
Statistical Modeling of Daily Water Temperature Attributes
on the Sacramento River

Jason Caldwell1; Balaji Rajagopalan, A.M.ASCE2; and Eric Danner3

Abstract: The Sacramento River is the largest river in California, and an important source of water for agricultural, municipal, and industrial
users. Input to the Sacramento River comes from Shasta Lake and is controlled by operators of Shasta Dam, who are challenged with meeting
the competing needs of these users while also maintaining a cold water habitat for Endangered Species Act (ESA) listed winter-run Chinook
salmon. The cold water habitat goals are constrained by the volume of cold water storage in the lake, which operators attempt to selectively
deploy throughout the critical late summer/fall window. To make informed decisions about the release of this limited cold water resource,
skillful forecasts of downstream water temperature attributes at the seasonal time scale are crucial. To this end, we offer a generalized linear
modeling (GLM) framework with a local polynomial method for function estimation, to provide predictions of a range of daily water temper-
ature attributes (maximum daily water temperature, daily temperature range, number of hours of threshold exceedance, and probability of
threshold exceedance/nonexceedance). These attributes are varied in nature (i.e., discrete, continuous, categorical, etc.), and the GLM pro-
vides a general framework to modeling all of them. A suite of predictors that impact water temperatures are considered, including current and
prior day flow, water temperature of upstream releases, air temperature, and precipitation. A two-step model selection is proposed. First, an
objective method based on Bayesian Information Criteria (BIC) is used in a global model to select the best set of predictors for each attribute;
then the parameters of the local polynomial method for the selected best set of predictors are obtained using generalized cross validation
(GCV). Daily weather ensembles from stochastic weather generators are coupled to the GLM models to provide ensembles of water temper-
ature attributes and consequently, the probability distributions to obtain risk estimates. We demonstrate the utility of this approach by mod-
eling water temperature attributes for a temperature compliance point on the Sacramento River below Shasta Dam. Regulations on the dam
depress the water temperature forecasting skill; to show this, we present skillful results from applying the approach to an unregulated
location in the Pacific Northwest. The proposed method is general, can be ported across sites, and can be used in climate change studies.
DOI: 10.1061/(ASCE)HE.1943-5584.0001023. © 2014 American Society of Civil Engineers.

Author keywords:Water temperature; Generalized linear model; Stochastic weather generation; Water management; Seasonal forecasting;
Climate impacts.

Introduction

The Sacramento River is the largest river in California, and an im-
portant source of water for agricultural, municipal, and industrial
users (Fig. 1). Input to the Sacramento River comes from Shasta
Lake and is controlled by operators of Shasta Dam, who are chal-
lenged with meeting the competing needs of these users while also
maintaining a cold water habitat for Endangered Species Act (ESA)
listed winter-run Chinook salmon (Oncorhynchus tshawytscha).
In the late summer and fall, strong atmospheric heating causes water
temperatures in the Sacramento River to get too warm for winter-run
Chinook salmon, and operators at Shasta Dam adjust the water re-
lease volume and temperature in attempts to maintain temperatures
below downstream compliance targets. However, there is a limited

amount of cold water storage in the reservoir and releasing too much
cold water during the early summer and midsummer can exhaust the
cold water pool, resulting in increased thermal stress during late
summer and early fall when fish are particularly vulnerable. There-
fore, to enable the most efficient management of the available resour-
ces it is essential to have effective modeling and forecasting of
downstream temperature attributes. Modeling efforts that effectively
incorporate climate forecast information are needed to provide ad-
equate guidance for making decisions at a variety of time scales
(i.e., subdaily to decadal). An integrated modeling framework has
been developed to provide short-range forecasting for day-to-day
operations (Danner et al. 2012; Pike et al. 2013). However, this ap-
proach is limited to 96 h forecasts, and water managers need longer-
range capabilities to make informed decisions on how to manage the
cold water storage over the course of an entire season. This paper
presents the development of a seasonal component to the framework
that provides managers with monthly to seasonal forecasts of key
water temperature attributes and probabilistic estimates of risk of
meeting or exceeding predetermined thresholds of each attribute.

Water Temperature Models

Recent advances in water temperature monitoring and modeling
have facilitated the collection, analysis, and understanding of
the complexity of water temperature behavior (Webb et al. 2008;
Dunham et al. 2005; Isaak 2011). These concepts and theories
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are essential to the development of comprehensive models of water
temperature. In general, water temperature models fall into two
groups: deterministic and empirical. Deterministic models employ
an energy budget approach by simulating water temperature
through fluid flow and heat transport equations (e.g., Taylor
1998; Carron and Rajaram 2001; Brock and Caupp 1996; Pike
et al. 2013). These models capture the physical processes of water
temperature dynamics through consideration of unsteady flow,
advective-dispersive transport of heat, and heat flux across the
air–water and water–sediment interfaces. These require input of de-
tailed data on system geometry, flow, physical attributes of river,
and climate in order to robustly calibrate and validate the models.
Furthermore, they are computationally intensive, which can be a
deterrent for operational agencies with limited resources.

