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[1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have
focused on using climate information to predict streamflow for water supply. However, as
water demands intensify and river systems are increasingly stressed, research is needed to
explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem
management. To this end, we present a five step risk-based framework: (1) define risk
tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles,
(4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The
framework is successfully demonstrated for an unregulated watershed in southwest
Montana, where the combination of recent drought and water withdrawals has made it
challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear
modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant
low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts
are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that
provide the full risk profile. These tools are embedded in an end-to-end risk management
framework that directly supports proactive fish conservation efforts. Results show that the
use of forecasts can be beneficial to planning, especially in wet years, but historical
precipitation forecasts are quite conservative (i.e., not very ‘‘sharp’’). Synthetic forecasts
show that a modest ‘‘sharpening’’ can strongly impact risk and improve skill. We emphasize
that use in management depends on defining relevant environmental flows and risk
tolerance, requiring local stakeholder involvement.
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1. Introduction

[2] To sustain healthy river systems, it is generally
accepted that a balance must be struck between human
demands for water and the amount required for river eco-
systems. However, achieving this balance becomes more
and more challenging as water demands intensify and cli-
mate becomes more uncertain. As such, additional tools are
needed to ensure effective river management across com-
peting uses and in light of climate variability.

[3] To date, most efforts to incorporate climate informa-
tion into water management have focused on water supply
as related to reservoir operations. This is understandable,
given the importance of water supply reliability, and there-

fore streamflow forecasting has been the subject of exten-
sive research [e.g., Garen, 1992; Grantz et al., 2005;
Devineni et al., 2008; Bracken et al., 2010; see Wood and
Lettenmaier, 2006, and references therein], including stud-
ies evaluating the benefits of forecasts in water supply man-
agement [e.g., Grantz et al., 2007; Golembesky et al.,
2009]. However, information provided for supply manage-
ment is often too coarse (e.g., total seasonal volume) and
does not provide information about the multiple flow re-
gime attributes that are important in regulating ecological
processes, such as floods and low flows [Poff et al., 1997].
This disconnect is problematic, given that river systems are
strongly influenced by hydroclimatic variability and
increasingly vulnerable to climate change [Poff et al.,
2002]. A better understanding of the influence of climate
on ecosystem flow requirements has been recommended
for further study [Petts, 2009], and initial efforts using
ocean-atmosphere oscillations to determine ecologically
sustainable irrigation withdrawals have shown promise
[Mondal et al., 2011].

[4] However, how much streamflow is necessary for
river ecosystems has fostered considerable debate. One
widespread recognition is that to sustain ecological integ-
rity in altered rivers, flows need to be managed to mimic
the natural flow regime of the unaltered system [Poff et al.,
1997]. However, scientists are faced with the difficulty
of clearly translating these hydrologic principles into
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actionable management guidelines [Poff et al., 2003]. This
has encouraged scientists to define environmental flows (e-
flows), specified either as acceptable flow ranges or flow
limits that should not be exceeded [Richter et al., 2003].
Methods to determine e-flows have advanced to provide
comprehensive flow assessments [see Petts, 2009, and
references therein], though standards are still influenced by
expert judgment [Petts, 2009] and the practice of using
minimum flows for a single species persists [Arthington et
al., 2006]. Certain e-flows may be prioritized for different
systems; for instance, regulated systems may require man-
aging for multiple aspects of flow variability (e.g., low
flows, high flow pulses, and floods), whereas unregulated
systems with water withdrawals may only be concerned
with low flows in critical periods [Mathews and Richter,
2007].

[5] But however, the e-flow value is determined, it is
clear that work is needed to explore how to integrate cli-
mate forecasts into streamflow predictions that are relevant
to river ecosystem management. To this end, the goal of
this work is to present a risk-based framework that can be
used with probabilistic climate forecasts for prospective
ecosystem management. The framework is presented in
five steps: (1) define the situational risk tolerance, (2) de-
velop a forecast model to relate climate information to
streamflow characteristics relevant to management, (3)
generate seasonal climate forecast ensembles, (4) estimate
streamflow ensembles and associated risk, and (5) manage
for climate risk through actions aimed at offsetting risk to
acceptable levels. Specifically, we put forth a generalized
linear modeling (GLM) approach to develop a suite of tools
that estimate a variety of flow characteristics. Probabilistic
seasonal climate forecasts are incorporated into the GLMs,
resulting in predictions that provide the full risk profile.
Importantly, these tools are embedded in an end-to-end risk
management framework that directly supports proactive
planning and decision making. In this paper, we first pres-
ent the general framework (section 2), which could be tai-
lored to a specific watershed and management context.
Next, we demonstrate the framework for the Big Hole
watershed in southwest Montana, which is unregulated
(i.e., there is no large amount of storage), but water is with-
drawn for agricultural purposes. For this system, we pro-
vide background (section 3) and results (section 4.1) ;
specifically, we use observed snowpack with precipitation
forecasts to predict summer low flow characteristics—
including number of days below a threshold and threshold
exceedance likelihoods—that are relevant to ongoing fish
conservation efforts.

2. Risk-Based Framework

2.1. Step 1: Define Risk Tolerance

[6] Risk management is a viable technique to guide
actions in light of climate risk [Jones and Preston, 2011;
Yohe and Leichenko, 2010]. However, to adopt a risk-based
approach, several factors need to be defined, a priori.

