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How does an open-pit mine look like?

Figure 1: Chuquicamata copper mine (Chile).
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Elements of an open-pit

Figure 2: Mining pushback (Radomiro Tomic copper mine, Chile).
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Open-pit long-range mine planning problem (OPLRMPP)

Main questions

What to mine? → pit limit.

When to extract? → mining sequence / scheduling

Where to process? → opportunity cost / cut-off grade

Steps of the current practice in mine planning:

1 Pit limit definition.

2 Mining sequence optimisation.

3 Pushback design.

4 Production scheduling.

5 Operational and capital expenditure calculation.

6 Economic evaluation.
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The Ultimate Pit Limit Problem (UPL)

pb : profit associated to the extraction of block b ∈ B (B set of
blocks in the block model).
xb : equal to one if the block is extracted, zero otherwise.

b̂ ∈ B̂b : blocks constituting vertical precedences (upwards) for block b.

max z(x) =
∑

b∈B pb · xb
xb − xb̂ ≤ 0, ∀b ∈ B

xb ∈ [0, 1]

Figure 3: Geological block model. Figure 4: Ultimate pit limit contour.
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The Next Best Ore Problem

“There are virtually unlimited number of ways of reaching the
ultimate pit limit”1.

L&G introduce the parametrisation analysis, which consist on finding
smaller pits through the relaxation of the volume constrained UPL.

Figure 5: Example of the parametrisation method.

1Lerchs, H. and Grossmann, I. F. (1965). Optimum Design of Open Pit Mines
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Pit limit and the mining sequence (current practice)

Lerchs and Grossmann (1965) introduced an efficient algorithm to
calculate the ultimate pit limit (UPL).

The parametrisation method comprises generating a mining
sequence by iteratively calculating UPL for different factors (nested
pits).

The parametrisation method is the prevalent approach to define the
mining sequence.

However, in most of the cases, nested pits need to be greatly
modified to be used as pushbacks.
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The “art” of the Pushback Design:

Figure 6: Different practical designs from the same guidance (top view).
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Pushbacks

There are several (sometimes contradictory) definitions of pushbacks in
the literature.

Definitions1

Pushbacks: Pushbacks are a set of disjoint and mineable volumes
aimed to maximise the financial return from a mine. The union of the
pushbacks form the UP.
Each pushback is a connected volume (aggregation of blocks) with
sufficient operational width, and as such the slope conditions are
honoured. Each pushback is designed with a haul-road that connects
all their benches from top to bottom.

Semi-practical pushback: a pushback without a haul-road.

1Yarmuch, Juan L. (2020). Optimisation in open-pit mine planning. PhD Thesis.
University of Melbourne.
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Haul roads

semi-practical pushbacks → pushbacks

At the time of this work, there was no mathematical model for
open-pit haul roads available in the literature.

Most of the found haul road models are developed for the forest
industry and civil engineering.

Those models assume low stripping (no-valuable material required to
be removed), which does not apply to in-pit ramps.

Two models that include gradient and curvature constraints are
developed: ex-pit roads (low stripping) and in-pit ramps (high
stripping).

For the in-pit ramps an integer programming model is developed,
and for the ex-pit roads a shortest path approach is undertaken.

In both cases, the models can be solved exactly.
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Ex-pit haul road

The idea is to use a regular 2D lattice of cells, where each cell,
c ∈ C, represents a rectangular area of the terrain.
At each cell there is a node representing a direction in which the cell
will be accessed.

Figure 7: A representation of a simple 4-choice of directions graph G.
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Ex-pit haul road

The weights associated with the arcs of the graph G are calculated as
the costs of changing the direction and the cost of building a section
of the road.
The minimum cost haul road is solved using Dijkstra’s algorithm for
the weighted graph G.

Figure 8: Ex-pit road design.
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In-pit ramps

A binary linear model to find the minimum cost ramp is formulated.

A set of blocks above the ramp need to be extracted to consider the
stripping associated with the ramp.

The ramp is represented as a connected path of adjacent blocks
from S to T (two artificial blocks).

Figure 9: Stripping.

T

S

Figure 10: Arcs constituting possible
elements of the ramp.
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In-pit ramps: Formulation and solution method

Min:
∑

i∈V1
Ci · xi +

∑
(i ,j)∈A′′

3
Hi ,j · ai ,j +

∑
i∈V3

∑
d∈D Pd

i · vdi
S.T: 1) Wall slope constraints. 2) Ramp connectivity. 3) Ramp
cannot be built over excavated blocks. 4) Account for change of
directions.