Empirical models, in contrast, generally consist of fitting regres-
sion models to daily water temperature as a function of air temper-
atures and streamflow (e.g., Bogan et al. 2006; Caissie et al. 2001;
Neumann et al. 2003). These models rely on the strong correlation
between air and water temperature, which is driven by the joint
dependence on solar radiation (Benyahya et al. 2007). Such stat-
istical models typically capture variability over large geographic
extents (e.g., long stretches of river) and also offer the benefits
of computational efficiency and the ability to quantify uncertainty
(Benyahya et al. 2007). At daily or weekly time steps, statistical
models have the ability to capture water temperature variability;
however, at shorter time steps (e.g., hourly), the autocorrelation
within the water temperature time series makes the regression in-
creasingly difficult (Mohseni et al. 1998). Empirical modeling tech-
niques, therefore, offer a distinct advantage at longer time scales
(i.e., seasonal), while deterministic models are preferred at short
(i.e., subdaily) time scales. Neural networks models have also been
proposed (e.g., Chenard and Caissie 2008) which can capture non-
linearities in the relationship. However, these models require
large amounts of data and subjective inputs, and are computation-
ally intensive.

While regression models (mostly linear) have been the staple of
modeling average daily water temperatures (e.g., Neumann et al.
2003), they are not suitable for modeling attributes of daily water
temperature that may be skewed (i.e., daily maximum), binary
(i.e., probability of threshold exceedance), or discrete (i.e., number
of hours of exceedance).

Motivation and Study Site

Most empirical water temperature models focus on estimating aver-
age daily water temperatures. However, the management of river
temperatures for the protection of coldwater fishes requires under-
standing and forecasting of a variety of attributes, as these fish are
sensitive to acute maximum temperatures and prolonged exposure
to higher temperatures (e.g., Myrick and Cech 2000; Van Vleck
et al. 1988). Thus, forecasts of these attributes are needed for water
resource managers to efficiently plan water releases from reservoirs
so as to optimally manage the cold water supply with respect of fish
habitat.

To address this need, we propose a generalized linear model
(GLM) framework that provides a flexible alternative to modeling
a variety of temperature variables. Weather and seasonal climate
forecasts can be easily integrated for use in seasonal operational
planning (e.g., Neumann et al. 2003, 2006; Towler et al. 2010a, b).
Recently, GLMs have been used in stochastic weather generation
(Furrer and Katz 2007), waste water quality modeling (Weirich
et al. 2011), and in climate applications (Chandler 2005; Chandler
and Wheater 2002). Our method uses local polynomials to model

and predict a key set of seasonal water temperature attributes: daily
temperature maximum (DTX), daily temperature range (DTR),
probability of threshold exceedance (POE), and number of hours
of exceedance (NHE). This method will provide a simpler and com-
plementary tool to the existing short-term water temperature mod-
els for the Sacramento River. We applied the model to the Balls
Ferry compliance point approximately 40 km below Shasta Dam
on the Sacramento River (Fig. 1), a key management target for
meeting temperature objectives on the river (USBR 2004).

Study Site

The construction of Shasta Dam, which was completed in 1945, cut
off access to critical spawning and rearing habitat for winter-run
Chinook salmon. Prior to the dam’s construction, the Sacramento
River yielded large volumes of cold water during the winter/spring
and smaller volumes of warmer water during the rest of the year
(Myrick and Cech 2000). Dam operations now allow cooler water
releases during the critical late summer season, which can partially
mitigate this loss of habitat (Van Vleck et al. 1988; SFEP 1992;
Yates et al. 2008). To protect winter-run salmon eggs and rearing
habitat, a temperature target of 13.3°C was established for habitat
between Keswick Dam and Red Bluff Diversion Dam (Fig. 1;
Bettelheim 2001; Hallock and Fisher 1985).

The installation of a temperature control device (TCD) on
Shasta Dam during the mid-1990s improved the capability of
maintaining cool downstream water temperatures by enabling

Fig. 1. Map of the study area in the upper Sacramento River basin
with compliance points and primary infrastructure (map courtesy of
Andrew Pike)
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the release of water from different levels within the thermally strati-
fied reservoir. With this level of control, managers attempt to con-
serve the cold water supply as late in the season as possible, and
release it in the late summer/early fall when upper reservoir temper-
atures are already approaching the compliance limit. As a result,
downstream water temperatures are now a combined function of
operations and hydrometeorology. Inclusion of the daily flow
and water temperature releases in any statistical modeling efforts
may partially account for these operations as the volume of water
released and its respective temperature ultimately advect down-
stream and alter the thermal properties.