[7] A first step for ecological management is to define
the e-flows, or acceptable/critical thresholds (such as mini-
mum flows), which is also a key component of any risk-
based approach [Jones, 2001]. Although e-flow definitions
are challenging, guidance exists to promote consensus-

driven processes that focus on ongoing collaboration
between scientists, managers and other stakeholders
[Richter et al., 2006] and foster sustainable management
practices [Poff et al., 2003; Richter et al., 2003].

[8] Because a probabilistic approach is being adopted
for flow forecasts, in addition to defining e-flows, one more
thing needs to be determined: an acceptable risk. This is
defined as the probability of exceeding the e-flow threshold
(or being outside the range). If the predicted risk is higher
than the acceptable risk, then action is warranted to miti-
gate that risk; otherwise no action would need to be taken.
Clearly, this requires an additional step for stakeholder
input and iteration, but also provides a systematic way to
guide decision making under climate uncertainty. In this
paper, acceptable thresholds and risks are explored for the
watershed in Montana in section 4.1.

2.2. Step 2: Develop Forecast Model

2.2.1. Model Development
[9] Generalized linear modeling (GLM) is the statistical

framework used to develop a suite of tools for predicting
responses (e.g., e-flows) that may have different attributes
(continuous, discrete, categorical, etc). In GLM, we assume
that the response variable, Y, is from any distribution in the
exponential family. To specify the distribution, a link func-
tion is used to relate the expected value of Y to a set of pre-
dictors [McCullagh and Nelder, 1989]:

GðEðYÞÞ ¼ X�T þ e ð1Þ

where G(.) is the link function, E(Y) is the expected value
of the response variable, �T is the transposed vector of fit-
ted model parameters, X is the predictor matrix, and e is
the error term. GLM can be used for a variety of response
variables, and identifying the appropriate link function
depends on the assumed distribution of Y. For instance,
with discrete data, such as the number of days flow is
below a given threshold, the Poisson distribution is the
appropriate choice, with the logarithm link function. For
some management contexts, a categorical prediction—such
as threshold exceedance likelihood—is useful. In this case,
the response variable is binary data (0 or 1), and the bino-
mial distribution is appropriate, with the logit link function.
If more than two categories are relevant for decision mak-
ing, such as the likelihood that a flow will be within a given
range, the multinomial logit, an extension of logistic
regression, is used. Here, we explore these three models—
the Poisson, logistic, and multinomial. The reader is
referred to McCullagh and Nelder [1989] for details on dis-
tributions and link functions, as well as parameter
estimation.
2.2.2. Model Evaluation

[10] The performance of the categorical forecast using
logistic regression is evaluated using the Brier Skill Score
(BSS) [Wilks, 1995]:

BSS ¼ 1� BSForecast

BSClim
ð2Þ

where the BSForecast is the Brier Score (BS) for the forecast,
defined as:
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BSForecast ¼

XN

i¼1
pi � oið Þ2

N
ð3Þ

where pi refers to the forecast probabilities, oi refers to the
observed probabilities (oi¼ 1 if the observed flow exceeds
the threshold, 0 otherwise), and N is the sample size.
BSClim is the BS for climatology, which is also calculated
from equation (3), but for every year uses climatological
probabilities, i.e., pi¼ 0.50 (for when there are two catego-
ries, such as above or below a threshold). BSS values range
from negative infinity to 1. Compared to climatology,
BSS< 0 indicates that the forecast has less skill, BSS¼ 0
indicates equal skill, and a BSS> 0 indicates more skill,
with 1 being a ‘‘perfect’’ forecast.

[11] To evaluate the multinomial logit forecast perform-
ance, an extension of the BSS for multiple categories is
used, called the ranked probability skill score (RPSS)
[Wilks, 1995]:

RPSS ¼ 1� RPSForecast

RPSClim
ð4Þ

[12] Where the RPSForecast is defined as:

RPSForecast ¼
XN

i¼1

Xk

j¼1
pi;j � oi;j

� �2
h i

ð5Þ

where for a categorical forecast in a given year, i, p¼ (pi,1,
pi,2, . . . pi,k), k is the number of categories (here, three), and
N is the number of years. For two categories, this collapses
to the BS. RPSClim is also calculated from equation (5), but
for every year uses the climatological probabilities, i.e.,
0.33 if there are three categories. The interpretation of the
RPSS is the same as the BSS. The skill of the models can
be evaluated using all of the fitted data, as well as in a
cross-validation mode (i.e., systematically leave-out and
then predict each observation).

2.3. Step 3: Generate Seasonal Climate Forecast
Ensembles

[13] Seasonal temperature and precipitation forecasts are
made available by several agencies around the world,
including the International Research Institute for Climate
and Society (IRI; http://iri.columbia.edu/climate/forecast/
net_asmt/). The IRI seasonal climate forecasts are provided
globally up to 6 months in advance in 3 month shifting win-
dows. The forecasts are probabilistic and indicate locations
where there is likelihood of above or below average condi-
tions, or equal chances where the models do not indicate
enough skill to change the outlook. Figure 1 shows a sam-
ple precipitation forecast for North America, issued in
April of 2011, for the May-June-July 2011 season. Fore-
casts are given in an A/N/B format, where A indicates the

Figure 1. IRI precipitation forecast for May-June-July 2011.
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likelihood of above-normal precipitation, N indicates near-
normal precipitation, and B indicates below-normal precip-
itation, where the above-normal and below-normal catego-
ries are based on the terciles. Thus, an ‘‘equal chances’’
forecast, is represented as A/N/B¼ 33/33/33, meaning
there is an equal probability (33%) for precipitation to be
above normal, near normal, or below normal. White color-
ing indicates places with equal chances, but other areas
show increased likelihoods; for example the south-central
US shows increased likelihood of below average precipita-
tion, and the northeast coast shows increased likelihood of
above average precipitation.