Algorithm 1: MEGAP, Mutually Exclusive Greedy Adaptive Path

Data: G3 with edges sorted by stripping in increasing order, Gtc,
starting node S, final node T

Result: A path p that is a feasible solution for In-pit ramp problem
1 begin
2 p← ∅;
3 cN ← ∅;
4 foreach u ∈ V3 do
5 u.visited ← False;
6 u.predecessor ← null;

7 MEGAPvisit(S)
8 p ← p ∪{T}
9 pred ← T .predecessor

10 while pred 6= null do
11 p ← p ∪{pred}
12 pred ← pred.precedessor

13 Output p
14 Function MEGAPvisit (u):
15 foreach v such that (u, v) ∈ Atc do
16 cN ← cN ∪ {v}
17 u.visited ← True;
18 foreach v such that (u, v) ∈ A3 do
19 if (v.visited=False) and (v /∈ cN) and (T .visited=False)

then
20 v.visited ← True;
21 v.predecessor ← u;
22 MEGAPvisit(v)

(a) (b)

(c)

Figure 11: Example of an optimised
in-pit ramp vs a manual design.

Details in: Yarmuch, J. L., Brazil, M., Rubinstein, H., & Thomas, D. A. (2020). Optimum ramp design in open pit mines.
Computers & Operations Research.
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Pushbacks (first approach)

Ramps and Pushbacks

The pushback problem is formulated as a binary linear
programming model.

The model maximises an approximate discounted cash-flow (no
production schedule) to keep the problem tractable.

A key idea in this formulation is to use the haulage ramp as a
relative coordinate system to control the shape of the pushback.

The operational width and connectivity are modelled by biasing the
objective function.

A constraint over the tonnage of the pushback is required as we are
not considering the production schedule.
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Formulation.

Obj: Max
∑

p∈P δp(
∑

b∈B Wb · Vb · xb,p + λp
∑

b∈B
∑

b̆∈B̆b

ub,b̆,p
Db,b̆
·)

Some important constraints

Material content at each pushback.

Geotechnical constraints (slope stability).

Ramps cannot be built in the air (previously mined blocks).

Every mined block must have access to their respective ramp.

xb⃗,p −
∑

b⃗∈B⃗
∑

s′∈S′
b⃗

zs′,p ≤ 0, l ∈ L − {1}, b⃗ ∈ B⃗l , p ∈ P
Ramp continuity constraints.∑

s′′∈S′′
b
zs′′,p −

∑
s′∈S′

b
zs′,p = 0, b ∈ B, p ∈ P

Ramp accessibility constraints.∑
ρ≤p rb,ρ −

∑
ρ≤p xb+,ρ ≤ 0, b ∈ B, p ∈ P

Details in: Yarmuch, J. L., Brazil, M., Rubinstein, H., & Thomas, D. A. (2021). A mathematical model for mineable pushback
designs. International Journal of Mining, Reclamation and Environment, 35(7), 523–539.
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Case study.

Test instance based on a copper mine in Chile.

Number of blocks: 3916 blocks (re-blocked).

Optimisation parameters:
Mining width 2 blocks.
Discount factor of 20% per pushback.

Solution method: Greedy approach (pushbacks one-by-one).

Solution time: 3 hours approx.

Figure 12: Example of a 2 by 2 reblocking.
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A comparison against the traditional methodology

Figure 13: Nested pits. Figure 14: Engineer design.

Figure 15: Output of the new model. Figure 16: Smoothed output.

Prof. Juan L. Yarmuch (U. of Chile) Open-pit pushback optimisation December 23, 2021 19 / 32



Production schedule
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Summary

Pushback optimisation

Pros

The model gives more operational guidelines compared to the nested
pits (traditional methodology).
The model improved the NPV of the mine by 5.4%.
The idea of using the ramp to control the shape of the pushbacks is
worthwhile to explore.

Cons

The model optimise an approximate discounted cash-flow biased by a
factor λ to force connectivity and mining width.
The value of λ is determined by exploration.
The number of variables related to the ramp segments (zsp) grows
exponentially with the length of the ramp.
The model requires bounds in the material content per pushback.
The model does not account for the production schedule.
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Semi-practical pushbacks optimisation

Mining width and connectivity

A mathematical formulations is developed to incorporate the
mining width and connectivity conditions without requiring external
factors (such as λ).

The formulations is a binary linear programming model.

The model maximises an approximate discounted cash-flow.

A constraint over the tonnage of the pushback is required.
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Mining width and connectivity approaches

Figure 17: Rectangular template.

Figure 18: Directional lines. Figure 19: Example of a linear graph.
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Formulations.

Obj: Max
∑

p∈P δp
∑

b∈B Wb · Vp · xbp

Some important constraints

Material content at each pushback.

Geotechnical constraints (slope stability).

Mining width constraint (rectangular template approach).