Methods

Generalized Linear Models

In a GLM, the response or the dependent variable Y can be assumed
to be a realization from any distribution in the exponential family
with a set of parameters (McCullagh and Nelder 1989). A smooth
and invertible link function transforms the conditional expectation
of Y to a set of predictors [Eq. (1)]

G½EðYÞ� ¼ fðXÞ þ ε ¼ XβT þ ε ð1Þ

Gð.Þ = link function; X = set of predictors or independent var-
iables; EðYÞ = expected value of the response variable; T = trans-
pose operator; and ε = error assumed to be normally distributed
with variance (σε). In a linear model (the standard linear regres-
sion), the function Gð.Þ is identity and Y is assumed to be normally
distributed. Depending on the assumed distribution of Y, there exist
appropriate link functions (McCullagh and Nelder 1989). The
model parameters, β, are estimated using an iterative weighted least
squares method that maximizes the likelihood function as opposed
to an ordinary least squares method in linear modeling. The GLM
can be used to model a variety of response variables—for skewed
variables with a lower bound of 0 such as daily maximum water
temperature or daily water temperature range, the Gamma distribu-
tion assumption of Y and its associated link function is appropriate;
for number of hours of temperature exceedance, the Poisson dis-
tribution and its associated link functions can be used; for proba-
bility of exceedance, a binomial distribution and its link function
(i.e., logistic regression) is the approach. McCullagh and Nelder

(1989) provide information about a variety of distributions, link
functions, and parameter estimation.

To obtain the best set of predictors for the model, there are
objective criteria such as the Akaike Information Criteria (AIC) or
Bayesian Information Criteria (BIC), both of which penalize the
likelihood function based on the number of parameters (Venables
and Ripley 2002). Models are fit using all possible subsets of pre-
dictors and also link functions; for each, the AIC and BIC are com-
puted and the model with lowest AIC or BIC is selected as the best
model. Models can also be tested for significance against a null
model or an appropriate subset model using a chi-squared test.
BIC is used in this study as it tends to be slightly more parsimo-
nious compared to AIC.

The function f in Eq. (1) is linear and fitted to the entire data
(i.e., it is a global fit) and therefore, can miss capturing local non-
linearities (Fig. 2). To address this, a nonparametric approach based
on local polynomials (Loader 1999) is used for fitting f. In this, the
function is estimated ‘locally’ for any desired point x. A small set of
neighbors (K ¼ αN; N is the total number of data points and α is a
value in the range of 0 to 1) of x are identified and a polynomial of
order p is fitted via weighted least squares method, wherein, the
nearest neighbors are assigned highest weight and the farthest
the least, using a bisquare or tricubic weight function (Loader
1999). The fitted polynomial is used to estimate the response var-
iable Y at the desired point x. This process is repeated for all desired
points of estimate. Note that if α and p are set to 1 and the neigh-
bors assigned equal weights, then this collapses to the standard
linear regression. This local estimation can be used to fit any dis-
tributional form of Y, thus providing an additional degree of flex-
ibility to the GLM framework. The choice of α and p are obtained
using a generalized cross validation criteria (GCV) that is similar to
AIC or BIC in that it penalizes higher order models and strives for
parsimony. The GCV can be used to obtain the local polynomial
parameters (α and p) and the best set of predictors (e.g., Regonda
et al. 2005); however, here, the local polynomials are fitted to the
best predictor set obtained from BIC using the global fit. This hy-
brid approach is preferred for computational efficiency. It is well
known from past studies (see references in the introduction) that
stream temperature on any day is strongly influenced by the air
temperature, precipitation, streamflow, and the temperature of
water released upstream on that day. Furthermore, for long reaches
downstream of reservoirs, operations on a day also influence the
stream temperature of the following day. Thus in light of the lagged

Fig. 2. Scatterplots of (a) DTR and maximum air temperature; (b) NHE and daily mean water temperature release at Shasta for the season of July
through September; the local estimation curve is plotted to indicate local non-linear features in the data
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effect, we considered a suite of potential predictors that include
current and previous day’s maximum temperature, minimum
temperature, streamflow, stream temperature, and precipitation
(see Table 1 for listing).

Local polynomial-based GLMs have been used recently for sea-
sonal streamflow forecasting (e.g., Regonda et al. 2006; Grantz
et al. 2005; Bracken et al. 2010), flood frequency estimation
(Apipattanavis et al. 2010) and turbidity threshold exceedance
modeling (Towler et al. 2010a, b). Here we build on these by mod-
eling the four daily water temperature attributes (DTX, DTR, POE,
and NHE) at Balls Ferry. We applied the threshold temperature of
13.3°C, as this is the current compliance target for protecting ESA-
listed salmon on the Sacramento River. DTX is a critical indicator
for the severity of high water temperatures on any given day; how-
ever, depending on the magnitude of DTX, there is opportunity for
fish to adapt provided that there is a large diurnal range (DTR) and/
or that the hours above that threshold are minimal (NHE). The
probability of exceedance (POE) measures whether the mean daily
temperature exceeds the threshold, and therefore serves as a mea-
sure of compliance. Together they provide a comprehensive predic-
tion of the water temperature conditions and thus help in better
planning of reservoir operations.

