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. . . all things are made of atoms—little particles that move around in
perpetual motion, attracting each other when they are a little distance
apart, but repelling upon being squeezed into one another.

In that one sentence, you will see, there is an enormous amount of
information about the world, if just a little imagination and thinking are
applied.

— Richard P. Feynman





Preface

This book grew out of an ongoing effort to modernize Colgate University’s
three-term, introductory, calculus-level physics course. The book is for the
first term of this course and is intended to help first-year college students
make a good transition from high-school physics to university physics.

The book concentrates on the physics that explains why we believe that
atoms exist and have the properties we ascribe to them. This story line,
which motivates much of our professional research, has helped us limit
the material presented to a more humane and more realistic amount than
is presented in many beginning university physics courses. The theme
of atoms also supports the presentation of more non-Newtonian topics
and ideas than is customary in the first term of calculus-level physics.
We think it is important and desirable to introduce students sooner than
usual to some of the major ideas that shape contemporary physicists’
views of the nature and behavior of matter. Here in the second decade of
the twenty-first century such a goal seems particularly appropriate.

The quantum nature of atoms and light and the mysteries associated
with quantum behavior clearly interest our students. By adding and em-
phasizing more modern content, we seek not only to present some of the
physics that engages contemporary physicists but also to attract students
to take more physics. Only a few of our beginning physics students come
to us sharply focused on physics or astronomy. Nearly all of them, how-
ever, have taken physics in high school and found it interesting. Because
we love physics and believe that its study will open students’ minds to
an extraordinary view of the world and the universe and also prepare
them well for an enormous range of roles—citizen, manager, Wall-Street
broker, lawyer, physician, engineer, professional scientist, teachers of all
kinds—we want them all to choose undergraduate physics as a major.
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viii PREFACE

We think the theme and content of this book help us to missionize more
effectively by stimulating student interest. This approach also makes our
weekly physics colloquia somewhat accessible to students before the end
of their first year.1

In parallel with presenting more twentieth-century physics earlier than
is usual in beginning physics, this book also emphasizes the exercise and
development of skills of quantitative reasoning and analysis. Many of our
students come fairly well prepared in both physics and math—an appre-
ciable number have had some calculus—but they are often rusty in basic
quantitative skills. Many quite capable students lack facility in working
with powers-of-ten notation, performing simple algebraic manipulation,
making and understanding scaling arguments, and applying the rudiments
of trigonometry. The frustrations that result when such students are ex-
posed to what we would like to think is “normal discourse” in a physics
lecture or recitation clearly drive many of them out of physics. There-
fore, in this first term of calculus-level physics we use very little calculus
but strongly emphasize problems, order-of-magnitude calculations, and
descriptions of physics that exercise students in basic quantitative skills.

To reduce the amount of confusing detail in the book, we often omit in-
teresting (to the authors) facts that are not immediately pertinent to the
topic under consideration. We also limit the precision with which we treat
topics. If we think that a less precise presentation will give the student
a better intuitive grasp of the physics, we use that approach. For exam-
ple, for the physical quantities mass, length, time, and charge, we stress
definitions more directly connected to perceivable experience and pay lit-
tle attention to the detailed, technically correct SI definitions. This same
emphasis on physical understanding guides us in our use of the history of
physics. Many physical concepts and their interrelations require a histor-
ical framework if they are to be understood well. Often history illustrates
how physics works by showing how we come to new knowledge. But if we
think that the historical framework will hinder understanding, we take
other approaches. This means that although we have tried diligently to

1These and other aspects of the approach of this book are discussed in more detail in C.H. Hol-
brow, J.C. Amato, E.J. Galvez, and J.N. Lloyd, “Modernizing introductory physics,” Am. J.
Phys. 63, 1078–1090 (1995); J.C. Amato, E.J. Galvez, H. Helm, C.H. Holbrow, D.F. Holcomb,
J.N. Lloyd and V.N. Mansfield, “Modern introductory physics at Colgate,” pp. 153–157, Con-
ference on the Introductory Physics Course on the Occasion of the Retirement of Robert
Resnick, edited by Jack Wilson, John Wiley & Sons, Inc., New York, 1997; C.H. Holbrow and
J.C. Amato, “Inward bound/outward bound: modern introductory physics at Colgate,” in The
Changing Role of Physics Departments in Modern Universities, pp. 615–622, Proceedings of In-
ternational Conference on Undergraduate Physics Education, College Park, Maryland, August
1996, edited by E.F. Redish and J.S. Rigden, AIP Conference Proceedings 399, Woodbury,
New York, 1997.
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avoid saying things that are flat out historically wrong, we do subordinate
history to our pedagogical goals.

We believe that it is important for students to see how the ideas of
physics are inferred from data and how data are acquired. Clarity and
concision put limits on how much of this messy process beginning students
should be exposed to, but we have attempted to introduce them to the
realities of experimentation by including diagrams of apparatus and tables
of data from actual experiments. Inference from tables and graphs of data
is as important a quantitative skill as the others mentioned above.

Asking students to interpret data as physicists have (or might have)
published them fits well with having beginning physics students use com-
puter spreadsheets to analyze data and make graphical displays. Because
computer spreadsheets are relatively easy to learn and are widely used
outside of physics, knowledge of them is likely to be useful to our stu-
dents whether they go on in physics or not. Therefore, we are willing to
have our students take a little time from learning physics to learn to use a
spreadsheet package. Some spreadsheet exercises are included as problems
in this book.

The examination of significant experiments and their data is all very
well, but nothing substitutes for actual experiences of observation and
measurement. The ten or so laboratory experiments that we have devel-
oped to go along with this course are very important to its aims. This is
particularly so, since we observe that increasingly our students come to
us with little experience with actual physical phenomena and objects. We
think it is critically important for students themselves to produce beams
of electrons and bend them in magnetic fields, to create and measure in-
terference patterns, to observe and measure electrolysis, etc. Therefore,
although we believe our book will be useful without an accompanying
laboratory, it is our heartfelt recommendation that there be one.

Although our book has been developed for the first of three terms of in-
troductory physics taken by reasonably well-prepared and well-motivated
students, it can be useful in other circumstances. The book is particularly
suitable for students whose high-school physics has left them with a desire
to know more physics, but not much more. For them a course based on
this book can stand alone as an introduction to modern physics. The book
can also work with less well prepared students if the material is spread
out over two terms. Then the teacher can supplement the coverage of the
material of the first several chapters and build a solid foundation for the
last half of the book.
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The format and techniques in which physics is presented strongly affect
student learning. In teaching from this book we have used many inno-
vative pedagogical ideas and techniques of the sort vigorously presented
over many years by well-known physics pedagogues such as Arnold Arons,
Lillian McDermott, Priscilla Laws, Eric Mazur, David Hestenes, and Alan
van Heuvelen. In one form or another they emphasize actively engaging
the students and shaping instruction in such a way as to force students
to confront, recognize, and correct their misconceptions. To apply these
ideas we teach the course as two lectures and two small-group recita-
tions each week. In the lectures we use Mazur-style questions; in the
recitations we have students work in-class exercises together; we spend
considerable effort to make exams and special exercises reach deeper than
simple numerical substitution.

Drawing on more than ten years of experience teaching from Modern
Introductory Physics, we have significantly revised it. Our revisions correct
errors in the 1999 edition and provide clearer language and more complete
presentation of important concepts. We have also reordered the chapters
on the discovery of the nucleus, the Bohr model of the atom, and the
Heisenberg uncertainty principle to better tell the story of the ongoing
discovery of the atom.

Our boldest innovation is the addition of two chapters on basic features
of quantum mechanics. In the context of real experiments, these chap-
ters introduce students to some of the profoundly puzzling consequences
of quantum theory. Chapter 19 introduces superposition using Richard
Feynman’s approach; Chap. 20 discusses quantum entanglement, the vi-
olation of Bells inequalities, and experiments that vindicate quantum
mechanics. Superposition, entanglement, non-locality, and Bell’s inequal-
ities are part of the remarkable success story of quantum mechanics. We
want acquaintance with these important ideas to alert students to themes
and technologies of twenty-first century physics. We want our book, which
unfolds the ideas and discoveries that led to the quantum revolution, to
end by opening for students a window into a future shaped by themes and
emerging technologies that rely fundamentally on quantum mechanics.

Many colleagues helped us make this a more effective book with their
useful critiques, problems, exercises, insights, or encouragement. For these
we are grateful to Victor Mansfield (1941–2008), Hugh Helm (1931–2007),
Shimon Malin, Stephen FitzGerald, Scott Lacey, Prabasaj Paul, Kurt
Andresen, Pat Crotty, Jonathan Levine, Jeff Buboltz, and Ken Segall.

Deciding what specific subject matter should go into beginning physics
has been a relatively small part of the past 30 years’ lively discussions
of pedagogical innovation in introductory physics. We hope our book will
help to move this important concern further up the agenda of physics
teachers. We think the content and subject emphases of introductory
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physics are a central responsibility of physics teachers and of great
importance to the long-term health of the physics community. This
book represents our idea of a significant step toward making introduc-
tory physics better represent what physics is. Whether or not we have
succeeded, we hope this book will stimulate discussion about, encour-
age experimentation with, and draw more attention to the content of
undergraduate introductory physics.

Charles H. Holbrow
James N. Lloyd
Joseph C. Amato
Enrique Galvez
M. Elizabeth Parks
Colgate University
August, 2010
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11C H A P T E R

What’s
Going On Here?

1.1 WHAT IS PHYSICS?

From earliest times humans have speculated about the nature of matter.
The Greeks with their characteristic genius developed a highly systematic
set of ideas about matter. They called these ideas “physics,” but physics
in the modern sense of the word comes into being only in the seventeenth
century.

In 1638 Galileo Galilei published Dialogues Concerning Two New Sci-
ences1 which summarized a lifetime’s work that created the description
of motion that we use today. A generation later Isaac Newton made a
grand synthesis with his laws of motion and his famous law of universal
gravitation.2

These two great physicists introduced two exceptionally important
ideas that characterize physics still. First, physics is a mathematical
description of natural phenomena, a description of underlying simple re-
lationships from which the complicated and various behavior of observed
matter can be inferred. Second, the predictions or inferences must be

1This is a wonderful book available from Dover Publications in a paperback edition. It describes
basic features of the science of the strength of materials; and it presents the first mathematical
account of that part of physics that we call “mechanics.” The mathematics is plane geom-
etry and accessible to anyone with a good high-school education. Here Galileo presents his
arguments, both theoretical and experimental, for the law of falling bodies and the resulting
possible motions.
2These ideas were published in Principia Mathematica. This book was written in Latin but
is available in English translation. (R.T. Jones, the eminent NASA engineer who played an
important role in developing the delta-wing aircraft once said that he learned physics by reading
the Principia. That is a very strong endorsement.)

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 1
DOI 10.1007/978-0-387-79080-0 1, c© Springer Science+Business Media, LLC 1999, 2010
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checked by measurements and observations. Physicists create quantitative
descriptions of the behavior of matter and then examine the consistency
and accuracy of these descriptions by philosophical, mathematical, and
experimental study.

Thus, when you say that bodies fall, you are not really doing physics.
But when you say all bodies fall with constant acceleration, you are pro-
pounding a generalization in mathematical form, and you have begun to
do some physics. When from that statement you deduce logically that
trajectories are parabolas and that the maximum range occurs when a
body is launched at 45◦, you are doing physics. When you devise argu-
ments and instruments to measure and show that near the surface of the
Earth all bodies fall with a constant acceleration g = 9.8m s−2 and that
actual bodies do move almost as you predict, then you are doing more
physics. And when you are able to explain quantitatively that observed
deviations from your predictions are due to variations in the distance from
the surface of the earth and the effects of air resistance, you are doing
deep physics. And when you create new concepts in order to construct a
quantitative explanation of why falling bodies have constant acceleration
in the first place, you are doing physics at a deeper level yet.

Physicists are students of the behavior and structure of matter. This
phrase covers a multitude of activities. The Physics and Astronomy Clas-
sification Scheme3 or PACS, as it is also called, lists approximately 4000
short phrases describing the different things physicists are busy at—from
“communication, education, history, and philosophy” through “exotic
atoms and molecules (containing mesons, muons and other unusual parti-
cles)” to “stellar systems; interstellar medium; galactic and extragalactic
objects and systems; the Universe.” The variety is astonishing.

� EXERCISES

1. In the PACS listing, find the “General Physics” category, and
then find the subcategory that features “Instruments, apparatus, and
components common to several branches of physics and astronomy.”
List four subject headings pertaining to techniques of producing and
measuring vacuum.

3Use a Web browser and go to http://www.aip.org/pacs/. A look at the myriad of categories
and subcategories and sub-subcategories reveals a wonderland of strange words and jargon. If
you like language, you might like to peruse the PACS.
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2. In the “Condensed Matter: Structure, Mechanical, and Thermal
Properties” category, find four listings having to do with defects in
crystals.

3. If you were looking for papers that discussed the decay of pi mesons
(an elementary particle), under what listing might you search?

4. Find four listings that discuss different kinds of galaxies.

1.2 WHAT IS INTRODUCTORY PHYSICS
ABOUT?

You can see that physics can include almost everything. What then is
going to be in this book? Well, it is a physics book intended for people with
a serious interest in science, but it is different from the usual introductory
physics textbook.

Most introductions to physics begin with the mathematical description
of motion. They talk about forces, momentum, energy, rotational motion,
oscillations. They discuss heat and temperature and the laws of ther-
modynamics, and they treat electricity and magnetism plus some optics.
There is a notoriously numbing quality about this approach. That may
be unavoidable, since a goal of the course is to change the structure of
your brain, which is full of deeply ingrained misconceptions. The miscon-
ceptions have to be straightened out. Also, you need to overcome your
resistance to the sharpness and lack of ambiguity that are part of quan-
titative thought, and you need to be strengthened against blanking out
during the long chains of inference by which physicists connect the basic
ideas of physics to the observable world. Restructuring your thinking is
uncomfortable, and many people are not able to accept the very real
“present pain” for the prospective “future pleasure” of greatly enhanced
powers of understanding the natural world. Our official recommendation
to you is: “Be strong, be brave, be persistent. Hang in there.”4

4Perhaps Winston Churchill’s words say it more firmly: “Never give in. Never give in! Never,
never, never, never. Never give in except to convictions of honor and good sense.”



4 1. WHAT’S GOING ON HERE?

1.3 WHAT WE’RE UP TO

This book is based on some different ideas about how to start physics.
They are the basis of a significant change in the teaching of the intro-
ductory course. Rather than start with seventeenth-century physics and
work our way through to the nineteenth century, we are going to em-
phasize some ideas that have dominated physics in the twentieth and
twenty-first centuries. Modern physics is quite different from physics of
past centuries. It seems to us that introductory physics should introduce
you to what we physicists actually do.

Isn’t this dangerous? The ideas of physics are cumulative. To talk mean-
ingfully about what is going on deep in an atomic nucleus, you must
understand velocity as Galileo used the idea; you need to know about
potential energy—an idea developed in the eighteenth century; you need
to know about electric charge, about momentum, about kinetic energy.
The usual theory of teaching physics is to introduce these ideas in terms
of simple, more directly observable phenomena, and then apply the ideas
in increasingly complicated ways. Build the foundation first, then put up
the building. By starting with the physics of this century isn’t there a
danger that we will erect a superstructure with no foundation?

We don’t think so. For one thing, you all have a bit of foundation.
You know what velocity is, you have heard about acceleration. You have
talked about energy and momentum in your high-school physics course.
For another, we are not going to be dogmatic about sticking to the twenti-
eth century. If we need to spend some time reviewing or introducing some
basic ideas, we will. Furthermore, we are not going to do the hardest parts
of modern physics. We introduce enough quantum mechanics to explore
some deep questions, but we do this without advanced mathematics. We
present Einstein’s special theory of relativity in a very “nuts and bolts”
fashion. You will have to wait for more advanced courses to see the pow-
erful and elegant mathematical treatments of these two cornerstones of
modern physics.

But there is a more important reason why our approach should work.
An enormous amount of twentieth-century physics is done with simple
ideas and mathematics no more complicated than algebra. Do not think
that because ideas are simple, they are trivial. Simple ideas are often used
with elegant subtlety to do physics. You can learn enough about waves,
particles, energy, momentum, uncertainty, scattering, and mass to make a
remarkably comprehensive and consistent picture of the nature of matter
without having to know all the underlying connections among the ideas.
The more complete elucidation of the connections can wait until later
courses.
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After all, you would not familiarize yourself with a skyscraper by first
studying all its plumbing diagrams and then its wiring diagrams, and
then its ductwork, and the arrangement of its girders, and so on until
you are familiar with all the parts, and only then assemble them in your
mind to create the skyscraper. You must do that if you are building a
new building, but if the building is already there, you need to know first
where the main doors are, where the express elevators are, and on what
floors are the important offices, and how some of the suites are connected.
You can visit what seems to be of particular interest without knowing the
details of the building’s construction. Of course, to operate and really
appreciate the building you will eventually need to know and understand
the details. But not right away.

Physics is a skyscraper of imposing dimensions. This course will show
you some of its rooms and some of the furniture in those rooms. You
should learn enough so that you can rearrange the furniture in interesting
ways as well as get from one room to another. Later courses will go back
to the seventeenth century and look at the foundations of physics; then
you will go down into the utility rooms of our edifice and see what’s there.
In this book we will stay upstairs where the view is better (Fig. 1.1). Once
you know how to get to the windows in the skyscraper of physics, you can
look out over the entire panorama of nature laid out in the PACS, from
subnucleonic quarks and leptons to the ends of the visible universe.

1.4 THIS COURSE TELLS A STORY

The Short Story of the Atom

Physics helps us to understand the physical world. It extends our
perceptions beyond our immediate senses and opens new vistas of com-
prehension. We think you can understand physics better if the physics
you learn tells a story. There are many stories to tell with physics, so
we had to choose one. We chose what we think to be the most significant
story of the past two centuries. It is the story of the atom and its nucleus.
We want you to know both what physics teaches us about atoms and
their remarkable properties and why we believe atoms and nuclei exist
and have the properties we ascribe to them.

The story is a good one. It starts in the early nineteenth century with
hard, featureless atoms. They become more complicated as more is learned
about them. They explain many observations by chemists and many of
the observed properties of gases. By the middle of the nineteenth century,
the kinetic theory of hard-sphere atoms makes it possible to know that the
diameters of atoms are of the order of 10−9 m, some nine or ten orders of
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FIGURE 1.1 You don’t need to know how to build a skyscraper to appreciate the
view from it. Photo courtesy of Mary Holbrow.

magnitude smaller than familiar everyday objects. Then their electrical
nature is discovered, and by the end of the century atoms are known to
be made of positive and negative charges. The negative charges are found
to be tiny elementary particles that are named “electrons.” Their mass
and charge are determined.

At the threshold of the twentieth century, radioactivity reveals new
complexity of the atom. The compact core, or “nucleus,” of the atom is
discovered. It is 10−5 the size of the atom and contains 99.97% of its
mass. It signals the existence of new elementary particles, the proton
and the neutron, and the existence of a previously unknown fundamental
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force of nature more than 100 times stronger than the familiar electrical
forces, and 1040 times stronger than gravity. This new force is the agent
by which nuclei store the extraordinarily large amounts of energy that
can be released by nuclear fission and fusion. The search for political and
social controls of these energies remains a major preoccupation of our
twenty-first century world.

Special Relativity and Quantum Mechanics

At the heart of our story lie two strange new ideas that revolutionized
our view of the physical world. The first idea is that there is a limiting
velocity in the universe; nothing can travel in a vacuum faster than the
speed of light. This idea and the idea that the laws of physics must not
depend on the frame of reference in which they are studied are central
to Einstein’s special theory of relativity. The consequences of this theory
are necessary to understand the behavior of atoms or their components at
high energies. This behavior is surprising and unfamiliar to beings whose
experience with the physical world is limited to velocities much less than
that of light.

� EXERCISES

5. What beings might these be?

Stranger still are the ideas of quantum mechanics. The behavior of
atoms and their components can only be understood if, unlike the familiar
particles of our world—marbles, raindrops, BBs, baseballs, planets, sand
grains, bacteria, etc.—they do not have well-defined locations in space,
but are spread out in some fashion like water waves or sound waves. In
fact, in some sense they must be in more than one place at the same
time. To describe atoms and the details of their behavior we must use
these peculiar ideas mixed together with a fundamental randomness that
physicists schooled in the ideas of Newton have found difficult to accept.

Physics Is Not a Spectator Sport

In this course the “why” of your understanding is extremely important.
After all, you already believe in atoms. You don’t need convincing. You
accept their existence as matters of faith, and you will probably believe
most things we tell you about them. Of course, you will need to know
many things of and about physics, but it is also important that you learn
to make arguments like physicists. We want you to learn what convinces
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physicists and what does not. In the end, we want you not so much to
know the story as to be able to convince yourself and others that it is
true. We want you to learn to follow and use quantitative arguments and
to be able to describe the posing of questions of physics as experiments.

Of course, physicists, like everyone else, teach and learn as much by
authority as by proof. Because there is not time or will, we will often just
tell you that something is so in order to pass on to larger issues. Neverthe-
less, this introductory physics course lays more stress on argument than
the traditional course. There are reasons you may not like this. It requires
thinking, and thinking is uncomfortable, muddy, difficult, ambiguous, and
inefficient. It requires you to participate actively rather than passively. It
means that your textbook—this very book—must be different from the
traditional text.

Most introductory physics courses greatly emphasize the working of
problems. Homework and quizzes and exams require you to work problems
that illustrate the topics of the book. Most students respond by reading
the assigned problems and leafing backwards through the chapter until
they find the equations that produce an answer. The text becomes a
reference manual for solving problems, and it is not read for any broader
comprehension.

We have tried to create a text that has to be read for broader compre-
hension, a book that does not serve merely as a user’s manual for solving
assigned problems. We want you to read the book and think about it as
you go along. This does not mean that problems are unimportant; they
are very important. They are how you test your understanding. Trying to
work a problem is the quickest way to show the emptiness of the under-
standing you thought you gained when you passed your eyes over pages of
print without repeated pauses to think. As you read physics, you should
be asking yourself questions. To show you how this works we have put
questions in among the paragraphs of the text where you should be asking
them. In general, you should work exercises as you go along; if they aren’t
provided, you should make them up yourself.

For starters and to establish our basically kindly nature as authors, we
have provided some questions for you. For instance, when you were reading
above that a new extremely strong force was discovered, did you ask:

� EXERCISES

6. How much stronger is the electromagnetic force than the
gravitational force?

Or you might have wondered:
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7. What does it mean for one force to be stronger than another?

And because we think it might help you with your thinking about
that question, we might ask:

8. What do we mean when we say, “Lead is heavier than air”? Which
weighs more, a pound of air or a pound of lead?

And, of course, you might wonder:

9. If the new force is as strong as we say, why wasn’t it discovered
much earlier in time?

If you did not already know, you can see that reading physics is slow
work. Ten pages an hour is quite fast; five pages an hour is not unreason-
able. And for the new and very strange, a page a day or a week is not
inconceivable. Reading and working problems go hand in hand.

1.5 WHY THIS STORY?

An Important Idea

We have chosen to make atoms the central theme of introductory physics
for three main reasons. First, the idea of the atom is extremely important.
Our ideas about atoms color our understanding of all of nature and of all
other sciences. One of the greatest physicists of the twentieth century,
Richard Feynman, has written5

If, in some cataclysm, all of scientific knowledge were to be de-
stroyed, and only one sentence passed on to the next generations
of creatures, what statement would contain the most information
in the fewest words? I believe it is the atomic hypothesis (or the
atomic fact, or whatever you wish to call it) that all things are made
of atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but re-
pelling upon being squeezed into one another. In that one sentence,
you will see, there is an enormous amount of information about
the world, if just a little imagination and thinking are applied.

5Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on
Physics, pp. 1–2, vol. I (Addison-Wesley, Reading MA, 1963).
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Tools for Quantitative Thought

Second, the arguments and evidence we use to infer the existence and
properties of atoms are in many ways easier to understand than the ar-
guments of traditional Newtonian physics. Some of the ideas are stranger
than Newton’s because they are unfamiliar, but, up to a point, the math-
ematics underlying them is simpler. We can learn a great deal by rough,
order-of-magnitude, numerical calculations, and by using proportionality,
plane geometry, some trigonometry, and how the sizes of simple functions
scale as their variables are changed. These tools of rational argument are
basic in all the branches of physics, in all sciences, and in any kind of
practical work you may do—from making dinner to running a large cor-
poration.6 A major aim of this course is to have you become skillful with
these simple mathematical tools.

An Introduction to Physics

Third, an introductory physics course built around the theme of atoms
will give you a better sense of what physics is and what physicists do than
a traditional course would. Most physicists today study atoms or their
components and how they interact and behave under different conditions.
Many of the deep unanswered questions of physics center on aspects of
the behavior of atoms or their parts.

1.6 JUST DO IT!

This book will teach you the basic physics you need to know in order to
understand why we believe in atoms and their properties. This will require
learning much traditional physics, but it will be applied in a different
context than is usual in beginning physics. We think that the physics
you learn this way will make more sense to you, that the larger context
will help you perceive that physics is not a disconnected set of formulas
used to solve disconnected sets of problems. We also want you to learn
what physicists think they know, what they think they don’t know, and
how they go about learning new physics. The “how” is very important,
because as you learn “how” physicists do physics and persuade each other
of the truth of what they do, you will be learning how to teach yourself
physics. Learning to teach yourself is a goal for the long term. For most
people it takes years, but then real mastery becomes possible.

6Some people argue that these tools are so basic to constructive thought and practical action
and physics is such a good place to learn them that every college student should take physics.
The same sort of argument could be made for lifting weights.
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PROBLEMS

1. Check the website for your school’s physics department. Find the
listing of seminars. Look at the upcoming or recent seminar titles, and
find a few that look related to the topics you’ll learn this semester.

2. Look at the faculty research interests for your department. Which
ones, if any, look like they might be related to the subject of this course?
You’ll want to look again at the end of the semester; it’s likely that you’ll
find you’ve learned a lot that is related to current research areas.
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Some Physics
You Need to Know

2.1 INTRODUCTION

In this chapter you get reviews of length, mass, time, velocity, acceleration,
momentum, and energy along with accounts of their characteristic phys-
ical dimensions and the units used to describe them quantitatively. You
get a review of angle measure with particular emphasis on the radian and
its use. And you get two important tips: how to check the consistency of
physics equations, and how to work efficiently with SI prefixes.

2.2 LENGTH, MASS, TIME:
FUNDAMENTAL PHYSICAL PROPERTIES

Length, mass, and time are fundamental physics ideas important in all the
sciences. From them physicists build up more elaborate physics concepts
such as velocity, acceleration, momentum, and energy. To work comfort-
ably with these concepts you need some intuitive physical feeling about
each; you need to know about their physical dimensions (to be explained);
and you need to be able to describe each of them quantitatively in a
consistent set of units.

Most of the units used in this book are part of the internation-
ally agreed-upon Système International (SI).1 Although the basic units
of length, mass, and time have been very precisely defined by an

1The US National Institute of Science and Technology (NIST) provides a complete presentation
of SI units at http://physics.nist.gov/cuu/Units/units.html.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 13
DOI 10.1007/978-0-387-79080-0 2, c© Springer Science+Business Media, LLC 1999, 2010
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international committee, there are approximate definitions of these units
that are more useful for you to know:

• one meter is about the length between your nose and the end of your
fingers when your arm is stretched out to the side;

• one kilogram is the mass of a liter of water, a little more than a quart;

• One second is about the time between beats of your heart when you
are at rest (as when reading a textbook?).

All SI units can be scaled by powers of ten by means of standard
prefixes such as “micro,” “kilo,” and “mega,” and corresponding standard
abbreviations like μ, k, and M. Many of these are introduced in this
chapter. Watch for them and make a special effort to learn them. To work
with units you have to be able to manipulate these standard multipliers
and convert from one to another efficiently. There is a summary of SI
prefixes on p. 633.

Length

You already have a good intuitive idea of length. However, there are so
many different units for measuring lengths—barley corns, furlongs, chains,
rods, yards, feet, miles, and light-years to name a few—that an interna-
tional effort has defined the meter and made it the standard unit of length:
all other units of length are now defined in terms of the meter. In the
1790s, at the time of the French Revolution, the French Academy of Sci-
ences set up a consistent set of units of length, mass, and time in terms of
standards existing in nature and so, at least in principle, accessible to any
observer anywhere. The meter was then defined to be one ten-millionth
(10−7) of one-fourth of the circumference of Earth, (see Fig. 2.1), and
two marks this distance apart were put on a particular bar of metal that

FIGURE 2.1 The meter was originally defined as one ten-millionth (10−7) of one-
fourth of Earth’s circumference, the distance from the Equator to the North Pole.
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became the international standard. Today, the official definition of the
meter used by all scientists depends on the speed of light and how we
measure time. For now, however, ignore the official definition, and use
the historical definition: To sufficient accuracy for our purposes the meter
is 10−7 of one quadrant of Earth’s circumference.

By knowing the historical definition of the meter, you know that Earth’s
circumference is very nearly 40 million meters, that is, 40 × 106 m. This
system of units—the metric system—also introduced the idea of using
prefixes to scale units up or down by factors of 10. Thus distances on Earth
are commonly measured in multiples of a thousand meters, i.e., kilometers,
where, as suggested above, the prefix “kilo” stands for 1000 (103). Thus
it is common to say that the circumference of Earth is 40 000 km (where
“k” and “m” are the standard abbreviations respectively for “kilo” and
“meter”). Indeed “kilo” means 1000 wherever it is used in scientific work
and can be used to scale any unit: A kiloanything (ka?) is 1000 anythings.

You could also say the circumference is 40 megameters, i.e., 40 Mm,
where capital “M” is the abbreviation for “mega” which stands for
106, one million. You could even say that Earth’s circumference is
40× 109 mm, where “mm” means millimeters because the first lower case
“m” stands for “milli” or 10−3 or 1 one-thousandth. But why would you?

� EXAMPLES

1. Knowing Earth’s circumference, you can calculate its radius or di-
ameter. The circumference of a circle of radius R is 2πR. Therefore,
REarth = (40 × 106 m)/(2π) = 6.37 × 106 m, or 6370 km.

Mass

You experience mass when you push an object. It takes great effort to get
an automobile rolling on a level surface, and most of the car’s resistance
is due to its mass. When you pull a quart of milk from the refrigerator,
you sense its mass of almost one kilogram (103 grams).

Using the standard abbreviation kg for kilogram, you would write or
say that a quart of milk2 has a mass of 0.979 kg. In handling the quart of
milk you also resist its weight due to the pull of gravity, but we won’t be
overly concerned about the difference between weight and mass and will
follow the custom of most of the people of the world who measure the

2A quart of water has mass 0.946 kg, but milk is slightly more dense than water.
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TABLE 2.1 Masses of some familiar objects

Object Mass (kg) Object Mass (kg)

Golf ball 0.050 Basketball 0.600

Tennis ball 0.057 1 liter of water 1.000

Baseball 0.149 Bowling ball 7.0

Hockey puck 0.160 4 × 4 SUV 1500.

2L Soda

1500 kg 4X4

160g
Hockey puck

49.6g
Golf ball

7kg Bowling ball

1.89L Juice 187g Soft ball

0.6kg Basketball

FIGURE 2.2 Some familiar objects with masses you may have experienced.

weight of flour, potatoes, and the like in “kilos.” Masses of some objects
with which you may be familiar are listed in Table 2.1, and some of these
objects are shown in Fig. 2.2.

The unit of mass, the kilogram, was originally chosen to be the mass
of one liter (abbreviated L) of water at a particular temperature and
pressure. Cola and other important beverages are sold in 2L bottles. From
the definition of the kilogram, you can quickly estimate the mass of the
liquid in a bottle of soda. (What do you assume when you do this?)

Because a liter is defined to be 1000 cubic centimeters and one kg is
1000 g, the mass of 1mL = 1 cm3 of water is 1 g. The metric system was
constructed to have these interrelationships, and it is very convenient to
know them. You can see that the kilogram’s size was defined to make the
density of water equal to 1 kg/L or 1 g cm−3—a useful fact and, thanks to
these units, easy to remember.
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Density

Notice that density is measured in units composed from other units—
those of mass and volume. The SI unit of volume, the cubic meter, is also
composite, i.e., m3. Most physical properties are measured in composite
units; Sect. 2.3 will discuss how such units obey the rules of algebra.

The concept of density was devised to compare the relative masses of
different materials independently of their volumes. In everyday language
you might say iron is “heavier” than water. Of course this does not mean
that any iron object is heavier than any other amount of water. You
certainly can have a small piece of iron that is lighter than a bucket of
water. Yet we are quite clear when we see a stone sink in a lake or a
cork float on water that the first is heavier than water and the second is
lighter. The idea of density comes to the rescue here: The important thing
is whether for equal volumes one object has more or less mass than the
other. For making such comparisons it is convenient to use a unit volume
and observe that 1L of iron has a mass of 7.9 kg, i.e., a density 7.9 kg/L,
compared to water’s density of 1 kg/L. Equivalently, 1 cubic centimeter
(1 cm3) of iron has a mass of 7.9 g, and 1 cm3 of water has a mass of 1 g.

� EXERCISES

1. A cubic foot of water has a mass of 62.4 pounds. What is the ratio
of the mass of a cubic foot of iron to the mass of a cubic foot of water?
Hint: Reread the last sentence of the preceding paragraph.

With these simple ideas you can do a lot of science.

� EXERCISES

2. For example, what is your density? You know that when you are
swimming you can float but only just barely. Therefore your density
must be a trifle less than that of water. From that fact what might you
guess to be your principal chemical ingredient? Estimate your volume
in liters and in cubic centimeters.

The above exercise is not really as obvious as it might seem. As an
experienced student, you may have arrived at the answer more by what
the instructor seems to want than by thoughtful analysis. But if you were
aware that you assumed an average density for the human body, then you
are beginning to do real science.
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Is that assumption realistic? You might imagine continuing your scien-
tific analysis by testing the consequences of the assumption. Get a steak
from the store and determine its density, then dry it thoroughly and mea-
sure the mass of the dried remains. You would indeed conclude that the
meat was mostly water. But the bones in the meat are clearly much more
dense than water. How, then, can the average density of the body be so
close to that of water? How is it that an incorrect assumption led to the
right answer? You would have to conclude that there were compensating
volumes of density less than that of water, such as the lungs and head
cavities.

But now an interesting question comes up. Why is the average density
of the human body so close to that of water? You are getting into some
profound evolutionary questions at this point and straying from our main
topic. But you see how simple questions can lead to much deeper ones.

� EXAMPLES

2. Suppose you decide to become fabulously wealthy by running the
“guess-your-mass concession” at your favorite carnival. If someone
1.8m tall with a waist size of 0.8m approaches, what would you es-
timate his mass to be? Try modeling him as a cylinder. His waist size
is his circumference 2πr, where r is his radius. The volume V of a
cylinder with a height h = 1.8m and a radius r = (0.8 m)/(2π) is
V = πr2h = 0.092m3. Notice that we were careful to do this prob-
lem in consistent units, so the answer comes out in cubic meters. Since
1m = 102 cm, it follows that 1m3 = 106 cm3. Therefore, the volume V
is 92.0 × 103 cm3, which is 92L, or about 92 kg.

We have been doing some physics here. First, we developed quantitative
concepts of volume, mass, and density; then we made a mathematical
model of our subject and applied the concepts. But that’s not enough;
one always needs to verify a model with an experiment. So we weighed
a 1.8m tall, 0.8m circumference author and found his actual mass to
be 82 kg.

� EXERCISES

3. Our prediction was more than 10% higher than our experimental
result. Is that bad? How might we do better? Why is it off by so much?
Why by 10%? Answering these questions will take you into yet another
round of doing physics.
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L

1 second

FIGURE 2.3 On the surface of Earth a pendulum of length L = 0.993 ≈ 1m will take
1 s to swing through a small angle from one side to the other.

Time

Time is measured by repetitive behavior—the swinging of a pendulum,
the annual cycle of the seasons, the heartbeat’s regular thud. The SI unit
of time is the second. It is roughly the duration between heartbeats of a
person sitting at rest. It is very nearly the time that it takes a mass near
Earth’s surface at the end of a 1m long string to swing through a small
angle from one side to the other (see Fig. 2.3).

Although the basic units of time (as also of length and mass) are human
in scale, much of physics deals with other scales. For example, in the
realm of atoms and nuclei, 10−9 s can be a very long time; some nuclear
phenomena happen in 10−21 s. At the other end of the time scale, we think
the Universe has existed for longer than 1017 s. Some examples show how
knowing the scale of a phenomenon can help to understand it.

� EXAMPLES

3. If in a laboratory you are working with the transmission of light
between objects a few tens of centimeters apart, then an important time
scale is 30 cm divided by the speed of light. Light travels 3× 108 m s−1,
so the time to go 30 cm is

30 cm × 1m
100 cm

× 1 s
3 × 108 m

= 10−9 s, (1)

i.e., 1 nanosecond (where “nano” is the standard prefix for 10−9—a
billionth—of anything), usually written 1 ns. This result means that
it will take a nanosecond or so for light from one part of your lab
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apparatus to reach and affect another part.3 You can also see that
the SI prefixes like nano might be convenient for talking about times
involving light transmission in this apparatus.

4. When you study atoms in a small volume so thoroughly evacuated
that the atoms very rarely collide with other atoms, collisions with the
walls may be important. At room temperature, the nitrogen and oxygen
molecules in air have an average speed of about 500m s−1. Thus, in a
cylinder 2 cm in diameter the time between collisions with the walls
will be roughly 2 cm/50 000 cm s−1 = 4×10−5 s. Customarily we would
call this 40 μs and write it as 40 μs where (1μs = 10−6 s and μ, the
lowercase Greek letter mu, is the SI prefix used to denote “micro,” or
millionth). Thus, interactions of atoms with the walls of this cell occur
on a scale of millionths of a second. This kind of simple information
is often useful. For example, if while studying these atoms you find
something that happens in nanoseconds, you know that it has nothing
to do with the walls. On the other hand, if the time scale of whatever
you are observing is microseconds or longer, you may be seeing some
effect of the walls.

Some Important Masses, Lengths, and Times

Table 2.2 lists some important masses, lengths, and times and gives the
SI units in which they are measured. The table illustrates that these
quantities are used over ranges from the human scale down to the very
small and up to the very large. Every physical system has a characteristic
time, a characteristic length, and a characteristic mass. The table gives
examples of some of these. When doing physics, you need to have in
mind concrete examples of physical objects or systems and to know their
characteristic time, length, and mass scales.

2.3 UNITS AND DIMENSIONS

SI units are a consistent set of units defined in terms of standards accepted
everywhere in the world.4 SI units offer you the hope that, when evaluat-
ing equations, everything will come out all right if you make sure all the

3It is useful to know that light travels just about 1 foot in 1 ns—one of the rare occasions when
English units produce a convenient number.
4Even culturally backward countries that do not use SI units in everyday life have redefined
their historically quaint units in terms of metric standards. For example, in America the inch
is defined to be exactly 2.54 centimeters long.
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TABLE 2.2 Basic quantities of physics

Name of
Quantity

SI Unit of
Measure

Abbreviation Examples

mass kilogram kg 1 L of water has a mass of 1 kg.
The mass of a proton is 1.67 ×
10−27 kg. Earth’s mass is 5.98 ×
1024 kg. Masses of typical American
adults range from 50 kg to 90 kg.

length meter m A long stride is about 1m. A range
of typical heights of American adults
is from 1.6 m to 1.9 m. Earth is 40×
106 m in circumference. An atom’s
diameter is 0.2 × 10−9 m.

time second s Your heart probably beats a little
faster than once a second. Light
travels 30 cm in 10−9 s. There are
3.15×107 s in a year. The age of the
Universe is ∼4 × 1017 s.

quantities you use in the equations are measured in appropriate combina-
tions of kg, m, and s. If you do this, the units of every term on both sides
of the equal sign will be the same. You always want this to be the case.

Three complications undermine this hope. First, the SI assigns certain
groups of units distinctive names, e. g., the group of units kg ms−2 is
called a newton; a m3 is called a “stere” (pronounced steer). There are
many of these names, and you need to know them to be able to check if
your units are consistent. You will learn several of them in this chapter.

Second, values of quantities are often given using the SI prefixes.
Thus, a length might be given in centimeters (cm = 10−2 m) or mil-
limeters (mm = 10−3 m) or micrometers (μm = 10−6) or nanometers
(nm = 10−9 m). You have to know these prefixes and convert the val-
ues of the quantities in your equations to meters before evaluating the
terms.

Finally, there are situations in physics where physicists do not use
pure SI units.5 Other units may be more appropriate to the scale of the
phenomena; other units may be better than SI units for revealing impor-
tant connections or simplicities. Physicists measure energies of atoms in
electron volts, a non-SI unit of energy; continents drift a few centime-
ters per year; the mass of an oxygen atom is about 16 hydrogen atom
masses.

5A foolish consistency is the hobgoblin of little minds. . . . Ralph Waldo Emerson.
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Composite Units

For most physical quantities the units are more complicated than those
for length, mass, and time. Most physical quantities require units that
are composed from the basic units according to the rules of algebra. To
see what this means, consider “volume” as a simple example.

What is the volume of Earth? To answer the question you use the fact
that the volume V of a sphere of radius R is V = 4

3πR3, and the
fact (noted above) that Earth’s radius R is 6.37 × 106 m. Then

V =
4
3
π(6.37 × 106 m)(6.37 × 106 m)(6.37 × 106 m) = 1.08 × 1021 m3,

where m3 is the composite unit called a cubic meter.
Notice how the notation m3 arises from the natural algebraic combina-

tion of the factors in the formula for the volume of a sphere: 4
3πR3. This is

a general property; any formula for a volume must contain exactly three
factors of length. Correspondingly, units of volume always have three fac-
tors of length in their definition.6 Any time you multiply three lengths
together you obtain a volume.

Table 2.3 shows formulas for calculating volumes of some different
shapes. Notice that each formula multiplies three lengths together, so
in each case the volume has SI units of m3—cubic meters.

Using SI Multipliers

The units of the cubic meter are straightforward. But what if one dimen-
sion is in Mm (megameters) and another in cm? For example, suppose

TABLE 2.3 Volume formulas always contain
three factors of length

Shape Dimensions Volume

Cube edge � �3

Box length �
width w
height h

�wh

Cylinder height h
radius r

πr2h

Cone height h
radius r

1
3
πr2h

Sphere radius r 4
3
πr3

6The three factors may not always be apparent as, for example, when the volume of water is
measured in quarts or liters or acre-feet, but they are always present if only implicitly.
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topsoil is on average a layer d = 10 cm thick over 30% of Earth’s surface.
What is the volume V of the topsoil? The area of Earth is 4πR2 where
2πR = 40 Mm. So to evaluate

V = 0.3 × 4πR2 d

you might want first to convert every dimension to meters. To do that
use Tip 1.

• Tip 1: To manipulate SI prefixes efficiently, think of each prefix as a
number (M = 106, c = 10−2) multiplying the unit.
You already know how this works with a “prefix” like “dozen.” How
many is 3 dozen eggs? 3×12 eggs = 36 eggs where you replaced “dozen”
with its numerical value. Similarly, the expression “3 cm” is “3×10−2 m”
when you replace c with its numerical value.

Here’s how to use Tip 1 to find Earth’s radius R. From the definition
of the meter you know Earth’s circumference is 40 Mm. Therefore,

R =
2πR

2π
=

40 Mm
2π

=
40 × 106 m

2π
= 6.37 × 106 m.

Also use Tip 1 to convert d to meters:

d = 10 cm = 10 × 10−2 m = 0.10 m.

Now substitute these into the equation to get an estimate of the volume
of topsoil on Earth:

V = 0.3 × 4π × (6.37 × 106)2 m2 × .1 m = 1.53 × 1013 m3.

� EXERCISES

4. If you had not converted the values of R and d to meters, what
would have been the units of volume of your answer?

5. Suppose your answer had come out to be 1500 (Mm)2 (cm). Is this
a unit of volume? What factor converts the units to cubic meters?

The example showed how to convert megameters and centimeters to
meters. What if you want to go in the other direction? Suppose you have
a box that is 0.1 m wide, 0.2 m long, and 0.05 m deep. Its volume is 10 ×
10−4 m3, but it would be easier to visualize this volume if it were in cubic
centimeters. You can convert meters to cm by multiplying the meter unit
“m” by 1 = 102 c, i.e.,

0.1 × 0.2 × 0.05 m3 = 0.1 × 0.2 × 0.05 (102 cm)3.
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Now pull the factor of 102 out from the parentheses, being sure to cube it
because the contents of the parentheses are to the third power, and you
get

10 × 10−4 × 106 cm3 = 1000 cm3.

� EXERCISES

6. What would be your answer in cubic micrometers? Keep in mind
that when you ask how many little volumes go to make a large one, the
number you get should be (much) larger than the one you started with.

Practice doing conversions of units as often as you can so that you
become good at it. If you have learned a cumbersome process for doing
conversions, replace it with the quicker more efficient way shown here.

SI multipliers are often used with named combinations of metric units
their own names. The “liter” is an example; it’s a volume of 10 cm
cubed: (10 cm)3 = 1L where L is the abbreviation for liter. Notice that
1000 cm3 = 1L = 1000mL, showing you that 1 mL = 1 cm3, i.e., 1 mL
equals 1 cubic centimeter.

� EXAMPLES

5. What is one liter expressed in cubic meters? To answer this keep
in mind that the notation cm3 really means (cm)3 so the “c” is cubed
along with the “m.” Then

1000 cm3 = 103 × (10−2)3 m3 = 10−3 m3 (2)

and your answer is 1 L = 10−3 m3, or 1000L = 1m3.

The later parts of this chapter review the important physics ideas of
momentum, force, and energy. Each of these concepts has a quantitative
measure in terms of composite units, and these are developed along with
the concepts themselves. Be attentive to these groups of units and their
names.

Consistency of Units

The equation for centripetal acceleration illustrates an important aspect
of units: they must be the same on both sides of the equal sign. If v2/R is
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acceleration, it must have units of acceleration. You can see that it does.
The SI units of v are m s−1 and the SI units of R are m. It must always be
the case that when you combine these according to the formula v2/R you
get the units of acceleration. Do the algebra of the units of centripetal
acceleration, and you get

v2

R
=

(ms−1)2

m
= m2s−2 m−1 = m s−2.

These are units of acceleration; there is consistency of units.
The units of equations must always be consistent. This is important!

Every term on both sides of the equals sign must have the same units.
Consider the following where a and g are accelerations, v is a velocity, �
is a length, and t is time:

1
2

at2 + vt =

√
�

g
at

The first term has SI units of (m s−2)(s2) = m; the second term has
units of (m s−1)(s) = m. Each term on the left side has the same units—
meters; they are consistent. The term on the right side has units of
m

1
2 (m s−2)−

1
2 m s−2 s = m, and the whole equation has consistent units.

Having consistent units does not guarantee an equation is correct, but
having inconsistent units absolutely guarantees it is wrong. You need to
know this not as a curious and interesting fact, but so you don’t humiliate
yourself. Checking for consistent units is the first thing a physicist does
when reading equations. Presenting equations with inconsistent units is
like walking around with a booger on your nose; you look foolish.

• Tip 2: To avoid looking foolish, always make sure the units in your
equations are consistent.

Physical Dimensions

Instead of talking about “units,” physicists often refer to the more general
idea of physical dimensions. These are not the spatial dimensions of a line,
a surface, or a volume; they are a way to talk about length, time, and
mass independently of units. Although a length can be measured in any of
many different units, the property of length-ness exists independently of
the units in which it is measured. That property is called its “dimension”
of length and denoted as “L” (not to be confused with the abbreviation
for liter). Similarly the dimension of mass is denoted by “M” and the
dimension of time by “T.”
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In this special sense every physical quantity must have dimensions com-
posed of M, L, and T.7 Thus, whether you measure area in square meters,
square inches, or acres, the dimensions of the area are L2. Similarly, a vol-
ume, whether measured in liters, quarts, pints, or steres, has dimensions
of L3. Another way to summarize the point of Table 2.3 (p. 22) is to
say that every formula for a volume must have dimensions of L3. Veloc-
ity has dimensions of length over time; that is, its dimensions are LT−1.
Acceleration has dimensions of LT−2. Density has dimensions of ML−3.

� EXERCISES

7. What are the dimensions of an acre-foot, the measure for water
used to irrigate fields?

8. What are the dimensions of a hectare?

9. You learned in high school that force F is mass m times acceleration
a. What are the dimensions of force?

Like units, dimensions of physical quantities combine according to the
rules of algebra. If a velocity has dimensions LT−1, then the square of a ve-
locity has dimensions L2T−2. The square of an acceleration has dimensions
L2T−4.

• Tip 2 in terms of “dimensions”: To avoid looking foolish, always make
sure your equations are dimensionally consistent.

2.4 ANGLES AND ANGULAR MEASURE

A lot of reasoning in physics involves angles, so you need to understand
how to measure them and how to talk about them. There are several
different measures of angles: degrees, fractions of a circle, clock time, and
radians. Radians will be the measure we use most, because they connect
simply and directly to trigonometry and because they are often easy to
measure.

Let’s review some of the vocabulary and ideas associated with angles
and their measure.

7In later chapters you will add electric charge and temperature to the set of basic quantities.
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FIGURE 2.4 (a) An angle � BAC with its vertex at A. The segment BC subtends the

angle at A. (b) The arc
�

BC also subtends this angle at A. (c) Here the circular arcs
�

B′C and
�

BC′ subtend the angle � BAC at A.

Vertex and Rays

An angle is the figure formed by the spreading of two rays from a point.
That point is called the “vertex” of the angle.

In Fig. 2.4 the three points B, A, and C define an angle with A as
its vertex and AB and AC as its rays. It is usual to denote the angle as
� BAC, where the middle letter is the vertex.

What Does “Subtend” Mean?

Imagine that some distance out from the vertex something stretches across
between two rays to form a closed figure. For example, imagine two lines
diverging from your eye straight to the edges of a white area on the
blackboard. The thing that stretches across the diverging lines is said to
“subtend” some angle “at the point,” i.e., the vertex, from which the rays
diverge—here, your eye. So we say that the white mark subtends an angle
of some amount at your eye. The phrase tells you two things: what sits at
the mouth of the angle (the white mark) and the location of the starting
point of the rays that define the angle (your eye). In Fig. 2.4 the line BC

and the arcs
�

B′C and
�

BC ′ each subtend the angle � BAC at A.

� EXERCISES

10. What angle does the hypotenuse of a right triangle subtend?

Degrees

Two principal measures of angles are used in physics: degrees and radians.
Each of these expresses the angle in terms of segments of a circle. In effect,
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FIGURE 2.5 Angular measure: (a) degrees; (b) radians.

an angle is measured by specifying what fraction of a circle’s circumference
is subtended at the vertex by a circular arc. To see how this works consider
how you define a “degree.”

Given an angle, construct any circular arc centered on the vertex (as in
Fig. 2.4c). One degree is defined as the angle formed by two rays from the
vertex that intercept an arc that is 1/360 of the circle’s circumference.
In other words, we imagine a circle divided into 360 equal arc lengths,
and each of these arcs connected by lines to the center of the circle. In
Fig. 2.5 a quadrant of a circle has been divided into nine equal arc lengths;
consequently the angles are each 10◦. Expressed in algebraic terms, the
angle θ in degrees is

θ =
�
s

2πR
× 360 degrees. (3)

The symbol
�
s stands for the length of the circular arc subtending θ at

the circle’s center. The angle’s measure is independent of what circle you
choose, because the ratio of the arc length to the radius will not change
whether the circle is large or small.

It is common to use the symbol ◦ for degrees. Each degree is in turn
divided into 60 equal parts called “minutes,” and each minute is divided
into 60 equal parts called “seconds.” When it is necessary to distinguish
between seconds of time and seconds of angular measure, the latter are
called “arc seconds.” You learned a version of this so-called “sexagesimal”
system when you learned to tell time. It is a measure of the strength of
cultural inertia that the sexagesimal system survives and is widely used
in terrestrial and astronomical measurements of angle, even though the
degree and its curious subunits are awkward for many calculations.
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� EXAMPLES

6. Let’s see what angle corresponds to a circular arc
�
s= 2πR/8, one-

eighth of the circumference. From Eq. 3,

θ =
2πR

2πR

360◦

8
= 45◦.

� EXERCISES

11. Show how Eq. 3 will correctly yield 90◦ for the angle subtended
by a quarter of a circle’s circumference.

As Eq. 3 shows, the definition of units of angle measure involves the
ratio of two lengths, the arc length and the radius. This is why angles are
dimensionless quantities. They have units of measure, such as degrees,
but no physical dimensions.

Radians

The calculation in Eq. 3 is basic to the determination of the size of an
angle. To get the angle in degrees, you take the length of the circular arc
length subtending an angle and find what fraction it is of the circumfer-
ence of the circle of which the arc is part. Then you multiply by 360◦.
As Eq. 3 shows, this means that an answer in degrees is always 360/(2π)
times the ratio of the subtending arc length to the radius of the circle.

By choosing a different definition of the measure of angle, you can
make this factor of 360/(2π) disappear. Instead of dividing the circle into
360 parts, so that you measure angle as arc length

�
s over circumference

2πR times 360◦, why not divide the circle into 2π parts? Do you see that
this will eliminate the constant factor? For a circle divided into 2π equal
parts, the measure of an angle is just the ratio of the circular arc length
subtending the angle at the center of the circle to the radius of the circle
on which the arc length

�
s lies. This measure of angle is called the radian.

We have in general

θ =
�
s

R
rad, (4)

where “rad” is the usual abbreviation for “radians.”
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Of course this means that a full circle contains
2πR

R
= 2π radians,

and this means that 360◦ = 2π rad or that 1 rad = 57.3◦. This 57.3 is a
useful number to remember.

Radians are more convenient than degrees for measuring angles and
doing simple trigonometry. This especially so for angles that are small,
where by small we mean situations where the length of the chord (the
straight line) connecting two points is nearly the same as the length of
the circular arc connecting the same two points. The following examples
show that, for angles smaller than 10◦, using the chord in place of the
arc length introduces negligible error (less than 1

2%). The examples also
show how to calculate angles in radians when the angles are small. It is
important for you to understand how to do such calculations because the
small angle situation occurs frequently in physics and astronomy.

� EXAMPLES

7. Consider the angle subtended at your eye by a dime held an arm’s
length away. A dime has a diameter of 1.83 cm. For an arm’s length of
60 cm, the angle subtended by the dime is the length of arc of radius
60 cm connecting two points 1.83 cm apart divided by 60. For a chord
of exactly 1.83 cm, this arc length is 1.830071 cm. You make essentially
no error when you calculate the angle as the chord length over the
distance to your eye: θ = 1.83

60 = .0305 rad.

8. Suppose you held the dime just 10 cm from your eye. What angle
does it then subtend at your eye? You can figure out that the length of
arc of radius 10 cm between two points 1.83 cm apart is 1.8326 cm, so
the angle is 0.1833 rad. But you see that if you use the chord length of
1.83 cm instead of the arc length, you get an answer that is only about
half a percent smaller.

9. The Moon subtends an angle of ≈0.5◦ from a point on the Earth.
The Sun also subtends an angle of ≈0.5◦ from Earth. If the Sun is
1.5×1011 m from Earth, what is the Sun’s diameter? This angle is about
8.7 mrad. Therefore the diameter of the Sun is 8.7×10−3×1.5×1011 m =
1.31 × 106 km.

More About the Small-Angle Approximation

Radians are also convenient for making useful approximations to trigono-
metric functions. Referred to the large right triangle in Fig. 2.6a, the
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FIGURE 2.6 (a) A right triangle for defining the trigonometric functions. (b) For
small angles h ≈ x.

trigonometric functions—sine, cosine, and tangent—of θ, are respectively
sin θ = y/h, cos θ = x/h, and tan θ = y/x. In Fig. 2.6b the very acute
triangle shows the important fact that as θ gets small, the lengths of the
hypotenuse h and the long leg x of the triangle become almost equal, and
the right triangle more and more closely approximates an isosceles trian-
gle. Therefore, as θ gets small, h and x better and better approximate
radii of a circle, and the small leg y becomes a better and better approxi-
mation to the circular arc length

�
s connecting two radial legs. This is the

basis for approximating the sine or tangent of a small angle by the angle
itself in radian measure:

sin θ =
y

h
≈

�
s

h
= θ ≈ y

x
= tan θ.

� EXAMPLES

10. What is the sine of 5.7◦? Since 5.7◦ is about 0.1 rad, and this is
fairly small compared to unity, sin 5.7◦ ≈ 0.100.

If you do this with a calculator, you will get sin 5.7◦ = 0.0993, showing
that the approximation agrees with the exact value to better than 1%.
The quality of the approximation is apparent from the entries in Table 2.4,
which shows that even at angles as large as 15◦ the sine is only about 1%
different and the tangent about 2% different from the radian measure of
the angle.

The small-angle approximation makes many calculations easier.
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TABLE 2.4 Small-angle approximation

θ in ◦ θ in radians sin θ tan θ

1.00 0.0175 0.0175 0.0175

2.00 0.0349 0.0349 0.0349

4.00 0.0698 0.0698 0.0699

8.00 0.140 0.139 0.141

10.0 0.175 0.174 0.176

15.0 0.262 0.259 0.268

� EXAMPLES

11. For example, given that the Moon is 60 Earth radii distant
from Earth, what angle does Earth subtend at the Moon? Since
Earth’s diameter is 2RE , then the angle subtended at the Moon is
(2RE)/(60RE) = 1/30 = 0.0333 rad. If you’re asked to find the angle
in degrees, use the fact that 180◦= π rad, so

0.0333 rad × 180◦

π rad
= 1.91◦. (5)

2.5 THINKING ABOUT NUMBERS

Although it is important to have quantitative values for such things as the
volume of the Earth, it is not enough just to have the number. You need to
think about it; you need to find ways to make it comprehensible. A number
like 1021 m3 does not spontaneously inform your imagination. Making very
large and very small numbers meaningful is a recurring problem in physics.
One way to understand them is by comparison.

� EXAMPLES

12. Now try some comparisons for a number that may have some more
immediate interest than the volume of the Earth. The annual federal
budget is on the order of four trillion dollars ($4 × 1012). What is a
trillion dollars? Try breaking the number into more manageable units,
say 100 million dollars. It takes ten thousand sets of 100 million to
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make one trillion. One hundred million is still hard to imagine, but its
scale is more tangible. For example, a medium-sized liberal arts college
has a yearly budget on this order, or quite a nice hospital might be
built for $100 million. Even so, forty thousand hospitals a year is hard
to imagine. But when you discover that 4 trillion dollars could build
more than 100 new, fully equipped, 40-bed hospitals every day for a
year, you begin to get a sense of what $4 trillion means.

� EXERCISES

12. Example 11 showed that Earth subtends at the Moon an angle
of 0.0333 rad. Does this help you imagine what a full Earth looks like
from the Moon? How can you make the number more meaningful?

13. The US federal budget runs annual deficits of about $5× 1011.
How high would a stack of $100 bills be if it contained this much money?
Notice here, as is often the case in such questions, that you need to make
some reasonable estimate of some physical quantity important to your
answer—in this case, the thickness of a $100 bill. Most bills you see
daily are not very flat, but you’ll probably decide that a bill at the
bottom of this stack would be quite flat!

14. Write out all the figures in Example 12 numerically; write down
the relevant relations; and confirm the statements made.

15. What is the largest object for which you have some sense of its
size? Estimate its volume. What is Earth’s volume in units of your
object’s volume?

The comparison you developed in Exercise 15 is probably still not very
meaningful. To make the volume of Earth meaningful try comparing it
with other similar objects—the Moon, the planets, the Sun. The following
paragraphs show how to make such comparisons.

� EXERCISES

16. The Moon is 3.8 × 108 m from Earth. You can just block out the
Moon with a disk 9.28mm in diameter held 1m away from your eye.
What is the diameter of the Moon? (See Fig. 2.12.) What is its volume?
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17. If you like this sort of argument, apply it to the Sun. Curiously,
the Sun subtends at Earth almost exactly the same angle as the Moon,
although the Sun is more distant. As you saw in Example 9, knowing
the Sun is about 1.5 × 1011 m from Earth, you can find its diameter.
What is its volume? How does that volume compare to Earth’s?

Physicists are always trying to find ways to make numbers meaningful.
Here is an example of one approach. A large object often has a large
mass, so it is not surprising that a planet with a volume of 1.08× 1021 m3

has a mass of 5.94 × 1024 kg, or that a star (our Sun) with a volume of
1.41 × 1027 m3 has a mass of 1.99 × 1030 kg. But what do these numbers
mean? A common trick is to use the large numbers to describe some
property that is not itself a large number. For instance, consider how
much mass there is in a unit volume, i.e., look at the density. Earth’s
density is ρ = 5.52 × 103 kgm−3. Another trick is to rescale the units.
A cubic meter is a pretty large volume; let’s look at the density in grams
per cubic centimeter, i.e., g cm −3. Then the average density of the Earth
is 5.5 g cm−3.

Now that’s a number a person can deal with. You already know that
water has a density of 1 g cm−3. So Earth is about 5.5 times denser than
water. Does that make sense? You could check by measuring the density
of some other things. Iron (Fe) has a density of 7.85 g cm−3. Mercury (Hg)
has a density of 13.6 g cm−3. More interesting, the granitic rocks of which
Earth’s crust is made have a density of about 2.8 g cm−3.

� EXERCISES

18. How can this be? You just found that the density of Earth
is 5.5 g cm−3. How can Earth be denser than its crust? Make up a
reasonable explanation for the discrepancy.

19. Now calculate the density of the Sun and compare it to Earth’s.
Are you surprised? We hope so. But in any case, do you see how useful
it is to play with the numbers from different points of view?

Such rescaling and such comparisons are essential because so little of
the universe is set to human scale. The visible universe continues out
beyond 1026 m; subatomic particles are smaller than 10−15 m. Physicists
deal casually with the unimaginably large and the inconceivably small.
It is hard to know what is important about a mass of 3.35 × 10−27 kg.
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It becomes more meaningful when you know that it is twice the mass of
an atomic nucleus of hydrogen or half that of a helium nucleus. Part of
thinking about physics is the search for meaningful comparisons among
the numbers used to describe nature and the interactions of matter.

2.6 MOMENTUM, FORCE,
AND CONSERVATION OF MOMENTUM

This section describes velocity, acceleration, momentum, and force;
Sect. 2.7 surveys the idea of energy. The ideas of momentum and energy
are especially important and are used repeatedly throughout this book.
They are the basis of two of the most fundamental, universally applicable
laws of physics: the conservation of momentum and the conservation of
energy.

Velocity and Acceleration

Velocity describes how far (a length) a body travels in a unit time in some
particular direction. For bodies in steady motion the idea is simple. If at
the end of 1 s a car has moved 24.6 meters and then again at the end of 2 s
another 24.6m, we characterize the car as having a speed of 24.6m s−1.
Direction is an important part of velocity, but for now worry only about
the numerical value, or magnitude, of velocity. This number is called the
“speed.”

For the case when the magnitude of the speed or its direction varies
with time, calculus provides a precise definition of velocity. We’ll explain
this when necessary.

You also need a measure of the time rate-of-change of velocity; this
is called “acceleration.” You already know that near Earth’s surface the
speed of a body falling in a vacuum increases 9.8 m s−1 every second of
its fall. Just as for the case of constant speed, the special case of steady
(constant) rate-of-change of velocity is simple to visualize. If with every
passing second the speed of an object increases by 9.8 m s−1, the rate-
of-change is 9.8 m s−1 per second or, following the algebraic logic of the
units 9.8 (m s−1) s−1. It is customary to complete the algebra and write
the acceleration as 9.8 m s−2. As velocity specifies the time rate-of-change
of magnitude and direction of a distance traveled , so acceleration specifies
the change of magnitude and direction of a velocity.

An object can accelerate without changing its speed. For example, when
moving in a circular path at constant speed v, it is accelerating because
it is changing direction even though v stays constant in magnitude. This
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kind of motion is called “uniform circular motion.” It occurs when you
swing a ball on a string in a horizontal circle or when Earth pulls a
satellite around it in a circular orbit or when a uniform magnetic field
bends a moving electrically charged atom in a circle. For uniform circular
motion the acceleration is always toward the center of the circle, and, for
this reason, it is called “centripetal” acceleration. Although we haven’t
proved it, keep in mind that an object moving with constant speed v
around a circle of radius R, always has centripetal acceleration ac where

ac =
v2

R
. (6)

� EXERCISES

20. Show that the dimensions of v2

R are the dimensions of acceleration.

21. The Space Shuttle moves in a circular orbit about 300 km above
Earth’s surface. It takes 90.5 min to go once around Earth. What is its
acceleration?

22. Why do you know that the Moon is accelerating toward Earth?
What is the magnitude of that acceleration?

Momentum

You know from personal experience that when two bodies move at the
same speed, the heavier one possesses more of something associated with
its motion than the lighter one does. A baseball delivered into the catcher’s
mitt at 24.6m s−1 is not especially intimidating. In the major leagues such
a pitch would be so slow that it very likely would be hit before reaching
the catcher. However, a bowling ball delivered at the same speed is quite
another story, promising severe bodily damage, and an SUV at the same
speed would probably kill you on impact.

Newton thought of moving bodies as possessing different amounts of
motion, and he devised a useful measure of this “quantity of motion.” It
is the product of the mass and the velocity, i.e., mv. Today we use the
word “momentum” instead of “quantity of motion,” but it means exactly
the same thing.

In cases where we are interested in momentum alone and are not cal-
culating it as the product of mass with velocity, it is often convenient to
give it a separate symbol, most commonly p,

momentum = mass × velocity,

p = mv.
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Assuming that they move at 24.6 m s−1, you see that the baseball, with
its mass8 of about 150 g, has a momentum of 3.69 kgm s−1, while the bowl-
ing ball,9 with a mass of 5.0 kg has a momentum of 123.0 kgm s−1, and
the SUV,10 with its mass of 1500 kg, has a momentum of 36 900 kgm s−1.
The difference between being on the receiving end of 3.69 kgm s−1 and
36 900 kgm s−1 is made evident daily in unpleasant ways.

� EXERCISES

23. Estimate the momentum of you and your bicycle together when
riding at a typical speed. Compare your answer to the momenta given
above for the baseball, the bowling ball, and the automobile.

Force

Newton used his definition of momentum to specify a meaning for another
word you use daily: force. Anything that changes the momentum of a
given body is a force. This definition includes changes of the direction of
momentum as well as of its amount.

The size, or magnitude, of a force depends upon how quickly the mo-
mentum changes. In fact, the magnitude of a force is just how much the
momentum changes per unit time, i.e., the time rate-of-change of momen-
tum. Suppose you start with some momentum p0 at a time t0. Suppose
also that a little later, at time t1, your momentum has changed to p1.
To find the average rate-of-change you divide the actual change by the
number of units of time it took to make the change. In symbols this is

F =
p1 − p0

t1 − t0
.

A more compact notation uses the capital Greek letter delta, Δ, to denote
a difference between the final and initial values of a quantity. Thus,

F =
Δp

Δt
. (7)

8This kind of information can be found online, but often you can find it more directly. We
measured the mass of a hardball on a triple-beam balance and got 151.6 g. The regulation
American League and National League baseball is 5 to 5.25 ounces, i.e., between 142 and
149 g.
9Bowling balls range between 4.5 and 7.3 kg.
10Incidentally, 24.6m s−1 is about 55mph.
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In terms of mass and velocity, the expression reads

F =
Δ(mv)

Δt
,

where

Δ(mv) = m1v1 − m0v0

and

Δt = t1 − t0.

� EXAMPLES

13. If the baseball stops in the catcher’s glove in 0.01 s, the av-
erage rate of change of its momentum is −3.69 kg m s−1/0.01 s =
−369 kgm s−2. Similarly, if a 5-kg bowling ball moving at 8m s−1 stops
at the end of the lane in (perhaps) a time of 0.01 s, its rate-of-change of
momentum is −40/0.01 = −4000 kgm s−2. These two results mean that
an average force of 369 kgm s−2 acted on the baseball and an average
force of 4000 kgm s−2 acted on the bowling ball. Catching the baseball
may sting a little; trying to catch the bowling ball would really hurt!

Composite Units Again

Here is a good place to learn about some more composite units and their
special names. These names are handy for several reasons. For one thing,
you get weary of writing “kgm s−2” all the time. For another, this group
of units does not shout “force!” at the reader. Labels of physical quantities
are more compact and more recognizable if you have standard names and
abbreviations for groups of units.

In the SI the group “kgm s−2” is called the “newton.” We say “the
newton is the unit of force when using the meter, the kilogram, and the
second as basic units of measurement.” The newton is abbreviated “N.”
Thus to stop the baseball in 0.01 s requires a force of 369N, while stopping
the bowling ball in 0.01 s requires a force of 4000N. Like velocity and
momentum, force has direction as well as magnitude, but for now you can
neglect this important aspect of its definition.

An important point: Once a group of units has a name (such as newton),
you can use all the usual SI prefixes. Physicists talk of Meganewtons
(MN), micronewtons (μN), millinewtons (mN), etc.

It’s possible to make composites of composites. For example, once
you have defined kgm s−2 to be a newton, you can express the units
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of momentum in terms of newtons too. Use the algebra of the units to
write:

kg m
s

× s
s

=
kg m

s2
× s = N s. (8)

This means 368 kgm s−1 is the same as 368 newton-seconds, N s, N·s, or
N-s. Momentum is often described in units of N s.

Why Does F = ma?

Usually a body’s momentum changes because its velocity changes. Then

Δp = mΔv,

and you can rewrite the force relation by substituting for Δp:

F = m
Δv

Δt
.

This says that time rate-of-change of momentum is the same thing as
mass times the rate-of-change of velocity. But rate-of-change of velocity
is the definition of acceleration. The average acceleration of a body is
defined to be a = Δv/Δt.

Now you see where the famous relation F = ma comes from. When
the mass is constant, a force changes a body’s momentum by producing
acceleration, that is, the force changes the velocity in some time interval.
F = ma is just a particular way of writing that force causes a rate-of-
change of momentum.

� EXERCISES

24. Find the average accelerations that occurred while stopping the
two objects in Example 13.

25. If the speedometer of your car reads 5mph more than it did 2 s
earlier, what was your average acceleration in mph per second? Such a
mixture of units can be awkward, so convert them to m s−2.

26. This and the next two exercises are to help you to see whether
you understand that F = Δp/Δt = ma means what it says.

A skydiver without her parachute open falls at a steady 70m s−1.
What is the total force acting on her?

27. After the skydiver opens her chute she falls at a steady speed of
about 4m s−1. What is now the total force acting on her?
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28. In the absence of air resistance, a body falling near Earth accel-
erates at g = 9.8 m s−2. If that is the case, what is the force acting on
a 10 kg weight as it falls in the absence of air? If the accelerating body
has a mass of 27 kg, what is the magnitude of the acting force? What
is the agent producing the force?

Conservation of Momentum

In the discussion of momentum, we asked you to imagine stopping a base-
ball and a bowling ball, because we wanted to evoke in you an intuitive
sense of the quantity of motion (momentum) possessed by a moving ob-
ject. The discussion was about the forces on the baseball and the bowling
ball, not about the forces on the catcher or on the walls of the bowling
alley where the ball stopped. There is, however, an intimate connection
between the force exerted by an object A acting on an object B, and the
force that B exerts on A. It’s important for you to understand what it is.

Suppose you were seated on a very slippery surface and tried to stop a
bowling ball coming at you. Assuming that you were successful in bringing
it to rest relative to you without undue pain, what do you think might
happen? You already have some idea that the ball would exert a force
on you as you try to slow it down. With negligible friction to hold you
in place, that force would have to impart some momentum to you. A
remarkable thing happens. The momentum imparted to you is exactly
equal in magnitude to the amount lost by the bowling ball. In fact, in all
such interactions when there is no outside, i.e., external, force acting, the
net change in momentum is zero. This is what we mean by conservation
of momentum. The cartoon in Fig. 2.7 depicts the collision interaction.

If the initial momentum of the bowling ball is p0 (the person’s initial
momentum is zero, since he is at rest), and the final momenta of the ball
and person are p1 and p′1, respectively, the conservation of momentum
says that

p0 = p1 + p′1.

� EXAMPLES

14. A 24.6m s−1 bowling ball is a bit fearsome, so suppose that a
person is on very slippery ice with a ball approaching at 4.0m s−1 as
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(a) Before

(b) During

(c) After

p0 p1

p1

FΔt=ΔpBall:

Person: FΔt=Δp

FIGURE 2.7 Collision between a bowling ball and a person on ice. (Don’t try this at
home).

suggested by Fig. 2.7. With what speed do the ball and person slide
off together? Take the bowling ball’s mass to be 5 kg and the person’s
mass to be 70 kg. You can calculate the final momentum of each and
their common velocity, v, by using conservation of momentum to find
the velocity v:

p0 = p1 + p′1,
5 kg × 4 m s−1 = (5 kg)(v) + (70 kg)(v) = (75 kg)(v),

v =
20 kg ms−1

75 kg
= 0.27m s−1.

Knowing v, the individual momenta are easily calculated.

� EXERCISES

29. Calculate the individual momenta.

30. Why is it important that the person is on slippery ice? Why
wouldn’t momentum of the ball and person be conserved if he were
seated on the ground?
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To analyze collisions in general requires you to understand the vector
properties of force and momentum (see the Appendix at the end of this
chapter), but in one dimension you can treat vectors simply as algebraic
quantities: A force, velocity, or momentum that points to the right is
usually taken as positive, while one to the left is negative. This negative
sign is crucial. For example, if a batter hits a ball pitched at 30m s−1, the
ball might end up going 30m s−1 straight back toward the pitcher (ouch!).
If you don’t take into account the change in direction, you might conclude
that the baseball’s momentum is unchanged, so the force from the bat is
zero. Of course, that doesn’t make sense! You get the correct answer if
you remember that the velocities of the pitched ball and the hit ball must
have opposite signs. You can arbitrarily assign a positive velocity to the
pitched ball, and then the hit ball must have a negative velocity. So now

Δp = pfinal − pinitial

= (0.15 kg)(−30 m s−1) − (0.15 kg)(30 m s−1)
= −9 kgm s−1

Δp = −9 N s.