Connectivity constraints:∑
(i,j)∈Al

aijp −
∑

(j,k)∈Al
ajkp ≤

{
−1, if j = Sl

1, if j = Tl

l ∈ L, p ∈

P, j ∈ B ∪ {Sl ,Tl}∑
(i,j)∈Al |j ̸=Sl ,j ̸=Tl

aijp −
∑

(j,k)∈Al |j ̸=Sl ,j ̸=Tl
ajkp = 0, l ∈ L, p ∈ P∑

(i,j)∈Al ,j ̸=Tl
aijp = xjp ∀j ̸= Tl |(i , j) ∈ Al , l ∈ L, p ∈ P∑

p∈P aijp ≤ 1 (i , j) ∈ Al , l ∈ L
Details in: Yarmuch, J. L., Brazil, M., Rubinstein, H., & Thomas, D. A. (2021). A model for open - pit pushback design with
operational constraints. Optimization and Engineering
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Solution method

We use a series of preprocessing routines (computation of the ultimate pit
limit, early start pushback for each block, rectangular template boundaries,
and MIP warm start) and a sliding window heuristic to solve instances of
tens of thousands of blocks to near optimality.

Algorithm 1:

1 begin
2 STEP 0: Compute an augmented ultimate pit limit (UPLA).

3 Rule out all variables that are outside the augmented UPLA.

4 STEP 1: Compute the minimum pushback for each block b ∈ UPLA

using the Early Start algorithm. Delete all variables for which
pushback p is less than ES(b) (delete xb,p ∀(b, p)|p < ES(b)).

5 STEP 2: Formulate SPPM∗ by relaxing the mining width
constraints of SPPM).

6 Solve SPPM∗ using SWH(Iwin, gap).
7 X ∗

sol ← SPPM∗

8 STEP 3: For all w ∈ W, compute pmin(w) and pmax(w) from X ∗
sol.

9 STEP 4: Formulate a SPPM and delete the z (rectangular
templates) variables such that p is larger than pmax(w) or is smaller
than pmin(w) (delete zwp ∀(w, p)|p > pmax(w)||p < pmin(w)). We
call this model SPPMB .

10 STEP 5: Solve SPPMB using SWH(Iwin, gap).

11 XB
sol ← SPPMB

12 STEP 6: Formulate a SPPM and load XB
sol as a MIP warm start.

Solve SPPM .
13 Xsol ← SPPM
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Results

Instance I3 is a modification of the KD instance (Minelib).

Number of blocks: 4,682 blocks.

Optimisation parameters:

Mining width template of 3 by 2 blocks.
Discount factor of 20%
Max. of 5 pushbacks.
Min. and max. tonnage per pushback: 10,000,000 and 15,000,000
tonnes, respectively.

Experiment Obj. Function Value [US$] Running Time [sec] linear relax. gap [%]

I3(1, 1) 215,452,113 2,414 6.6
I3(1, 2) 218,204,764 4,971 5.4
I3 Opt* 214,356,412 86,400 7.1
I3 LP 230,735,261 11,900 -

Table 1: Computational experiments for problem instance I3. The value presented
in I3 Opt* is the best solution found by the solver within the time limit of 24
hours.
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Results

(a) (b)

(c) (d)

(e) (f)
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Results

Figure 20: Visualisation of the instance I1. Plots (a), (b) and (c) are XY section
view, isometric and YZ views for the instance I1, respectively. Colour scale
represents different pushbacks (pushback 1: red, pushback 2: yellow, pushback 3:
green, pushback 4: light blue, pushback 5: blue).
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Results

Figure 21: Visualisation of the instance I2. Plots (a), (b) and (c) are XY section
view, isometric and XZ views for the instance I1, respectively. Colour scale
represents different pushbacks (pushback 1: red, pushback 2: yellow, pushback 3:
green, pushback 4: light blue, pushback 5: blue).
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Summary

Semi-practical pushbacks

Pros

The model is able to generate semi-practical pushbacks (no λ).
The use of Algorithm 1 allows solving instances up to 50,000 blocks.

Cons

The model optimises an approximate discounted cash-flow.
The mining width is constrained to the shape of the templates.
The model does not account for the production schedule.
Limitations of the connectivity approach:
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What if we re-think the problem? (patented by UoM)

A physical model of the soap bubbles applied to the pushback problem.

Figure 22: For every value of λ, the relaxed sub-problem can be solved in
polynomial time (In this case: < 1 minute for an instance with 4000 blocks).

https://research.unimelb.edu.au/work-with-us/case-studies/improving-mining-functionality-using-an-algorithm-based-on-soap-
bubbles .
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The same technique can be used for the open pit mine
production scheduling problem (OPMPSP)

Figure 23: Output of the current model
for the OPMPSP.

Figure 24: Proposed method for an
operational OPMPSP.

AMIRA project 1210: Optimal pushback design ⌣̈
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