Incorporating Seasonal Climate Information

When using the GLM models for seasonal water resources plan-
ning, daily air temperature and precipitation for the season are re-
quired to drive the model. The hydrologic variables such as
streamflow can be prescribed as a decision variable or optimized
such that the optimal solution of flow and temperature releases re-
sult in the fewest number of exceedances and least volume of cold

water usage (Neumann et al. 2006). Stochastic weather generators
can provide ensembles of daily weather variables. There is a rich
literature on traditional weather generators and nonparametric
weather generators based on K-nearest neighbor time series boot-
strap (Lall et al. 1996; Furrer and Katz 2008) and references therein
for a review of traditional weather generators and nonparametric
methods. The K-nearest neighbor based stochastic weather gener-
ators (Rajagopalan and Lall 1999; Yates et al. 2003) have been en-
hanced with addition of Markov Chains (Apipattanavis et al. 2007)
and labeled the semiparametric weather generator (SWG). In this, a
daily weather vector for day t is simulated based on weather vector
on day t − 1 and the precipitation states (i.e., wet, dry) on days
t − 1 and t. K-nearest neighbors of the weather vector on day t
are obtained from historical days within a small window centered
on day t (a 7-day window as proposed in Apipattanavis et al. 2007
was used) and one of them is resampled using a weight function
that gives more weighting to the nearest neighbor and least to the
farthest (Lall and Sharma 1996); this approach is described as un-
conditional generation where in the sequences are generated from
historical data. For seasonal planning, weather sequences are re-
quired that are based on probabilistic seasonal climate forecasts,
which are three category (or tercile) probabilities. Each historical
year is assigned one of the three probabilities based on its tercile
category. For example, if the forecast probabilities are 25∶40∶35 for
A∶N∶B categories (A being above normal or upper tercile, B being
below normal or lower tercile, and N being normal or middle ter-
cile), then years with seasonal precipitation falling in upper tercile
get a weight of 0.25, the middle gets a weight of 0.40, and the lower
gets 0.35. These weights are used to modify the weights of the K-
nearest neighbors from the unconditional case so as to reflect the
seasonal forecast information. Thus generated weather sequences

Table 1. Best Set of Predictors, Local Polynomial Parameters and Fitting R2 for the Four Temperature Attributes by Month

Month/season NHE POE DTR DTX

January Intercept only Intercept only pcp,tx,tn,pcp1,tn1,q1 tx,tn,q,tw,tx1,tn1,tw1
2, 0.50, <0.01, NA 2, 0.70, <0.01, NA 2, 0.07, <0.01, 0.22 2, 0.07, <0.01, NA

February Intercept only Intercept only tx,tn,q,tx1 tx,tn,tw,tn1
1, 0.50, <0.01, NA 2, 0.55, <0.01, NA 2, 0.05, 0.12, 0.18 2, 0.05, <0.01, NA

March pcp,tn,tw,pcp1,tx1,tn1,tw1 Intercept only pcp,tx,tn,q tx,q,tw,pcp1,tx1,tn1,tw1
2, 0.50, 0.15, 0.14 2, 0.70, <0.01, NA 1, 0.55, 0.11, 0.66 2, 0.06, <0.01, <0.01

April pcp,tx,tn,tw,tn1,q1,tw1 tx pcp,tx,tn,q tx,tx1,tn1,q1,tw1
2, 0.50, 1.73, 0.68 2, 0.55, 0.11, 0.03 1, 0.70, 0.12, 0.58 2, 0.06, <0.01, <0.01

May pcp,tx,tn,q,pcp1,tx1 pcp,tx,tn,tw,pcp1,q1,tw1 pcp,tx,tn,q,tx1 tx,q,tx1
2, 0.50, 2.84, 0.14 2, 0.55, <0.01, 0.35 2, 0.05, 0.01, 0.17 2, 0.95, <0.01, 0.02

June tx,tn,q,tx1,tn1,tw1 tw pcp,tx,tn,pcp1,tx1,q1 tx,tn,q1,tw1
1, 0.50, 2.73, 0.53 1, 0.50, 0.05, 0.25 2, 0.31, 0.03, 0.07 2, 0.05, <0.01, 0.48

July tx,q,tw,tn1 Intercept only pcp,tx,tn,q q,tw
2, 0.95, 2.58, 0.36 2, 0.65, 0.08, 0.23 2, 0.40, 0.03, 0.48 1, 0.05, <0.01, 0.53

August pcp,tn,q,tw,tw1 Intercept only pcp,tx,tn,tx1 pcp,tx,q,tw,tw1
2, 0.90, 1.57, 0.48 2, 0.50, 0.03, 0.05 1, 1.00, 0.08, 0.15 2, 0.05, <0.01, 0.03

September pcp,tx,tn,tw,tx1,q1,tw1 tn,q1,tw1 pcp,tx,q,tx1 tx,tw,tx1,tw1
2, 0.65, 2.61, 0.55 2, 0.75, 0.45, 0.54 2, 0.55, 0.02, 0.50 2, 0.05, <0.01, 0.22

October pcp,tn,q,tw,tx1,q1,tw1 tn,tw,tx1 pcp,tx,tn,tw tx,tn,tw,tw1
1, 0.50, 4.75, 0.57 2, 0.50, 0.58, 0.60 2, 0.85, 0.03, 0.72 2, 0.05, <0.01, 0.21

November pcp,tx,tn,tx1,tw1 tx,tn,tw,tx1,tw1 tx,tn tx,tn,tx1,tw1
2, 0.50, 3.17, 0.66 2, 0.75, 0.32, 0.66 1, 0.25, 0.09, 0.60 2, 0.05, <0.01, 0.07