[14] To use these forecasts, we adopt a resample method
put forth in Towler et al. [2010]. The method creates ensem-
ble forecasts by sampling with replacement from the histori-
cal climate data, say precipitation. In short, the historical
precipitation values are put in ascending order, and the bot-
tom third is designated as the below-normal pool, the middle
third as the near-normal pool, and the top third as the
above-normal pool. The A/N/B values from the forecast are
used as weights in resampling; that is, they determine how
many samples are taken from each third. For instance, an A/
N/B¼ 33/33/33 forecast would prompt equal sampling from
each category. For A/N/B¼ 50/30/20, 50% of the ensemble
would be from the above-normal pool, and so on. This gen-
erates an ensemble that is reflective of the seasonal forecast.

2.4. Step 4: Estimate Risk

[15] The climate forecast ensembles (Step 3) can be used
in conjunction with the appropriate GLM (Step 2) to esti-
mate ensembles of the response variable of interest (e.g.,

streamflow characteristics). These ensembles can be exam-
ined to quantify exceedance probabilities, or the risk pro-
file, associated with a given forecast.

2.5. Step 5: Manage for Climate Risk

[16] Once the forecast prediction has been issued, the
first question is whether or not to take anticipatory action.
This requires revisiting Step 1, to see if the forecast violates
the predefined acceptable risk. Perhaps a more difficult
question is what actions can and should be taken. This
requires stakeholder participation and is context specific,
though general guidance exists [see Richter et al., 2003].
Further, different management strategies can be experimen-
tally tested and evaluated in an adaptive management con-
text [Poff et al., 2003; Richter et al., 2003].

3. Case Study Overview

3.1. Data

[17] The case study used to demonstrate the framework
is the Big Hole River, located in southwestern Montana
(Figure 2). Several data sets are used in this effort :

[18] 1. Daily streamflow records, available from 1988 to
2011, from U.S. Geological Survey (USGS) station
06024450 at Wisdom (Big Hole River below Big Lake
Creek at Wisdom, Montana), available from the USGS
National Water Information System (http://waterdata.usgs.
gov/nwis/nwisman/?site_no¼06024450&agency_cd¼USGS).

[19] 2. Snow water equivalent (SWE) measurements for
January to June from 1964 to 2011 for the Bloody Dick
Snotel station (site number 355), Montana, available from
the U.S. Department of Agriculture (USDA) Natural

Figure 2. Map of the Big Hole River Watershed in southwestern Montana.
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Resources Conservation Service (NRCS) National Water
and Climate Center (http://www.wcc.nrcs.usda.gov/nwcc/
site?sitenum¼355&state¼mt).

[20] 3. Monthly average precipitation and temperature
data over Montana’s southwestern region (Division 2) from
1964 to 2011, obtained from the U.S. climate division data
set available through National Oceanic and Atmospheric
Administration’s (NOAA) National Climatic Data Center
(NCDC; http://www7.ncdc.noaa.gov/CDO/CDODivisional
Select.jsp).

3.2. Background

[21] The focus area for this study, the Big Hole River
watershed, is part of a largely pristine watershed in the upper
Missouri River basin, draining approximately 7250 km2

(2800 mi2) and running 247 km (153 mi). The surface water
hydrograph for the River peaks in June and tapers off to base
flow conditions in summer, and is influenced by three main
climate drivers (Figure 3). Snowpack accumulates over the
winter and typically reaches a maximum during the month
of April. Subsequently, snowpack begins to melt and precip-
itation ramps up, with the wettest months occurring in May
and June. This is followed by the hottest temperatures during
July and August. Southwestern Montana also experiences
periodic drought episodes, including a recent drought that
began in the 2000s and persisted until around 2008.

[22] The River is unregulated (i.e., there is no large
amount of storage), but water is extracted to support an
economy of agriculture. Land use around the Big Hole is
primarily cattle and hay operations, and water is diverted
from the Big Hole River and its tributaries starting in late
April to May to irrigate grass hay and pasture [Abdo and
Roberts, 2008]. The demands on the system are intensified
during drought conditions. These can be exacerbated from
irrigation needs which are already very high because of

several factors : overallocated water rights, inefficient flood
irrigation systems, and an increase in pasture grazing that
requires a longer irrigation season [U.S. Fish and Wildlife
Service (FWS), 2006].

[23] In addition, the Big Hole River is important for re-
creation and tourism. It is a nationally recognized trout
stream, making it a popular fly fishing destination. The
River also provides habitat for the last remaining popula-
tion of a fish species, the fluvial (river-dwelling) Arctic
grayling (Thymallus arcticus), in the lower 48 states. The
combination of recent drought periods and water with-
drawals has exerted increased pressure on the river, making
it challenging to maintain flows needed for healthy fisheries
[Abdo and Roberts, 2008]. In 1994, the US Fish and Wild-
life Service added the grayling to the list of candidate spe-
cies for consideration as threatened or endangered under
the Endangered Species Act (ESA). The grayling was sub-
sequently removed from the candidate list in 2007 then
readded in 2010 [US Department of Interior (USDI), 2010].