This negative sign in Δp is meaningful; it tells you that the force applied
must be in the direction from home plate to the pitcher’s mound, just as
you would expect.

With the signs straightened out, go back to the brave (foolhardy?)
catcher of bowling balls. A slight rearrangement of the equation defining
force Eq. 7 allows you to calculate the change in momentum of the ball
and the change of momentum of the person:

FΔt = Δp,

F ′Δt = Δp′,

where the primed quantities refer to the action on the person.
Conservation of momentum tells you that any momentum lost by the

bowling ball must be gained by the person: Δp = −Δp′. Combining this
equality with the two expressions above yields FΔt = −F ′Δt, or, since
the two Δt’s are the same:

F = −F ′. (9)

That is, if you are exerting a force on a body, it will exert a force of the
same magnitude and opposite direction back on you. You may already
know this fact as Newton’s third law of motion: When a body A acts on
B with a force FAB, body B acts on A with an exactly equal and opposite
force FBA = −FAB. You have just seen this law is equivalent to the law
of conservation of momentum.
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� EXERCISES

31. Suppose the person in Example 14 gave the ball an extra shove
that sent it backwards at 2 m s−1 after the collision. Find the person’s
final momentum.

32. Earlier you found the average force required to stop the 5 kg bowl-
ing ball moving at 8m s−1 in 0.01 s. Suppose the wall is very elastic and
rebounds with the same speed, the time of collision being the same.
What is the average force on the ball and on the wall for this new
situation? In specifying directions, take the initial momentum to be
positive.

33. When many collisions occur at a steady rate, one after the other,
it is useful to describe the average force that they exert over time.
We will use this idea of averaging when we study gases. Suppose 20
baseballs are thrown at a wall in 5 s and that each rebounds from the
wall with the same 24.6m s−1 speed that it came in with. Find the
average force exerted on the wall during the 5 s.

Centripetal Forces

For an object to move in a circle it must have a force acting on it. As
mentioned in Sect. 2.6, an object can only move with constant speed v
in a circle of radius R by accelerating toward the center of the circle
with an acceleration of ac = v2

R [Eq. 6, p. 36]. Because F = ma, an
object of mass m moving with uniform circular motion must be experi-
encing a force of magnitude mv2

R . Notice that this does not tell you what
is exerting the force, only its magnitude. Because the acceleration is to-
ward the center of the circle, the force is also toward the center. For this
reason, whatever kind of force is producing the uniform circular motion—
gravitational, electrical, frictional, magnetic, or string tension—it can be
called “centripetal,” a word that means “acting toward the center.”

� EXAMPLES

15. An electron is moving in a circle with radius 5 m. Its speed is 105

m s−1. Find the magnitude of the centripetal force that must be acting
on it:

F =
mv2

r
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=
(9.1 × 10−31 kg)(105 m s−1)2

5 m
= 1.8 × 10−21 kgm s−2

= 1.8 × 10−21 N

� EXERCISES

34. If the speed of an electron moving in a circle is doubled, what
force would keep the radius the same?

35. If the speed of the electron is doubled, but the force is unchanged,
what is the new radius?

2.7 ENERGY

‘Energy” is a word you use in daily speech. You talk about having enough
energy to get up and do what has to be done. You hear reminiscences of
“energy crises” and predictions of energy shortages to come. People talk
about energy needs, energy efficiency, energy conservation, and the need
for a national energy policy.

The idea of energy is fundamental to the story this book tells. Energy
is useful for discussing remarkably different phenomena over a huge range
of magnitudes—tiny particles, large planets, flowing electric charge, light
waves, and colliding atoms or nuclei. Because of this general applicability
and because the behavior and interactions of radiation and atomic and
subatomic matter are more easily described in terms of energy than in
terms of force, we use the idea over and over in this book.

For physicists energy can be a measure of a body’s ability to do work.
This, of course, tells you nothing until “work” is defined. That tells you
nothing, of course, until “work” is defined. In the simple case of a constant
force pushing parallel to the line of motion of the object on which it acts,
and pushing on it over some distance d, the work W done is defined as
the amount of force F times the distance d over which the force acts:

W = Fd.
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� EXAMPLES

16. Thus, a force of 2N applied over a distance of 3m does an amount
of work W = 2 N × 3 m = 6N m. A newton meter has its own name,
“joule,” so you can as well say that 2N acting over 3m does 6 joules
of work. The abbreviation for joule is “J,” and you should write that
the work done was 6 J.

17. The rate at which energy is supplied over time is power. Power
is measured in units of J s−1, and this group of units is called a watt:
1 J s−1 ≡ 1watt (abbreviated W). A watt-second is the same thing as
a joule, i.e., 1 W s ≡ 1 J.

All this semantic information has its uses, but it does not answer your
central question: What is energy? One of the best answers to this ques-
tion is an analogy, given by the renowned American physicist Richard
Feynman, that conveys the essence of the idea.11

Feynman’s Energy Analogy

Imagine a child, perhaps “Dennis the Menace,” who has blocks
which are absolutely indestructible, and cannot be divided into
pieces. Each is the same as the other. Let us suppose that he has
28 blocks. His mother puts him with his 28 blocks into a room
at the beginning of the day. At the end of the day, being curious,
she counts the blocks very carefully, and discovers a phenomenal
law—no matter what he does with the blocks, there are always
28 remaining! This continues for a number of days, until one day
there are only 27 blocks, but a little investigating shows that there
is one under the rug—she must look everywhere to be sure that the
number of blocks has not changed. One day, however, the number
appears to change—there are only 26 blocks. Careful investigation
indicates that the window was open, and upon looking outside, the
other two blocks are found. Another day, careful count indicates
that there are 30 blocks! This causes considerable consternation,
until it is realized that Bruce came to visit, bringing his blocks with
him, and he left a few at Dennis’ house. After she has disposed of
the extra blocks, she closes the window, does not let Bruce in,

11Richard Feynman in volume I of The Feynman Lectures on Physics by Richard P. Feynman,
Robert B. Leighton, Matthew Sands c©1963 by the California Institute of Technology.
Published by Addison-Wesley Publishing Co. Inc., 1963. on pp. 4-1 to 4-2.
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and then everything is going along all right, until one time she
counts and finds only 25 blocks. However, there is a box in the
room, a toy box, and the mother goes to open the toy box, but
the boy says “No, do not open my toy box,” and screams. Mother
is not allowed to open the toy box. Being extremely curious, and
somewhat ingenious, she invents a scheme! She knows that a block
weighs three ounces, so she weighs the box at a time when she
sees 28 blocks, and it weighs 16 ounces. The next time she wishes
to check, she weighs the box again, subtracts sixteen ounces and
divides by three. She discovers the following:
(

number of
blocks
seen

)

+
(weight of box) − 16 ounces

3 ounces
= constant. (10)

There then appear to be some new deviations, but careful study
indicates that the dirty water in the bathtub is changing its level.
The child is throwing blocks into the water, and she cannot see
them because it is so dirty, but she can find out how many blocks
are in the water by adding another term to her formula. Since the
original height of the water was 6 inches and each block raises the
water a quarter of an inch, this new formula would be

(
number of
blocks
seen

)

+
(weight of box) − 16 ounces

3 ounces

+
(height of water) − 6 inches

1/4 inch
= constant.

(11)

In the gradual increase in the complexity of her world, she finds
a whole series of terms representing ways of calculating how many
blocks are in places where she is not allowed to look. As a result,
she finds a complex formula, a quantity which has to be computed,
which always stays the same in her situation.

What is the analogy of this to the conservation of energy? The
most remarkable aspect that must be abstracted from this picture
is that there are no blocks. Take away the first terms in Eqs. 10 and
11 and we find ourselves calculating more or less abstract things.
The analogy has the following points. First, when we are calculating
the energy, sometimes some of it leaves the system and goes away,
or sometimes some comes in. In order to verify the conservation of
energy, we must be careful that we have not put any in or taken
any out. Second, the energy has a large number of different forms,
and there is a formula for each one.
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Energy Costs Money

Here is some more evidence that energy for all its abstraction is something
real. It costs money. Whatever energy is, if you want some, you usually
have to pay for it. You buy electrical energy to run your household appli-
ances; you buy oil or natural gas to heat your house; you buy gasoline to
run your automobile; you buy food to run your body.

A kilowatt-hour of electricity is the same thing as 3.6MJ. In the U.S.,
the average cost of a kW-h is about $0.10. This is not very expensive,
which is one of the reasons many Americans’ lives are often pleasant.
A representative price for all forms of energy is $25 for 109 joules. Sci-
entists use the prefix “giga” to represent the factor 109 (an American
billion), so 109 joules is called a gigajoule. Giga is abbreviated G, so you
could write that energy costs roughly $25GJ−1.

� EXERCISES

36. A gallon of gasoline contains about 131 MJ. At $3 per gallon, how
much are you paying for 1 GJ of gasoline?

37. At $0.10 a kW-h, how much are you paying for a GJ of electricity?

Actual prices vary a great deal depending on special features of the en-
ergy: is it easy to handle? Is it very concentrated? Is the energy accessible
easily? Can you get out a lot of energy quickly? The concerns of this book
with energy will usually be quite remote from practical considerations of
cost and availability. Rather, energy will be a guide to studying atoms
and their structure.

Conservation of Energy

As Feynman’s analogy suggests, energy comes in many forms. There is
heat energy, kinetic energy, gravitational potential energy, electrical po-
tential energy, energies of electric and magnetic fields, nuclear energy.
There is energy stored in the compression of a spring, in the compres-
sion of gas, in the arrangement of molecules and atoms. Although energy
may change from one form to another, the sum of all the forms of en-
ergy in a system remains constant unless some agent moves energy into
or out of the system. We say, therefore, that energy in a closed system is
conserved, i.e., the total does not change. This property of conservation
makes energy an exceptionally useful quantity. (Notice that physicists use
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the word “conservation” differently from economists and environmental-
ists, who usually mean “use available forms of energy as efficiently as
possible.”)

Kinetic Energy

One of the most familiar forms of energy is “kinetic energy,” the energy
a body has by virtue of its motion. It is another kind of “quantity of
motion” that was found to be useful at about the same time that Newton
began to think in terms of momentum. A body of mass m moving with a
speed v substantially smaller than the speed of light has a kinetic energy
K given by the formula

K =
1
2
mv2.

Knowing this, you can calculate the kinetic energy of the baseball, the
bowling ball, and the SUV described earlier.

� EXERCISES

38. The baseball’s kinetic energy is 1/2 × 0.15 kg ×(24.6m s−1)2 =
45.4 J. The kinetic energy of the bowling ball is 1513 J. That of the au-
tomobile is 0.454MJ (where “M” is the usual abbreviation for the prefix
“mega,” which stands for 106). Verify that these are correct numbers.
Notice that since each mass has the same speed, their kinetic energies
vary only by the ratios of their masses, i.e.,

Kbowling ball =
5.0 kg
0.15 kg

× Kbaseball.

(Insights like this are useful because they make calculating easier.)

39. A pitcher warms up by throwing a baseball to the catcher at 45
mph; this means it has a kinetic energy of about 30 J. During the game
he throws a fastball at 90mph. What is its kinetic energy then?

Gravitational Potential Energy

Because you are familiar with it, gravity at the surface of Earth provides
a good way to introduce the concept of potential energy, an idea that we
will later apply to electrical properties of atoms and their internal parts.
When you lift a mass m to some height—call that height h, you add energy
to the mass. This energy is called “gravitational potential energy,” or for
brevity just “potential energy.” (This brevity is sloppy usage because
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FIGURE 2.8 A rock falls off a cliff of height h. Its potential energy is converted into
kinetic energy, but the total energy remains constant.

their are other kinds of potential energy than gravitational.) The amount
of gravitational potential energy U you add by lifting the mass m a height
h is

U = mgh,

where g is the acceleration due to gravity near Earth’s surface, 9.80m s−2.
Why is it called “potential”? Perhaps because it has the potential for

becoming kinetic energy. If you lift the mass a height h and then re-
lease it, experience shows you that its speed increases as it falls. This
means that its kinetic energy increases. Of course, as m falls, the height
changes from h to some smaller height y, so the gravitational potential
energy of m diminishes all the while its kinetic energy increases. What
you are seeing here is the conversion of one form of energy—gravitational
potential energy—into another—kinetic energy—as the mass falls. What
makes this way of looking at the fall so useful is that the sum of the two
forms of energy remains constant throughout the fall: an example of the
conservation of energy:

mgh = mgy +
1
2
mv2.

Figure 2.8 graphically illustrates this remarkable property of energy. As
a stone falls off a cliff of height h its PE decreases steadily (dark bars)
while its KE increases steadily (light bars). At any instant the sum of the
dark and light bars is always the same.

� EXERCISES

40. What is the value of the sum of the two bars when y = h/2?

41. Suppose you lift a baseball (m = 150 g) 1m above a table. By
how much do you increase its gravitational potential energy?
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42. Suppose you drop the baseball. What will be its kinetic energy
when it is 0.5m above the tabletop? By how much will its gravitational
potential energy have changed at that point?

43. Suppose there is a hole in the table and the ball falls through it.
What will be the ball’s gravitational potential energy when it is 20 cm
below the table? What will be its kinetic energy at this point? What
will be the sum of its kinetic and potential energy? This exercise makes
the important point that although kinetic energy is always positive,
potential energy can be negative.

What happens after the ball hits the table and stops? Clearly, its kinetic
energy becomes 0 J. Also, the ball has reached the point from which we
chose to measure potential energy, and so its potential energy is 0 J. What
has become of its 1.47 J? It has gone into heating up the point of impact,
into the compression of the spot on which it is resting, and into acoustic
energy—the sound of its impact. A fascinating aspect of energy is that
so far in the history of physics there has always been an answer to the
question: What has become of the initial energy? And very often the
answer casts revealing light on the nature or behavior of matter.

It is an interesting and useful fact that gravitational potential energy
depends only on vertical distance; sideways movements of a body do not
change its gravitational potential energy. This means that no matter how a
body falls from one height to another, the change in gravitational potential
energy will be the same. Then as long as the only other form of energy
can be kinetic, the change in kinetic energy will also be the same. Look
at Fig. 2.9, where a flat object teeters at the top of two different inclines.

(a) (b)

h

FIGURE 2.9 (a) A frictionless hockey puck teeters indecisively. Regardless of which
way it slides, it will have the same kinetic energy when it reaches the bottom. (b) Now
the puck may slide down through a tunnel drilled in the block, but its kinetic energy
will still be the same at the bottom.
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It can slide without friction down the left side or the right side, but
whichever path it slides down, it will have the same kinetic energy at the
bottom.

� EXAMPLES

18. Suppose that in Fig. 2.9 the puck has a mass of 160 g and that
h = 20 cm. What will be its kinetic energy when it reaches the bottom
of the left-hand incline? The bottom of the right-hand incline?

Relative to the bottom of the inclines, the puck has a gravitational
potential energy of mgh = 0.16 kg × 9.8m s−2 × 0.2m = 0.314 J. As
the puck slides without friction down either incline, this amount of
gravitational potential energy is converted to kinetic energy. The kinetic
energy of the puck is the same at the bottom of either side; it is 0.314 J.

� EXERCISES

44. Suppose a chute was drilled through the block, curving off to the
side and arriving at the bottom right-hand corner as shown in Fig. 2.9b.
If the puck fell down the chute, what would be its kinetic energy when
it arrived at the bottom? How fast would it be moving?

Pendulums and Energy

A pendulum is a concentrated mass hanging by a tether from some pivot
point. Its motion is familiar if you have ever swung on a swing or looked
inside a grandfather clock. Now you can understand that what you ob-
serve when you watch a mass swing back and forth at the end of a string
is the cyclical conversion of gravitational potential energy into kinetic en-
ergy. The pendulum’s motion is begun by pulling its bob to one side; this
has the effect of lifting it some vertical distance h, as shown in Fig. 2.10a,
and it acquires gravitational potential energy. When released, the pen-
dulum swings back to its lowest position, where it is moving its fastest
because all its gravitational potential energy has been converted into ki-
netic energy. As the bob rises to the other side, it slows down because
of the conversion of kinetic energy into gravitational potential energy. It
reaches the highest point of its swing when all its kinetic energy has been
converted to potential energy; then it moves back toward the lowest point,
beginning another cycle of conversion.
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FIGURE 2.10 (a) A pendulum converts energy back and forth from gravitational
potential energy to kinetic energy. (b) For any given amount of total energy, changing
the pivot point will not change the height to which the pendulum can rise.

Figure 2.10b illustrates an argument made by Galileo that you can
explain on the basis of the conservation of energy. He writes:

Imagine this page to represent a vertical wall, with a nail driven into
it; and from the nail let there be suspended a lead bullet of one or
two ounces by means of a fine vertical thread, AB, say from four to
six feet long; on the wall draw a horizontal line DC, at right angles
to the vertical thread AB, which hangs about two finger-breadths
in front of the wall. Now bring the thread AB with the attached
ball into the position AC and set it free; first, it will be observed
to descend along the arc CB, to pass the point B, and to travel
along the arc BD, till it almost reaches the horizontal CD, a slight
shortage being caused by the resistance of the air and the string;
from this we may rightly infer that the ball in its descent through
the arc CB acquired a momentum [he means kinetic energy; the
difference between momentum and kinetic energy was not clear
until two hundred years after Galileo] on reaching B, which was
just sufficient to carry it through a similar arc BD to the same
height. Having repeated this experiment many times, now drive a
nail into the wall close to the perpendicular AB, say at E or F, so
that it projects out some five or six finger-breadths in order that the
thread, again carrying the bullet through the arc CB, may strike
upon the nail E when the bullet reaches B, and thus compel it to
traverse the arc BG, described about E as center. From this we
can see what can be done by the same momentum [kinetic energy]
which previously starting at the same point B carried the same
body through the arc BD to the horizontal CD. Now, gentlemen,
you will observe with pleasure that the ball swings to the point
G in the horizontal, and you would see the same thing happen
if the obstacle were placed at some lower point, say at F, about
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which the ball would describe the arc BI, the rise of the ball always
terminating exactly on the line CD. But when the nail is placed
so low that the remainder of the thread below it will not reach to
the height CD (which would happen if the nail were placed nearer
B than to the intersection of AB with the horizontal CD) then the
thread leaps over the nail and twists itself about it.12

� EXERCISES

45. Using the conservation of energy, give your own explanation of
the demonstration described here by Galileo.

Forces As Variations in Potential Energy

Figure 2.9 illustrates an important feature of potential energy. Wherever
there is a spatial variation of potential energy, there is a force. Notice that
as the puck slides down the right slope, its potential energy changes more
gradually than it does when it slides down the left slope. The steeper the
spatial change of potential energy, the greater is the force.

� EXAMPLES

19. Suppose the angle θ of the incline in Fig. 2.9 is 30◦. Then as
the puck slides along the right slope a distance Δs = 1cm, it drops a
vertical distance of Δz = 0.5 cm because Δz/Δs = sin θ and sin 30◦ =
0.5. The force F produced by this change in potential energy is just

F = −ΔU

Δs
= − sin θ

ΔU

Δz
, (12)

which means that F = −mg sin θ.

You may have known this already, but the point here is not that the
force down an incline is proportional to the sine of the angle of the incline.
The point is that the force is equal to how much the potential energy varies
over a small distance.

12In Galileo Galilei Dialogues Concerning Two New Sciences, Northwestern University, 1939
(Dover, New York), pp. 170–171.
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This property of potential energy can be nicely expressed using calcu-
lus, but for the purposes of this book the important idea is that if you
have two points A and B close together in space, and the potential energy
of a body is higher at A than at B, then there is a force pushing the body
from A toward B. Differences in potential energy tell you that forces are
acting. Big differences of potential energy over small distances mean the
forces are large.

2.8 SUMMARY AND EXHORTATIONS

This review of basic concepts and units of physics omits many interesting
subtleties and ignores the vector nature of many of the quantities. Never-
theless, you should now have a better understanding of the ideas of mass,
length, time, velocity, momentum, and energy, their units, the prefixes
that give the powers of ten that become parts of the units, and the way
they are used.

The ideas of length and time provide a basis for describing motion
in terms of velocity—the direction and rate at which a body covers
distance—and in terms of acceleration—the rate at which velocity
changes.

The quantity of motion in a body is the product of its mass and its
velocity, mv, and is called momentum. A body’s momentum is changed
only by a force; a force is anything that causes momentum to change.
Force is measured as the time-rate-of-change of momentum Δ(mv)/Δt.
In a closed system momentum is conserved.

A body of mass m moving with a speed v has kinetic energy which at
velocities of familiar objects is given by 1

2 mv2. Energy comes in many
forms. In a closed system energy may change from one form to another,
but the total amount of energy does not change. In a closed system energy
is conserved.

Connect Concepts to Physical Reality

These concepts and ideas are important, but so are the techniques for
thinking about them. Practice assigning numbers to them and develop-
ing a sense of their physical scale and significance. You will need these
techniques to make good use of the rest of this book.

Remember, there is more to reading equations than assuring that their
units are consistent. You want to connect what they are telling you about
the behavior of a physical system to personal experience or to other re-
lated phenomena. Often this means calculating numerical examples for
the system under consideration and comparing them.
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TABLE 2.5 Important quantities for describing the physics of anything

Concept Compound
units

Name Abbrev-
iation

Examples

velocity m s−1 None None A person walks at a rate
of about 1.5 m s−1. A snail
goes at a few mms−1. The
speed limit for U.S. autos
on highways in urban areas
is 24.6 m s−1. The speed of
light in a vacuum is 3 ×
108 m s−1.

acceleration m s−2 None∗ A body falling freely near
the surface of Earth accel-
erates at 9.8 m s−2

force kgm s−2 newton N Earth exerts a force of
98N on a 10 kg mass near
its surface. Earth’s atmo-
sphere exerts a force of
1.01×105 N on each square
meter of Earth’s surface.

*An acceleration of 1 cm s−2 is sometimes called a gal (in honor of Galileo).

As you come across them, think about the numerical values of physical
quantities and try to connect them to specific phenomena with which you
are familiar. This will help you understand the physical significance of the
concepts. Part of the great power of physics is that it works for very large-
scale systems and very small-scale systems. When you are introduced to
a new concept, you should try it out at several different scales. Table 2.5
offers some numerical values of real velocities, accelerations, and forces as
concrete examples of these concepts for you to consider.

� EXERCISES

46. Notice that Table 2.5 has no entries for energy or momentum.
Make up appropriate entries for these two quantities.

Know the SI Prefixes

SI prefixes—micro, mega, kilo, nano, giga—have been introduced and used
in several places in this chapter. You must know them, their abbreviations,
and their numerical values well enough so that you can convert among
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them quickly and accurately. There is a list of all the SI prefixes at the
end of the book. Maybe you can learn them by osmosis, but if you can’t,
then just memorize them. Do whatever it takes, but learn them.

APPENDIX: VECTORS

Some of the quantities discussed above have a special property that we
will use occasionally. When the direction is of importance in the full de-
scription of the quantity, the quantity is a “vector.” Examples of vectors
we will use are change of position of an object, its velocity, and its mo-
mentum. Examples of quantities that are not vectors are mass, energy,
and time.

Representing Vectors

An arrow is often used to represent a vector quantity. The arrow’s direc-
tion shows the direction of the quantity and the arrow’s length shows the
magnitude (size) of the quantity. You can see how a vector represents a
“displacement,” i.e., a change of position, from point A to point B. The
displacement vector is just a scaled down copy of the arrow connecting A
to B. For velocity, acceleration, momentum, force, electric field, etc., the
relation of the physical quantity and the representative arrow is not so
obvious, but the mathematical correspondence is exact and very useful.

Figure 2.11 depicts a typical displacement vector, �R. We use the no-
tation of a letter with an arrow over it to indicate a vector quantity,
one with both magnitude and direction. The plain letter, such as R, just
represents the magnitude, or length, of the vector. In this case it is the
shortest distance an object could move while traveling from the origin to
the point (X,Y ).

R

y

xX

Y

X=R cos

Y=R sin

�

FIGURE 2.11 Components (X and Y ) of the vector �R.
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Components

The diagram in Fig. 2.11 suggests another way of looking at the displace-
ment. Arriving at the point (X,Y ) could have been accomplished by a
displacement in the x direction by an amount X and then in the y direc-
tion by an amount Y . If we make these two quantities themselves vectors,
the vector �R is entirely equivalent to adding the two displacements in the
coordinate directions, �X and �Y . The magnitudes of these two displace-
ments are particularly handy quantities for dealing with vectors. They are
called the “Cartesian components” of the vector. Figure 2.11 exhibits the
trigonometry and geometry used to go back and forth between a vector
and its components using the Pythagorean theorem and basic definitions
of the sine and cosine:

X = R cos θ,

Y = R sin θ,

X2 + Y 2 = R2.

� EXERCISES

47. Prove that if X = R cos θ and Y = R sin θ then R2 = X2 + Y 2.

You can see from Fig. 2.11 that the magnitude of a vector is just the
square root of the sum of the squares of its components.

What if the overall displacement involves a displacement Z in the third
or z dimension? Then

R2 = X2 + Y 2 + Z2.

Adding Vectors

Adding vectors can get somewhat more complicated in the general case.
You have already seen that reconstituting a vector from its components
is equivalent to adding two vectors at right angles. One other case is
important to deal with at this time. Adding vectors that are all along one
particular coordinate axis is a simple matter of addition and subtraction.
Imagine walking ten paces west. If you reverse and come east for three
paces, your second displacement undoes some of the first, so it is in effect
negative. The systematic way of handling this is to take displacements
in the positive coordinate direction to be positive and displacements in
the negative coordinate direction to be negative. Then a simple algebraic
sum of displacements gives the net displacement as long as you stick to
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the one dimension. Other vector quantities have the same kind of additive
properties as does displacement, so you can follow exactly the same rules
for adding them up, even if a geometric picture seems inappropriate.

PROBLEMS

1. What is the order of magnitude of your height? What meaning are
you using for “order of magnitude”?

2. What is the circumference of Earth? How do you know this?

3. Estimate the volume of your body.

4. Without looking at a ruler or other measuring device, draw a line
1 cm long.

5. A large speck of dust has a mass m = 0.00000412 g (grams).
a. Rewrite the mass in grams using scientific notation.
b. Express m in (i) kg; (ii) mg (iii) μg.

6. Solid aluminum has density 2.7 g cm−3. What is this density in units
of kgm−3? Use scientific notation and show your calculation.

7. Notice that one of your answers will be a number density and the
other will be a mass density.

a. A rectangular box has dimensions L = 2cm, W = 5cm, and H =
10 cm. How many of these boxes will fit into a cube of volume 1m3?

b. If each box has a mass m = 0.01 kg, what is the density (mass per
unit volume) of the assembly of boxes?

8. The speed of light is 3 × 1010 cm s−1; the circumference of Earth is
40Mm. How long would it take light to circle the Earth?

9. The electron volt is a unit of energy, abbreviated eV. What is the
ratio of the energies of a 20GeV electron and a 3 keV electron?

10. A plucked violin string gives off a sound with frequency f = 1
2�

√
τ
μ ,

where � is the length of the string, τ is the tension in the string, and μ is
the mass per unit length of the string, i.e., μ has dimensions of ML−1.
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a. Verify that this equation is dimensionally correct. (Tension is a
force, and the dimensions of frequency are s−1.)

b. At some point before the A string is tightened, its frequency is 220
Hz (low A). To bring it up to the correct frequency (440 Hz), by
what factor must the tension be changed?

c. Oh no! You’re in the middle of your physics test, and you need to
calculate how long it takes sound to travel 5m. You think “All I
need to do is multiply the distance by the speed of sound.” Use
dimensional analysis to show that this is wrong thinking.

11. A mass of 2 kg travels at 4m s−1 towards a wall. It hits the wall
and bounces directly back, now traveling at 2m s−1 away from it. By how
much does the momentum of the mass change in this collision?

12. When a paper airplane flies, sometimes the airlift makes it possible
for the plane to travel horizontally (without falling) for a short distance.
While the plane is traveling horizontally, what must be the lift due to
air? (Hint: What quantity do you need to estimate in order to answer this
question?)

13. Suppose an 80 kg mass falls off a table 30 inches high and moves
toward the floor. Does its momentum remain constant? Why?

14. What will be the kinetic energy of the mass in the preceding question
just before it hits the floor? Explain how you know.

15. An object of mass 2 kg, initially at rest, is dropped from a tower in
order to determine its height. The object’s velocity is 0.02μm ns−1 just
before it hits the ground.

a. Find the object’s velocity in m s−1.
b. What is its kinetic energy just before impact?
c. What is the height of the tower?

16. A 50 g ball rolls up a short incline and then continues along level
ground. The speed of the ball at the bottom of the incline is 2m s−1, and
the height of the incline is 10 cm. What will be the speed of the ball once
it reaches the level ground?

17. If the ball in the previous problem had a mass of 100 g, and the same
initial speed, what would be its final speed?

18. What is the maximum height of incline that either ball could climb?
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19. If a 20N force is applied to a 10 kg mass for 10ms, by how much
does the momentum of the mass change?

20. In icy weather, cars A (mass 1000 kg) and B (mass 2000 kg) col-
lide head-on while traveling in opposite directions in the same lane of a
highway.

a. A and B each had speed 15m s−1 just before the collision, and
A was heading due east. Sketch vectors (arrows) representing the
momenta of the cars before the collision, and calculate their total
momentum.

b. The cars stick together immediately after the collision. What is
their speed immediately after the collision, and in what direction
are they moving?

c. The average force on a body is defined as the change in momentum
divided by the time it takes for that change to occur. If the duration
of the impact is 0.125 s, find the average force exerted on car A
by car B.

21. A pole vaulter can clear a bar set at a height of 5m.

1. By what factor should he increase the speed of his approach if he hopes
to gain entry to the prestigious Six Meter Club?

2. In reality a vaulter who runs at 9.5 m s−1 can clear a 6 m bar.
a. Compare his kinetic energy while running to his gravitational

potential energy at 6 m height.
b. Give several reasons why this experimental observation does not

violate energy conservation.

22. A baseball and a bowling ball both have the same momentum. Which
one (if either) has the greater kinetic energy?

23. Suppose you have a circle 1.2m in diameter. Imagine that lines are
drawn from the center of the circle to two points on the circumference
0.05m apart. What is the (small) angle between the two lines? Give your
answer both in degrees and in radians.

24. For the circle in Problem 23, what would be the angle if the length
of the arc between the two points was 1.2m? Find your answer both in
degrees and in radians.

25. What diameter disk held at arm’s length (call it 60 cm) just covers
the full Moon (see Fig. 2.12)?
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1 m

FIGURE 2.12 How a small disk can block out your view of the Moon.

26. If a U.S. dime held at a distance of 2 m from your eye just covers
the full Moon, what is the diameter D of the Moon?

27. Take a common foodstuff—a candy bar, a bottle of soda, bread,
breakfast cereal, or whatever—and from its label determine what a giga-
joule of this foodstuff costs. Remember that Calories on labels are each
4180 J. Hint: When you buy a five pound bag of house-brand cane sugar
you pay about $85 for a gigajoule.

28. Complete the following table of standard prefixes for units
prefix abbreviation value

nano

M

10−2

milli

p

109

kilo

μ

T

29. How many μg are there in 2 kg?

30. List all the SI prefixes used in this chapter, giving their names,
abbreviations, and numerical values. Use them with units to describe
various physical phenomena.
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31. You will soon learn about the magnetic field which exerts a force on
the electron proportional to its speed. If the magnetic force provides the
centripetal force, when the speed doubles, the force also doubles. In this
case, what happens to the radius? What happens to the time required for
the electron to complete one full circle?
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The
Chemist’s Atoms

3.1 INTRODUCTION

The idea of an atom has a long history. Around twenty-five hundred years
ago, Greek philosophers argued that matter must be built up of small,
hard, identical pieces. Because these pieces were thought to be irreducible
they were called “atoms.” The word “atom” is derived from the Greek
for “un-cuttable.” The pieces, or atoms, come in only a few kinds, said
the Greek philosopher Thales, and the complexity we observe in nature
arises from the variety of ways in which these building blocks go together
and come apart.

This simplified picture of the Greek concept of atom contains the es-
sentials of the modern idea. Why then did it take until the early 1800s
for chemists and physicists to produce convincing physical evidence for
the existence of atoms? The answer, in part, is that to obtain and inter-
pret their evidence they needed both the modern concept of the chemical
element and the development of quantitative techniques of measurement.
These became precise enough to yield useful information at the end of
the eighteenth century. Only then was the stage set for obtaining and
understanding the physical evidence for atoms that is the subject of this
chapter.

3.2 CHEMICAL ELEMENTS

A major step toward an atomic theory of matter was the recognition of the
existence of the “chemical elements.” Centuries of study of the qualitative
properties of matter had made it possible to recognize and distinguish

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 63
DOI 10.1007/978-0-387-79080-0 3, c© Springer Science+Business Media, LLC 1999, 2010
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among a large variety of substances. Chemists, notably among them
Lavoisier, recognized that while many chemical substances could be bro-
ken down into others, certain chemicals, like carbon, sulfur, and oxygen,
could not be broken down by heat or grinding or other known chemical
processes. These irreducible chemicals were viewed as “elements,” basic
species of which all other chemical substances were compounded. This is
the origin of the idea of chemical “compounds” built up from chemical
elements.

Although the idea of the chemical element was established by the end
of the eighteenth century, notice that the idea does not necessarily imply
that there are such things as atoms. All that has been established is that
there seem to be a number of distinct types of chemicals from which others
can be constructed. What then would be good evidence that elements are
composed of atoms?

3.3 ATOMS AND INTEGERS

An essential feature of atomicity is countability. If discrete building blocks
of matter exist, they should be countable like chairs, students, or money.
Countability is closely associated with the integers. The number of chairs
in your classroom is probably an integer. So is the number of students in
your classroom, or the number of coins in your piggy bank. Experience
suggests an important general idea: Countable sets are integer multiples
of some basic, individual unit: one chair, an individual student, a coin.
These units are indivisible at least in the sense that a set of these objects
can only be subdivided so far and no farther without changing the nature
of the elements of the set: to kindling, to a scene in a horror movie, to
bits of metal.

Atomicity is closely related to integer countability. The observation of
integer relationships in the formation of chemical compounds was early,
important evidence that atoms exist as discrete building blocks of these
compounds. By the beginning of the nineteenth century, techniques for
weighing small masses had become precise enough to permit accurate
quantitative measurements of the amounts of different chemicals before
and after combination. By their ingenious analyses of such data, Proust,
Dalton, Gay-Lussac, Avogadro, and other scientists at the beginning of
the nineteenth century revealed that elements combine in integer ratios
that convincingly imply the existence of atoms.
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Proust’s Evidence: The Law of Constant Proportions

The chemist Joseph-Louis Proust observed that when chemicals combine
to make a particular substance, the reacting elements always make up
the same percentage of the weight of the new substance. For example,
stannous oxide always is made up of 88.1% tin (Sn) and 11.9% oxygen
(O); and stannic oxide always is made up of 78.7% Sn and 21.3% O. This
behavior suggests that a fixed amount of tin can combine only with one
or another fixed amount of oxygen. This kind of constancy was verified
by many careful measurements on many different substances. Table 3.1
shows the constant proportions of the weights measured by Sir Humphrey
Davy for three different compounds of nitrogen (N) and oxygen. Because
Proust was the first to notice that all chemicals are made up of fixed
percentages of their constituents, this behavior is known as Proust’s law
of constant proportions.

Dalton’s Evidence: The Law of Multiple Proportions

It was by looking at the data in Table 3.1 in a different way that John
Dalton obtained the first convincing scientific evidence that substances
are built up out of small, individual blocks of matter. Dalton’s work was
first published in 1808.1

Instead of dealing in percentages, Dalton first asked what weights of
one element would combine with a fixed amount of another. Thus, he
found that 13.5 g of oxygen would combine with 100 g of tin to make
stannous oxide, while 27 g of oxygen would combine with 100 g of tin to
make stannic oxide. (Nowadays, we would write that he was observing
the formation of SnO and SnO2.) Then he examined the ratio of the
two different amounts of oxygen and observed that the ratio is of simple

TABLE 3.1 Davy’s percentage of mass of nitrogen and oxygen in
oxides of nitrogen

Compound gas
(modern names)

% Mass of nitrogen % Mass of oxygen

nitrous oxide 63.30 36.70

nitric oxide 44.05 55.95

nitrogen dioxide 29.50 70.50

1See From Atomos to Atom by Andrew G. Van Melsen, Harper & Brothers, New York, 1960.
This book quotes extensively from a later edition of Dalton’s work A New System of Chemical
Philosophy, London 1842.
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integers, 1:2. Examining many cases, he found that always when different
amounts of one element combine with another to make different chemical
compounds, the amounts are in simple integer ratios to each other.

Dalton realized that this law of multiple proportions, as he called it, was
evidence that chemicals combined in integer multiples of some basic unit,
or atom. His data could be explained if an integer number—one or two—of
atoms of one element combined with an integer number—one, two, three,
or more—of atoms of another element. More important, Dalton’s way of
comparing the masses of chemicals before and after combination was a
quantitative method that could be used by other scientists and applied to
many chemical reactions. On the basis of such analysis he proposed the
following ideas.

Dalton’s ideas about atoms:

• All elements consist of minute discrete particles called atoms.

• Atoms of a given element are alike and have the same mass.

• Atoms of different elements differ, each element having unique atoms.

• Chemical changes involve the union or separation of undivided atoms
in fixed simple numerical ratios. Atoms are not created or destroyed
when chemical change occurs.

� EXAMPLES

1. A striking example of the law of multiple proportions can be ob-
tained from Davy’s data on the combinations of nitrogen and oxygen
(Table 3.1) if you look at them from Dalton’s point of view. To do this,
calculate how much oxygen reacts with a fixed amount of nitrogen, say
100 g. The first line of the table states that nitrous oxide is 63.3% ni-
trogen and 36.7% is oxygen. To scale the amount of nitrogen to 100 g,
just multiply by 100/63.3; use this same scale factor to get the amount
of oxygen:

100 g
63.3

× 36.7 = 58 g.

A similar procedure applied to the next two lines in the table implies
that 127 g and 239 g of O combine with 100 g of N to form nitric oxide
and nitrogen dioxide, respectively. It is the near-integer ratios of these
different amounts of oxygen reacting with the fixed amount of nitrogen
that supports the idea of atoms:

58 : 127 : 239 ≈ 1 : 2 : 4.
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Although Davy’s data deviate somewhat from simple integer ratios,
later more careful measurements confirm Dalton’s law of multiple propor-
tions very well. More complete studies show that 100 g of nitrogen will
combine with 57 g or 113 g or 171 g or 229 g or 286 g of oxygen. These
are respectively the compounds of nitrous oxide, nitric oxide, nitrous
anhydride, nitrogen dioxide, and nitric anhydride.

� EXERCISES

1. What are the “simple proportions” of these quantities? What would
you guess to be the chemical formulas for these compounds? Hint: nitric
oxide is NO.

2. Given that the density of nitrogen at one atmosphere of pressure
and 0 ◦C is 1.2506 kgm−3 and that of oxygen at the same temperature
and pressure is 1.429 kgm−3, calculate the relative volumes of the two
gases that combine to form the compounds named above. If you do
this problem correctly, you will discover what Gay-Lussac discovered.
These results are shown in Table 3.2.

Dalton’s analysis shows how important it is not only to collect high
quality data, but also to find the best way to analyze them. The informa-
tion in Table 3.1 is not particularly compelling evidence for the existence
of atoms, but the simple integer ratios found in the exercises above
strongly suggest that elements are composed of fundamental, countable
objects that we call atoms.

Gay-Lussac’s Evidence: The Law of Combining Volumes

The appearance of simple integer relationships is even clearer in an in-
teresting version of Dalton’s law that was discovered by the chemist and
physicist Joseph Louis Gay-Lussac (1778–1850). He studied the chemi-
cal combination of gases and observed that at the same temperature and

TABLE 3.2 Combining volumes of nitrogen and oxygen

Compound gas Volume of
nitrogen

Volume of
oxygen

Final volume
(approximate)

nitrous oxide 100 49.5 100

nitric oxide 100 108.9 200

nitrogen dioxide 100 204.7 200
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pressure their volumes combined in ratios of small integers. For example,
he found that 100 cm3 of oxygen combined with 198.6 cm3 of hydrogen.
Within the uncertainty of his measurements, this is a ratio of 1:2. Us-
ing contemporary values of densities, he also converted Davy’s data on
the various compounds of nitrogen and oxygen (Table 3.1) to volumes.
Table 3.2 shows the striking result, which is known as the “law of
combining volumes.”

Clearly the volumes of these gases combine in simple ratios of small
integers like 2:1 and 1:1. Furthermore, for gases, the simplicity of the
ratio shows up in a single reaction. There is no need to examine different
compounds of the same elements as is required to exhibit Dalton’s law of
multiple proportions. The implication is plausible that the gases react by
combining simple building blocks in whole-number, i.e., integer, amounts.

When Gay-Lussac performed experiments himself, he observed that not
only did the gases combine in simple proportions, but the final volume of
the reacted gas was simply related to the combining volumes. For example,
when two volumes of hydrogen combined with one volume of oxygen, the
resulting water vapor occupied two volumes. It is simple to interpret this
result as two atoms of hydrogen combining with one atom of oxygen to
make a water molecule. But if that were so, the end product should occupy
only one volume of water. The appearance of two volumes of water was,
therefore, puzzling.

A similar puzzle occurs with the combination of nitrogen and oxygen.
If you combine 100 cm3 of nitrogen gas with 100 cm3 of oxygen you get
200 cm3 of nitric oxide gas, as suggested in Table 3.2 after rounding off
the oxygen volume. Apparently, the combination of one elemental unit of
nitrogen gas with one elemental unit of oxygen produces two such units, or
molecules, of nitric oxide gas. This is strange because one atom of nitrogen
combining with one atom of oxygen should produce just one molecule of
nitric oxide.2

2The oxides of nitrogen are confusing. Here is a list of their modern names and chemi-
cal formulas. Don’t they make a nice application of Dalton’s law of multiple proportions?

Nitrous oxide N2O

Nitric oxide NO

Dinitrogen trioxide N2O3

Nitrogen dioxide NO2

Dinitrogen tetroxide N2O4

Dinitrogen pentoxide N2O5
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How can this be? In 1811 the Italian chemist Amadeo Avogadro sug-
gested the solution to the puzzle.3 He proposed that the volumes of
hydrogen, nitrogen, and oxygen contained molecules made up of two
identical atoms: H2, N2, O2.4 His idea helped us to understand that
molecules are structures made up of atoms.

� EXERCISES

3. Gay-Lussac’s work made it possible to determine chemical formu-
las. To see how, use Avogadro’s idea and Gay-Lussac’s data (Table 3.2)
to find the chemical formula for nitrogen dioxide, which he called “ni-
tric acid.” (You see that it is quite different from the HNO3 that we
today call nitric acid.)

4. What are the chemical formulas for the other two compounds in
Table 3.2?

Avogadro’s Principle

Avogadro and the Swedish chemist Jons Berzelius realized that if volumes
of gases (at the same temperature and pressure) always combine in simple
ratios, then equal volumes of gas contain equal numbers of molecules. To
see why this is so, consider our earlier example of two volumes of hydrogen
combining with one volume of oxygen to form two volumes of water. You
can read the chemical equation

2H2 + O2 → 2H2O

as though it is a statement about the combination of volumes, but you
can also read it as a statement that two molecules of hydrogen combine
with one molecule of oxygen to form two molecules of water. There is a
one-to-one correspondence between volumes and numbers of molecules.
There must be twice as many molecules in two volumes as in one.
Because this statement does not depend on the kind of molecule, we,

3A. Avogadro, “Essay on a Manner of Determining the Relative Masses of the Elementary
Molecules of Bodies and the Proportions in Which They Enter into These Compounds” Journal
de Physique, 1811, as excerpted in Readings in the Literature of Science, ed. W.C. Dampier and
M. Dampier, Harper Torchbook, Harper & Brothers, New York, 1959. You might be interested
to know that Avogadro’s idea that hydrogen, nitrogen, and oxygen were molecules consisting of
two atoms of the same kind was not accepted for several decades. His contemporaries, among
them Dalton and Gay-Lussac, considered the idea too strange to be likely.
4Some other diatomic gases are F2 and Cl2 and, at high enough temperatures, Br2 and I2.
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like Avogadro, conclude that equal volumes of gases (at the same pres-
sure and temperature) contain equal numbers of molecules independent
of their kind.

� EXERCISES

5. Make an argument like the one above, only do it for combinations
of nitrogen and oxygen instead of hydrogen and oxygen.

The full and precise statement of Avogadro’s principle is this:

Equal volumes of all gases under the same conditions of tempera-
ture and pressure contain the same number of molecules.

You should remember this remarkable feature of gases. You should also
think about it enough to realize that it is somewhat surprising. After
all, you probably know that a hydrogen molecule is very small and light,
while a chlorine molecule is much heavier. And, as you might guess, the
volume of an atom of helium atom is only a small fraction of the volume
of a molecule of methane (CH4). Why then should the same number of
molecules of gases of such different properties occupy the same volume?
We will return to this question in the next chapter.

3.4 ATOMIC WEIGHTS

The law of combining volumes and Avogadro’s principle made it possible
to determine the relative masses of atoms and to establish a table of
atomic weights that is very useful. Here is how this is done.

Because equal volumes hold the same number of gas molecules, the
ratio of the masses of these volumes must equal the ratio of the masses
of the individual molecules. Imagine a jar containing 1 liter of oxygen
at a temperature of 20 ◦C at atmospheric pressure. You can weigh the
jar while it is full; then you can pump out the gas and weigh the empty
jar. You will find that it contains about 1.33 g of oxygen. If you replace
the oxygen gas with xenon gas and repeat the weighings, you will find
that the jar contains 5.46 g of xenon. Because each volume contains the
same number of molecules, it follows that the ratio of the mass of a xenon
molecule to the mass of an oxygen molecule is 5.46/1.33 = 4.10.

It takes additional experimentation to learn the atomic composition of
a molecule. You have already seen how Avogadro concluded that gaseous
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oxygen is diatomic, O2. Some gases are more complicated, e. g., carbon
dioxide is CO2, and some are simpler, e. g., when xenon was discovered
at the end of the nineteenth century, it was quickly apparent that it is
monatomic Xe.

� EXAMPLES

2. Knowing the atomic composition of the gas molecules, you can see
that a xenon atom must have a mass that is 5.46/(1.33/2) = 8.21 times
the mass of an oxygen atom.

Using this and many other methods, chemists and physicists over time
established a complete set of the relative masses of atoms of the chemical
elements. For convenience they set up a standard scale of relative masses
that by an international agreement assigns a mass of 12 units to car-
bon. Because relative masses are experimentally determined using various
chemical combinations of atoms, carbon is a good choice for the standard
mass; it combines chemically with many other atoms and is convenient to
use. The choice of 12 for the mass of a carbon atom has the virtue that
then the masses of all other atoms are close to being integers. One-twelfth
of this mass is called the “atomic mass unit” and abbreviated as u.

As the standard for the scale of atomic masses, carbon has one compli-
cation. It turns out that carbon atoms come in several different masses.
In a sample of naturally occurring carbon on Earth, 98.9% of the carbon
atoms are of one mass and 1.1% are slightly heavier.5 It is the more abun-
dant species of carbon atom that is assigned a value of exactly 12.0000 u.
In terms of this standard unit, the heavier carbon atom’s mass is measured
to be 13.003355 u.

� EXAMPLES

3. If you look at a periodic table of the elements, you will see that the
atomic weight of carbon is given as 12.011 u. This is because chemistry
is done with chemicals as they occur on Earth, and a natural sample
of carbon is a mix of carbon atoms of two different weights:

mC = .989 × 12.0000 u + .011 × 13.003355 u = 12.011 u.

5Atoms of the same element but with different masses are called isotopes. Most elements have
more than one isotope. You will learn more about isotopes in Chaps. 8.2 and 16.5.
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In general the atomic weight listed in a periodic table for a chemical
element is the average of the different masses of atoms of that element
weighted by their fractional abundance. Some people reserve the words
“atomic weight” for such an average and use the words “atomic mass”
for the mass of a single kind of atom. For molecules, you can speak in the
same way of molecular weights and molecular masses.

� EXERCISES

6. Look at the atomic weight of chlorine in Table 3.3. Why doesn’t
this value contradict the claim that the mass of any atom comes out
close to an integer when the scale of atomic masses is set by assigning
a mass of 12 u to carbon?

Table 3.3 lists some elements and the masses of their atoms. If you
don’t already know them, learn the nearest integer values of the atomic
weights of H, C, N, and O.

Example 2 shows how to use Avogadro’s principle and measured den-
sities to find the ratio of the masses of two different molecules, Xe and
O2. Exercises 3 and 4 ask you to find the chemical composition of a
molecule using the law of combining volumes. By putting these pieces of
information together, you can determine an unknown atomic mass.

For example, to find the atomic mass of oxygen you could use the re-
sults of another of Gay-Lussac’s experiments. Two volumes of CO were
observed to combine with one volume of O2 to form two volumes of
another carbon–oxygen compound. The results imply that this compound
is CO2.

From Avogadro’s principle and measured densities you can find the
ratio of the molecular weights of CO2 and O2. The densities of these two
gases are such that at room temperature (20 ◦C) and pressure (1 atm) a
cubic meter of O2 has a mass of 1.331 kg and a cubic meter of CO2 has
a mass of 1.830 kg. The ratio of these two numbers is the ratio of the
molecular weights of O2 and CO2.

� EXAMPLES

4. Here is a direct way to find the atomic mass of oxygen from these
data. Using the atomic idea greatly simplifies the analysis.

From Avogadro’s principle you know that equal volumes contain
equal numbers of molecules. In our example one liter of O2 has a mass
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TABLE 3.3 Some chemical atomic weights and gas densities

Element Symbol Chemical atomic
weighta

Gas Density
at STPb

(kg/m3)

hydrogen H 1.00794 Air 1.293

helium He 4.002602 O2 1.429

lithium Li 6.941 N2 1.251

beryllium Be 9.01218 Cl2 3.21

boron B 10.811 H2 0.0899

carbon C 12.0107 CO2 1.965

nitrogen N 14.0067 .

oxygen O 15.9994 .

fluorine F 18.9984 .

neon Ne 20.1797 .

chlorine Cl 35.453 .

argon Ar 39.948 .

krypton Kr 83.80 .

xenon Xe 131.293 .

radon Rn 220. .
a These data are taken from The Chart of the Nuclides, 13th ed., revised
to July 1983, by F. William Walker, Dudley G. Miller, and Frank Feiner,
distributed by General Electric Company, San Jose, CA. A complete table
of data is at http://www.chem.qmul.ac.uk/iupac/AtWt/.
b STP means standard temperature and pressure. But there is more than
one standard. This table uses the IUPAC standard temperature of 273.15 K,
and standard pressure of 100 kPa. The NIST STP are 293.15 K and
101.3 kPa.

of 1.331 g, and one liter of CO2 has a mass of 1.830 g. Imagine separating
the CO2 molecules into C atoms and O2 molecules. Then the liter would
contain 1.331 g of O2 and 1.830 − 1.331 = 0.499 g of C. The molecular
weight of O2 must then be

1.331 g
0.499 g

× 12.011 u = 32.0 u,

and because an oxygen molecule contains 2 atoms, it follows that the
atomic weight of oxygen is 16.0.
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� EXERCISES

7. Using this atomic weight for oxygen and the data given earlier for
the combining masses of gases of nitrogen and oxygen, find the atomic
mass of nitrogen.

Notice that any mass of oxygen will contain the same number of atoms
as a mass of carbon for which the two masses are in the ratio of 16 to 12.

3.5 NUMBERS OF ATOMS IN A SAMPLE

Atomic masses are not actual masses of individual atoms; they are ra-
tios; they are a set of relative masses. Although they do not tell you the
actual masses of individual atoms, atomic masses do allow you to com-
pare the numbers of atoms in samples of different elements. An example
with familiar objects shows how this works. The U.S. 5-cent coin, the
nickel, has a mass exactly twice that of the U.S. 1-cent coin, the penny.
Do you see that it follows that 200 kg of nickels will consist of the same
number of coins as 100 kg of pennies? If you know that the ratio of the
weights of a single nickel and a single penny is 2:1, then you know that
any two masses of them that are in the ratio 2:1 contain equal numbers
of coins.

The same argument applies to chemical elements. From their atomic
masses you know that an atom of O has a mass 16 times the mass of an
H atom; therefore the number of O atoms in a sample of 16 kg of oxygen
must be the same as the number of H atoms in 1 kg of hydrogen. And
the statement is true for 320 g of O and 20 g of H, or for 11.2 tonne of O
and 0.7 tonne of H. As long as the ratio of the masses of the samples is
16:1, the numbers in the samples will be equal. Of course, the number of
H atoms in 20 g is 1/50 times the number in 1 kg, and the number of H
atoms in 0.7 tonne is 700 times the number in 1 kg, but in each case the
corresponding amount of O has the same number of atoms.

In general, there are equal numbers of atoms in samples of any two
elements that have masses in the ratio of their atomic weights. A simple
way to be sure that samples have this ratio is to weigh them out with
masses numerically equal to their atomic masses. Such samples contain
equal numbers of atoms. Thus 131.3 g of xenon has the same number of
atoms as 220 g of radon or 16 g of oxygen.
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� EXERCISES

8. What are masses of CO2 and O2 that would contain the same num-
ber of molecules? This question and the next require you to distinguish
between molecules and atoms.

9. What are masses of CO2 and O2 that would contain the same
number of atoms? There are an infinitude of possible answers. Explain
the answer you chose to give.

The Mole

But how many atoms are in your sample? The answer depends on how
large your sample is, and it is customary to describe sample sizes in terms
of the number of grams equal to the atomic or molecular weight of a
substance, the so-called “gram atomic” or “gram molecular” weight. Ex-
amples are 1 g of hydrogen, 4 g of helium, 12 g of carbon, 18 g of water,
44 g of CO2, etc. A gram atomic weight of any element contains the same
number of atoms as the gram atomic weight of any other element; the
number of molecules in any gram molecular weight of any molecule is
the same as in the gram molecular weight of any other molecule. The
number of atoms (molecules) in a gram atomic (molecular) weight has its
own name; it is called a “mole,” abbreviated “mol” (why abbreviate four
letters with three?).

The mole is a large number. Its formal SI definition says that 1mole
is the number of entities equal to the number of carbon atoms in 12 g of
carbon if the carbon atoms are all of atomic mass 12.000 u. Then from
Table 3.3 a sample of 16.0 g of oxygen also contains 1mole of oxygen
atoms, and 35.5 g of chlorine contains 1mole of chlorine atoms. For any
atom with atomic mass M there is 1 mole of these atoms in M grams of
that substance.

Avogadro’s Constant

But the number? What is the number? It is 6.022 × 1023, and it is called
“Avogadro’s constant” and given its own symbol NA. This means that
just as the “c” in cm can be replaced by its value 10−2, the “mol” in an
equation can be replaced with its value of NA. As “dozen” is the name
for 12 of anything, and “score” is the name for 20 of anything, so “mole”
is the name for 6.022 × 1023 of any objects.
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� EXAMPLES

5. One way to remember the mass of Earth is to think of it as 10
moles of kilograms.

6. The mass of one mole of CO2 is 44 g. A mole of CO2 molecules
contains 1 mole of carbon atoms and 2 moles of oxygen atoms.

� EXERCISES

10. Rewrite the opening line of the Gettysburg Address to use “moles”
instead of “score.”

Remember that the symbol nM represents the number of moles. Don’t
confuse nM with the n used to tell how many of something there are in
a unit volume, i.e., the number in a unit volume or “number density.”
For example, equal volumes of any gases at the same temperature and
pressure contain equal numbers of molecules. As you will see later, at 0 ◦C
and atmospheric pressure the number density is n = 2.7 × 1019 cm−3.

� EXERCISES

11. How many molecules of gas are there in 11.2 liters under the above
conditions? (1L = 103 cm3)

12. What is the number of moles nM of gas molecules in 11.2 liters of
gas under the above conditions?

13. How many liters of gas does it take to hold a mole of molecules
at the above temperature and pressure?

14. If you have nM = 3.2 moles of gas molecules in 4 liters of volume,
what is the number density of this gas?

15. If the molecular weight of the above gas is 28 u, what is the mass
density of the gas in the previous problem?

Avogadro’s number is fundamental because it connects the scale of
atomic sizes to the macroscopic scale of our everyday world. Knowing it
you can find the mass and the size of an individual atom or molecule.
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For example, given that 18.998 g of fluorine contains 6.02 × 1023 atoms,
you can see that fluorine atom has a mass of 18.998/(6.02 × 1023) =
3.16 × 10−23 g. It took more than forty years from the time of the first
scientific evidence for atoms before physicists were able to measure NA,
and it was nearly a hundred years before they could measure NA to three
significant figures.

� EXERCISES

16. What is the mass of a hydrogen atom? A Be atom?

17. From the density of liquid water, estimate the diameter of a water
molecule.

3.6 THE CHEMIST’S ATOM

Summary

In the space of a few years around 1810, atoms were established as an
important concept in chemistry and physics. These atoms have some
interesting properties. First, there are different kinds, one for each
“chemical element.” “Chemical element” is defined operationally: If the
mass and chemical behavior of a given substance are not changed by heat,
electricity, or other chemical reactions, it is said to be a chemical element.
By this criterion chemists identified nearly sixty chemical elements before
1850. We now know of 117 elements, 23 of which do not occur naturally
on Earth but can be made in the laboratory or in nuclear explosions.6

Second, atoms connect to one another. Atoms seem to have “hooks.”
For instance, a hydrogen atom has one hook, so two atoms of H can be
hooked together to make H2. Oxygen has two hooks, so we can hook a
hydrogen atom on to each and make H2O, or we can hook an H atom
and an O atom onto one O, and another H onto the second O, and
make hydrogen peroxide, H2O2. The somewhat whimsical diagram in
Fig. 3.1 gives the idea. Chemists call the number of hooks the “valence”
of the atom.

6These numbers change as new discoveries are made, and they depend on what scientists are
willing to accept as a discovery. For example, there has been some argument about whether
seeing 1 atom of element 118 in 2002 and then two more in 2005 is enough to be sure that the
new element 118 has been observed.
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FIGURE 3.1 Ball-and-hook model of simple chemical bonds.

Questions

Much of chemistry in the first two-thirds of the nineteenth century was
the sorting and describing of chemical compounds and reactions. The idea
of atoms was used by many chemists to produce other useful ideas and
good science, but it raised as many questions as it answered.

What are these “hooks” that connect one atom to another? Why do
some elements have several different valences? For example, nitrogen
seems to have valences of 1, 2, 3, 4, or 5 depending upon circumstances.
What makes one element different from another? Hydrogen is very reac-
tive; helium is not. Yet both are gases and very light in mass. What makes
some elements surprisingly similar to others? Lithium, sodium, potassium,
cesium, rubidium, francium all show similar chemical behavior.

These questions are related to more general, deeper questions: Do atoms
have internal parts, i.e., do they have structure? If so, what are the insides
of atoms like? How do the parts connect? What forces hold them together?
How does the behavior of the parts explain the similarities and differences
of atoms?

Answers

It took physicists over one hundred years to find satisfactory answers to
these difficult questions. The answers required surprising elaboration of
our concept of the atom itself and radical changes in our formulations
of the principles that govern the behavior of matter. The central material
of this book is the physics needed to begin answering these questions. But
before looking inside the atom, we’ll examine the very simple model of
the atom that physicists used in the nineteenth century to answer two
basic questions: How big is an atom, and what is its mass?
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These questions were hard to address directly because until recently
the extremely small size of atoms made it impossible to observe them
individually. The first answers were obtained by studying large numbers of
identical atoms or simple molecules in gases at low pressures, where they
are separated by relatively large distances and therefore unaffected by
each other. If the physical behavior of a gas depends only on the properties
of the individual atoms or molecules of which it is composed, then by
studying gases we can hope to learn something about the individual atoms
and molecules themselves. The next two chapters trace the connection
between atoms and the nature of gases.

PROBLEMS

1. The table below on the left shows hypothetical data obtained from a
chemical reaction

X + Y → A, B, C

in which three different compounds A, B, and C are formed from the
reaction of elements X and Y.

Proust’s law of constant pro-
portions

X Y

A 57% 43%

B 73% 27%

C 47% 53%

Dalton’s law of multiple
proportions

X Y

A 100 g

B 100 g

C 100 g

a. To exhibit Dalton’s law of multiple proportions find the mass of Y
that interacts with 100 g of X and fill in the blanks in the table.
Explain how these results illustrate Dalton’s law.

b. From your results write down possible expressions for the chemical
compounds A, B, and C, e. g., X2Y5.

2. Explain Gay-Lussac’s law of combining volumes. Why does this law
support the existence of atoms?

3. Why when 100 cm3 of nitrogen gas is combined with 100 cm3 of oxygen
gas do you get 200 cm3 of the compound gas at the same pressure and
temperature?
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4. How did Avogadro explain that when 200 cm3 of hydrogen at STP
is combined with 100 cm3 of oxygen at STP they form 200 cm3 of water
vapor at the same temperature and pressure?

5. Dalton noticed that 100 g of tin combined with either exactly 13.5 g
or exactly 27 g of oxygen. He said that this result was evidence for the
existence of atoms.

a. Why? Explain his reasons.
b. Take the atomic weight of oxygen to be 16. From Dalton’s data

calculate the atomic weight of tin. State what you assume in order
to get an answer.

6. Observer A notes that water always consists of 11.1% hydrogen and
88.9% oxygen by weight, while hydrogen peroxide always consists of 5.88%
hydrogen and 94.1% oxygen by weight. Observer B notes that in the for-
mation of water 800 g of oxygen always combines with 100 g of hydrogen,
while in the formation of hydrogen peroxide 1600 g of oxygen combines
with 100 g of hydrogen.

a. Whose observations illustrate the law of
i. combining volumes?
ii. constant proportions?
iii. multiple proportions?

b. Show how to deduce what B sees from A’s observations.
c. Explain in what way B’s observations suggest that atoms exist.

7. Stearic acid is described by the chemical formula C17H35COOH.
a. Find the mass of 1 mole of stearic acid in grams.
b. Use the fact that there are 2.1 ×1021 molecules in a gram of stearic

acid and your answer to (a) to find a value of Avogadro’s constant
(NA).

c. If the density of stearic acid is 8.52 ×102 kgm−3, how many atoms
are in 1 cm3?

8. Obeying Proust’s law of constant proportions, stannous oxide is al-
ways 88.1% tin and 11.9% oxygen by weight; stannic oxide is 78.7% tin and
21.3% oxygen. Show that these numbers imply that in forming stannous
oxide 100 g of tin combines with 13.5 g of oxygen.
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9. Certain volumes of nitrogen gas and hydrogen gas react to form 4L
of ammonia gas, according to the reaction shown below.

N2 + 3H2 → 2NH3.

The atomic masses of nitrogen atoms and hydrogen atoms are 14.0 u
and 1.0 u, respectively. The mass of NH3 formed in this reaction is 3.4 g.

a. How many moles of NH3 were formed?
b. How many hydrogen atoms took part in the reaction?
c. Determine the initial volumes of N2 and H2.

10. What is a “mole” as the term is used in physics and chemistry? Give
both qualitative and quantitative answers.

11. You wish to determine the identity of element X in the gaseous
chemical reaction

X2 + 3H2 → 2XH3.

The densities of H2 and XH3 are measured to be 8.4 ×10−5 g cm−3 and
7.14 ×10−4 g cm−3, respectively.

a. Find the mass of H2 in a 30L volume of gas.
b. If you react enough X2 to combine with 30 L of H2, what volume

of XH3 is generated?
c. From the information given, determine the atomic weight of

element X and identify the element.

12. The chemical reaction for making nitrogen dioxide is given by

2 O2 + N2 → 2 NO2.

Suppose we combine nitrogen and oxygen to make 23 g of NO2.
a. How many moles of NO2 does that correspond to?
b. How many moles of N2 are required?
c. How many molecules of O2 are required? Express your answer in

terms of NA.
d. If the reaction produces 10 L of NO2, what are the volumes of O2

and N2? Explain your reasoning.
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Gas Laws

4.1 INTRODUCTION

The early chemical evidence for the existence of atoms led physicists
to ask: What are the basic properties of atoms? How are atoms alike?
How are they different? What properties must they have to produce the
observable properties of matter?

Studies of gases helped to answer these questions because gases are
physically simple compared to solids and liquids. Gases can be compressed
and expanded easily by applying or relaxing pressures, and small changes
in temperature will produce large changes in the volume or pressure of a
gas. This chapter explains the ideas of temperature, pressure, and thermal
expansion, and shows you how to describe these properties quantitatively.
Using these ideas you can then describe the experimentally observed prop-
erties of many gases in terms of simple mathematical functions—the gas
laws. These in turn give rise to the concept of an ideal gas.

The next chapter will show you how an atomic model of the ideal gas
explains its properties and—of great importance—provides evidence that
heat energy is the random motions of atoms.

4.2 PRESSURE

The Idea of Pressure

Imagine a tiny, empty hole in a liquid. (Not a bubble filled with air, but a
true vacuum.) Your intuition correctly tells you that on Earth the weight
of the surrounding fluid will cause it to squeeze in and make the hole

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 83
DOI 10.1007/978-0-387-79080-0 4, c© Springer Science+Business Media, LLC 1999, 2010
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FIGURE 4.1 The spring inside an evacuated can is compressed further when the can
is submerged more deeply.

disappear. This squeeze, which will be from all directions, is what we call
pressure. It is what you feel in your ears when you swim under water.

Now imagine that instead of the hole in the fluid, there is a tiny, com-
pletely empty can with a lid that slides in and out like the piston in the
cylinder of an automobile engine.

If there is really nothing in the can, the weight of the column of liquid
and atmosphere above the can will push the lid to the bottom of the can.
But suppose, as in Fig. 4.1 there is a tiny spring between the lid and
the bottom of the can. Then as the weight of the liquid and atmosphere
pushes the lid into the can, the spring compresses and pushes back. The
lid will slide in only to the point where the force of the spring equals the
weight of the liquid and atmosphere.

If you move the can deeper into the water, the spring compresses more.
If you raise it to a shallower depth, the weight of water on the lid di-
minishes and the lid moves away from the bottom of the can. If you hold
the can at any given depth and turn it around in different directions, the
compression of the spring does not change because, as noted above, the
pressure (squeeze) of the fluid is the same in all directions.

Are you surprised that the spring compression is the same regardless
of which way the can is turned? Since gravity acts vertically, you might
reasonably expect the compression to be much greater when the can is
vertical. But if the forces were not the same in all directions, the liquid
would flow until the forces did balance. The forces on a liquid in a con-
tainer rearrange the liquid until the forces are balanced and the pressure
is the same in all directions.
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If you put the same spring in a smaller can with a lid of smaller area,
then at any given depth the spring under the smaller lid will be com-
pressed less than the spring under the larger lid. This is because a larger
lid has more water pressing on it than a smaller one. The force due to
water pressure is proportional to the area on which it acts.

Definition of Pressure

As always in physics, given a concept like “pressure,” you want a way
to measure it and assign a number to it. You could use a device like the
little can: The amount the spring is compressed is a direct measure of how
much pressure there is. But that is not so good, because, as you just saw,
the observed result depends on how big the can is. A better measure is the
ratio of the force to the area of the can’s lid. This will work because even
though the force on the can and the amount of compression of the spring
vary with the size of the lid, the ratio of force to area remains constant.1

This ratio is both conceptually and practically useful, and therefore we
assign it the name “pressure.”

P =
F

A
. (1)

In SI units pressure is measured in Nm−2.

Discovery of Vacuum and the Atmosphere

Around the year 1640 Evangelista Torricelli produced the first vacuum,
i.e., a volume from which matter—including air—has been excluded, and
showed the existence of the pressure of the atmosphere. His technique was
very direct. He poured mercury into a glass tube closed at one end, put
his thumb over the open end (don’t try this at home!), inverted the full
tube, put the open end into a bowl of mercury, and removed his thumb.
Without flowing entirely out of the tube, the mercury fell away from
the tube’s closed end and left an empty space—a vacuum. As shown in
Fig. 4.2, a column of mercury about 760mm high remained standing in
the tube above the level of the mercury in the bowl.

Torricelli realized that the empty space above the mercury column was
a vacuum; he also realized that the weight of the column of mercury was
being balanced by a force arising from the weight of the atmosphere push-
ing on the surface of the mercury in the bowl, i.e., atmospheric pressure.
This pressure, transmitted through the mercury, produces an upward force

1If different parts of the lid are at different depths then the pressure will vary over its surface.
This is why pressure at any position is defined as the limiting value of the ratio as the area
approaches zero.
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760 mm

Mercury

The vacuum

FIGURE 4.2 Apparatus for producing a Torricellian vacuum.

at the base of the column just equal to the weight of the mercury in the
tube. Torricelli realized that he was observing the balance between the
weight of a column of mercury and the weight of a column of air. This
meant, as he put it, that we all live at the bottom of an ocean of air.

It is remarkable that the height h of the column for which this balance
occurs does not depend on the column’s cross-sectional area A. Some
algebra shows you why this is true. Call the height of the column h, the
column’s cross-sectional area A, the density of mercury ρ, the acceleration
due to gravity g, and the pressure of the air P . The mass of the mercury
is its volume hA times its density ρ, so gravity exerts a downward force
Fg on the mercury column of Fg = mg = ρhAg. Now, the force exerted
by the air is F = PA, but since F balances the weight of the mercury,
it must be true that F = hAρg = PA. From this follows the important
fact that

P = ρgh barometer equation (2)

because A divides out from both sides. This result means that regardless
of the size of the mouth of the tube, atmospheric pressure will support the
same height h of mercury. This height h is a direct measure of the mag-
nitude of atmospheric pressure, and Eq. 2 is often called “the barometer
equation.”

� EXAMPLES

1. From your measurement of h you can directly calculate the
magnitude of the atmospheric pressure. Suppose h = 760 mm, then

P =
(
13.6 × 103 kgm−3

) (
9.80m s−2

)
(0.76m) = 101 × 103 Nm−2,

where, as you expect, the units are of force divided by area.
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2. You can calculate h the height of the mercury column above the
surface of the mercury in the bowl, i.e., the reservoir of mercury, from
the barometer equation, Eq. 2: h = P/(ρg), but it is good practice to
understand the rise of the Hg column as a balance between the force of
gravity and the force exerted by the pressure of the atmosphere acting
over the area of the cross section of the tube.

Suppose the area of the tube’s cross section is 10 cm2. Then the force
produced by 1 atm of pressure P acting on this area is PA = 101 N.
The weight of mercury this force can support is the mass of the mercury
in the tube times the acceleration due to gravity, g. The mass of the
mercury is its volume V = hA, (that is, its height h times its cross-
sectional area, A = 10−3 m2) times its density, ρ = 13.6 × 103 kgm−3.
The pressure P at the surface of the reservoir is 1 atmosphere so the
pressure inside the tube at this same level must also be 1 atmosphere.
Pushing on the tube’s cross sectional area A, P supplies a force PA =
101 N that balances the weight mg = ρhAg so

h =
P A

ρ g A
=

101 N
13.6 × 103 kgm−3 × 10−3 m2 × 9.80m s−2

= 0.76 m

Now you can see what happens to h if you make the cross section of
the tube 10 times bigger, i.e., 100 cm2. The volume of mercury in the
tube to be supported by atmospheric pressure becomes 10 times larger,
but because the cross sectional area A is bigger, the force exerted across
that surface by the pressure of the atmosphere is bigger by the same
factor of 10, and the same height of column will be balanced.

� EXERCISES

1. Suppose on a day when the atmospheric pressure is 101 kNm−2

you inflate a spherical balloon to a diameter of 20 cm. Assuming that
the elastic force of the balloon rubber is small enough to neglect, what
will be the size of the force pushing out on 1 cm2 of the balloon? What
will be the size of the force pushing in on 1 cm2?

Several different kinds of units are used to measure pressure.

Nm−2 This is the most straightforward unit because it explicitly shows
the relationship P = F/A.
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pascal The combination of units Nm−2 is given its own special name,
pascal, abbreviated Pa. Thus, you can say that atmospheric pressure
is 101.3 kPa, where as usual the prefix “k” means “kilo” or 103.

atm Pressures are often measured in “atmospheres,” which is a convenient
unit because, as long as you don’t stray too far from sea level, the at-
mospheric pressure is likely to be reasonably close to the same value
all over the world. By convention, a “standard atmosphere” is defined
to be 101 325Pa.

bar There is another unit of pressure developed by meteorologists called
the “bar.” It is almost equal to the pressure of one atmosphere: 1 bar =
100 kPa exactly. All the sub- and supermultiples are used: mbar, kbar,
Mbar, etc.

mmHg Often U.S. physicists measure pressure in terms of the height of
the column of mercury that it would balance. The units are given as
millimeters of mercury, or mmHg. Thus we say that atmospheric pres-
sure is 760mmHg. To convert this to more conventional units, multiply
by the density of mercury and the acceleration due to gravity g. Or
remember that standard pressure, 101 325Pa, is very nearly equal to
760mmHg and use this as a conversion factor.

inHg U.S. weather reporters usually give barometric pressure in inches
of mercury. To convert mmHg to in Hg divide by 25.4 mm per inch.
Then 760mmHg becomes 29.9 in Hg, a number you often hear from
your TV weather reporter.

Torr The mmHg is also given its own name, the torricelli2, abbreviated
as Torr. This unit is frequently used for measuring low pressures inside
vacuums. It is rather easy to obtain a vacuum of 10−3 Torr; a good
vacuum of 10−6 Torr usually requires more than one kind of pump; an
ultra-high vacuum of 10−10–10−12 Torr is routine but expensive and
tedious to achieve, especially in large volumes.

psi In American engineering practice pressures are measured in pounds
per square inch, or psi, or p.s.i. Atmospheric pressure in these units is
about 14.7 psi. In physics we sometimes write this as 14.7 lb/in2.

gauge pressure Quite often, high pressures in tanks are measured as
the difference between the internal tank pressure and the external
atmospheric pressure. These are called “gauge” pressures. Sometimes

2One torr is now defined to be exactly(101325/760) Pa, so 1Torr equals 1mmHg only to about
1 part in 106. This is good enough for most situations.
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the pressure-measuring device will tell you that the pressure being
measured is gauge pressure by giving the units as psig or p.s.i.g., but
frequently it won’t.