December pcp,tw,pcp1,tn1 pcp,tn1,tw1 pcp,tx,tn,q,tx1 tx,tn,tw,tx1,q1,tw1
1, 0.50, 0.02, 0.85 2, 0.85, <0.01, 1.00 2, 0.06, <0.01, 0.02 2, 0.07, <0.01, 0.99

JAS pcp,tx,tn,q,tw,tx1,tw1 tx,q1,tw1 pcp,tx,tn,tx1,tw1 pcp,tx,q,tw,tw1
2, 0.50, 2.11, 0.61 2, 0.50, 0.24, 0.44 2, 0.97, 0.05, 0.27 2, 0.02, <0.01, 0.36

Note: Variables listed are daily values of precipitation (pcp), maximum air temperature (tx), and minimum air temperature (tn) at Redding, California; and,
water temperature (tw) and flow released (q) from Shasta Dam. Variables appended with a “1” indicate prior day values. Water temperature attributes include
number hours of exceedance (NHE), probability of exceedance (POE), daily temperature range (DTR), and daily maximum temperature (DTX). Bottom line
of values provides the polynomial order, alpha, GCV, and R2 separated by commas. R2 was computed only for values above the thresholds provided in Table 2.
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are described as conditional generation and are consistent with the
seasonal climate forecasts. This is demonstrated in Apipattanaivis
et al. 2007 and also in a recent modified version of this approach in
Caraway et al. (2014). This weather generator has been applied to
crop modeling and agriculture planning in Argentina (Podesta et al.
2009) and has been implemented for the study region in this re-
search (Caldwell 2013). Using the SWG, daily weather sequences
are generated which are then incorporated in the GLM models to
obtain ensembles of various water temperature attributes, and
ultimately, cumulative distribution functions (CDFs). Using the
CDFs, it is possible to compute the probability of exceeding thresh-
old values for each water temperature attribute over the seasonal
planning horizon by calculating the area under each CDF curve
relative to any appropriate threshold value(s). Water managers will
then be informed of the relative change in risk for the upcoming
season relative to climatology. This study used the observed mean
values from the window of July to September for the period 1994–
2007 and from the same window in 2008, predicted and observed to
be both warmer and drier than normal, to indicate the utility of sea-
sonal forecasts information in operations as hypothetical planning
scenarios.

Model Evaluation

The model framework using the daily water temperature data was
applied at the Balls Ferry compliance point and utilized daily
weather data from the Redding Airport, Redding, California
(Fig. 1), for the period 1994–2007. Daily and hourly streamflow
data, and release volume and release temperature from Shasta
Dam are also available for this period (CDEC 2011). From the
hourly water temperature data, DTX, DTR, POE, and NHE were
computed for each day. Daily meteorological values from Redding
(NCDC, http://www.ncdc.noaa.gov) and Shasta Dam release tem-
perature and flow served as predictors for each variable for each
month (Table 1). Then the predictive skill of the fitted GLMmodels
was evaluated using a cross validation model. For this procedure,
ten percent of the data was randomly excluded, then the model
was fitted using the remaining data, and the excluded values were
predicted. The standard root mean square error (RMSE) for this
prediction was computed, with the process repeated 250 times. This
is a robust method for skill evaluation as it stresses the model more
than the traditional approach where in the model is fitted on a
period of data and validated on another. Besides, this provides
a distribution of the model skill and not a single value.

Ensembles of daily weather were generated from the SWG;
while ensembles of the water temperature attributes were generated
using the GLM models. The observed daily streamflow and release
temperatures on the selected days were used as surrogates for stan-
dard operating procedures. Thus, generated attributes are displayed
as boxplots along with the corresponding mean values from the
observations. This exercise is designed to demonstrate the ability
of capturing the historic variability of water temperature attributes.
A total of 100 simulations of daily weather were generated, each
14 years in length.

The utility of seasonal climate forecast in generating conditional
weather sequences and consequently, conditional stream tempera-
ture attributes was then demonstrated. Four representative seasonal
climate forecasts for conditional simulations for the period July
through September—dry (D), hot (H), very dry (VD), and very
hot (VH) conditional scenarios were used. The A:N:B ratios asso-
ciated with each scenario are as follows: for temperature—hot
(40:35:25) and very hot (60:35:05); and for precipitation—dry
(25:35:40) and very dry (05:35:60). Stream temperature attributes

from these conditional scenarios are compared with climatology
(CL) in their probability distribution functions to indicate changes
relative to climate forecast input. In particular, this study used the
seasonal climate forecast issued by the International Research
Institute for Climate and Society in June 2008 for the summer
of 2008 (July through September) for the dry and hot scenarios
(Fig. 3) to conditionally generate daily weather sequences for the
summer season and, consequently, the distribution functions of
water temperature attributes.