[24] These competing water demands, compounded by
recent drought periods, have raised concerns about the sus-
tainability of the Big Hole River system. To address these
points, a local watershed group, the Big Hole Watershed
Committee (BHWC), and the Montana Department of Fish,
Wildlife, and Parks (FWP) came together and developed a
Drought Plan for the Big Hole in 1997 [Big Hole Watershed
Committee (BHWC), 1997]. The Drought Plan’s stated pur-
pose is ‘‘to mitigate the effects of low stream flows and le-
thal water temperatures for fisheries (particularly fluvial
Arctic grayling) through a voluntary effort among agricul-
ture, municipalities, business, conservation groups, anglers,
and affected government agencies’’ [BHWC, 1997]. Central
to this effort, the Drought Plan identifies biologically based,
decision-relevant thresholds for flows (based on Department
of Fish, Wildlife, and Parks (FWP), [1989]) and

Figure 3. Monthly climate for the case study area, including snow water equivalent from
the 1st of the month at the Bloody Dick Snotel (SWE), average monthly precipitation
(Precip), and temperature (Temp) for Montana division 2, and average monthly flow
at the USGS Wisdom gage (Flow); data has been normalized (average monthly values
divided by maximum monthly average).
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temperatures (based on Lohr et al. [1996]) for several gaged
locations along the river. The Wisdom area (Figure 2) has
been identified as a key location for historic and present pop-
ulations of grayling [FWS, 2006]; hence, this study focuses
on the thresholds at the USGS gage at Wisdom, Montana. In
the Drought Plan, several flow triggers at Wisdom have been
identified that correspond to specific actions. For instance,
when flows at the gage drop below 60 cubic feet per second
(cfs), officials increase awareness in the community by pre-
senting data and formulating options. When flows go below
40 cfs, voluntary conservation efforts are implemented. At
20 cfs, the River is closed to fishing by Montana FWP.

[25] Our analysis concentrates on the 60 cfs threshold,
which is the most conservative threshold for summer, defined
in the Drought Plan as 1 July to 30 September. However, we
note that the approach is flexible and could be applied to
other identified trigger thresholds in the Drought Plan. Histor-
ically, the number of summer days that river flow was below
the 60 cfs threshold shows considerable variability, though
no discernible trend (Figure 4). Henceforth, the number of
days below the threshold is referred to as ‘‘D60.’’ For exam-
ple, in 1997, D60¼ 0, i.e., no days were below the threshold,
but in 1988, all 92 summer days were below the threshold.
From the observed record, the average D60 was 57 days.
Although other flow attributes are of interest (e.g., spring
high flows), the main focus of the Drought Plan is on number
of low flow days, given the importance in maintaining
adequate habitat for fisheries (particularly grayling).

[26] As part of the Drought Plan, Montana FWP, Mon-
tana Department of Natural Resources and Conservation
(DNRC), and the United States Natural Resources Conser-
vation Service (NRCS) are tasked with providing accurate
and timely information regarding stream conditions and
snowpack levels throughout the year. This information is
germane, but it does not directly predict the risk of violat-
ing the Drought Plan triggers. As such, the aim of this
approach is to complement these efforts by using seasonal
climate forecasts to predict D60 characteristics to inform
their early-season planning efforts.

4. Case Study Results

4.1. Defining Risk Tolerance

[27] The Drought Plan is used to identify flow triggers,
or e-flows, that have been agreed upon by local stakehold-

ers and are relevant to the grayling; 60 cfs is used in this
paper. As mentioned, a priority of the Plan is the number of
days the river goes below the threshold (D60). Lower D60
values are preferred, but determining an exact acceptable
D60 value is difficult (personal communication, Emma
Cayer, 19 October 2011). Instead, in this paper we looked
at several acceptable D60 values that were of interest : 23,
46, 60, and 75 days.

[28] For the acceptable risk, we are referring to the prob-
ability of exceeding the acceptable D60 value. If the calcu-
lated risk is higher than the acceptable risk, then action is
warranted to mitigate that risk; otherwise no action would
need to be taken. For demonstration purposes, we designed
the following ruleset with four risk classifications and asso-
ciated probabilities:

[29] No Risk: <33%
[30] Risk Averse: 33–50%
[31] Risk Neutral : 51–66%
[32] Risky: >66%
[33] For ease of classification, we have designated

each of these categories with distinct cutoff points ;
however, we point out that the increasing risk levels
exist on a continuum. For instance, a No Risk manager
would be comfortable with forecasted exceedance prob-
abilities between 0 and 33%, but above 33% would ini-
tiate action. Similarly, a manager who is Risk Averse
would be comfortable with exceedance probabilities
from 0 to 50%, and a Risk Neutral manager is willing
to accept exceedance probabilities from 0 to 66%, and
so forth. Big Hole managers plan to present the 1 May
forecast to inform the community about whether or not
action will be needed in the coming irrigation season,
such as contributing water to the River (see section
4.5). As such, to avoid ‘‘crying wolf,’’ and given that
there is still time to take action later in the season if
needed, the ‘‘Risk Averse’’ category is appropriate for
their context. However, all of the risk levels will be
discussed in the results.