Gas Pressure

Gases in closed containers exert pressure on the containers’ walls. A simple
experiment shows that this is so. Put an air-filled balloon inside a glass jar,
pump air from the jar, and the balloon will expand; let air back into the
jar, and the balloon contracts. The gas in the balloon is always pushing
outward, but, as you saw in Exercise 1, normally that outward force is
exactly balanced by the inward force of the atmospheric gas. Only when
the effect of the atmosphere is removed by putting the balloon in a vacuum
does the unbalanced gas pressure become apparent. The balloon expands
until the internal pressure is balanced by the force from the balloon’s latex
fabric.

What causes gas pressure? It arises from frequent and repeated col-
lisions of gas atoms with the walls of their container. We draw this
conclusion because a simple model of atoms in motion quantitatively ac-
counts for the experimentally observed dependence of the pressure of a gas
on its temperature and the volume of its container. To understand this ar-
gument, you need to know about the gas laws—Boyle’s Law, Gay-Lussac’s
Law, and the Ideal Gas Law.

4.3 BOYLE’S LAW: THE SPRINGINESS OF GASES

A modified form of Torricelli’s barometer was used by the English physi-
cist Sir Robert Boyle to perform what he called “Two New Experiments
Touching the Measure of the Force of the Spring of Air Compressed and
Dilated.”3

Boyle’s Experiment

Boyle made a J-shaped tube sealed at one end and open at the other.
He pasted a scale along both arms of the tube (only one scale is shown
in Fig. 4.3). He poured mercury into the open end and trapped a small
volume of air under the closed end. (This is different from Torricelli’s

3Reprinted in A Treasury of World Science, ed. Dagobert Runes, Philosophical Library, New
York, 1962.
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FIGURE 4.3 Apparatus for establishing Boyle’s law.

experiment, in which the volume at the closed end was a vacuum.) He mea-
sured the volume of the trapped air by measuring the height of the column
of air between the mercury and the end of the sealed tube, and he mea-
sured the pressure of the trapped air by measuring the height of the
column of mercury in the open end. He varied the pressure by pouring in
more mercury to compress the trapped gas. He also did a separate exper-
iment in which he pumped out some air from the open end of the tube
and saw the trapped volume of air expand. In his own words:

. . . we took care, by frequently inclining the tube, so that the air
might freely pass from one leg into the other by the sides of the
mercury (we took, I say, care) that the air at last included in the
shorter cylinder should be of the same laxity with the rest of the air
about it. This done we began to pour quicksilver into the longer leg
of the siphon, which by its weight pressing up that in the shorter
leg, did by degrees straighten the included air: and continuing this
pouring in of quicksilver till the air in the shorter leg was by con-
densation reduced to take up by half the space it possessed . . .
before; we cast our eyes upon the longer leg of the glass, on which
was likewise pasted a list of paper carefully divided into inches and
parts, and we observed, not without delight and satisfaction, that
the quicksilver in that longer part of the tube was 29 inches higher
than the other . . . . For this being considered, it will appear to agree
rarely well with the hypothesis, that as according to it the air in
that degree of density and correspondent measure of resistance,
to which the weight of the incumbent atmosphere had brought it,
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was able to counterbalance and resist the pressure of a mercurial
cylinder of about 29 inches, as we are taught by the Torricellian
experiment; so here the same air being brought to a degree of den-
sity about twice as great as that it had before, obtains a spring
twice as strong as formerly. As may appear by its being able to
sustain or resist a cylinder of 29 inches in the longer tube, together
with the weight of the atmospherical cylinder, that leaned upon
those 29 inches of mercury; and, as we just now inferred from the
Torricellian experiment, was equivalent to them.

This experiment is illustrated by Fig. 4.3. The data that Boyle pub-
lished are given in Table 4.1. These data support the conclusion that the
pressure P and volume V were inversely proportional, i.e., P ∝ 1/V , or,
as written in the form called “Boyle’s law,”

PV = constant (3)

at a constant temperature.
Notice that in the note for column E in Table 4.1 Boyle states his

law clearly. How well do his data agree with his hypothesis? It appears
that Boyle assumed that his first data point V0, P0 was exactly correct
and then used his subsequent measured values of Vm to calculate values
of Pc. These are given in column E of the table for comparison with the
measured values Pm in column D.

� EXERCISES

2. Check Boyle’s work by calculating the value of Pc at three or
four rows spread throughout Table 4.1. (Notice that Boyle did not use
decimals. When did decimals come into use?)

Another technique for seeing whether your data agree with your theory
is to put the theory in a form such that a plot of your data comes out a
straight line. Your eye is quite a good judge of the straightness of a line,
and so of the quality of agreement between theory and experiment.

� EXERCISES

3. A good test of Boyle’s law is to plot the pressure P against the
reciprocal of the volume 1/V . (Why might this be a useful thing to
do?) Do this for the data in Table 4.1. Use reasonable scales and a nice
layout of your graph. Graphs are quantitative tools, not just pretty
pictures, but they need to be easy to read.
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TABLE 4.1 A table of the condensation of the air

Volume Excess
pressure

Atmospheric
pressure

Total
pressure

Pc = P0 V0/Vm

Vm P0 Pm Pc

A B C D E

(1/4 inches) (inches) (inches) (inches) (inches)

48 00 29 2/16 29 2/16 29 2/16

46 01 7/16 ” 30 9/16 30 6/16

44 02 13/16 ” 31 15/16 31 12/16

42 04 6/16 ” 33 8/16 33 1/7

40 06 3/16 ” 35 5/16 35

38 07 14/16 ” 37 36 15/19

36 10 2/16 ” 39 5/16 38 7/8

34 12 8/16 ” 41 10/16 41 2/17

32 15 1/16 ” 44 3/16 43 11/16

30 17 15/16 ” 47 1/16 46 3/5

28 21 3/16 ” 50 5/16 50

26 25 3/16 ” 54 5/16 53 10/13

24 29 11/16 ” 58 13/16 58 2/8

23 32 3/16 ” 61 5/16 60 18/23

22 34 15/16 ” 64 1/16 63 6/11

21 37 15/16 ” 67 1/16 66 4/7

20 41 9/16 ” 70 11/16 70

19 45 ” 74 2/16 73 11/19

18 48 12/16 ” 77 14/16 77 2/3

17 53 11/16 ” 82 12/16 82 4/17

Column A: The number of equal spaces in the shorter leg, that contained the
same parcel of air diversely extended [and hence proportional to the volume].

Column B: The height of the mercurial cylinder in the longer leg that compressed
the air into those dimensions.

Column C: The height of the mercurial cylinder that counterbalanced the pressure
of the atmosphere. (This was measured to be 29 1/8 inches.)

Column D: The aggregate of the two last columns, B and C, exhibiting the pressure
sustained by the included air.

Column E: What the pressure should be according to the hypothesis, that
supposes the pressures and expansions to be in reciprocal proportion.
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TABLE 4.1 (continued)

Volume Excess
pressure

Atmospheric
pressure

Total
pressure

Pc = P0 V0/Vm

Vm P0 Pm Pc

A B C D E

(1/4 inches) (inches) (inches) (inches) (inches)

16 58 12/16 ” 87 14/16 87 3/8

15 63 15/16 ” 93 1/16 93 1/5

14 71 5/16 ” 100 7/16 99 6/7

13 78 11/16 ” 107 13/16 107 7/13

12 88 7/16 ” 117 9/16 116 4/8

4. Boyle, writing in 1660, presented his data in a format that we
now call a “spreadsheet.” Today you can use computer programs to
enter and manipulate data in the form of a spreadsheet. Enter Boyle’s
data into a spreadsheet program and then perform his calculations and
make a graph to show how the data conform to Boyle’s Law. Hand in
a printout of your spreadsheet and a printout of your graph.

Now you see why you can believe Boyle’s Law Eq. 3, i.e., at any given
constant temperature and for many gases under conditions that are not
too drastic PV = constant. It is important to understand that this law is
an idealization based on measurement. Because measurements are never
exact, you can never be sure that the law will continue to hold when
you make more and more precise measurements or when you change the
conditions under which the measurements are made. The incomplete ver-
ification of the law is evident just from examining the data. There are
a couple of disagreements between theory and experiment that are close
to 1%. However, Boyle’s experimental uncertainties prevented him from
attributing such discrepancies to inaccuracies in the law. We would say
that Boyle’s law is valid within his experimental uncertainty.

� EXERCISES

5. What is the largest percent variation between theory and
experiment in the data of Table 4.1?
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4.4 TEMPERATURE, GASES, AND IDEAL GASES

Take a glass of cold milk and set it on the table. It will warm up because
the motions of its water and protein molecules speed up. Take a hot
bagel from the toaster and set it on a plate. It will cool down because
the motions of its water, starch and other molecules will become less
vigorous. In general an object gets hotter when the random motions of
its atoms and molecules become more vigorous; the object gets cooler
if these motions diminish. This association of hot and cold with atomic
and molecular motions is an extremely important fundamental idea of
physics, first suggested by studies of the properties of gases. This section
examines some of these properties; the next chapter shows how a simple
atomic model explains important properties of gases and relates atomic
motion to temperature.

Asked “What is temperature?,” you might answer “High temperature
means hot, and low temperature means cold.” For what we do in this
book, that answer is good enough. However, the idea is more subtle.
Temperature is an indicator of the direction of the flow of heat energy.
The milk warms and the bagel cools by exchanging heat energy with
the surroundings. In each case, heat energy flows in both directions, but
for the cold milk more heat energy flows in from the surroundings than
flows out, while for the hot bagel more flows out than in. As a result, in
each case the difference between the inward and outward flows of heat
energy diminishes until the flows become equal. When the rate of heat
energy flow into the milk equals the rate of flow out, we say that the
milk has come to thermal equilibrium with its environment; the same for
the bagel. Two objects in thermal equilibrium with each other have the
same temperature; objects with the same temperature will be in thermal
equilibrium with each other if they are brought together.

To measure temperature quantitatively we want a device with a phys-
ical property that changes in an easily observable way when the device
gets hotter or colder. Thermal expansion is one such property, and the
mercury thermometer and gas thermometer are such devices. The next
sections describe thermal expansion, the mercury thermometer, the gas
thermometer, and the Kelvin temperature scale.

Thermal Expansion

At most temperatures a given volume of a solid, liquid, or gas at constant
pressure expands when heated and shrinks when cooled.4 When heated,

4Over small temperature ranges there are important exceptions. For example, a volume of
water expands when cooled from 4 ◦C to its freezing point at 0 ◦C. This is why ice forms on
the surface of a pond rather than at its bottom.
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a rod of metal gets longer (and also fatter), a pane of glass grows in area
(and also in thickness), a block of iron swells in volume. If you heat a
glass tube containing mercury, both the tube and the mercury increase
in volume, but for the same amount of warming the mercury expands so
much more than the glass that the expanding mercury moves up the tube.

The Swedish astronomer Anders Celsius used these properties to devise
a thermometer and a scale of measurement. He put mercury, which is
liquid from well below the freezing point of water to well above the boiling
point of water, into a small diameter tube with a bulb at one end. He put
the device into a freezing mixture of ice and water and made a mark on
the tube where the mercury reached after it was cold; then he put the
device into the vapor of boiling water and marked on the tube where the
mercury reached when heated by the boiling vapor. He divided the length
between the two marks into 100 intervals that we now call degrees Celsius.
We call the freezing point 0 ◦C and the boiling point 100 ◦C.5

Over temperature ranges that are not too large, the fractional change in
volume of many substances is proportional to the change in temperature.
For example, for a 1 ◦C rise in temperature a volume of mercury (Hg)
will expand by 0.0182% while for a 10 ◦C rise it will expand by 0.182%.
For a given temperature rise, say 10 ◦C, the fractional change is constant,
but the actual change of volume depends on how much you start with.
Thus 1 cm3 of Hg expands by 0.00182 cm3; 2 L of Hg expands by 3.64 cm3;
and 1/2 cm3 expands by 0.00091 cm3. For a 20 ◦C rise all these changes of
volume would double.

Expressed in algebra the fractional change is ΔV
V0

where V0 is the volume
at the initial temperature and ΔV is the change in volume that occurs
when the temperature changes by an amount Δt. Thermal expansion is
described by

ΔV

V0
= kV Δt. (4)

In Eq. 4 the constant of proportionality kV is called the volume coefficient
of thermal expansion. You can see that the units of kV are (◦C)−1.

Equation 4 tells you what you need to do to determine kV : Measure the
volume and temperature of a chunk of stuff; heat it a little and measure its
new volume and new temperature; then calculate kV using Eq. 4. Values
of kV for aluminum, glass, and mercury at room temperature (20 ◦C) are
shown in Table 4.2; kV values for some gases are also shown. The values
in the table illustrate the facts that every state of matter—solid, liquid,
or gas—exhibits thermal expansion and that kV is small for a solid, larger
for a liquid, and largest for gases.

5Celsius called boiling “0” and freezing “100”!
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TABLE 4.2 Coefficients of volume thermal expansion at
temperature t and Pressure 101 kPa

Substancea kV (10−6 (◦C)−1) t (◦C)

aluminum 69 20

mercury 182 20

pyrex glass 10 20

hydrogen 3664 0

nitrogen 3672 0

helium 3659 0

chlorine 3883 0

carbon dioxide 3724 0

3725 0

ideal gas 3661 × 10−6 = 1/273.15 0

a The values of the volume thermal expansivity of the gases are
taken from J. R. Partington, An Advanced Treatise on Physical
Chemistry, Longmans, Green, and Co., London, 1949. p. 547.

� EXERCISES

6. By what percentage will the volume of 2 cubic inches of Hg change
when heated from 20 ◦C to 30 ◦C?

7. A cube of Al, 2 cm on each side, is heated from 21 ◦C to 37 ◦C. By
how much does its volume change?

8. Suppose you have a glass sphere 100 cm3 in volume. When you heat
it up from 20 ◦C to 80 ◦C, its volume increases by 0.024 cm3. What is
the fractional change in its volume?

If kV were exactly constant, then it would be exactly true to write

V = V0(1 + kV Δt) (5)

where ΔV has been replaced by V − V0, where V is the volume after
the temperature has been changed by an amount Δt. But kV is only
approximately constant. For any given substance precise measurements
of ΔV/V0 at different temperatures or over different ranges of temperature
will usually yield different values of kV ; thermal expansion is non-linear.
That is why Table 4.2 includes with each value of kV the temperature at
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which it was measured. Nevertheless, for many materials the dependence
of kV on temperature is small enough to ignore, and Eq. 5 is accurate
enough for practical purposes.

Notice how the non-linear thermal expansion of matter leads to a logical
problem. If you measure the coefficient of thermal expansion kV using
the thermal expansion of liquid mercury for your thermometer, how do
you know whether variation of measured values of kV is in the measured
substance or in your thermometer? Given the way Celsius defined his
temperature scale, you can not answer this question. There is circular
reasoning here.

One way to escape the circle is to create a hypothetical model
substance—an ideal gas—for which Eq. 5 is exactly true and then find
a real substance that behaves like the model. An important clue for
constructing the model comes from studies of the thermal expansion of
gases. When in 1802 Gay-Lussac measured the thermal expansion of sev-
eral different gases heated from 0 ◦C to 100 ◦C, he found that they all
had the same coefficient of thermal expansion. His result suggests there
is some basic property that is the same for all gases, a property that our
model gas will need to have.

His experiment was direct.6 After filling a 205 mL flask with gas from
which all water vapor had been carefully removed, he placed the flask
in an iron frame and submerged the apparatus first in a tank of boiling
water and then in a tank containing a mixture of water and melting ice.
For all his measurements Δt = 100 ◦C.

When his apparatus was at the temperature of boiling water (100 ◦C),
he used the cords attached to the ends of the bar LL to open the valve
(see Fig. 4.4) to allow gas to escape through tube ID and bring the pres-
sure in the flask to atmospheric pressure Pa. Then he closed LL, cooled
the apparatus enough so that he could handle it and detach the tube ID.
With the tube removed, he put the apparatus in a bath of ice and water.
As the gas cooled, the pressure in the flask decreased, so now when he
opened LL, water moved out of the bath and up into the flask partially
filling it. Then he closed LL, carefully dried off the outside of the flask,
and weighed the flask containing the water that had risen into it. From
this he subtracted the weight of the empty flask to find ΔV , the decrease
in the volume of the gas when cooled by 100 ◦C. In a similar way he found
the volume V100 of the empty flask. He could then calculate V0 the volume
of gas at 0 ◦C: V0 = V100 − ΔV .

6Gay-Lussac’s measurements were simple in conception, but it was several decades after his

early work before refinement of apparatus and close attention to detail yielded values of kV

accurate to ±0.1%. See the articles by Gay-Lussac, by Regnault, and by Chappuis (all in
English) in The Expansion of Gases by Heat edited by W. W. Randall, The American Book
Co., New York, 1902. This book is available online as a free download.
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FIGURE 4.4 Gay-Lussac’s 1802 apparatus for measuring the coefficient of thermal
expansion of gases.

He found that kV = 0.00375 (◦C)−1 was the same for hydrogen, nitro-
gen, oxygen, carbon dioxide, and the other gases that he studied. Later,
other scientists made more precise measurements7 and found that

kV =
ΔV

V0

1
Δt

= 0.003667 (◦C)−1 =
1

273
(◦C)−1.

� EXERCISES

9. Explain how Gay-Lussac found the volume of the empty flask.

10. From the value of kV Show that a given volume of gas at 0 ◦C
and constant pressure will expand by ∼37% when its temperature is
increased by 100 ◦C.

7Actually Gay-Lussac’s measurements were quite precise, but because his apparatus was sub-
merged in a tank of water, the final pressure was not quite the same as the initial pressure.
See C. H. Holbrow and J. C. Amato, “What Gay-Lussac didn’t tell us,” Am. J. Phys., 2010
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11. How do you know from Fig. 4.4 that after Gay-Lussac let water
into the flask at 0 ◦C, the pressure in the flask would have been more
than the pressure at 100 ◦C?

� EXAMPLES

3. Suppose the flask weighed 100 g when empty, 305 g when full, and
156 g after passing through the steps of his experiment. What is the
value of (V100 − V0)/V0?

If the flask weighs 305 g full of water and 100 g when empty, then it
must contain 305 − 100 = 205 g of water. Because the density of water
is 1.0 g cm−3, the volume of the flask is 205 cm3. By the same reasoning
the decrease in volume of gas upon cooling is 56 cm3. Consequently,
(V100 − V0)/V0 = 56/149 = 0.376. To be exactly correct V0 should
be the volume at Pa, but it is not because the flask is under a few
centimeters of water.

Of course the glass of the flask also expands when heated, so the ob-
served change in the volume of the gas is not entirely from the expansion
of the gas. Although Gay-Lussac did not correct for this effect, later
experimenters did.

Imagining an Ideal Gas

Gay-Lussac’s results provide a starting point for an argument that con-
nects the idea of temperature to a property common to all gases: they
expand when heated and contract when cooled. This connection is made
quantitative by imagining a gas that exactly obeys Eq. 5. This model
gas provides a temperature scale that does not depend on how mercury
expands and contracts when heated or cooled.

Contrary to what Gay-Lussac thought, the modern values of kV (see
Table 4.2) are slightly different for different gases. In Table 4.2 the vari-
ation between kV for nitrogen and helium is 0.2%. This small difference
seems to be real because two experimentally measured values for the
coefficient of thermal expansion of CO2 differ by only 0.08%. If this is
the case, what makes different gases have different values of kV ?

To answer such a question you need to do experiments to find what
makes the differences between kV of different gases larger or smaller. From
such experiments you infer what properties of gases make them more
or less similar. After identifying the properties that make one gas like
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FIGURE 4.5 Coefficient of thermal expansion vs. pressure for four gases.

another, you can then imagine a gas that has only those properties and
none of the ones that produce differences. This limiting case or simplified
model is called an “ideal gas.”

For example when you measure kV for different gases at pressures other
than 760mmHg (101 kPa) with enough precision, you get values different
from each other and from those in Table 4.2. But Fig. 4.5 shows an in-
teresting result emerges when you graph the value of kV versus the gas
pressure at which the measurement was made. As the pressure goes down,
all the values of kV tend toward the same limit:

kV = 3661 × 10−6 = 1/273.15 (◦C)−1.

Apparently in the limit of low pressure when we reduce the the density
of the gas while holding its temperature constant, kV tends to a limiting,
universal value. Therefore, it makes sense to assign to an ideal gas the
property that its thermal expansivity is kV = 3661 × 10−6 (◦C)−1.

Gay-Lussac’s Law and the Kelvin Temperature Scale

Setting kV = 3661× 10−6 = 1
273.15 (◦C)−1 in Eq. 5 leads to one version of

what is known as Gay-Lussac’s Law (also known as Charles’ Law) for the
temperature dependence of the volume of a gas at constant pressure:

V = V0(1 +
1

273.15
t) = V0

273.15 + t

273.15
. (6)

Equation 6 is not the usual form of Gay-Lussac’s Law because the
temperature t is in degrees Celsius. Notice that Eq. 6 becomes much
simpler if you define a new temperature scale T by shifting the zero point
of the Celsius scale by 273.15 ◦C. To make the shift you define

T in kelvins = 273.15 + t in ◦C (7)
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This new scale is called the Kelvin temperature scale, and temperatures
on the Kelvin scale are measured in “kelvins” abbreviated K. On the
Kelvin scale water freezes at 273.15 K and boils at 373.15 K, i.e., 0 ◦C =
273.15 K and 100 ◦C = 373.15 K. A kelvin is the same size as a degree
Celsius. The word “degree” and the symbol ◦ are not used with units of
kelvins.

Rewritten in terms of the Kelvin scale, Eq. 6 becomes

V =
V0

273.15
T

which is usually written as
V

T
=

V0

273.15
=

V0

T0
= constant. Gay-Lussac’s Law (8)

The value of the constant depends on how much gas you have. Suppose you
have 22.4 L of gas at 273.15 K. Then the constant is 22.4

273.15 = 0.082 L K−1.
If you have 27.3 L of gas at 27.3 K, the constant is 1 L K−1. Given any
volume of gas V1 at a temperature T1 and some pressure P1, you can find
the volume V at the same pressure and any other temperature T from

V

T
=

V1

T1
.

Volume and temperature of an ideal gas exactly obey Gay-Lussac’s law.
The law is also a good approximation to the behavior of simple gases at
low densities and at temperatures appreciably above the value at which
the gas liquefies.

� EXERCISES

12. Suppose you have 22.4 L of ideal gas at 273.15 K. What will be
the volume of the gas at the same pressure but heated to 373.15 K?

13. Suppose the gas is kept at the same pressure and cooled to 27.3 K.
What is its volume then?

14. What if it is cooled to 2.73 K?

15. What is the pressure of the gas in each case? Answer: You can’t
tell. You need to know how much gas is present, i.e. the number of
moles.

16. Suppose you have 20 L of ideal gas at 0 ◦C. At what tempera-
ture in degrees Celsius will the volume double if the pressure at that
temperature is the same as the pressure at 0 ◦C?
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Gay-Lussac’s law says that at constant pressure the volume of a gas is
proportional to its temperature in kelvins (remember: use kelvins not ◦C).
This proportionality says that as a gas cools to −273.15 ◦C = 0K, its
volume goes to zero. Although real gases don’t behave that way, an
ideal gas does. According to this hypothetical behavior there can be
no temperature lower than T = 0K. For this and better reasons, the
Kelvin scale is often called the “absolute value” scale of temperature and
T = 0 K = −273.15 ◦C is called absolute zero. Chap. 5 will show you
another reason to believe in absolute zero.

The ideal gas offers an escape from circular reasoning about temper-
ature and thermometers by providing a guide for choosing a standard
thermometer. By definition an ideal gas has a thermal expansion co-
efficient of 3661 × 10−6 K−1 that is constant for all temperatures.
From Fig. 4.5 you can see that hydrogen and helium behave as ideal
gases. Therefore, we can make from either of these real gases an
excellent thermometer that is linear over a significant range of tem-
peratures. Historically the hydrogen gas thermometer was used as a
standard thermometer, and other thermometers, including the mercury
thermometer, were calibrated against it.8

4.5 THE IDEAL GAS LAW

By combining Boyle’s Law and Gay-Lussac’s Law you get the ideal gas
law. It provides an exact description of an ideal gas, and it is a good and
useful approximate description of many ordinary gases at temperatures
from somewhat below 0 ◦C to some hundreds of ◦C, and at pressures
from a few atmospheres downwards. Under these conditions Boyle’s law
and Gay-Lussac’s law provide good representations of ordinary gases. In
general, the higher the temperature and the lower the pressure, the better
the two laws and their combined form, the ideal gas law, apply to real
gases.

To put the two laws together, use the limiting behavior of Boyle’s law:
At a fixed temperature and in the limit of low pressure, the product of
P and V of a given amount of any gas approaches the same constant
value. For one mole of any gas at t = 0 ◦C experiment shows that as
P gets small, PV approaches the value 2271 kgm2 s−2 = 2271 J. This
property is independent of the type of gas, and you can define an ideal

8The nonlinearity of the mercury thermometer turns out to be quite small for most prac-
tical purposes. Nevertheless, logically you can’t verify Gay-Lussac’s (Charles’) Law with an
instrument that has been calibrated by assuming the validity of the law.
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gas as one for which PV = 2271 J for one mole of gas at a temperature
of 0 ◦C = 273.15 K. This definition is equivalent to the one given above in
terms of kV.

As you will see later, it is not a coincidence that the units of PV are
joules.

� EXERCISES

17. Show that the units of PV are joules.

18. Why does the coefficient of thermal expansion have the same value
in units of (◦C)−1 as in units of K−1.

19. Suppose you had 2 moles of an ideal gas at 273.15 K. What would
be the value of PV ?

20. Assume you have a mole of an ideal gas and that the mole weighs
32 g. At T = 273.15 K what would be the value of PV ? What if you
had only 16 g of this ideal gas?

21. Suppose you have two different ideal gases, one with a mass of
29 g per mole and the other with a mass of 17 g per mole. What would
be the value of PV of a mixture of one mole of each gas?

Now you can combine Boyle’s Law and Gay-Lussac’s Law into a single
law that connects all possible values of P , V , and T . To start, assume
you have just one mole of gas. At 0 ◦C, i.e., at T0 = 273.15 K, it will have
some pressure P0 and some volume V0. Keeping the temperature fixed at
T0, you can get any pressure P you want by changing the volume V0 to
some volume V ′ so that Boyle’s Law gives

PV ′ = P0V0. (9)

Then holding the pressure constant at P you can choose a temperature
T to get any volume V that you want according to Gay-Lussac’s Law:

V ′ = V
T0

T
. (10)

Now replace V ′ in Eq. 9 with the expression for V from Eq. 10 and
divide both sides by T0. You get

PV

T
=

P0V0

T0
=

2271
273.15

= 8.314 J K−1. (11)

You can see from Exercise 19 that when you have nm moles, the product
PV increases by a factor of nm. Using this fact you can generalize Eq. 11
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to apply to any amount of gas, i.e., any number of moles, by defining the
universal gas constant R to be

R ≡ 8.314 J K−1 mol−1,

and writing

PV = nMRT, ideal gas law. (12)

This equation is the ideal gas law. Although dimensionless, the quantity
nM has units of “mol,” the SI abbreviation of mole, and it can be any
positive real number. The units of R are J K−1 mol−1, as they must be to
make the units of Eq. 12 come out right.

� EXERCISES

22. Give a convincing argument why multiplying the right hand side
of Eq. 11 by nM makes the ideal gas law correct for any amount of gas.

23. Suppose you have 1.5 mol of ideal gas at 20 ◦C sealed in a 10 L
can. What is the pressure of the gas?

24. What will be the pressure if you raise the temperature to 100 ◦C?
Give your answer in atmospheres.

What Underlies Such a Simple Law?

You have seen that to useful accuracy over a range of temperatures and
pressures many gases obey the ideal gas law:

PV = nMRT.

But why? What is there about gases that makes them behave so similarly
and so simply? The temptation is strong to model the gas from sim-
ple components. That is our cue to try to understand this law in terms
of atoms. The next chapter shows how a simple atomic model of gases
explains a wide variety of their physical properties.

PROBLEMS

1. Find the location of a nearby barometer. Go there and measure the
pressure of the atmosphere. Make a careful drawing of the pointer and
scale on the barometer showing the pressure as you read it.
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If no barometer is available, you can go to almost any weather website
and find the current atmospheric pressure for the nearest weather station.

Now, to run yourself through all these terms and units, make a table
with two rows and eight columns. In the first row label each column with
the name of a unit of pressure. Using the appropriate units, put the value
of the pressure that you measured into each column of the second row.

Why is the number you measured different from the value of the
“standard atmosphere”?

2. Suppose you have a piston with an area of 100 cm2 sitting on a volume
of 10L of nitrogen gas at T = 20 ◦C. If the gas is heated and warmed
to T = 30 ◦C, by how much does the volume change? Give your answer
accurate to ±1%.

3. Suppose you have a pyrex flask that has a volume of 350 mL at 0 ◦C.
What will be its volume after being heated to 100 ◦C?

4. State the argument by which the ideal gas law is determined. Derive
the ideal gas law from Boyle’s Law and Gay-Lussac’s Law.

5. State the ideal gas law, identify the variables in the law, and use it to
find the pressure of 1 mole of gas contained in a volume of 11.2 L at 0 ◦C.

6. A 45-liter container at room temperature is known to have in it a
total of N = 15 × 1023 diatomic molecules of oxygen gas.

a. What is the number density n of the molecules of this gas? Give
your answer in units of cm−3.

b. What is the number of moles, nM, of this gas?
c. What is the pressure of this gas?

7. An experimenter measures pressure of gas as its volume is changed
and gets the following data:

Pressure (Pa) Volume (m3)

1000 1.5

1500 1.0

2000 0.75

2500 –
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a. Do these data obey Boyle’s law? Explain how you know.
b. What value of volume would you expect to measure for the missing

entry in the above table?

8. Suppose the above data were taken at a temperature of 27 ◦C and then
later the gas was cooled to −73 ◦C. At what volume would the cooled gas
have a pressure of 1000Pa?

9. Consider the following table of measurements of pressure vs. volume
for O2 (MO2 = 32u) in a closed container at 300K.

Pressure (kPa) Volume (cm3)

90.9 24.89

73.6 30.73

59.5 37.93

a. Is it reasonable to conclude that the gas obeys Boyle’s law? How
did you come to this conclusion? Discuss clearly.

b. How many molecules are contained in this volume? How do you
know?

c. If the oxygen molecules are replaced by an equal number of helium
gas molecules (MHe = 4u) at the same temperature, what would
be the gas pressure when the volume V = 30.73 cm3? (Hint: See
the above table.)

10. Boyle’s measurement of the air pressure outside his apparatus
(Fig. 4.6) was 29 2

16 inches of mercury (Hg). [The density of Hg is ρHg =
13.6 g cm−3.]

29 2/16"

FIGURE 4.6 Barometer for Problem 10.
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a. What was the air pressure in mmHg?
b. What was the air pressure in Torr?
c. What was the air pressure in Pa?

11. An object floats (moving neither up nor down) in air when its
“buoyancy force” equals its weight. Archimedes discovered that the buoy-
ancy force on an object equals the weight of the volume of air displaced
by the object. For example, a 10 m3 block will experience a buoyancy
force upwards equal to the weight of 10 m3 of air.

a. Imagine that you are holding a balloon with a volume of 10 liters
(L) filled with He gas (MHe = 4u). The temperature is a pleasant
27 ◦C. Assuming that the He gas is at atmospheric pressure (P0),
what is its mass?

b. Assuming that air is 20% O2 (MO2 = 32 u) and 80% N2 (MN2 =
28 u), what is the buoyancy force on the balloon?

c. What volume of helium should the balloon contain in order to float
carrying its own weight of 20 kg plus the weight of a 70 kg person?

12. Certain volumes of nitrogen gas and hydrogen gas react to form
ammonia gas, according to the reaction shown below:

N2 + 3H2 → 2NH3.

The atomic masses of nitrogen atoms and hydrogen atoms are 14.0 u
and 1.0 u, respectively. The mass of NH3 formed in this reaction is 3.4 g.

a. If the pressure and temperature of each gas (N2 and H2 before
reaction, and NH3 after reaction) are equal to 83.1 kPa and 300K,
find the final volume of NH3.

b. What would be the final volume if you arranged to double the final
pressure?

13. The weight of air produces Earth’s atmospheric pressure.
a. What is the mass of a column of air 1 cm2 in cross section rising

from Earth’s surface?
b. How many molecules are there in that column?
c. How many moles of molecules?

14. A glass bottle is almost filled with 0.75 L of wine. It is tightly sealed,
leaving a bubble of air within at atmospheric pressure and with a volume
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of 0.09 L. The bottle is placed in a freezer and brought to a temperature of
250 K. The wine freezes, and in so doing, expands to occupy a volume of
0.79 L.

Assume that the volume of the bottle is unchanged. What is the pres-
sure of the bubble now that it is squeezed into a volume of 0.05 L? What
is the approximate force on the cork?

15. Imagine a glass of water is on the ground and that you are standing
on the roof of a building drinking from the glass through a straw. What
is the longest vertical straw with which you can hope to drink this way?

16. To pump water from a well to a faucet in a second-floor apartment,
it’s possible to put the pump either at the well or by the faucet. To pump
water to the fifth floor, the pump must be located at the well, not on the
fifth floor. Why?
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Hard-Sphere
Atoms

5.1 INTRODUCTION

Why do gases obey the simple ideal gas law so well? Even gases of more
complicated entities such as CH4 behave the same way. This fact suggests
that the internal structure of the entities has little, if anything, to do with
the gas law. The observed similarities of the properties of all gases must
arise from properties that are common to all atoms and molecules. What
then is the least we need to assume about the particles of gas that will
explain the gas law?

To answer this question we try to imagine what atoms and molecules are
like, and we make up a model to represent the atom or molecule. For gases
we will use a model so simple that it does not distinguish between atoms
and molecules, and therefore in this chapter we use the word “atom” to
mean “atoms and molecules.” We call our description a “model” to remind
ourselves that it is surely incomplete, that we are abstracting only a few
important features of atoms to explain a limited set of properties.

Assuming that a gas is made of atoms, how can we connect the ideal
gas law PV = nMRT to their behavior? The volume V is a geometric
property fixed by the choice of container; the temperature T is somewhat
mysterious; the pressure P seems the best place to look for connections
between the gas law and atoms. Indeed, we know that pressure is related
to forces, i.e., to changes in momentum, so this might be a good place to
look for connections between the gas law and the Newtonian mechanics
of little particles.

Chapter 4 showed you that while the volume of solid materials responds
weakly to changes in temperature or external pressure, a gas responds
much more dramatically. The solid acts as though its parts were in close

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 109
DOI 10.1007/978-0-387-79080-0 5, c© Springer Science+Business Media, LLC 1999, 2010
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contact with each other; the gas acts as though its atoms had plenty of
space between them. A gas can expand indefinitely, but at any volume
it will continue to resist compression. Something must be happening to
keep its atoms apart. We are led to guess that because atoms don’t pile up
like sand grains on the floor of the container, they are in rapid, incessant
motion. Other similar considerations lead to the following assumptions
about gas atoms (and gas molecules):

• An atom or molecule is a tiny, hard sphere, too small to be observed
by eye or microscope.

• An atom has mass.

• Every atom is in constant random motion.

• Atoms exert forces on each other only when they collide.

• When atoms collide, both momentum and kinetic energy are conserved.

Historically it was difficult to get direct evidence for atoms. Attempts
to subdivide matter in straightforward ways did not show discreteness or
granularity. This could be understood if atoms were so small that even
very small chunks of matter contained vast numbers of them.1 The accu-
rate description of the observed behavior of the pressure of many different
gases with this simple atomic model was strong, if indirect, confirmation
that atoms exist.

5.2 GAS PRESSURE FROM ATOMS

If a gas is a jostling myriad of tiny atoms, it is reasonable to imagine
that pressure arises from the force on a wall that comes from numerous
collisions of the gas atoms with the walls. The average of the forces of
these collisions gives rise to the observable pressure.

To see how this can occur, consider a cubical box full of gas at some
pressure P . Assume there areN atoms, each of mass m, in a box (see
Fig. 5.1a) that has a length L in the x direction and walls with area A at
each end. To simplify the discussion, assume that the walls are smooth, so
that they produce no changes in momentum of the particles in directions
at right angles to x. While Fig. 5.1b shows one atom colliding with the
right-hand wall, it is all the atoms continually and repeatedly hitting this

1Modern imaging techniques now provide direct observation of atoms, but there was certainly
nothing so convincing in the nineteenth century.
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FIGURE 5.1 (a) Gas atoms move in random directions. (b) An atom’s change in
momentum upon colliding with a wall.

wall that exert the average force on the wall and produce the observed
pressure. The average force exerted by the atoms on the wall is the sum
of their changes in momentum divided by the time interval over which
the collisions occur.

The force on the wall giving rise to the pressure comes from the col-
lisions of many atoms moving with the many different values of velocity,
but a simplified picture shows the essence of the effect. (A more thorough
treatment based on ideas used later in this book is given in the appendix
on page 135.) In the volume shown in Fig. 5.1a, consider an atom with a
velocity component vx1 in the positive x direction. When it rebounds from
the right wall, it must have its x component of velocity reversed, because
by assumption there is no change in the other components and energy is
conserved. This means that each time one of these atoms hits the wall, its
momentum changes from mvx1 to −mvx1. Therefore the atom’s change
in momentum, its final momentum p′ minus its initial momentum p, is

p′ − p = −2mvx1,

and the wall undergoes an exactly equal and opposite change of
momentum Δp = 2mvx1. These statements are illustrated in Fig. 5.1b.

You don’t have to know how to describe the instantaneous force on
the wall, because in the long run this atom will exert an average force
given by the changes in momentum divided by the time Δt1 between its
successive collisions with the wall,

〈F1〉 =
Δp

Δt1
=

2mvx1

Δt1
.
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(The angle brackets mean “average value”; so read 〈F1〉 as “average value
of F1.”) This average force results in pressure.

The time Δt1 between collisions with the wall must be the distance
traveled, 2L, divided by the atom’s velocity vx1, so Δt1 = 2L

vx1
and

〈F1〉 =
mv2

x1

L
.

The total force on the wall is then the sum of these little average forces
from all the atoms in the container:

F =
mv2

x1

L
+

mv2
x2

L
+ · · · ,

where · · · represents the contributions from the rest of the atoms. This
expression can be written more compactly using the notation for a
summation

F =
m

L

N∑

i=1

v2
xi, (1)

where vxi is the x velocity of an arbitrary atom labeled i, and the symbol∑N
i=1 stands for the sum over all atoms with i ranging from 1 to N , the

total number of atoms in the box.
Are you bothered by the assumption that the atoms travel freely back

and forth between the walls? When the density gets large enough, there
must be collisions between atoms. What then happens to the x momentum
of each atom? The values must change. But conservation of momentum
comes to the rescue: Whatever momentum is lost by one atom will be
gained by another, so the total incoming momentum at the wall in any
time interval is the same, regardless of the number of intervening collisions
between atoms. (The treatment in the appendix avoids this problem.)

The summation in Eq. 1 is staggeringly large; for 1 mole of gas there will
be 6× 1023 terms in the summation. Physicists get around this difficulty
by defining an average square speed:

〈v2
x〉 =

N∑

i=1

v2
xi

N
. average square speed

Then the sum in Eq. 1 is just N times the average square speed. The
force can then be written

F =
Nm

L
〈v2

x〉. (2)

To find the pressure P , divide both sides of Eq. 2 by the area A of the
end wall of the box, and note that the product LA is just the volume of
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the container. Then you obtain

P =
m

LA
N〈v2

x〉 =
N

V
m〈v2

x〉. (3)

The quantity N/V is the number density of the gas, which, as you saw
in Chap. 3, tells you how many atoms or molecules there are in a unit
volume. N/V is often given its own separate symbol n; n is very useful
when we don’t want to talk about some particular volume.2

� EXAMPLES

1. The International Union of Pure and Applied Chemistry (IU-
PAC) defines standard temperature and pressure (STP) to be 0 ◦C
and 100 kPa. What is the number density of a gas at STP? Remem-
ber that at STP, one mole of ideal gas occupies 22.4 L, or 22 400 mL
= 22 400 cm3. Thus

n = (6 × 1023)/(22 400 cm3) = 2.7 × 1019 cm−3.

� EXERCISES

1. The U.S. National Institute of Standards and Technology (NIST)
defines STP to be 20 ◦C and 101.325 kPa. Calculate the number density
of a gas at STP (NIST). By what percentage does it differ from the
number density of a gas at STP (IUPAC)?

2. What is the number density for a gas in an ultra-high-vacuum
chamber at a pressure of 10−12 Torr? Take the temperature to be 0 ◦C.

3. It is useful to remember the number density of 1Torr of ideal gas
at 0 ◦C. What is it?

It is more meaningful, as you shall see, to use the magnitude of the total
velocity and not just the x-component. As with any vector magnitude in
three dimensions,

v2 = v2
x + v2

y + v2
z ,

2Have you got all these n’s straight? nM is the number of moles; N is the total number of
atoms or molecules; n = N/V is the number density.
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which when averaged becomes

〈v2〉 = 〈v2
x〉 + 〈v2

y〉 + 〈v2
z〉.

Nature cannot tell the difference between the x direction and the y or z
directions, so it must be true that

〈v2
x〉 = 〈v2

y〉 = 〈v2
z 〉,

from which it follows that

〈v2〉 = 3〈v2
x〉.

The quantity 〈v2〉 is called the “mean square velocity,” where the word
“mean” is a synonym for “average.” You can rewrite Eq. 3 in terms of
the mean square velocity and obtain

P =
Nm

V

〈v2〉
3

,

which you can rearrange to get

P V =
1
3
N m〈v2〉. (4)

� EXERCISES

4. It is sometimes useful to express Eq. 4 in terms of the mass density
ρ of the gas. Show that Eq. 4 implies

P =
1
3
ρ〈v2〉. (5)

5. Show that PV equals 2
3 of the average kinetic energy of the gas.

Equation 5 is important because it tells you something about how fast
atoms move. For example, nitrogen at STP has ρ = 1.25 kg m−3 so

〈v2〉 =
3 × 101 × 103 Pa

1.25 kg m−3
= 2.42×105 m2 s−2. (6)

From this result it follows that
√

〈v2〉 = 493m s−1. (7)

This quantity is called the “root mean square” (rms) velocity and is often
written as vrms. The rms velocity of N2 molecules at 0 ◦C is 493 m s−1.
(Notice that to get this result you did not need to know the size or the
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number of the atoms.) Compare this to the 30 m s−1 of a fast traveling
automobile, or to the 250 m s−1 of a jet plane; you see that atoms and
molecules move quickly.

It is informative to rewrite Eq. 4 using the fact that N m = nmMM = M
the total mass of the volume V of gas, where MM is the mass of one mole.
Then you get

PV =
1
3
nM MM〈v2〉. (8)

This form is especially convenient at STP. For example, you know from
Chap. 4 that at T = 273.15 K, PV = 2271 J for one mole of any gas that
behaves like an ideal gas; then you can use the mass of a mole Mm of
nitrogen in Eq. 6, and the calculation becomes

√
〈v2〉 =

√
3 × 2271 kg m2 s−2

1mol × 0.028 kg mol−1 = 493m s−1.

You can go a step further and use the fact that PV = nMRT . Then,
in general,

vrms ≡
√

〈v2〉 =
√

3PV

nmMM
=
√

3RT

MM
rms velocity (9)

where the symbol ≡ means “equivalent to” or “defined to be.”

5.3 TEMPERATURE AND THE ENERGIES OF ATOMS

The importance of Eqs. 8 and 9 goes far beyond their convenience. The
equations point to a major new insight—that temperature is associated
with atomic motion. The ideal gas law connects the right side of Eq. 8 to
nMRT , so that

1
3
nmMm〈v2〉 = nMRT.

This equation conveys a big message: T , the gas temperature on the kelvin
scale, is proportional to the mean square velocity of the atoms. This means
that the temperature T is proportional to the average kinetic energy 〈K〉
of the gas:

nMRT =
1
3
M〈v2〉 =

2
3

1
2
M〈v2〉 =

2
3
〈K〉, (10)

and so is PV .
The result shows you that a given volume of any gas has the same ki-

netic energy as an equal volume of any other gas at the same temperature
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and pressure. That’s why at T = 273.15 K a mole of any (ideal) gas has
PV = 2271 J. You also see why gases make good thermometers: gas tem-
perature depends only on the average kinetic energy of the gas and not
on any other properties, e. g., not on how many hooks the atoms have,
not on how big the atoms are, not on how complicated the molecules are.

� EXERCISES

6. What is the value of RT at 0 ◦C?

7. Why was it unnecessary to do a calculation to find the answer to
the question?

The connection between the ideal gas and a simple model of hard,
point-like atoms bouncing off walls suggests that you can understand
temperature of gases to be a measure of the energy of random motion
of the atoms. You probably already believe this because you have often
been told that it is so. For the same reason, you probably already believe
that atoms exist. Here you have seen evidence for both ideas: A simple
model of atoms explains why the value of PV is the same for one mole of
any gas at a fixed temperature; the model and Eq. 10 persuasively and
quantitatively suggest that temperature is an effect of a basic physical
property of atoms, their kinetic energy.

Energies of Atoms: Boltzmann’s Constant

To explore the world of atoms, you need to be able to talk about the
properties of individual atoms. For example, it’s all very well to know
that at STP a mole of atoms has a kinetic energy of 3405 J, but what is
the average kinetic energy of a single atom? To answer this basic question,
you have to know the value of Avogadro’s number. To determine reliable
values of NA was a major challenge to physicists and chemists, and the
first experimental measurement of NA—described later in this chapter—
occurred only in the second half of the nineteenth century. For now, let’s
just use the currently accepted value of NA = 6.02× 1023 and answer the
question.

To find the answer take the kinetic energy in a mole and divide by the
number of atoms in a mole. You get

3405 J/mol
6.02 × 1023 atom/mol

= 5.66 × 10−21 J/atom.
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� EXERCISES

8. What is the average kinetic energy of an O2 molecule at room
temperature (20 ◦C)?

9. What is the average kinetic energy of a CO2 molecule at 20 ◦C?

10. For the preceding items, did you do complicated calculations, or
did you scale your answers from 5.66 × 10−21 J/atom? Why?

In general, to rescale from the macroscopic world of moles to the mi-
croscopic3 world of single atoms or molecules, you divide macroscopic
quantities by the number of atoms N . It is usually convenient to use the
relation (really a definition of nM)

N = nMNA.

For example, to connect the total kinetic energy Ktotal of a collection of
N atoms to 〈Kmolecule〉 the average kinetic energy of a single molecule
write

Ktotal = nM NA 〈Kmolecule〉.
Then, since Ktotal = 3

2nMRT , the factor nM cancels from both sides, and
you get

〈Kmolecule〉 =
3
2

R

NA
T.

The ratio R/NA appears over and over again in atomic physics, and
so it is given its own symbol, “kB,” and name. It is called “Boltzmann’s
constant” and has a value

kB =
8.314 J mol−1K−1

6.02 × 1023 mol−1 = 1.38 × 10−23 J K−1.

In terms of kB you get the standard expression for the average kinetic
energy of a molecule:

〈Kmolecule〉 =
3
2
kBT. average kinetic energy of an atom (11)

3Technically it is incorrect to call the world of atoms “microscopic,” because atoms are much
smaller than can be seen in a microscope. Nevertheless, it is common usage to mean “extremely
small.”
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� EXAMPLES

2. What is the average kinetic energy of a hydrogen molecule at room
temperature? Notice that to answer this question you do not have to
know the mass or the velocity or any details; all you need to know
is the temperature and Boltzmann’s constant, which is known from
measurements of the gas constant R and Avogadro’s constant NA.
The average kinetic energy of a hydrogen molecule at room temperature
is then

3
2
× (1.38 × 10−23 J K−1) × (293K) = 6.1 × 10−21 J,

a rather small number.

The Electron Volt (eV)

Because the energies of atoms are important in atomic physics and we refer
to them frequently, it is convenient to have a unit of energy scaled to the
size of atomic happenings. This unit is the “electron volt,” abbreviated
eV. It has what may seem to you a strange definition:

1 eV = 1.602 × 10−19 J.

However, a few chapters from now you will see that it is a very reasonable
unit. It is so reasonable that from now on you should always use the eV
as the unit of energy when talking about phenomena at the atomic scale.
All the usual multiples are used: meV, keV, MeV, GeV, and even TeV for
tera electron volts where T and tera stand for a U.S. trillion, i.e., 1012.

� EXERCISES

11. Show that the average kinetic energy of the hydrogen molecule in
the previous example is 0.038 eV.

12. What is the average kinetic energy of an O2 molecule at room
temperature? What about N2? He?

13. How many different calculations did you do?

The number obtained in Exercise 5.11 is important. It tells you the mag-
nitude of thermal energy associated with room temperature (usually taken
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to be 20 ◦C (293K), but sometimes 300K). Most physicists remember that
at room temperature

kBT = 0.025 eV =
1
40

eV, (12)

or
3
2
kBT = 0.038 eV ≈ 1

25
eV.

� EXERCISES

14. Hydrogen and helium atoms near the surface of the Sun are at
a temperature of about 6000K. What is the average kinetic energy of
one of these H atoms? Of one of the He atoms?

You might think that you can determine the rms speed vrms (pg. 115)
of a single atom from its mass m and its kinetic energy 1

2m〈v2〉 ≡ 1
2mv2

rms.
Well, you’re right, but your calculation will be equivalent to using Eq. 9.
To find the average kinetic energy of a single atom in a mole of atoms
at some temperature T , you find the average kinetic energy 〈K〉 of the
mole of atoms and then divide by NA the number of atoms in a mole.
And to find the mass m of a single atom in a mole take the mass MM of a
mole of the atoms (i.e. their molecular weight) and divide by NA because
MM = NAm. In effect, you rescale Eq. 9 as follows:

vrms =

√
3RT

M
=
√

3NAkBT

NAm
=

√
3kBT

m
. (13)

� EXAMPLES

3. The mass of a hydrogen atom is 1.67 × 10−27 kg. What is the rms
velocity of hydrogen at room temperature? To answer this question
you need to know that at room temperature hydrogen atoms are in
H2 molecules. Each molecule has a mass of 3.34 × 10−27 kg. Therefore,
using the value for kBT at room temperature,

vrms =

√
3 × 0.025 eV × 1.60 × 10−19 J/eV

3.34 × 10−27 kg
,

vrms = 1906 m s−1.
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� EXERCISES

15. Do you need to know the mass of an individual molecule in order
to find its rms velocity? Explain using Eq. 10.

16. Calculate the rms velocity of oxygen at room temperature. What
is it for nitrogen? Helium?

17. Compare the speed of sound in air at room temperature to the
rms velocity of nitrogen.

18. An object moving with a velocity of 11 km s−1 will, if not deflected,
leave the Earth and never return. At what temperature would hydrogen
atoms have vrms equal to this escape velocity?

5.4 SUMMARY THUS FAR

The results of the atomic model of an ideal gas are very satisfactory.
The fact that many gases closely obey the ideal gas law suggests that in
important respects real gases resemble an ideal gas.

The model also leads us to an important insight into the nature of tem-
perature. The model predicts that the pressure of a gas depends only on
the atoms’ kinetic energy per unit volume. The connection of the atomic
model to the ideal gas law strongly suggests that temperature is a prop-
erty of the motion of atoms, that temperature is a measure of the atoms’
average kinetic energy. Indeed, when measured on the kelvin scale, tem-
perature is directly proportional to the average kinetic energy. In other
words, the atomic model of an ideal gas predicts that equal volumes of
gases at the same temperature all have the same kinetic energy and, there-
fore, the same pressure. Because this is close to what is observed, it is con-
vincing evidence that atoms have the properties assumed for the model:
A gas is composed of atoms; they are very small (in effect point masses);
they move all the time; their collisions with the walls produce pressure.

Take a moment and think about the logic of these arguments. We have
measurements of pressures and temperatures made on large collections
of matter—liters of gas. We observe that the connections among these
directly measurable quantities are fairly well described by the ideal gas
law. Then we imagine that the large quantities of matter are made up of
numerous particles too small to see; we ascribe certain properties to these
tiny particles and show that particles with these properties will behave
according to the ideal gas law. From this we conclude that a gas is made up



5.5. SIZE OF ATOMS 121

of such particles. We use macroscopic measurements to infer the existence
and properties of submicroscopic bits of matter. This is speculation; there
is no logical guarantee that our conclusions are right.

Why then should you believe such conclusions? Because there are other
macroscopic observations that can be nicely explained by the ideal gas
atomic model of matter. For example, the ideal gas atomic model yields
values of the root-mean-square velocities of atoms, a useful quantitative
measure of how fast they travel. From this number you can predict how
quickly gas will stream through a small hole into an evacuated vessel.
Observations confirm the predictions. The more such confirmations we
obtain, the more confident we are that atoms are as we imagine them.

But what do you do when observations disagree with predictions? This
is an important question because for all our talk about how well the
ideal gas law describes the behavior of real gases, it is apparent from the
data that the description is only approximately right. Look at Fig. 4.5;
it shows that real gases deviate from the predictions of the ideal gas
law. The simplicity of the model of an ideal gas is appealing, but it is
obviously too simple. For another example, if the hole mentioned in the
previous paragraph is too small, no gas will stream into the vacuum. This
is not surprising because the assumption that atoms are point particles
can hardly be correct; atoms surely have size, and a hole can be too small
for a real atom to fit through. In general, when observations disagree with
predictions, we try adding some new feature of the atom to the model.
Much of the time this works.

5.5 SIZE OF ATOMS

How big are atoms? This is a fundamental question. Its answer sets the
scale of atomic phenomena; it tells us how many atoms are in a mole—
Avogadro’s number. But the question was not easy to answer. It took
some fifty years after Dalton’s proofs that atoms exist before physicists
and chemists could deduce from experiments that atoms are ∼2×10−10 m
in diameter.

To deduce atomic sizes from experiments chemists and physicists used
the pattern of inference described above (Sect. 5.4). They modeled atoms
as rapidly moving, frequently colliding hard spheres and showed how the
size of such spheres affects the rate at which they collide with one another.
By showing that the collision rate would affect a gas’s viscosity, they
connected the model of hypothetical microscopic behavior of atoms to
an observable macroscopic property of bulk matter. The improved model
predicted the observed temperature and density dependence of viscosity.
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It is convenient and customary to describe collisions among atoms in
terms of their “collision mean free path.” This is a measure of the aver-
age distance an atom travels before it collides with another; it is an idea
that has many uses in physics. The next section explains the idea; the
subsequent sections describe viscosity and show how the atomic model
explains viscosity of gases and how physicists used laboratory measure-
ments of viscosity to infer that the mean free path of molecules of air
is about 60 nm at room temperature and pressure and then inferred val-
ues of atomic sizes and Avogadro’s number from this value of the mean
free path.

Colliding Atoms, Mean Free Path

For the atomic model to describe the effects of collisions, its atoms must
have finite size. That collisions occur at all implies that atoms are not
point particles. Point particles with no physical extent occupy no space,
and collisions between them would be impossible. By adding to the model
the radius rm for each atom or molecule, you can extend the model to
describe the likelihood of collisions.

A common way to describe the likelihood of collisions is to specify the
average distance an atom travels before it hits another. A short distance
means frequent collisions; a long distance means infrequent collisions. Of
course the actual distance a particular atom travels between collisions
varies greatly from collision to collision, but there will be some average
distance that atoms travel before colliding. This average distance between
collisions is called the “mean free path,” and is often denoted as �. The
frequency of collisions also depends on how fast the atoms are moving.
Fast moving atoms collide more often than slow moving atoms with the
same mean free path.

� EXERCISES

19. Atoms in a jar have a mean free path of � and an average speed
of 〈v〉. In terms of these parameters what, at least roughly, will be fc,
the frequency of collisions between atoms?

The mean free path of an atom also depends on its size. As you might
expect, big atoms are more likely to run into each other than are small
ones. To see how the mean free path relates to the size of an atom and
its speed, consider Fig. 5.2. Figure 5.2a shows a molecule of radius rm

moving past other similar molecules. Obviously, two molecules cannot get
closer than a distance 2rm to each other without colliding.
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>2rm

<2rm
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Hit
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is hit

FIGURE 5.2 (a) Atoms will collide if their center-to-center distance is <2rm.
(b) Equivalent picture of an atom’s cross section of radius 2rm colliding with point-sized
atoms.

It is convenient to describe this configuration by the equivalent arrange-
ment shown in Fig. 5.2b, where one atom of radius 2rm moves among point
atoms. In effect we put all the physical size in one atom by treating it
as a sphere of cross-sectional area π(2rm)2. Now imagine a disk of this
area moving through a volume containing point atoms with a density of
n points per unit volume. While moving a distance d, the disk will sweep
out a volume of π(2rm)2d. This volume contains nπ(2rm)2d molecules,
because n is the number of molecules per unit volume. If the molecules
were all at rest and equally spaced, then the moving disk would suffer
nπ(2rm)2d collisions every time it traveled a distance d. Let � be the
distance for just 1 collision. Then

� =
1

π(2rm)2n
.

This cannot be quite right because the point molecules are not all at rest.
They are rushing toward and away from the moving molecule of radius
2rm. Instead of learning how to correct for this relative motion, just take
the correction as given; it changes the above expression for � by a factor
of 1/

√
2:

� =
1√

2π(2rm)2n
. mean free path (14)
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� EXAMPLES

4. Use Eq. 14 to calculate some mean free paths. (This is the reverse of
measuring the mean free path and using it to determine atomic sizes.)
A nitrogen molecule has a radius of rm ≈ 1.9 × 10−10 m. What is the
mean free path of a N2 molecule in a volume of nitrogen gas at STP? To
find the number density n use the fact that at STP one mole occupies
22.4 L, so

n =
NA

Vm
=

6.02 × 1023

22.4 × 10−3 m3
= 2.69 × 1025 m−3.

Then

� =
1√

2π × (3.8 × 10−10 m)2 × (2.69 × 1025 m−3)
= 5.80 × 10−8 m = 58nm.

This may seem like a small distance, but notice that it is ≈300
molecular radii.

5. What happens to � if you increase the temperature of the gas while
keeping the pressure constant? You could go back to the basic equations
and calculate new values for n and vrms, but it is more insightful and
more efficient to scale your result using the following observations. If
P is constant, then V grows ∝ T and, therefore, n ∝ 1/T . At the same
time vrms ∝

√
T , so

� ∝ 1
(

1
T

)√
T

∝
√

T

from which it follows that � at room temperature is

58

√
293
273

= 60 nm.

6. On average, how many collisions will a nitrogen molecule have in
1 s at STP? The average time between two collisions τave = �/vrms =
(58× 10−9 m)/(493m s−1) = 1.2× 10−10 s. The number of collisions in
1 s is 1/τave = 8.5 × 109 s−1.

Viscosity

You have experienced viscosity. When you run in air or swim in water,
you feel a resisting force. If you pole a raft along the surface of shallow
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still water, there is a resistance that is larger the faster you try to make
the raft go. Close examination shows that right where the raft touches
the water, water is dragged along at the same speed as the raft. A little
below the surface, the water moves but not as fast as the raft. The deeper
below the moving raft, the more slowly the water moves until at bottom
it is not moving at all. If you imagine the water to be in layers, the layers
nearer the raft move faster than the layers further below. The motion of
each layer is resisted by the layer beneath it. This resistance of fluid layers
to relative motion is called viscosity. You can also think of viscosity as
resistance to pouring. Molasses in January is very viscous; so is motor
oil; water is not as viscous as motor oil or honey; air and other gases are
viscous but much less so than most liquids.

These ideas can be made quantitative. Move a flat plate at a velocity
u on the surface of a liquid that is z deep above a stationary flat bottom.
Just as for the raft, right at the upper plate the liquid will adhere to its
surface and flow with it at a velocity u. The liquid at the bottom will have
no net flow velocity. There has to be a smooth transition in flow velocity
from u to 0, so you can expect that just below the top layer, the liquid
will have a flow velocity a little slower than u. Further down it will be
flowing more slowly yet, and so on, until on the bottom surface it will not
be flowing at all. Figure 5.3 illustrates the situation.

The upper plate has a retarding force on it, a drag. Experiments show
that this force depends on the kind of fluid and its temperature. We say
that this drag is produced by the “viscosity” of the fluid.

Viscosity is a measurable quantity. In principle you might pull one
plate past another and measure the force of the drag. This is difficult
in practice. It is much easier to rotate one cylinder inside a larger one

u

u(z)

u -
u -

u -

�

u�

z

Moving

Moving

Stationary Stationary

3 u
2 u

u

3 u
2 u

u

FIGURE 5.3 Change in velocity of fluid flow near a moving surface.



126 5. HARD-SPHERE ATOMS

and measure the force resisting the rotation. If the gap z between the
cylinders is small compared to their radii, the geometry is equivalent to
the flat plate diagrammed in Fig. 5.3.

� EXERCISES

20. Sketch for yourself a likely experimental setup of the two-cylinder
arrangement for measuring viscosity.

From such measurements the force is found to be proportional to the
area A of the cylinder and also proportional to the difference in velocity,
u, divided by the width of the gap, z, between the two cylinders. We write

F = ηA
u

z
, (15)

where the coefficient of proportionality—conventionally represented by
the lowercase Greek letter eta, η—is a measure of the strength of the
viscous resistance and is called the “coefficient of viscosity” or often just
“the viscosity” of the fluid in question.

When at 20 ◦C a cylinder of area 50 cm2 inside a similar cylinder and
separated from it by 2mm of air is rotated to have a circumferential
velocity of 10m s−1, it feels a drag of 450μN. If water at 20 ◦C is poured
between the two cylinders, the drag force becomes 25mN. If you use
SAE 10 motor oil at 30 ◦C, the drag becomes 5N. All of which seems to
show that, as you might expect, gooey things have more viscosity than
runny things.

� EXERCISES

21. What are the units of the coefficient of viscosity?

In SI units viscosity is measured in pascal-seconds, i.e., Pa s. Although
the Pa s is the official SI unit, many tables give viscosities in terms of a
historical unit called the “poise.” The conversion is 1Pa s = 10 poise.

Equation 15 provides an “operational definition” of viscosity. It defines
the viscosity of any fluid in terms of specified operations: Put the fluid into
the two-cylinder arrangement; measure the force; measure A; measure z;
measure u; use Eq. 15 to calculate η. That’s the viscosity.

Therefore, from the experimental data given above you can determine
the viscosities of oil, air, and water.
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� EXAMPLES

7. For SAE 10 motor oil we find that the viscosity is

η =
F

A

z

u
=

5
0.005

× 0.002
10

= 200mPa s.

� EXERCISES

22. Use Eq. 15 to find the viscosity of air at 20 ◦C. Do the same for
water.

Values of the viscosity of various gases are given in Table 5.1.
How does viscosity arise? Why is it different for different fluids? How

does it depend on density or temperature? A small extension of our model
of the atom leads to answers to some of these questions—but only for
gases. Keep that in mind: the model and arguments given below apply
only to gases.

Because the viscosity of a gas can be understood to result from collisions
of hard-sphere atoms or molecules with each other, we need first to develop
a model of collisions; next we show how colliding hard spheres might
carry away momentum and thus produce viscous drag; finally we connect
the experimentally measurable quantity η to the collision behavior and
estimate sizes of atoms using experimental measurements of η.

An Atomic Model of Viscosity

Now you can see what collisions of atoms and the mean free path � have
to do with the viscosity of a gas. The basic idea is that as a plate,
for example, moves with speed u through a gas, the atoms of the gas,
colliding with the plate, pick up momentum from it. Then the atoms,

TABLE 5.1 Viscosity in μPa s of some common gases at 20 ◦C
Gas Viscosity Gas Viscosity

N2 17.57 H2 8.87

O2 20.18 He 19.61

CO2 14.66 Ne 31.38

Cl2 13.27 Ar 22.29
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moving with average speeds 〈v〉 and colliding among themselves, carry
this momentum away. The resulting drain of momentum is a viscous force
on the plate.

Notice that this explanation involves two different speeds. There is the
velocity u with which the gas flows when it is dragged along by the moving
plate, and there are the much larger and randomly directed speeds of the
gas molecules. These speeds are quite varied, but we represent them by an
average value 〈v〉. You know what magnitudes of 〈v〉 to expect, because
you have seen that for N2, vrms = 500m s−1. Think of the molecules right
next to the plate as moving randomly with the great speed 〈v〉 to which
a small amount of velocity u has been added to give them a net overall
flow with velocity u.

Here is the argument one more time. The viscous force arises from the
transfer of momentum from faster-flowing gas to slower-flowing gas. Such
a transfer must occur, because, as Fig. 5.3 suggests, when a plate moves
with velocity u through a gas, the gas moves with the plate, but the gas
at a stationary surface a distance z away is not flowing. Across the gap
z, for every change Δz there is a change Δu in the flow velocity.

A molecule moving with a velocity 〈v〉 away from the surface of the
upper plate in Fig. 5.3 goes from a region of flow velocity u to one of
(u−Δu); similarly, molecules moving toward the upper surface with ve-
locity v move from a region where the flow velocity is (u−Δu) to one
where it is u. These slower-moving molecules get speeded up by colli-
sions with faster-moving gas molecules, and momentum is transferred
from the higher momentum gas to the lower-momentum gas. The rate
at which the transfer occurs is governed by the average speed 〈v〉 of the
atoms. This transferred momentum must come from the moving surface,
which means that a force is being exerted on the surface, i.e., there is
viscous drag.

To find the viscous force on the surface you need to find how much
momentum Δp moves away from an area A of the plate in an interval
of time Δt. Momentum leaves the surface because molecules with flow
velocity u leave the surface and those with flow velocity (u − Δu) come
to it. On average a number of molecules proportional to n〈v〉 will cross a
unit area of surface each second.

To connect the viscosity η to n, 〈v〉, the mass m of a molecule, and its
mean free path �, imagine that at each layer half the molecules are moving
directly toward the surface and that half are moving directly away. Also
picture the flow velocity of the gas as divided into layers each of thick-
ness �. In each layer the flow velocity is Δu less than in the layer above.
The idea is that a molecule with molecular speed 〈v〉 has to move ap-
proximately a distance � before it collides and exchanges momentum with
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FIGURE 5.4 As a plate moves with speed u through the gas, it drags gas molecules
with it at speed u. These molecules move with an atomic speed 〈v〉 a mean free path
distance � both into and out of the next layer a mean free path distance � below. As
a result there is a net flow of momentum mΔu from the faster moving upper layer to
the slower moving lower layer. This momentum transfer shows up as viscous drag.

another molecule. You build this condition into the model by imagining
that a molecule moves a distance � from one layer to the next, collides
with a molecule in the next layer, and contributes its momentum to that
layer. The model is illustrated schematically in Fig. 5.4.

Imagine a volume of gas of area A extending two layers of thickness
� down from the moving plate. For simplicity take all molecules in each
layer to have the same speed 〈v〉 and half are moving up and half are
moving down. Then in a time Δt = �

〈v〉 ,
n
2 A� molecules with flow speed

u move down and are replaced by n
2 A� moving up and carrying flow

speed (u − Δu). The result is that half the molecules in the layer next
to the plate have each lost an amount of momentum m Δu, where m is
the mass of a molecule. Collisions with the plate will increase the flow
speed of these molecules to u, but this means that in the time interval
Δt an amount of momentum Δp = n

2 A�m Δu will be extracted from
the motion of the plate. The loss of this momentum means that the plate
experiences a force, i.e. a viscous drag. To keep the plate moving at u an
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external force must replace the lost momentum. The magnitude of this
force, i.e. the rate of the momentum change, is

Δp

Δt
=

n

2
A�m Δu

〈v〉
�

1
A

Δp

Δt
=

F

A
=

n

2
m〈v〉Δu. (16)

Although this quantity has the units of force per unit area, it is not
pressure. Pressure would be a force perpendicular to the surface, but this
force per unit area is tangent to the surface of the plate. It is the viscous
force dragging on a unit area of the plate.

In addition to assuming that Δt is the time interval between collisions,
i.e., the time it takes to travel one mean free path, assume for convenience
that the flow velocity drops linearly from u to 0 across the distance z be-
tween the moving and stationary plates. Then the change in flow velocity
across one mean free path � is the fraction �/z of the total u,

Δu = �
u

z
.

To connect this result to the experimentally measurable coefficient of
viscosity η, rewrite Eq. 16 as

F

A
=

n

2
m 〈v〉 �

u

z
.

Now compare this result with Eq. 15, and you see that

η =
n

2
m〈v〉� =

1
2
ρ 〈v〉�, (17)

because nm = ρ, the mass density of the gas.
Several aspects of our model are unrealistic. The molecules move in all

directions not just directly toward or away from the plate; the molecules
have a wide range of speeds; and their collisions are more complicated than
those of hard spheres. But our mixture of simplifications accidentally leads
to a good result. A more complete model and calculation gives a factor
of 0.499 (which you can round off to 0.50 in calculations if you wish):

η = 0.499nm〈v〉�,
or

η = 0.499 ρ 〈v〉�. (18)

Using Eq. 18 you can find the mean free path � of a gas molecule from
measurements of the gas’s viscosity. Historically this was an important
advance in understanding gases. For air at room temperature you know 〈v〉
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is around 500m s−1 (see Eq. 7), and its density is 1.29 kgm−3. Therefore,
if the viscosity is approximately that of N2, the mean free path must be
about

� =
18 × 10−6

0.499 × 1.29 × 500
= 56nm.

� EXERCISES

23. What is the mean free path of an atom in a chamber evacuated
to 1Torr at room temperature?

24. Ultrahigh vacuum is considered to be around 10−11 Torr. What is
the mean free path of a molecule in such a vacuum?

A remarkable feature of viscosity appears when you substitute the value
of � from Eq. 14 into Eq. 18. You get the dependence of viscosity upon
atomic parameters:

η =
0.499m〈v〉√
2π(2rm)2

, (19)

and you find that the viscosity of our model gas does not depend upon
its density. “Do you mean to say if you double or triple the density of
air, its viscosity remains the same?” Yes, that’s what the equation says.
James Clerk Maxwell, one of the greatest physicists ever, was the first
person to derive the result. He did not believe it, so he built an apparatus
and tested the prediction. Viscosity of a gas is essentially independent
of its density as long as the mean free path does not become too large,
i.e., comparable to the dimensions of the container, or too small, i.e., of
the size of the molecules. Experimental confirmation of this surprising
prediction built confidence in the model.

� EXERCISES

25. What will happen to the viscosity of a gas as you increase the
pressure? Justify your answer.

26. Suppose you cool the gas. Will its viscosity increase or decrease or
stay the same? [Hint: Equation 19 shows that η is proportional to 〈v〉.
Does 〈v〉 increase or decrease with temperature?] Do you expect motor
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oil to become more viscous or less as you cool it? Compare this with
the behavior of the viscosity of gases.

For a gas 〈v〉 ∝ √
T , so you might expect η ∝ √

T . This is not the
case because the interaction between colliding real molecules is more
complicated than for hard spheres. From experiment η ∝ T s where for
air s ≈ 0.7.

27. On a hot summer day air temperatures may rise to 40 ◦C. By
what percentage will the viscosity of this air change relative to room
temperature?

5.7 THE SIZE OF ATOMS

Now that you have a value � ≈ 60 nm for the mean free path of molecules of
air, you can estimate the size of an “air molecule” the way J. J. Loschmidt
of the University of Vienna did in 1865. He used Maxwell’s value of the
mean free path of molecules of air deduced from measurements of viscosity
as described above. By “air molecules” Loschmidt and Maxwell meant
either N2 or O2, because the precision of their numbers did not distinguish
between them.

Radius of a Molecule

In the mean free path equation

� =
1√

2πn(2rm)2
(14)

the number density n and the atom radius rm are both unknown. There-
fore, knowing the value of � is not enough to find rm; you need another
independent relation between n and rm. You can find it using a version of
an argument by Loschmidt. In a unit volume containing n molecules with
radius rm, the molecules take up a volume of n4

3πr3
m. Loschmidt argued

that this is the volume the molecules would occupy if they were condensed
into the solid state. However, this assumption leaves no space at all be-
tween the molecules, and it is more realistic to assume instead that when
the gas is condensed, each sphere occupies a cube 2rm on a side. This
model seems plausible especially for a liquid. The liquid’s volume would
then be built up out of these cubes as shown in Fig. 5.5. Because each
block contains one atom of mass m, the mass density of each block is
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FIGURE 5.5 N blocks each of volume (2rm)3 add up to a total volume of N(2rm)3.

m/(2rm)3, but this is also the mass density of the liquid: ρ� = m
(2rm)3

. On
the other hand, the density of the gas is ρg = nm. The ratio of the two
densities ρg/ρ� is a measurable quantity that Loschmidt called ε:

ε ≡ ρg

ρ�
=

nm
ρ�

= n(2rm)3. (20)

Multiplying Eq. 14 by Eq. 20 eliminates n and gives you

rm =
π√
2

ε �. (21)

What is ε for air? The average density of 78% liquid nitrogen and 21%
liquid oxygen is ρ� = .87×103 kg m−3, and the average density of gaseous
air is 1.29 kg m−3. Therefore ε = 1.48 × 10−3 and, from Eq. 21,

rm =
π√
2
× (1.48 × 10−3

)× (56 × 10−9 m
)

= 1.8 × 10−10 m.

The radius of a molecule of air is thus 0.18 nm. Modern experiments con-
firm this result and show that the radii of single atoms generally range
between 0.1 and 0.2 nm.4

Avogadro’s Number

Having estimated the atomic radius, you can now go a step further than
Loschmidt did and find Avogadro’s number NA. Substitute the value of
rm back into Eq. 14 or into Eq. 20; you will get n = 2.9 × 1019 cm−3.
Multiply n by 22 400, the number of cm3 in a mole of gas at STP, and

4Or between ∼1 and ∼2 Å where 1 Å = 10−10 m = 0.1 nm. Å stands for Ångstrom, a unit used
in the past for lengths at the atomic scale. The Ångstrom was named for a Swedish physicist
who made the first precise measurements of atomic and molecular sizes. It is not an officially
sanctioned SI unit, but it is still used by physicists too old to change their habits.
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you get NA = 6.6 × 1023. This value is close to the currently accepted
value of 6.02× 1023 , but given the crudeness of our model of the solid the
close agreement is fortuitous.