Results

The developed methods were applied for the entire year; however,
the primary months of concern for cold water pool management
stretch from May through October. Here, the results focus on a por-
tion of the summer months (July–September) when the water tem-
peratures on the Sacramento River are the highest and have the
greatest management implications. The best GLMmodel predictors
was selected from a suite of ten using BIC on a global fit and
then the local polynomial GLM was estimated using GCV for each
water temperature attribute by month, shown in Table 1. For a num-
ber of months and attributes, the parameters α and p deviate from 1,
indicating local nonlinear features. The best predictors for NHE and
POE indicate the intercept only fits during the months of January
and February when no or very few days exceed 13.3°C, thus ob-
viating the need for predictors. In addition, POE has intercept-only
fits during the months of July and August, where the complement is
true and most days exceed 13.3°C. In general, for NHE more pre-
dictors are included compared to other water temperature attributes,
due to the fact that this is somewhat of a noisy variable relative to
others. In many cases, prior day values are often selected as one of
the variables to account for lagged and persistence that is present
in the system as described previously.

During the period of July–September, scatterplots of maximum
air temperature and DTR, with a local polynomial smoother
[Fig. 2(a)] indicate that DTR is linearly proportional to maximum
air temperature up to 30°C, after which it reaches an asymptote at
DTR ∼2.5°C. There is an upper limit to the diurnal range when
maximum air temperature reaches 30°C. NHE is poorly correlated
to daily mean water temperature releases at Shasta for temperatures
less than 8°C [Fig. 2(b)], but are linearly proportional for values
above 8°C. Such nonlinear features also exist for other stream
temperature variables (figures not shown), which underscores
the utility of the application of a local polynomial GLM.

The model is generally able to predict the observations of the
four daily temperature attributes during the July–September period
quite well (Fig. 4) with fitting R2 values ranging from 0.27 (for
DTR) to 0.61 (for NHE and DTX). For POE, this is not calculated
as R2 is not appropriate. The NHE is well modeled, with the ex-
ception of an underestimation for higher observed hours of exceed-
ance, especially 15 h and beyond [Fig. 4(a)]. The probability of
exceedance [Fig. 4(b)] too is under estimated (i.e., lower probabil-
ity values when there is exceedance and vice versa). The predic-
tions of DTR values greater than 2.5°C is under estimated
[Fig. 4(c)] and somewhat less so in the case of DTX [Fig. 4(d)]
for values beyond 16°C. DTR and DTX are influenced by the clus-
tering of values in the observed data between 1–3°C and 13–15°C,
respectively.

To test the predictive skill of the models, the RMSE was
computed in a cross validation model by dropping 10% of the
observations at random repeated for 250 times. As mentioned in
a preceding section this is a robust approach to evaluating
predictive skill and has been used in water quality applications
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Fig. 4. Comparison of observed and predicted values from the GLM for (a) NHE [hours]; (b) POE [probability]; (c) DTR [°C]; (d) DTX [°C] for the
season of July through September

Fig. 3. Probabilistic seasonal climate forecasts of temperature (a) and precipitation; (b) for the period July–September 2008 as applied in the dry and
hot conditional scenarios for the weather generator (reprinted from IRI; figure converted to greyscale from IRI website at http://iri.columbia.edu/our-
expertise/climate/forecasts/seasonal-climate-forecasts/)
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(Towler et al. 2009; Zachman et al. 2007). For NHE and POE, the
skills are generally best with lower RMSE values during
January to June, with higher RMSE values during the summer and
fall seasons [Figs. 5(a and b)]. Although, the RMSE values are
higher in summer and fall, for NHE the actual magnitude difference
between winter and spring versus summer and fall is 1. POE had
poor skill in the fitting as shown in Fig. 4 and this carries to the
prediction skill. For DTR and DTX, mean RMSE values are highest
during the winter and spring when flood control and snowmelt run-
off are more dominant drivers of water temperatures than meteor-
ology or standard operations [Figs. 5(c and d)]. Variability in the
RMSE, however, is low during the summer months for DTR and
DTX, except for August for DTX, indicating a greater level of con-
fidence in the predicted values. The mean RMSE values consis-
tently range between 0 and 1°C for DTR and DTX, which may
be a tolerable threshold for seasonal planning efforts.

Simulating Water Temperature Attributes from
Unconditional Daily Weather Ensembles

The SWG was used to generate ensembles of daily weather
sequences based just on the historical data—i.e., unconditional
simulations—and, consequently generated ensembles of daily
water temperature attributes from the GLM models and displayed
them as boxplots for each month along with the observed monthly
mean values. The weather generator ensembles provide a rich
variety in the water temperature attributes and capture the his-
torical mean very well in the boxes (Fig. 6). Exceptions include:
(1) underestimation of NHE during the months of April, May and
November, and overestimation in June [Fig. 6(a)]; and (2) underes-
timation of POE during the months of September and November

[Fig. 6(b)]. Any biases in the DTR and DTX are not discernible
[Figs. 6(c and d)]. These results indicate that the coupling of a
SWG to the local polynomial GLM approach to predict and sim-
ulate water temperature attributes is quite robust.