4.2. Developing the D60 Forecast Model

4.2.1. Model Development
[34] To directly model D60, we used the Poisson distri-

bution. To find the best set of predictors, correlations
between D60 and the three important climate drivers—
SWE, precipitation, and temperature—were explored (Fig-
ure 3). For SWE, we examined the traditional 1 April SWE
(SWEApr) and 1 May SWE (SWEMay), as well as precipita-
tion and temperature data that had been averaged monthly
from one to three consecutive months (results not shown).
The strongest correlation, �, was found between average
May to July precipitation (PCPMJJ) and D60, with a
�¼�0.77. D60 was weakly correlated with SWEMay

(�¼�0.48) and SWEApr (�¼�0.34). Average June to Au-
gust temperatures (TMPJJA) had the highest correlation for
temperature (�¼�0.71). We conducted preliminary analy-
ses with these top-correlating variables in two-variable pre-
dictor combinations, and used the Akaike Information
Criterion (AIC) [Akaike, 1974] to find the best combination
predictor set (results not shown). We found SWEMay and
PCPMJJ, henceforth referred to as SWE and PCP, produced
the best model.

Figure 4. At the USGS Wisdom gage, the number of
summer days streamflow was below the 60 cubic feet per
second (cfs) trigger (D60).
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[35] Using the glm command in the free statistical soft-
ware R (http://www.r.project.org), we developed the Pois-
son model:

log ðD60Þ ¼ 6:42� 0:0555ðSWEÞ � 0:998ðPCPÞ þ e ð6Þ

[36] This resulted in an R2 value of 0.75 and cross-
validated R2 value of 0.68 (Table 1); diagnostics showed
that the underlying linear model assumptions were reasona-
ble (figures not shown). This explanatory model uses
observed SWE and May–July precipitation forecasts (both
obtained on 1 May). We note that a more ‘‘traditional’’
model that does not include prospective forecasts, and just
includes observed 1 May SWE, has a much lower skill
(R2¼ 0.21).

[37] The D60 coming from equation (6) is the mean (i.e.,
E(Y)) of the assumed Poisson distribution, and thus con-
strained to be greater than or equal to 0. We manually con-
strain the upper limit to 92 days (the total number of days
in summer). The coefficients of the model can be inter-
preted to understand the expected difference in D60 (on the
logarithmic scale) for each additional unit of predictor
(Gelman and Hill [2009], p. 111). Thus, for 1 May SWE,
the expected reduction in D60 is 1� exp�0:0555 ¼ 0:054, or
a 5.4% reduction for every inch of SWE added. For PCP,
the expected reduction is 1� exp�0:998 ¼ 0:63 or 63% for
every inch of average precipitation added over the season.
This relationship is further illustrated in a contour plot
between SWE, PCP, and D60 (Figure 5). As expected,
when both predictors are below (above) average, D60 is
correspondingly high (low). However, it is interesting that
when 1 May SWE is above average, if PCP is below aver-
age, then D60 is typically higher. This makes sense in light
of the watershed climate, where the wettest months are
May and June (Figure 3), but shows how important it is to
have a 1 May forecast that includes a precipitation outlook
for prospective planning. Big Hole managers relying only
on the traditional 1 May snowpack for decision making
may underestimate the risk of having a higher number of
low flow days in the upcoming season.

[38] The Poisson model offers a method to directly esti-
mate the D60 value. Further, when used with the precipita-
tion forecast ensembles (see upcoming section 4.3), it
results in D60 ensembles, which can be used to examine

different exceedance probabilities. As such, it is a flexible
approach for exploring risk management strategies, espe-
cially when both the acceptable D60 and acceptable risk
values are still being investigated. However, the logistic
and multinomial models can be used to directly model
exceedance probabilities. They provide a coarser predic-
tion, but are appealing in contexts that use coarse predictor
information, such as the case with seasonal precipitation
forecasts. Further, the categorical approaches are useful in
cases where the acceptable D60 value is rigidly set.
Although for this case study the Poisson is appropriate, we
also show the logistic and multinomial for completeness
and to show the flexibility of the GLM approach (Table 1).
We used glm in R to fit the logistic equation, selecting 60
days as the acceptable D60 (Table 1) and we used the vglm
command in R’s VGAM (Vector Generalized Linear and
Additive Models) package to fit a multinomial logit propor-
tional odds model, where three categories were selected:
(i) below 46 days, (ii) between 46 and 75 days, and (iii)
above 75 days (Table 1). For the latter model, diagnostics
showed that the underlying parallel assumption was not
violated (results not shown).

[39] The categorical models can be evaluated using the
skill scores described in section 2.2.2. For the logistic, the
BSS was 0.70, and the cross-validated BSS was 0.55, indi-
cating that the model exhibited significant skill over just
assuming the climatological probabilities (i.e., 50% chance
of being in each category). For the multinomial, the RPSS
was calculated as 0.42, and the cross-validated RPSS was
0.23, also showing skill over assuming the climatological
probabilities (i.e., 33% chance of being in each category).

4.3. Generating Precipitation Forecast Ensembles

[40] Several different A/N/B forecasts were considered.
First, 10 years (2002–2011) of historical May to July pre-
cipitation forecasts issued by the IRI for southwestern
Montana were used. However, most of these are very con-
servative—either equal chances (6 out of 10 seasons) or
barely deviating from equal chances. That is, for the three
seasons that were forecasted to be dry, the forecast was 25/
35/40, and the one wet season was 40/35/25. As such, we

Figure 5. Contour plot of number of days below thresh-
old (D60) in terms of average May to July precipitation
(PCP) and 1 May snow water equivalent (SWE).

