason
for this notable difference in forecast performance is because
for the Poudre and Arkansas Rivers the (average) correlations
between the flows and hydrologic predictors (SWE and PDSI)
is 0.48, while for the other four rivers it is 0.68.
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