Water Temperature Attributes Conditional on Seasonal
Forecast

Conditional daily weather sequences were generated for the July–
September period for the four climate scenarios (D, VD, H, and
VH) described earlier. For the D and H scenarios, forecasts for
2008 (seen in Fig. 3) were used. The generated daily weather en-
sembles are provided with the local polynomial GLM to provide
ensembles of water temperature attributes and the respective CDFs
from the ensembles and climatology (Fig. 7). The steepness of the
slope of a CDF curve can be interpreted as a larger contribution to
the cumulative probability across a given range of values; the prob-
ability of falling between the values is determined by the difference
in cumulative probability values on the y-axis. For NHE less than
3 h and greater than 12 h, all of the CDFs of NHE during warmer
and drier conditions (dashed) indicate enhanced risk (i.e., increased
probability of exceedance) compared to climatology (black)
[Fig. 7(a)]. The largest risk of NHE > 12 h occur in the very
hot conditional simulations with a probability of ∼0.40, compared
to the other conditional simulations (∼0.20) and climatology
(<0.10). Similarly, the conditional runs indicate an increased risk
of POE compared to climatology [Fig. 7(b)]. The very hot simu-
lation estimated the greatest shift in POE with the steepest slope at
POE values >0.60 compared to other curves. There is an increased
probability of decreased diurnal range (DTR) in the conditional
simulations, as expected in a hotter regime—this can be seen by

Fig. 5. Cross validation model results using RMSE to examine skill for (a) NHE; (b) POE; (c) DTR; (d) DTX by month; observed climatological
means of each variable (points connected with line) are shown; boxplots provide the median as the horizontal line; box height is the interquartile
range, whiskers indicate 5th and 95th percentiles, and hollow points indicate values outside the whiskers
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the CDFs being shifted to lower DTR values relative to climatology
[Fig. 7(c)]. Likewise, there is an increased risk of higher DTX
[Fig. 7(d)] compared to climatology.

As described in the comparison to climatology, these exceed-
ance probabilities can provide an indication of risk with respect
to thresholds relevant for management. For example, using 2008
mean values of the temperature attributes as a reference, the exceed-
ance probabilities for the four climate scenarios are computed from
the CDFs and listed in Table 2, and their relative changes in risk
from climatological risk are shown as a barplot in Fig. 8. All of the
conditional scenarios show increased risk of NHE greater than
13.35 h, indicating a tendency for more days with mean water tem-
perature above 13.3°C (Table 2). In addition, there is a decreased
risk of POE above 0.79, except for the very hot scenario (Table 2
and Fig. 8). Increased risk is noted for DTR < 2.33°C, which would
suggest that recovery time for fish will be diminished during hotter
or drier than normal conditions if mean water temperatures are
high, regardless of the magnitude of the climate shift. Despite the
fact that the GLM model generally underestimates higher values
of DTX (Fig. 4), increases in risk of DTX > 14.78°C are evident
for all conditional scenarios (Table 2 and Fig. 8).

Summary and Discussion

This study reports the development of a complementary statistical
modeling tool using local polynomial based GLMs that provides
monthly to seasonal forecasts of key water temperature attributes
and probabilistic estimates of risk of meeting or exceeding pre-
determined thresholds of each attribute. The GLM framework
can model a variety of variables such as discrete, binary, and

continuous, among others. For example, models were fitted to pre-
dict a variety of water temperature attributes such as number of
hours of exceedance (discrete), probability of temperature exceed-
ing a threshold (binary), and daily maximum water temperature
and daily water temperature range (both continuous). Models were
fitted for each month and for each variable separately using a
large pool of predictor variables based on atmospheric variables
(e.g., temperature, precipitation from current and previous day)
and water variables (e.g., flow, temperature from previous day).
Based on cross validated skill scores, the models performed well,
especially during the summer months of interest. A stochastic
weather generator (SWG) was applied to generate ensembles of
daily weather sequences in an unconditional manner (i.e., assuming
all of the historical years are equally likely) and conditional manner
(based on probabilistic seasonal climate forecast). Local polyno-
mial GLM ensembles of water temperature attributes were also
generated. These ensembles were consistent with the seasonal fore-
cast, demonstrating the ability of the proposed methodology to pro-
vide projections of water temperature attributes before the start of
the season. The ensembles of water temperatures provide the esti-
mates of risk of exceeding various compliance thresholds. These
risk estimates can be of immense help to water managers in making
plans for additional water or changes in operations before the start
of the season to help mitigate water temperature risk in a sustain-
able manner.

This integration of the GLM and SWG allows investigation of
the relative change in risk of meeting temperature criteria at Balls
Ferry by performing both unconditional and conditional simula-
tions. As a proof of concept, the threshold values from 2008 were
used to indicate relative changes of risk captured by the conditional

Fig. 6. Comparison of observed and unconditional simulations of (a) NHE; (b) POE; (c) DTR; (d) DTX using the GLM coupled with the SWG by
month; observed climatological means of each variable (points connected with line) are shown; boxplots of unconditional simulated values provide
median as horizontal line; box height is the interquartile range, whiskers indicate 5th and 95th percentiles, and hollow points indicate values outside
the whiskers
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scenarios (Fig. 8). For NHE, DTR, and DTX, the forecasts issued in
June 2008 would have been sufficient to convey an increased risk
of violating the thresholds from Table 2; however, a highly skewed
forecast—like that offered in the very hot scenario—would have
been required to suggest a POE value of 0.79 for the three-month
period. Though not applied in the current study, the flows and water
temperature releases associated with each conditional scenario
could be adjusted from the observed values used in the GLM to
modify the predicted values of each water temperature attribute.