Table 1. Best-Fit Generalized Linear Model Coefficients and Fit
Statisticsa

Poisson Logistic Multinomial
(Proportional Odds)

log
(D60)

logit
(P[D60>¼60])

logit
(P[D60>¼46])

logit
(P[D60>¼75])

Intercept 6.42 22.4 16.1 12.9
SWEMay �0.0555 �0.491 �0.428 �0.428
PCPMJJ �0.998 �9.46 �5.52 �5.52
R2 (xval) 0.75 (0.68)
BSS (xval) 0.70 (0.55)
RPSS (xval) 0.42 (0.23)

aD60 is the number of days below the flow threshold; SWEMay is the
May snow water equivalent; PCPMJJ is average monthly precipitation for
May-July; xval¼cross-validated; BSS¼Brier Skill Score; RPSS¼ ranked
probability skill score.
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also compared the equal chances scenario (A/N/B ¼33/33/
33) with synthetic scenarios to evaluate forecast sensitiv-
ity; we used A/N/B¼ 50/30/20 as the ‘‘wet’’ scenario and
A/N/B¼ 20/30/50 as the ‘‘dry’’ scenario (see section 2.3
for scenario development). For each forecast scenario (real
or synthetic), an ensemble was created with 999 members.

[41] Although the GLM models were fitted with data
from 1988 to 2011, PCP data from 1964 to 2011 were used
in the resample. By including precipitation observations
from the last 48 years—rather than just 24 years—it
ensured a more varied precipitation ensemble. However,
the average PCP decreased by 4.8% between 1964–1987
and 1988–2011. Further, in the upcoming sensitivity analy-
sis, we set 1 May SWE at its median value (¼11 in.), as
calculated from the 1964 to the 2011 period; however, we
note that average 1 May snowpack decreased by 14.5%
from 1964–1987 to 1988–2011. This indicates that the pre-
cipitation forecast ensembles and the median SWE values
used in the sensitivity analysis will result in an underesti-
mation of the risk. That is, the mean for a given forecast
precipitation ensemble will be higher than it would have
been if we had used only the last 24 years, leading to lower
estimates of D60. Similarly, the median SWE value would
have been lower if we had used only the last 24 years, also
leading to lower estimates of D60.

4.4. Estimating D60

4.4.1. Risk Sensitivity to Synthetic Forecasts
[42] Fixing 1 May SWE at the median (¼11 in.), we

used the synthetic seasonal precipitation forecasts (i.e.,
wet, equal chances, and dry) to examine the sensitivity of
the D60 ensembles. For the Poisson, smoothed empirical
cumulative distribution functions (CDFs) for each precipi-
tation case show that as expected, a wetter (drier) precipita-
tion forecast shifts the curve up (down) from the equal
chances forecast (Figure 6; note that the probability of

exceedance is 1 minus the CDF value). The curves can be
approached in one of two ways: starting either with accept-
able risk or an acceptable D60. In terms of the former, the
dashed horizontal grey line in Figure 6 shows an exceed-
ance probability of 0.50, which demonstrates a situation
where we are assuming an acceptable risk of 50%, and then
seeing if the associated number of days is acceptable.
Nevertheless, acceptable risk may change through time; as
such, it may be more intuitive to start by selecting an ac-
ceptable D60. Setting the acceptable D60 at 46 (vertical
dashed line), the associated risk can be estimated. The
equal chances risk is 48%, but dry (wet) is 64% (33%).
Additional acceptable D60 results are shown in Figure 7.
These are coded to correspond to the defined risk ruleset.
For instance, for 46 days, the equal chances and wet fore-
cast fall into the Risk Averse category, indicating that only
the No Risk would take action, and that no action would be
taken by the Risk Averse, Risk Neutral, or Risky. However,
still looking at 46 days, the dry forecasts fall into the Risk
Neutral category, indicating that the No Risk and the Risk
Averse would take precautionary action. For 23 days,
regardless of the precipitation scenario, only the Risky
would not take action.

[43] For comparison, the same sensitivity analysis was
carried out for the logistic regression, with an acceptable
D60 equal to 60 days. Results show a modest decrease
across precipitation forecasts, moving from 51% (dry) to
36% (equal chances) to 23% (wet), and move incremen-
tally down the risk ruleset classifications, from Risk Neu-
tral to Risk Averse to No Risk (Figure 7). The logistic
results are similar, albeit slightly higher, compared to the
Poisson results for the D60> 60 days case (Figure 7). As
such, the risk categories for the logistic are more conserv-
ative in the dry and equal chances cases than for the
Poisson.

[44] Similarly, the sensitivity analysis was carried out on
the multinomial logit with categories defined at 46 and 75
days. For the D60> 75 case, the multinomial and Poisson

Figure 6. Empirical cumulative distribution function
(CDF) shows the nonexceedance probability for synthetic
precipitation forecasts (dry, EC¼ equal chances, wet)
under median 1 May snow water equivalent. Dashed hori-
zontal line is the 50% exceedance, dashed vertical line is
46 days.