� EXERCISES

28. What does “fortuitous” mean?

29. At −260 ◦C the density of solid hydrogen is 0.0763 g cm−3.
(a) What is the radius of a hydrogen molecule estimated by Loschmidt’s
method?
(b) What is the value of NA that you obtain for this case?

30. Compare the mean free path of nitrogen at STP with its molecular
radius. What is the mean free path measured in molecular radii?

5.8 CONCLUSIONS

This chapter is intended to give you the flavor of physical reasoning.
It shows a simple model and some of the arguments and experimental
data that established the atom as a physical entity. There are now more
complete models, more sophisticated arguments, and more accurate and
precise data, but the conclusions remain unchanged:

• Atoms exist.

• Temperature is a measure of atoms’ kinetic energy. At room
temperature, T = 293K, any gas atom has an average kinetic energy
of 0.038 eV,

• and it moves with an rms speed of hundreds of meters per second.

• At atmospheric pressure atoms travel tens of nanometers between
collisions.

• Atoms have diameters of around 0.2–0.4 nm.

• At STP a cubic centimeter of gas contains 2.6 × 1019 atoms.

• Over a large range of pressures and temperatures the ideal gas law
describes real gases quite well.
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• The model of atoms as tiny hard spheres explains a variety of physical
properties of real gases. It predicts that viscosity (and diffusion, thermal
conductivity, and the speed of sound)
– Will be independent of gas density,
– Will increase roughly proportional to the square root of temperature

measured on the Kelvin scale, and
– Will vary as the inverse of the square root of the molecular weight.
– These predictions are accurate over a range of pressures and temper-

atures where the mean free path is large compared to the molecule’s
size and small compared to the dimensions of the container.

The model of hard-sphere atoms is too simple. The physical size of real
atoms affects their behavior in ways other than the ones described above,
and the assumption that atoms interact only when in contact is approxi-
mate, as becomes especially apparent at high pressures. Notice also that
we have said very little about the distribution of velocities of atoms. At
any instant gas atoms have a range of velocities, and it is possible to
predict how many atoms will have which velocities. The deduction and
prediction are well supported by experimental evidence.

Toward the end of the nineteenth century it became clear that matter
is electrical in nature. This discovery showed that atoms have internal
structure; it also led to a precise value for NA. So that you can understand
these developments, the next chapter presents some basic phenomena and
ideas of electricity and magnetism.

APPENDIX A: AVERAGES OF ATOMIC SPEEDS

Introduction

The main part of this chapter argued that gas pressure P is the result
of the average effect of many collisions of many different atoms with the
walls containing the gas. The argument assumed that all the atoms had
the same speed; this is extremely implausible. This appendix presents an
argument that takes into account the fact that the atoms have a wide
range of velocities. This more complete argument also is an opportunity
for you to see how to compute averages in complicated situations. The
computation of averages will be important later in the book.
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TABLE 5.2 Names, ID numbers, and ages of 16 hypothetical
students

Name ID number Age Name ID number Age

Aimée 1 18 Brian 2 17

Ty 3 19 Kevin 4 19

Mannie 5 18 Doug 6 18

Yoko 7 18 Max 8 18

Sean 9 20 Laura 10 19

James 11 17 Ann 12 21

David 13 20 Jan 14 19

Kate 15 18 Luis 16 18

Sums and the
∑

Notation

You often need to add up long strings of numbers. For example, suppose
you wanted to know the average age of the students in a laboratory section
that has 16 students with the names and ages shown in Table 5.2.

To find the average age 〈A〉 you just add all the ages and divide by the
number of students:

〈A〉 =
18 + 17 + 19 + 19 + 18 + 18 + 18 + 18 + 20 + 19 + 17 + 21 + · · ·

16
= 18.56 y.

This is too tedious to write out. We need a notation that is both compact
and general.

We start by giving a symbolic name to the quantity we are averaging.
It is “age,” so let’s call it a. To talk about the age of a particular student
we can use the ID number as a subscript, often called an “index.” Then
Aimee’s age is a1, while Jan’s is a14 and Sean’s is a9. We can write the
average in terms of these symbols as

average age =
a1 + a2 + a3 + a4 + · · · + a15 + a16

16
.

This form has the advantage of generality; it represents the average of any
set of 16 ages. It is, however, just as tedious to write out as the previous
form.

The
∑

notation provides a compact representation of a sum like the
one above. We write

16∑

j=1

aj ≡ a1 + a2 + a3 + a4 + · · · + a15 + a16.
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The idea is that whenever you see
N∑

j=1

aj

you know that it represents a sum of N quantities with the names a1, a2,
a3, . . . , aN−2, aN−1, aN .

In this notation the average age of the students of Table 5.2 can be
written

average age =
1
16

16∑

j=1

aj.

The notation enables us to say that the average of any N quantities a1,
a2, . . . , aN is

average of a =
1
N

N∑

j=1

aj . (22)

Equation 22 is the general definition of an average.
There are many other useful applications of the

∑
notation. Sometimes

the quantities being summed may be expressed algebraically in terms of
the indices. For example, if you want to write down the sum of all the
odd integers from 1 to 17 you can write

sum of odd integers =
9∑

j=1

(2j − 1) = 81.

Distributions and Averages

Because it conveys only limited information, the average does not always
provide a useful description of a set of quantities. For example, a class
consisting of 8 one-year-olds and 8 thirty-five-year-olds has the same av-
erage age as a class of 16 eighteen-year-olds. Knowing the average age
would not tell you which of these two classes you would prefer to be in.
Knowledge of the “distribution” of a set of quantities gives much more
complete information about the set of data.

Let’s reorganize the data of Table 5.2 to exhibit its distribution. We
group the data by age. Then we tabulate the number of students in each
group. Table 5.3 shows the result of this grouping. Because there are five
different ages in this particular case, we created five groups or “bins.”
We have labeled each bin by assigning sequential identification numbers
from 1 to 5.
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TABLE 5.3 Distribution of ages of 16
hypothetical students

ID index i Age group Number of
students in age
group

1 17 2

2 18 7

3 19 4

4 20 2

5 21 1

Now we can describe the set of numbers by saying that in bin 1 there
are 2 occurrences of the number 17; in bin 2 there are 7 occurrences of
the number 18; in bin 3 there are 4 occurrences of the number 19; in bin 4
there are two occurrences of the number 20; and in bin 5 one occurrence of
the number 21. Such sets of data are called “distributions” because they
show how a property is distributed over a set of entities. Our example
shows how the property of age is distributed over the set of students in
a class.

Implicit in our example is the important idea that a bin has width.
None of the students is exactly 17 or 18 or 19, etc. Indeed, we need
to say what we mean when we say that someone is 18. Most likely, we
mean that person has passed her eighteenth birthday and not yet reached
her nineteenth, but life insurance companies usually mean that you are
somewhere between 17.5 and 18.5 years old. In either case, we are grouping
our data into bins that are 1 year in width. We could use a finer grouping,
say in terms of months, or we could use a coarser grouping, e. g., two-year
wide bins. Choosing the size of the bin for a distribution is an important
decision based largely on common sense about how much information
there is in the data set and on your judgment about how much of that
information will be useful.

� EXERCISES

31. In the example above why wouldn’t you choose bins one month
wide? Why not choose bins two years wide?

It is very helpful to represent a distribution graphically. This is usually
done as a vertical bar graph. Each bar represents a bin. The width of
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FIGURE 5.6 Distribution of student ages in our hypothetical class.

the bar corresponds to the width of the bin, and the height of the bar
represents the number of entities with values in the bin. Such a graphical
representation is called a “histogram.” You will use them frequently in
this book. Figure 5.6 presents a histogram of the distribution of the data
in Table 5.3.

� EXERCISES

32. Find the ages of the students in your class and plot their
distribution histogram.

We often want to calculate an average from a distribution. It is much
easier to do this from the distribution data of Table 5.3 than from the
complete data set in Table 5.2. In long form we can compute

average age =
2 × 17 + 7 × 18 + 4 × 19 + 2 × 20 + 1 × 21

2 + 7 + 4 + 2 + 1
= 18.56 y.

In the numerator and in the denominator there are as many terms as
there are bins. In the numerator each term is the product of the quantity
being averaged and the frequency with which it occurs. In the denomina-
tor each term is just the frequency of occurrence. We can put this in a
compact and general form using the

∑
notation if we properly organize

the names and labeling of the quantities involved.
You can see by referring to Table 5.3 that you must keep track of three

different things when describing a distribution using the summation no-
tation. First, you must know which bin you are talking about, so you
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need a bin number i. Second, you need the numerical value Xi that corre-
sponds to bin i; this is the age in column 2 of Table 5.3. Third, you need
the number of times that each value of Xi occurs; this is designated ni

here and is often called the frequency. In terms of these symbols we can
rewrite the average as

〈X〉 =

i0∑

i=1

ni Xi

i0∑

i=1

ni

, (23)

where i is the bin number; i0 is the total number of bins; and ni is the

number of occurrences of the quantity Xi. Notice that
i0∑

i=1

ni = N will

always be the total number of quantities, 16 in the above example.
By convention the angle brackets denote “average value.” Other no-

tations used for average value are Xave or X̄ (read as “ex-bar”). In this
book we usually use the angle brackets.

Equation 23 is the general form for the average of any distribution of
quantities. When you see summations that look like this, you know they
are averages.

A Distribution of Velocities

Let’s apply these ideas to the data in Table 5.4. The table presents a
distribution of velocities of some nitrogen molecules. There are really 29
bins in the distribution, numbered from −14 to +14. Each bin is 50m/s
wide. The bins from −14 to −1 are not shown because they are identical
to the bins from 1 to 14. The velocity given in the table is the velocity at
the midpoint of a bin.

� EXERCISES

33. Fill in the blanks in Table 5.4.

Momentum Transfers by Collision

Figure 5.1 represents an atom rebounding from a wall. Assume that it
has an x-component of velocity vxi and that in a unit volume of the gas
there are ni/2 atoms that have this same velocity. For these atoms the
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TABLE 5.4 Distribution of x-Component velocities
of 1000 N2 atoms

x-velocity Number per cm3 in
the velocity interval
δv = 50 m/s

vxi (m/s) ni Bin number i

vx0 0 68 0

vx1 50 67 1

vx2 100 64 2

vx3 150 60 3

vx4 200

250 51 5

vx6 41

350 34 7

vx8 400 8

vx9 450 21 9

vx10 500 16 10

vx11 550 12 11

vx12 600 9 12

vx13 650 6 13

vx14 700 4 14

amount of momentum transferred to the wall in a time Δt is just

δpi = (2m vxi)(ni/2)(Avxi Δt) = ni Am Δt v2
xi.

This is the same result worked out in the text, because the atoms in
a single bin are all taken to have the same magnitude of velocity in the
x-direction. The difference is that we now have to add together the contri-
butions of atoms that have different velocities, i.e., atoms in other bins. In
other words, we propose to find the total change of x-momentum Δp by
summing δpi over all the different velocity bins indicated by i. Formally,
this is

Δp =
i0∑

i=1

δpi = mAΔt

i0∑

i=1

niv
2
xi,

where factors common to every term have been taken outside the sum.
Δp/Δt is the total force F exerted by the wall on the gas. By Newton’s
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third law of motion, the gas must exert an equal but opposite force on
the wall. Hence, F is the force on the wall, and F/A is the pressure P
of the gas on the wall. We get

P = m

i0∑

i=1

niv
2
xi.

This looks almost like an average. If it were divided by
i0∑

i=1

ni, the sum

of the number of occurrences of each velocity, it would be an average. We
multiply and divide by that sum, recognizing that the sum of the number
of atoms per unit volume with a particular velocity vxi must be the total
number of atoms per unit volume, which we have been writing as n, i.e.,

P = mn

i0∑

i=1

niv
2
xi

i0∑

i=1

ni

.

Referring back to Eq. 23, we see that

P = nm〈v2
x〉,

where 〈v2
x〉 is the average of the squares of the x-components of the atomic

speeds.
The argument on page 114 shows that 〈v2〉 = 3〈v2

x〉. This result enables
us to obtain the final result

P =
nm〈v2〉

3
.

Velocity Bins

The above calculation assumes that the atoms have been sorted into i0
bins. We never said how big i0 is, and in fact, since no two atoms have
exactly the same velocity, i0 could be infinite. Calculus enables us to deal
with that problem, but a little fudging does just as well. We define a bin
width, a range of speeds, and we count as being in a particular bin all
those atoms that have speeds within the specified range. For example,
in Table 5.4 the bin width is δvxi = 50m/s. The table says that in a
collection of 1000 atoms in a cubic centimeter, about 64 of them have
velocities between 75 and 125m/s.
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� EXERCISES

34. Calculate the average velocity of these atoms.

35. If there are 1000 atoms in a cubic centimeter, what should be the
sum of ni in Table 5.4? What is it? Explain your answer.

36. What is the average of the square of these velocities? Calculate it
directly from Table 5.4 (you might use a spreadsheet), and calculate it
assuming that the gas is at room temperature. How do the two answers
compare?

37. What will be the total change in the average momentum of all of
these atoms that strike a wall in a time interval of 1 s?

38. For Table 5.4 evaluate
14∑

i=−14

ni.

39. For Table 5.4 evaluate
14∑

i=−14

ni vxi

40. For Table 5.4 evaluate
14∑

i=−14

ni m v2
xi.

41. Make a graph of ni vs. vxi. How would the values of ni change
if you used δvxi = 25m/s instead of 50m/s? How would the graph
change under these circumstances? How many velocity groupings would
you need now? Can you see that if instead of plotting ni you plotted
ni/δvxi, you would get graphs that were nearly the same in the two
cases? And can you see that the smaller you made δvxi, the smoother
the curve would become?

The limiting ratio of the number in a velocity bin to the width of the
bin is called the distribution function. In the limit of vanishingly small
δvxi the ratio is a continuous function of v and is often written n(v),
although it is really just the derivative of the occurrence frequency with
respect to the velocity. Every distribution function is a derivative. The
notation n(v) is also confusingly close to the ni in Table 5.4, but it is
different. For one thing, the units of n(v) are number per m3 per m/s
(which is m−4 s); the units of ni are just m−3.
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PROBLEMS

1. What is meant by the “mean free path” of a molecule?

2. How is viscosity η defined? What is a typical value of the viscosity of
a gas?

3. a. Derive a relation between number density n, average speed 〈v〉,
and mean free path �. Take 〈v〉 ≈ vrms.

b. What is the mean free path of a nitrogen molecule in air at room
temperature?

4. In a lab experiment, N2 molecules escape into a vacuum through a
hole 0.051 cm in diameter. At what pressure will the mean free path of
nitrogen molecules become comparable to the size of the hole?

5. Describe Loschmidt’s method for estimating the radius of an
“air molecule.” Show how to use his results to estimate Avogadro’s
number, NA.

6. Given that solid CO2 at −79 ◦C has a density of 1.53 g cm−3 and
that CO2 vapor at STP has a viscosity η = 13.8μPa s, estimate
Avogadro’s number. How might you modify Eq. 20 to better represent
the condensation coefficient of solid CO2?

7. Given that NA = 6.02 × 1023, estimate the size of an atom.

8. Suppose N2 molecules are known to have an rms velocity of 500ms−1.
What would be the rms velocity of hydrogen molecules at the same
temperature and pressure? Explain your reasoning.

9. We found that the viscosity of an ideal gas is η = 0.499ρ〈v〉�, where
ρ is the density of the gas and the mean free path

� =
1√

2π(2rm)2n
,

where n is the number per unit volume of molecules or atoms of radius rm.
At STP, nitrogen gas in a 10m3 container has a density of 1.25 kgm−3,
a viscosity of 17μPa s, and a mean free path of 60 nm. Suppose that
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without adding gas the volume of the container is doubled while keeping
the temperature T constant. What then is

a. the density?
b. the rms velocity?
c. the mean free path?
d. the viscosity?

10. Assume you can prove that for our simple atomic model of an ideal
gas the pressure P = 1

3ρ〈v2〉, where ρ is the density of the gas and 〈v2〉 is
the average of the square of the velocity of the gas molecules.

a. Use the ideal gas law to derive a relation between the temperature
of this gas (measured in kelvins) and the average kinetic energy of
a gas molecule.

b. If the gas is helium (M = 4u), what is the value of the average
kinetic energy of a helium atom at room temperature?

c. If the gas consisted of oxygen molecules (M = 32), what would be
the average kinetic energy of a molecule at room temperature?
Explain your answer.

11. Consider the following table of measurements of pressure vs. volume
for air in a closed volume at room temperature,

Pressure Volume

(kPa) (cm3)

90.9 24.89

73.6 30.73

59.5 37.93

a. Show that these data obey Boyle’s law.
b. How many molecules are there in this volume? Show how you got

your answer.
c. What is the rms velocity of the oxygen molecules in this sample of

air? Explain how you got your answer.
d. If the temperature is increased by 15%, by how much does the rms

velocity of the oxygen molecules change? Explain.

12. A quantity of oxygen gas is contained in a vessel of volume V = 1m3

at a temperature of T = 300K and a pressure of P . The vessel is connected
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20 cm

FIGURE 5.7 Apparatus for Problem 12.

to a mercury-filled tube as shown in Fig. 5.7. Note that the upper end of
the tube is open to the atmosphere.

a. Is P greater or lesser than 1 atm? Calculate P in units of Torr and
also pascals.

b. If the temperature of the gas is doubled, keeping V constant, by
what factor does each of the following change?
i. density (g/cm3)
ii. average kinetic energy of a molecule
iii. rate of molecular collision with the walls
iv. vrms

v. mass of 1 mole of gas
c. By means of a small pump the gas pressure is reduced to 100 Torr,

while the temperature and volume remain fixed at 300K and 1m3.
What then is the average kinetic energy of 1 molecule of the gas?
Express your final answer in eV.

13. A box of H2 gas is at STP (0 ◦C and 101.3 kPa).
a. What is the pressure of the gas in

i. Torr
ii. pascals
iii. atmospheres

b. What is the root-mean-square velocity of the H2 molecules?
c. The temperature of the gas of H2 is tripled and the number of

molecules is halved. All else remains the same.
i. What is the new pressure in the box?
ii. How does each molecule’s average kinetic energy change from

its value at STP?

14.a. If 1 liter of oxygen gas at 0 ◦C and 101 kPa pressure contains 2.7×
1022 molecules, how many molecules are in 1 liter of hydrogen gas
at the same temperature and pressure? How do you know?
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b. If at room temperature the average kinetic energy of an oxygen
molecule (MO2 = 32) is 0.04 eV, what is the average kinetic energy
of a hydrogen molecule at the same temperature? Why?

c. When hydrogen and oxygen gas combine to form water, about
2.5 eV of energy is released as each water molecule forms. Assume
that the hydrogen and oxygen combine inside a closed tank and
that 10% of the released energy goes into kinetic energy of the
molecules. Estimate the rise in temperature of the water vapor.

15. Suppose you have a small cube with “3” painted on 3 sides, “4”
painted on 2 sides, and “1” painted on the sixth side.

a. What is the frequency distribution of the numbers?
b. What is the average value of the squares of the numbers?

16. What is the average total kinetic energy of one mole of oxygen
molecules at 27 ◦C?

17. A beach ball with a radius of 0.5m is rolling along the sidewalk with
a speed of 2m s−1. There is a light mist consisting of 3.1 small droplets
of water in every cubic meter of air. Estimate to within a factor of 2 the
mean distance the ball travels between collisions with droplets of the mist.

18. If the mean free path of a nitrogen molecule in a bell jar is 100 nm
at atmospheric pressure, what is its mean free path at 0.76 Torr? Show
how you get your answer.

19. If in the previous question you raise the temperature of the gas from
300K to 600K,

a. By how much does the collision time change?
b. Explain why the mean free path does not change when the

temperature goes up.

20. A 3 L vessel (1 L = 10−3 m3) contains 16 g of O2 gas at a pressure
of 4 atm.

a. How many moles of O2 are contained in the vessel?
b. What is the temperature of the gas?
c. How much energy is needed to raise the temperature of the gas by

100 K?



148 5. HARD-SPHERE ATOMS

21. Nitrogen gas (N2, M = 28u) at room temperature (300K) and
atmospheric pressure has a density of 1.25 kgm−3. The measured root
mean square velocity of a N2 molecule is vrms ≈ 500m/s.

a. What is the average energy of a N2 molecule under these
conditions? Express your answer in J as well as eV.

b. At the same temperature and pressure, what is the average energy
of a helium atom (M = 4.0 u)?

c. Under these conditions, what is vrms for a helium atom?
d. Figure 5.8 shows a plot of the logarithm of pressure (ln P ) in a

jar vs. time for an experiment in which gas leaks out of the jar
through a tiny hole into a vacuum. The heavy solid line shown is
for N2. Which of the two dotted lines (A or B) best approximates
the behavior of helium under the same experimental conditions?
Explain briefly.

22. We showed that the pressure of a gas is related to its density ρ
(mass/volume) of the gas and the average of the square of the velocity of
the gas molecules:

P =
1
3
ρ〈v2〉.

a. Starting from the above equation, prove that the total kinetic
energy of a gas is

KEtot =
3
2

PV.

ln P

A

B

t

FIGURE 5.8 Logarithm of pressure vs. time for gases leaking into a vacuum
(Problem 21).
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b. Starting from the last equation, prove that the average kinetic
energy of a single molecule is

KE(one molecule) =
3
2
kBT,

where kB is Boltzmann’s constant.
c. If the gas is H2, what is the value of the average kinetic energy of

a molecule at room temperature?
d. Find the ratio between the rms velocities (vrms) for O2 (M = 32)

and H2 molecules at the same temperature.

23. Present-day x-ray analysis of silicon (the element from which modern
electronic devices are constructed) shows that atoms in the solid state of
Si are arranged as shown in Fig. 5.9. The cubic box shown contains 8 Si
atoms, and its side length is 543.1 pm. (1 pm = 10−12 m)

a. What is the volume of the box in m3?
b. The measured density of Si is 2330 kg/m3. Calculate the mass of a

single Si atom.
c. The atomic weight of Si is 28.086 g (=? in kg). From this and

your answers to (a) and (b), find Avogadro’s number NA. (This is
presently the most accurate way known to find NA.)

24. A spherical balloon with negligible elastic force is filled at room
temperature (20 ◦C with enough helium gas that it just floats in the sur-
rounding air at standard atmospheric pressure. If the balloon is 2m in
diameter,

a. What is the pressure of the gas in the balloon?
b. What is the mass of the gas it contains?
c. What is the density of the gas in the balloon?
d. What is the density of the air outside, taking it to be 20% O2 and

the rest N2?
e. What is the mass of the balloon without the gas?

FIGURE 5.9 Arrangement of Si atoms in a crystal of silicon referred to in Problem 23.
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Electric Charges
and Electric Forces

6.1 INTRODUCTION

By imagining a gas to be a collection of tiny spheres, physicists and
chemists were able to explain many features of the behavior of gases
and estimate the number and size of molecules. Their results gave further
credibility to the idea that atoms exist, but their numbers were imprecise,
yielding estimates of Avogadro’s number and atomic sizes accurate only
to within an order of magnitude, i.e., only to within a factor of ten.

Greater precision came as physicists better understood electricity
and magnetism. Along with increasing precision came a growing under-
standing of the inner structure of the atom. During the two decades
bracketing the start of the twentieth century physicists discovered the
electrical nature of the atom, measured the electron’s minute electric
charge to better than 1%, and began to understand its behavior inside
the atom.

Before you can understand these advances, you need to review some
electric and magnetic phenomena and the rudiments of how they are
described and understood. In particular you need working ideas of

• electric charge,

• electric field and electric force,

• electric potential,

• electric current,

• magnetic field and magnetic force.

These are the topics of the next three chapters.
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6.2 ELECTRIC CHARGE

Unlike the ideas of mass, length, and time, which are ancient, the concept
of electric charge is modern. It was developed during the eighteenth and
early nineteenth centuries. The idea of electric charge is needed to explain
the curious but simple experiments described below.1

Experiments with Electroscopes

First take a thin, flexible strip of gold or aluminum foil and hang it over
a metal hook as shown in Fig. 6.1. The foil must be metallic, light in
weight, and so flexible and free to move that it must be kept inside a
glass case to protect it from air currents. (Foils of gold leaf can be made
so thin that they transmit light.) Then the hook must be connected by
a metal rod to a knob on top of the glass case. This device is called an
“electroscope.”

Gold
foil

Wax

Stationary
plate

FIGURE 6.1 (a) A discharged electroscope; (b) a charged electroscope.

1Albert Einstein and Leopold Infeld in their fine book The Evolution of Physics, Simon
& Schuster, NY 1938, point out that these experiments exhibit especially well the interconnec-
tion of theory and experiment. No one would dream of doing these experiments deliberately
unless one already had a reasonably clear idea of the theory that is to be used to interpret
them. Only then does the experimental plan make any sense.
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Next take a rod made of sealing wax2 or hard rubber and wipe it
firmly with cat fur. Now hold the rod quite near the electroscope but
without touching it. The two hanging leaves of foil will spread apart.
They repel each other, as shown in Fig. 6.1, and we say that the leaves of
the electroscope have become “charged.”3

If you move the rod away from the electroscope, the two leaves fall back
together. The leaves become “discharged.”

If you touch the sealing wax to the metal knob connected to the electro-
scope’s leaves, something new happens. Now when you move the sealing
wax away, the leaves do not come entirely back together. Some mutual
repulsion remains.

If you repeat the experiment using a glass rod that has been
rubbed with silk, exactly the same sequence of events is seen. The leaves
spread when the rod comes near; they fall back together when the rod
is moved away. If the electroscope knob is touched with the rod, the
leaves remain apart when the rod is moved away. This sequence of events
is shown schematically in Fig. 6.2.

Now here is something new and curious: Prepare the glass rod (by
rubbing it with silk) and the sealing wax (by rubbing it with fur). First
charge the electroscope by touching it with the glass rod and then bring
the sealing wax near. As the sealing wax approaches, you’ll see the

Glass

FIGURE 6.2 An electroscope charged by a glass rod rubbed with silk.

2If you don’t seal your letters as eighteenth century correspondents did, you may not know
that sealing wax is a mixture of gum-lac, melted and incorporated with resins, and then colored
with some pigment—red for business correspondence, black for mourning.
3Originally, the word “charged” was used simply in the sense that the electroscope was being
loaded with something, as we say a gun is charged and refer to its load as a “charge.”
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Gold
foil

Glass Wax Wax

FIGURE 6.3 Sequence of events as rubbed sealing wax is brought nearer and nearer
to an electroscope charged by a rubbed glass rod.

leaves of the electroscope fall back together. The electroscope appears
to discharge. If the sealing wax has been rubbed vigorously, you may see
the electroscope leaves discharge as the wax is brought near and recharge
as the wax comes closer yet (Fig. 6.3).

Apparently the glass rod and the sealing wax charge the electro-
scope differently. Even though individually each causes the leaves to
separate when their chargings are combined, they somehow cancel each
other out.

You can make sense of these experiments with the following model.
Assume there exist two “fluids”—“electric fluids” you might call them. In
combination they exert no effect, and we say they are “neutral.” When
separated, the two fluids attract each other. They appear to strive to
combine, each fluid tending to draw enough of the other to achieve neu-
tralization. To cause electrical effects you need to separate the two fluids;
you need to overcome their tendency to neutralize.

The two fluids are called “positive” and “negative” partly because
arithmetically a given amount of + will cancel an equal amount of −
and produce a null value corresponding to neutrality. The + and − kinds
of electric fluid attract each other, but + repels + and − repels −. Unlike
kinds attract; like kinds repel.

With this model you can interpret the above experiments as follows.
Rubbing the sealing wax with cat fur removes some of one of the “fluids”
and leaves an unneutralized remnant of the other. Similarly, the glass
rod rubbed with silk gets left with an unneutralized amount of one of the
fluids. These experiments with the electroscope show that the sealing wax
and the glass rod have been given excesses of unlike fluids.
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Let’s stop calling them “electric fluids.” That terminology was ac-
ceptable in the eighteenth century,4 but nowadays we call them “electric
charge.”

Using this terminology we say that positive and negative charges at-
tract each other, but positive charges repel positive charges, and negative
charges repel negative charges. In other words, unlike charges attract; like
charges repel.

Which charge is on the glass rod? Which is on the sealing wax? The
answer depends on how we choose to name them, and that choice is a
matter of convention.

The universally accepted definitions of the names are as follows.

positive charge: any charge repelled by a glass rod that has been
rubbed with silk (so there must be some unneutralized amount of
+ charge on the glass rod);

negative charge: any charge repelled by sealing wax that has been
rubbed with cat fur (so there must be some unneutralized amount
of − charge on the sealing wax).

Thus, the proper designation of + and − on batteries or electrical power
supplies throughout all the world’s great electrical industries depends
ultimately on cat fur.

Now you can explain the behavior of the electroscope when the sealing
wax comes near as in Fig. 6.4. This is the same drawing as Fig. 6.1,
except that the distribution of charges is shown. The sealing wax with
its negative charge repels negative charge on the electroscope. The charge
moves down onto the leaves of the electroscope; these now repel each
other, and they spread apart. When you move the sealing wax away,
the negative charge moves back to the portions of the electroscope from
which it had been displaced; the leaves become neutral again and collapse
together.

If the sealing wax touches the electroscope, some of the negative charge
on the sealing wax transfers to the electroscope, leaving it with a net neg-
ative charge. Now when you move the sealing wax away, the electroscope
cannot become neutral, and the leaves remain separated.

A similar description applies to the glass rod and the electroscope,
except that now the rod’s charge is positive.

4When the American physicist Benjamin Franklin worked out these ideas.



156 6. ELECTRIC CHARGES AND ELECTRIC FORCES

Wax
-----

-
-

-
-

--
-

-
-

-

- -
-

-

-

-

-

-
- - -

-----
-

- -
- - -

+
+

+
+ +

+

+

+

+
+
+

FIGURE 6.4 Negative charge on wax rod induces negative charge on electroscope
leaves. As the rod is withdrawn, the charges redistribute themselves, and the leaves of
foil collapse.

Notice that to explain the behavior of the electroscope you do not need
to assume that the negative charges move onto the electroscope. The
explanation works just as well when you assume that positive charges
move off from the electroscope. Electroscope experiments can not distin-
guish between negative charge flowing onto the electroscope and positive
charge flowing off. From other kinds of experiments we now know that in
metals negative charges move freely while positive charges remain fixed.
In liquids both positive and negative charges move.

� EXERCISES

1. Assuming that the negative charges can move freely and that
positive charges cannot, explain with both a sketch and words what
happens when a glass rod that has been rubbed with silk is brought
near an electroscope and then touches it.

2. Imagine that it is the positive charges, not the negative charges,
that are free to move. In that case, re-write the explanation of the
behavior of an electroscope when sealing wax is brought near. Include
a sketch similar to Fig. 6.4.

3. If you understand this model of charge and its properties, you
should be able to explain why an electroscope charged by a glass rod is
first discharged and then charged as a piece of sealing wax is brought
closer and closer. (See Fig. 6.3.) Explain it.
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Conductors and Insulators

The electroscope’s metal rod and leaves are particular examples of sub-
stances called electrical “conductors.” An electrical conductor (or, more
often, simply a conductor) is any substance on or in which electric charge
moves easily. The outstanding example of conductors are the metals, but
salt water and other solutions are also conductors of electricity.

The wax and the glass illustrate the opposite property. They are called
“insulators,” and charge does not move easily on or in them. You can see
why the foils of the electroscope must be conductors if the device is to
work well. Why must the wax and the glass rod be insulators? One reason
is that if they were not insulators, the charge that you managed to rub
onto them would immediately flow along them into your body and on out
to the ground. The human body, as a bag of salt water, is a pretty good
conductor.

The existence of materials with these two quite different properties is
basic to all of electrical technology. Wires are possible only because they
can be made of conducting material such as copper or aluminum. But
control of the flow of electricity along a wire is possible only because you
can wrap the wires in a material, such as rubber, fiberglass, or plastic,
that does not conduct electricity.

Quantitative Measures of Charge

As always in physics, we want to make this new concept quantitative. To
do this we arrange pieces of charged matter so that their attractive or
repulsive forces act to produce some observable mechanical effect such as
motion, compression of a spring, deflection of a lever, or twisting of a fiber.
The amount of the mechanical effect can then be used as a measure of the
amount of charge present. One early method used the angle of separation
between the leaves of the electroscope as a measure of the amount of
charge on them.

The French engineer and physicist Charles Augustin Coulomb5 devel-
oped a more precise measure. He built a device called a “torsion balance,”
shown in Fig. 6.5, that used the amount of torsion (twist) induced in a
very fine wire or fiber to measure forces smaller than 10−8 N.

To make his torsion balance, Coulomb clamped a very fine, delicate
torsion wire to a rotatable cap that he placed at the top of a narrow
glass cylinder. He let the wire hang down through the narrow cylinder
and into a short, large-diameter cylinder about 30 cm across and 30 cm

5Born in Angoulême, France on 14 June 1736; died in Paris on 23 August 1806. Had two sons,
one born in 1790, the other in 1797. He married in 1802.
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Torsion
wire

a

Z

FIGURE 6.5 Coulomb’s torsion balance.

high. He attached the midpoint of a lightweight, thin insulating rod, about
20 cm long, to the lower end of the fine wire. The cylindrical containers
shielded the sensitive apparatus from air currents.

To each end of the rod he attached a small conducting ball, forming
the dumbbell shown in Fig. 6.5. Another ball (ball Z in Fig. 6.5) could be
inserted through a hole in the cover of the larger cylinder. With both balls
uncharged, he rotated the cap to bring ball a almost into contact with
ball Z; then he removed Z, charged it, and put it back next to a. When
ball a lightly touched the charged ball Z, a picked up some of Z’s charge
and was then repulsed. The force exerted by ball Z on ball a caused the
dumbbell to rotate and twist the fine wire. If you and a friend have ever
wrung out a wet towel by twisting each end in opposite directions, you
know that the more you twist the towel, the more it resists. In the same
way, Coulomb’s wire twisted until it just balanced the effect of the electric
repulsion between the two charged balls. The amount of twist in the wire
was a measure of the amount of force between balls a and Z.

By rotating the cap to which the wire was fastened at the top of the
column, Coulomb could twist the wire more and increase the amount of
force it exerted on the dumbbell and move ball a closer to Z. By twisting
the cap enough, he could choose how close a was to Z.

Just as for wringing out a towel, the total twist in the torsion wire is
the amount of twist from turning the cap at one end plus the amount of
twist in the opposite direction produced at the other end when Z pushed
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on a and rotated the dumbbell through some angle. In one experiment,
the angle was 36◦, so the motion of the dumbbell twisted the torsion wire
through 36◦.

To measure how the electric force depended on the distance between
the charged balls, he rotated the cap to bring the balls closer together.
To move ball a to a position 18◦ from ball Z, he had to turn the cap and
twist the wire by an additional 126◦, making a total twist of 144◦. He
then observed that by turning the cap through 567◦ the balls moved to
within 8.5◦ of each other, making a total twist in the fiber of 575.5◦. (See
Problem 5.)

� EXERCISES

4. Show that these results imply that the force between the two balls
depends inversely on the square of the distance between them.

With this apparatus he showed that to within a few percent the magni-
tude of the force between charges was inversely proportional to the square
of the distance between them:

F ∝ 1
r2

,

where r is the distance between the centers of the two charged balls. His
result is strictly true if the distribution of charge on or in the ball is spher-
ically symmetric, and it is an excellent approximation for charged objects
that are small compared to their separation—so-called “point charges.”

Coulomb also found that the force is proportional to the product of the
amount of the two interacting charges.6 If we call those charges q1 and
q2, then we have

F ∝ q1 q2.

Combining these two equations and letting kc be some constant of
proportionality, we have what is known as Coulomb’s law for the force
between two spherical charges:

F = kc
q1 q2

r2
. (1)

You can use this equation to define a unit of charge. By convention
we agree that two identical charges separated by 1m and exerting a force

6These are rather casual sounding statements. You can get a deeper insight into Coulomb’s
accomplishments if you ponder how he might have been able to arrive at such generalizations
without having ways of measuring amounts of charge.
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of 8.98755 × 109 N on each other each have a charge of 1 coulomb. This
statement is a definition of the “coulomb” as a unit of charge. You might
object that this is a strange way to do things. Why not just let kc = 1?
In fact that was once the way it was done. However, some awkwardness in
combining electric and magnetic units led to the creation of the currently
used definition.7 The abbreviation of the coulomb is C. All the SI multi-
ples can be used, but the small ones like pC, nC, and μC are especially
common.

Adopting this definition for our unit of charge means that we have
agreed to assign to kc, the constant in Eq. 1, the value 8.987552 ×
109 Nm2 C−2. In this book, as in much practical work, you can round
off kc and use the value kc = 9 × 109 Nm2 C−2.

For various reasons the constant kc is often written as kc = 1/(4πε0),
where ε0 has the mystifying name of “permittivity of free space” and has
the precise value of 8.854187818 × 10−12 C2 N−1 m−2. We will be using kc

in this book, but in many places you may see the other form, 1/(4πε0).

� EXERCISES

5. What is the force between a charge of 1.1μC and one of 1.3 μC
when they are separated by 1 cm? By how much does the force change
if they are moved to a separation of 1μm?

6. Two point charges of equal magnitude are placed 2m apart. Each
attracts the other with a force of 9μN. What is the amount of each
charge? What is the sign of each charge?

7. Suppose the two charges of the previous problem are moved until
they are 1m apart. What now is the force between them?

6.3 ELECTRIC CURRENT

A stream of moving charges is called “electric current.” Imagine a sur-
face through which electric charge is flowing, e. g., the cross section of a
wire. Electric current is defined as the amount of charge flowing through

7The official SI definition of the coulomb is actually cast in terms of an experimental method

that is capable of much more precision than is possible by an experiment derived from
Coulomb’s law, but the results are the same. The official coulomb is defined as the amount of
charge corresponding to the passage of 1 ampere of current for 1 s. The ampere of current is
defined in terms of the force between two wires carrying that amount of electric current. We
don’t need to go into those details now.
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that surface in 1 s. Electric current is, therefore, Δq/Δt, and its units are
coulombs per second (C s−1).

There is a special SI name for this group of units; it is called the
“ampere” and is abbreviated “A.” All the standard SI multiples are used:
e. g., pA, nA, μA, mA, A, kA, MA.

� EXAMPLES

1. If 1 μC passes through the cross section of a wire every second, the
current I is 1 μC s−1 or, equivalently, 1 μA.

If 1 μC passes through the cross section of a wire every 0.1 s, then
I = 10μA.

For historical reasons the direction of electric current is taken to be
the direction positive charges would move to produce the observed trans-
port of electricity, even though quite often the transport is caused by the
motion of negative charges in the opposite direction.

� EXERCISES

8. Two carbon rods are placed in a solution of H2SO4. A current of
12A is passed between the two rods for 2 h 14min. This results in the
passage of an amount of charge that releases 1.008 g of H2. How much
charge is transported in this time?

Speed of Charges in a Current

If electric current involves the motion of electric charges, how fast do they
move? Let’s consider electric current flowing in copper, a metal easily
drawn out into wire. It has an atomic mass of 63.55 u and a density of
8.9 g cm−3. Copper wire is sold in standard sizes specified by a number
called its gauge. In the U.S. we use American Standard Gauge. As the
gauge number gets larger, the wire gets thinner. For example, #18 copper
wire has a diameter of 1.024mm; #20 has a diameter of 0.812mm; and
#22 has a diameter of 0.644mm.
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� EXAMPLES

2. Show that a 1m length of #18 wire has a mass of about 7 g.
This wire is a cylinder. To find the mass of a 1m long cylinder

of #18 wire, first find its volume and then multiply by the density of
copper. The volume of a cylinder is its length L times its cross-sectional
area A.

The cross-sectional area A can be found from the diameter D =
0.1024 cm using the fact that A = π

4 D2. This gives

A =
π

4
× (0.1024 cm)2 = 8.23 × 10−3 cm2,

and the volume V of a 1m length is then

V =
(
8.23 × 10−3 cm2

)× (100 cm) = 0.823 cm3.

The mass m1 of a 1-meter length of wire is then its volume V times
the density of copper. This gives m1 = 0.823 cm3 ×8.9 g cm−3 = 7.33 g.

Metallic copper is a good conductor of electricity because some of its
electrons, approximately one from each atom, move freely and swiftly
(∼106 m s−1), like particles of a gas, among the metal’s copper atoms.
This goes on whether the metal is a chunk of copper or whether it is
drawn out into a wire.

If one end the wire is connected to the + end of a battery and the other
end to the − end, then in addition to their rapid, random motion, the
electrons acquire a small average velocity 〈v〉 that carries them along the
wire toward the battery’s positive terminal. The motion of the negatively
charged electrons means that an electric current flows. It is a convention
that electric current flows in the direction that positive charge would
move, i.e., from the + end of a battery to its − end; therefore, the electric
current flows in the direction opposite to the motion of the electrons.

� EXAMPLES

3. If, as is the case, each atom of copper contributes one electron to
the flow of charge along a wire, how fast, on the average, do electrons
move along a piece of #22 wire (a size often used in electric circuits)
when the electric current is 1A?

To answer this question you need to know the cross-sectional area
of the wire and how many electrons pass across that area each second.
This is essentially the same problem as finding how many molecules
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are in a volume swept out by a disk of area A in 1 s (p. 123) or how
many molecules hit an area A of a container’s wall in 1 s.

If a container holds n particles per unit volume and each of them
is moving toward A with a speed 〈v〉, then in a time interval Δt the
number ΔN that strike the area A is the number of particles in a
cylinder of base area A and length 〈v〉Δt. You can write this as

ΔN = An 〈v〉Δt,

so the rate at which the molecules strike A is
ΔN

Δt
= n 〈v〉A. (2)

As already noted, electric current is the rate at which electric charge
passes through an imaginary surface that cuts across the wire. If ΔN
particles pass through the surface in a time interval Δt, and if each of
these particles has a charge e, then the amount of charge passing in
time Δt is ΔQ = e ΔN , and the electric current is

I =
ΔQ

Δt
= e

ΔN

Δt
= e n 〈v〉A.

Solving for 〈v〉 you get

〈v〉 =
I

e n A
. (3)

The current I is just 1A. What is the value of the number density n;
what is the value of the area A? The diameter of #22 wire is 0.0644 cm,
so the area A is π/4 × 0.06442 = 3.26 × 10−3 cm2.

To find n use the facts that a mole of copper has a mass of 63.55 g
and the density of copper is 8.9 g cm−3. These facts tell you that 1 cm3

of copper contains 8.9/63.55 mol of Cu atoms, from which it follows
that in copper the number density of the electrons that are free to
move around and cause an electric current is

n =
8.9

63.55
mol cm−3 × 6.02 × 1023 mol−1 = 8.43 × 1022 cm−3.

Now you can compute the value of the average velocity of the
electrons carrying 1 ampere of current along a #22 wire.

〈v〉 =
I

e n A

=
1A

(1.60 × 10−19 C)(8.43 × 1022 cm−3)(3.26 × 10−3 cm2)
= 0.0227 cm s−1.
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This is a remarkable result. The electrons are moving ∼ 106 ms−1

in random directions, but the net flow of electric current arises from
the average drift of the electrons along the wire at a speed of only a
fraction of a millimeter per second!

How long will it take them to travel a distance of 1 cm along a piece
of #22 wire? How does your answer compare to the amount of time
that it takes a ceiling light to come on after you flip the wall switch?

6.4 SUMMARY: ELECTRIC CHARGES

There is a physical entity called electric charge. There are two kinds of
charge that by convention are labeled + and −. Like kinds of charge repel;
unlike kinds of charge attract. Small point-like charges q1 and q2 exert a
force on each other proportional to the magnitude of each charge and
inversely proportional to the square of the distance r between them:

F = kc
q1q2

r2
. Coulomb’s Law (Eq. 1)

Choosing the constant kc in the above equation to be 9 × 109 NC−2 m2

defines the unit of charge called the “coulomb.” In other words, if two
identical point charges separated by 1 meter exert a force of 9× 109 N on
each other, they each carry a charge of 1 coulomb, i.e., 1C.

Moving streams of charge are called electric currents. The direction
of flow of electric current is always in the direction that positive charge
would move even if the actual current is negative charge flowing in the
opposite direction. The magnitude of electric current is the rate ΔQ/Δt
at which charges cross a surface that you imagine to be in their path.
The SI unit of electric current is the “ampere.” It is the current of 1C s−1

crossing a surface. The abbreviation for ampere is “A.”

PROBLEMS

1. The force of gravity due to a spherical mass falls off proportionally
to 1/r2 just like the electrical force due to a charge of 5 C. What would
be the value of g (acceleration due to gravity) one Earth radius above
Earth’s surface?
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2. The force between two charges 2m apart is measured to be 3N. What
will be the force between the charges if they are moved to be

a. 2
3 m apart?

b. 6m apart?

3. Coulomb calibrated his torsion fiber and found that it required a force
of 1.53 μN to twist it through 360◦. Using the data given in problem 5 and
assuming that the pith balls were equally charged, calculate how much
charge was on each.

4. Coulomb measured the force between two charges by the amount of
twist in a fiber from which a small charged pith ball hung at the end of a
10 cm long balanced arm, as shown in Fig. 6.6.

a. If q1 = −10 pC and q2 = −20 pC, what is the electric force between
the two “point” charges when the fiber has twisted through 0.2
radians, as shown in Figs. 6.6 and 6.7?

b. How much twist in the fiber will be needed to make the angle
between the two lines from the fiber to the two charges become 0.1
radians, as shown in Fig. 6.7?

0.2 rad
–10pC

–20pC
5 cm

Top
view

Side
view

q1

q2

Fiber

FIGURE 6.6 Positions and charges of pith balls (Problem 4).

0.2 rad 0.1 rad

FIGURE 6.7 Before and after twisting the fiber (Problem 4).
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c. In part (a) what is the magnitude of the electric field produced by
q2 at the location of q1?

d. By what factor will the electric field at q1 due to q2 change when
the angle goes from 0.2 to 0.1 radians?

5. Looking down onto Coulomb’s torsion balance, we see a rod 2 cm long
suspended from a thin filament as shown in the diagrams of the following
table:

Some data from Coulomb’s torsion balance

View from
above

Separation
between
charges
(cm)

Rotation
of needle
(deg)

Twist
of cap
(deg)

Total twist
of filament
(deg)

(i) � �

�
��

�
��

�

0.62 36 0 36

(ii) � ����
���

�

0.31 18 126 144

(iii) � ���� ���
�

0.15 8.5 567 575.5

a. Write down Coulomb’s law and define the symbols you use and
their units.

b. Explain and show in what way Coulomb’s data given in the table
support his law. Be quantitative.

c. If the charge on each tiny sphere was 1 nC, what would be the force
between the two charges in diagram (i) of the table?

d. What would be the electric field acting on the charge at the end
of the needle in (i)?

e. By how much would that field change if we doubled the charge at
the end of the needle but left the other charge unchanged?

6. Suppose you have two point-like charges q1 = 0.5C and q2 = 1C
separated by 0.5m. What is the magnitude of the force on the smaller of
the two charges? Compare this force to the force on the larger charge.
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7. Each of two small balls has a mass of 16 g, and each is charged with
+8.5 nC. At what distance apart will the electric force on a ball have the
same magnitude as the ball’s weight?

8. Suppose you decide to measure charge in some new unit. Call it the
esu, or “electrostatic unit,” and choose it so that Coulomb’s Law reads

F =
q1 q2

r2
,

where q1 and q2 are two charges, and r is the distance between them. (See
how cleverly you are making the Coulomb force constant be unity.) Now
define 1 esu by specifying that F = 10−5 N when q1 = q2 = 1 esu and
r = 1 cm. How many esu are in 1 coulomb? (Note that the esu is actually
used in some old systems of electrical units.)

9. Charges Q1 and Q2 are placed 15 cm apart. When charge Q3 is placed
between Q1 and Q2, 5 cm from Q1 (see Fig. 6.8), the total force on Q3 is
zero.

a. If Q1 = +20 nC, what is Q2?
b. When Q3 is moved to the right (closer to Q2), it feels a net force

pushing it to the left, toward Q1. Is Q3 a positive or a negative
charge? Explain carefully.

c. When Q3 is displaced to the right by 1 cm, as in part 0b, the force
on it is 10−3 N (to the left). Determine the charge Q3.

10. You may have already learned the equation for the power delivered
by an electrical circuit: P = IV , where P is the power delivered (in
watts = joules/second); I is the current (in amperes); and V is the voltage
drop across the load, which is also equal to the voltage provided by the
source. Derive this equation in terms of the rate of energy given to the
electrons by the source (which must be equal to the rate at which electrons
deliver energy to the load).

Q1 Q2

Q3

15 cm 

5 cm 

Q1 Q2

Q3

15 cm 

5 cm 

FIGURE 6.8 Arrangement of charges in Problem 9.
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11. Solid metallic aluminum has an atomic mass of 26.98 u and a density
of 2.73 g cm−3. If each Al atom contributes 3 electrons to current flow,
what is the number density of these “conduction” electrons? In an Al wire
of diameter 1mm, what is the average speed of the electrons when the
current is 1A?

12. Consider two identical conducting balls B1 and B2. B1 initially
carries a charge Q, and B2 is initially uncharged. When the balls are
placed in contact with each other, charge q is transferred from B1 to
B2, and the balls repel each other. What fraction of the initial charge, q

Q ,
must be transferred to maximize the force between the balls? Justify your
answer.
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Electric Fields
and Electric Forces

This chapter introduces you to the electric field—an important and useful
way to describe electric forces.

Coulomb studied the force exerted by one charge on another. According
to his description, one charged object pushes or pulls another charged
object located some distance away. This is called “action at a distance.”
Many people don’t like this idea. They feel intuitively that the force on
an object should come from something located right where the object
is. To accommodate this view, physicists invented the idea of a “field of
force.” We say that electric charges produce something called an “electric
field” that extends throughout all space. When another charge is placed
anywhere in this electric field, the field exerts a force on the charge.

Although at first it may seem an abstract complication introduced only
to comfort people who don’t like action at a distance, as you learn more
about the electric field, it will become more real. A field has energy; it has
mass; by disturbing an electric field you can produce light; you can cause
particles of matter (and anti-matter) to materialize from intense electric
fields. The field concept also applies to other forces than electric; it is one
of the most fruitful ideas in physics.

7.1 ELECTRIC FIELD: A LOCAL SOURCE
OF ELECTRIC FORCE

In the simple case Coulomb studied, the electric field was produced by a
single charge q1. You know from Coulomb’s Law that at any distance r
from a localized point-like charge q1, a point charge q2 has a force acting
on it, F = kc

q1 q2

r2 . Now change how you think about where this force comes
from. Rather than saying that q1 acts over the distance r to produce a
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force on q2, imagine instead that q1 fills all of the space around it with
something we call “electric field.” There will then be electric field E at
the location of q2, and it is this electric field that exerts a force on q2. The
charge q2 produces an electric field that also fills the space around the
charge; the part of this field at the location of q1 exerts a force on q1.
In other words, in the space around q1 and q2 the electric field is the
combination of the fields from q1 and q2. Note that because force has
both magnitude and direction, so does electric field.

If many charges are present, each makes a separate contribution to
the total electric field, but you can measure the field’s magnitude and
direction at any point in space without knowing anything about the dis-
tribution of charges producing it. For example, you might use the following
two-step procedure to test if there is any E present at a point in space
and to measure its value there. First, place a small neutral particle where
you wish to test for the presence of electric field. Although electrically
neutral, the particle will accelerate because of gravity. Now put a tiny
charge qt (subscript ‘t’ for ‘test’) on the particle. If, after becoming elec-
trically charged, the particle’s acceleration changes, an electric field must
be acting on it. The force due to the electric field acting on qt is used to
define the strength (magnitude) of the field:

E =
F

qt
. (1)

An important feature of E is that it is a property of the locality and
independent of qt.1 Conceptually we have separated the thing that acts—
the electric field E—from the thing on which it acts—the electric charge
qt. Knowing E at some location in space, you can immediately calculate
the force exerted on any charge Q placed at that location. It will be

F = QE. (2)

It follows from Eq. 1 that the units of electric field are N C−1, i.e.,
newtons per coulomb.

Because electric field is a vector quantity, it has direction as well as
magnitude. By definition the direction of E is the direction in which E
would push a tiny positive charge qt. Therefore, if you have a large ball
of negative charge Q and you place a tiny positive qt near it, you know qt

will be attracted. This tells you that E, the electric field produced by a
negative charge, points toward it. To find the direction of an electric field

1It is strictly true that E is independent of qt, but qt produces its own electric field that will
exert force on the distant charges that are producing the electric field felt by qt. Then qt’s
field will rearrange distant charges and so result in a change in the E that they produce at the
location of qt. That’s why to measure an E you use a tiny qt. “Tiny” means small enough to
produce negligible change in the E that you are measuring.
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just imagine how a positive charge will move if placed in the field. Notice,
also, that if qt were negative, it would move in the direction opposite to
that of E.

Two Useful Electric Fields

Electric fields are produced by electric charges. Different arrangements
of charge produce in the surrounding physical space different patterns of
electric field. These can be quite complicated, but in this book we use
mainly two simple electric fields. One is the electric field in the space
surrounding a point or any spherically symmetric distribution of charge,
e.g., a ball of charge; the other is the uniform electric field produced in
the space between two parallel, oppositely charged conducting plates.

Electric Field Outside a Point or Sphere of Charge

� EXAMPLES

1. A point charge produces an electric field everywhere in space. What
is the magnitude of the electric field that a point charge q2 = 0.5C
produces at a location 2m away from itself?

To answer this question place a small charge, let’s say qt = 1μC, at
a point 2m from the 0.5C charge. Now calculate the force on it. From
Eq. 1 the force on qt will be

F =
9 × 109 × 0.5 × 10−6

22
= 1.125 × 103 N.

What then is the value of the electric field at the position of the
charge? Using the definition of Eq. 1, you get

E =
F

qt
=

1.125 × 103

1 × 10−6
= 1.125 × 109 NC−1.

Notice that you first multiplied by qt = 1 × 10−6 C to find the force,
and then divided by the same quantity qt to find the electric field. The
essential idea is that the electric field is independent of the charge upon
which it acts; it depends only on other charges that are the sources of the
field. For the particular case of a source that is itself a point charge qs,
the force on a particle with charge qt a distance r from qs is, according
to Coulomb’s Law, F = kc qt qs/r

2. From the definition of electric field
E = F/qt, you see that the electric field in the space surrounding qs is

E =
kcqs

r2
. Electric field of a point charge (3)
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What is the direction of this electric field? Because both qt and qs are
positive, the force on qt pushes it away from the source qs; therefore the
electric field points radially outward from qs. If qs < 0, then a positive
charge qt > 0 will be attracted to it, meaning that E points toward qs.
In general, electric fields point away from positive source charges and
towards negative source charges.

Don’t think that a “point charge” is an artificial idealization. It turns
out that the electric field outside a spherically symmetric distribution of
charge (one or more nested spherical shells of charge) is exactly the same
as if all that charge were concentrated in a point at the center of the
sphere.2

Constant Electric Field

Another particularly useful electric field is the uniform constant field.
When two parallel, conducting plates are oppositely charged, the charges
spread over the facing surfaces of the plates and produce an electric field
that is nearly uniform in the space between the plates if the separation
between the plates is small (say less than 10%) compared to the lengths
of their edges. Such an arrangement is shown schematically in Fig. 7.1.
In the space between the plates the electric field E has the same value at
every point. As a result, a charged particle will experience the same force
and acceleration, no matter where you put it between the plates.

As before, you find the direction of a uniform electric field by imagining
a small positive charge between the plates. It will be attracted to the

+ + +
+

+ +
+

++
+

++

– – – –
––

– –
–

–

–– ––
–

–

E�

FIGURE 7.1 A common arrangement for producing a uniform electric field. You are
looking edge on at a pair of parallel plates with inner surfaces uniformly covered with
charge as indicated. The arrows represent the value and direction of E at various points
in the space between the plates.

2Even more surprising, at any radial point ri inside a spherically symmetric charge distribution,
there is no electric field from any shell of charge with radius greater than ri. The fields from
different parts of a shell of charge cancel out inside the shell, so a set of nested shells of charge
produce no electric field in the space inside them, i.e., at r ≤ ri. Only the charged spherical
shells with radii less than ri produce electric field at r = ri. We will use these assertions
(without proving them) when considering the internal structure of atoms.
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negatively charged plate and repelled by the positively charged plate.
Therefore, because the electric field points in the same direction as the
force on a positive charge, the electric field points from the positively
charged plate to the negatively charged one as shown in Fig. 7.1.

� EXAMPLES

2. Suppose you have a charge of 1μC on a small sphere of mass 1μg.
When this charged mass is placed in a uniform (constant) electric field
of 3NC−1, how much acceleration does the electric field produce? From
the fact that

F = qE = ma,

it follows that anywhere in the volume occupied by the electric field E

a =
qE

m
=

1 × 10−6 × 3
1 × 10−9

= 3 × 103 m s−2.

� EXERCISES

1. What size electric field would you have to apply to the above par-
ticle in order to exactly counteract the force of gravity? What would
be the direction of this field?

2. A particle called an electron has a charge of −1.60 × 10−19 C and
a mass of 9.11 × 10−31 kg. Suppose it is placed in an electric field that
points downward and has a magnitude of 1000NC−1. What will be the
magnitude and direction of its acceleration?

7.2 ELECTRIC POTENTIAL ENERGY
AND ELECTRIC POTENTIAL

A charged particle in an electric field has electric potential energy much
as a mass near Earth has gravitational potential energy. The concept of
electric potential energy is useful; it simplifies the calculation of important
effects of an electric field on a charged particle; it also prepares you to
understand the important related concept of “electric potential”—often
called “voltage.”
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When a charged particle is in an electric field, the field exerts a force
on the charge. If no other forces are acting, the particle accelerates and
acquires kinetic energy. Where does this kinetic energy come from? Just
as when a mass falls toward Earth and its gravitational potential en-
ergy becomes kinetic energy, so when a charged particle is accelerated
by an electric field, its electric potential energy becomes kinetic energy.
The charged particle has potential energy associated with its location in
the electric field; this potential energy is converted into kinetic energy. In
general, as the particle moves through an electric field, the sum of its ki-
netic and electric potential energy stays constant, i.e., its total mechanical
energy is conserved.

Electric Potential Energy in a Constant Electric Field

From the following example you can see how the electric potential en-
ergy of a charged particle in a constant electric field is analogous to the
gravitational potential energy of a mass near the surface of Earth.

� EXAMPLES

3. Imagine a charge Q of 2 C in a uniform constant electric field E
of 10 N C−1 pointing in the positive x-direction. You see that the field
exerts a force of 20 N on the charge. Now push the charge so that it
travels a distance d = 0.1 m directly against the field and is at rest when
you are done pushing. As you push, that is, as you exert a force over
a distance, you are doing work. Because in this example E is constant,
the force is constant, and the work you do is W = F d = QE d = 2 J.
The work you do increases the energy of the system.

Where is this additional energy? After you push the charged particle
0.1 m, it is at rest, so it has no kinetic energy. The only thing differ-
ent about the particle is its position. Therefore there must more be
energy associated with being at its new location than at its starting lo-
cation. The energy associated with the position of the charged particle
in an electric field is called the particle’s “electric potential energy.” By
moving the particle you increased its electric potential energy by 2 J.

� EXERCISES

3. Does the change in electric potential energy depend on the size
of Q?
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To see that the energy described in Example 3 really is present, let go
of the particle. The electric field will then accelerate it, and after it moves
the distance d = 0.1 m in the direction of the field, the particle’s kinetic
energy will increase by 2 J. This increase in kinetic energy comes from the
decrease of the particle’s electric potential energy. The work that you put
into the system increased its total energy by 2 J. After that, as long as no
external agents act, the total energy, the sum of the potential and kinetic
energy of the charge, remains constant.

What happens if the particle continues to accelerate over a distance
beyond d? Suppose it goes an additional distance of 0.2 m. For the case
of a constant field E the potential energy of Q continues to decrease.
The total decrease would be E Q (0.1+0.2) = 6 J. For a particle carrying
charge Q in a constant electric field, the change in potential energy ΔU is

ΔU = −QEΔx for constant E, (4)

where Δx is the total distance the particle travels in the direction of E;
the minus sign means that when E accelerates positive charge, electric
potential energy decreases.

Although the constant electric field is a simple special case, there is one
feature of Eq. 4 that is true for all cases no matter how complicated: The
difference between the potential energies at two different points in space
is what has physical meaning. Nothing physical changes if you increase
or decrease the potential energy by the same amount everywhere. Conse-
quently, you can set the potential energy to be zero wherever you want.
The choice of zero point is arbitrary although some choices may be more
convenient than others.

As an example, consider two parallel plates a distance of 0.20 m apart
with a constant electric field of 20 N C−1 pointing from the top plate
toward the bottom. You could choose to have U = 0 J at the top plate.
Then a 1C charge would have an electric potential energy of −4 J at the
bottom plate. Or you could choose U = 0 at the points half way between
the two plates. Then the charge would have U = −2 J at the bottom plate
and U = +2 J at the top plate.

You can always put the zero anywhere you like, but for our example
here it seems nice to have U = 0 J at the bottom plate. For this choice the
potential energy of the charge is positive everywhere between the plates,
and, if you set up your coordinate system with y = 0 at the bottom plate,
the equation for U(y) of the charge Q resembles the equation for U(y) of
a mass m near Earth, because you can then write

U(y) = −Q Ey (5)
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where y is the vertical distance of the charge Q above the bottom plate.
But notice, no matter where you set U = 0, ΔU = U(y2)−U(y1) between
two given points y2 and y1 has the same value.

Writing the potential energy as U(y) in Eq. 5 reminds you that U is
a function of position in space; in this case it depends only on vertical
position y. The minus sign is in Eq. 5 to show that potential energy
increases in the direction opposite to E’s direction, and, in the example
just given, the numerical value of E will be negative because E points
opposite to the direction of increasing y.

� EXERCISES

4. If U(d
2 ) = 0, i.e., at any point half way between the two plates,

what will be the value of U(d), i.e., at any point at the top plate?

5. For each of the above choices of where U = 0, what will be the
change in its electric potential energy when a 1 C charge moves from
the top plate to the bottom one?

6. How would you rewrite Eq. 5 to have an equation for U(y) if the
bottom plate was positively charged and the upper plate was negatively
charged?

7. Why does Eq. 5 remain valid if Q is negative rather than positive?

Rewriting Eq. 4 as

QE = −ΔU

Δx
(6)

exhibits a fundamental connection between U(x) and E(x). It says that
the component of the force qE in the direction of x is the negative deriva-
tive of U with respect to x. This is a general feature of a potential energy
function. It means that if the potential energy decreases in some direction
in space, there is a force in that direction; the steeper the decrease of the
potential energy over a given small distance, the greater is the force.

Electric Potential Energy of a Positive Charge Q in the Electric Field Produced

by a Point Charge qs

Suppose you are moving a charge Q around in an electric field E produced
by a point (or sphere of) positive charge qs. Imagine you start from far
away and push Q directly against E closer to qs. Because you are pushing
against the force exerted on Q by the electric field E = kc qs

r2 (Eq. 3),
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you are increasing the potential energy of Q in the field E. This is like
the explanation given on page 174 for a charge Q in a constant uniform
electric field.

For the constant field you pushed Q against a constant force, and it was
easy to calculate the work you did. However, the electric field E around a
point charge qs is not constant; as Eq. 3 shows, E varies as 1/r2, where r is
the distance from the center of the source charge qs. As a result, the work
you do pushing Q a small distance Δr closer to qs is different at different
distances r. Using calculus you can calculate the work done pushing Q
from one value of r, say r1, to another, say r2; your answer will be

ΔU = U(r2) − U(r1) = Q kc qs

(
1
r2

− 1
r1

)

. (7)

For this case it is convenient and usual to call the potential energy of Q
zero when Q is far, far away from the source (we say “at infinity”). Then
the potential energy of Q at r is the work you would have done pushing
Q in from r1 ≈ ∞ to r

U(r) = Q kc qs
1
r
. P.E. of Q in the electric field of qs (8)

� EXERCISES

8. Show that Eq. 8 follows from Eq. 7 when you assume that the
electric potential energy of the charge Q is zero at r1 ≈ ∞.

� EXAMPLES

4. Suppose you have a charge Q = 0.5 μC in the electric field of a
charge qs = 3 mC.

a. What is the electric potential energy of Q when it is 1.5 m
away from qs?

b. When it is 0.5 m from qs?
c. How much work must be done to move Q from 1.5 m to

0.5 m away from qs?
d. Suppose you choose to set the potential energy of Q to be

zero when Q is 1 m away from qs.
i. What then would be the electric potential energy of Q

very far away from qs?
ii. How would your answer to (c) change?
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From Eq. 8 it follows that Q’s electric potential energy at r = 1.5 m is

U = 0.5 × 10−6 × 9 × 109 3 × 10−3

1.5
= 9.0 J.

To answer (b) you could redo your calculation replacing 1.5 m with
0.5 m. Don’t do that. Notice instead that the electric potential energy
varies as 1/r, and when you go from 1.5 m to 0.5 m you have changed
r by a factor of 1/3 so that the potential energy must have increased
by a factor of 3. Therefore, the answer is 3 times your answer to (a),
i.e., 3 × 9 = 27 J.

And to move Q from r1 = 1.5 m to r2 = 0.5 m will require 27 − 9 =
18 J of work.

With Q’s potential energy chosen to be zero at r ≈ ∞, its potential
energy at r = 1 m will be 13.5 J. (Show this is so using the kind of
scaling argument illustrated above.) To make U be zero at r = 1 m,
subtract 13.5 J from every value everywhere; then at r = ∞, the new
value will be −13.5 J.

At r1 = 1.5 J the new value of U would be 9 − 13.5 = −4.5 J and
at r2 = 0.5 m the new value would be 27 − 13.5 = 13.5 J. The work
done to go from r1 to r2 will be 13.5 − (−4.5) = 18 J. This difference
in electric potential energy is the physically significant quantity; it is
independent of where you set the zero. Your answer to Example 4(c)
does not change.

You will often see the words “potential energy” with no modifier. This is
a common way of talking about it, leaving you to infer from the context
whether the potential energy being discussed is gravitational, electric,
spring, or some other kind. Most of the time the correct inference will be
clear.

7.3 ELECTRIC POTENTIAL

Equations 5 and 8 are true only for the corresponding particularly simple
cases of a constant electric field and a 1/r2 electric field. However, the
equations illustrate an important property that is always true: The electric
potential energy of a charge Q is proportional to the value of Q. This
property means that you can think of the electric potential energy of
a charge as arising from two independent factors—one is the size and
sign of the charge; the other is a property of the space where the charge
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is situated. This separation is possible because these two properties—
the size (and sign) of the charge Q itself and the electric state of the
(x, y, z) point in space where the charge is located—are independent of
each other.

For discussions of energy this separation of the electric state of space
from the charge placed in that space has advantages, so physicists have
invented a new concept to describe the electric state of space at (x, y, z).
They call it the “electric potential” and often represent it by the function
V (x, y, z).

Although they are related, electric potential and electric potential en-
ergy are distinctly different entities. Electric potential is a property of
space; electric potential energy is a property of a charge placed in that
space. The connection between the two is that V is numerically equal
to the electric potential energy of a unit (1 C) of charge. Knowing the
electric potential V at a point (x, y, z) in space, you can calculate the
electric potential energy U(x, y, z) of any charge q at that point (x, y, z)
by multiplying the value of q by the value of V at that point.:

U(x, y, z) = qV (x, y, z). (9)

Both U and V are functions of position (x, y, z), but it is quite usual to
refer to them without explicitly showing that dependence. In that case
Eq. 9 would be written as

U = qV. (10)

You can see from Eq. 10 that the units of V have to be joules per coulomb,
J C−1. This group of units is called the “volt.” “Volt” is a synonym for JC−1

in the same way that “joule” is a synonym for Nm s−2. The abbreviation
for volts is V. You see it written on the 1.5-V AA, AAA, C and D batteries
you use in electric gadgets. The manufacturer is telling you that the end
of the battery with the little knob on it, usually marked +, has an electric
potential that is 1.5 volts higher than the flat (−) end. Notice that we use
the letter “V” in two different ways when describing electric potential. First,
it is often the algebraic symbol or variable representing the potential at
points in space; in this case the V (x, y, z) is italicized. Second, the letter V
is the abbreviation for volts, the units in which magnitude of the electric
potential is normally given; in this case the letter V is not italicized.

It may help you distinguish between the two concepts if you notice
that the word potential is used as a noun when you are talking about
electric potential, but it is used as an adjective when you are talking
about electric potential energy. Electric potential is a property of space;
electric potential energy is a property of a charge situated in that space.
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People often refer to electric potential as “voltage.” Rather than ask:
“What is the electric potential at (x, y, z)?,” they will ask: “What is the
voltage there?” It is also usual to refer to differences of electric potential
simply as “potential differences” or “voltage differences.” These mean the
same thing.

Similar to the case of potential energy, only the difference of electric
potential ΔV has physical significance; also, as for U , the location you
choose to correspond to V = 0 V is arbitrary. (But some choices are more
convenient than others.) Therefore, it is useful to write Eq. 9 as

ΔU = Q ΔV. (11)

In this form Eq. 11 explicitly reminds you that the physically important
information is the difference between the electric potential at two different
points. If you know ΔV , you can easily find the change in potential energy
of a charge Q that moves between those two points.

Do the following exercises to see how E and V are related.

� EXERCISES

9. Write out Eq. 11 in a form that shows explicitly the position
dependence of ΔU and ΔV .

10. Use Eq. 6 to show that if the electric potential is V (x, y, z) at
some point in space, the value of the electric field E in the x direction
at that point is

Ex = −dV

dx
. (12)

The minus sign means that E points in the direction in which V is
decreasing.

When the electric field is constant, Eq. 12 becomes especially simple:

E = −V (y2) − V1(y1)
y2 − y1

. (13)

It is common practice to make a constant electric field by applying a given
voltage difference across two parallel conducting plates. For this case, you
can use Eq. 13 to find the value of the electric field at any point in the
volume between the plates.
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� EXAMPLES

5. Imagine two metal plates parallel to each other and 0.02 m apart.
If you connect a 3V battery between them, you get an electric field of

E =
3

0.02
= 150 Vm−1.

6. You can generalize the previous example. In the case of the parallel
plates where E is everywhere constant pointing from the top plate
toward the bottom, take V = 0 and y = 0 at the bottom plate. Then
V (y) = −E y. (Remember, this is only true because E is constant.)

Notice that the units of electric field have just been given as “volts
per meter.” Those units follow from Eq. 12. But, you ask, according to
Eq. 1 aren’t the units of E “newtons per coulomb”? Yes, they are. The
two different combinations of units are equivalent: 1 NC−1 ≡ 1 Vm−1.
Values of electric field are usually given in units of volts per meter.

� EXERCISES

11. In Example 5, what would be the value of E in N C−1?

12. Roughly how large should the plates be for the calculation in
Example 5 to be reasonably valid? Hint: See page 172.

13. What would be the electric field between the plates if they were
only 1mm apart?

14. Describe two different things you could do to double the value of
the electric field in Example 5.

The following examples illustrate how to discuss the energy of a charge
in a constant electric field or in a 1/r2 electric field in terms of voltage.

� EXAMPLES

7. What is the change in kinetic energy of a charge of 3C that moves
through a potential difference of 7V? Because 1V = 1J C−1, it is
3 × 7 = 21 J.
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8. Suppose you have two parallel conducting plates spaced 1 cm apart.
Imagine you have applied a potential difference of 12 V between them.
(You could do this by connecting the lower plate to the negative termi-
nal and the upper plate to the positive terminal of your car battery.3)
What would be the change in electric potential energy of a 2 μC charge
Q after it has been moved from the bottom plate to a point 5mm closer
to the upper plate?

The potential difference over the 1 cm distance from bottom to top
is 12 V. Over half that distance, i.e., over 5 mm, the potential differ-
ence will be half of 12, ΔV = 6V. The change in potential energy of Q
will be

ΔU = ΔV Q = 6 × 2 × 10−6 J = 12 μJ.

9. How would your answer change if the charge Q was increased to
7 μC? If the apparatus and the applied voltage are unchanged,

ΔU = 6 × 7 = 42 μJ.

This example is yet another illustration that the amount of charge and
the amount of potential difference contribute separately to the change
in the particle’s potential energy.

10. What if the question were: How much does the potential energy
of Q = 3 μC change if it moves from y = 1mm to y = 8 mm? First
find ΔV = 12 8−1

10 = 8.4 V; then multiply by Q to get ΔU = 3 × 8.4 =
25.2 μJ.

11. Consider a charge Q in the electric field outside a small ball of
charge qs (where, as usual, the subscript ‘s’ is to remind you that this
charge is the source of the electric field and the electric potential).
Suppose Q = 2 μC and qs = 5 μC. What is the change in poten-
tial energy of Q when it moves from r1 = 1.5 m to r2 = 0.5 m away
from qs?

From now on always answer such a question by first calculating the
electric potential at the two locations. In this case that means finding
the values of qs’s electric potential at 1.5 m and 0.5 m away from qs.

V (1.5) = 9 × 109 5 × 10−6

1.5
= 30 kV.

3Don’t do this at home!
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Do you see that V (0.5) = 3×V (1.5) = 90 kV? The potential difference
between the two points is 90 − 30 = 60 kV.

The change in Q’s potential energy is then Q ΔV = 2× 10−6 × 60×
103 = 0.12 J.