For example, operators could apply a designated 90-day flow
and temperature regime derived from historical data (i.e., a prior
extremely hot or dry year) to adjust the predicted values from
the GLM until the relative risk is reduced to a climatological value
or other acceptable level. In essence, multiple flow and temperature
regimes could be applied through the GLM to determine an optimal
solution for reducing cold water usage and maintaining tempera-
tures downstream.

Atmospheric variables are typically well-correlated with water
temperatures, particularly during the summer months when solar
radiation is at a maximum. In addition, water temperature is gen-
erally inversely proportional to flow as larger volumes of water take
longer to warm and cool. The skill of the GLM is directly propor-
tional to the strength of these correlations between the hydrome-
teorological predictors and the water temperature at Balls Ferry.
During the summer months, the water temperatures on the Sacra-
mento River are also strongly influenced by the temperature and
volume of water released from Shasta Dam. The interactions be-
tween the environment and operations are highly nonlinear and,
therefore, the local polynomial based GLM is capable of predicting

Fig. 7. Cumulative distribution functions for the season of July through September for (a) NHE; (b) POE; (c) DTR; (d) DTX for the observed
climatology (CL), dry (D), very dry (VD), hot (H), and very hot (VH) conditional simulations

Fig. 8. Probabilities of threshold criteria (from Table 2) for the 2008
observed, dry, very dry, hot, and very hot conditional scenarios plotted
in that order for each threshold criteria

Table 2. Probabilities of Threshold Criteria Computed from the CDFs in
Fig. 7

Variable/threshold CL D VD H VH

NHE > 13.4 0.04 0.17 0.17 0.17 0.28
POE > 0.79 0.15 0.12 0.12 0.12 0.17
DTR < 2.33 C 0.17 0.26 0.25 0.27 0.22
DTX > 14.78 C 0.17 0.23 0.23 0.24 0.24

Note: Threshold values correspond to July–September seasonal means
from 2008.
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the response in temperature attributes. Predictor variables from the
prior day state of the hydrologic system improve the model fits by
including residence time of water release impacts and persistence
into the model (i.e., if the prior day water temperatures are cool,
there is a natural tendency for today to also be cool).

Since water management (e.g., power generation) may involve
subdaily management of releases (Carron and Rajaram 2001),
the GLM might be even more effective during the summer
months if subdaily dam operations were included in the model
fitting process, along with specific information on releases from
the temperature control devices on Shasta Dam. Unfortunately,
these data are either unavailable, discontinuous, or require
reconstruction using detailed hydraulic modeling efforts. To
some degree, this relationship was included in the GLM through
the mean daily flow and water temperature released at Shasta.
This framework was applied to modeling stream temperatures
in the Methow River basin, an unregulated system in the State
of Washington (Caldwell et al. 2013), to assess the impact of
climate change on fish habitat. Results from this application
(Fig. 9, reproduced from Caldwell et al. 2013) indicate that
model predictions are very good in comparison to the current ap-
plication (Fig. 4). This indicates that the methodology is portable
to other watersheds and can provide improved skill when water
management impacts are minimal.

Water projects in the western United States have fundamentally
altered temperature regimes in major rivers, particularly down-
stream of large dams. While dams such as Shasta can selectively
release colder water to meet downstream temperature criteria, the
current operations approach does not have sufficient forecasting

capabilities. High resolution water temperature models have been
developed to improve forecasting; but, these models are limited
to forecasts of hours to several days, and cannot provide sea-
sonal-scale planning guidance in a timely manner, unless coupled
with input from statistical models. This modeling approach
provides skillful management options in a decision support
system (Caldwell 2013), thus, offering potential for efficient man-
agement of river systems to mitigate river temperature impacts on
fish habitat.

Protection of the coldwater fish habitat in the Sacramento
River is a challenge in this highly altered river system. Careful
and innovative management strategies are needed, as any addi-
tional changes in water temperature in response to climate could
result in conditions that favor nonnative species (May and Brown
2002). Yates et al. (2008) suggest that future warming in air tem-
peratures of 2–4°C could lead to additional threshold temperature
exceedances, particularly in August and September of drought
years. In addition, maintaining the cold pool in Shasta Lake would
be difficult through the summer and fall (Yates et al. 2008).
As such, additional research is needed to improve seasonal fore-
casts of water temperatures during the critical summer and late fall
period. Integration of the GLM with hydraulic models of Shasta
Lake would also be beneficial by ensuring upstream criteria
within the reservoir are met and by providing an input for flow
and temperature release information to the GLM, as opposed
to the use of a surrogate such as the simulated flow and temper-
ature values from the SWG. Optimization techniques could then
be applied directly to monitor cold water storage and both in-lake
and downstream habitat.

Fig. 9. Scatterplots of observed versus predicted values for January, April, July, and October from the GLM model fits in the unregulated Methow
River (reprinted from “Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington” by
R. J. Caldwell et al., Water Resources Research, 49, ©2013 American Geophysical Union. Reproduced with permission.)
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