Figure 7. Exceedance and categorical likelihoods for
D60 for synthetic precipitation (PCP) forecasts under me-
dian SWE. D60 is number of days below the flow
threshold.
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results were very similar and landed in the same No Risk
category across the precipitation outlooks (Figure 7). For
the multinomial results, we note that only the >75 category
can be coded in accordance with the risk ruleset, as the risk
rubric is defined in terms of exceedance probabilities. The
multinomial results can also be viewed across the precipita-
tion cases; e.g., the wet scenario shows a likelihood of
61% for being in the <46 category, 27% for 46–75, and
11% for >75.
4.4.2. Historical Forecast Evaluation

[45] It was difficult to perform a meaningful quantifica-
tion of the historical D60 forecast skill for a number of rea-
sons. First, we note that the D60 forecasts can only be as
good as the underlying IRI precipitation forecasts, which do
not deviate much from equal chances and are not uniformly
skillful from year-to-year. Further, the historical forecasts
are for large geographic areas and have been in existence
for a short amount of time (since 2002), making it difficult
to estimate traditional skill measures with any confidence.
Nevertheless, to obtain some insight into the forecast skill,
we performed a simple evaluation method with the Poisson
model. Using the observed 1 May SWE and historical sea-
sonal precipitation outlooks from 2002 to 2011, we vali-
dated each historical forecast (Figure 8). In general, we can
say that the forecast ensemble is ‘‘good’’ if the observation
falls between the 25th and 75th quantile (i.e., the box in the
box plot). From 2002 to 2011, this was achieved in 6 of the
10 years (60%; Figure 8). Further, we can calculate if the
observation was closer to the forecast ensemble median or
the observed average D60 (57 days, dashed horizontal
line); the forecast median was either as good or better in 5
out of 10 years (50%), but it is notable that the forecast me-
dian did better in recent wet years (2008–2011). Although
an accurate forecast is important in all years, it is useful to
know that the wet year predictions are more reliable.
Because of recent drought periods, the Big Hole has moved
toward more conservative management (i.e., for drought).
As such, a wet forecast that results in lower D60 predictions
should be paid more attention to, as it suggests that manage-
ment actions to reduce diversions may be minimal.

[46] Given the constraints in evaluating the D60 fore-
casts, we also investigated how ‘‘sharp’’ the forecasts
would have to be to improve the predictions. For 2002–
2011, we created two ‘‘perfect’’ synthetic forecasts : Sharp
50 and Sharp 90. For Sharp 50, if the observed PCP was
actually in the dry tercile then the forecast would be 25/25/
50; whereas if it was in the normal tercile then the forecast
would be 25/50/25. Similarly, for Sharp 90, if the observed
PCP was actually in the wet tercile then the forecast was
90/5/5, and so on. Compared to the fitted Poisson model,
the root-mean-square errors (RMSE) and mean errors (ME)
of the forecast ensemble median improve as the forecast
sharpens (Table 2). As expected, there is not much of an
improvement between equal chances and the IRI forecasts
(i.e., RMSE¼ 13 versus RMSE¼ 12), but a more targeted
forecast of Sharp 50 shows considerable improvement
(RMSE¼ 7). However, given the coarse nature of the
tercile-based forecasts the improvements do diminish, as
Sharp 90 barely decreases the error over Sharp 50
(RMSE¼ 6). This indicates that even a modest sharpening
of the forecast could reap significant increases in skill. This
underscores the importance of having this type of frame-
work developed and ready as forecasts continue to
improve.

Table 2. Difference From Fitted Poisson Model in Root Mean
Square Error (RMSE) and Mean Error (ME) for Different Precipi-
tation Forecast Ensemble Mediansa

Difference From Fitted Poisson
Model

RMSE ME

Equal chances 13 13
IRI forecast 12 11
Sharp 50 7 9
Sharp 90 6 7

aEqual chances uses a 33/33/33 forecast every year; IRI forecasts use
the actual forecasts from 2002 to 2011; Sharp 50 (90) creates forecasts
where for each year 50% (90%) of the resample is from the correct tercile
and 25% (5%) is from each of the other two terciles.

Figure 8. Validation of observations (gray diamonds) and hindcast ensembles (box plots) using
historical IRI precipitation forecasts for D60 (number of days below the threshold). Gray dashed
line is observed average D60 (57 days).
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4.5. Managing for Climate Risk

[47] These D60 outlooks offer a 2 month lead time to
help managers plan for the upcoming summer season. The
next question is what measures are feasible if the D60 out-
look warrants action? For the Big Hole River, efforts led
by Montana FWP and the US Fish and Wildlife Service,
and in cooperation with Montana DNRC and USDA
NRCS, have led to the permitting of Candidate Conserva-
tion Agreements with Assurances (CCAAs) [FWS, 2006].
These agreements offer a type of ‘‘conservation insurance,’’
whereby site-specific plans are developed between land-
owners and CCAA officials aimed at enhancing grayling
fish populations. By entering into the agreement, land-
owners receive assurances against any further regulation
beyond the actions outlined in their site-specific plans if the
grayling gets listed as threatened or endangered under the
ESA. The CCAAs outline several valid conservation meas-
ures, one of which is improving streamflows [FWS, 2006].
Agreements that include in-stream flow contributions as a
way of improving streamflow are of particular importance,
as they offer managers additional flexibility to deal with
year-to-year climate variability. Hence, a useful piece of in-
formation for managers would be to know when the 1 May
forecast is issued: how many in-stream flow contributions
will they need to offset the climate risk and maintain an ac-
ceptable D60? To begin to answer this question, we used
linear regression (i.e., a special case of GLM where Y is
assumed to be normally distributed and the link is identity),
to relate D60 to average daily streamflow, Q, for the
summer season:

D60 ¼ 86� 0:3ðQÞ ð7Þ

[48] This results in an R2 of 0.80. The slope (¼�0.3) is
interpreted as �0:3Day=1cfs. This provides a rough esti-
mate suggesting that for every 1 cfs that is contributed over
the summer season, the predicted D60 is reduced by one-
third of a day. Or, for every 3 cfs contributed, the predicted
D60 is reduced by 1 day.