� EXERCISES

15. Redo Example 11 assuming Q = 7 μC.

16. Redo Example 11 assuming qs = 9 μC.

17. What is the electric potential a distance of 3 mm from a point
charge of 18 μC?

18. How much work would be required to bring a charge of 1C from
far away to a distance of 3 mm from a charge of 18 μC?

19. What is the strength of the electric field 1.5 m away from qs =
18 μC? What is the strength of the electric field at half that distance?
What is the value of the electric potential there?

20. Suppose you double the value of Q. By how much do your answers
to the previous three exercises change?

Acceleration of Charged Particles Through a Difference
of Potential

Many experimental techniques for studying electrons, ions, atomic nuclei,
or other charged particles speed them up or slow them down by passing
them through a region of space in which there is a change of electric
potential ΔV . It is important for you to know how to find the change
in velocity of a charged particle after it has passed through a potential
difference. The following example shows how to do this.

� EXAMPLES

13. For arbitrary combinations of charge and field the mathematical
form of the potential energy function can be complicated. However,
you can do without any formula at all if you can directly measure the
numerical values of the electric potential at points in space. Suppose
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the potential at point A is 250 V, and at point B it is 150 V. What will
be the velocity vB at B of a dust particle of mass m = 1 μg carrying a
charge of Q = 2 μC that has started from rest at A and moved to B?

First find the change in potential between those two points by sub-
tracting the value of the potential at the starting point A from the
value at the ending point B: VB − VA = −100 V.

Then the change in the particle’s potential energy ΔU of Q is just
Q ΔV = 2×10−6×(−100) = −2×10−4 J. By conservation of energy the
decrease in potential energy has gone to increase the particle’s kinetic
energy from 0J to 2 × 10−4 J, i.e., the change in kinetic energy is

1
2
mv2

B − 1
2
mv2

A = −ΔU = 2 × 10−4 J.

Since for this case vA = 0, it is simple to solve for vB:

vB =

√
2ΔU

m
=

√
4 × 10−4

10−9
= 632 m s−1.

(Remember 1 μg = 10−9 kg.)

Did you notice how similar this electric case is to the gravitational one
discussed on page 44 in Chap. 2? The principal difference is that now
your first step is to find the change in electric potential ΔV . Next, you
use the value of the charge Q to determine its change in electric potential
energy ΔU = QΔV . From conservation of energy you find ΔK = −ΔU ,
then from the mass m of the particle and its initial velocity, you can find
its final velocity at anywhere you know the electric potential.

Unlike the gravitational potential energy of a mass m, which always
decreases as the height of m decreases, the direction in which the elec-
tric potential energy of a charge Q decreases depends on the sign of Q.
You can get correct answers if you are careful with signs, but it is eas-
ier to use physical intuition. In whichever direction E accelerates Q, Q’s
potential energy decreases. For a positive charge, the electric force is in
the direction of the electric field, so the charge’s electric potential energy
decreases as it moves with the electric field, from high V to lower V . For
a negative charge, the electric force accelerates the charge opposite to
the electric field, and the charge’s electric potential energy decreases as it
moves opposite the electric field, from low V to higher V .
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� EXERCISES

21. An electron is a particle with a mass of 9.11 × 10−31 kg and a
charge of q = 1.60×10−19 C. If it is initially at rest, what is its velocity
after it goes from −10V to +10V?

22. Suppose the electron of the previous exercise initially has a kinetic
energy of 16 × 10−19 J. After going from −10V to +10V, what is its
new velocity?

Energy, Electric Potential, and Electric Current

You can use these ideas of electric potential and electric potential energy
to understand that an electric battery is a reservoir of energy that is
drained as current flows out of the battery from one electrode and along
a wire and back into the battery through its other electrode. (Such a
closed path is called an “electric circuit” or just a “circuit”).

You have just seen that when charges move through a difference of
potential, their kinetic energy increases. But that is only true if no other
forces act. You have already seen (p. 163) that in a wire charges move with
a constant speed; their kinetic energy is not increasing even though they
are moving through a difference of electric potential and, therefore, their
potential energy is decreasing. This happens because energy leaves the
system at the same rate that potential energy is converted into kinetic
energy. The modern atomic picture is that electrons moving in a wire
lose energy as they collide with impurities and irregularities. This energy
appears as heat. The rate at which this heat is generated is the product of
the current I and the voltage difference V , i.e., power dissipated = I V .

� EXAMPLES

14. How much energy does a 1.5V “D” battery expend when it pushes
10mC s−1 through a wire for 20 min? To answer you need to know
the total amount of charge ΔQ moved through the 1.5 V potential
difference. The steady current of 10 mA corresponds to ΔQ/Δt =
10 × 10−3 = 0.01 C s−1. In 20 min, which is 1200 s, the battery moves
1200 × 0.01 = 12 C through 1.5 V. To do this the battery must expend
1.5 × 12 = 18 J of energy.
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15. The energy capacity of a battery is usually specified by two quan-
tities, the battery voltage and the total amount of charge the battery
will deliver. The total charge is measured by drawing a current from
the battery until it runs down. The amount of charge taken from the
battery is usually specified in units of ampere-hours, i.e., A h. An al-
kaline D cell will deliver 0.5 A for about 20 h, so its capacity would
be given as 10 Ah or 36 kC.4 The energy extracted from this battery
would then be 1.5×36 = 54 kJ. Such batteries cost about $1.50 apiece,
so you pay $1.50/0.054 ≈ $30 for a megajoule (MJ). Electric power off
the grid costs you around $0.20 for a kW h or 3.6 MJ. The cost per MJ
is therefore $0.2/3.6 = $0.06. The difference between $30 and $0.06 is
what you pay for the convenience of portable energy. You can see that
recharging batteries might be a good idea.5

Visualizing Electric Potential

It is often useful to envision electric potential V (x, y, z) in terms of equipo-
tential surfaces—surfaces on which the potential V is everywhere the
same.

Between uniformly charged parallel plates the equipotential surfaces
are planes because in a constant electric field the potential V varies lin-
early with y, the coordinate perpendicular to the plates. As a result, the
potential is the same at all points that have the same value of y. The
set of such points forms a plane parallel to the surfaces of the plates and
perpendicular to the direction of the electric field. Figure 7.2a illustrates
the equipotential surfaces for values of V = 2, 4, 6, and 8 volts.

Around a point charge qs the electric potential V (r) is the same at all
points where r is the same. These points form the surface of a sphere, so
the equipotential surfaces around a point or ball of charge are spherical
shells centered on the source charge qs. Figure 7.3a shows equipotential
surfaces for V = 2, 4, 6, and 8 volts. Because the potential around a
point charge varies as 1/r, the distance between equipotential surfaces
separated by the same ΔV gets smaller closer to the source charge and
larger farther away.

4At a steady current of 3A, a D cell delivers a total charge of only about 1.5A h; high currents
exhaust batteries disproportionately more quickly than low currents.
5You can recharge alkaline batteries, but to avoid dangerously overheating (and perhaps
exploding them) don’t charge alkaline batteries with a charger intended for NiCad batteries.
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FIGURE 7.2 (a) Equipotential surfaces in the constant electric field between two
oppositely charged parallel conducting plates; (b) a plot of the potential function along
any line perpendicular to the plates.
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FIGURE 7.3 (a) Spherical equipotential surfaces in the electric field around a point
charge; the portions of these surfaces below the plane are not shown. (b) A graph of
the potential function along any line extending radially out from the source charge.

For our two special cases the electric potential function V is a function
of only one variable, so you can plot a graph of V . Such plots are shown in
Figs. 7.2b and 7.3b. They are marked to show the locations and values of
the equipotential surfaces illustrated in the adjacent Figs. 7.2a and 7.3a.

Keep in mind that no work, i.e., no input or output of energy, is
required to move a charged particle between any two points on the same
equipotential surface.
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� EXERCISES

23. Why is the preceding statement still true even if the charge leaves
the first equipotential surface, goes to another, and then returns to a
different point of the first surface?

24. How much energy will be required to move a −2μC particle from
the 8V equipotential surface to the 4V equipotential surface around a
source charge qs = 24μC?

25. How much energy will be required to move a −2μC particle from
the 8V equipotential surface to the 4V equipotential surface between
a pair of oppositely charged parallel conducting plates?

26. How would your answer to Exercise 25 change if the potential dif-
ference was caused by a point charge rather than by oppositely charged
parallel plates?

The Electron Volt

Earlier when reading about energy (p. 118), you learned that the unit of
energy commonly used in discussing atomic phenomena is the electron
volt or eV. It has the seemingly peculiar definition of

1 eV = 1.6 × 10−19 J.

Now you can see where this unit comes from. The tiny fundamental par-
ticle called the electron has a charge of −1.6×10−19 C. The charge on the
proton is +1.6 × 10−19 C. Because there is no smaller amount of charge
and because every charge ever found in nature is some integer multiple
of 1.6 × 10−19 C, this number is called the “elementary charge.” It is so
important that it is given its own symbol e, where

e = 1.6 × 10−19 C.

The charge on an electron is −e. The charge on a proton is e. (People
carelessly call e without the negative sign “the electron charge,” and you
have to remember to put in the minus sign when you do calculations.)

By how much does the potential energy of an electron change when it
moves through a potential difference of V = −1 volt? From Eq. 11

ΔU = e V = 1.6 × 10−19 C × 1V = 1.6 × 10−19 J,

which is the same as 1 electron volt, or 1 eV. In other words, the conversion
factor between J and eV is 1.6×10−19 J eV−1. Now suppose a charge e is
accelerated through a potential difference V . Its change of energy ΔU is

ΔU = e [C] V [V=J C−1] = eV J.
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(The symbols in square brackets are the units of the preceding quantity.)
To express ΔU in eV, divide the above equation by the conversion factor
from J to eV:

ΔU = e V
[C J C−1]

1.6 × 10−19 [J eV−1]

= e V
1

1.6 × 10−19

[C J eV]
[C J]

=
e V

1.6 × 10−19
eV = V eV.

Do you see that in these units when a particle carrying a charge e
moves through a potential difference of V volts, the change in the particle’s
potential energy is numerically equal to V eV? Because of the way the
eV is defined, the task of calculating the change in kinetic energy of an
electron or other fundamental particle accelerated through any potential
difference is trivial when you use units of electron volts. The eV is also
convenient for other calculations as we will show you in Chap. 12.

� EXERCISES

27. What is the change in kinetic energy of an electron accelerated
through a potential difference of 1 kV? Give your answer in eV.

Of course, you still have to do some figuring to find the velocity.

� EXAMPLES

16. What is the velocity of an electron accelerated from rest (initial
kinetic energy = 0) through a potential of 1 kV?

Clearly, its energy changes by 1 keV, or 1.6 × 10−16 J. Since it was
at rest initially, its kinetic energy is now

1
2

mv2 = 1.6 × 10−16 J,

so we find that

v =

√
2 × 1.6 × 10−16 J
9.11 × 10−31 kg

= 1.85 × 107 m s−1.

This is 6.2% of the speed of light; this electron is moving right along.
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7.4 SUMMARY: ELECTRIC FIELD
AND ELECTRIC POTENTIAL

It is convenient to attribute the electric force to two separate factors: to
a property of space and to a property of the body to be placed in that
space. The property of space we call “electric field.” The property of the
body is its “electric charge.” The magnitude of the electric field E at a
point in space equals the ratio of the force exerted on a small test charge
qt placed at that point to the magnitude of the charge:

E =
F

qt
. Electric field defined—p. 170

Electric field has direction; it points in the direction that a small, positive
charge will move when placed in the field. The units of electric field are
N C−1 or, equivalently, V m−1.

The force F on a charge Q placed in an electric field E(x, y, z) is

F = QE. Force a field exerts on a charge—p. 170

If the field E is everywhere constant, the charge Q will experience the same
constant force when placed anywhere in such a field. The constant electric
field is of practical importance because it is a good approximation to the
electric field between two flat metal sheets close together and charged
with opposite signs of charge. This arrangement is easy to make in the
laboratory.

It follows from the definition of electric field and Coulomb’s law that
a point charge qs will create at a distance r from itself an electric field E
given by the following expression:

E =
kcqs

r2
, Electric field of a point charge—p. 171

where kc is the Coulomb force constant closely equal to 9×109 N m2 C−2.
Electric potential V is often easier to work with than electric field. An

amount of charge q moved from one point in space to another undergoes
a change in potential energy ΔU that is related to the difference between
the electric potentials ΔV at the two points:

ΔU = q ΔV. Change of q’s potential energy when q is
moved through a potential difference—p. 180

You will often use conservation of energy to calculate the change in kinetic
energy of a charged particle from its change in potential energy:

ΔK = −ΔU,
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1
2

mv2
2 − 1

2
mv2

1 = −q(V2 − V1).

The units of electric potential are “volts”; 1 volt = 1 J C−1.
When the electric field is constant, there is a particularly simple rela-

tionship between electric field and electric potential. Two points separated
by a distance Δy along the direction of a constant electric field have a
potential difference ΔV given by the expression

ΔV = −EΔy.

For this special case the potential difference is the product of the electric
field E and the distance between the points.

Often you want to reason in the opposite direction and find E from
V and d. For parallel charged plates separated by a distance d small
compared to the dimensions of the plates and with a potential difference
V between them, E is nearly constant, and you can find the strength, i.e.,
the magnitude, of the field, from the above equation:

E =
V

d
.

You can always find the direction of E by seeing in which direction V
decreases most steeply, but for uniformly charged parallel plates the di-
rection is from the plate with the higher potential toward the one with
the lower potential.

The electric potential that a point charge qs produces at a distance r
away from itself is

V (r) =
kcqs

r
.

An electric field always points in the direction from high electric po-
tential to low electric potential. (Why? You should be able to explain this
from your knowledge about the electric field.)

PROBLEMS

1. What property of matter gives rise to electric fields?

2. A charge q = 0.2 nC is placed 10 cm from a charge Qa = 20 nC as
shown in Fig. 7.4a.

a. What is the magnitude and direction of the electric field at the
position of q?
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FIGURE 7.4 (a) A charge q = 0.2 nC is placed in the electric field of Qa = 20 nC; (b)
an additional charge of Qb = −80 nC contributes additional electric field. (Problem 2).

b. A second charge Qb = −80 nC is added at a point 20 cm to the
right of q as shown in Fig. 7.4b. What is the total electric field
experienced by q?

c. If Qb is replaced by a positive charge of 80 nC, what is the electric
field at the location of q?

d. If q is changed to q = 0.4 nC, what will then be the correct answers
to a., b., and c.?

3. A charge of 1 pC and mass 1 pg is put at a certain point in space. As
soon as it is released it begins to accelerate at 108 m s−2.

a. What is the magnitude of the electric field?
b. If you are observing this particle near Earth, how do you know the

acceleration is due to an electric field and not gravity?

4. An electron accelerates through a potential difference of 250 V.
a. How much kinetic energy does the electron gain? Give your answer

in electron volts and also in joules.
b. If the electron was accelerated from rest, what would its veloc-

ity be?

5. The diagram in Fig. 7.5 shows two charged parallel plates separated
by 5mm. A device, which might be a battery or a power supply, has been
attached to the two plates and has established a difference of electric
potential of 10V between the plates.

The symbol for “ground” or “common” means that the potential
of the bottom plate is defined to be 0V.

a. What is the electric potential anywhere in the plane parallel to and
halfway between the two metal plates?

b. What is the electric potential energy of a +2μC charge when it is
halfway between the two plates?

c. What is the electric potential energy of a −2μC charge when it is
halfway between the two plates?
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10 V

FIGURE 7.5 A pair of metal plates 5mm apart, parallel to each other, and connected
to a 10 V battery (Problem 5).
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FIGURE 7.6 Parallel plates 8 cm apart and a 5 nC charged particle in an electric field
of E = 2.5 × 104 N C−1 (see Problem 6).

d. For the previous two cases:
i. Which charge has the larger electric potential energy?
ii. Which charge is at the larger electric potential?

e. If the two charges are moved to the bottom plate, which of them
undergoes the largest increase in potential energy? How much?

f. For the negative charge, what is the direction in space in which
its potential energy will decrease most steeply? Why or why not is
this surprising?

g. In what direction does the potential energy not change?
h. What is the value of E between the plates shown in Fig. 7.5?

6. A positive charge q = 5 nC is between two oppositely charged parallel
conducting plates that are 8 cm apart (see Fig. 7.6). The plates are held a
potential difference of V by a battery as shown. The electric field between
the plates is E = 2.5 × 104 N C−1.

a. What is the battery voltage?
b. Assume the potential of the bottom plate to be V = 0. What is

the electric potential on each of the planes A, B, and C?
c. Again assume V = 0 at the bottom plate. What is the potential

energy of the charge when it is at plane A? Plane B? Plane C?
d. If the charge leaves the bottom plate with kinetic energy of 8 μJ,

what is its kinetic energy when it reaches plane C? Will it reach
the top plate? If so, what will its kinetic energy be just before it
hits the top plate? If not, how high will it go?
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FIGURE 7.7 Coordinate grid for Problem 7.

7. Figure 7.7 shows an x-y coordinate system. The table gives values of
the electric potential measured at the indicated points.

(x, y) Potential

(m) (V)

(0, 0) 0

(0, 2) 4

(1, 0) 2

(1, 1) 8

(1, 2) 8

(3, 1) 10

(3, 2) 20

(2, 2) 10

a. Mark the points (1, 0), (2, 2), (3, 2), and (0, 2) on the graph
b. Label each point with the value of the electric potential at that

point
c. A droplet containing a net charge of −7 e is released at (0, 0) and

moves freely to (3, 1). By how much does its kinetic energy change?
Give your answer in units of electron volts.

d. The particle then continues moving and goes from (3, 1) to (1, 2).
Does its kinetic energy increase or decrease? How do you know?

8. The apparatus diagrammed in Fig. 7.8, called a “tandem accelerator,”
is used to accelerate ions to high kinetic energies.
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FIGURE 7.8 Problem 8 tandem accelerator.

At the left, labeled A, is a source of negatively charged chlorine ions Cl−
(i.e., each ion carries a charge −e). A 1-MV potential difference is applied
between plates A and B, as shown.

a. Find the electric field in the space between A and B. Specify both
direction and magnitude.

b. Find the kinetic energy of the ions when they reach plate B.
Use appropriate units.

In the center of plate B is a hole covered by a very thin foil. Each Cl−
ion passing through this foil is stripped of six electrons while its velocity
hardly changes (really true!). As a result, chlorine ions of charge +5 e
emerge from plate B and are accelerated further in the region between B
and C. The potential difference between B and C is 1MV.

c. On a coordinate system like that in Fig. 7.9 graph the kinetic
energy vs. position from A to C. Scale the vertical axis in appro-
priate energy units. Your graph should be as quantitatively correct
as possible.

d. The atomic mass of Cl is 35. Show that the mass of a chlorine ion
is 5.8×10−26 kg. What is the velocity of the ions reaching plate C?

9. A voltage of 400V is applied to the plates shown in Fig. 7.10.
a. If the plates have a separation of 20 cm, calculate the magnitude

and direction of the electric field.
b. Imagine you now send a particle of charge q = +2 e and mass

m = 6.4 × 10−27 kg through the hole in the left plate, as shown in
the figure. What would be the particle’s initial velocity such that it
slows down and stops right at the other plate (without crashing)?
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FIGURE 7.9 Coordinate grid for Problem 8.

– +
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FIGURE 7.10 Region of electric field for Problem 9.

c. Describe qualitatively the motion of the particle if you change the
voltage to 200V (same polarity).

d. Now restore the voltage to 400V. Describe qualitatively the motion
of the particle if you decrease its initial velocity from the value
found in (b).

10. Two parallel plates separated by 50 cm have a potential difference
of 10 V between them, as shown in Fig. 7.11. A positively-charged ion
with q = 1.6 × 10−19 C, initially at rest at the left plate, is accelerated
between the plates and passes through a small hole in the right plate.

a. What is the electric field between the plates, and what is its
direction? (Don’t forget units!)

b. If the ion’s speed when it passes through the hole in the right plate
is v = 2.89 × 104 ms−1, what is its mass?

11. Suppose that to create an electron filter you modify the setup shown
in Fig. 7.11 by drilling another small hole in the left-hand plate opposite
the hole in the right-hand plate. (The holes are too small to have much
effect on the electric field between the plates.) Suppose that you want to
set up this apparatus so that when electrons are fired towards the holes,
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FIGURE 7.11 An arrangement of charged plates for accelerating positively charged
ions.

any electrons with speeds less than 107 m s−1 will be slowed down by
the electric field between the plates and will not emerge from the other
side, while electrons with higher speeds will emerge through the hole.
Assuming your voltage source can be turned up as high as 500V, how
would you adjust your apparatus to achieve your goal? Be sure to specify
the distance between the plates and the polarity of the voltage.
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Magnetic Field
and Magnetic Force

8.1 MAGNETIC FIELD

In this chapter you meet another field of force, the magnetic field. It is
quite different from the electric field. Electric fields produce forces on elec-
trical charges whether they are moving or sitting still. The magnetic field
exerts a force on an electric charge only if the charge is moving. Equally
strange, the strength of the exerted force depends upon the direction of
the charge’s motion. Whenever you see such peculiar behavior, you know
there is a magnetic field present.

Magnetic Force on a Moving Charge

Figure 8.1 shows different states of motion of an electric charge in a mag-
netic field B. If the charge is at rest and free to move, but does not
accelerate, then no electric field E is present. If you now put the charge
in motion, then in the presence of B you will see a force act on the charge.
If you experiment by moving the charge in different directions, you will
observe some curious things.

• When the charge moves in one particular direction, no force occurs.

• When the charge moves in other directions, a force does act on it
but in a direction perpendicular to the charge’s line of motion and
perpendicular to that line of motion along which no force occurred.

• The strength of the force is different for different directions of the
charge’s motion; the force is a maximum when the charge is moving
perpendicular to the line of motion for which the force is zero.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 199
DOI 10.1007/978-0-387-79080-0 8, c© Springer Science+Business Media, LLC 1999, 2010
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FIGURE 8.1 A set of pictures showing how the magnetic force on a positive charge q
varies in magnitude and direction for various directions of motion with respect to the
line of motion along which there is no force. The direction of the magnetic field is taken
to be parallel to that line.

Clearly, some new kind of force is present. Physicists attribute this
new force to a new kind of field that they call the “magnetic field.” This
is the kind of field that surrounds a bar magnet. This same kind of field
surrounds the Earth and makes the little magnet that is a compass needle
point northwards. A magnetic field also occurs around any electric current
or moving charge.

If you do a series of experiments that measure the force on a succession
of different charges all moving in the same direction at the same location
in space, you find that the force due to a magnetic field is proportional
to the size of the charge:

F ∝ q.

If you move a charge q in the direction such that q experiences the max-
imum force F , and then vary the speed v along this direction, you find
that the force is proportional to v, so

F ∝ q v.

As with the electric field, the force arises from properties of the
particle—its charge and its velocity—and from this new entity filling the
space through which the charge is moving—the magnetic field. It is cus-
tomary to represent the magnetic field by the symbol B. In a manner
analogous to the case of the electric field, the magnitude of the magnetic
force is proportional to the product of the particle properties and the field
strength

F ∝ qvB.

The units of magnetic field B are defined to make the constant of
proportionality in this equation be 1 when the direction of v makes the
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force a maximum. Then the numerical value of B, i.e., the strength of the
magnetic field, is defined by the equation

Fmax = q v B.

Thus, if a charge of 1C moving with a speed of 1m/s experiences a max-
imum force of 1N, the magnetic field must have a value of 1 unit of field
strength.

The SI units of B are NC−1 m−1 s, and they are given the name “tesla,”
abbreviated T. A magnetic field of 1 tesla (1T) can exert a maximum force
of 1N on a charge of 1C moving with a speed of 1m/s. Earth’s magnetic
field is around 0.5× 10−4 T. In the United States the field strength varies
from nearly 60μT at the northern border to close to 48μT at the south-
ern border. In the past the unit of magnetic strength was the “gauss”
(abbreviated G). This unit is still often used: 1 gauss = 10−4 tesla. It’s
useful to remember that the intensity of Earth’s magnetic field is about
0.5 G, a half of a gauss.

Magnetic field has direction as well as magnitude, but the direction
of B is defined differently than that of electric field E. As you learned
in Chap. 7, electric field has the direction of the force it exerts on a
positively charged particle. Such a straightforward approach will not work
for magnetic field, because the force it exerts is different in both direction
and magnitude for different directions of the charged particle’s motion.

As already mentioned, there is a special direction of motion along which
any charged particle feels zero force regardless of the size of its charge or
how fast it is moving. The direction of magnetic field B is taken to be along
this zero-force direction of motion, i.e., the magnetic field B points along
this line. As a result of this definition, a charge q moving with a speed v
perpendicular to the direction of a magnetic field B feels the maximum
force given by Fmax = qvB; a charge moving parallel or antiparallel to the
direction of a magnetic field feels no force. These behaviors are illustrated
by Fig. 8.1 which also shows that the line of B is perpendicular to the
direction of motion that gives rise to a maximum force, and that the force
is perpendicular to both of these directions, i.e., the force is perpendicular
to the plane formed by the vectors �v and �B.

One consequence of these properties of B is that the needle of a
magnetic compass naturally lines up with this zero-force direction. (Why
this is so may become clear later.) This behavior of the compass needle
resolves the remaining ambiguity in the definition of the direction of B:
Which of the two directions a charge can move along the line of zero force
is the direction of B? As a matter of convention, we agree that B points in
the same direction that the northward-pointing pole of a compass needle
points when placed in the magnetic field B.
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This convention establishes a fixed relationship between the directions
of the charge’s motion v, the magnetic field B, and the force F on the
charge. If you know any two of these three quantities, you can figure out
the direction of the third. This means that by observing the direction of
motion of a charge and the direction of the force that a magnetic field
exerts on the charge, you can determine the direction of B. This is the
usual way to find the direction of B, and you will need to do this often.
You will also need to be able to predict the direction of the force exerted
by a known B acting on a charge moving in a known direction with a speed
v. It helps if you can imagine in your head a picture like that of Fig. 8.1.

There are several recipes for figuring out the direction of a force exerted
by a magnetic field on a moving charge. Figure 8.2 shows how to determine
the direction of the force when a positively charged particle is moving with
velocity v at some angle θ relative to B. Remember the force is always
perpendicular to the plane determined by the directions of v and B. You
can decide which way F acts, if you imagine that you stand on that plane
at the vertex of the angle formed by v and B. Then if the line of v is to
the right of B, the force is in the direction of your head. Otherwise, the
force is toward your feet. If the charge is negative, the forces are reversed.
There are other ways to determine the direction of the force that involve
only moving your hand, rather than standing on a plane. All of these
recipes are versions of what is known as “the right-hand rule.”1

The magnitude of the force on a moving charge q is less than its max-
imum value when it moves in a direction that is not perpendicular to B.
The force is found to be proportional to the sine of the angle between
v and B. Therefore, the magnitude of the magnetic force on a charge q
moving with velocity v at an angle θ relative to B is

F = qvB sin θ. (1)

FIGURE 8.2 The force on a positively charged particle moving with velocity v at an
angle θ relative to B.

1If you know about the vector cross product, then you can just remember that all these rules
are equivalent to the vector equation �F = q �v × �B.
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FIGURE 8.3 Three examples of charged particles moving in a uniform magnetic field.
The dots mean that the magnetic field B points out of the page; the ×’s mean that
the magnetic field B points into the page.

The direction is given by the right hand rule. This force of a magnetic
field on a moving particle is often called the “Lorentz force.”

� EXERCISES

1. The three diagrams in Fig. 8.3 show a positive charge q moving with
velocity v in different directions relative to the magnetic field B. The
diagram uses the customary convention of dots representing B pointing
out of the plane of the page (tips of arrowheads), and ×’s representing
B pointing into the plane of the page (tail feathers of arrows). For each
case, what is the direction of the force?

Another way to describe how the magnitude of the force depends on
the angle between the directions of v and B is to observe that v sin θ is
the component of the velocity that is perpendicular to B. Therefore, F
is proportional to vperp = v⊥ = v sin θ. For most of the cases of interest
to us, v will be perpendicular to B and sin θ will equal 1. However, when
they are not perpendicular, you must include the factor of sin θ.

� EXAMPLES

1. Suppose a particle with a charge of −1.6 × 10−19 C moves with a
speed of 2 × 106 m/s perpendicular to Earth’s magnetic field of 55μT.
What is the force on this particle? This is a straightforward calculation:

F = (1.6 × 10−19 C)(2 × 106 m/s)(55 × 10−6 T)
= 1.76 × 10−17 N.
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Suppose the particle in the example is an electron. Knowing that an
electron has a mass of 9.11×10−31 kg, you can find the electron’s kinetic
energy:

1
2
mv2 =

1
2
(9.11 × 10−31 kg)(2 × 106 m/s)2

= 1.82 × 10−18 J
= 11.4 eV.

From this you see that because of its very small mass, it takes only
about 11V to get an electron moving as fast as 2 × 106 m s−1.

� EXERCISES

2. What is the acceleration of the electron by the force in the above
example? How does your answer compare to g, the acceleration due to
gravity?

A Moving Charge in a Uniform Magnetic Field

The motion of a charge in a uniform magnetic field will be quite important
to us. Such magnetic fields are frequently used to measure a charged
particle’s momentum.

Figure 8.4 shows the paths of three positively charged particles moving
in a plane perpendicular to a uniform magnetic field B. As before, the
little dots in the figure indicate that the magnetic field is pointing up out
of the plane of the page. One of the particles, labeled by its charge q,
enters the region with an initial velocity directed to the right. From the
rules for finding the direction of the force on q, you should be able to
show that at this initial instant, the force on q is toward the bottom edge
of the page. (Try it!)

But the force changes the direction of the velocity of the charge, and
as soon as the direction of v shifts, so does the direction of the force.
These directions remain at right angles to each other (because F is always
perpendicular to v), with the result that the charge moves in a circle of
some radius R at a steady speed v. In other words, in a constant field B
the charge moves with uniform circular motion.
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FIGURE 8.4 Circular trajectories of positively charged particles entering a uniform
magnetic field pointing out of the page.

You saw in Chap. 2 that a force that makes a particle of mass m move
at a uniform speed v in a circle of radius R always has a magnitude of

F = m a = m
v2

R
.

For the situation here this force is the Lorentz force qvB, so you can
equate the two expressions,

qvB =
mv2

R
,

and rearrange them to get

mv = p = qBR, (2)

where, as in previous chapters, the symbol p represents momentum mv.
Equation 2 is important because it allows you to find the momentum of

a fast moving charged particle by measuring the radius R of the particle’s
circular path as it bends in a uniform magnetic field of known magnitude
B. If, as is often the case, you know v from some other measurement, you
can then use Eq. 2 to find the particle’s mass. Such measurements permit
very precise determination of very small masses.

� EXAMPLES

2. If electrons accelerate from rest through 200V, they acquire a
kinetic energy of 200 eV. Assume that a beam of these electrons enters
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a region of uniform magnetic field of B = 5mT. If the beam enters
perpendicular to B, what is its radius of curvature?

First, find the velocity of the electron.

1
2
mv2 = (200 eV)

(
1.6 × 10−19 J

1 eV

)

v =

√
64 × 10−18 J

9.11 × 10−31 kg

= 8.38 × 106 m s−1.

From this result find the momentum

p = mv = (9.11 × 10−31 kg)(8.38 × 106 m s−1) = 7.64 × 10−24 Ns,

from which you can get

R =
p

qB
=

7.64 × 10−24 Ns
(1.6 × 10−19 C)(5 × 10−3 T)

= 9.54 × 10−3 m = 9.54mm.

These units work out because, either from Eq. 1 or from the definition
on p. 201, 1T = 1 N·s

C·m.

3. Consider an electron (mass 9.11× 10−31 kg) in a uniform magnetic
field of 0.1mT. If the electron’s path is observed to bend with a radius
of 10 cm, what is the electron’s momentum? What is its kinetic energy?

Its momentum is

p = qRB = (1.6 × 10−19 C)(0.1m)(1 × 10−4 T) = 1.6 × 10−24 Ns,

and its kinetic energy is

1
2
mv2 =

p2

2m
=

(1.6 × 10−24 Ns)2

2 × (9.11 × 10−31 kg)
= 1.41 × 10−18 J
= 8.78 eV.

� EXERCISES

3. Show that R =
√

2mK/qB and then redo Example 2. Hint: From
Chap. 2 you know that kinetic energy K = mv2/2 and p = mv.
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4. What are the momentum and kinetic energy of an electron that
bends through a radius of 5 cm in a magnetic field of 2mT?

Sources of Magnetic Fields

Electric currents are the sources of magnetic fields. Whenever a charge
moves, it produces a magnetic field. Notice the remarkable reciprocity:
Magnetic fields exert forces on moving charges; moving charges, i.e., elec-
tric currents, produce magnetic fields. Just as electric charges produce
electric fields that act on other electric charges, electric currents produce
magnetic fields that exert forces on other currents.

An electric current I flowing in a long straight wire produces a magnetic
field around the wire. The field’s direction is always tangent to circles
centered on the wire. To find the direction tangent to these circles, imagine
that you grasp the current-carrying wire with your right hand so that
the direction of your thumb points in the direction of the flow of the
current (the direction that positive charge would have to be flowing to
create the observed current). Then your fingers curl around the wire in
the direction of the magnetic field. This rule, also called the “right-hand
rule,” is illustrated in Fig. 8.5; it is not the right-hand force rule.

The strength of the magnetic field B a distance r from a long, straight
wire is

B(r) =
μ0I

2πr
, (3)

where μ0 is a constant equal to 4π × 10−7 T m A−1 and I is the current
flowing in the wire.

The magnetic field produced by the current in one wire will add
(vectorially) with the magnetic field produced by a current in another

I
I

“out”

counter
B

B

–clockwise

FIGURE 8.5 The right-hand rule for finding the direction of the magnetic field
surrounding a long, straight, current-carrying wire.
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wire. By using many wires or one wire bent into many loops it is possi-
ble to design different arrangements and strengths of magnetic field. In
particular, it is possible to produce a magnetic field that is essentially
uniform in a limited volume of space. Such uniform B fields are used in
actual experiments and practical devices as well as for generating a wide
variety of physics homework problems, exercises, and exam questions.

8.2 MAGNETIC FIELDS AND ATOMIC
MASSES

Physicists have used magnetic deflection of charged particles to make two
major advances in our understanding of atoms.

First, magnetic deflection provided conclusive evidence that the atoms
of a chemical element may not all be identical. As early as 1912,
J.J. Thomson used magnetic deflection to show that there are at least
two kinds of neon atoms occurring in nature, one of atomic mass 20 and
another of mass 22. (There is also a third naturally occurring neon atom
of mass 21.) Atoms that have the same chemical behavior but differ-
ent atomic weights are called “isotopes.” Thus, chemically pure neon gas
is a mixture of three different isotopes. Throughout the 1920s and 1930s
Francis W. Aston used magnetic deflection to discover that most elements
have more than one isotope. Physicists and chemists have now identified
around 335 naturally occurring isotopes of the approximately 90 elements
found on Earth.

For example, the two familiar chemical elements carbon and oxygen
each have different isotopes. Most carbon atoms have mass 12, but about
11 out of every 1000 carbon atoms have mass 13. Most oxygen atoms
have mass 16, but out of every 105 oxygen atoms 39 have mass 17, and
205 have mass 18. In 1931 Harold Urey discovered that familiar, much
studied hydrogen has an isotope of mass 2 (called “deuterium”). It had
gone unnoticed because only 15 out of every 105 hydrogen atoms have
mass 2.

The second dramatic advance was in the measurement of atomic
masses. There are two parts to this story. First, every isotope was found
to have a nearly integer mass. For example, chlorine, which has a chem-
ical atomic weight of 35.4527 u, turns out to be 75.4% atoms of mass 35
and 24.6% atoms of mass 37. Its non-integer chemical atomic weight is
just the average of two (almost) integer isotopic masses. The existence of
integer masses strongly suggests that there is an atom-like building block
within the atom, another level of atomicity.
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� EXERCISES

5. Show that the above relative abundances of the two chlorine
isotopes explain the observed non-integer chemical atomic weight.

Second, when measured precisely enough, the mass of every isotope
turns out to be slightly different from an exact integer. And these
small differences are very important. Using magnetic deflection it became
possible to measure these differences with accuracies of parts per ten
thousand and in this way find atomic masses of isotopes to a precision
of parts per million. This was an enormous advance over the traditional
chemical methods of determining atomic weights (Chap. 3), which even
when pushed to their limits yielded values accurate to no better than a few
tenths of a percent. It had dramatic consequences well beyond advanc-
ing our understanding of atoms. The new knowledge helped to explain
how stars generate their energy, and it contributed significantly to the
development of nuclear weapons.

Magnetic Mass Spectrometry

The discovery of isotopes and the precise measurement of their atomic
masses were made possible by devices called “magnetic mass spectrom-
eters.” These devices bend ions in a magnetic field, and the diameters
of their orbits provide a measure of the ions’ masses. Let’s look at one
such device used by K.T. Bainbridge in the 1930s that combines electric
and magnetic forces in a clever way. Its design is shown schematically
in Fig. 8.6. There are two parts: a device that produces ions of a given
charge and sends them down a channel in which there are both electric
and magnetic fields exerting forces in opposite directions on the ions; and
a region that contains only magnetic field that causes the ions to bend in
circular paths.

The channel is an example of a “Wien velocity filter,” named after
the physicist Wilhelm Wien who invented it. Because the magnetic field
pushes the ions to one side of the channel while the electric field pushes
them to the other, only those ions for which the two opposing forces are
equal can reach the exit slit S3 without hitting the walls of the channel.
The electric force is qE; the magnetic force is qvB. The two forces will be
equal only for ions moving with the particular velocity v such that

qE = qvB,

which reduces to

v =
E

B
.
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FIGURE 8.6 Bainbridge’s apparatus for measuring the ratio of the charge to mass of
ions. A voltage between the plates containing the slits S1 and S2 accelerates ions into
the Wien filter. An electric field E, produced by a voltage between the plates P1 and
P2, deflects the ions to their right; a magnetic field B at right angles to E deflects ions
to their left. Beyond slit S3 there is only a uniform magnetic field, and it bends ions in
circular arcs.

In other words, only those ions with velocity v = E/B can pass through
the channel into the bending region. The other ions are filtered out, and
the ions entering the bending region all have the same velocity.

� EXERCISES

6. Show that E/B has units of m s−1 when E and B are expressed in
SI units.

7. In Fig. 8.6, the uniform magnetic field points out of the page. What
is the direction of the magnetic force on a positive charge traveling
through the filter towards the bending region? What is the direction
of the electric force on a positive charge in this region? Suppose the
charges are negative. Would they still pass through the filter unde-
flected? What if you reversed their direction through the filter? Would
they move from S3 to S1 without deflection?

8. Suppose that instead of the orientation shown in Fig. 8.6, the mag-
netic field points to the right and the particles are moving into the
page. Which way should the electric field point in order to make a
Wien filter? Sketch the orientation of the plates and show which one
will be at the higher voltage.
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If the ions entering the constant B field that fills the bending region
all have the same charge and the same velocity, those ions that have
the same mass mion will bend with the same radius of curvature R. If a
photographic plate is placed as shown in Fig. 8.6, the ions will curve
around and strike it at a distance from the entrance slit equal to the
diameter of the ions’ circular path. When the plate is developed, there will
be a dark line where the ions struck. If ions with two different masses come
through the apparatus, there will be circular paths with two different
radii, and there will be two different lines on the developed photographic
plate. Because mionv = qRB and v = E/B, it follows that

mion =
qB2

E
R. (4)

For fixed values of E and B the mass of the ion mion is directly propor-
tional to R, which can be determined by measuring the position of the
dark line that the ions make on the photographic plate.

The above calculation assumes that B is the same in the bending region
as in the Wien filter. This is correct for the Bainbridge apparatus, and
so we used the same symbol for both regions. But clearly the two mag-
netic fields don’t need to be the same. If they are not, you must create
separate symbols for them (say B1 and B2), and your final result will be
mion = qB1B2R/E. This modification doesn’t make much difference to
the result—the mass is still proportional to the radius, but it does make
a point: Be alert about what your symbols mean, and don’t use the same
symbol for two different quantities.

To operate this mass spectrometer, choose B and E to select some
particular velocity v = E/B. Then vary the accelerating voltage from, say,
5 kV to 20 kV. If in that range of accelerating voltages any ions acquire
the correct velocity to pass through the filter, they will enter the magnetic
field and be bent proportionally to their masses. Let’s see how this might
work for isotopes of neon.

� EXAMPLES

4. Suppose that when the accelerating voltage is set to 10 kV, singly
charged neon ions are able to pass through crossed electric and magnetic
fields of strength 4.66×105 NC−1 and 1.5T, respectively. If, after trav-
eling through the spectrometer, the neon ions hit the detector 8.58 cm
away from where they exited the Wien filter, what is the atomic mass
of any one of these ions?
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The values of E and B tell you the ion velocity: v = E/B; the
distance d = 8.58 cm specifies the radius of their circular path: R =
0.0429 m; and “singly charged” means each ion has a charge of q =
1.602 × 10−19 C. From this knowledge and Eq. 2 it follows that

mion = qR
B2

E
=

1.602 × 10−19 × 0.0429 × 1.52

4.66 × 105
= 3.319 × 10−26 kg.

Dividing this result by 1.66 × 10−27 kg/u to convert from kilograms to
atomic mass units, you get mion = 19.992 u. These are mass-20 ions of
neon; the accepted value of their atomic mass is 19.992435 u.

� EXERCISES

9. Show that if the neon isotope of mass 22 is present, the acceler-
ating voltage will have to be 11 kV for these ions to pass through the
same combination of E and B-fields that mass-20 ions passed through
when V was 10 kV. Note that because the two isotopes are chemically
identical, the charge of their ions will be the same.

10. Show that once these mass-22 ions enter the bending region, they
will strike the photographic plate 9.44 cm from the exit of the Wien
filter.

11. Where would you look on the photographic plate for evidence of
a mass-21 isotope of neon? And what accelerating voltage would allow
these mass-21 ions to pass through the Wien filter?

It is always important to understand the precision of measurements.
How precisely can mass be measured with Bainbridge’s mass spectrom-
eter? Clearly, the answer will depend on how precisely you can measure
E, B, and R. It is not difficult to measure R to a fraction of a millimeter,
say ±0.1mm. Out of 8.2 cm this would be a fractional precision of

±ΔR

R
= ±1.2 × 10−3 ≈ 0.1%,

or 12 parts per 10 000. This is not good enough to show that mass-20
neon’s mass deviates slightly from being an integer, because that deviation
turns out to be only ≈ΔM/M = 4 × 10−4, i.e. 4 parts per 10 000.

There is a tactic often used by experimental physicists to improve
the precision of their measurements. Rather than measure the value of
a quantity directly, measure its difference from something that is already
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FIGURE 8.7 Two lines on a photographic plate of a mass spectrometer. The separation
between the lines corresponds to the mass difference between an ionized hydrogen
molecule H+

2 and an ionized atom of mass-2 hydrogen.

known accurately. And if you don’t have an accurately known reference,
set one up. You have already seen one example of this technique: When
chemists and physicists did not know how to determine the actual masses
of atoms of the chemical elements, they made up a scale by assigning a
mass of 16 to oxygen (today we use carbon 12) and measured all other
atomic masses relative to this standard. The magnetic mass spectrometer
led to another version of this technique based on measurements of “mass
doublets.”

The idea is to send through the mass spectrometer two different ions
composed of different types of atoms so that they have nearly the same
molecular weight. For example, Aston was able to measure the difference
in mass between the mass-2 isotope of hydrogen and the two-atom H+

2
molecule of ordinary mass-1 hydrogen atoms by sending both through
his mass spectrometer at the same time. They are a doublet because
they have nearly the same mass (2 u in this case), but their masses are
slightly different. Figure 8.7 shows a tracing of the darkening of the pho-
tographic plate that occurred in Aston’s spectrometer. The separation of
the two peaks is quite clear and is measurable to within ±0.01mm. This
separation corresponds to a mass difference of 0.00155 u.

� EXERCISES

12. Show that the fractional uncertainty in this mass difference is ≈4%
and that the uncertainty in the mass difference is therefore ±6×10−5 u.

Referring back to Example 7.4 you can see that this result is bet-
ter than would have been obtained from two independent measurements
of the hydrogen masses with fractional uncertainties of ΔM/M =
ΔR/R ∼ 0.1%, because then you would measure 2 u ±2 × 10−4 u and
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2.0016 u ±2 × 10−4 u. And when you took the difference of these two num-
bers you would get (2.0016 ± 0.0002) − (2.0000 ± 0.0002) = 0.0016 u ±
0.0003 u, which is a result with a 19% uncertainty.

Further advance in precision comes when you relate these measurements
of relative differences to some wisely chosen scale. Aston’s measurements
can easily be related to the scale of atomic masses based on assigning
to the mass-12 isotope of carbon an atomic mass of exactly 12, because
he also showed that one could measure the mass difference between C++

and a 3-atom molecule of mass-2 hydrogen. Notice from Eq. 4 that a
doubly charged mass-12 C ion bends with the same radius of curvature
as a singly charged mass-6 ion, and therefore it will strike the same part
of the plate as a singly charged ion consisting of three atoms of mass-2
hydrogen. The observed separation between the two peaks corresponded
to a mass difference between the two ions of 0.0423 u.

These results yield a very precise value of the mass of the hydrogen
atom. To see how this works, write the two mass differences as linear
equations:

2M1 − M2 = 0.00155 u,

3M2 − M12

2
= 0.0423 u,

where M1 is the mass of mass-1 hydrogen, M2 is the mass of mass-2
hydrogen, and M12 is the mass of mass-12 carbon. By agreement, this last
value is chosen as the standard of the atomic mass scale and is assigned
the value of exactly 12.

To solve the two equations, multiply the top one by 3 and add it to
the bottom one. Solve for M1. You should get M1 = 1.00782 u, and be-
cause the above mass differences are modern values, this is the currently
accepted result. It is confirmed in many ways.

� EXERCISES

13. Use these mass differences to find the mass of mass-2 hydrogen.

Because of mass spectrometry and other techniques, we now know the
atomic masses of all naturally occurring isotopes accurately to six decimal
places. Mass spectrometry also tells us the relative abundances of the
different isotopes. For example, comparison of the areas of the peaks in
Fig. 8.8 (taken by A.O. Nier in 1938) shows the relative abundance of the
different isotopes of lead found in nature.
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FIGURE 8.8 Mass spectrum of lead isotopes.

8.3 LARGE ACCELERATORS AND MAGNETIC FIELDS

We have described the forces exerted by magnetic fields on moving charged
particles and shown that when a particle of charge q moves with momen-
tum p perpendicular to a magnetic field B, the magnetic field will bend
the particles in a circle of radius R such that

p = qBR.

When engineers and physicists design particle accelerators, they often use
this property of magnetic fields to bend and guide fast-moving charged
particles around a closed path.

The following two examples show how the strength of the magnetic
field determines the size of the accelerator. As the momentum of the
accelerated particles becomes greater and greater, it is necessary to make
the accelerator very large.

� EXAMPLES

5. With modern superconducting materials it is feasible to build large
magnets that operate reliably at magnetic fields as high as 8.3T. Such
magnets are at the edge of what is technically possible. The Large



216 8. MAGNETIC FIELD AND MAGNETIC FORCE

Hadron Collider(LHC) has just been built underground at CERN, the
European accelerator laboratory near Geneva, Switzerland. Two beams
of protons of momentum 3.7 × 10−15 kgm s−1 circulate in opposite di-
rections; occasionally a proton from one beam will collide head-on with
a proton from the other beam.

What is the smallest possible circumference of a ring of 8.3T magnets
that could guide such protons around a closed loop?

You know that the momentum p is connected to the magnetic field B,
particle charge q, and circle’s radius R by the relationship qBR = p. For
the LHC, q = e = 1.6×10−19 C, B = 8.3 T and p = 3.7×10−15 kgm s−1.
Solving the above equation for R gives

R =
p

eB
=

3.7 × 10−15 kgm s−1

(1.6 × 10−19 C)(8.3T)
= 2.8 × 103 m,

which is the same as 2.8 km. The circumference of a circle of this radius
is about 18 km.

The actual distance around the LHC is almost 27 km because its
shape is that of a race track rather than a circle. Between the arcs of
bending magnets, there are straight sections where physicists install
very large assemblies of equipment for studying collisions between the
high-momentum particles.

6. On eastern Long Island at Brookhaven National Laboratory is an
accelerator called the Relativistic Heavy Ion Collider (RHIC for short).
Its 3.45T magnets are designed to bend into a closed loop a gold ion
with a charge of 79e (all its electrons removed) and a momentum of
1.05 × 10−14 kgm s−1.

What is the circumference of the smallest possible ring of magnets
for RHIC?

This is the same problem as the previous one, and you can work it
the same way. But it is good practice and more instructive to compare
the parameters of the two accelerators and then scale the answer of
18 km from the LHC example.

How do you scale the answer? Notice that the maximum momentum
of a gold ion in RHIC is 2.84 times that of a proton in the LHC. This
means it will be 2.84 times harder for the B field to bend a Au ion
than to bend a proton. On the other hand, because the gold ions are
completely ionized and each ion has a charge of 79e, it is 79 times easier
for the B field to bend them. Finally, because the B field of RHIC is
weaker than the B field of the LHC by a factor of 8.3/3.45 = 2.4, the
radius (and, therefore, the circumference) will be 2.4 times larger.
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Put these together to get your answer: the smallest possible
circumference of RHIC’s ring of magnets will be 2.84×2.4

79 18 = 1.6 km.
If you found the argument hard to follow, look at the equation

p = qBR. It tells you that for a given momentum p the radius R
will decrease when either B or q is made larger, but it will increase if p
gets larger. Therefore, the smallest possible circumference C of RHIC
will be

CRHIC =
BLHC

BRHIC

qLHC

qRHIC

pRHIC

pLHC
CLHC =

8.3
3.45

1
79

10.5
3.7

18 km = 1.6 km.

RHIC’s actual circumference is 3.8 km. Figure 8.9 shows you that
this is because between the bending regions of the ring there are six
long straight sections where experiments are done.

The roughly hexagonal ring is very prominent from the air. Look for
it if you are flying over eastern Long Island.

8.4 A SUMMARY OF USEFUL THINGS
TO KNOW ABOUT MAGNETISM

In the chapters to come you will need to know the following things about
magnetic fields.

Magnetic fields are produced by moving charges, e. g., currents in wires
or beams of charged particles.

A magnetic field exerts a force only on a moving charge. The magnetic
force is often called the Lorentz force; it is proportional to the charge, q, to
that part of the charge’s velocity, v⊥, that is perpendicular to the magnetic
field, and to the strength of the magnetic field, B. These relations are
expressed in the equation

F = qv⊥ B = qvB sin θ. Lorentz force, p. 202

This equation defines the unit of magnetic field strength called the tesla,
abbreviated T, which has the units of N·s

C·m .
The direction of a magnetic field is the direction that the northward-

pointing end of a compass needle points when placed in the field. This
direction is parallel to the line of motion of a charge on which B exerts
no force.

The force exerted by a magnetic field on a moving charge is perpendic-
ular both to the velocity of the charge and to the magnetic field. To find
the direction of the force on a positive charge, imagine two arrows, one
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FIGURE 8.9 A map of RHIC. The large hexagonal ring is the main accelerator and
storage ring containing the 3.45 T bending magnets. Drawing provided courtesy of
Brookhaven National Laboratory.
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pointing in the direction of the velocity and the other in the direction of
the magnetic field. Now imagine the two arrows put tail to tail and that
you are standing at the point where the tails join. Point your right arm
in the direction of v and your left arm in the direction of B. If your arms
are crossed, then the force is down, toward your feet; if your arms are not
crossed, the force is up, toward your head.

This book often uses the special case of a charge q moving with a
constant speed v perpendicular to a uniform magnetic field B. In this
case the charge moves in a circle of radius R such that

mv = p = qRB. Uniform magnetic fields bend
moving charges in circles; p. 205

The deflection of charged particles by magnetic fields provides a way to
measure masses of ions with great precision. These measurements show
the existence of isotopes, atoms of the same chemical element with differ-
ent masses. Magnetic fields are basic to the guidance and control of beams
of charged particles whether they are the electrons that make the picture
on the screen of old fashioned television sets or the beams of high-energy
particles that circulate inside accelerators.

Magnetic fields are produced by moving charges. For example, a current
I of charges moving in a long straight wire produces a magnetic field that
surrounds the wire. For this special case the magnetic field has an intensity
that drops off as the inverse of the distance R from the wire; the direction
of the field is everywhere tangent to the circle of radius R:

B =
μ0I

2πR
. Magnetic field around a current

in a long straight wire, p. 207

PROBLEMS

1. Suppose a particle made of equal amounts of negatively and positively
charged matter with a total mass of 2μg is put initially at rest somewhere
in space.

a. You notice that although the negative and positive charges remain
evenly mixed, this neutral particle begins to accelerate. What is
likely to be the cause of such acceleration?

b. Imagine you remove from the particle 1μC of negative charge.
You observe that now when the particle is placed at rest at the
same point in space as before, it begins to accelerate much more
than before. What is likely to be the cause of this additional
acceleration?



220 8. MAGNETIC FIELD AND MAGNETIC FORCE

c. You notice that once it is in motion, the acceleration of this charged
particle remains essentially constant regardless of the direction in
which the particle is moving. What does such behavior tell you
about the presence of a magnetic field?

2. In Chap. 6, you learned that, even though it is negative charges that
move in metals, the direction of current is conventionally chosen to be
the direction in which positive charges would move to create the same
current. To answer the question “Does this convention makes a difference
to magnetic forces?” consider a wire with (positive) current flowing to the
right and located in a uniform field pointing out of the page.

a. Make a drawing of this situation.
b. What would be the direction of the force on the wire if you assume

that the current consists of the motion of positive charges?
c. Remembering that the current actually consists of negative charges

moving to the left, describe the direction of the actual force exerted
by the magnetic field on the wire.

3. Draw a picture of two horizontal parallel wires placed 1m apart and
each carrying 1 ampere of current in the same direction.

a. At the upper wire what is the direction of the B field caused by
the lower wire? Hint: Consult Fig. 8.5 on p. 207.

b. At the upper wire, what is the magnitude of the B field caused by
the lower wire?

c. What is the direction of the force on the upper wire exerted by the
B-field from the lower wire?

d. What is the average force on one electron in the wire? Assume
the wires are 22-gauge copper (0.0644 cm diameter); the density
of electrons is 8.43 × 1022 cm−3; and their average drift velocity is
2.27 × 10−4 m s−1 (as in Chap. 6).

e. What is the force per meter on the wire?
f. Put your result for the force into algebraic form. Instead of numbers

use n (the number density of free electrons), v (the drift velocity of
the electrons), I (the electric current), A (the cross sectional area
of the wire), and μ0 (the magnetic permeability of free space—the
constant that appears in Eq. 3, etc.
Notice that your final result depends only on the current I and
the distance between the wires, not on the electron density n or
the area A of the wire. This fact allows the official definition of
the ampere to be the amount of current that produces a force
of 2 × 10−7 Nm−1 between two long parallel wires 1 m apart and



PROBLEMS 221

+

FIGURE 8.10 A positive charge enters a uniform magnetic field (Problem 4).

1000 V

q

m

v=3 106m/s

20 mm

FIGURE 8.11 Arrangement for electric deflection in Problem 5.

carrying the same current. (The coulomb is then officially defined
to be the amount of charge carried past a point in 1 s by a current
of 1 ampere.)

4. A proton is accelerated from rest through a potential difference of
0.5MV.

a. What is its kinetic energy after this acceleration?
b. What is its velocity?
c. If it enters, as shown in Fig. 8.10, a uniform magnetic field of 0.1T,

pointing into the plane of the paper, does the proton’s path curve
toward the top edge of the page or toward the bottom edge?

d. What is the radius of curvature of its path in the magnetic field?

5. An electric potential of 1000V is placed across two plates separated
by 20mm, as shown in Fig. 8.11. A beam of particles each with charge q
and mass m travels at v = 3×106 m/s between the plates and is deflected
downward. A uniform magnetic field applied to the region between the
plates brings the beam back to zero deflection.
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a. What is the magnitude and direction of the deflecting electric
field E?

b. What is the magnitude and direction of the deflecting magnetic
field B?

c. Prove that v = E/B when the electric and magnetic forces balance.

6. Physics students often measure the ratio of the charge e of an electron
to its mass m. In one experiment to measure e/m, electrons are boiled off
a hot filament and accelerated through 150V (See Fig. 8.12).

a. What kinetic energy do the electrons acquire as a result? Give your
answer both in joules and in electron volts.

b. After they have passed through a potential difference of 150V,
what is the speed of the electrons?

c. The electrons enter a uniform magnetic field of 0.5mT traveling
at right angles to the field as shown in Fig. 8.12. What force will
the magnetic field exert on them? Give both the magnitude and
direction of the force.

d. What will be the electrons’ radius of curvature in the magnetic
field?

7. A uniform magnetic field of 45.6mT points in the z direction, as shown
in Fig. 8.13. At time t = 0 a particle with a charge of −1.60 × 10−19 C
is moving along the positive x-axis, as indicated in the diagram. It has a
speed of 4.4 × 105 m/s and moves in a circle of radius r = 10 cm.

a. What is the direction of the force on the particle when it has the
velocity shown in the figure?

b. What is the numerical value of the force on the particle?
c. What is the momentum of the particle?
d. What is the particle’s mass?

150 V

FIGURE 8.12 A beam of electrons accelerates through 150 V and then enters a uniform
magnetic field of 0.5 mT pointing into the plane of the paper (Problem 6).
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FIGURE 8.13 Direction of motion of a negatively charged particle in a uniform
magnetic field at some instant of time (Problem 7).

˜

200 V

–

FIGURE 8.14 A beam of electrons accelerated through 200 V bends in a magnetic
field (Problem 8).

8. Suppose you do an experiment in which electrons come off a cathode
and accelerate through 200V. Suppose these electrons enter a uniform
magnetic field. They are moving perpendicular to it and bend as shown
in Fig. 8.14.

a. What is the kinetic energy of the electrons? Give your answer in
electron volts.

b. What is the direction of the force on them? Give your answer by
drawing arrows on the diagram in several places.

c. What must be the direction of the magnetic field to bend the
electrons as shown?

d. Explain how you figured out your answer to (c).

9. A cyclotron (Fig. 8.15) is an apparatus for accelerating charged par-
ticles to very high kinetic energies. Rapidly moving charged particles
are coaxed into circular orbits by a strong uniform magnetic field that
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Accelerating
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(alternating)
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Accelerating
voltage
(alternating)

B

FIGURE 8.15 A diagram of a small part of the spiral path of particles accelerating
inside a cyclotron where the magnetic field B is perpendicular to and out of the plane
of the page. Acceleration occurs at the gap between the dees. (Problem 9).

points in a direction perpendicular to the plane of the particles’ or-
bit. During each lap around the cyclotron, the particle is accelerated
(twice) by an electric field, boosting its energy and also increasing the
radius of its orbit. The National Superconducting Cyclotron Laboratory
(NSCL) at Michigan State University is a world leader in the study of
rare isotopes and fundamental nuclear physics. The K500 cyclotron at
NSCL has a diameter of 3 m and a maximum magnetic field strength
of 5 T. You can learn more (including the answers to this problem) at
http://www.youtube.com/watch?v=xO4Dtz9vkiI.

a. Singly charged argon (m = 40 u) ions are accelerated within the
K500 cyclotron. What is the maximum speed to which they can be
accelerated? (Express this as a fraction of the speed of light c.)

b. Prove that the time needed for an Ar+ ion to make a full circle
within the cyclotron is independent of its velocity. (This is true as
long as v � c .) Calculate this time. Note that the electric field
accelerating the charges must flip its polarity twice in this time.

10. Figure 8.16 illustrates the operation of a mass spectrometer. For an
accelerating voltage of 1000V and a magnetic field of 0.1T, helium ions
(He+) have a circular orbit of radius 9 cm. (Note m = 4 u).

a. Show that the mass-to-charge ratio of an ion, the accelerating volt-
age, the magnetic field, and the radius of the ion’s orbit are related
as follows:

m

q
=

B2R2

2Vacc
.
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FIGURE 8.16 Schematic diagram of the mass spectrometer of Problem 10.
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d2

d1

FIGURE 8.17 Representation of a developed photographic plate from a Bainbridge
mass spectrometer (Problem 11).

b. If Vacc is increased to 4000V, what is the new orbital radius of
He+?

c. If Vacc is returned to 1000V, and B is doubled, find R.
d. Let B once again equal 0.1T. At what voltage would O+

2 ions
(m = 32 u) have a radius of 9 cm?

e. What is the kinetic energy (in convenient units) of the helium and
oxygen ions when they enter the magnetic field?

11. A representation of the photographic detector plate of a Bainbridge
mass spectrometer is shown in Fig. 8.17. Three lines are visible where
ions of a single element have struck the plate. S3 is the location of the
exit slit of the Wien velocity filter. The distances of the lines from S3 are:
d1 = 12.0 cm, d2 = 12.5 cm, d3 = 13.0 cm. The line at d1 is the darkest
line. What is your best guess for the identity of the element? Explain your
reasoning.
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FIGURE 8.18 A beam of electrons passes (a) through an electric field (Problem 12)
and then (b) through a magnetic field (Problem 13).

12. An electric field is produced by applying a potential difference of
400V between two parallel plates spaced 2mm apart (see Fig. 8.18).
A beam of 20 keV electrons is sent between the plates along the x-axis.

a. What is the momentum px of the electrons as they enter the space
between the plates?

b. If the plates are 0.5 cm long, what is the change in momentum Δpy

from the time the electrons enter the space between the plates to
the time they emerge?

c. With no voltage across the plates, the electrons travel on from the
plates and strike some point on a screen 15 cm away. Turning on the
voltage across the plates causes the electrons to strike a different
point on the screen. What is the distance between the points that
the electrons strike with voltage off and with voltage on?

13. Now the electric field in the previous problem is turned off and a
uniform magnetic field is made to fill the space between the plates. The
direction of B, the magnetic field, is out of the plane of Fig. 8.18.

a. In what direction will the electrons be deflected?
b. For what value of B will the magnitude of the change in momentum

Δpy of the electrons passing between the plates be the same as that
produced by the electric field of the previous problem?

14. In a Wien velocity filter (page 210), perpendicular electric and mag-
netic fields are applied to moving charges so that only those charges with
velocity v = E/B pass through the fields without deflection. Figure 8.19
illustrates a complementary situation: charged particles moving through
a conducting material (such as electrons moving through a copper wire)
are confined by the walls of the conductor so that they move in straight
lines parallel to the axis of the conductor. A magnetic field applied per-
pendicular to the motion causes the moving negative charges to separate
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FIGURE 8.19 The Hall effect on charged particles moving through a conductor.
(Problem 14).

from positive charge and produce an electric field within the conductor,
perpendicular to the current, that offsets the magnetic force and keeps the
charges moving in straight lines along the conductor. This induced elec-
tric field is called the Hall Effect. (Because blood is a conducting fluid,
surgeons can measure blood flow rates using the Hall Effect.)

a. The figure shows electrons moving along a long wire. What is the
direction of the electric field E within the wire? (Make a sketch.)

b. Suppose the wire has a square cross section with width and height
equal to 1 cm. If the velocity of the charges is 5 mms−1, and
B = 2.0 T, what potential difference would appear across the wire?
This potential difference can be measured with a voltmeter.

c. If you measure current with an ammeter, you cannot distinguish
between positive charges flowing through the meter in one direc-
tion, and negative charges flowing in the opposite sense. But the
Hall Effect allows you to determine both the polarity and the di-
rection of motion of the charges. Explain this: imagine positive
charges moving opposite to the direction shown in the figure. What
happens to the induced E field?

15. The very large magnetic field B needed for the cyclotron at the
NSCL in Michigan is generated by passing a high current through a
solenoid, or coil, containing thousands of loops of superconducting wire.
The magnetic field contributed by each loop adds to create a large total
field. But the electrons that flow through the solenoid wire to produce B
feel a Lorentz force from the field they have generated. At high fields and
currents, this force can be strong enough to destroy the coil.

a. You know how to find the force on a single charge q moving with
velocity v in a magnetic field B. A current I is made up of many
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1 m1 m

FIGURE 8.20 Geometry of the current loop for Problem 15.

such moving charges. Go back to Sect. 6.3 (p. 160) to find an
expression for I in terms of the number of charges per unit volume,
and then derive an expression for the force on a long straight wire
of length L carrying a current I in a direction perpendicular to a
uniform magnetic field B.

b. Consider a single loop of the solenoid, which for simplicity take to
be square-shaped with side length 1m, carrying a current of 100 A
in the sense shown in Fig. 8.20. What is the direction of the field
within the loop? What is the direction of the force on each of the
four sides of the loop?

c. If B = 5 T, as in the NSCL K500 magnet, find the magnitude of
the force on each side of the loop. Assume that the field is uniform.
Compare this force to your weight. In magnets made with coils of
superconducting wire great care must be used to assure that there
are no small movements of coil wires because these can generate
enough heat to turn off the superconductivity with the result that
the energy stored in the magnetic field explosively dissipates in the
coils. Designing a stable solenoid is not an easy task!
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Electrical Atoms
and the Electron

9.1 INTRODUCTION

One important result of physicists’ increased understanding of electricity
and magnetism was the recognition that atoms are electrical in nature. In
the 1830s Michael Faraday’s1 studies of the flow of electricity through so-
lutions contributed evidence that electricity is itself “atomic,” i.e., made
up of small indivisible units of electric charge. In 1894, G.J. Stoney pro-
posed the word “electron” as the name for such a natural unit of charge.
In 1897 the British physicist J.J. Thomson used electric and magnetic
deflection to establish the existence of the tiny particle of electricity that
we now call “the electron.” His work also showed that the electron is a
fundamental component of every atom and intimately related to its chem-
ical properties. By the end of the first decade of the twentieth century the
American physicist Robert A. Millikan had measured the electron’s mass
and charge to within one percent.

The experiments that led to the discovery of the electron and revealed
its properties are good examples of how physicists use physics to discover
more physics. These experiments illustrate the kinds of physical evidence
that physicists find persuasive. They are also direct applications of the

1Michael Faraday, 1791–1867, born of a poor family near London, received only the equivalent
of an elementary school education. Apprenticed to a bookbinder at thirteen, Faraday took to
reading everything he could find, especially scientific books. Attendance at some lectures on
chemistry by Sir Humphrey Davy led to his applying for and receiving a position as assistant to
Davy. From this beginning, Faraday trained himself in science to the point where his discoveries
in chemistry and electromagnetism, as well as his extremely popular public lectures, brought
him renown and many honors.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 229
DOI 10.1007/978-0-387-79080-0 9, c© Springer Science+Business Media, LLC 1999, 2010
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laws of electricity and magnetism laid out in the previous two chapters,
and their results have led to pervasive, contemporary technologies that
profoundly shape our lives today.

9.2 ELECTROLYSIS AND THE MOLE OF CHARGES

As early as 1800, the passage of electric current through a solution was
known to decompose it into elemental components. For example, Davy de-
composed water into hydrogen and oxygen gas in this way. In the 1830s,
Michael Faraday studied the passage of electric current through fluids
that are good conductors of electricity. A brine solution, sodium chlo-
ride dissolved in water, is a good example.2 Acid and base solutions also
are good conductors. From this work Faraday deduced that electrically
charged atoms, “ions” as he named them, are the conductors of elec-
tricity in solutions. He established quantitative relationships between the
amount of charge that passed through a solution and the amount of each
element that was produced.3

Faraday called solutions that could be thus electrically decomposed
“electrolytes.” He invented several new words to describe the processes
he observed. Some of these and their definitions are

electrolyte: A solution through which electricity can flow.

electrode: The (usually) metal pieces inserted into the electrolyte to
pass the electrical current into and out of the solution.

electrolysis: The electrically induced breakup of molecules in the
electrolyte when current flows through it.

anode and cathode: Respectively, the positively and negatively charged
electrodes.

ions: The bodies, charged atoms or molecules, that constitute an electric
current as they move through the electrolyte between the anode and
the cathode.

anions and cations: Ions that move to the anode are called anions; they
are negatively charged. Ions that move to the cathode are called cations
and are positively charged.

2Ordinary tap water has enough dissolved material to be a pretty good electrical conductor,
which is why you should not stand in a puddle of water during a lightning storm or become
an electrolytic cell by touching a live wire.
3See Great Experiments in Physics. Morris H. Shamos, Ed., Holt and Co., New York, 1959,
p. 128, for extensively annotated excerpts from the original publications of Faraday on elec-
trolysis and electromagnetism, as well as from the works of other important physicists. Short
biographies of the pioneers we are discussing in this chapter are also included.
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Faraday varied the nature of the electrolyte and the size and shape
of the electrodes. He tried different arrangements of electrodes to ensure
that when gases were the product of decomposition all the evolved gas
was collected. When sufficient care was taken, the universal result, now
known as Faraday’s law of electrolysis, was that the measured amount of
a substance decomposed was “in direct proportion to the absolute quantity
of electricity [i.e., total charge] which passes.”

� EXAMPLES

1. In one experiment with zinc and platinum electrodes immersed
in water,4 Faraday observed that hydrogen gas was generated from the
platinum electrode while zinc oxidized and left the zinc electrode. Fara-
day collected the hydrogen gas and determined that it was released by
the electrolysis of an amount of water that has a mass of 2.35 grains.
Before electrolysis, the zinc electrode weighed 163.10 grains; after elec-
trolysis it weighed 154.65 grains. This means that during the electrolysis
of 2.35 grains of water, 8.45 grains of zinc were removed from the zinc
electrode.4

If for every molecule of H2O that is electrolyzed, one Zn atom is
removed from the zinc electrode, then the ratio of the masses of the
electrolyzed water and zinc should equal the ratio of their molecular
weights. From Faraday’s data

MZn = MH2O

8.45 grains of Zn
2.35 grains of H2O

= 18 × 3.60 = 64.7 u,

which agrees well with today’s accepted atomic mass of 65.4 u for Zn.
Notice that in this example it is not necessary to know the SI

equivalent of a grain.

Although in his day there was no way to measure the amount of charge
passed through an electrolyte, Faraday could make a current I that he
knew was steady (constant). Then the amount of charge Q passed through
an electrolyte is proportional to the elapsed time Δt because Q = I Δt.
If he ran the same steady current I through different electrolytes for the
same length of time Δt, the total amount of charge Q passed through
each electrolyte would be the same. He weighed the amounts of different

4Pages 254–255 in Michael Faraday, Experimental Researches in Electricity (3 vols. bound as
2), Dover Publications, Inc., New York, 1965. The three volumes were originally published in
1839, 1844 and 1855 respectively.
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TABLE 9.1 Relative masses of elements produced by electrolysis using the same
amount of charge

Element hydrogen oxygen chlorine iodine lead tin silver

Relative mass 1 8 36 125 104 58 108

Atomic weight 1 16 36 125 208 116 108

elements released by the passage of the same amounts of charge Q and
discovered that the ratios of the weights were closely related to the ra-
tios of the elements’ atomic masses. You can see from Table 9.1 that for
hydrogen, chlorine, and iodine the ratio of the weights collected is ex-
actly the same as the ratio of their atomic masses. In other words, the
amount of charge that releases one atomic weight (i.e., 1 mole) of hy-
drogen releases one atomic weight of chlorine, iodine, or silver, but the
same amount of electricity releases only half a mole of oxygen, lead, or
tin. Once again, simple integer ratios are strong evidence for atomicity. In
Chap. 3, it was atoms of matter; here it is evidence for atoms of electric
charge.

When it became possible to measure charges accurately, the amount of
charge required to electrolyze exactly one mole of hydrogen, or silver, or
chlorine, was found to be 96 485 coulombs. In other words, 96 485C will
cause the electrolytic deposition of one gram atomic weight of silver, i.e.,
107.88 g, which is one mole of silver atoms.

Therefore, even without knowing the value of Avogadro’s number NA

it appears quite reasonable to identify this quantity of charge, 96 485C,
as NA basic charges. This suggests that there exists some basic, ele-
mentary charge and that 96 485C is a mole of them. This quantity of
electricity, the mole of elementary charges, is called “the faraday” and is
often represented by the symbol F . If we designate this smallest possible
quantity of electric charge by the symbol e (for elementary), then the
faraday is

F = NAe = 96485C. the faraday (1)

Figure 9.1 shows a typical setup for electrolysis along with a simplified
modern interpretation of what goes on in the process.

� EXAMPLES

2. Suppose that a cell arranged as in Fig. 9.1 carries a current of 15
amperes for 10 min. How much silver will plate out on the cathode?
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FIGURE 9.1 An electrolytic cell in which silver dissolves from a silver anode and
plates onto the cathode.

The amount of charge, Q, delivered by this current during this
amount of time is (15C/s)(10min)(60 s/min) = 9000C. As a fraction
of a faraday F this is

Q

F
=

9000
96/, 485

= 0.0933,

which from the definition of F must be the same fraction of silver’s
mole atomic weight of 107.88 g. Thus:

Deposited Wt. of Ag = (107.88 g/mol)(0.0933mol) = 10.06 g.

Faraday’s work strongly suggested that chemical reactions involve inte-
ger amounts of some basic quantity of electric charge. In conjunction with
the chemical evidence for atoms, these results led to the idea of an integer
number of these basic charges accompanying ions in solution. Faraday
even was so bold as to suggest that it is the electrical charges that are
the source of chemical “affinity,” or bonding, as we would say now.

� EXERCISES

1. Faraday’s results are shown in Table 9.1 along with the known
atomic weights. Use these data to deduce the number of faradays re-
quired to produce one mole of each of the elements he studied. Assume
the possibility of different numbers of elementary charges on different
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ionic species (which Faraday apparently did not consider) and explain
why a faraday of charge might not always generate a mole atomic
weight. Explain each of the six results reported in the table.

Note that Eq. 1, the definition of the faraday F , intimately connects F
with Avogadro’s number and the elementary charge e. If you can deter-
mine any two of the three quantities NA, F , or e, Eq. 1 will give you the
third.

� EXERCISES

2. In Chap. 5 you saw that a rough estimate of Avogadro’s number
(≈6.6×1023) could be obtained from kinetic theory and measurements
of the viscosity of air. Using this result and the value of the faraday,
estimate a value for the elementary charge e.

In electrolysis a given amount of charge releases a certain mass of an
element. You can use this result to find the ratio of an ion’s charge to its
mass. For example, a charge Q = Ne will release N atoms of hydrogen,
and the total mass released will be NmH, where mH is the mass of a
hydrogen atom. The charge-to-mass ratio is found from the ratio of the
total charge used to the total mass collected:

Qtotal

Mtotal
=

Ne

NmH
=

e

mH
.

� EXERCISES

3. You know that one faraday of charge releases one mole of hydrogen
atoms. From that fact determine the value of the charge-to-mass ratio
of the hydrogen ion.

4. Modify this calculation to find the charge-to-mass ratio of the
oxygen ion with charge −2e.

5. Of all the possible singly charged ions that one can imagine forming
from the periodic table of the elements, which one will have the largest
value of its charge-to-mass ratio? The smallest?
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Keep this result in mind for comparison with the charge-to-mass ratio
of the elementary charge discussed in the next section.

9.3 CATHODE RAYS, e/m, AND THE ELECTRON

By the 1850s it had become possible to generate large electrical potentials
that could supply sustained electrical currents. When a strong current
was passed through a low-pressure gas in a glass container (tube), the
gas would glow. Also rays were observed to stream from the cathode (the
negative electrode) to the walls of the tube or to the anode. The study of
these so-called “cathode rays” led to two revolutionary conclusions: atoms
have parts; the parts are electrically charged. One of these electrically
charged parts of the atom was the electron, an entirely new entity with a
mass almost 2000 times less than the mass of hydrogen, the lightest atom.

The Electrical Nature of Cathode Rays

To prove the electrical nature of cathode rays was not easy. First, the idea
of electrical particles was novel; second, if the rays were electrical they
should be deflected both by magnetic fields and by electric fields. But
electric deflection did not appear to occur. Although a magnetic field bent
the rays as you would expect if they were electrical charges,5 electric fields
did not appear to affect them. In 1883 when the able German physicist
Heinrich Hertz tried to deflect the rays by passing them through the
electric field between two charged plates, he saw no effect and concluded
that cathode rays were not electrical. Only later was it found that the
lack of electrical deflection was caused by poor vacuum.6

In 1887 J.J. Thomson7 began experiments that proved that cath-
ode rays are electrical in nature. He also produced clear evidence that
magnetic and electric fields bend cathode rays as though they have a
well-defined, distinct ratio of charge e to mass m. This finding strongly

5Even when magnetic deflection was observed, it was not easy to understand. These were the
first observations of particles with well-defined charges moving in magnetic fields, and most
physicists of that time did not yet have the convenient tool of vector representations or all the
“hand rules” that make it so easy (?) for you to predict the motion of charges in a magnetic
field.
6Hertz’s experiment used a vacuum at the edge of what was technically possible in his time,
and it was not good enough. Ionization of residual gas in his cathode-ray tube produced enough
conductivity to short circuit the applied voltage and reduce the electric field to a value too low
to produce any deflection.
7Joseph J. Thomson, 1856–1940. See Shamos, op. cit., p. 216. For an interesting account of
Thomson and his work see http://www.aip.org/history/electron/jjhome.htm.
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suggested that cathode rays are streams of distinct particles. We call these
particles “electrons.” For being the first to exhibit its existence and for
determining some of its properties, Thomson is considered the discoverer
(in l897) of the electron.8

Using several different configurations of electrodes and tubes and bend-
ing the rays with a magnet, Thomson showed that the observed electrical
charge was associated only with the rays. With improved vacuum tech-
nique Thomson showed that cathode rays are deflected by electric fields
as they should be if they are electrically charged. He also showed that the
heat generated in the anode when struck by cathode rays is equal to the
electrical energy given to the beam by the voltage between the cathode
and the anode.

Here is a simplified version of how to compare the heat energy collected
in the anode with the kinetic energy in the beam. Build a metal cup of a
shape that will collect all the rays coming from the cathode. Before you
put this cup into the tube, measure how much heat energy raises the cup’s
temperature by 1K. Say your result is 0.02 J.

Put the cup in a tube and pump out the air. Apply a potential difference
of 400V between the cathode and anode and observe that the cathode-ray
beam current I is 2.0μA at the anode. Collect this beam in the anode
for 100 s, and observe that the temperature of the anode rises by 4.0 K.
Because the temperature rises 1K for every 0.02 J added, you calculate—
assuming no serious losses by cooling—that the anode received 0.08 J of
energy.

Now compare the energy heating the anode with the kinetic energy
carried by your beam of cathode rays. In time Δt the beam delivers a
total charge of Q = IΔt that has been accelerated through a potential
difference V and therefore has energy K = QV , making the total kinetic
energy brought to the anode K = V IΔt. For V = 400V, I = 2μA, and
Δt = 100 s, K = 400 × 2 × 10−6 × 100 = .08 J.

The energy of heating equals the kinetic energy imparted electrically
to the beam. This result supports the supposition that cathode rays are
electrically charged.

Deflection

By Thomson’s time pumps could produce vacuums good enough to permit
electric deflection. Consequently, he was able to combine electric deflection

8For his discovery Thomson was awarded the 1906 Nobel Prize in Physics—
http://nobelprize.org/nobel prizes/physics/laureates/1906/index.html.
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FIGURE 9.2 Thomson’s arrangement of electric and magnetic fields to deflect cathode
rays. The screen S on which the deflection was observed is at the extreme right.

with magnetic deflection and measure the charge-to-mass ratio e/m of
cathode ray particles. This section explains how he did this and why he
had to use both kinds of deflection.

Electric deflection is commonly achieved by passing a beam of charged
particles between oppositely charged parallel plates as shown schemati-
cally in Fig. 9.2. You have seen that in the volume between such plates the
electric field E is constant. While the beam is passing between the plates,
the electric field exerts a constant force on the beam, upward in the case
shown in Fig. 9.2. The deflection is usually measured by looking at the
luminous spot made when the beam strikes a screen a distance L from
the deflecting plates. When the field is off, the beam strikes one point on
the screen; when the field is on, the spot is deflected some measurable
distance y.

You can predict the amount of deflection by calculating the angle θ at
which the beam emerges from between the plates when E is on. Assume
the beam enters the region between the plates with a horizontal speed
vx but no upward motion. Because the field E exerts an upward force on
them, the cathode rays leave the region between the plates with an upward
speed of vy. Because these particles still have their original horizontal
speed vx, they travel the distance L to the screen in a time t such that
vxt = L. In that same time t they travel vertically a distance y = vyt.
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The result is that

y

L
=

vyt

vxt
=

vy

vx
= tan θ. (2)

It is useful to think of deflection as produced by a change of momentum.
Multiply the top and bottom of Eq. 2 by the mass m, and you see that
the deflection angle is also the ratio of a beam particle’s acquired upward
momentum Δpy to its horizontal momentum px.

tan θ =
mvy

mvx
=

Δpy

px
.

The cathode rays are deflected because a force acts for some time
interval Δt in the y direction on each particle. Each is traveling with
momentum px in the x direction.9 The force, acting over time, imparts
an increment of momentum Δpy in the y direction. When the force is
applied for only a short time, you can think of it as a blow or swat in
the y direction, as when a soccer ball rolls in the x direction across your
path, and you kick it in the y direction. It doesn’t go directly off in the y
direction; rather, it is deflected and travels away from the x direction at
some angle θ = tan−1

(
Δpy

px

)
where Δpy is the effect of your kick.

� EXERCISES

6. Why is the horizontal momentum px not affected by the electric
field between the plates?

In Thomson’s experiment the cathode rays pass quickly between the
plates and experience a kick from the electric field E. Each charge e
experiences a constant force Fy = Ee during the time Δt it is in the
region between the plates, and gets a kick of Δpy = Fy Δt. If the length
of these plates is � and the speed of the electrons is vx, then

Δt =
�

vx
.

Because px is mvx, the angle of deflection is

θ =
Δpy

px
=

EeΔt

px
=

eE�

mv2
x

,

9This is a good description of what happens to the cathode rays, but in general the deflecting
force need not be constant or at right angles to the initial path of the deflected particles.
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where tan θ has been replaced by θ because, as is often the case, Δpy <<
px, and the small-angle approximation is valid. To find y, just multiply θ
by the distance to the screen:

y = Lθ =
eE�L

mv2
x

. (3)

As expected, y depends on e, m, and vx.
Electric deflection is a basic tool for controlling charged particles of all

kinds. As Eq. 3 shows, electric deflection is inversely proportional to the
kinetic energy of the particle being deflected; this is a general property of
electric deflection.

The above calculation of displacement on the screen neglects y-
displacement occurring while the cathode ray particles are between the
plates. In cathode ray tubes, this is usually negligible compared to the
amount of displacement that occurs after leaving the plates, but it is not
hard to include it if you need to. (For example, see p. 261.)

Equation 3 was not enough for Thomson to find the value of e/m of
cathode rays. He could measure y and E, but not vx. You might think he
could use the fact that he gave the rays their kinetic energy by accelerating
them through a known voltage Va (subscript “a” for acceleration). As a
result

1
2
mv2

x = eVa,

but, as you can show, using this equation to eliminate vx from Eq. 3 also
removes e and m from the equation.

� EXERCISES

7. Show that this last statement is true.

In contrast to electric deflection, magnetic deflection of a particle is
inversely proportional to its velocity or, equivalently, its momentum. This
property allowed Thomson to use magnetic deflection to determine vx in
Eq. 3 without eliminating e/m from the equation. First, he measured the
deflection y caused by the electric field E; then he produced in the region
between the plates a uniform B field with just the right strength to cancel
the deflection due to E. The effects of the two fields cancel when

eE = evxB,

or

vx =
E

B
. (4)
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(This is the condition for the Wien velocity filter discussed on p. 210.)
Thomson could determine both B and E, which meant that he could
replace vx in Eq. 3 with its experimentally determined value. Or he could
substitute Eq. 4 into Eq. 3 and solve to get

e

m
=

Ey

B2�L
, (5)

where everything on the right side was measurable. These early mea-
surements were not very precise; one value Thomson obtained was
0.71 × 1011 C/kg, about a factor of 2.5 less than the currently accepted
value.

� EXERCISES

8. Derive Eq. 5.

9. If the separation between the plates was d = 5mm and the deflect-
ing voltage Vd (d for deflection) was 104 V, what was the value of the
deflecting electric field?

10. You’ve seen that Thomson’s experiments determined only the
charge-to-mass ratio of cathode rays. How then did the mass spec-
trometry experiment described in Chap. 8 use a combination of electric
and magnetic fields to determine ratios of the masses of charged ions?
What additional assumption allows you to infer the mass ratios from
mass spectrometry?

e/m by the Bainbridge Method

All methods of measuring e/m use both electric and magnetic fields. In the
Bainbridge method shown in Fig. 9.3, a large tube is situated between two
coils that produce a reasonably uniform magnetic field B. This field bends
the cathode rays in a circle with a radius r that depends upon the particle
momentum and the strength of the magnetic field. The beam of cathode
rays is produced by a small “electron gun” oriented to inject electrons
tangent to the circumference of the tube so that the beam can make as
large a circle as possible. The gun gives the electrons kinetic energy by
accelerating them across a potential difference of Va volts. With a charge
e and mass m, each electron gains a kinetic energy of

1
2
mv2 = eVa. (6)



9.3. CATHODE RAYS, e/m, AND THE ELECTRON 241

G
r

Vacuum
tubeMagnetic field B

(out of page)

Va

FIGURE 9.3 Diagram of an apparatus for measuring e/m. The source of electrons G
directs a beam accelerated through a voltage Va in a downward direction. An external
magnetic field B bends the beam in the circle with a radius r as shown.

In modern versions of the Bainbridge apparatus the tube is evacuated
during its manufacture and then refilled to a low pressure with an inert
gas such as helium. When electrons pass through this gas, they cause it
to glow, and the path of the rays becomes visible so that an observer can
measure the radius of curvature r of the electron beam.

The external magnetic field B produces a force on the moving charges
perpendicular to their path. This force supplies the centripetal force Fc

that produces circular motion. Thus

Fc =
mv2

r
= evB, (7)

where r is the radius of the circle. Solve for v,

v =
eBr

m
,

then square the result and substitute into Eq. 6 to get

2eVa

m
= v2 =

e2B2r2

m2

and
e

m
=

2Va

B2r2
. (8)

Every quantity on the right side of Eq. 8 is measurable, so e/m can be
determined. The modern value is

e/m = 1.759 × 1011 C/kg.
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� EXAMPLES

3. In Fig. 9.3, suppose that a radius of 8.0 cm is measured and the
accelerating voltage is 400V. What magnetic field is being used to
bend the cathode rays?

Solving Eq. 8 gives

B2 =
2V

(e/m)r2

from which it follows that

B =

√
2 × 400

1.76 × 1011 × (8 × 10−2)2
T (for tesla).

Evaluating this expression gives

B =
√

7.10 × 10−7 = 8.43 × 10−4 T.

To check that the units are correct it may help if you use Eq. 4 to see

that 1T = 1 N/C
m/s .

The Significance of e/m

Thomson’s value for e/m was remarkably large, or, to put it another
way, the value of m/e was remarkably small. From experiments in elec-
trolysis one finds that m/e for the hydrogen ion is about 10−8 kg/C
(see Exercise 3). Thomson’s value of m/e for electrons was more than
a thousand times smaller, indicating that in terms of mass the electron
was a very small part of the atom.

At least as important as its discovery was the recognition that the
electron was a part of every atom. The electrons measured in this appa-
ratus must come from the electrodes or the gas in the tube, but the same
charge-to-mass ratio was measured when these materials were changed.
This suggested that the electrons in every kind of atom are identical; that
is, electrons are a fundamental building block of atoms.

Furthermore, a year earlier H.A. Lorentz had shown that he could ex-
plain a peculiar change that occurred in the frequency of light emitted
by neutral atoms placed in a magnetic field if there was inside the atom
a charged particle with a charge-to-mass ratio of about 2 × 1011 C/kg,
the same value to within experimental uncertainty as the value of e/m
measured by Thomson for a free electron. This was strong evidence that
the electron is an internal part of every atom and intimately involved in
atomic behavior.
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9.4 THE ELECTRON’S CHARGE

Introduction and Overview

It is important to know the value of the electron’s charge. It sets the
scale of electric forces in atoms, and these forces determine atomic size.
Moreover, knowledge of e yields NA from the faraday, and the mass of
the electron from e/m. Consequently, after Thomson’s work, physicists
sought to measure the value of the charge e directly.

The most conclusive of the direct measurements of e were made by
the American physicist R.A. Millikan.10 He obtained accurate results
by studying the speed of motion in air of small electrically charged oil
droplets moving under the influence of gravitational and electric fields.
His work established that there is such a thing as an elementary indivisible
unit of charge and that its value is e = 1.6 × 10−19 C.

Millikan’s oil droplets were a few micrometers in diameter (a human
hair is about 100μm in diameter). When such a small droplet falls in
air, it accelerates only briefly—until resistance from the viscosity of air
balances the force of gravity—after which it falls at a slow, steady speed.
These droplets are too small to be seen directly, but when illuminated with
a bright light against a dark background, an individual droplet scatters
enough light to make a visible glint. Millikan could then measure its speed
of fall very accurately. The apparatus to apply the necessary fields and
illuminate the oil drops is illustrated in Fig. 9.4.

He made the droplets by spraying oil through a tiny nozzle, and friction
between the oil and the nozzle gave each droplet a tiny unknown charge.
By measuring the speed vg of a droplet falling under gravity, Millikan
could determine its mass. By measuring the speed vF of a droplet rising
in an electric field, he could figure out how much electric charge the droplet
carried. He made hundreds of measurements using different charges both
on the same and on different droplets and found that all the charges on
his droplets were integer multiples of a single, smallest amount e—the
elementary charge.

Droplet Size from Terminal Velocity

To understand the effects of electric field on his charged oil droplets,
Millikan had to know their masses. He determined the mass of a droplet by
an ingenious application of the fact that when a small, spherical body falls

10Robert A. Millikan, 1865–1953. See Shamos, op. cit., p. 238. The results of Millikan’s
experiment are reported in Physical Review 32, 349 (1911).
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FIGURE 9.4 (a) Millikan’s apparatus for determining the charge of an electron. (b) A
charged droplet of oil can be observed through a telescope to fall at terminal velocity
vg between parallel plates in the absence of any electric field and to rise with terminal
velocity vF when an electric field E is present.

freely through a viscous medium, it quickly stops accelerating and falls
at a steady rate vg called its “terminal velocity.” The terminal velocity
vg depends on the acceleration due to gravity, g, on the viscosity η of
the medium, on the sphere’s radius a, and on the density ρ of the oil of
which the droplet was made. Millikan measured the terminal velocity of a
falling droplet and from his knowledge of g, η, and ρ, found its radius a.
Then he calculated the mass m of the spherical droplet from the fact that
m = 4

3πa3ρ.

� EXAMPLES

4. If a spherical droplet of oil of density ρ = 0.92 × 103 kg m−3 has
a radius of 1μm, what is its mass m? Because the mass of the sphere
equals its volume times the density of the oil, you get

m =
4
3
π(1 × 10−6)3 (0.92 × 103) = 3.9 × 10−15 kg = 3.9 pg.

How do you find the droplet’s radius a from its speed of fall vg? Think of
an oil droplet falling freely through the air inside the chamber of Millikan’s



9.4. THE ELECTRON’S CHARGE 245

experimental apparatus (Fig. 9.4) with the electric field turned off. Two
forces act on the droplet: gravitational attraction downward and viscous
drag opposing the droplet’s motion. The gravitational force is just mg.
The retarding viscous force due to the air is proportional to the viscosity of
air and to the droplet’s velocity. The British physicist Sir George Stokes
showed in the nineteenth century that the viscous force Fv acting on
a small sphere of radius a falling with velocity v through a fluid with
viscosity η is

Fv = 6πηav. (9)

Consider what happens when the droplet falls. It starts off with an
acceleration of g, but as its velocity increases, the retarding viscous
force increases, opposing the gravitational attraction and decreasing the
droplet’s acceleration. As the value of v continues to increase, the accel-
eration continues to decrease until the droplet reaches the velocity vg at
which the force Fv retarding the droplet just equals mg, the force of grav-
ity downward. At this velocity vg the opposing forces are balanced, the
acceleration goes to zero, and the velocity stops changing. The velocity
vg at which this balance occurs is called the “terminal velocity.”

You can find an expression for vg in terms of the droplet radius a
and density ρ. Begin by equating the viscous and gravitational forces,
Fv = mg, and solving for vg:

6πηavg = mg,

vg =
mg

6πηa
. (10)

Now express m in terms of a and the known density of the oil, (ρ =
0.92 g/cm3 for the oil Millikan used), m = 4

3πa3ρ; substitute for m in
Eq. 10 and do some algebra to get

vg =
2
9

ρga2

η
. (11)

Millikan measured vg and used the known values of ρ, g, and η to find the
radii and masses of droplets.

� EXERCISES

11. Derive Eq. 11 from Eq. 10.
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� EXAMPLES

5. How slowly does a droplet fall through air if its radius is only 1μm,
i.e., what is its terminal velocity? Assume that the density of the oil is
ρ = 0.92 g cm−3 and the air temperature is 20 ◦C.

From Chap. 5 you know that for air η = 18.3 μPa s. Now use Eq. 11:

vg =
2
9

(0.92 × 103)(9.8)(1 × 10−6)2

18.3 × 10−6
= 1.1 × 10−4 m/s.

A droplet 1μm in radius will fall with a terminal velocity of 0.11mm/s;
it will take 9 s to fall 1mm! For a small droplet in air this equilib-
rium speed is reached almost immediately, and an observer will see the
droplet fall slowly at constant velocity.

� EXERCISES

12. What would be the terminal velocity of an oil droplet if it were
10μm in radius?

To measure vg Millikan watched a falling droplet through a telescope
and measured the time tg it took the droplet to fall a known, small height h
marked by two reference lines in his telescope eyepiece. Then he calculated
the terminal velocity as vg = h/tg. Knowing vg, he used the inversion of
Eq. 11 to find the droplet radius

a =
√

9vgη

2ρg
,

and then found the weight of the droplet:

mg =
4π
3

a3ρ g =
4πρ

3
g

(
9vgη

2ρg

)3/2

= 9π
(

2η3

ρg

)1/2

v3/2
g . (12)

Using his oil drop technique, Millikan could weigh a tiny oil droplet.
Knowing the weight of the droplet, he could then determine how much
electric charge q was on it.

� EXERCISES

13. Suppose a droplet has a terminal velocity of 0.43mm/s. What is
its radius and mass? Efficiency tip: Use the values worked out for a 1μm
radius drop and scaling arguments to avoid unnecessary calculation.
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14. How big is the viscous force acting on the 1μm-radius droplet
when it is moving with terminal velocity? On the 10μm droplet?

Finding the Charge on a Droplet

By applying an electric field Millikan could cause the charged droplets
to rise. Turning the field repeatedly on and off, he could cause an indi-
vidual droplet to rise and fall repeatedly as he observed its motion for
hours. From the speeds of fall and rise that he measured, Millikan could
determine the amount of charge on a droplet. He could also change the
amount of charge on a given droplet, measure changes in its speed of rise,
and calculate by how much the droplet’s charge had changed. Here’s how
he did these things.

Millikan produced an electric field E by applying a potential difference
V to a pair of metal plates separated by a small distance d. As noted
earlier, this creates a constant electric field E = V/d between the plates.
When the field is on, the droplet experiences a force qE in addition to the
downward force mg. The force qE could be either upward or downward,
depending on the sign of q and the direction of E. However, Millikan was
only able to experiment with particles that rose under the influence of the
electric field; other particles would quickly fall out of the region he could
observe in his telescope, so we’ll work out the theory for this case. Call the
terminal velocity vF when the droplet is rising with the field turned on
(F for field). When the electric field is off, the drop falls with a terminal
velocity vg (g for “gravity only”).

For a given drop there is a simple proportion between its terminal
velocity and the effects of gravity or the electric field acting on the droplet.
As Eq. 10 shows

vg ∝ mg,

i.e., the downward terminal velocity is proportional to the downward
force of gravity. When an applied electric field makes the droplet rise,
the upward terminal velocity is proportional to qE − mg

vF ∝ qE − mg.

Divide the second expression by the first to get:
vF

vg
=

qE − mg

mg
.
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Solve for q:

q =
mg

E

(
vF

vg
+ 1
)

=
mg

vgE
(vF + vg). (13)

Now use the expression for mg from Eq. 12 in Eq. 13 to find the charge
on the droplet solely in terms of quantities that can be determined from
measurements. You get

q =
9π
V/d

(
2η3

ρg

)1/2

v1/2
g (vF + vg). (14)

� EXERCISES

15. Derive Eq. 14.

16. Show explicitly that the right-hand side of Eq. 14 has units of
coulombs when all the quantities are measured in SI units.

� EXAMPLES

6. For one particular droplet Millikan used a potential difference of
5085V between two plates 16mm apart. When the electric field was
off, the droplet fell with a speed of 0.08584 cm/s; when the field was on,
the droplet rose with a speed of 0.01274 cm/s. What was the charge on
this droplet?

For ρ = 0.92 × 103 kgm−3, η = 18.2μPa s, and g = 9.8m s−2, you
find from Eq. 14 that

q =
9π 0.016

5085

√
2(18.2 × 10−6)3(8.584 × 10−4)

920 × 9.8
(15)

× (1.274 × 10−4 + 8.584 × 10−4)
= 2.97 × 10−18 C.

Notice that this is not really what we want to know. It is the charge on
the given droplet; it is not the elementary charge. Only if a droplet had
exactly one unneutralized elementary charge would the above equation
give the value of the elementary charge. In fact a singly charged droplet
could not be made to rise in the electric field of Millikan’s apparatus, so
he never observed such a droplet. To get around this problem Millikan
changed the charge on a given droplet from time to time. He did this
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by slightly ionizing the air of the chamber with x-rays or radioactivity.
A droplet would then pick up one or more ionized molecules and change
its charge. As a result, the electric force on the droplet would change and
so would the droplet’s terminal velocity vF . The velocity vg stayed the
same because the mass added to the oil drop by a few ions was utterly
negligible compared to the mass of the droplet. By measuring the changes
in vF , Millikan could calculate by how much the charge had changed. He
observed that this change was always an integer multiple of some smallest
amount, 1.602×10−19 C by modern measurements. He concluded that this
smallest change corresponded to the elementary charge we denote as e.

� EXERCISES

17. How many elementary charges were there on the droplet referred
to in Example 6?

18. Suppose the charge on a 1-μm radius droplet increased by 3e
because it picked up three nitrogen ions. What would be the fractional
increase in the droplet’s mass?

Quantization of Electric Charge

It is interesting that Millikan did not need actually to measure the value
of the elementary charge e in order to demonstrate experimentally that
the electric charge on a droplet is always an integer multiple of e. His work
is such a nice example of reasoning with ratios that it is worth looking
at closely. Table 9.2 is a reproduction of data that Millikan published11

to show the atomic nature of charge. (Other examples of Millikan’s data
can be found in Shamos’s book.) Along with the data, Table 9.2 shows
various parameters of his apparatus, such as voltage V , spacing between
the plates d, the distance h of fall and rise of a droplet, etc. The data
recorded by Millikan are the values of the quantities actually measured.
These are the times of fall under gravity, tg, and the times of rise when
the field was on, tF . You can see that when he caused the charge on a
droplet to change, the time of rise with the field on changed because the
electrical force qE changed.

There is enough information in the table so that from these times you
(and he), using Eq. 14, could calculate the charge on every droplet. But

11R.A. Millikan, Electrons (+ and −), Protons, Photons, Neutrons, Mesotrons and Cosmic
Rays, revised edition, University of Chicago Press, Chicago, 1947, p. 75.
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TABLE 9.2 Data from Millikan’s measurements on an oil dropa,b

aTaken with permission from p. 75 of R.A. Millikan, Electrons (+ and −), Pro-

tons, Photons, Neutrons, Mesotrons and Cosmic Rays, University of Chicago

Press, c©1937 and 1947 by the University of Chicago
bThe viscosity of air is given here in cgs units; the corresponding SI value is

18.24 × 10−6 Pa s

this would be neither efficient nor very insightful. Also, as noted in the
previous section, Millikan concentrated on the changes in charge. He did
this because these changes were smaller multiples of e than was the total
charge on a droplet.

From Eq. 14 you can see that the change in charge Δq is

Δq =
9π
V/d

√
2vgη3

ρg

(
v′F − vF

)
, (16)

where v′F denotes the velocity of rise after the charge has changed and
vF denotes the initial velocity of rise (before the droplet charge changed).
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Notice that for a given droplet, Eq. 16 means that

Δq ∝ (v′F − vF

)
,

or, since v′F = h/t′F and vF = h/tF ,

Δq ∝
(

1
t′F

− 1
tF

)

,

because the distance h over which the fall and rise times were measured
was the same for every droplet.

If the values of the various occurrences of Δq are multiples of some
small, elementary value, then so must also be the values of the var-
ious occurrences of

(
1
t′F

− 1
tF

)
. In columns 4 and 5 of Table 9.2 you

see Millikan’s examination of this possibility. All the different values of(
1
t′F

− 1
tF

)
are convincingly close to being small integer multiples of the

value 0.005386 s−1 .

� EXERCISES

19. How close to being exact integer multiples of 0.005386 s−1 are the
first three entries in column 4 of Table 9.2?

20. Explain why Millikan probably would have found the same result
in column 6 of Table 9.2 even if there had not been an instance in which
the charge changed by a single elementary unit.

Of course, if there is a basic “atom” of charge, then the total charge q
on any droplet must be some integer multiple of it, and this quantity must
be the same as the one of which any change in charge Δq is a multiple.
From Eq. 14 it follows that

q ∝ (vg + vF ) ∝
(

1
tg

+
1
tF

)

.

Consequently, the quantity of which
(

1
tg

+ 1
tF

)
is an integer multiple

should be the same as the quantity of which
(

1
t′F

− 1
tF

)
is an inte-

ger multiple. Columns 7, 8, and 9 of Table 9.2 show this to be the
case—0.005386 s−1.
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� EXERCISES

21. Explain why column 7 of Table 9.2 represents the total charge on
a droplet (as distinct from the change in charge).

22. As well as showing the times of fall and rise, Table 9.2 lists the
parameters of Millikan’s experiment.
(a) Use these to show that the radius a is correctly calculated from his
values of viscosity, speed of fall, and oil drop density.
(b) From these parameters and Millikan’s conclusion that the elemen-
tary charge corresponds to

(
1
t′F

− 1
tF

)
= 0.005386 s−1 determine the

value of the elementary charge in coulombs.

Millikan reported data on over 50 droplets altogether. He excluded
measurements on any trial when he thought the charge on the droplet
changed while he was measuring its speed in the electric field. In every case
both the charge on a droplet and any change of that charge were integer
multiples of a single value. The repeatability of these measurements is
strong evidence that a unique atomic unit of charge exists. That charge
e is called the “elementary charge.” Often, somewhat carelessly ignoring
its sign, people call e the “electron charge.” The quantity e is also the
magnitude of the charge on singly ionized atoms such as hydrogen ions
and the like. The modern value for e is 1.602 × 10−19 C. The results you
can obtain from Table 9.2 are slightly different from this value of e because
they have not yet been corrected for inaccuracies that occur in Stokes’s
law when the size of the droplet is comparable to the mean free path of
the molecules through which it is falling. Millikan made these corrections
and obtained e = 1.593 × 10−19 C.12 Remember that the charge of an
electron is negative, although the quantity e is usually given as a positive
number. It is your job to remember the sign when it is needed.

Important Numbers Found from e

From accurate knowledge of e came accurate knowledge of Avogadro’s
number, the mass of the electron, and an order-of-magnitude estimate of

12Millikan claimed that his value for e was accurate to about a tenth of a percent. However,
when other techniques became available to measure atomic spacings in solids to high precision,
the value for Avogadro’s number derived from these data disagreed with the value calculated
from Millikan’s e. The source of the discrepancy was ultimately traced to a slightly inaccu-
rate value of the viscosity of air. Millikan used 18.240 μPa s; the currently accepted value is
18.324 μPa s. Scale Millikan’s value for e by the ratio of these two numbers and see what you
get for e.
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the energy of interaction of an electron with its atom. Knowing a pre-
cise value of Avogadro’s number, you can calculate the actual mass in
kilograms of any atom or molecule.

� EXERCISES

23. Calculate Avogadro’s number from e and the faraday F .

24. Show how once Millikan had measured the elementary charge, he
could determine that the mass of an electron is 9.11 × 10−31 kg.

Millikan’s result permits you to estimate with moderate precision the
energy of interaction of the electron with its atom. An electron a distance
of r0 = 0.1 nm—a reasonable number based on the sizes of atoms—from
a singly charged ion will have a potential energy of −ke2/r0 = −14.4 eV.
This number tells you roughly the amount of energy involved when atoms
interact with each other by means of their electrons. In other words, this
number tells you that the energy scale of chemistry is of the order of 10 eV.

9.5 SUMMARY

This chapter has examined three important contributions to our under-
standing of atoms. Faraday’s studies of electrolysis and the regularities
of electrolytic deposition showed that atoms have an electrical nature.
The results hinted that electricity, like matter, has an atomic nature and
that there exists such a thing as a mole of charge and, therefore, some
sort of atom of electrical charge, some basic unit of electricity. Thomson
discovered the electron by using electric and magnetic fields to show that
in an electrical discharge in a gas the rays emanating from the cathode are
particles with definite mass and charge. Because the cathode-ray parti-
cles were the same regardless of what kind of cathode material or residual
gas was in the tube, his results supported other evidence that electrons
are parts of all atoms. Millikan’s precise measurements of the electronic
charge confirmed the discrete nature of electricity and established the en-
ergy scale of the electron’s interaction with an atom. His results yielded
precise values of Avogadro’s number and of the electron’s mass as well as
of its charge.

The indivisible “a-tom” had been cut, and two new, very important,
questions arose at once. If the electron is in the atom, what does it do
there? And if the electron is one part of an atom, what are the other
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parts? The answers to these questions led to a revolution in physics, but
before you can understand this revolution, you need to study properties
of light and other forms of electromagnetic radiation. This you do in the
next chapter. Before taking up this new topic, however, you might like to
see two interesting uses of electric fields to manipulate charged particles.

9.6 USES OF ELECTRIC DEFLECTION

A good idea can have many applications. You have seen how J.J. Thomson
used electric deflection to determine that cathode rays are charged par-
ticles. Electric deflection of electrons has widespread application as the
basis of the cathode ray tube that is the heart of the oscilloscope, arguably
the most important instrument in all modern sciences. Electric deflection
is also used for low-cost, high-speed, good-quality printing and to hunt
for quarks.

The Inkjet Printer

The inkjet printer works by electric deflection of objects orders of mag-
nitude greater in size than electrons. In the inkjet printer ink droplets
are electrically charged and then steered by electric deflection so that
the droplets form characters on paper. The essential features of an inkjet
printer are shown in Fig. 9.5. About 105 droplets are sprayed onto the
paper each second, with about 100 drops forming a single character.13

Each droplet has a diameter of 63 μm. Assuming that the droplets
have the density of water, this diameter corresponds to a droplet mass of
1.31 × 10−10 kg. A controlled amount of electric charge between 80 and
550 fC can be put on each droplet by varying the voltage on the charge
electrode. The droplets pass in a stream at a speed of 18m/s between two
small metal plates 1.3 cm long and 1.6mm apart. These are the deflection
plates.

How Much Can a Droplet Be Deflected?

If the maximum voltage that can be placed across the plates is 3.3 kV,
what would be the maximum deflection of the ink drops on a piece of

13A quite detailed description of the considerations that went into the design of the inkjet
printer developed by IBM for the IBM 46/40 Document Printer is given in “Application of Ink
Jet Technology to a Word Processing Output Printer,” W.L. Buehner, J.D. Hill, T.H. Williams,
and J.W. Woods, IBM J. Res. Develop., 1–9 (Jan. 1977), and in other articles in this issue of
the IBM Journal of Research and Development.
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FIGURE 9.5 Inkjet printer showing droplet generator and charger along with de-
flection plates. c©1977 International Business Machines Corporation. Reprinted with
permission of The IBM Journal of Research and Development, Volume 21, Number 1.

paper 1 cm away? You want to use a step-by-step approach to answer this
question; stepwise reasoning is usually the best way to solve problems
because it gives you more physical insight than blind use of an equation.

Notice that this printer is a scaled-up version of Thomson’s method for
deflecting electrons that was described in Sect. 9.3. A beam of charged
particles with momentum px passes between a pair of charged plates and
is deflected through some angle θ because the electric field between the
plates imparts to the particles an increment of momentum Δpy perpen-
dicular to their path. By varying E you can vary Δpy and control the
deflection angle according to the relation

tan θ =
Δpy

px
=

y

L
,

where y is the vertical displacement a distance L from the deflecting
plates.

� EXERCISES

25. How should the apparatus be designed so it can move the particles
to points other than on the y-axis?
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How much is Δpy? It will be the product of the force qE and the time
interval Δt during which that force acts. This time interval is just the
length of the plates � divided by the velocity of the particles v. Therefore,

Δpy =
qE�

v
=

qV �

vd

=
550 × 10−15 × 3300 × 1.3 × 10−2

18 × 0.0016
= 8.19 × 10−10 kgm s−1.

Then, to find θ you need to find px, the momentum along the x-axis.
This is

px = mvx = 1.31 × 10−10 × 18
= 2.36 × 10−9 kgm s−1,

from which you see that Δpy is about 1
3 of px; in fact,

tan θ =
Δpy

px
=

8.19 × 10−10

2.36 × 10−9
= 0.347.

Over a distance L = 1cm from the deflection plates to the paper, this
angle of deflection will produce a displacement y on the paper such that

y

L
= tan θ = 0.347,

from which it follows that

y = 1cm × 0.347 = 0.347 cm = 3.47mm.

With the distance to the screen L = 1cm and the length of the de-
flecting plates � = 1.3 cm, the IBM inkjet printer differs markedly from
Thomson’s arrangement in that L is not large compared to �. As a con-
sequence, the amount of displacement that takes place while the charged
particle is between the plates is no longer negligible compared to the
displacement that occurs as the particle travels to the paper.

It is not very difficult to calculate the vertical displacement that occurs
while the particle is between the plates. Between the plates the displace-
ment is just what occurs to a particle moving with a constant acceleration
a = qE/m. That distance is the old, familiar (?) y = 1

2at2, where t = �/vx.
The value of the acceleration is

a =
qE

m
=

qV

md

=
5.5 × 10−13 3300

1.31 × 10−10 0.0016
= 8.66 × 103 m s−2;
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and the value of t is

t =
�

vx
=

1.3 × 10−2

18
= 7.22 × 10−4 s.

From these two numbers you can calculate that

y =
1
2
at2 =

1
2
(8.66 × 103) × (7.22 × 10−4)2

= 2.26 × 10−3 m,

which is 2.26mm and comparable in size to the 3.47mm of displacement
that occurs between the exit point and the paper. The total displace-
ment of a droplet caused by electric deflection is therefore 2.26 + 3.47 =
5.73mm.

Noticing that this calculation shows that the droplets will be deflected
2.26mm between two plates that are 1.6mm apart, you may think that
the droplets will hit the deflecting plates. This does not occur for two
reasons. First, air resistance reduces the amount of deflection from what
you calculate by the arguments given here. Second, as Fig. 9.5 shows, one
of the plates is bent upwards to allow the maximally deflected droplets
to escape without hitting a plate.

Quark Hunting

Electric deflection of droplets produced and charged like those in an inkjet
printer has been used to look for quarks. Quarks are fundamental particles
of which most other particles (but not electrons) are thought to be made.
The proton is made of three quarks. One very unusual feature of quarks
is their electrical charge: It is a fraction(!) of the elementary charge e.
One kind of quark is thought to have a charge of +2e/3 and another to
have −e/3. A burning question for over forty years has been, “Why has
no one ever been able to see an isolated quark with these very unusual
charges?”

It has not been for lack of searching. Quarks have been looked for in
mine tailings, in seawater, in old stained-glass windows. They have been
sought in niobium spheres and tungsten plates. They have been assid-
uously pursued with high-energy accelerators and experiments of great
ingenuity. But no one has ever found one. They seem to occur only in
groups inside other particles.
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Separating Droplets by Deflection

One search for quarks used inkjet technology.14 The idea was to generate
a series of droplets with different numbers of charges on them and let
them fall in a vacuum through a pair of electrically deflecting plates. If
the number of charges on a droplet is an integer multiple of e, then deflec-
tions will occur in discrete amounts. For example, a droplet with a charge
of 21e will undergo a certain deflection and land a discrete distance away
from the landing points of droplets of charge 20e or 22e. The droplets
should fall in narrow bands with spaces between them. If a fractionally
charged droplet came along, it would land in one of those spaces and so
be observable. Figure 9.6 shows the apparatus. Droplets of tetraethylene
glycol of mass m = 16 ng and diameter 2r = 30.1 μm were injected at
the top of a 22-m tall tower. The droplets were traveling at a speed of
v1 = 8.6m/s as they entered the 3.05-m long space between the deflecting
plates where they were deflected by the electric field produced by a poten-
tial difference of 20 kV between the plates, which were 5 cm apart. After
exiting from between the deflection plates, the droplets fell about 15m to
a detector that measured the amount of their sideways displacement.

Does this work? How much will be the separation between droplets
when they are detected? Will there be enough space between the landing
points of droplets that differ by one unit of charge so that you can distin-
guish any fractionally charged particle if one happens to be present? To
answer these questions you need to calculate the sideways displacement
of a droplet carrying a charge of q = 20e for a deflecting voltage of 20 kV.

Because the tetraethylene glycol droplets are accelerating in the direc-
tion of their motion under the force of gravity both as they pass between
the deflecting plates and afterwards, it is not adequate to find the angle
at which the particles emerge from between the plates as was done in the
cases of a beam of cathode rays or a stream of charged droplets of ink.
Instead, you must find the sideways displacement x1 and the sideways
velocity vx at the time t1 the droplet emerges from between the plates
and also calculate the time t2 that it takes the droplet to fall to the de-
tector 15m below. The sideways displacement after exiting from between
the plates will be x2 = vxt2, and the total sideways displacement will be
x1 + x2.

To find the sideways velocity vx as the droplets exit from between the
plates, you need to use the sideways acceleration ax = qE/m produced
by the electric field E during the time t1 that the droplet is in the field.
Then vx = ax t1. But how do you find t1?

14“Search for fractional charges using droplet-jet techniques,” J. Van Polen, R.T. Hagstrom,
and G. Hirsch, Phys. Rev. D36, 1983–1989 (1987).
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FIGURE 9.6 (a) Schematic diagram of a 22-m high evacuated tube inside of which
charged droplets fall and are electrically deflected: DR is the droplet source; LI is a
vibration isolator; V is the deflection voltage supply; MP is a mounting plate; Vac is the
outlet to the vacuum pump; and PSD is the position-sensitive detector that records the
fallen drops. (b) Variables and quantities for analyzing the deflection of a droplet; they
are described in the text. Taken with permission from J. Van Polen, R.T. Hagstrom,
and G. Hirsch, Phys. Rev. Vol. D36, 1983–1989 (1987), c©1987 American Physical
Society.

To find t1, use the fact that under constant acceleration the average
velocity over some time interval t is (v2 + v1)/2, where v1 is the velocity
at the start of the interval and v2 is the velocity at the end of the interval.
Then the time t1 to fall a vertical distance z1 between the plates is

t1 =
2z1

v2 + v1
,

where v1 = 8.6m/s is the velocity of the droplet as it enters the electric
field between the plates and v2 is its velocity as it exits. Of course, this
means you must find v2, but you can do this using the conservation of
energy as was illustrated in Sects. 2.7 and 7.2.
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� EXERCISES

26. Show that a body with an initial velocity v1 = 8.6m/s will have
a velocity of v2 = 11.6m/s after it falls a distance z1 = 3.05m near the
surface of the Earth.

From these values of v1 and v2 you can deduce that

t1 =
2z1

v2 + v1
=

2 × 3.05
8.6 + 11.6

= 0.30 s.

To find ax you need the value of the electric field E. You can find E from
the voltage V = 20kV across the plates and the spacing d = 5cm between
the plates.

� EXERCISES

27. Show that ax = 0.0800m s−2, from which it follows that

vx =
qE

m
t1 = 0.024m/s.

At this point in the calculation you can find the displacement x1 of the
droplet during its passage between the plates. It will be

x1 =
vx0 + vx1

2
t1 =

0 + 0.024
2

0.30 = 0.0036m = 3.6mm.

To find the distance x2 that the drop moves sideways while falling under
the acceleration of gravity through the remaining distance z2 = 15m, it
is necessary to find its time of free fall, t2. The approach is the same as
for finding the time of passage between the plates.

� EXERCISES

28. Show that t2 = 0.93 s.

Now knowing the fall time t2 and the sideways velocity vx = 0.024m/s,
you can calculate the sideways displacement x2 of the droplet after it has
left the plates.
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x2 = vx t2

= 0.024 × 0.93 = 0.022m
= 2.2 cm.

In the electric deflection of cathode rays the amount of displacement
that occurred between the plates was often negligible compared to the
amount that occurred afterwards on the trip to the screen. In this search
for quarks, the displacement occurring between the plates is not negligible;
it is 3.6mm compared to 22mm. To find the total deflection you must
add the two parts; this gives a total displacement of

x1 + x2 = 25.6mm.

Although it is good to understand the step-by-step argument that has
brought you to this answer, a complete algebraic expression is also useful.

� EXERCISES

29. Show that a droplet of mass m and charge q that has passed
through an electric field E in the quark-hunting apparatus will undergo
a total displacement of

x1 + x2 =
1
2

qE

m
t21 +

qE

m
t1t2. (17)

This expression tells you two very important things about the dis-
placement: (1) It is proportional to the charge q on the droplet; (2) it is
proportional to the strength of the electric field E across the deflecting
plates.

Such an expression has several uses. For example, to check that their
apparatus was functioning properly, the experimenters ran a separate set
of experiments with 24.2 kV across the plates instead of 20 kV. What
would be the displacement produced by a deflecting voltage of 24.2 kV?

Equation 17 shows that you can use a simple proportion to find the
answer:

x′ =
24.2 kV
20 kV

· 2.56 cm = 3.1 cm.

More to the point, you can now answer the basic question about
this experiment: With 20 kV across the plates, by how much will the
displacement change if a charge of 20 e changes by ±e? The answer is

1
20

2.56 = 0.128 cm = 1.28mm.
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� EXERCISES

30. Explain the reasoning by which this answer was obtained.

This result means that a stream of droplets charged with different mul-
tiples of e will be spread out into a fan of streams, like fingers of a hand,
each stream separated from the next by 1.28mm. The authors say that
the individual streams are only about 0.060mm wide, so the gaps be-
tween the streams were pronounced. They looked with their detector to
see whether there were any streams or occasional droplets that fell with
a separation 2

3 or 1
3 of 1.28mm. These might correspond to droplets car-

rying a single quark as part of its charge. The authors report that they
saw no evidence of quarks.

PROBLEMS

1. In performing the experiment described in Example 9.1 Faraday col-
lected H2 in a volume of 12.5 cubic inches. His work was done at room
temperature and at a pressure of 29.2 in Hg. He corrected this volume to
12.2 cubic inches at mean pressure (1 atm = 29.9 in Hg) and at “mean
temperature” = 50 ◦F and determined that the mass of the collected gas
was 2.35 grains (1 grain = 0.0648 g). What was the room temperature at
which Faraday performed this experiment? Compare that to your room
temperature.

2. In another electrolysis experiment, Faraday measured the amount
of hydrogen and oxygen gas evolved from water at one electrode and
the amount of tin deposited on the other (tin) electrode. He writes,
“The negative electrode weighed at first 20 grains; after the experi-
ment it...weighed 23.2 grains....The quantity of oxygen and hydrogen
collected...= 3.85 cubic inches.” [This is the volume corrected to 1 atm
and to 50 ◦F.]

Use these data and the atomic weights of H2 and O2 to find the atomic
weight of tin (Sn). (Remember that Sn is divalent—see Table 9.1.)

3. On page 164 you saw how to estimate the velocity with which electrons
move when they carry a current through a wire. Using the following infor-
mation, estimate the speed with which ions move between two electrodes
in an electrolytic cell.
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Assume that the cell is filled with 0.01N sulfuric acid (pH ≈ 2.1, which
means about 6 × 1018 H+ ions in each cm3) and that the electrodes have
surface areas of 0.25 cm2 and are 4 cm apart.

If the cell is run with a current of 0.2A, what is the average speed with
which ions travel from the anode to the cathode? How does your answer
compare with the estimated speed of electrons in a current-carrying wire?

4. Millikan used Stokes’s law, which says that a small sphere of radius a
falling with velocity v in a homogeneous medium of viscosity η = 18.6×
10−6 Pa s is subject to a retarding force

F = 6πηav.

He observed that a drop of oil of density ρ = 0.92 g cm−3 would fall
0.522 cm in 13.6 s.

a. What was the radius of the drop?
b. What was its mass?

5. If a charged oil droplet of density ρ = 0.92 g cm−3 and radius a = 2μm
is just balanced against gravity’s pull by an electric field of 1.9 ×106 V/m,
what is the charge on the droplet? Give your answer in multiples of the
elementary charge e.

6. A bowling ball of mass M = 6kg is rolling down a hallway at 1.5m/s.
(see Fig. 9.7) If it rolled straight, it would hit an associate dean of students
D standing at the end of the hall. You are standing at point U, 10m from
the end of the hall, and you intervene heroically by giving the ball a
sideways kick as it passes you so that the ball rolls into the corner C
instead of hitting D.

D

C
2 m

10 m

U

FIGURE 9.7 Ball rolling down a hallway towards D is deflected at point U so as to
hit C instead (Problem 6).
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a. What must be the angle of deflection θ at point U if the ball is to
hit C instead of D?

b. How much sideways momentum Δpy must you give the ball to
produce the desired deflection?

c. Explain the parallels between this problem and one of the
experiments described in this chapter.

7. What was the first evidence that atoms are electrical in nature?

8. Faraday’s work led to the realization that a mole of electric charges
is about 96 500C and that this amount of charge releases 1.008 g of hy-
drogen in electrolysis. From these results find the charge-to-mass ratio of
an individual hydrogen ion, H+, and explain your work.

9. Section 9.3 describes a method for measuring e/m of cathode rays.
Suppose that you applied this method and observed a beam of mystery
rays emerging from the source and that all that you knew about them was
that they were charged particles, each carrying one elementary charge.

Now you accelerate them through a potential difference of V = 500V.
Then, as shown in Fig. 9.8, they emerge from the source and enter a
uniform magnetic field of B = 65mT (pointing into the plane of the
page) and bend in a circle of radius 5 cm.

a. Are these particles cathode rays? How do you know?
b. What are some of the important conclusions drawn from Thomson’s

measurements of the charge-to-mass ratio of cathode rays?

Tube

Source of
charged
particles

Circular beam
path of radius

R=5.0 cm

FIGURE 9.8 A beam of charged particles moves in a circle in a magnetic field pointing
into the plane of the page (Problem 9).
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10. In an electrolysis experiment a current of 0.5 amperes flowing for
20 min (1200 s) liberates 69.6mL of gas at the cathode and 23.3mL at
the anode. You may assume that both gases are at STP (T = 272.3K,
P = 1.013 × 105 Pa).

a. How many moles of gas molecules are produced at the cathode?
b. How many electrons were needed to form one molecule of gas at

the cathode?
c. Which of the following chemical reactions is consistent with the

information given above?

2H2O → 2H2 + O2

2CO2 → 2CO + O2

2N2O3 → 2N2 + 3O2

2NH3 → N2 + 3H2

11. A droplet 10μm in radius will fall in air at a steady velocity of
1.1 cm/s because its weight mg (m is its mass, g is the acceleration due to
Earth’s gravity) is balanced by the viscous force 6πηav (η is the viscosity
of air, 18.2 μPa s; a is the radius of the droplet; and v is the velocity of
fall).

a. Use these data to find the radius of a droplet that falls with a
velocity of 8.59 ×10−4 m/s.

b. When an electric field of 317.5 kV/m is turned on, the droplet in
(a) is observed to rise at a steady speed of 2.41 × 10−4 m/s.

c. Show that the upward electrical force on the droplet is 1.28 times
the downward gravitational force mg.

d. To within a couple of electrons, how many excess electrons are
there on this droplet?

e. What important conclusions do we draw from Millikan’s measure-
ments?

12. Faraday’s work led to the realization that 96 500C of charge will
cause 1 mole of hydrogen or of silver or of chlorine to evolve from electrol-
ysis. Thomson’s work led to the measurement of q/m = 1.76 × 1011 C/kg
for cathode rays. Millikan measured the elementary charge.

a. What did Faraday’s laws of electrolysis imply about atoms and
electricity?

b. What did Thomson’s work reveal about cathode rays?
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c. Combining Faraday’s result and Thomson’s, find the value of the
ratio of the mass of the hydrogen atom to that of the electron.

d. What did Millikan’s result reveal about electric charge?

13. a. Explain the significance of the faraday of charge Q = 96500C.
b. Explain the significance of the discovery that all cathode rays have

a definite charge-to-mass ratio of 1.7 ×1011 C/kg.
c. Show by direct calculation how Millikan’s experimental measure-

ment of the elementary charge made it possible to determine
i. Avogadro’s constant.
ii. The mass of the electron.
iii. The actual masses of atoms.
What fundamental property of electric charge did Millikan’s work
confirm?

14. In electrolysis 96 500C of charge releases 1 mole of hydrogen atoms.
a. From this information show how to determine the charge-to-mass

ratio of the proton. Clearly state any assumptions you make.
b. Suppose in measuring e/m of the electron you observed that elec-

trons accelerated through a voltage acquire velocity of v = 0.03 c
(where c is the speed of light in vacuum) and bend in the circle of
radius r = 3cm in a magnetic field of B = 2mT. What would you
determine e/m to be? (Your answer should be different from the
accepted value.)

c. Explain why results like your answers to (a) and (b) implied to
J.J. Thomson the existence of a new particle. What was it, and in
what ways is it important?

15. Use a spreadsheet least squares routine to derive a best value for e
from Millikan’s data in Table 9.2. Do this in the following way: Plot a
graph of 1/t′F −1/tF vs n′ (columns 4 and 5 in the table). Take the slope
of this graph and multiply it by the factor (which you must determine
from the information Millikan provides) that converts this slope into e.
Explain why this calculation gives e. (Millikan corrected his results for
inaccuracies in Stokes’s law that occur when droplets are very small.)

16. The diagram in Fig. 9.9 shows a pair of parallel plates 60mm long
and separated by 12mm to which a power supply (not shown) is con-
nected. An electron beam enters the region between the plates from the
left as shown.



PROBLEMS 267

12
mm

60 mm

y

x

FIGURE 9.9 Electron beam passing between parallel plates (Problem 16).

a. Assuming that the electric field between the plates is uniform, find
the magnitude of the force exerted on any electron by the field
given that the potential difference between the plates is 48V.

b. If the speed of the electrons is 5 ×107 m/s, find the electron’s
change of momentum in the y direction that results from passing
between the plates.

c. Suppose that the beam of electrons is replaced by a beam of neg-
ative hydrogen ions of the same speed (a hydrogen ion, H−, has
the same charge as an electron and a mass equal to 1836 electron
masses). Which, if any, of your answers to (a) and (b) above would
have to be changed? Why?

17. Give brief, compact answers to each of the following. Use specific
facts, equations, or diagrams to support your answers.

a. Explain why we think that there is such a particle as the “electron.”
b. Explain how Millikan’s measured value of e can be used to find

both Avogadro’s number and the mass of the electron.
c. What is the evidence for thinking that atoms are electrical in

nature?

18. Olive Oyal, a promising young physicist, has decided to recreate
Millikan’s famous oil-drop experiment using modern materials. Rather
than employing oil, Olive chooses precision glass microspheres of diameter
1.0 μm and density 2.5 g cm−3. Figure 9.10 illustrates her experimental
apparatus and three spheres A, B, and C. Olive observes that
(1) before the switch is closed, all three spheres fall with the same speed
vf , and
(2) after the switch is closed, sphere A rises with speed vf , sphere B falls
with speed vf , and sphere C comes to rest.
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A B C
200 V

1 cm

FIGURE 9.10 Charged glass microspheres between two plates to which a voltage can
be applied (Problem 18). Arrows show direction of motion when the switch is closed.

a. Based on the information given above, specify whether the charge
on each of the three drops is +, −, 0, or indeterminate.

b. Prove that the mass of each sphere is equal to 1.31 pg.
c. Now calculate the charge on each of the three spheres. From these

results what might Olive conclude is the basic, elementary, unit of
charge?

19. The magnitude of the charge on an electron is 1.6 × 10−19 C; it is
negatively charged.

a. Could Millikan have done his experiment with the air pumped out
of the volume of space where he made an electric field, i.e., between
the plates? Why?

b. Find the mass of a droplet of oil of density 0.92 g cm−3 if the radius
of a droplet is 3μm.

c. An electric potential difference of 5000V is put across two large
conducting plates separated by 2 cm. What is the value of the
electric field in the space between the plates?

d. If an electric field of 300 kV/m exerts a force of 4.8 ×10−14 N on
an electrically charged drop of oil, how much is the electric charge
of the oil drop?

20. We measure electrical charge in units of coulombs; a hundred years
ago it was common to measure electrical charge in units called esu. The
conversion is 3 × 109 esu = 1C.

a. What is the charge of the electron measured in esu?
b. Thomson measured e/m to have a value of 2.3×1017 esu/g. Convert

this to C/kg and compare the result with the currently accepted
value.

c. Why was Thomson the first to see cathode rays be deflected by an
electric field?
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Vd

FIGURE 9.11 An oil drop suspended in an electric field. (Problem 22).

21. J.J. Thomson measured e/m for cathode rays.
a. Who was J.J. Thomson? Give a few biographical facts about the

man.
b. What are cathode rays?
c. Thomson noted two significant properties of the rays. What were

they and why were they important?

22. A charged oil droplet is suspended motionless between two parallel
plates (d = 0.01m) that are held at a potential difference V as shown in
Fig. 9.11. Periodically, the charge on the droplet changes, as in Millikan’s
original experiment. Each time the charge changes, V is adjusted so that
the droplet remains motionless. Here is a table of recorded values of the
voltage V :

i. 350.0 volts.
ii. 408.3 volts.
iii. 490.0 volts.
iv. 612.5 volts.

a. In which case is the charge on the droplet the greatest?
b. From the data above, determine the charge on the droplet for case

(i) above. What assumptions do you need to make?
(Hint: the ratio of voltages = ?)

c. Find the magnitude and direction of the electric field in case (i)
above.

d. What is the mass of the drop?

23. From Faraday’s experiment you find that during the electrolysis of
water, 0.01 g of H2 gas is liberated by the passage of 965C of charge. Find
the charge-to-mass ratio of a proton from these data.

24. Particles each with mass m and charge q accelerate through a po-
tential difference of V = 100 volts and enter a region of uniform magnetic
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V

0.05 m

FIGURE 9.12 Accelerated charged particles enter a uniform magnetic field.
(Problem 24).

field B, where their paths are circular with radius R = 0.05m as shown
in Fig. 9.12. The magnitude of the field is B = 6.75 × 10−4 T.

a. Indicate the direction of B on a drawing.
b. Derive the following relationship between the radius R and q, m,

V , and B:

R2 =
m

q

2V
B2

.

c. Find the value of the charge-to-mass ratio (q/m) of these particles
and identify them. Justify your answer!

25. In a laboratory electrolysis experiment, 40mL of N2 gas and 60mL
of O2 gas are liberated at the cathode and anode, respectively. The room
pressure and temperature are 730Torr and 25 ◦C.

a. Which of the following overall reactions has taken place?

2N2O → 2N2 + O2

2NO2 → N2 + 2O2

2N2O3 → 2N2 + 3O2

2N2O5 → 2N2 + 5O2

b. Figure 9.13 shows a plot of the volume of N2 evolved at the cathode
vs. the time in minutes. Which of the following statements most
likely explains the “kink” in the graph?
i. The current was increased after 15 min.
ii. A gas leak developed above the cathode.
iii. A gas leak developed above the anode.
iv. Data points were collected more frequently after the first

15 min.
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FIGURE 9.13 Rate of electrolytic evolution of N2 (Problem 25).
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SnCl2 Cl2 gas evolved here 

Sn metal plated on 
this electrode 

FIGURE 9.14 An arrangement for studying the electrolysis of SnCl2. (Problem 26).

c. At the temperature and pressure given above, what volume would
1mole of N2 gas occupy?

d. What is the total mass of N2 gas that has evolved after 25 min?

26. Michael Faraday was a consummate experimentalist. In his earliest
studies of electrolysis, he used the volume of gas evolved by the decom-
position of water as a measure of the amount of electricity (total charge)
passing through his electrolysis cells. Figure 9.14 illustrates an experiment
to study the electrolysis of tin chloride (SnCl2). Two platinum electrodes
are immersed in a molten bath of SnCl2 and connected in series with a
second cell containing a weak solution of sulfuric acid in water. (Because
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the cells are connected in series, the same current flows through each cell.)
In the reaction, gaseous Cl2 is evolved at one electrode, and solid (metal-
lic) Sn is plated onto the second electrode. Faraday measured the mass of
the Sn and the volumes of the H2 and O2 evolved in the water cell.

Faraday stopped the experiment when the total volume of H2 and O2

equaled 63.1 cm3, and found that 0.207 gm of Sn had been deposited.
a. What volume of H2 was evolved? Assuming standard temperature

and pressure, what fraction of a mole is this? (The overall reaction
is 2H2O → 2H2 + O2.)

b. What reactions are occurring at the two electrodes in the SnCl2
cell? What fraction of a mole of Sn is deposited?

c. From Faraday’s numbers, find the atomic weight of Sn.
d. If the Cl2 gas had been collected, what would its volume have been?

27. A battery is a chemical cell in which electrolysis occurs sponta-
neously. Faraday formed a battery from zinc (Zn) and platinum (Pt)
electrodes immersed in a weak sulfuric acid solution (see Fig. 9.15). When
the two electrodes were electrically connected, hydrogen gas evolved at
the Pt electrode, and Zn dissolved from the Zn electrode. No gas was
released at the Zn electrode. When the experiment was done, 205 cm3 of
H2 had been collected, and 0.548 g of Zn had dissolved.

a. Faraday reported that, while the experiment was in progress, the
ambient temperature and pressure were 52 ◦F (11 ◦C) and 29.2
inches Hg (29.9 inches Hg = 1 atm). Convert the volume of H2

gas collected to the volume of the same amount of gas at STP.

Pt Zn

Collection
tubeH2

FIGURE 9.15 In this chemical cell electrolysis occurs spontaneously when the switch
is closed; it is a battery. (Problem 27).
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(Hint: you don’t need to convert the pressure from inches Hg to Pa
or Torr if you set up a ratio of volumes.)

b. Find, from the numbers above, the atomic weight of Zn.

28. In a modern version of Millikan’s famous experiment, a charged ra-
dioactive sphere of mass 1 ng (=? kg) is suspended motionless between
two parallel conducting plates spaced by 1.0mm.

The apparatus (plates and sphere) is in vacuum. Initially, a potential
difference of 15.3 kV is required to counteract the gravitational force.

a. Determine the magnitude of the following forces:
i. Gravitational force.
ii. Electric force.
iii. Viscous force.

b. What is the charge on the sphere?
c. By radioactive decay, the sphere periodically emits a charged par-

ticle, and the voltage required to balance the gravitational force
changes suddenly. You observe the following:
i. The sphere is balanced by a voltage of 15.3 kV for a short time,

whereupon....
ii. the sphere begins to fall, and the voltage must be increased to

30.6 kV in order once again to levitate the sphere, and then....
iii. the sphere falls and is unaffected by the magnitude or sign of

the potential difference applied to the plates.
Explain these observations and determine the charge of the particle
emitted in each radioactive decay.

29. In a lab experiment, an unknown species of charged particle is
produced and accelerated through a potential difference of 200V. The
particles then enter a region of constant magnetic field B = 1.0mT,
where they trace out a circular orbit of radius r = 4.8 cm. The apparatus,
particle trajectory, and magnetic field are as shown in Fig. 9.16.

a. Starting from the expressions for the magnetic force, the centripetal
force, and the kinetic energy vs. accelerating voltage, prove that

m

q
=

B2r2

2V
.

b. From the information given, identify the particle.
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B�

V

r
out of paper

FIGURE 9.16 Charged particles accelerate through a voltage V and then travel in a
region of uniform magnetic field �B (Problem 29).

B�

r

0.036 T

+++ +++

– – – – – –

50 V

200 V

S
A

FIGURE 9.17 Experimental setup for Problem 30. Note that the region to the right
of the anode A is filled with a magnetic field B = 0.036 T pointing out of the paper.

c. Suppose the above particles were replaced by “negative muons,”
which have the same charge as an electron and a mass 207 times
larger than an electron mass. What magnetic field �B (direction as
well as magnitude) is required if the muons (accelerated through
the same potential difference) are to follow the same circular path
as the original particles?

d. Explain the significance of the discovery that all cathode rays have
a definite mass-to-charge ratio of 0.57 × 10−11 kg/C.

30. As shown in Fig. 9.17, charged particles are produced in a source S
and accelerated through a potential difference Vacc = 200V. The particles
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enter a region of constant magnetic field B = 0.036T (directed out of the
paper) and pass undeflected through two charged parallel plates spaced
by 1.0 cm. The voltage across the plates is 50V.

a. Study the figure carefully. Are the particles positively or negatively
charged? How do you know?

b. Prove that the particle velocity v = 1.39 × 105 m/s.
c. Find the mass-to-charge ratio of the particles, and from this

identify the particle, choosing from the following list:
i. Electron.
ii. Alpha particle.
iii. Proton.
iv. None of the above.

31. From what you know about J.J. Thomson’s discovery of the electron:
a. Explain how one can use a combination of electric and magnetic

fields to determine the ratio of charge to mass of a particle when
you don’t know either.

b. Tell what there is about such experiments that leads you to
conclude that cathode rays are particles?

c. Describe the ways in which Thomson’s experiments suggest that
atoms contain electrons, i.e., that electrons are parts of atoms?

SPREADSHEET EXERCISE: THE MILLIKAN OIL DROP
EXPERIMENT

Millikan’s oil drop experiment had two important outcomes: it found the
value of the charge on the electron, and, equally important, it provided
convincing evidence that all electrical charge is some integer multiple of
an elementary charge e. This computer exercise illustrates how to use a
computer spreadsheet to analyze Millikan’s data and show both of these
outcomes. The data to be analyzed are shown in Table 9.3. The original
table is in Millikan’s paper “The isolation of an ion,” Phys. Rev. 32,
356–358 (1911); in the version given here the values of the charges and
viscosity have been converted to SI units.
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TABLE 9.3 Millikan’s Oil-Drop Data in Modern Units

Distance between crosshairs dc = 1.010 cm

Distance between plates dp = 1.600 cm

Temperature t = 24.6 ◦C

Density of oil at 25 ◦C σ = 0.8960 g cm−3

Viscosity of air at 25.2 ◦C η = 18.36 μPa·s

G F n en e1

(sec) (sec) (10−19 C) (10−19 C)

G = 22.28

V = 7950 V

V = 7920 V

G = 22.80

F = 14.17

F = 17.13

F = 10.73

V = 7900 V

G = 22.82

F = 6.7

F = 7.25

F = 8.65

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22.8

22.0

22.3

22.4

22.0

22.0

22.7⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22.9

22.4

22.8

22.8

22.8

23.0

22.8

−−
22.8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22.8

−−
22.9

22.8

22.8

22.8

22.8

22.8

22.7

22.9

22.8

−−
−−
−−
23.0

−−
−−

29.0

21.8

17.2

−−
17.3

17.3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

14.2

21.5

11.0

17.4

14.3

12.2

12.3

⎫
⎬

⎭

14.2

−−
14.0

⎫
⎪⎪⎬

⎪⎪⎭

17.0

17.2

17.2

⎫
⎪⎪⎬

⎪⎪⎭

10.9

10.9

10.6

⎫
⎪⎪⎬

⎪⎪⎭

12.2

8.7

6.8

6.6

⎫
⎬

⎭

7.2

7.2

7.3

7.2

7.4

7.3

7.2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

7

8

9

10

8

12

9

10

11

10

9

12

11

14

17

16

11.50

13.16

14.82

16.48

13.16

19.72

14.82

16.48

17.99

16.48

14.82

19.72

17.99

22.90

27.76

26.13

1.642

1.645

1.647

1.648

1.644

1.635

1.648

1.647

1.644

1.635

1.636

1.633

1.634



PROBLEMS 277

TABLE 9.3 Millikan’s Oil-Drop Data (cont.)
G F n en e1

(sec) (sec) (10−19 C) (10−19 C)

F = 10.65

V = 7820

F = 9.57

G = 23.14

F = 8.65

F = 12.25

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

22.8

23.1

23.2

−−
23.5

23.4

23.2

23.0

23.0

23.2

23.0

−−
22.9

−−
22.9

−−
−−
23.4

23.0

23.3

−−
23.3

8.6

8.7

⎫
⎬

⎭

9.8

9.8

⎫
⎬

⎭

10.7

10.6

⎫
⎬

⎭

9.6

9.6

9.6

9.5

9.6

9.4

9.6

9.6

9.6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

10.6

8.7

8.6

⎫
⎬

⎭

12.3

12.2

12.1

12.4

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

14

13

12

13

12

14

11

22.90

21.24

19.72

21.24

19.72

22.90

17.99

1.636

1.635

1.644

1.635

1.644

1.636

1.635

Change forced with radium

F = 72.10

V = 7800

G = 23.22

F = 39.20

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23.4

22.9

23.2

23.5

23.0

23.0

23.2

−−
−−
−−
−−
23.3

23.3

23.4

23.3

72.4

72.4

72.2

71.8

71.7

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

39.2

39.2

⎫
⎬

⎭

27.4

20.7

26.9

27.2

⎫
⎬

⎭

39.5

39.2

39.0

39.1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

5

6

7

8

7

6

8.207

11.50

13.14

11.50

9.881

1.641

1.642

1.642

1.647
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TABLE 9.3 Millikan’s Oil-Drop Data (cont.)
G F n en e1

(sec) (sec) (10−19 C) (10−19 C)

V = 7760

G = 23.43

F = 379.6

G = 23.46

F = 39.18

V = 7730

F = 70.65

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23.2

23.4

23.2

23.4

23.8

23.4
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THEORY

Millikan measured the terminal velocity v1 of a charged droplet of mass
m falling in air in a gravitational field g; he then applied an electric field
F to the droplet and measured its terminal velocity as it rose against
gravity under the effect of the field. He showed that for this situation the
electric charge q on the droplet is given by

q =
mg

F

(
v1 + v2

v1

)

. (18)

His experiment was designed to work with the same oil droplet for hours
at a time. In column G of Table 9.3 the values of t1, the time the drop falls
between the crosshairs when the electric field is turned off, are essentially
constant because they are for the same droplet. Using radiation from a
radioactive source, Millikan changed the charge on the droplet from time
to time. Changes in charge changed the time t2 that it took the droplet
to rise in the applied electric field. These changes show up clearly in the
variations of the times recorded in column F of Table 9.3. The change in
charge, Δq, can be found from Eq. 18:

Δq =
mg

Fv1

(
v′2 − v2

)
=

mgt1
F

(
1
t′2

− 1
t2

)

. (19)

The droplet’s mass m is found from the time of fall t1 by connecting the
mass of the droplet to its size and density and then using Stokes’s law
to find its size from its measured terminal rate of fall. The mass m of a
spherical droplet is

m =
4
3
πa3σ, (20)

where σ is the density of oil and we neglect Millikan’s correction for buoy-
ancy due to ρ, the density of air. The drop’s radius a is obtained from
Stokes’s law for the terminal velocity of a small sphere falling in a viscous
medium,

a =
√

9ηv1

2gσ
, (21)

where η is the viscosity of air. If you replace a in Eq. 20 with Eq. 21, you
get

m =
4
3
π

(
9ηv1

2g

) 3
2
(

1
σ

) 1
2

. (22)
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Dividing the measured value of t1 into the distance between the cross
hairs dc gives the value of v1, and this substituted into Eq. 22 gives the
value of m.

The values of the constants needed for Eqs. 22 and 19 are:

g = 9.8m/s2,

σ = 896 kg/m3,

ρ = 1.28 kg/m3,

η = 1.836 × 10−5 N s/m2,

dp = 0.016m,

dc = 0.0101m,

V = 7800V.

PROCEDURE

This procedure has two goals: First, to enable you to show that Δq is
always an integer multiple of some basic quantity, and, second, to enable
you to find the value of that quantity. The step-by-step instructions given
below are for Microsoft R©Office Excel.15

a. In an Excel spreadsheet, type into cell A1 your name; into cell A2
the title of this exercise; into cell A3 the date. Then, in A4 type
‘quantity’; in B4 type ‘value’; in C4 type ‘units’. Next, in cells A5
to A11 enter the names of the quantities given in the above table.
Enter their values into cells B5 to B11; enter their units into cells
C5 to C11. (For computers you enter a number like 1.836 × 10−5

by typing 1.836E-5; the computer uses “E-5” instead of 10−5.) In
cell A14 enter ‘t1 (sec)’; in cell A15 enter 23.4, the average value
of t1 in seconds.

b. In Cells A18 and A19 type ‘t2’ and ‘(sec)’. This will be a header
for the column of numbers that you will type underneath. Starting
with cell A20, enter the values of t2. Take them from column F in
Millikan’s data in Table 9.3 and use only the values that appear
below the words “Change forced with radium.” This will be 45

15Keep in mind that like all instructions having to do with computers, these only make sense
when you already know how to do what they are telling you how to do. It is almost always
easier to abase yourself and ask the person next to you how to do what you want to do.
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values in all, starting with 72.4 and ending with 70.8. If you get
ambitious, you can type in all 78 values.
You could use the times t2 and dc to calculate the velocities v2 as
Millikan did, but since the velocities are all proportional to 1/t2,
it is simpler to calculate just the reciprocal times by setting up
column B to contain 1/t2. To do this, type the header ‘1/t2’ in
B18 and ‘(1/sec)’ in cell B19.
Now to calculate the reciprocals of t2, type into cell B20 ‘= 1/A20’.
The ‘=’ sign tells Excel that you want it to compute something.
After you type in ‘= 1/A20’, copy this cell to the cells B21 to B65.
Properly done the copy will put the value of ‘1/A21’ into B21; the
value of ‘1/A22’ into B22; etc. Here is one way to do the copy:
Put the cursor on cell B20 and click your mouse, i.e. select cell
B20. The selected cell will have a little black square at its bottom
right hand corner. Move the cursor to that little black square and a
solid black cross will appear. Now hold down the click button and
drag the B20 cell down the B column to cell B64; release the click
button. Cells B20 to B64 should now contain the values of 1/t2
corresponding to the values in the A column.

c. You now have enough data in your spreadsheet to see whether there
is anything to this idea of charges being integer multiples of some
smallest quantity of charge.
A revealing way to see differences between the values of 1/t2 is
to plot your data in a ‘column chart’, as Excel calls a bar graph.
(Excel calls all graphs ‘charts.’) To make such a plot, first click on
‘Insert’ in the menu bar at the top of your computer screen; then
click on ‘chart’; choose ‘column’ for ‘Chart Type’ (it may be the
default); click on ‘Next’ and you will get a panel asking for ‘Chart
Source Data’. The panel will have a box ‘Data range’; click in it.
Move your cursor to B20 to select the data to be plotted. With
the cursor at B20 you will see a hollow cross; hold down the mouse
button and drag the hollow cross to B64; release; press ‘enter’. You
should now see a graph of vertical bars, each of which represents
the charge on the oil droplet; click on ‘finish’. You can click and
drag the graph to some convenient place on your spreadsheet. If you
look at your graph carefully, you can see that the differences be-
tween the heights of the bars seem to be multiples of some smallest
difference. And that is the point; the differences are equal.
Not convinced? Use your spreadsheet to make the evidence clearer.
Sort the data in ascending order, and make another column chart
to show that the successive changes have the same size, as they
must if they are changing by some smallest, elementary amount.
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To do this, make a copy of cells from B20 to B64 and put the copy
in column D. (This is so you don’t destroy your data and have to
re-enter them.) To copy, select columns B20 to B64; then click the
right-hand button of your mouse to get a pop-up menu; left click
on ‘copy’ in the pop-up menu. Now move your cursor to, say, D20;
right click the mouse; left click on ‘paste special’; click on the radio
button for ‘values’; click ‘OK’. The numbers in column D should
be the same as those in column B.
To sort the numbers in column D, click on ‘Data’ in the menu bar
at the top of the screen; click on ‘Sort’. You may need to tell it to
sort on column D, but if you have already selected a cell in column
D, it will probably do the sort without further instruction. Make a
column chart of the sorted numbers in column D. You should get
a nice staircase with steps of equal height, strong evidence of the
“quantization” of charge.

d. Now find the value of the amount of charge Δq that corresponds to
the step height. You can do this from the sorted values by averaging
each of two different groups of similar values and then subtracting
the smaller average from the larger. For example, find the average
of the values from D30 to D47 and then find the average of the
values from D21 to D29. Then subtract the two averages to get a
number corresponding to the smallest Δq.
This is a good opportunity to learn to use Excel functions. Select
cell F20; this is where your average will appear. Just above the
spreadsheet there is an entry box. At its left corner is fx. Click on
fx to get the ‘Insert function’ panel. Type in ‘average’ in place of
‘enter a brief description’ in the search box; click on ‘average’ in
the select box; click on OK; if you get a box asking for ‘function
arguments’, select D30 to D47; press the ‘enter’ key. Do this again
for cell F21 and cells D21 to D29. In cell F24, type ‘=’; then select
F20; type ‘-’ (minus sign); select F21; press ‘enter’. Voila! The dif-
ference you are after appears in cell F24. It is proportional to the
value of the elementary charge Δq, so you must multiply it by the
constants specified by Eq. 19. It’s easiest to do this in steps.