5. Discussion and Conclusions

[49] The purpose of this paper is to develop a procedure
that explicitly integrates probabilistic seasonal climate
forecasts into an end-to-end risk-management approach
for conservation planning. As in other resource manage-
ment contexts, the Big Hole managers are continually
engaged in an adaptive process : monitoring and reflecting
after each season on how things went in light of their
actions, and how they can refine it for the next season. As
such, the steps in this framework offer additional tools to
complement their ongoing, iterative management
strategies.

[50] This paper put forth GLM as a viable approach to
relate climate to streamflow characteristics. These empiri-
cal relationships provide a simple, transparent, and effec-
tive modeling approach, and have been used successfully
in other applications [e.g., Weirich et al., 2011; Weirich,
2012]. However, we point out that the framework is flexi-
ble, and other statistical techniques, such as conditional
resampling [e.g., Souza Filho and Lall, 2003], or physi-
cally based forecast models could be embedded. Physi-

cally based streamflow simulation models that can
incorporate climate information and evaluate different
management strategies [e.g., Thompson et al., 2012, Wilby
et al., 2011, Mondal et al., 2011] can be especially useful
in studying more complex systems, such as for regulated
rivers where dam releases need to be explicitly modeled
or where there are multiple e-flow attributes and/or loca-
tions that need to be simulated. However, hydrologic
models can be data intensive and require significant
resources, and may not be viable for some applications,
especially small resource-limited watersheds. Regardless
of modeling approach, we point out that one key is the
availability of gage streamflow data—either for direct em-
pirical modeling or for calibration—at locations relevant
to decision making. Here, the Wisdom gage location was
a deliberate decision by the Montana FWP, and this paper
demonstrates how this type of strategic monitoring can
support decision making.

[51] Although the purpose of this paper was not to iden-
tify e-flows, we note that it is a critical component in
organizing the analysis, and it should be reiterated that
defining e-flows and using them for management is chal-
lenging. Although managing for the full natural flow re-
gime may be ideal, in practice certain e-flows may be
prioritized for managing particular systems. For this rela-
tively simple case study, where the 60 cfs flow trigger
from the Drought Plan had already been agreed upon, it is
still difficult to ‘‘finalize’’ an acceptable D60 and accepta-
ble risk. As part of the adaptive management process or
due to other factors, what is acceptable may change over
time [Yohe and Leichenko, 2010]. However, we under-
score that it is important to have a general tool that can
use probabilistic climate forecasts to investigate accepta-
ble levels—whether they are set, changed, or still being
explored—so as to provide a systematic means to guide
proactive decision making.

[52] This research focuses on using seasonal climate
forecasts, which despite significant advances [e.g., God-
dard et al., 2003; Livezey and Timofeyeva, 2008], have
been underutilized by the management community for a va-
riety of reasons [Dilling and Lemos, 2011]. One issue illus-
trated in this study is that the seasonal forecasts are often
close to equal chances, i.e., they are not very ‘‘sharp,’’ and
we show how modest increases in sharpness could improve
skill. As such, it may seem tempting to wait to use the
probabilistic forecasts until they become sharper, and to
simply issue a more traditional, discrete forecast, e.g., one
that uses observed SWE as the only predictor. However, in
this case the SWE-only model was much less skillful than
the SWE and PCP model (R2¼ 0.21 versus 0.75). Having a
skillful model that accurately describes the processes gov-
erning the low flows is important, and could be used for
additional purposes, such as for historical reconstructions
or simulations. Further, when used in forecast mode, there
is the potential to exploit years with skillful forecasts,
which was shown for wet years from the historical evalua-
tion. Similarly, it is important to have a skillful model
ready as forecasts improve, as was illustrated by the Sharp
50 forecast. In addition to the readily available IRI fore-
casts, we point out that improved forecasts can also be
developed by tailoring predictors specifically to streamflow
in the region of interest, which has shown promising results
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[Grantz et al., 2005; Regonda et al., 2006; Bracken et al.,
2010]. Our risk-based approach could also use other proba-
bilistic climate information, such as from other seasonal
forecast systems (e.g., NCEP’s Climate Forecast System)
or with future climate change projections. In short, as cli-
mate predictions advance, they could be readily exploited
by the framework developed in this paper.

[53] In summary, this study develops an end-to-end
approach that translates probabilistic climate information
into decision-relevant streamflow attributes. The risk-based
framework is adaptable and could be applied to other
watersheds and management contexts where there is a
direct association between climate and the e-flow target of
interest ; here we show a successful demonstration for an
unregulated watershed with water withdrawals in Montana.
As managers are faced with competing water demands in
light of climate variability, this approach provides a sys-
tematic means of bridging climate information with deci-
sion support.
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