A. Calculate a using Eq. 21. Type into a convenient cell,
say H24, ‘=sqrt(9*[click on B8]*[click on B10]/[click on
A16]/(2*[click on B5]*[click on B6])) and press ‘enter’. If
you made your entries correctly, the value of a, of the order
of micrometers, will appear in H24.

B. Find the value of m. In cell H25 type ‘=4*pi()/3*[click on
H24]ˆ 3*[click on B6]; press the ‘enter’ key. Your answer
will appear. It should be of the order of tens of picograms.
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Notice that to type in an exponent you use the ˆ symbol.
For example, to raise the contents of cell F17 to the power
3/2, you type ‘F17ˆ(3/2)’.

C. Calculate the electric field strength F (which is Millikan’s
notation for what we usually call E). In H26 type ‘= [click
on B11]/[click on B9]’; press ‘enter’ to get the value of F .
Millikan’s data show that the voltage varied slowly as he
did his experiment, but the variation is not significant, and
an average value of 7800V will do very well.

D. Calculate Δq using Eq. 19. Type into H28 ‘= [click on
H24]*[click on B6]*[click on A26]/[click on H25]*[click on
F23]’; press ‘enter’. You get an answer slightly larger than
the accepted value and larger than Millikan’s actual result
because no corrections have been made for small deviations
from Stokes’s law.

Finally, spend countless hours fiddling with your spreadsheet, ti-
tling your graphs, labeling their axes, providing labels for your
calculated quantities, and making the spreadsheet clear and infor-
mative. Hand in a printout of your data sheet, graphs, and the
numerical value of Δq.



1010C H A P T E R

Waves
and Light

10.1 INTRODUCTION

The preceding chapters have illustrated the power of the atomic hypoth-
esis. From the observations of Dalton and Gay-Lussac you saw how to
deduce the chemical composition of molecules and determine ratios of
atomic masses. You also saw that by modeling gas atoms and molecules
as featureless hard spheres, you could develop a kinetic theory of gases
that allowed you to interpret physical quantities such as temperature and
pressure in terms of the more fundamental concepts of kinetic energy and
momentum. Also you saw how the kinetic theory can be used to con-
nect the concept of mean free path to measured values of the viscosity
of gases to obtain an estimate of Avogadro’s number and, consequently,
the size and mass of single atoms. Later, the experiments of Faraday,
Thomson, and Millikan proved that atoms have internal structure, i.e.,
they are themselves composed of smaller, more fundamental particles.
One of these particles is the electron, and it is removable, replaceable,
and interchangeable. What other particles are contained in atoms? How
are they assembled, and what holds them together?

Some answers to these questions were found by analyzing the light
emitted and absorbed by atoms; other information came from probing
atoms with electromagnetic radiation not visible to the human eye. The
tools and techniques for such analysis and such probing could only be
developed as physicists learned more about light and other forms of elec-
tromagnetic radiation. Because the wave properties of light are central
to understanding how it can be used to reveal the inner secrets of the
atom, you should now spend some time understanding waves and the
wave behavior of light.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 285
DOI 10.1007/978-0-387-79080-0 10, c© Springer Science+Business Media, LLC 1999, 2010
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10.2 THE NATURE OF WAVES

After a brief description of the general nature of waves, we will look closely
at a special class of periodic waves, those with a pure sinusoidal waveform,
the so-called “harmonic,” or “sine,” waves. Such waves represent simple
physical situations: A sinusoidal sound wave is a pure tone; a sinusoidal
light wave is a pure color.

Harmonic waves also have the virtue of being mathematically fairly
simple. A few parameters are enough to completely describe a harmonic
wave, and it is a major goal of this section to define and describe these:
“amplitude,” “wavelength,” “frequency,” “velocity,” and “phase.”

The manner in which waves combine when two or more come together
at the same place is a fundamental property of waves, and it plays a major
role in exploring matter in general and atoms in particular. Therefore, a
large portion of this chapter is devoted to studying the combination, or
“interference,” of waves.

A Traveling Disturbance

What is a wave? A wave is a traveling disturbance without any transport
of matter. For example, when you snap a jump rope, a pattern of defor-
mation passes from one end of the rope to the other, but the parts of the
rope stay put. Or again, consider a long line of upright dominoes. You
can start a wave of falling dominoes by striking the end domino so that
it topples against its neighbor, which then falls and strikes its neighbor,
and so on. The disturbance—falling dominoes—propagates from one end
of the line to the other, yet no domino moves far from its initial position.

The same behavior holds for other kinds of waves. Imagine tossing a
pebble into a quiet pond. The resulting circular ripples—surface water
waves—travel outward for several meters before disappearing. The indi-
vidual water molecules, however, do not move more than about 1 cm. In
fact, they return to their original positions after the waves die out. The
sound waves reaching your ear during a physics lecture are a further ex-
ample of this property. They have traveled a distance of 10m or so, yet
the individual air molecules have not moved more than a few microns in
response to the passing wave. Consider the alternative: If molecules actu-
ally traveled from speaker to listener, then you not only would hear the
lecture, but you would also smell the lecturer’s most recent meal. “This
lecture stinks!” would take on a new meaning.

Light waves are somewhat more abstract than the examples of the
previous paragraph. For one thing, they can travel in a vacuum: They do
not need a “medium” such as air or rope or dominoes or a water surface.
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For another, the disturbance is in the form of a mixture of changing
electric and magnetic fields. Nevertheless, it turns out that the description
of wave properties that works well for sound waves in air or deformations
traveling through solids works equally well for light.

Velocity, Wavelength, and Frequency

All waves travel with a finite velocity. This is certainly as true for light
as it is for each of the other examples discussed above. The succession
of observations and experiments over the last three centuries that have
led to the determination of the speed of light (≈ 3 × 108 m s−1) makes a
fascinating story.

� EXERCISES

1. Anyone who has witnessed a fireworks display has direct evidence
that light travels much faster than sound. It takes about 5 s for sound
to travel 1 mile (1.6 km). How long does it take light to travel the
same distance? If you hear an explosion 3 s after you see its flash, how
far away did it occur? Write an equation relating distance to the time
delay. Amaze your friends next July 4!

Consider again the example of circular water ripples. Figure 10.1 con-
tains two cross-sectional views of the water surface, one at time t1 and
the other at a later time t2. Each graph shows the height of the surface
as a function of the radial distance r from the center, i.e., each is a plot
of the waveform. The wave velocity is given by:

v =
r2 − r1

t2 − t1
. (1)

t1

r2 – r1

r1

r2

t2

at time

at time

FIGURE 10.1 Views at two different times of water waves traveling across a surface.



288 10. WAVES AND LIGHT

x
x

x

x

x+
(a)

(b)

(c)

t

t + TAt time

At time

FIGURE 10.2 Views at three different times of a sinusoidal wave with period T
traveling to the right: (a) at time t; (b) at time t + T

4
; (c) at time t + T .

Now study Fig. 10.2, which illustrates a different waveform called, for
obvious reasons, a sinusoid or sine wave. The graphs might represent the
surface of water, the shape of a stretched string, the pressure (or density)
fluctuations associated with a sound wave, or the variation in electric field
in a light wave. The sinusoidal waveform is a particularly useful one for
you to study, and much of the following discussion is devoted to it.

The sine wave in Fig. 10.2 is an example of a wave that is peri-
odic. It is periodic in space (position) because the pattern of the wave
repeats regularly as a function of position. As Fig. 10.2 shows, the
form of the wave at any arbitrary point x is the same at distances
±λ, ±2λ, ±3λ, ±4λ, . . . from x. The shortest repeat distance λ is called
the “wavelength.” The Greek letter λ, i.e., lambda, is customarily used
to represent the wavelength.

Because the waveform is traveling, it is also periodic in time. An ob-
server stationed at some position x0 watching the waveform pass by will
see the basic pattern repeat itself. The number of repeats in a unit time
(e. g., the number of wave crests that pass in 1 s) is called the “frequency”
f of the wave, and is measured in number of occurrences per second. The
SI units are s−1 and are called “hertz” (Hz).

Humans can hear sound waves with frequencies between 20Hz and
20 kHz. Dogs can hear up to 35 kHz. Medical sonograms are taken with
sound waves with frequencies above 1MHz. The range of electromag-
netic wave frequencies is enormous, and the uses are numerous and
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TABLE 10.1 Some different kinds of electromagnetic waves

Commonly used name Frequency Wavelength

AM radio waves 540–1500 kHz –

FM radio waves 88–108 MHz –

TV channelsa 2–6 54–88 MHz –

TV channelsa 7–13 174–216 MHz –

TV channelsa 14–83 524–890 MHz –

Cell phone channels 128–249 824–849 MHz –

Cell phone channels 512–810 1850–1910 MHz –

Microwaves – 30–0.03 cm

Infrared – 300–0.7 μm

Visible – 700–400 nm

Ultraviolet – 400–30 nm

X-rays – 30–0.03 nm

Gamma rays – <0.03 nm

a The FCC officially assigns these channel numbers to these frequencies. With
the arrival of digital TV, some TV stations keep their brand name familiar chan-
nel numbers while actually using different channels. For example, WABC-TV
Channel 7 in New York City broadcasts on channel 49.

vary depending upon the frequency. For example, the AM radio broad-
cast band uses frequencies of electromagnetic radiation between 540 and
1500 kHz. The FM band lies between 88 and 108MHz. Your microwave
oven cooks food with 1450MHz electromagnetic radiation. Visible light
has frequencies between 430THz and 750THz (that’s nearly 1015 Hz).
Other examples of electromagnetic waves are given in Table 10.1.

Since the distance between successive crests is λ, and the number of
crests passing per second is f , then the wave velocity must be given by

v = λf. (2)

The situation is exactly analogous to a passing railroad train. If the length
of each car is L meters, and N cars pass per second, then the velocity of
the train is LN meters/sec.

The time between arrival of successive crests is called the period T of
the wave. If f crests pass per second, then the time between crests must
be 1/f , i.e., the period is

T =
1
f

. (3)
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� EXERCISES

2. “Concert A” is a pure sinusoidal wave having a frequency of 440Hz.
The speed of sound in air at room temperature is about 340m/s. How
far apart are the pressure maxima in the sound wave? The pressure
minima? What is the period of the wave?

3. Complete Table 10.1 by calculating the missing entry (frequency
or wavelength) in each row. What wavelength radiation is being
transmitted by your favorite radio station?

Amplitude

If you were asked what the amplitude of a wave is, you could probably
give a reasonable answer based on your intuition. It certainly is a measure
of the magnitude of the disturbance, but for a sine wave like that shown
in Fig. 10.2, amplitude usually refers to the maximum displacement from
the undisturbed state. Thus in Fig. 10.2 the amplitude is the maximum
height of the sine curve above the x-axis.

Represent the amplitude by A. Then you can write an equation for the
wave in Fig. 10.2a as

y = A sin
(
2π

x

λ

)
. (4)

Notice that in Eq. 4 the argument of the sine must be an angle. For reasons
of convenience (believe it) the angle is usually given—as here—in radians.
Because this periodic function is to repeat every wavelength—that’s the
definition of a wavelength, the sine’s argument must increase by 2π at one
wavelength, by 4π at x = 2λ, by 6π at x = 3λ, and so on. That is exactly
what Eq. 4 accomplishes.

� EXERCISES

4. Suppose Eq. 4 describes a wave on a long string. Let A = 5cm; λ =
10 cm. What would be the displacement y of the string at x = 2.5 cm?
x = 5cm? x = 7.5 cm? x = 10 cm? Graph the displacement y of the
string vs. its length.

5. In the previous exercise, what would be the amplitude of the wave
at each of the four x locations?
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If for Exercise 5 you answered that the amplitude is 5 cm for each x, pat
yourself on the back. Strictly defined, “amplitude” means the value of A,
and this does not change with x. On the other hand, be aware that many
physicists are sloppy in their terminology and may say “amplitude” when
they really mean “displacement.” There is not much you can do about
that except be alert to the context.

� EXERCISES

6. Suppose Eq. 4 describes a wave traveling down a gas-filled pipe.
Let A = 5Pa; λ = 10 cm. What would be the extra pressure in the
pipe at x = 2.5 cm? At x = 7.5 cm?

7. Suppose you are observing a light wave traveling down a thin trans-
parent fiber. Let A = 5V/m; let λ = 10μm. What would be the electric
field in the fiber at x = 2.5μm? At x = 5μm? At x = 7.5μm?

Exercises 4, 6, and 7 show you how a single mathematical form, Eq. 4,
represents different kinds of waves.

Phase

The argument of the sine wave in Eq. 4 is called its “phase.” Referring
to Fig. 10.2a, you can see that at x = 0 the phase of the wave is 0. At
x = λ/8 its phase is π/4 radians; at x = λ/4 its phase is π/2 radians.

� EXERCISES

8. Show that the phase difference, Δφ, between two points x1 and
x2 is

Δφ = 2π
x2 − x1

λ
. (5)

Notice that the three sine curves of Fig. 10.2 have identical shapes but
different phases. The curve of Fig. 10.2b has the same shape as (a) but
it is shifted to the right. Do you recall that a function f(x) is shifted to
the right a distance h just by writing it as f(x−h)? So you can write the
equation of Fig. 10.2b simply by shifting Eq. 4 by a constant amount of
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phase. From the figure you can see that this amount is π/2 radians, and
therefore

y = A sin
(
2π

x

λ
− π

2

)

is an equation that describes the curve in Fig. 10.2b.
There is always more than one way to write the phase. For one thing,

there is no way to tell whether the curve of Fig. 10.2b was shifted to the
right by π/2 or shifted to the left by 3π/2 radians. It would have been
just as correct to write

y = A sin
(

2π
x

λ
+

3π
2

)

.

For another, changing the phase by any multiple of 2π does not change
the value of the function, so if you had not been told that (c) has been
shifted one period, you would not be able to know that the phase of curve
(c) differs by 2π from the phase of (a). Curve (c) will look the same as
curve (a) whenever their phases differ by any multiple of 2π. There is also
the fact that sin(θ−π/2) is the same as − cos(θ), so that Fig. 10.2b could
also have been written

y = −A cos
(
2π

x

λ

)
.

You can also think of phase difference as arising from a shift of the
entire waveform along the x axis. From this point of view the curve in
Fig. 10.2b arises from a shift of (a) a distance λ/4 to the right. Then

y = A sin
(

2π
(x − λ/4)

λ

)

,

which is the same as the equation for curve (b) in Fig. 10.2.

� EXERCISES

9. Think of some other equivalent forms of Eq. 4.

You can use the same argument to make any function f(x) into a
moving function. Let h = vt where v is the speed and t is time, then
f(x − h) becomes f(x − vt) and it moves to the right at the speed v.
To represent a moving sinusoidal waveform, just replace x in Eq. 4 with
x − vt:

y = A sin
(

2π
x − vt

λ

)

.
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TABLE 10.2 Parameters of periodic waves

y Displacement

A Amplitude

x Position

λ Wavelength

t Time

T Period

f = 1
T

Frequency

φ Phase constant

2π x
λ
− 2π t

T
+ φ Phase

k x − ω t + φ Phase

If you use the fact that v = λf = λ/T and add an arbitrary phase constant
φ, you get as the general form of a one-dimensional traveling harmonic
wave moving in the direction of increasing x:

y = A sin
(

2π
x

λ
− 2π

t

T
+ φ

)

. (6)

Table 10.2 lists the notation and terminology commonly used to describe
periodic waves.

Transverse and Longitudinal Waves

Waves are also characterized by the direction of the displacement of the
wave relative to its direction of propagation. In Fig. 10.3a, the wave is
traveling on a taut string, and each element of the string moves up and
down vertically as the wave moves in the positive x-direction. When the
displacement associated with a wave is perpendicular to the direction
of propagation as in Fig. 10.3a, the wave is said to be a “transverse”
wave. If the displacement is parallel to the direction of propagation as in
Fig. 10.3b, the wave is said to be a “longitudinal” wave. Sound waves in
air are longitudinal waves; light waves in a vacuum are transverse waves.

� EXERCISES

10. Imagine that Fig. 10.3a is a snapshot of the wave traveling to the
right along the string. At the exact moment that the photo is taken,
what is the direction of motion of the string at point A? At point B? At
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high density

A B C
(a)

(b)

FIGURE 10.3 (a) Transverse wave on a string. (b) Longitudinal sound wave in a gas.

point C? (Hint: Sketch the wave both at the time shown in the figure
and at a short time afterwards.) How would your answers change if the
wave were traveling to the left?

11. Table 10.2 says that phase is sometimes given as k x−ωt+φ. The
quantity k is called the “wave number” and ω is called the “angular
frequency.” Show that k = 2π

λ and ω = 2π
T = 2πf .

Intensity

Although waves do not themselves transport matter, they do carry mo-
mentum and energy from one point in space to another. It is by means
of such transported momentum and energy that waves have effects. The
warmth of sunshine tells you that light waves carry energy. The pain in
your ears tells you that rock music transports momentum.

The specific definition of “intensity” of a wave in three dimensions is
the amount of energy carried across a unit area in a unit time. Thus the
SI units of intensity are J m−2 s−1 or, equivalently, Wm−2.

� EXAMPLES

1. The intensity of sunlight on the upper atmosphere of Earth is about
1.39 kWm−2. How much solar energy does Earth receive in 1 s?
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The Earth with its radius of about R = 6400 km offers to the Sun
a circular target with an area of πR2 = π(6.4 × 106)2 = 1.3 × 1014 m2.
Therefore, in 1 s the Earth will receive

1.39 × 103 × 1.3 × 1014 = 1.8 × 1017 J.

This means that the Sun delivers 180 000 TW (terawatts) of power
to Earth. About half reaches the surface. In 2005 the world-wide rate
of human energy consumption was abut 16 TW. Do you see why people
would like to figure out how to make efficient use of solar energy?

It is important for you to know that the energy carried by any wave is
proportional to the square of its amplitude. This should seem plausible to
you if you know that the energy stored in a stretched spring is proportional
to the square its stretch. Sound waves and waves along strings all stretch
and compress the matter through which they travel just the way a spring
can be stretched and compressed. It is not obvious that this rule should
work for water waves and light waves, but it does.

10.3 INTERFERENCE OF WAVES

Imagine the following peculiar situation. After a long day’s drive, you have
just checked into the Bates Motel and are about to enjoy a warm, relaxing
shower. When you enter the shower stall, you notice that it is equipped
with two independent water nozzles, each of which operates normally and
delivers a fine spray distributed uniformly over the entire stall. Imagine
your surprise when, turning on both shower heads together, you notice
that there are positions under them where you do not get wet at all, and
other positions where you get four times as wet as with a single shower
head! This does not really happen, of course, but it would if the nozzles
emitted waves instead of particles of water.

Here is a more plausible example to illustrate the point. Suppose you
and a dozen friends lug a CD player and two stereo speakers out onto
a flat, grassy, open field. You set up the speakers a distance d apart,
and then you and your friends form a line at a perpendicular distance D
from the speakers as shown in Fig. 10.4. Now play a rather dull recording
consisting of a single pure note, i.e., a sinusoidal wave, sustained for the
entire duration of the CD. If only one speaker is plugged in, then you
all will hear the note, with the observers near O0 recording the highest
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FIGURE 10.4 Acoustic interference experiment between two stereo speakers. The
curve represents the intensity of the received sound as a function of position. Each
tic mark signifies an attentive student listener.

intensity. When both speakers are activated, some of you will hear nothing
at all, while O0 will report an intensity four times greater than for the
single-speaker case! This phenomenon is called “interference.”

Interference is a unique and defining property of waves. If any kind
of radiation exhibits interference, you know it is a wave. Thus, if the
water from the shower actually behaved the way described above, you
would know immediately that the water spray was wavelike. This idea
that interference tells you when something is a wave is important later
in this book. Interference is also very important for the study of atomic
properties.

Interference Along a Line

Interference is a consequence of the property of superposition, a word that
means that when two waves occupy the same points in space, their dis-
placements just add together algebraically. To understand this principle
consider a case in which two pulsed waves with the same shape approach
each other on a long stretched string, as shown in Fig. 10.5. As a specific
example, suppose that each pulse has a trapezoidal shape. What happens
as the two pulses come together? As shown in Fig. 10.5, the string’s shape
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FIGURE 10.5 Two waves approaching on a string and combining. At each moment
the resulting wave shape is the point-by-point sum of the two waveforms.

is exactly what you calculate if each pulse passes undistorted through the
other and their heights simply add together at each point along the string.
This simple additivity occurs for all small-amplitude waves and is called
the “principle of superposition.” It means that to find the waveform due
to a combination of waves, you just add, point by point, the displacements
of each wave.

� EXERCISES

12. To see that superposition can be quite interesting, consider what
happens in Fig. 10.5 when the wave coming from the right has nega-
tive displacement, i.e., if the right-hand trapezoid is flipped over with
respect to the axis.

Now look at Fig. 10.6. Imagine you are an observer standing on a line
with two stereo speakers, one behind the other, emitting sine waves of
the same frequency f and amplitude A toward you. The speakers are a
distance L apart along the straight line running from the speakers to you.

With both speakers turned on, you hear the same frequency f as when
only one speaker is on. However, you hear an intensity that varies dramat-
ically when the distance L between the speakers is changed. As Fig. 10.6
shows, when L = 0, λ, 2λ, . . ., the waves add together to form a larger
wave with total amplitude 2A. This is called “constructive interference.”
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FIGURE 10.6 Constructive and destructive interference of sine waves. The output of
the left speaker is the solid curve; the output of the right speaker is the dashed curve.
One cycle of the sums of these two curves is shown at the extreme right.

If L = λ/2, 3λ/2, . . . the superposed waves cancel exactly, and you hear
nothing even though both speakers are emitting sound! This is called
“destructive interference.” For other speaker separations, the resulting
amplitude takes on values between 0 and 2A. Since the sound-wave in-
tensity is proportional to the energy carried by the wave, and since the
energy is proportional to the square of the amplitude, the intensity for
constructive interference is four times as large as it was for a single
speaker.

Now think about what the sine curves sketched in Fig. 10.6 represent.
They are “snapshots” of the wave. In this case all the snapshots were
taken at the instant when the displacement of the wave emerging from
each speaker was zero. The two speakers are “in phase”; they are both
emitting a null at the same time, because the apparatus has been set up
to make this happen. If, for example, the two speakers are driven by the
same amplifier, then, because the signal from the amplifier travels quickly
along wires to each speaker (almost at the speed of light), the sound waves
will come out of the speakers with the same phases no matter where the
speakers are located.

You could take your snapshot at any time. Suppose you took a snapshot
of the waves just as the phases of the waves emerging from the speakers
are both π/2. At this instant the wave displacements at the speakers
would be maxima, but φ, the phase difference between the two waves,
would still be zero, and they combine as before.
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� EXERCISES

13. Repeat the sketch shown in Fig. 10.6a at a time T/4 later, when
the phase of the wave emerging from each speaker is π/2 so that the
displacement is a maximum.

You see in Fig. 10.6 that at each instant of time the wave emerging from
one speaker has the same phase as the wave emerging from the other a
distance L away. But notice that this does not mean that the phases of
the two waves are the same at the place where the waves overlap and
superpose (add together). Since the waves are traveling to the right, it
takes some time for the wave from the first speaker to reach the second
speaker. As a result, the phase of the first wave as it arrives at the second
speaker can not be the same as that of the wave just emerging from
the second speaker. The snapshots in the figure show this. In the first
snapshot (Fig. 10.6a), the speakers are separated by a distance λ. The
wave emerging from the first speaker reaches the second speaker after a
time t = λ/v = 1/f = T , one full period later. Therefore, its phase differs
by exactly 2π radians from that of the wave just emerging from the second
speaker. The two waves add together with this phase difference all along
the line along which they are traveling to the detector, and because the
phase difference is an integer multiple of 2π (n = 1) the interference is
constructive. In snapshot (b) of the figure, the first wave requires a time
t = T/2 to travel from the first to the second speaker, so all along the line
of travel the two waves differ in phase by π radians, and there is complete
destructive interference.

Keep in mind when looking at Fig. 10.6 that for a sound wave the sine
curve describes small, longitudinal variations in pressure. The amplitude
of the wave is then the maximum amount of increase in pressure produced
by the source of the wave. (This maximum increase is usually quite small.)
The sine curve shows you how the pressure in the sound wave swings up
and down around the average pressure by this increment.

� EXERCISES

14. Each speaker in Fig. 10.6 is emitting a 1 kHz sound wave with
an amplitude A. Calculate three speaker separations L that lead to
destructive interference, i.e., Atot = 0.
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What happens when you superpose two waves differing in phase by an
arbitrary angle? The two cases of interference you have already studied
are for special values of phase difference. For constructive interference, the
waves are in phase, i.e., their phases differ by an integer multiple of 2π
radians, and they add in a simple, direct way. For destructive interference,
the two waves are exactly out of phase, i.e., their phases differ by an odd
integer multiple of π radians, and they completely cancel each other. But
what if the phases of the two waves differ by some arbitrary angle φ? Can
you see intuitively that there will be partial interference? You can show
this by plotting on the same graph the two waves shifted in phase relative
to each other by φ, and then adding them together point by point. (Go to
p. 335 to see how to do this with a computer spreadsheet.)

There is a nice formula for the sum of two waves with equal amplitudes
A that shows explicitly how their sum changes when you vary their phase
difference φ. The formula is based on a (seldom remembered) trigono-
metric identity for combining two sines with arguments that differ in
phase:

A sin α + A sin(α − φ) = 2A cos
(

φ

2

)

sin
(

α − φ

2

)

. (7)

This formula shows that when two waves of the same wavelength λ but
differing in phase by an angle φ are superposed, they form a single wave of
the same wavelength and with an amplitude 2A cos

(
φ
2

)
. Notice that when

φ = π, the amplitude of the combined waves is zero, i.e., total destructive
interference.

� EXAMPLES

2. You can understand these statements better if you see how they
apply to the waves emitted by the two speakers shown in Fig. 10.6. For
these waves

α = 2π
x

λ
and φ = 2π

L

λ
,

where the location of the speaker on the left is taken to be x = 0 and
the location of the speaker on the right is x = L. When you replace
α in Eq. 7 with 2π x

λ , you find that the superposition of the two waves
from the speakers in Fig. 10.6 is

yleft + yright = 2A cos
(

πL

λ

)

sin
(

2π
x

λ
− πL

λ

)

. (8)
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� EXERCISES

15. Show that for cases (a), (b), and (c) in Fig. 10.6 the amplitude of
Eq. 8 gives the result shown in the figure.

16. What would be the amplitude of the superposed waves if the right
hand speaker was at L = λ/8?

Example 2 is like most of the cases of interference that you will study
in this book in that the phase difference is due to a difference in the
length of the paths that each wave must travel to reach the detector. To
analyze these cases you first find the difference in the distances traveled
by two (or more) waves to reach a detector and then see how much phase
difference results from that difference of path lengths.

In practice you usually measure intensity, not amplitude. Intensity
(loudness of sound or brightness of light) is proportional to the square
of the amplitude. This means that the intensity I of the wave arising
from the superposition of two waves according to Eq. 8 is proportional to
the square of cos φ

2 :

I ∝ 4A2 cos2

(
φ

2

)

, (9)

where, as before, φ = 2πL/λ. The intensity of the sum of the two waves
is equal to 4 cos2(φ/2) times the intensity of either wave:

Isum

Iindividual
= 4cos2

(
φ

2

)

. (10)

Notice that you do not need to know the constant of proportionality to
get the result given by Eq. 10.

These results are summarized in Fig. 10.7. Part (a) shows the corre-
spondence between the phase difference of the two waves (in this case,
π/2) and the difference L in the distances from the wave sources to the
detector (in this case, λ/4), where the relationship between the phase shift
and the distance is φ = 2π L

λ . The graph in Fig. 10.7b shows you that the
amplitude and intensity are greatest when the phase difference is an in-
teger multiple of 2π, and that they are zero when the phase difference is
an odd integer multiple of π.
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FIGURE 10.7 In (a) the upper graph shows a wave shifted in phase by π/2 radians
relative to another; the lower graph shows that the phase shift arises because the
sources are separated by a distance of λ/4. In (b) the upper graph shows how, at the
detector, the amplitude of the two superposed waves varies as a function of their phase
difference (produced by changing the separation of the speakers); the lower graph shows
the intensity corresponding to the amplitude of the upper graph.

� EXERCISES

17. Find a phase difference at which the sum of the two waves in
Fig. 10.7a will have exactly the same amplitude and intensity as either
wave individually.

18. What separation of the speakers will give this phase difference?

19. Suppose that for the two speakers one behind the other as shown
in Fig. 10.6, total destructive interference first occurs at a separation
of L = 15 cm, and then at 45 cm, 75 cm, . . . .
(a) What is the frequency of these sinusoidal waves?
(b) If the amplitude of each wave is A, calculate the ratio of the intensity
recorded by the listener at L = 10 cm to the intensity she would hear
if one of the speakers was turned off.

Visualizing Waves in Three Dimensions—Wavefronts

The examples of two stereo speakers one behind the other and of two
speakers side-by-side emphasize that phase difference is produced when
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waves generated in phase travel different distances to a detector. These
examples are idealizations. Only under special circumstances do waves of
sound or light travel in only one or only two dimensions. In general, sound
and light waves travel in three dimensions.

Consider a mental-images-of-planes or MIP wave, invented to help you
visualize waves in three dimensions. This is a sine wave that fills 3-D space
and is traveling from left to right through a stack of large, thin, flat cards.
As the wave passes along the stack of cards, they become colored. The
color at each point on a card depends on the displacement of the wave at
that point on the card, and the colors range from dark red through red
to pink to white to light gray to dark gray to jet black. The shades of
red stand for negative displacements; the shades of gray stand for positive
displacements. Jet black is the maximum positive displacement, and so
it corresponds to the wave’s amplitude; similarly, dark red represents the
negative amplitude. Because the wave’s displacement at any point on
any card in the stack depends on the value of the wave’s phase at that
point, each color also corresponds to a definite phase of the wave at each
point.

Now comes the important idea of a plane wave. This wave has the
property that at each card the phase of the wave is the same at every
point on the card. If you suppose that at any instant of time you can
freeze the effect of the MIP wave on the cards, the colors will be uniform
over each card. The jet black card will be jet black everywhere; a pink
card will be the same shade of pink everywhere; a white card will be
white all over. The MIP wave is a plane wave because it has surfaces
of constant phase that are planes perpendicular to the wave’s direction
of travel. At each instant of time the planar surfaces of constant phase
coincide exactly with the planar cards. A surface of constant phase is
often called a wavefront. Plane waves have planar wavefronts.

� EXERCISES

20. Suppose you riffle through the stack of cards and observe that
every 16th card is jet black. Do you see that this tells you that the
wavelength is 16 card thicknesses?

21. If card 24 is jet black, where to its right will you find the next
darkest red card?

22. Suppose you assign a phase of 0 radians to card 20. What then is
the phase of the wave at card 24? Of card 36? Of card 4?
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23. After taking a snapshot of the stack, you wait 1 s and take another
and find that in the second recording cards 27, 43, 59, ... are jet black.
Do you see that the wave might be traveling to the right with a speed
of 3 card thicknesses per second?

Suppose the MIP wave is a sinusoidal plane wave traveling from left
to right. It has a wavelength of 16 card thicknesses, a velocity of 3 card
thicknesses per second, and, by arbitrary choice, the phase of the wave at
card 20 is 0 radians at time t = 0. To repeat, a wave is a plane wave when
its phase is constant everywhere on any plane surface perpendicular to the
direction of the wave’s travel. The uniformity of color on the plane surface
of each card represents the constancy of phase over a plane. Because you
chose the phase of the wave at the all-white card 20 to be 0 radians, the
phase of the wave at card 24 is π/2 radians, and the card is jet black.
Remember, the cards don’t move; they are the medium through which
the wave moves.

Now apply these ideas to sound waves. A plane wave of sound is like the
MIP wave except that instead of color at each card there is a compression
or rarefaction of air pressure. Because these variations in air pressure
occur along the line of travel of the wave, a sound wave is a longitudinal
wave.

What about light? A sinusoidal plane wave of light is like the MIP
wave except that at every point on each card, instead of color there exist
both electric field E and magnetic field B. That’s right; the two fields are
present at every point on each card. For a plane wave the value of E is the
same at every point on a given card; so is the value of B. You can think
of a plane wave of light as a succession of sheets of electromagnetic field.
The magnitudes of the two fields vary from sheet to sheet like the colors
of the MIP wave as it passed along the stack of cards. Just as the density
of coloration varies sinusoidally, so do the magnitudes of the electric and
magnetic fields; the change of color from black to red in the MIP wave
corresponds to the reversal of direction of the fields in an electromagnetic
wave.

The E and the B fields point at right angles to each other and also at
right angles to the direction of travel of the wave. Because the fields lie
in the plane of the card and are perpendicular to the direction of travel,
light waves are transverse waves. Transverse waves exhibit a phenomenon
called polarization; it will come up later.
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A plane wave is a special case.1 Real waves are only ever approximately
plane waves, but often you can arrange your apparatus to make waves that
closely approximate them: If you are far from the source of light, any small
portion of its wavefront will be flat enough to act like a plane wave for
practical purposes; or you can use lenses to shape light waves to have flat
phase planes over some useful area; or you can use light from lasers that
produce beams of light with nearly flat wavefronts.

Interference in Terms of Wavefronts

You can use these ideas to analyze interference occurring in two dimen-
sions. Look again at the example on p. 295 of two stereo speakers in an
open field. As shown in Fig. 10.8, an observer at any position (D, y) with
y 
= 0 is at different distances from the two speakers, i.e., r1 
= r2. In the
figure, the line EC is the difference between r2 and r1.

The type of interference (constructive, destructive, or partial) is de-
termined by the difference between the two path lengths r1 and r2.
Two waves emitted with the same phase from the speakers arrive
at the observer (screen) with different phases if they travel different
distances. The difference between their phases, often called their “relative
phase,” is

φ = 2π
r2 − r1

λ
.

r1

r2

D

d

y

CE = d sin

A

E
C

B

FIGURE 10.8 Geometry of the two-speaker interference experiment; the origin of the
x-y coordinate system is at the midpoint of the line AE connecting the two speakers.

1There are other special-case wave forms. The phase of waves coming from a point source will
be constant on spherical surfaces; such waves are called spherical waves. The phase of waves
coming from a long narrow slit will be constant on cylindrical surfaces; these waves are called
cylindrical waves. They are all idealization to a greater or lesser extent.
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The relative phase of the two waves at any point B is fixed by the differ-
ence in the values of r1 and r2. This difference does not change in time
even though every point of each wave and its corresponding phase move
steadily (and rapidly) from source to detector (and beyond). As before,
when EC is an integer multiple of λ then φ is an integer multiple of 2π,
and there is constructive interference; if EC is an odd integer multiple of
λ/2 then φ is an odd multiple of π radians, and there is destructive inter-
ference; for all other values of EC and the corresponding φ, there is partial
interference.

� EXERCISES

24. Using the coordinates of Fig. 10.8, show that

r1 =
√

(y − d/2)2 + D2

r2 =
√

(y + d/2)2 + D2.

25. Assume the two speakers are a distance d = 4m apart and emit-
ting a pure tone with λ = 0.34 m. For D = 12m at what y positions on
the vertical line do observers hear the loudest sound? What frequency
corresponds to this wavelength?

Often the distance D to the detectors is much greater than the sep-
aration d between the sources of the waves, i.e., D � d. For this case
there is an approximation that you must learn to use. The idea is that
when D � d the lines AB and EB in Fig. 10.8 are essentially parallel.
To understand this, imagine that the line of detectors is moved very far
to the right so that D is in fact much greater than d. Can you see that
then at the base of the isosceles triangle ΔABC the two angles � BAC
and � BCA become ever more nearly right angles? (This is the same as
saying that the lines AB and EB are becoming nearly parallel.) As a re-
sult, the small triangle ACE becomes almost a right triangle, and you
can find the length of CE from trigonometry: CE = d sin θ. As you know,
when this extra distance is equal to an integer number of wavelengths,
there is constructive interference. Therefore, when D � d the condition
for constructive interference is quite accurately

d sin θ = nλ, (11)

and the condition for destructive interference is

d sin θ =
(

n +
1
2

)

λ, (12)

where n = 0, 1, 2, 3, . . . .
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FIGURE 10.9 A listener moving along the line x = D in Fig. 10.8 will hear the
intensity from the two speakers vary as shown above.

Once again, observers at certain locations would hear almost nothing,
while observers at other places would record an intensity four times that
coming from a single speaker. Along the line of observers the sound in-
tensity, which is proportional to the square of the amplitude, varies as a
function of phase difference φ according to Eq. 9 on p. 301. Because ob-
server position is directly related to φ, the difference between the phases
of the waves arriving from the two speakers, a graph of intensity vs. ob-
server position varies as the square of a cosine curve and looks like the
graph in Fig. 10.9. This plot, the pattern of intensity vs. the position of
the detector (the observer) along the line x = D, is an example of what
is called an “interference pattern.”

In general any combination of waves with a well defined relationship
among their phases will form a three-dimensional pattern of intensity
variations at every point in the space through which the waves are passing.
On any plane surface in this space there will be a two-dimensional pattern
of intensity variations. Such a pattern of spatial variation of intensity is
the unmistakeable signature of interference. An interference pattern tells
you that a wave is present, and the details of the pattern contain a great
deal of information about the wave and its sources.

� EXERCISES

26. Use the equations in Exercise 24 to find an expression for sin θ in
terms of y and D. Simplify your answer for the case when y � D.

27. Compare the result you found in Exercise 25 to the result of
Eq. 11. The requirement D � d is not fulfilled in this case, but the
result of Eq. 11 is surprisingly accurate.
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28. Two speakers, such as those shown in Fig. 10.8, are separated by
a distance d = 1m and emit sound waves of frequency 1 kHz. Calculate
the smallest three angles θ for (a) constructive and (b) destructive
interference. If D = 30m, at what locations y should observers stand
in order to observe constructive interference?

29. If the frequency in the previous exercise is slowly increased to
2 kHz, should the observers move away from or toward the center
(y = 0) to follow the intensity peaks?

10.4 LIGHT INTERFERES; IT’S A WAVE

What does all this have to do with light? In 1801 Thomas Young
demonstrated that light forms interference patterns and, thereby, proved
conclusively that light is a wave. Young’s experiment was analogous to the
sound-wave experiment described above. He directed a strong light source
(sunlight) through a tiny aperture and then onto a card containing two
closely spaced small holes. Light passing through the holes illuminated a
distant screen and formed unmistakable intensity maxima and minima—
certain evidence of interference. The bright maxima and dark minima are
often referred to as fringes Interference fringes of light can be quite small
and hard to see because the wavelength of visible light is much smaller
than the dimensions of ordinary objects.

Wavelength of Light Is Color

The wavelength of visible light tells you its color. White light is a mixture
of all colors of the rainbow. If white light passes through a glass prism, it
spreads out into all its component colors—red, orange, yellow, green, blue,
violet (roygbv). You will often need to know roughly what wavelengths of
light correspond to which colors. A list is given in Table 10.3. the longest
visible wavelengths are red, and the shortest visible wavelengths are blue
or violet.

TABLE 10.3 Rough correspondence of wavelengths and colors of visible light

Color Red Orange Yellow Green Blue Violet

Wavelength (nm) 660 620 580 520 440 380
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Analyzing Light: Interference of Light from Slits

Young’s discovery that light is a wave was a major advance in human un-
derstanding of the physical world. The new understanding of light led to
new research tools with which physicists and chemists learned more about
atoms. They discovered that atoms emit and absorb light, and that dif-
ferent atoms emit and absorb different wavelengths. From highly precise
measurements of these wavelengths and their intensities, they deduced
the internal structure and behavior of atoms and molecules. In the early
twentieth century their discoveries led to the development of quantum me-
chanics, a remarkable theory that revolutionized scientists’ understanding
of the behavior of atoms and molecules and their components.

The “diffraction grating” is one of the main tools that made possible
precise measurements of wavelengths. A diffraction grating is a regular
array of very narrow, closely spaced slits. When light passes through them,
interference causes the different wavelengths present to separate out with
a separation that is better than that obtained by passing light through
a prism. The diffraction grating’s importance as a tool for looking into
the insides of atoms is reason enough to study its principles of operation,
but there is the bonus that these principles will also help you understand
basic ideas of quantum theory later in this book.

Double-Slit Interference

To learn how a diffraction grating works consider first the interference of
light from just two narrow slits spaced close together. You can reproduce
the essence of Young’s famous experiment by shining a laser beam onto
two closely spaced, narrow slits. As shown in Fig. 10.10a, a monochro-
matic2 beam of light from a laser shines on the two identical slits S1

and S2.3

When illuminated by the plane wave radiation of the laser beam, the
two slits become radiators themselves. From them emerge two cylindrical
wave fronts centered on the slits. These cylindrical phase surfaces spread
out at speed c = 3× 108 m/s, and the waves superpose everywhere in the
space through which they travel. At any instant in time (snapshot), the
electric field from a single slit is a maximum on the surfaces of concentric

2This word comes from the Greek roots “mono” (single) and “khromatos” (color).
“Monochromatic” light is a single wavelength and frequency.
3Young did many of his experiments with a beam of sunlight formed with a pinhole. The
results are much more evident when you use monochromatic light. To read excerpts from
Young’s papers on interference look in Morris H. Shamos, Great Experiments in Physics, Dover
Publications, 1987, pp. 93–107.
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FIGURE 10.10 Geometry for a double-slit interference experiment. (a) Two side-by-
side slits, with their long dimension perpendicular to the plane of the page, serve as
in-phase sources of light; (b) variation of the path difference L with angle θ; (c) intensity
of interference pattern on a screen far from the sources.

half cylinders spaced a distance λ apart. The circular arcs in Figs. 10.10
and 10.11, which are cross sectional views of the slits and wavefronts,
represent the edges of such cylindrical phase surfaces. The intersection of
two arcs corresponds to the intersection of cylindrical wave fronts from the
two slits. Constructive interference occurs along the line of intersection of
the two cylinders, i.e., the line running perpendicular into and out of the
plane of the page.

By the time the cylindrical wave fronts have traveled a distance D � d,
they are nearly flat. They are also nearly parallel, with only a very small
angle between them. That small angle, however, means that if you insert
a screen perpendicular to the wavefronts’ direction of travel, you will see
light and dark bands called fringes resulting from constructive and de-
structive interference. Examine Fig. 10.11b to see how intersecting plane
waves produce constructive interference on a screen, but keep in mind
that the angle between the planes is grossly exaggerated for purposes of
illustration. Note also that the separation between planes is λ, so the spa-
tial scale of parts of the diagram is vastly larger than what you observe in
the laboratory. For light and two slits, just as for sound and two speakers
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FIGURE 10.11 (a) Cylindrical wavefronts emerge from two slits illuminated by a laser
beam. The lines along which the points of intersection lie are where there is constructive
interference. (b) By the time these wavefronts reach the distant screen, they are nearly
plane waves; the places where the points of intersection strike the screen are where
intensity maxima occur.

(Fig. 10.8), the location of the bright fringes, the interference maxima, is
given by

d sin θ = nλ, double-slit interference maxima (11)

where n is any integer.
Observation of this interference pattern confirms that light is a wave.

The pattern also yields reliable measurements of the wavelength of visible
light. From measured values of d and θ, you find for visible light the values
of λ given in Table 10.3 (λ ∼ 500 nm).

From Eq. 11 you can see that if d is too large, then sin θ will be too
small to measure, i.e., the fringes will be so crowded together you won’t
be able to measure their separation. On the other hand, if d is too small,
that is if d < λ, then there is no value of θ that satisfies Eq. 11, because
the geometry of the set up is such that the path difference between the
waves from the two slits can never equal λ, and the phase difference can
not become 2π, and, therefore, there can not be any fringes. In practice, to
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obtain an interference pattern with noticeably separated fringes, d should
be greater than several wavelengths, but no greater than about 1000 times
the wavelength of light, or 0.5mm.

For light, because d must be so small, the condition d � D required to
derive Eq. 11 is almost always satisfied. If, as is often the case, you are
observing fringes at different positions y on a screen a distance D from
the slits where y � D, you can also use the small angle approximation
sin θ ≈ y/D.

� EXERCISES

30. Two slits spaced 0.5mm apart are illuminated by monochromatic
light of wavelength 650 nm.
(a) What color is this light?
(b) Using the notation of Fig. 10.10 write down the angles θ at which
the first three bright fringes appear to one side of the central fringe.
Express these angles in radians.
(c) Is the small-angle approximation valid for this exercise? Explain.
(d) If the interference pattern is projected onto a screen a distance
D = 2m from the slits, what is the distance between the fringes?

31. An electrical discharge in hydrogen gas emits a mixture of red,
green, blue, and violet light. The source illuminates a pair of slits,
causing an interference pattern to appear on a distant screen. Make a
sketch showing the relative position of the first few bright fringes of
each color. What color is the center of the pattern (n = 0)?

Single-Slit Diffraction

In Figs. 10.10 and 10.11 light is shown spreading out from the slits. This
spreading is actually an interference effect called “diffraction” that you
need to understand. A plane wave of light travels in a straight line, so you
might expect that when such a wave passes through a rectangular slit, it
will cast a bright rectangle with sharp edges on a distant screen. But if you
look carefully, you will see the edges are blurred with faint lines of bright
and dark where some light has spread into the shadow. This is diffraction.

The shape of the intensity pattern for the particular case of a rectangu-
lar slit of width b is shown in Fig. 10.12. (The slit is perpendicular to the
page so Fig. 10.12 shows you its width, not its length.) If light were not
a wave and there were no diffraction, the large central maximum would
be constant (flat top) between − b

2 and + b
2 and zero everywhere else.
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FIGURE 10.12 Single-slit diffraction: (a) geometry; (b) interference pattern.

Because of diffraction the light’s intensity is not uniform on the screen,
and it spreads into the shadow where it appears as secondary maxima.
Notice that between bright places in the shadow there are dark places—
intensity minima—where there is no light. This feature is not so surprising
if you think of a single slit of finite width b as two slits of width b

2 with no
separation between them. There might be interference between the light
wavefronts coming from these two different halves of the slit.

By considering the slit of width b to be made up of narrower slits, you
can calculate where the intensity minima of the diffraction pattern occur.
To organize your thoughts about the arrangement, imagine a coordinate
system on the diagram in Fig. 10.12. Put the origin in the middle of the
slit; have the x-axis run from the slit to the screen; and have the y-axis
run across the width of the slit. The edges of the slit are at (0, b

2) and
(0,− b

2 ), and the long dimension of the slit runs along the z-axis, into and
out of the plane of the diagram.

Now in Fig 10.12 use the same geometrical argument that you used
in Fig. 10.10 for double-slit interference: Assume the distance from the
slit to the screen is so large that wavefronts reaching it from different
points of the slit are nearly parallel. Then the angle � ECA is essentially
a right angle. As a result, the path difference between the wave traveling
from the origin O (0, 0) along the line OB and the wave traveling from
A, i.e., (0, b

2), along AB is b
2 sin θ. If this path difference equals λ/2 the

two wave fronts will arrive out of phase by π radians and they will cancel
each other; there will be complete destructive interference.
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Here is the crucial step in the argument: If the path difference of waves
from (0, b

2) and (0, 0) is λ/2, so will be the path difference of waves from
(0, b

2 − δ) and (0,−δ) for any value of 0 < δ < b
2 . In other words, there

is an angle θ and a corresponding point B on the screen where all the
wavefronts from across the full width of the slit will cancel in pairs and
produce the first minimum in the diffraction pattern.

What about the other minima? Divide the slit into fourths, so that each
path difference between corresponding points on neighboring segments is
b
4 sin θ. Then the condition for destructive interference is

b

4
sin θ =

λ

2
or

b sin θ = 2λ, etc.

In other words, minima occur at those angles θ where EC is an integer
multiple of λ. Consequently, you can write the condition for single-slit
diffraction minima as

b sin θ = mλ, single-slit diffraction minima (13)

where m = ±1,±2,±3, . . . . Given the slit width b and the distance D to
the screen, you can use Eq. 13 to calculate the locations of the diffraction
minima for any given wavelength λ; to find the locations of the maxima
requires more discussion than is useful at this point.

Although Eqs. 11 and 13 look alike, they describe very different phe-
nomena. Keep in mind that Eq. 13 tells you where the minima occur for
diffraction from a single rectangular slit of width b, while Eq. 11 tells
you where the maxima occur in the interference pattern arising from light
passing through two very narrow slits spaced a distance d apart. For
Eq. 11 you can use any values of n = 0,±1 ± 2,±3, . . .. For Eq. 13 you
can use m = ±1 ± 2,±3, etc., but you can not use m = 0 because the
diffraction pattern actually has a maximum at θ = 0.

Combined Double-Slit and Single-Slit Patterns

In the discussion of the double-slit interference pattern there was no men-
tion of the width of the slits. Only their separation d was taken into
account. This is an oversimplification. Real slits have both finite width
b and a separation d, and both slit width and slit separation affect the
interference pattern. Together they result in an intensity pattern that is
a double-slit pattern inside the envelope of a single-slit pattern as shown
in Fig. 10.13c. A more complete argument would show you that mathe-
matically the combined intensity pattern is the intensity of the idealized
double-slit pattern multiplied by the intensity of the single-slit pattern.
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FIGURE 10.13 (a) Single-slit diffraction pattern; (b) double-slit pattern for d = 5b;
(c) resultant interference pattern.

In other words, the intensity of the double slit interference given in
Eq. 9 must be modified by the effect of the single-slit diffraction pattern.
Figure 10.13 illustrates the resulting intensity distribution for the special
case d = 5b. In general the peak intensities of a double-slit pattern de-
crease for large θ; they are reduced by the effects of single-slit diffraction
occurring at each slit. Notice also in Fig. 10.13c the double-slit maximum
corresponding to n = 5 in Eq. 11 is missing because the m = 1 minimum
of the single-slit pattern Eq. 13 occurs at the same angle. When this hap-
pens, the single-slit pattern eliminates the double-slit maximum because
it is multiplying it by zero.

Conversely, if you see a double-slit pattern where the 5th, 10th, . . . ,
maxima are absent, you know that the slit width b is 1/5 of the slit
separation d.

� EXERCISES

32. A single slit of width b = 0.2 mm is illuminated with 633 nm light
from a helium–neon laser.
(a) Calculate the angular positions of the first 3 minima.
(b) Is the small-angle approximation valid for these angles?
(c) If the interference pattern is projected on a screen 2m away, how
far apart are the dark fringes?

33. Sketch, as in Fig. 10.13, the interference pattern for d = 3b.
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Multislit Interference Patterns

As the number of slits producing the interference is increased from 2 to
many (N), the pattern changes and becomes more and more useful for
analyzing the wavelength composition of light. Figure 10.14 illustrates
what happens to the interference patterns as N takes on the values of 2,
3, 4, and 10. The assumption here is that b � d, so that the first single-
slit diffraction minimum is located at a large value of θ ≈ λ/b. Note that
large-intensity maxima occur at the same θ values as for the double-slit
case, but for N slits there are N − 2 smaller maxima between the large
ones. The smaller ones are called “secondary” maxima; the large ones are
called “principal” maxima. As N increases, the principal maxima become
narrower and more sharply defined. They also get brighter because of the
larger amount of light collected by the N slits.

Such N -slit interference devices are called “diffraction gratings.”4 As
N is made larger and d is made smaller, the principal maxima be-
come sharper and separated by larger angles; the secondary maxima
become smaller and negligible. The principal maxima occur at the angles
such that

d sin θ = nλ. (10)

1

2.25

4

25

N= 2 N= 4

N= 3 N= 10

sin sin

sinsin
—
d

—
d

—
d

—
d

FIGURE 10.14 Multislit interference patterns for N = 2, 3, 4, 10.

4The word “grating” seems to have been chosen because the closely spaced slits reminded
someone of spaced slits in iron grillwork of a fireplace grating.



10.4. LIGHT INTERFERES; IT’S A WAVE 317

These are the same angles as for maxima from double-slit interference,
but now the maxima are extremely sharp and well defined. If θ and d are
known accurately, then the wavelength λ can be determined with six-digit
precision.

Equally important, a good diffraction grating will separate light con-
sisting of two wavelengths that are nearly the same into two distinct
principal maxima that can be located and compared with high precision.
The larger you make N the better you can separate and distinguish max-
ima from two different wavelengths. It is useful to remember that the
smallest difference in wavelength δλ that can be separated is δλ = λ/N .
The ratio δλ/λ = 1/N is called the “resolution” of the grating.

� EXAMPLES

3. It is possible to prepare a glass plate with as many as 30 000 slits
per centimeter. When a 1 cm wide piece of such a closely ruled grating is
used to examine green light, λ= 550nm, the grating can distinguishably
separate wavelengths that differ by as little as 550/(3×104) = 0.018 nm.

Diffraction gratings can work by reflection as well as by transmission.
You probably know that compact disks spread out reflected incident light
into bands of colors. The reason is that the tracks on a compact disk are
1.6μm wide and make the surface of the disk a nice diffraction grating.

Caution: In diffraction gratings, it’s not unusual for the spacing d to
be so small that the angle θ in d sin θ = nλ is not a small angle. In this
case, you cannot use the small-angle approximation.

� EXERCISES

34. If you look at the light reflected from a compact disk, what angular
separation would you expect to see between the red light (λ= 625 nm)
that corresponds to n = 1 and that which corresponds to n = 2 in
Eq. 11?

Spectra, Spectrometers, Spectroscopy

The collection of different wavelengths emitted by a source is called its
electromagnetic “spectrum.” The rainbow produced when water droplets
spread out the visible wavelengths present in sunlight is the spectrum
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of sunlight. Because there is present some amount of almost every wave-
length, the Sun’s spectrum is said to be “continuous.” Many sources,
especially hot gases, emit light that is not continuous in its spectrum but
is instead a mixture of quite distinct separate wavelengths. To observe a
spectrum it is usual to define a beam of light from the source by pass-
ing the beam through a narrow slit; then when the beam is spread out
by a prism or diffraction grating, the observer sees the separate colors in
the light spread out into lines of light that are images of the slits. These
images are called “spectral lines.” Spectra composed of spectral lines are
called “line spectra.” The study of line and continuous spectra is called
“spectroscopy,” and those who perform such studies are called “spectro-
scopists.” The study of the spectra of light from atoms is called “atomic
spectroscopy.”

Precision optical instruments that spread out light into its compo-
nent wavelengths for the measurement of their values of λ are called
“spectrometers.” The principal components of a spectrometer that uses a
diffraction grating are shown in Fig. 10.15. Modern optical spectrometers
can measure wavelengths to a precision of 1 part in 105 and differences
in wavelengths λ1 − λ2 to a precision of 1 part in 107. With modern
techniques of laser-based technology, it is now possible to measure wave-
lengths to parts in 1015–1018. Powerful instruments such as these have
been essential for exploring the structure of atoms and developing and
testing the quantum theory.

Grating

Collimator with
entrance slit

FIGURE 10.15 Components of a grating spectrometer.
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10.5 ATOMIC SPECTROSCOPY

Helium, the lightest of the inert gases and the second-most-abundant
element in the universe, was first discovered on the Sun in 1868. It was
not found on Earth until 27 years later. Preposterous? Not at all. The
discovery of helium illustrates the power of spectroscopic techniques.

Atomic spectroscopy reveals a most important experimental result: Iso-
lated (i.e., gaseous) atoms gain and lose energy by absorbing and emitting
light at certain precisely defined wavelengths (or frequencies); each atomic
species has its own unique set of wavelengths. When light from a collection
of these atoms comes through a slit to a diffraction grating, the output
from the grating will be colored lines of light—the “spectral lines.” The
collection of lines is the spectrum of the atom. An atom’s spectrum is its
fingerprint. If the light emitted by a hot, glowing gas contains the spectral
lines of, say, oxygen, then oxygen must be present in the gas. Wavelengths
of spectral lines of several elements are listed in Table 10.4.

Helium was discovered when its spectral lines were seen in light coming
from the Sun. Physicists attached a spectrometer to a telescope to study
the spectrum of the hot gases of the solar corona when it was visible
for several minutes during the total eclipse of 1868. The measured wave-
lengths were then compared to spectra obtained from laboratory samples
of known elements. The spectral lines of hydrogen and sodium were easily

TABLE 10.4 Wavelengths (in nm) of some representative
atomic spectral lines—only the strongest emission lines
are shown

hydrogen—H helium—He neon—Ne

656.28 667.82 626.6

486.13 587.56 621.7

434.05 501.57 618.21

410.17 447.15 585.25

mercury—Hg sodium—Na argon—Ar

614.95 588.995 706.72

579.07 589.592 696.54

576.96 568.82 487.99

546.07 498.28 476.49

435.83 442.60

404.66 434.81
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Electrode

Gas-filled tube

FIGURE 10.16 Discharge tube for producing visible spectral lines.

identified, but the solar corona also emitted a bright yellow line with a
wavelength that did not match up with light from any known element.
Physicists concluded that they had discovered a new element, and they
named it helium from helios, the Greek word for the Sun. Twenty-seven
years later, when the same yellow line was observed in the spectrum of
gas released from a sample of uranium ore, researchers knew that they
had discovered helium on Earth.

A common way to produce atomic spectra in the laboratory is a gas
discharge tube like the one shown in Fig. 10.16. In this device electrons
are accelerated through a low-pressure gas in a glass container, or “tube.”
The electrons collide with the gas atoms, transferring some of their kinetic
energy to the atoms, which then shed their excess energy by radiating light
at the wavelengths of their characteristic emission spectrum.

� EXERCISES

35. Light from a gas-filled discharge lamp is analyzed by a spectrome-
ter using a diffraction grating with 10 000 slits per cm. Bright lines are
recorded at the angles θ = 26◦, 29◦, 41◦, 62◦, and 75◦. Using Table 10.4,
identify the gas and specify the color of each line.

The spectroscopy of visible spectral lines has played a central role in
the development of modern physics. When in the early twentieth century
physicists sought to explain and understand the bewildering complexity
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of the spectra of even the simplest atoms, they concluded that some of
Newton’s basic ideas about motion do not apply to atomic-sized systems,
and they developed a more fundamental description of the behavior of
matter, now called “quantum theory” or “quantum mechanics.” Spec-
troscopy has been a major tool for carefully testing the predictions of
quantum theory and also for stimulating further theoretical advances.

In astronomy all of our information is conveyed by electromagnetic
waves, especially visible light. Using spectroscopy, astronomers can mea-
sure the temperature and composition of the stars, their rotation rates,
and also their motion relative to Earth.

10.6 PROBING MATTER WITH LIGHT

You can also use interference patterns to infer the geometrical structure
of the objects that produce them and thus learn about the structure of
bits of matter far too small to see. Figure 10.17a is a simple example
from which you can extract information about the slits responsible for an
interference pattern when neither N the number of slits nor d the spacing
between them is known. There are no secondary maxima, so you know
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FIGURE 10.17 Interference patterns from two “unknown” slit structures. The dashed-
line envelope of the fringes is shown to help you do Exercise 36.
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it is a double slit pattern (N = 2). The first minimum (m = 1) due
to diffraction falls at the third minimum due to double-slit interference.
Therefore, the ratio of d/b = 2.5. If you know that λ = 550 nm (yellow-
green), then you can determine d and b without ever examining the slits
directly.

The ability to deduce things about a structure from the interference
pattern it produces is important, because the structure causing the in-
terference may be out of reach, as are stars, or perhaps too small to be
measured with ordinary instruments, as are atoms.5 The structures you
can infer from interference patterns can be much more complicated than
just collections of slits. For example, it is possible to reconstruct a crys-
tal structure from the interference patterns produced when x-rays pass
through the crystal. You will learn more about this in Chap. 14.

� EXERCISES

36. Given λ = 550nm, find d and b from Fig. 10.17a. Describe
the slit structure (number, width, and separation) giving rise to the
interference pattern in Fig. 10.17b.

The lower curve in Fig. 10.18 shows the pattern of intensity of light
that will appear on a screen after the light in a laser beam passes through
a single slit 100 wavelengths wide. The upper curve in Fig. 10.18 shows
the intensity pattern of light diffracted around an opaque strip 100 wave-
lengths wide. The narrow fringes arise because the incident laser beam is
only 16 times wider than the strip; in effect it acts like a double slit. Notice
that the envelopes of the intensity patterns are similar. In particular, the
diffraction minima occur at the same angles in the two cases.

Because of these similarities, it is possible to infer the width of a solid
object from its diffraction pattern, just as you can deduce the width of
a transparent slit from its diffraction pattern. Figure 10.18 shows that
for the simple case of a single slit or strip you can use exactly the same
technique: Measure the angles at which the minima occur and then use
Eq. 13 to find b.

The similarities between the patterns are not coincidences. The fact
that in the right sort of experimental arrangement an obstacle that blocks
light forms the same pattern of interference minima as an opening of the

5The American physicist A.A. Michelson had a remarkable talent for devising instruments and
techniques for precision measurements. For a fascinating and readable account of his exploits
see A.A. Michelson, Light and Its Uses, University of Chicago Press, 1902.
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FIGURE 10.18 The lower curve shows the pattern of intensity from a single slit of
width 100λ. The upper curve is the pattern of intensity of laser light diffracted around
an opaque strip of width 100λ. The width of the laser beam is 16 times the width of
the strip.

same size is related to “Babinet’s principle.” We mention the principle
here only to emphasize that interference can be interpreted as arising
from spaces between matter (e. g., slits), or, equivalently, from the matter
itself (e. g., the screen material surrounding the slits).6

Regardless of the detailed shape of the object (slits, obstacles, lines, cir-
cles, whatever), there are fundamental limits on the information available
from interference patterns. Consider once again a single-slit diffraction
pattern such as that shown in Fig 10.18. To determine the size of the
object, you must be able to locate the positions of the intensity minima
or maxima. Because the positions of the minima are given by b sin θ = mλ
and because sin θ ≤ 1, you must have λ ≤ b if you are to measure b. This

6The notable differences between the two intensity patterns in Fig. 10.18 arise largely because of
the finite size of the illuminating laser beam, but there are other possible sources of differences
that become significant when the width of the structure gets close to the size of the wavelength.
For example, see R.G. Greenler, J.W. Hable, and P.O. Slane, “Diffraction around a fine wire:
How good is the single-slit approximation?” Am. J. Phys. 58, 330–331 (1990).
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is an important conclusion: To determine the size of an object, you need
to use a wavelength of light that is smaller than the object.

Now consider a double-slit pattern such as that of Fig. 10.13b on p. 315.
The same reasoning as in the previous paragraph shows that in order to
measure d you must have λ ≤ d. In other words, to distinguish structural
features of size x or to resolve two features separated by a distance x,
you must use radiation with wavelength λ ≤ x. The tinier the objects
you study, the shorter must be the wavelengths you use. For example, the
spacing between atoms in a solid is about 0.2 nm. To measure this spacing
you need radiation of comparable wavelength. Electromagnetic radiation
of these wavelengths exists but is not visible to the eye; this kind of “light”
is called “x-rays.”

� EXERCISES

37. Suppose the interference pattern of Fig. 10.18b was created by a
thin wire illuminated by light from a helium–neon laser at a wavelength
of 633 nm. Determine the diameter of the wire.

38. Describe the interference pattern that would arise if Isaac Newton
had placed a strand of his hair in the ∼ 1 mm diameter beam of a
helium–neon laser. If the pattern were projected onto a screen 2m
from the hair, how far from the center of the pattern would the first
three minima fall? (If you can, borrow someone’s laser pointer and try
the experiment; look carefully.)

10.7 SUMMARY

A wave is a propagating disturbance. It travels with a finite speed, about
340 m s−1 for sound waves in air and 3× 108 m s−1 for all electromagnetic
waves in vacuum.

Sine waves can be used as the building blocks of all waveforms. A
sine wave is characterized by its amplitude A, wavelength λ, frequency f
(or, equivalently, its period T ), and its phase. The sinusoidal variation of
some property y, e. g., displacement, pressure, or electric field, traveling
as a wave to the right is described by the equation

y = A sin
(

2π
x

λ
− 2π

t

T
+ φ

)

,

where (2π x
λ − 2π t

T + φ) is the phase, and φ is the phase constant.
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If the variation of the property is along the line of travel of the wave,
it is a longitudinal wave; if the variation is perpendicular to the direction
of propagation of the wave, it is a transverse wave.

Both the energy carried by a sine wave and its intensity are proportional
to the square of the wave’s amplitude.

The velocity of propagation of a sinusoidal wave is given by

v = λ f.

This relationship holds for any periodic waveform.
Waves interfere with one another. Any phenomenon exhibiting inter-

ference must have a wave nature. Since light forms interference patterns,
then light must be a wave.

Two important interference patterns are single-slit diffraction and
double-slit interference. The minima of the single-slit diffraction pattern
occur at angles θ given by the expression

b sin θ = mλ,

where b is the width of the slit and m is any positive or negative
integer 
= 0.

The maxima of the double-slit interference pattern occur at angles θ
given by the expression

d sin θ = n λ,

where d is the separation between the slits and n is any integer 0,±1 ±
2, . . ..

An array of N equally spaced slits (N ≥ 2) has principal maxima
satisfying the double-slit equation above. For N � 2, the array is called a
diffraction grating. The integer n is called the “order” of the corresponding
intensity maximum.

Diffraction gratings are used to measure accurately and precisely the
wavelengths of light emitted from or absorbed by atoms. Each atomic
species has a unique spectrum that identifies the atom and provides clues
to its internal structure. Visible-light, or optical, spectroscopy has played
an extremely important role in the development of modern physics and
especially atomic physics.

If λ is known, an interference pattern can be used to study the object
that generates it. Interference can be used to determine the sizes and
structures of objects over an enormous range, from smaller than atoms to
larger than stars. To distinguish structural features of size x with waves
requires waves with wavelength λ of the order of x or smaller.

Light waves are remarkable in that their speed c in a vacuum is constant
regardless of how fast an observer is moving toward or away from their
source. In Newtonian physics this is impossible, and physics had to be
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completely restructured to take this property of light into account. The
next two chapters will discuss this restructuring, Einstein’s special theory
of relativity, and some of its surprising consequences.

PROBLEMS

1. The diagram in Fig. 10.19 shows two waves labeled #1 and #2 as
they appear at time t = 0.

a. Write an equation for wave #1 in terms of its wavelength at t = 0.
b. Write an equation for wave #2 at t = 0. Be particularly sure to

get the phase constant correct.

2. In North America electricity is sent over wires in waves that have a
frequency of 60Hz. If these waves travel over wires at the speed of light,
3 ×108 m/s, what is their wavelength? Compare this to the wavelength of
visible light.

3. A TV picture is generated by an electron beam that makes 512
parallel passes from left to right across the screen 30 times each second.
In the days before cable TV, “ghosts,” or secondary images, would appear
due to reflections of the signal from nearby buildings. (See Fig. 10.20.)
If a ghost appears 1 inch to the right of the main image on the screen,
and the screen is 20 inches wide, what is the extra distance L that the
reflected wave travels to reach the TV antenna?
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FIGURE 10.19 Two waves at time t = 0 (Problem 1).
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L/2

FIGURE 10.20 How reflections produce ghost TV signals (Problem 3).
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FIGURE 10.21 Two waves identical except for phase (Problem 0a).

4. Using a microscope a student finds that there are 50 slits per cm in a
diffraction grating. She then takes light from a laser of unknown frequency
and shines it through the grating onto a wall 6m distant from the slits.
On the wall she finds that the displacement of the first maximum from
the center is 1.5 cm.

What is the wavelength of the laser light?

5. Consider the diagram in Fig. 10.21 showing a snapshot, taken at
t = 0 s, of two waves.

a. What is the phase difference between the two waves?
b. What is the wavelength of the above waves?
c. If snapshots taken 0.5 s apart show that the waves move 2 cm during

that interval of time, what is the frequency of the waves?
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6. Two sinusoidal waves are given by y1 = A sin(kx − ωt) and y2 =
A sin(kx − ωt + π

3 ), where k = 5π m−1, ω = 800π s−1, and A = 4.0 cm.
a. What is the frequency f of each wave?
b. What is the wavelength λ of each wave?
c. What is the speed v of each wave?
d. What is the amplitude Atotal of the superposition of the two waves

y1 + y2?

7. Figure 10.22 shows two small loudspeakers in open air, A and B, emit-
ting sinusoidal sound waves of equal amplitude and of frequency 840Hz.
An observer listens to the sound from the speakers while moving along
the line OO′. At point M, directly opposite the midpoint of the line AB,
he is aware that the sound is the loudest; as he continues toward O′, he
notices that the intensity has dropped to zero at point Y. He measures
the distances AY and BY to be 3.35m and 3.15m, respectively.

a. From this information, find
i. the wavelength of the sound and
ii. the speed of sound in air.

b. Suppose the observer returns to point Y and stays there as the
frequency of the sound is slowly raised. At what frequency will he
hear the sound intensity go through a maximum? Can this happen
at other frequencies? Explain clearly.

8. Consider further the cards discussed in Exercises 20–23 on p. 303.
Assume the MIP wave is a sinusoidal plane wave traveling from left to
right. It has a wavelength of 16 card thicknesses, a velocity of 3 card
thicknesses per second, and, by arbitrary choice, the phase of the wave at
card 20 is 0 radians at time t = 0.

A

B

O

M

Y

O

FIGURE 10.22 Speakers and listener for Problem 7.
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a. Show that to the left of the jet black card 24 card 20 will be white.
What are some possible phases corresponding to this card?

b. If you hadn’t already been told that the wave is moving from left
to right, why in Exercise 5 are the two snapshots consistent with
the wave traveling to the left with a speed of 13 card-thicknesses
per second?

c. If you didn’t already know the direction of the wave, it could have
many other speeds consistent with these observations from two
snapshots. Give two of them in each direction.

d. Suppose you had not been told the wave is moving left to right.
What measurements might you make to decide whether the wave
was traveling to the right or to the left?

e. Suppose the wave is traveling to the right. Suppose also you can
watch the color of card 24 without removing it from the stack.
Describe what happens to the color of card 24 as you watch.

f. If you take a snapshot 3 s after the one you took at time t = 0, you
will find that card 29 is white. What is the phase of the wave at
card 29? What is the phase of the wave at card 13?

9. A laser emitting light of wavelength 600 nm illuminates a long, thin
wire 20 cm from a screen and parallel to it. The illumination produces an
interference pattern as shown in Fig. 10.23.

a. At what angle does the first minimum of the intensity pattern
occur? The second minimum?

b. What is the diameter of the wire?
c. If the wire used above were replaced by one having twice the di-

ameter, what would be the new positions on the screen of the first
and second intensity minima?
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FIGURE 10.23 Intensity pattern produced when a laser illuminates a thin wire
(Problem 9).
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FIGURE 10.24 Two speakers emitting the same wavelengths in phase with each
other—(Problem 10).

d. How thin could a wire become and still produce at least one in-
tensity minimum on the screen? What does this imply about using
light to measure small objects?

10. Two identical small loudspeakers emit sound waves of wavelength λ,
and the waves are in phase. The loudspeakers are separated by a distance
of 0.9m, as shown in Fig. 10.24.

a. If λ = 30 cm, will the interference at point P be constructive or
destructive? Explain.

b. What is the frequency of the waves?
c. If the frequency is halved, what kind of interference occurs at point

P? Explain.

11. Light of wavelength 600 nm illuminates a double slit apparatus and
produces the interference pattern shown in Fig. 10.25. Note that θ is
expressed in radians.

a. Find the slit spacing d.
b. Find the width b of each slit.
c. If the number of slits is increased to 3, with the same d and b as

above, how would the intensity of the central maximum (θ = 0)
change? For your answer give the ratio of the new intensity to the
old intensity.

d. If the slit width b is doubled, what would happen to the interference
pattern? Draw a sketch of the new interference pattern.

12. 600-nm light passing through a single slit produces the diffraction
pattern shown by the solid line in Fig. 10.26.

a. What is the slit width?
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FIGURE 10.25 Interference pattern from the double slit arrangement in problem (11).
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FIGURE 10.26 Single-slit diffraction patterns for problem 12. The solid line
corresponds to light with wavelength λ = 600 nm.

b. Light of a different wavelength produces the diffraction pattern
shown by the dotted line. What is the wavelength of this light?

c. Suppose, instead of changing the wavelength, you change the width
of the slit to produce the dotted diffraction pattern. Did you widen
or shrink the width of the slit? What is the new width?

13. If you know the wavelength of the light incident on a single slit,
you can determine the slit’s width from measurements of the observed
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diffraction pattern and the geometry of your set up. What is the minimum
slit width you could determine using 600-nm light?

14. Suppose that you wish to measure the exact width of a human hair
using light. You also know that the diameter of the hair is roughly 0.1mm.
Using the diffraction pattern as a measuring technique, would it be better
to use far-infrared radiation (λ = 1000μm) or visible light (λ = 600nm)?
Explain.

15. It is quite possible to build a useful spectrometer from simple com-
ponents. Figure 10.27 shows such an instrument. Construct your own
spectrometer using an inexpensive replica grating (your instructor should
be able to get you one) and Fig. 10.27 as a guide. Use your spectrometer
to measure the spectrum emitted by the streetlamps on your campus or
in your town. Identify the gas emitting the light. Table 10.4 (p. 319) may
be of help.

16. The bright colors given off by aerial fireworks are due to metallic
powders mixed with the explosive. The rapid combustion of the explosive
heats the metal, causing it to emit radiation at wavelengths included in
its emission spectrum. What metals are responsible for the various colors?
Search the literature for answers and write a paragraph or two describing
the physics of fireworks. Hint: A 1991 issue of Scientific American carried
a full article devoted to fireworks displays.

17. Visible light emitted by a gas discharge tube like the one shown
in Fig. 10.16 (p. 320) passes through a diffraction grating. Interference
maxima are seen only at angles 24.0◦, 27.1◦, 32.3◦, 37.4◦, 54.4◦, and 65.8◦.

Slit

cm measure

Stick    0.5 m

Grating

Card

FIGURE 10.27 Basic components of a diffraction spectrometer (Problem 15).
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FIGURE 10.28 A diffraction grating made of alternating strips of transparent and
opaque material (Problem 18).

a. Which angle belongs to the shortest wavelength light?
b. The vapor within the discharge tube is one of those shown in

Table 10.4 (p. 319). Which one is it? Show how you found your
answer.

c. Find the distance d between the slits of the diffraction grating.

18. A diffraction grating is made of alternating strips of transparent and
opaque material, each of the same width b, as shown in Fig. 10.28. When
monochromatic visible light of wavelength λ illuminates the grating, the
first interference maximum appears at θ = ±15◦.

a. At what other angles do interference maxima appear?
b. Estimate the largest and smallest values of b that will produce a

diffraction grating useful for working with visible light.

19. The amplitude Atot of the sum of two waves of equal amplitude A
and frequency f (and thus wavelength λ) that are out of phase by Δφ is

Atot = 2A cos
(

Δφ

2

)

.

This result can be represented geometrically by the sum of two vectors
(arrows) of the same length A attached end-to-end with an angle Δφ
between them as shown Fig. 10.29.

Use the law of cosines and show that the geometric representation in
Fig. 10.29 gives the correct result for Atot.

20. Consider a double slit apparatus with slit width b much smaller
than the slit separation d (see Fig. 10.30a). When monochromatic light
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Atot A

A

FIGURE 10.29 Amplitudes of waves that differ in phase by an angle Δφ add like
vectors with the angle Δφ between them (Problem 19).

¾ dd

(a) (b)

FIGURE 10.30 Two different arrangements of slits for Problem 20.

of wavelength λ passes through the apparatus, the first interference max-
imum falls at an angle θ and has an intensity I. Now imagine that two
more slits are added in between the original two slits such that the four
slits are equally spaced (Fig. 10.30b), and that the slit assembly is then
shrunk to 75% of its original length. At the same angle θ, what is the new
intensity? (Hint: use the geometric construction from Problem 19.)

21. The interference pattern shown in Fig. 10.31 is observed when
monochromatic light of wavelength 600 nm passes through an array of
several evenly spaced slits. The angle θ is given in radians.

a. How many slits are there?
b. What are their spacing and width?
c. The interference pattern appears on a screen 15 m away from the

slits. How far apart on the screen are the points P and P’?
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FIGURE 10.31 Interference pattern produced by 600-nm light passing through an
array of evenly spaced slits (Problem 21).

SPREADSHEET EXERCISE: ADDING
WAVES—INTERFERENCE

In this exercise you use a spreadsheet such as Microsoft Excel R© to gen-
erate two sine waveforms with the same wavelengths λ but different
amplitudes A1 and A2 and different phase constants φ1 and φ2. Then
you add the waves together and see how their phase difference φ2−φ1 de-
termines their interference. A good way to make the interference apparent
is to use the spreadsheet to graph the waveforms and their sum.

You can also show that the general formula for the sum of two waves

B sin
(

2π x

λ
+ φ3

)

,

where

B =
√

A2
1 + A2

2 + 2A1 A2 cos(φ2 − φ1)

and φ3 = φ1 ± cos−1

(
A1 + A2 cos(φ2 − φ1)

B

)

,

gives the same result as you get when you numerically add the waves
together point by point.
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Or you might settle for examining the simpler case when the two waves
have the same amplitude A = A1 = A2. For this special case B and φ3

become

B = 2A cos
(

φ2 − φ1

2

)

and φ3 = φ1 ± (φ2 − φ1)
2

,

which agrees with Eq. 7 on p. 300.

When you write these formulas in your spreadsheet you may want to
save some typing by setting φ1 = 0 and letting φ2 be the phase difference.
If you do this, be sure you have the correct sign for φ2.

INSTRUCTIONS

The following step-by-step instructions are for Microsoft Excel R©. They
are supplied for two purposes. First, they are to help you through what
may be unfamiliar uses of Excel and to show you how to fix up the graphs
to be useful. Second, and more important, the instructions show you how
to set up a spreadsheet with parameters that you can vary. If you follow
these instructions, the spreadsheet will be set up so that you can change
the phase difference by typing in a single number. Such an arrangement is
very useful for doing a succession of calculations with different parameters.
In this case you will be able to vary the phase difference and show how
adding the waves can give constructive, destructive, or partial interference
depending on the difference in phase between the two waves.

In what follows, the material on the left side of the arrows is what you
should type; the address to the right of the arrow tells you in what cell
of the spreadsheet to type it.

Begin by setting up some headings and putting in some initial values
for the wavelength and the phases of the waves.

Phase →A5

Radians→B5

Degrees→C5

phi-1 →A6

0 →B6

phi-2 →A7
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=pi()/3 →B7

=degrees(B7) →C7

4 [wavelength]→B8

x →A10

Next fill up 101 cells with successive values of x from 0 to 10 in steps
of 0.1:
Enter 0 into A11; enter =A11+0.1 into A12; click on A12 and grab the
little square in the lower right hand corner and drag it to A111.

Now put in some more headings.

Wave1 →B10

Wave2 →C10

Sum →D10

Theory→E10

Now load some formulas, one for wave1 and another for wave2:7

=sin(2*PI()*$A11/$B$8 + $B$6) → B11
=sin(2*PI()*$A11/$B$8 + $B$7) → C11.

Then put the sum of these two waves into D11:
=$B11 + $C11 → D11.

Copy these formulas into the rest of the cells of their columns by click-
ing on B11 and dragging to B111; on C11 and dragging to C111; on D11
and dragging to D111.

You should now have the two waves in the B and C columns and
their sum in the D column. Notice that if you want to change the phase
difference, all you need to do is change the entry in cell B7. Try entering
=PI() into B7. What happens to the sum?

Notice that this program is set up to have you enter the phase angle
in radians into cell B7. When you do that, it automatically calculates the
phase angle in degrees in cell C7. Perhaps you would like to do it the
other way around.

7The dollar signs are important in the cell addresses. They freeze the reference to the cell so
that if you move the cells containing the reference the address does not change. A dollar sign in
front of the letter freezes reference to the corresponding column but allows the row to change;
a dollar sign in front of both letter and the number freezes the reference to the particular cell.
We want to do this when we have stored in a cell a number that we will use in many other
places in the spreadsheet.
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MAKING A NICE GRAPH

Try to set up your graph with a nice grid and uncluttered lines.
Begin by clicking on the Chart Wizard icon. Choose chart type “XY
(Scatter)” and choose a sub-type (“smooth without data points” is good).
Click “finish” and some sort of graph should appear.

To tell the graph what data to plot:
Right click on the grey area of your graph and choose “Source Data”;
name your data “wave1”; click on“X values” and select A11 to A111 and
click on the button at the end of the line containing this information;
repeat for “Y values”; now click on “Add” and repeat for wave-2; again
click on “Add” and repeat for “Sum.”

Your graph should now contain three plots: wave1 wave2, and their
sum.

To be quantitatively useful a graph should have a grid. Also its axes
should be labeled and have reasonable scales. The various curves on your
graph should be clearly labeled and easily distinguished. Right click on
the grey area of your plot and choose “Chart Options.” The various tabs
available enable you to supply all the foregoing features.

Give each of the three curves on your graph a distinctive line style.

TASKS

a. Put some useful titles and identifying labels on your graphs.
b. Print two graphs, one for a phase difference of π/3 and another for

a phase difference of 0.9π.
c. Add to the spreadsheet a column that calculates the sum of the

waves according to the formula for adding waves of the same am-
plitude and wavelength. To take a square root, use the spreadsheet
function =SQRT( ). Print one page of your spreadsheet, the first
35 lines or so, showing that direct addition of the waves and the
addition formula give the same result.

d. Show the formula that you used above the column containing the
evaluations of the formula.

Hand in your three printouts.
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Time and Length
at High Speeds

11.1 INTRODUCTION

Electrons and light are two of the most important tools we have for
learning about the structure of atoms. To use these tools correctly, you
need to know how energy and momentum are transferred by objects mov-
ing with speeds approaching the speed of light. This means that you need
to be able to use some of the ideas of Einstein’s special theory of relativity.

The fundamental ideas of the special theory of relativity have to do
with the nature of space and time. At high speeds it becomes apparent
that these two concepts are interconnected in ways not suspected until
Einstein proposed his theory. These connections mean that for objects
moving with speeds approaching the speed of light, energy and momen-
tum are related in ways quite different than experience with everyday
speeds suggests. Although energy and momentum are the tools we need
for studying atoms, the ideas of space and time that come from the special
theory of relativity are so interesting in themselves that you should learn
a little about them first.

It is fundamental to the special theory of relativity that the speed of
light c is constant for all observers regardless of their relative motion.
Equally fundamental is the idea that the laws of physics are the same
in all frames of reference moving at constant velocity. This is called the
“principle of relativity.”In the following sections, after a look at some
early experimental evidence for the constancy of c for all observers mov-
ing or at rest, we will see how these facts of nature lead us to expect
moving clocks to run slow and moving lengths to become shorter. These
curious predictions of the special theory of relativity have a surprising
implication called the “relativity of simultaneity.”: Two events that occur

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 339
DOI 10.1007/978-0-387-79080-0 11, c© Springer Science+Business Media, LLC 1999, 2010
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some distance apart and at the exact same time in your reference frame
will occur at two different times in the reference frame of someone moving
relative to you.

It is important for you to get a working understanding of what it means
to say E = mc2. You especially need to know how to describe kinetic
energy at high speeds and how kinetic energy is connected to momentum.
Therefore, the next chapter will deal with these topics and the related
fact that mass depends on velocity.

The ideas presented in this chapter mean that Newton’s description of
matter and motion and time and space is wrong. In other words, most of
the physics you have been taught so far is wrong! Yet Newton’s physics
works very well for the world in which you live because at low relative
speeds it is the best approximation to the special theory of relativity.
This statement has a precise mathematical sense: Newtonian physics is
the limiting case of Einstein’s theory of relativity for objects whose relative
speeds v are much smaller than c. Thus Newton’s physics is an excellent
description of the world in which you live, sufficient to build skyscrapers
or send astronauts to the Moon. You have not wasted your time learning
Newtonian physics.

This idea of one formulation of physics as a limiting case of a more
general theory is important. You will see this sort of thing happen often
as you study more physics. To fully appreciate how one formulation can
be obtained as the limiting case of another, you need a mathematical
tool that permits you to create simple approximate equations from com-
plicated exact ones. This tool is so important and so useful that we are
going to introduce it to you before going any further.

11.2 APPROXIMATING A FUNCTION

Physics theories usually give us formulas, i.e., algebraic relations between
some independent variables and some dependent variables. You have run
into lots of these: y = 1

2g t2, K = 1
2m v2, 2 a y = v2 − v2

0 , and so on. The
algebraic equation is a particularly convenient representation of a simple
function, but there are many other representations. For example, your
math and physics teachers are always nagging you to use graphs. With
graphs you get an overall picture of a function’s behavior; with graphs
you can represent complicated functions for which there are no formulas.

Figure 11.1 shows the graph of a smooth, single-valued function y(t)
vs. t. Perhaps it describes a mass falling and rising in some weird way
that no formula can describe. But formulas are quite convenient, so here
is how to approximate with a simple formula at least part of the behavior
shown in the graph.
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FIGURE 11.1 A graph of position as a function of time.

Straight-Line Approximations

To approximate the function look at such a small part of the curve that it
is smooth and simple. The graph in Fig. 11.1 shows you that if you take
a small enough part of y(t) centered on some time t0, the function will
be almost a straight line. If you don’t let t get very far from t0, you can
approximate y(t) with a linear function, yline(t) = m t + b, the equation
of a straight line.

To write down the equation of the straight line that best approximates
the curve in the graph around t0, you need values for the slope m and
the intercept b. You can see that the best straight-line approximation will
be the line tangent to the curve y(t) and touching it at the point y(t0).
Figure 11.2 reminds you that for any point yline(t) on the line, the slope
m is the constant ratio

m =
yline(t) − y(t0)

t − t0
,

so you can write the equation of the straight-line approximation at the
point (y(t0), t0) as

yline(t) = y(t0) + m (t − t0). (1)

� EXERCISES

1. Consider the curve in Fig. 11.3. Find equations that give the best
straight-line fit to the curve at points (a), (b), and (c).

You can use Eq. 1 to find a straight line to approximate a small segment
of any curve, but it’s particularly convenient to apply to it curves for which
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FIGURE 11.2 The best straight-line approximation to a curve near some point
(y(t0), t0) on the curve is the straight line tangent to the curve at that point.
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FIGURE 11.3 An arbitrary curve.

formulas—even quite complicated ones—exist. If you have a formula, you
can use the fact that the slope of a curve at a particular point t0 can be
found by taking the derivative y′(t) and evaluating it at that point; that
is, m = y′(t0). Then you can write the approximation to the curve as

y(t) ≈ yline(t) = y(t0) + (t − t0) y′(t0). (2)

� EXAMPLES

1. Suppose the function is y(t) = 5/t2. What would be the best
straight-line approximation of this function at t = 5?
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TABLE 11.1 Comparison of values of the
exact and approximate versions of the

function 5/t2

Time Exact Approx Percent

t y(t) yline(t) difference

4 0.3125 0.2800 −10.4

4.4 0.2583 0.2480 −4.0

4.6 0.2363 0.2320 −1.8

4.8 0.2170 0.2160 −0.5

5. 0.2000 0.2000 0

5.2 0.1849 0.1840 −0.5

5.4 0.1715 0.1680 −2.0

5.6 0.1594 0.1520 −4.7

The derivative of 5/t2 is −10/t3. The value of this derivative at t = 5
is −0.08. The value of the function at this point is y(5) = 0.2. Therefore,
the equation of the straight-line approximation is

yline(t) = 0.2 − (t − 5) 0.08.

If you evaluate y(t) and its approximation yline(t) at points in the vicin-
ity of t = 5, you will get the results shown in Table 11.1. For any value
of t between 4.8 and 5.2 the straight line approximation gives the same
answer as the exact formula to within 0.5%. If that is precise enough, you
can use the approximate formula.

� EXERCISES

2. Use a spreadsheet to evaluate the function of Table 11.1 and its
approximation. Then have the spreadsheet plot the two functions on
the same graph. Choose your ranges of values and scale your plots to
show clearly that the approximation works well around t = 5 and not
so well for values more distant from 5.

3. Find the linear function that best approximates 5/t2 in the vicinity
of t = 10. Plot both the exact function and the approximate one for
values of t around t = 10.
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Binomial Expansions

Functions of the form

y = (1 + x)n

are common, and they deserve particular attention. Because the argument
of the function has two terms, 1 and x, it is called a “binomial function.”
You will often want to approximate a binomial function around x = 0, so
consider linear approximations for just this case.

To use Eq. 2 first find y(0). For binomial functions of this form and for
any value of the exponent n, y(0) = 1. Next find y′(0). The derivative of
the binomial function is

dy

dx
= f ′(x) = n(1 + x)n−1,

and when you evaluate this at x = 0 you get f ′(0) = n for any value
of n. Inserting these values, you see that around the origin any binomial
function of the form y = (1+x)n can be approximated by the straight-line
equation

y = 1 + nx. (3)

The quantity n here can have any value, integer or fractional, positive or
negative. If you know Eq. 3, you then never have to do any differentiation.
All you need to do is look at the exponent of the binomial. Another
advantage is that it is easy to show that the approximation is quite good
as long as x is much smaller than 1. If x ≤ 0.1, the approximation will
be accurate enough for most of our purposes. Equation 3 is an example
of the first step of what is called the “binomial expansion.”

� EXAMPLES

2. Find a linear approximation to the function y =
√

1 + x at the
origin. Recognize that y =

√
1 + x is the same thing as y = (1 + x)1/2

so that in Eq. 3 n = 1
2 , and the approximation is

y = 1 +
x

2
.

3. Here is the linear equation that best approximates the function
y(x) = 1/

√
1 + x near the origin:

y =
1√

1 + x
= (1 + x)−

1
2 ≈ 1 − 1

2
x

This example shows that n can be a negative fraction.
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To use Eq. 3 you may need to manipulate a given binomial into the
form (1 + x)n. For example, suppose the binomial is y =

√
4 + 8x. If you

realize that you can factor the radical, you can rewrite it as y = 2
√

1 + 2x.
Next imagine the substitution z = 2x, so that you get y = 2

√
1 + z. Then

apply Eq. 3 to get

y = 2
(

1 +
1
2
z

)

= 2 + 2x.

With practice you can do a lot of this in your head.
Fairly often, you may want to find an approximate function that is

linear in some compound quantity. To see what this means, look at the
following.

� EXAMPLES

4. Suppose you have a function

K(p) =
√

m2 + p2 − m,

where m is constant and p is the independent variable. Find an approx-
imate formula for K when p � m. Then factor m out from the radical,
and treat the compound quantity p2

m2 as a single entity. Because p � m,

you know p2

m2 is small compared to 1, and you can write

K(p) = m

(√

1 +
p2

m2
− 1

)

≈ m

(

1 +
1
2

p2

m2
− 1
)

=
p2

2m
.

Not only does the above example show you an important trick for
finding an approximate formula, it also illustrates one of those cases where
the approximate formula is simpler than the exact one.

Amaze Your Friends!

You can use the binomial expansion to do mental arithmetic. Suppose you
wish to know the square root of 1.03. You now know that this is the same
as (1 + 0.03)1/2, which has a binomial expansion of 1 + 0.03/2 = 1.015.
When you compare this to the 1.0149 you get with your calculator, you
see that the approximation is very good.
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� EXERCISES

4. What is the cube root of 1.05? Do it in your head.

5. What is the square root of 0.96? Do it in your head.

6. Use the binomial expansion to find the square root of 4.8. Do it in
your head.

7. Evaluate the cube root of 0.00103. Do it in your head.

The Small-Angle Approximation

You have been using the small-angle approximation, sin θ ≈ θ or tan θ ≈ θ
since you began taking physics (e. g., see Chap. 2). Now you can discover
that it is just the best approximation of the sine function by a straight
line.

It may help you to start your discovery by doing the following exercise.

� EXERCISES

8. Draw a graph of y = sin θ for −π/4 < θ < π/4. From the graph
obtain the equation of the straight line that best approximates the
graph in the vicinity of θ = 0. Do your work in radians.

Now use y(x) ≈ y(t0) + (t − t0) y′(t0) Eq. 2 to derive the small angle
approximation.

� EXAMPLES

5. To apply Eq. 2 to sin θ in the vicinity of θ0 = 0 make the following
substitutions:

y(t0) −→ y(θ0) = sin 0 = 0,
y′(t0) −→ y′(θ0) = cos 0 = 1,
t − t0 −→ θ − θ0 = θ − 0 = θ.

So the best linear approximation to sin θ around θ = 0 is

sin θ ≈ θ,

which, voilà, is the small-angle approximation.
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You can use this technique to produce approximations to any
reasonable function.

� EXERCISES

9. Show that the best straight-line approximation to the function y =
tan θ around the point θ = 0 is y ≈ θ.

10. Show that the best straight-line approximation to the function
y = a ex around the point x = 0 is y ≈ a(1 + x).

11. Show that the best straight-line approximation to the function
y = ln(1 + x) around the point x = 0 is y ≈ x.

In discussing and listening to physics you will often need to know the
linear approximations to sin θ, tan θ, ex, ln(1 + x), and (1 + x)n; learn
them.

In this and the next chapter you will see how the approximation
(1+ x)n = 1+ n x+ · · · shows that at low speeds Newtonian mechanics is
the best approximation to the exactly correct special theory of relativity.

11.3 FRAME OF REFERENCE

The idea of a “frame of reference” is central to any discussion of mo-
tion. An object’s frame of reference is the object and the collection of all
things that are at rest relative to it. Thus, assuming that you are not
doing anything very weird as you read this, your frame of reference right
now includes yourself, your table, chair, lamp, room and its surrounding
buildings and landscape.

Right away you can see that different objects can have different frames
of reference. For example, if you are reading this while riding on a bus,
then you, the vehicle, its seats, windows, aisle, and driver make up a
reference frame. If there happens to be a car in the lane next to yours
traveling at exactly the same speed, then it is also in your reference frame.
But someone standing on the roadside as you drive past clearly is in a
different reference frame, as are people in cars moving past your bus in
either direction.

In important ways the appearance of the world depends on your choice
of reference frame. If you are riding in a bus, the trees and houses move
past you. If you are standing under a tree at the side of the road, you see
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the bus move by. If you are driving along in a car, you might see the bus
approach from one direction and pass you while the tree approaches and
passes you from the other direction. You can see that the velocities you
measure depend on what frame of reference you choose.

Velocity Depends on Reference Frame

For everyday events we so often choose Earth as the frame of reference
that we usually forget that a choice was made. If someone told you that
the bus is going 60mph, you probably would not ask what reference frame
was being used. And you might chuckle if someone said that a telephone
pole leaped at his car and dented the bumper. The statement is wry and
ironic, but in the reference frame of the driver of the car it describes what
happened.

The velocity describing an object’s motion depends on what frame of
reference is used.

� EXERCISES

12. Imagine that you are standing out on the highway (see Fig. 11.4)
as a bus drives by going east at 60mph and overtakes a truck going east
at 30mph. There are three different reference frames involved here.

13. What reference frame has been used to describe this situation?

14. Describe the velocities using the reference frame of the bus.

15. What do the motions look like in the reference frame of the truck?

vb

vt

vt – vb

(a) (b)
– vb

FIGURE 11.4 (a) Motion of bus and truck seen from observer’s frame of reference S;
(b) motion of observer and truck seen from bus’s frame of reference S′.
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16. Simplicio says that momentum, mv, is an intrinsic property of
a body like its color. What do you tell him? Give some numerical
examples to illustrate your argument.

Does Physics Depend on Reference Frame?

A major historical achievement of physics is the description of how forces
produce the velocities and paths followed by moving bodies. But if veloci-
ties and paths depend on the reference frame in which they are described,
does this mean that the laws of physics are different in different reference
frames?

You need to be careful about the word “mean” here. Clearly, the nu-
merical values of physical quantities depend on the reference frame. If you
take a 6 kg bowling ball at rest and set it rolling at 3m/s down a bowling
alley, it goes from having a kinetic energy of 0 J to having a kinetic energy
of 27 J in your frame of reference. But if someone is traveling along a con-
veyor belt at 1m/s beside the alley, then in her frame of reference the
kinetic energy is initially 3 J, and then 12 J. In the first case the kinetic
energy changes by 27 J; in the second case the change is 9 J, quite different
numbers.

But a law of physics is not the same thing as the number it predicts
in given circumstances. In this case the relevant law of physics is that a
constant force F applied over some distance s changes the kinetic energy of
a mass m by an amount equal to F s. The law ΔK = F s can be correct in
both reference frames even if ΔK is different in the two reference frames,
as long as the value of the product F s also differs in the two reference
frames.

Suppose the bowling ball was thrown in 0.5 s with a constant force of
36N, so that the force was applied over a distance of 0.75m (s = 1

2at2) in
the reference frame of the bowling alley. Then in that frame of reference
the change in kinetic energy would be 36N×0.75m = 27J. In the reference
frame of the conveyor belt, the force and the time of throw are the same,1

but because the belt is moving away from the thrower at 1m/s, the force
is applied over a distance shorter by 0.5 s × 1m/s = 0.5m. Therefore, in
this frame of reference the force is applied over a distance of only 0.25m
and so produces a change in kinetic energy of 36N × 0.25m = 9J, which
is the result obtained above. Thus, the equation F s = ΔK holds in the
two different frames of reference although the actual values are different.

1Force and time behave this way in Newtonian physics, but not in Nature, which is why it is
necessary to replace Newton’s theory with Einstein’s.
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This idea that laws of physics are the same in different reference frames
has led physicists to propound “the principle of relativity.” The principle
is most easily understood if we use only frames of reference that are in
uniform, straight-line motion relative to one another. The bowling alley
and the conveyor belt discussed above are good approximations of two
such frames. (They are not moving in exactly straight lines, because they
are all rotating around Earth’s axis while going around the Sun in an
ellipse.) Then experience leads us to say that the laws of physics are the
same in all such frames of reference. This is the “principle of relativity.”

Notice that if the laws of physics are identically the same in all uni-
formly moving frames of reference, then there is no experimental basis for
thinking that any one frame is the “right” or “special” one. You choose a
particular reference frame for describing some set of motions not because
the physics will be correct in one and wrong in another, but because the
chosen frame is convenient—maybe it makes calculations easier; maybe it
makes interrelationships more evident.

The principle of relativity means that for physicists in enclosed labo-
ratories moving with constant velocity relative to each other there is no
experiment that can be done that will tell who is moving and who is not.
There is no special frame of reference, no place in the universe that is
absolutely at rest relative to everything else.

How Motion Described in One Frame is Described in Another

Given a description of motion in one reference frame, you often need to
find its description in another. You have already transformed one de-
scription tFo another when you thought about the bus, the truck, and an
observer (you). In the observer’s frame of reference, call it the S frame
(Fig. 11.4a), the bus was traveling with a speed of vb = 60mph, the truck
with vt = 30mph, and the observer was at rest, vo = 0mph. However, in
the bus’s frame of reference, call it S′n (Fig. 11.4b), the velocities were
v′b = 0mph, v′t = −30mph, and v′o = −60mph. You probably made the
calculations without much thought about what you were doing. Now let’s
codify what you did.

First, notice that relative to the S frame, from which you are trans-
forming, the S′ frame, to which you are transforming, has a velocity
V = 60mph. (Use + for eastward and − for westward motion.) Then,
to transform the velocities of objects in the S frame to their velocities in
the S′ frame, you do the following calculations:

v′b = vb − V,

v′t = vt − V,

v′o = vo − V.
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The general rule to go from the S frame to the S′ frame is to subtract the
velocity of S′ relative to S from the velocity of the object in S, i.e.,

v′ = v − V. (4)

Equation 4 is called a “transformation,” because it transforms the velocity
from the S frame to the S′ frame.

� EXERCISES

17. Use Eq. 4 to find the velocities of the bus, truck, and observer in
the frame of reference of the truck.

The most astonishing feature of Eq. 4 is that it is WRONG. It is an
excellent approximation as long as all the velocities are small compared
to the speed of light c = 3 × 108 m/s, but it is never exact.

11.4 THE CONSTANCY OF c

The incorrectness of Eq. 4 follows from a most surprising fact: The speed of
light is the same in all reference frames regardless of their relative motion.

You can see at once that this fact contradicts Eq. 4. Imagine a parked
car that turns on its headlights. The light will come past you at a
speed c. Now imagine that you are moving toward the car at 120mph
(V = −120 mph), and it turns on its lights. Equation 4 predicts that
you will measure the speed of the light going past you to be greater
by 120mph. However, no change in the speed is observed experimentally,
and so Eq. 4 must be wrong.

From early in the 1800s, when interference phenomena showed that
light is a wave, physicists thought that light must be a disturbance in
some medium and that light passed from one point to another like sound
waves through a solid. As they learned more about electromagnetism,
physicists deduced more properties of the medium and gave it a name.
The hypothetical medium that carried light waves was called the “ether.”
If there were an ether and it carried light waves, then an observer moving
relative to the ether would observe light moving faster or slower than
c depending on whether the observer was moving toward or away from
the source. For a number of reasons, particularly for logical consistency,
Einstein concluded there was no ether and that c would be the same for all
observers independent of the relative motions of the light source and the
observers, and Eq. 4 must then be wrong. His conclusion was supported



352 11. TIME AND LENGTH AT HIGH SPEEDS

by the results of a remarkable experiment performed by the American
physicists Albert A. Michelson and Edward W. Morley.

The Michelson–Morley Experiment

Although by the end of the nineteenth century most physicists thought
there was some medium that supported the propagation of electro-
magnetic waves, there was no experimental evidence for its existence.
Michelson set out to find experimental proof that the ether existed. He
realized that in its orbit around the Sun, Earth must move through the
ether and at some point during the year travel with at least its orbital ve-
locity of 30 km/s relative to the ether. Under these conditions the speed of
light measured along the line of Earth’s motion through the ether would
be slightly different from the measured speed of light traveling perpen-
dicular to the direction of Earth’s motion through the ether. Even using
the high speed of Earth’s motion in space, Michelson expected the effect
to be small. Earth’s speed relative to the Sun is only (3 × 104 m/s)/(3 ×
108 m/s) = 10−4 of the speed of light, and, as you will see, the effect that
could be measured was proportional to the square of this number, i.e., to
10−8. Despite the smallness of the effect, Michelson expected to obtain a
significant result because he had invented an ingenious instrument that
could measure a difference in the travel times of two wavefronts to within
a hundredth of a period of a light wave, i.e., to within 2 × 10−17 s.

Michelson Interferometer

In his work with interference of light waves, Michelson developed a de-
vice that he called the “interferometer.” With it he could measure length
differences as small as a few nanometers. The interferometer split light
from an extended source into two wavefronts and sent them on round
trips along two paths at right angles to each other and recombined them
at the end of their trips. Two paths at right angles were exactly the right
arrangement for testing the existence of the ether. He understood that
when he measured a 6 nm difference between the lengths of the paths
traveled by two wavefronts of light, he was also determining that the
times for the two wavefronts to travel through the interferometer differed
by 6 × 10−9/3 × 108 = 2 × 10−17 s. The capability of measuring a time
interval so small meant that he could hope to measure the very small dif-
ference in the travel times expected for two wavefronts of light traveling
along paths at right angles to each other in the ether.

Figure 11.5 shows a diagram of a Michelson interferometer. Its essential
features are the two arms of equal length L at right angles to each other,
the partially silvered mirror (G1) that splits the incoming wavefront of
light into two wavefronts, and the fully reflecting mirrors (M1 and M2) at
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Path 1

Path 2

Partially reflecting
mirror

Fixed Mirror M2

Movable
Mirror M1

Compensator

L

LLamp housing
with diffuser

G1

E

FIGURE 11.5 Schematic diagram of a Michelson interferometer.

the ends of the arms. To the left there is a source light that is arranged to
produce a fairly flat wavefront (usually of a nearly pure single wavelength)
that passes into the interferometer. G1 produces a wavefront in each arm,
one by reflecting half of the light into Path 1, and the other by trans-
mitting half of the light along Path 2. The two wavefronts then go along
their respective arms separately and are reflected by mirrors M1 and M2.
When the wavefronts arrive back at G1, half of each is reflected and half
is transmitted. The result is that an observer E receives a superposition
of two wavefronts, one that has made a round trip along Path 1 and one
that has made a round trip along Path 2.

In an ideal case the two wavefronts would travel exactly the same dis-
tance and return to G1, recombine exactly parallel to each other, and
move on to the detector E. Under these circumstances the two wavefronts
would be π radians out of phase over the whole field of view of the detector
E, and a viewer would see a uniform darkness like that in Fig. 11.6c.2 The
ideal situation is hard to achieve, and usually the phase difference varies
from constructive interference to destructive interference several times
across the field of view. The result is a pattern of dark and light rings or
bands called “fringes,” like those shown in the other panels of Fig. 11.6.

2You might think that the two wavefronts should be exactly in phase, but a light wave traveling
through air undergoes a phase change of about π radians when it reflects from a glass (or metal)
surface; but when it is traveling through glass and reflects from a surface with air on the other
side it undergoes very little phase change. In the Michelson interferometer one wave makes
two reflections at air-to-glass interfaces, and the other wave makes one. As a result, the two
wavefronts arrive at the detector essentially π radians out of phase when the two arms of the
interferometer are exactly equal.
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

FIGURE 11.6 The white represents fringes; the dark is the space between them. (a)
Fringes when the distance to M1 is somewhat less than the distance to M2; (b) when
the distances are nearly the same (reflection from the beam splitter changes the phase
by 180◦, leading to destructive interference); (c) when the distances are exactly the
same; (d) when the distance to M1 is a bit more than the distance to M2; (e) when
the distance to M1 is somewhat more than the distance to M2; (f)–(j) are for the same
mirror separations respectively as (a)–(e), except that now the mirrors are not parallel
but slightly tilted relative to one another. Taken with permission of the McGraw-Hill
Companies from F.A. Jenkins and H.E. White, Fundamentals of Optics 2nd edition,
McGraw-Hill, 1950.

Whatever the actual lengths of the two paths, light from the wavefronts
from the two arms arriving in phase at the detector produces bright places
in the interference pattern. If the length of the path through one arm is
then changed by λ/2, the bright parts of the pattern will become dark
and the dark parts will become bright—the pattern will shift. To change
the path length by λ/2, you move a mirror half that distance to change L
by λ/4, because the light makes a round trip between the beam splitter
G1 and the mirror. The interferometer is thus an extremely sensitive in-
strument, able to reveal length changes as small as 0.01 of the wavelength
of light, i.e., five nanometers.3

A Moving Interferometer

If the speed of light c were constant relative to the ether—as the speed of
sound is constant relative to the air through which it moves—Michelson
knew that in an interferometer moving through the ether, the time t1 for

3Since Michelson’s time, the sensitivity of interferometers has been increased to the point that
scientists searching for gravity waves have built an interferometer that can detect motion on
the order of attometers (10−18 m). For more information read about LIGO on the web.
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FIGURE 11.7 Rowing with a speed c relative to the water, your velocity upstream
against a current moving with speed v will be c − v relative to the bank; downstream
it will be c + v.

light to complete a round trip along Path 1 would be different from the
time t2 to make a round trip along Path 2. To see why this would be so,
consider the analogy of rowing a boat in a river. Figure 11.7 illustrates
the situation. Assume you row your boat with a steady speed c relative
to still water (the analog of the ether), and take v to be the speed of the
river relative to its banks.

How long will it take you to row your boat upstream a distance L along
the riverbank? Relative to the bank your speed will be c − v, so it will
take you a time tu = L

c−v to travel upstream the distance L. Now turn
around and row back. Your rowing speed relative to the water is still c,
but now relative to the bank your speed is c + v so it will take you only a
time td = L

c+v to get back downstream to your starting point. Your total
travel time against the current and then with the current will be

t2 = tu + td =
L

c − v
+

L

c + v
=

2Lc

c2 − v2
=

2L
c

1
(
1 − v2

c2

) . (5)

The factor 2L/c is the time it would take you to row the round trip in
still water (v = 0).

Now suppose you row your boat a distance L directly across the stream
and back. To reach a point directly across the stream, you must row your
boat heading upstream. Suppose it takes you t seconds to row across.
If, as you start out, there is a float in the water on the far side of the
river and a distance vt upstream, and you row heading toward the float,
you will reach the point opposite your starting point just at the same
time the float does. This is the same as rowing into the current so that a
component of your speed c cancels the v of the water. The result is that,
although relative to the banks of the river you travel a distance L across
the river, in the reference frame of the water you travel a distance greater
than L. In Fig. 11.8 the dotted lines indicate the path of the boat relative



356 11. TIME AND LENGTH AT HIGH SPEEDS

FIGURE 11.8 To row your boat to a point directly opposite on a stream moving with
speed v, you must row upstream at an angle and row a distance relative to the water
that is the hypotenuse of a triangle as shown.

to the water. Rowing to reach the other side, you will have to travel a
distance vt across the current. This distance is at right angles to the L
that you travel across the river, so the total distance you travel relative
to the water is

√
L2 + (vt)2. Because your speed relative to the water

is c, the time it takes you to travel the distance relative to the water is
t =

√
L2+v2t2

c . You can solve this equation for t and multiply by 2 to get
the round trip time:

t1 = 2t =
2L√

c2 − v2
=

2L
c

1
√

1 − v2

c2

. (6)

� EXERCISES

18. Show how Eq. 6 follows from the discussion in the preceding
paragraph.

19. Show that if you direct your boat with speed c heading into the
current just enough to cancel the effect of the flowing current v, then
your velocity perpendicular to the banks will be

√
c2 − v2. This is a

slightly different way to get the same result as Eq. 6.

Comparing Eqs. 5 and 6 you can see that the time t1 to row a distance
2L across the river and back, perpendicular to the river bank, is different
from the time t2 to row the same distance upstream and return parallel
to the river banks. If two boats start out together, one rowing across and
back and the other rowing upstream and down, they do not return to
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their starting point at the same time even though they row at the same
speed c relative to the water and travel the same distance 2L relative to
the banks. If light travels at a speed c in some ether, the same would
be true for wavefronts of light traveling through an ether stream. The
difference in the two travel times is what Michelson expected to observe
for wavefronts of light passing through his interferometer.

� EXERCISES

20. Explain how Eqs. 5 and 6 show that it takes longer to go a distance
L upstream and return than to go the same distance across the river
and back.

In the rowboat analogy the boat traveling with speed c in still water
stands for a wavefront of light traveling with speed c in stationary ether;
the river banks represent the interferometer; and the water traveling with
speed v past the river banks is the analog of the ether flowing through
the interferometer with speed v because of Earth’s motion through space.
A boat moving up and downstream corresponds to a wavefront moving
in one arm of the interferometer; a boat moving across the river is the
analog of a wavefront moving in the other arm.

The beam splitter G1 produces two wavefronts at the same instant
of time. With the interferometer properly aligned with Earth’s direction
of motion, one wavefront moves upstream and downstream between the
beam splitter G1 and mirror M2 along Path 2 in Fig. 11.5. The other
moves along Path 1 perpendicular to the ether flow. Along the arm of
Path 2 towards the mirror the speed of light relative to the interferometer
should be c− v Eq. 4. Coming back, the light is moving with the stream,
and its velocity relative to the interferometer should be c + v. The total
time t2 for a round trip of a wavefront along Path 2 of the interferometer
is then given by Eq. 5. The total time t1 for a round trip of a wavefront
along Path 1 perpendicular to the direction of Earth’s motion through
the ether is given by Eq. 6.

Δt, the difference between the times the wavefronts take to travel 2L,
is the difference between Eqs. 5 and 6:

Δt = t2 − t1 =
2L
c

⎧
⎨

⎩

1

1 − v2

c2

− 1
√

1 − v2

c2

⎫
⎬

⎭
.
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This expression for Δt gives a correct result, but an approximate expres-
sion obtained using the binomial approximation is more convenient and
more informative:

Δt =
2L
c

{[

1 −
(v

c

)2
]−1

−
[

1 −
(v

c

)2
]−1/2

}

≈ 2L
c

{[

1 +
(v

c

)2
]

−
[

1 +
1
2

(v

c

)2
]

+ · · ·
}

≈ 2L
c

1
2

(v

c

)2
. (7)

The quantity 2L/c is the round trip time for light to travel through the
interferometer when there is no motion relative to the ether.

When the two wavefronts reach the output of the interferometer, they
form a pattern of interference fringes of the sort shown in Fig. 11.6. If
one wavefront reaches the observer at a time slightly different from the
other, the fringes in the pattern shift their positions because a difference
in arrival times corresponds to a change in the phase difference between
the wavefronts. For example, if the period of the light wave is T and if
one wavefront is delayed by Δt = T/4 relative to the other, their phase
difference will change by 1/4 of 2π radians, and the pattern of fringes will
shift in position by 1/4 of the distance between two adjacent fringes. The
amount of this shift of the fringes depends on the size of the difference in
the round trip times of the wavefronts.

It is from Eq. 7 that Michelson knew, as was mentioned on pg. 352,
that he was looking for an effect proportional to v2/c2 ≈ 10−8. This is
small, and inserting some numbers makes the challenge of his experiment
evident. In an early version of his apparatus, he used yellow light with λ =
589 nm; L was ∼ 1.2 m; and v, the orbital speed of Earth, was 30×103 m/s.
Thus

Δt =
2.4

3 × 108

1
2

(
3 × 104

3 × 108

)2

= 0.40 × 10−16 s.

Light with λ = 589 nm has a period T = λ/c = 19.6 × 10−16 s, so a time
difference of Δt = 0.4× 10−16 s is ∼ 0.02 of the period T and corresponds
to a change of 0.02 of 2π radians in the phase difference between the two
wavefronts. Consequently, Michelson expected to observe that the pattern
of fringes had shifted by 0.02 of the distance between adjacent fringes
from where the pattern would occur if there were no ether. He believed
his apparatus was precise enough to reveal a shift as small as 0.01 of the
distance separating adjacent fringes. This small shift corresponds to 0.01
of a period, i.e., 2.0 × 10−17 s or, equivalently, 0.01 of a wavelength, i.e.,
6 nm.
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Michelson did not need to know where the pattern of fringes would
have been if it had not been shifted by motion relative to the ether,
because he measured the fringe pattern and then rotated his entire ap-
paratus through 90◦. This rotation reversed the roles of the two arms. If
in the initial orientation Path 2 was oriented parallel to the motion rela-
tive to the ether, then the travel time of a wavefront along Path 2 would
be 2L

c
1
2

v2

c2
more than along Path 1. After the interferometer was rotated,

the longer travel time would be along Path 1, and the fringe pattern
would shift by twice the amount predicted by Eq. 7. He expected that
when the interferometer was rotated, the fringe pattern would shift by
0.04 = 1/25 of the distance separating adjacent fringes. This is four times
larger than the smallest shift that Michelson thought he could measure
with his apparatus.

� EXERCISES

21. Suppose by an improved design Michelson could lengthen the
arms of the interferometer from 1m to 10m. What then would be
the predicted shift in fringes when the interferometer was rotated
through 90◦?

Michelson’s Results

Michelson’s first experiments did not show any detectable fringe shift.
Although he was sure that his apparatus should have revealed the ex-
pected shift, he and Morley built a larger interferometer, shown in
Fig. 11.9, that would produce a larger fringe shift. In the improved

FIGURE 11.9 (a) The interferometer used by Michelson and Morley in 1886. The
apparatus sits on a stone base floating in mercury. This makes it easy to rotate the
interferometer through 90◦. (b) A diagram of how the arm length L was lengthened
by multiple reflections. Taken from A.A. Michelson and E.W. Morley, Am. J. Sci.
Vol. 34 No. 203, 333–345 (1887) as reproduced in Selected Papers of Great American
Physicists, S.R. Weart, editor, published by the American Institute of Physics, c©1976
The American Physical Society.
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FIGURE 11.10 The solid lines are the observed fringe shifts vs. compass heading
of the interferometer. The dotted curves are 1

8
of the expected fringe shifts. Taken

from A.A. Michelson and E.W. Morley, Am. J. Sci. Vol. 34 No. 203, 333–345 (1887)
as reproduced in Selected Papers of Great American Physicists, S.R. Weart, editor,
published by the American Institute of Physics, c©1976 The American Physical Society.

apparatus the mirrors were arranged so that the path of the light in each
arm was lengthened by reflecting back and forth several times before the
wavefronts combined. To permit easy rotation without mechanical distor-
tion, they mounted the interferometer on a large stone base and floated
it in mercury. With the effective arm length L increased to about 11m,
the total fringe shift should have been 0.4 of a fringe. The experiment was
carried out in 1886. Figure 11.10 shows their published results; there was
no fringe shift.

“Now what?” he probably said to himself. Well, possibly the motion
of the Sun through the Galaxy was canceling Earth’s motion, producing
zero velocity relative to the ether. If so, then wait half a year until Earth
was on the other side of the Sun, and see double the effect. No luck there
either. They tried many other possibilities, including checking that the
arms did not change length by thermal expansion. In all cases the result
of the experiment was still a “null.” The fringe pattern did not shift.

This is the result that Einstein would have predicted nineteen years
later. As already mentioned, for reasons of consistency and logic he con-
cluded that there is no ether and that c is the same for all observers
independent of how fast or slow they are moving relative to the light
source. It is not clear whether Einstein was aware of Michelson’s and Mor-
ley’s result when he came to this conclusion.4 Whatever the case, their
result is strong evidence for Einstein’s conclusion. Michelson and Morley

4Einstein later wrote that he first began thinking about this problem when he was twelve years
old and wondered: What does a light wave look like to someone traveling with it at or close to
the speed of light? What were you thinking about when you were twelve?



11.5. CONSEQUENCES OF CONSTANCY OF c 361

saw no fringe shift because the speed of light c is the same in all frames
of reference. Consequently, it was c along each arm of the interferometer,
and rotating the interferometer had no effect on the fringe pattern.

11.5 CONSEQUENCES OF CONSTANCY OF c

Einstein realized that the constancy of c and the principle of relativity
could both hold only if space and time were interlinked in ways quite
strange to Newtonian physics. He worked out a complete and consistent
theory that accurately describes the motions and interactions of matter
at high velocities as well as at low.

Moving Clocks Run Slow—Time Dilation

It follows from the constancy of c that the time interval between two
events depends on the frame of reference from which they are observed.
Einstein’s theory correctly describes this behavior. To see that this be-
havior must occur, consider the “event generator”5 shown in Fig. 11.11.

L

(a) (b)

Δv t

v

FIGURE 11.11 This event generator consists of two mirrors separated by a length
L. (a) The system is stationary with respect to the textbook page; (b) the system is
moving with velocity v with respect to the page.

5Sometimes called a “light clock.”
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This hypothetical device works by the emission of a pulse of light from
near the bottom mirror (event 1). The pulse travels to the upper mirror,
is reflected, and returns to the bottom one (event 2).

Descriptions of Einstein’s theories often refer to “events.” An event is
any observable happening that occurs at a certain place and time. Each
return of a light pulse to the bottom mirror is an event. (So is the arrival
of the hand at some number on the face of a wall clock.) To measure
the time of an event, it is convenient to imagine there are a clock and
a recorder wherever the event occurs. A collection of such recorders and
synchronized clocks at rest relative to each other is a reference frame.

Any recorder and clock at rest with respect to the event generator
(Fig. 11.11a) will measure the elapsed time between events 1 and 2 to be:

Δt1clock =
2L
c

because the light pulse travels a distance 2L. The label “1clock” is to
remind you that this time interval is measured in the “one-clock” reference
frame, the frame in which you need only one recorder and one clock to
measure the time between events because both events occur at the same
point in space.

Now imagine yourself in a reference frame in which the event generator
is moving sideways as in Fig. 11.11b. To measure the time between the
first event (emission) and the second event (return) in this reference frame,
you need two clocks, one located at the position of the first event, and
another at the right at the position of the second event. The times of the
events are being recorded in a “two-clock” reference frame.

In this “two-clock” reference frame what is the time interval Δt2clock

between the two events? The constancy of c specifies your answer. The
light pulse travels a longer distance in this reference frame, but, as in every
reference frame, it still travels at speed c. From Fig. 11.11b, assuming that
L is the same in both frames of reference,6 you can use the Pythagorean
theorem to find the distance d the light pulse travels in the two-clock
frame:

d

2
=

√

(L)2 +
(

v Δt2clock

2

)2

,

and then you can use the fact that d = cΔt2clock, and solve these equations
and get:

6L is the same in both reference frames as long as it is perpendicular to the direction of their
relative motion.
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Δt2clock =
2L
c

1
√

1 − v2

c2

. (8)

The fraction 1√
1−v2/c2

shows up so often in relativity that it is

customarily given its own symbol, the lower case Greek letter gamma:

γ ≡ 1
√

1 − v2

c2

.

You will often see Eq. 8 written as

Δt2clock = γΔt1clock. Time Dilation (9)

Notice that because v is always less than c, γ is always ≥1. The quantity
γ = 1 when v = 0 and then increases toward ∞ as v approaches c.
Consequently the time interval between two events is always longer in
any two-clock frame than in the one-clock frame. This is a general result.
For any pair of events, the time interval between them will be shortest in
a reference frame in which the two events occur at the same place where
their times can be measured with just one clock.

For any pair of events, there’s an unlimited number of reference frames
in which two clocks are necessary to record their times, but there is only
a single one-clock frame. The time measured in this one-clock reference
frame, Δt1clock, is called “proper time.”

Now you can understand what it means to say that “moving clocks
run slow.” A clock is an event generator; for instance, one event might
be the second hand pointing at 12, and a second event, 10 s later, the
second hand pointing at 2. If this clock is moving with respect to your
frame of reference, you will need two recorders and two clocks in your
reference frame to measure the time elapsed between the moving clock’s
two events.7 As the sweep hand moves from 12 to 2 on the face of the
moving clock, the sweep hands of your two clocks will go beyond 2. The
measured time interval in your two-clock frame is always longer than
the time interval that passes on the face of the moving clock; the moving
clock is running behind the clocks in the two-clock frame. It is running
slow in the two-clock frame. This is a general result.

7You may argue that, no, you only need one clock because you can sit in one place and still
see both events on the moving clock. It turns out that the corrections you need to make to
allow for the fact that light from at least one of the two events must travel some distance to
your eyes (recorder) are equivalent to using two clocks located at the points in space where
the events occur.
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� EXAMPLES

6. Suppose a clock is moving past you at v =
√

3
2 c. How many minutes

would go by on clocks in your two-clock reference frame as 1min goes
by on the moving clock?

Find the value of γ = 1√
1−v2/c2

. For v =
√

3
2 c,

γ =
1

√
1 − 3

4

= 2.

Since Δt2clock = γΔt1clock, 2min will go by on the clocks in your
reference frame while 1min goes by on the moving clock.

The phenomenon of moving clocks running slow is called “time
dilation.” Time dilation is a property of time and space, not of clocks,
and it has real physical consequences. The time intervals between all pairs
of events—heart beats, the passages of a satellite overhead, creation and
decay of radioactive atoms, the successive swings of a pendulum, the ro-
tation of a wheel—are longer in two-clock frames of reference than in
one-clock frames. For example, imagine a can of radioactive atoms such
that half of them disintegrate every 1μs. If you form the atoms into a
beam and make them move past you at v =

√
3

2 c, how long will it take for
half of them to disintegrate? Because γ = 2, in your frame of reference
you will find that it takes 2μs for half of the particles in the moving beam
to disintegrate. Their rate of decay is slower in your frame of reference.

� EXAMPLES

7. To see why no one noticed time dilation until the twentieth century,
calculate the time dilation after an hour has elapsed on the clock in an
automobile moving past you at 30m/s (67mph). How much would it
be after a year?

To answer this question you must find γ, and you may face a difficulty
that the binomial expansion can deal with. The ratio v/c = 10−7,
so γ = 1/

√
1 − 10−14. If you try to calculate γ with your hand-held

calculator, you are likely to get γ = 1.000000000. Fortunately, you
know about the binomial expansion, so you can write down the answer
without using any calculator:

γ = 1 +
1
2
× 10−14,
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The car’s clock will lag behind your measuring clock by 5×10−15 times
the elapsed time. This would be

(3600 s)(5 × 10−15) = 18 × 10−12 s

after an hour. It would be 15.8 × 10−8 s after a year. There are now
clocks good enough to measure such small time differences, but they
are not usually in automobiles.

� EXERCISES

22. Suppose a clock moves past you at v = 0.8c. How far will it travel
in 1 s (in your reference frame)? How much time will elapse on the
traveling clock during that time?

23. What would be the time dilation of a clock moving at 30 km/s
relative to Earth?

Time dilation may seem strange enough, but here is something else to
think about. Imagine that you switch reference frames, so that you are in
the frame of reference of the moving clock. Now the clocks of your former
frame of reference are moving with velocity −v. What does the principle
of relativity tell you about the behavior of those moving clocks when
you measure their elapsed time using the clocks of your newly adopted
reference frame?

The principle of relativity says—quite correctly—that observers in ei-
ther frame will measure the clocks of the other frame running slow. How
can that be? The key idea is that clocks that are synchronized in one ref-
erence frame are not synchronized in another reference frame. Take some
time and think about it. Try doing Problems 6 and 8.

Moving Lengths Shrink—Lorentz Contraction

In relativity, length and time are intimately connected. Therefore, once
you know that a moving clock runs more slowly than identical stationary
clocks, it is not so surprising to find that moving lengths differ from
stationary lengths. For example, a rod that is 1m long at rest shortens in
the direction of its motion; if it is moving at

√
3

2 c, it will be half as long
as when at rest.

This remarkable behavior follows from the constancy of the speed of
light for all observers. To see that a moving rod must shorten, consider a
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Moving rod

(a)

(b)

L

FIGURE 11.12 Measuring the length of a rod moving in the direction of its length. In
(a) the length of a stationary rod is found by measuring the time Δt2clock it takes an
object (here a clock) to travel from one end of the rod to the other at speed v. In (b)
an observer attached to the moving clock sees the rod move past with speed −v and
finds its length by measuring the time Δt1clock the rod takes to pass his clock.

rod of length L0 measured at rest and three recording clocks, two at rest
relative to the rod and the other moving past it with a velocity v as shown
in (a) and (b) of Fig. 11.12. How does each set of observers measure the
length of the rod?

To measure the length of a rod at rest you can send an object from one
end of the rod to the other at a constant speed, call it v, and measure
the time Δt2clock that it takes to make the trip. The time interval Δt2clock

is the time between event 1 when the object lines up with one end of
the rod, and event 2 when it lines up with the other end of the rod. The
length of the rod is then

L0 = v Δt2clock,

where Δt2clock is the time interval measured by two clocks synchronized
in the rod’s reference frame and positioned one at each end of the rod.
The subscript 0 indicates that this is the length of the rod in the (only)
reference frame in which it is at rest. The measurement process is illus-
trated in Fig. 11.12a, where for the sake of the next step in this argument
the object moving past the rod has been chosen to be a clock.

In the reference frame of this third clock, the rod is flying past with
speed −v. This single clock is able to record the time of both events,
since both occur at the position of the clock. Therefore, it will measure
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the length of the rod to be

L = v Δt1clock.

From Eq. 9 you know that Δt2clock = γΔt1clock. Combine this with the
expressions for L and L0 to get

L =
L0

γ
. Lorentz Contraction (10)

This result says that a rod (or any object) is longest when measured in
its own reference frame. This longest length is called its “proper length.”
When measured in any reference frame in which it is moving, the rod is
shorter by 1/γ. This shortening is called the “Lorentz contraction” after
the physicist who first considered its possibility. Like all other predic-
tions of Einstein’s special theory of relativity, it is a consequence of the
constancy of c for all observers and the principle of relativity.

Just as time dilation went unnoticed for so long, so too did Lorentz
contraction, and for the same reason: the speed of light is so much larger
than the speeds of objects familiar to humans that for us γ is usually very
close to 1, and the effect is not observed.

� EXAMPLES

8. An example similar to Example 7 shows how small the Lorentz
contraction is for everyday objects. What is the Lorentz contraction of
a 5m long automobile traveling at 30m/s? First find the value of γ or
just use the calculation in Example 7:

γ =
1

√
1 − (v

c )2
≈ 1 +

1
2

v2

c2
+ · · ·

and use the fact that v/c = 10−7, so γ = 1 + 5 × 10−15. From this it
follows that the change in length of the speeding car is (5×5×10−15) =
25×10−15 m, i.e., 25 fm. This is about the diameter of an atomic nucleus
and is 107 times smaller than the wavelength of visible light. Clearly,
the effect is not going to be very noticeable at speeds you experience
in everyday life.

� EXERCISES

24. What would an observer find to be the Lorentz contraction of a
100m long space ship passing by at 30 km/s?
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The Doppler Effect

It is remarkable that any observer measures the speed of light from any
source to be c regardless of how fast the source and observer are moving
towards each other. But isn’t there some effect of the relative motion?
Yes, observers moving with different speeds relative to a light source will
measure different frequencies (or wavelengths) of the same light. When a
source and a detector are moving toward each other, the detector mea-
sures a higher frequency (shorter wavelength) than when they are at rest
relative to each other; when they are moving away from each other, the
detector measures a lower frequency (longer wavelength) than when they
are at rest. This dependence of frequency on the relative motion of source
and observer is called the “Doppler effect.”

That such an effect must occur follows from time dilation. The deriva-
tion of the Doppler effect is a good way to practice your understanding of
the ideas of the special theory of relativity. So consider the case in which
the source and a detector are moving directly toward each other.

Assume that when a source and a detector are at rest relative to each
other, as shown in Fig. 11.13a, the source produces a periodic wave of
frequency f0. The source then emits crests separated in time by T1clock =
1/f0, and a detector stationary relative to the source records the arrival
of crests separated in time by T1clock.

But what if the source and detector are moving toward each other at
some speed v? The time interval between the arrival of two successive
crests recorded by the detector will change for two reasons. First, there

Detector
Source

cT0

cγT0

vγT0 γT0(c – v )

(a)

(b)

FIGURE 11.13 (a) The distance between crests of a wave moving between a stationary
source and detector; (b) the distance between the crests when the source is moving
toward the detector with speed v.
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will be time dilation. If a time T1clock elapses on the clock of the source,
a time T2clock = γT1clock will elapse on clocks in the detector’s reference
frame.

But T2clock is not the time interval Tdetector between crests arriving at
the detector, because each crest travels a shorter distance to reach the
detector than the preceding crest, and it arrives sooner than if there was
no relative motion between source and detector.

In the reference frame of the detector, the successive crests are emitted
at time intervals of γT1clock, as shown in Fig. 11.13b. During this time
the source moves closer to the detector by a distance vγT1clock, so the
crests, instead of being separated by a distance cγT1clock, are separated
by a distance (c− v)γT1clock. The time separation between these crests is
this distance divided by c (because light waves travel at speed c in every
reference frame):

Tdetector =
(c − v)γT1clock

c
=
(
1 − v

c

)
γT1clock.

This expression can be simplified by using γ = 1/
√

1 − v2/c2 =
1/
√

(1 − v/c)(1 + v/c). Also, to make explicit that T1clock is the period of
the emitted light in the source’s rest frame, we relabel T1clock as Tsource:

Tdetector =
(
1 − v

c

)
√

1
(1 − v

c )(1 + v
c )

Tsource

=

√
(1 − v

c )2

(1 − v
c )(1 + v

c )
Tsource =

√
1 − v

c

1 + v
c

Tsource.

To see what this means for frequencies use the fact that f = 1/T and
take the reciprocals of both sides of the equation. This gives

fdetector =

√
1 + v

c

1 − v
c

fsource. Doppler shift (approaching) (11)

� EXERCISES

25. Derive the relationship between fsource and fdetector if the source
and observer are moving directly away from each other.

26. Distant galaxies are observed to emit spectra that have the same
patterns as well-recognized atomic spectra but with their wavelengths
all shifted toward the red. What does this tell you about the motion of
distant galaxies relative to Earth?
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How Do Velocities Transform?

This chapter began with a bus, a truck, and an observer moving in dif-
ferent frames of reference. Given the velocity v of an object in one frame,
we transformed v to its velocity v′ in another. The method of transform-
ing velocities in one reference frame to another is summarized in Eq. 4.
Although the method seems intuitively obvious, it must be wrong. It pre-
dicts that observers in different reference frames should see a given pulse of
light travel with different speeds, but experiments show that light travels
with the same speed for all observers regardless of their relative motions.

If Eq. 4 is wrong, what is correct? Einstein showed that if an object
is moving with a speed v in one reference frame, then in a frame moving
with a speed V relative to the first, the object will have a speed v′ given
by the relation

v′ =
v − V

1 − vV
c2

. (12)

This example, as all our examples so far, is for motion in one dimension.
Notice that this equation is like Eq. 4 except for the denominator. And

notice that this denominator is not going to be significantly different from
1 unless v and V both begin to approach c.

� EXERCISES

27. Suppose you measure the speed of a pulse of light. You find v = c.
What would an observer in a frame moving with a speed V =

√
3

2 c find
for the velocity v′ of this light pulse? You know the answer, but show
that Eq. 12 gives it.

28. When you calculated the speed of the bus in the reference frame of
the truck (p. 351), you got +30mph. Calculate the difference between
this answer and the relativistically correct answer.

Something to Think About

Let’s conclude this section with a mindbender. Here is how to put a 10m
long pole into a barn that is only 5m wide. Imagine a pole 10m long
when at rest moving with a speed of

√
3

2 c towards the open door of the
5 m wide barn, as shown in Fig. 11.14a. For this speed (as you should now
begin to know by heart) γ = 2. This means that the pole is contracted
to a length of 5m in the frame of reference of the barn. Will it fit in the
barn even ever so briefly before crashing into the back wall?
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FIGURE 11.14 A 10 m pole and a 5m barn with a relative speed such that γ = 2: (a)
in the frame of reference of the barn; (b) in the frame of reference of the pole.

You can imagine a farmer standing by the barn door. Setting aside
certain practicalities of reaction time, inertia of the door, air resistance,
and how do you get a pole moving that fast in the first place, you can
see that it is in principle possible to shut the door of the barn before the
pole goes into the back wall. (If you want a little extra time for closing
the door, have the pole move a little faster, so that it is a little shorter
than 5m.)

But to really bend your mind, imagine riding on the pole so that you
are in the pole’s frame of reference. Now the pole is 10m long and the
barn is moving toward you at

√
3

2 c, so it is Lorentz contracted by γ = 2
to 2.5m. This situation is shown in Fig. 11.14b. Will the pole fit in the
barn? How do you reconcile these two quite different pictures of what
is likely to happen? Be assured that the special theory of relativity says
that these two different views of the pole entering the barn are correct
and consistent.

The crux of the solution is that observers in the two different frames
of reference will predict and observe different sequences of events: The
farmer’s clocks will show the barn door closed before his clocks show the
rod crashed into the wall; the rider’s clock will show that the door closed
after the rod crashed into the wall. However, it would be too great a
digression to explore how clocks synchronized in one reference frame are
not synchronized in another, with the result that events simultaneous in
one frame of reference are not simultaneous in another, and we leave the
pole-in-the-barn problem for you to ponder on your own.

(a)

(b)

v

– v
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PROBLEMS

1. Evaluate each of the following without a calculator and using the kind
of series approximation discussed in this chapter.

a. (1.02)2.
b. 1

0.96 .

c. 3
√

1.09.
d.

√
0.0408.

2. Michelson showed that if there were an ether, the hypothetical
medium in which light was thought to travel, then light from a source
moving with speed v through this medium would take a time t‖ to travel
a distance L and back along the line of motion of the source; and it would
take a time t⊥ to travel a distance L perpendicular to the line of motion,
where

t‖ =
2L
c

1
1 − v2

c2

,

t⊥ =
2L
c

1
√

1 − v2

c2

.

Show, using the expansion technique, that t‖ is greater than t⊥.

3. The He–Ne laser commonly used in physics laboratories emits red
light with a wavelength of λ = 633nm.

a. What is the frequency of that light?
b. Given that the time for light to travel a distance L parallel to

Earth’s motion through a hypothetical ether is

t‖ =
L

c − v
+

L

c + v
=

2L

c
(
1 − v2

c2

) ,

while its time to travel perpendicular to Earth’s motion is

t⊥ =
2L

c
√

1 − v2

c2

,

use the binomial expansion to find an approximate formula for
t‖ − t⊥.
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c. Find the value of t‖ − t⊥ for Earth’s motion of v = 30km/s if
L = 1m. Express your answer as a fraction of the period of the
633 nm red light.

d. What did Michelson and Morley observe when they tried to mea-
sure the phase difference between the two arms, and why was their
result important?

4. Evaluate without a calculator
a. 1/1.05.
b. (1.05)2.

c. (1.05)
1
2 .

5. A stick at rest has a length of 2m. One observer, call her S′, moves
with the stick at a speed of 0.6 c past another observer, call him S. The
length of the stick is parallel to her direction of motion.

a. When S′ measures the length of the stick, what value does she
obtain?

b. When S measures the length of the stick, what value does he
obtain?

c. Which of these values is correct?
d. How much time will elapse on the watch of S′ as the stick passes S?
e. How much time will elapse on the watch of S as the stick

passes him?

6. In the S frame illustrated in Fig. 11.15 Bob observes three clocks,
e′, f′, and g′, moving at v/c =

√
3/2 past three stationary clocks, e, f,

and g, 10 light seconds apart. (Clocks e′, f′, and g′ are synchronized in
the S′ frame; e, f, and g are synchronized in the S frame.) Just as his
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FIGURE 11.15 Three clocks moving at v/c =
√

3/2 past three stationary clocks
(Problem 6).
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stationary clocks all read 0, the three moving clocks line up exactly with
the stationary clocks, and Bob observes that f′ also reads 0.

a. How far apart are the moving clocks in their rest frame?
b. What does e′ read in seconds when it is coincident with e?
c. In S′ what does e read when e′ reads 0?
d. In S′ what does g′ read when f′ reads 0?
e. In S′ what does g read when f′ reads 0?

7. In the S frame of reference object 1 moves from the left with a velocity
v1 = 0.8c while object 2 moves from the right with a velocity v2 = −0.8c.
What will be the velocity of object 2 in the rest frame of object 1?

8. This problem makes the point that what a clock reads and how much
time elapses on it are not necessarily the same thing.

Ann observes two clocks moving past her at 0.8c, as shown in
Fig. 11.16. She sees they are 16 light minutes apart and that as the
right-hand clock comes by her, it reads 0 and her wristwatch reads 0.

a. What is the proper length between the clocks? (“Proper length”
means the length measured in the rest frame.)

b. What does her wristwatch read when the left-hand clock passes
her?

c. If the two moving clocks have been synchronized in their rest frame,
what does Ann find the left-hand clock to read when her wristwatch
reads 0?

d. How much time will have gone by on the right-hand clock when
the left-hand one passes Ann? Explain.
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FIGURE 11.16 Two clocks moving past a stationary observer (Problem 8).



1212C H A P T E R

Energy
and Momentum
at High Speeds

12.1 INTRODUCTION

Einstein’s special theory of relativity modifies the Newtonian concepts of
energy and momentum so that they correctly describe bodies moving at
high speeds. The modifications lead to the best-known prediction of the
theory of relativity: Energy has mass and vice versa,

E = mc2,

and they also show that the relationship between kinetic energy and mo-
mentum that you have frequently used, K = p2

2m = 1
2mv2, is only an

approximation of the equations that are exact at all speeds. You now
need to become familiar with the relativistically correct relationships and
how they are used to extract information about atoms and the particles
they are made of.

12.2 ENERGY HAS MASS

Einstein used the conservation of momentum and the fact that light exerts
pressure to show that energy must have mass.

Light Exerts Pressure

Einstein knew, as did other physicists of his time, that light exerts a
force on whatever it strikes. When a light wave is absorbed, it delivers an
amount of energy ΔE to an object, and it imparts to the object a change

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 375
DOI 10.1007/978-0-387-79080-0 12, c© Springer Science+Business Media, LLC 1999, 2010
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in momentum Δp = ΔE/c, where c is the speed of light. This means that
light delivering a certain amount of power P is delivering momentum at
a rate of

Δp

Δt
=

1
c

ΔE

Δt
=

P
c

.

But Δp/Δt is force F , and, spread over a surface area A, it constitutes a
pressure P = F/A.

It is common to specify intensity of light as the power delivered to a
unit area. For example, the Sun delivers about 1.4 kWm−2 to the upper
atmosphere of Earth. Dividing such a quantity by c gives the force per
unit area; this is the pressure exerted by the light.

� EXAMPLES

1. Sunlight absorbed by a square meter of collector above Earth’s
atmosphere results in a pressure of

P =
1.4 × 103

3 × 108
= 4.7 × 10−6 Pa.

This is quite small compared to atmospheric pressure of 105 Pa, but it
is enough to push a spacecraft to the outer reaches of the solar system.

� EXERCISES

1. A laser beam 2mm in diameter carries 0.5mW of power. How much
pressure does this beam exert when it is absorbed?

E = mc2

The most famous result of Einstein’s theory, the equivalence of mass and
energy, is a straightforward prediction of his special theory of relativity;
he also showed that E = mc2 must hold if there is to be a relativistically
correct law of conservation of momentum.

To remind yourself of an important consequence of the conservation
of momentum, imagine a gun and a target mounted rigidly a distance L
apart on a cart equipped with frictionless wheels. The situation is shown
schematically in Fig. 12.1. When the gun fires a bullet of mass m to the
right with speed u, the rest of the apparatus—the gun, target, wheels,
etc.—with a total mass M , recoils to the left with velocity v.
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FIGURE 12.1 A gun and target are mounted on a frictionless cart. Before the gun
fires, the total momentum of the system is zero. When the gun fires a bullet of mass
m, the apparatus recoils until the bullet stops in the target.

The Newtonian form of conservation of momentum says that Mv = mu.
However, by now you know enough relativity to be uneasy. There may be
effects of the relative motion of M and m that make the Newtonian
equation only approximate. You can evade this uncertainty by examin-
ing the situation of M and m after they come to rest. This will occur
after the time Δt that it takes the bullet to reach the target. During that
time the cart travels x = vΔt to the left, and the bullet travels a distance
L − x = u Δt to the right.

Newtonian physics predicts that Mv Δt = mu Δt, so that after the
transfer of the bullet we must have

Mx = m(L − x). (1)

Since this result does not depend on the motion of anything, it must
also be correct in the special theory of relativity as well as in Newtonian
theory. Both theories require that a mass m be transferred a distance
L − x in order to conserve momentum.

Now consider the same setup with the gun emitting a pulse of light of
energy E instead of a bullet of mass m. Because light carries momentum
E/c, the gun, target, and cart must recoil with momentum −E/c. Dur-
ing the time Δt it takes the pulse of light to reach the target, the cart
and attachments—still of mass M—recoil a distance x = v Δt, and the
light travels a distance L − x to reach the target. Since the light trav-
els with speed c regardless of the recoil velocity, the pulse requires time
Δt = (L− x)/c to reach the target. In the Newtonian approximation, we
have Mv Δt = (E/c) Δt, and therefore, after the pulse of light has been
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absorbed by the target and all the parts of the system are again at rest,
we have

Mx =
E

c2
(L − x). (2)

Comparing Eqs. 1 and 2 it is apparent that momentum is conserved only
if the light pulse carries to the target an amount of mass m = E/c2.
Conservation of energy implies that any form of energy can be converted
into another; therefore, if light energy E has a mass equivalence of mc2, so
does every other form of energy. The result turns out to be fully general:
Mass and energy are equivalent. The amount of energy E associated with
any mass m is given by Eq. 3:

E = mc2. (3)

This famous equation also means that if the energy of an object
increases, so does its mass, i.e.,

ΔE = Δm c2. (4)

Suppose an object sitting on a flat frictionless surface is made to slide.
It must have more energy moving than at rest because it has its kinetic
energy in addition to any other forms of energy, and more energy means
more mass. The equivalence of energy and mass means that an object will
have more mass when it is moving than when it is at rest just because it
is moving. Therefore, for a moving body the mass m appearing in Eq. 3
is greater than the mass m0 of the body at rest.

It is helpful to distinguish between m and m0, so m0 is called “the rest
mass” of a particle. This is always the mass that would be measured by
an observer in the particle’s rest frame.

Einstein’s theory predicts that when a body with a rest mass m0 moves
with a speed v, it will have a mass m such that

m =
1

√
1 − v2

c2

m0 = γ m0. (5)

Therefore, Eq. 3 can be written as

E = mc2 = γm0c
2, (6)

and Eq. 4 can be written as

ΔE = Δmc2 = (γ − 1)m0c
2. (7)

From here on, unless the context tells you differently, m0 will mean the
rest mass and γm0 or m will represent the relativistic mass. Notice also
that Eq. 3 assigns a certain amount of energy to an object even when it
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is at rest. This is often called the particle’s rest energy. For example, an
electron has a rest mass of m0 = 9.11 × 10−31 kg, so its rest energy is

m0c
2 = 9.11 × 10−31 × (3 × 108)2 = 8.20 × 10−14 J.

Almost never does one express the electron’s rest energy in joules; the
preferred units are electron volts. Then

m0c
2 = 5.11 × 105 eV = 511 keV.

This is a fact you will use often.
Physicists frequently do not distinguish between rest energy and rest

mass; after all, one is just the other multiplied by a constant. Although
strictly speaking it is not correct, physicists often say: “The rest mass of
the electron is 511 keV” when they mean 511 keV/c2. (Note that keV/c2

has dimensions of mass.)

� EXERCISES

2. Given the validity of Eq. 5, derive Eqs. 6 and 7.

Experimental Evidence for m = γ m0

To derive Eq. 5 would take us more deeply into Einstein’s theory than we
need to go. Instead, let’s examine an experiment that shows that mass
depends on velocity just as Einstein predicted.1 The velocity dependence
of mass is difficult to observe until v becomes comparable to c, as you can
see by expanding γ:

γ =
(

1 − v2

c2

)−1/2

= 1 +
v2

2c2
+ · · · .

The expansion shows that the fractional change in the mass due to its
motion, Δm/m = γ − 1, will be less than 10−4 until v/c = 0.014. This
corresponds to v = 4243 km/s, nearly 10million mph and more than 140
times faster than Earth’s motion in its orbit.

To find objects moving fast enough to show a measurable effect,
Kaufmann used electrons emitted in the radioactive decay of atoms. This

1 The experiment was done by Walter Kaufmann in 1901, (see pp. 502–512 in The World of
the Atom, edited by H. A. Boorse and L. Motz, Basic Books, New York, 1966) four years before
Einstein published his theory.
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FIGURE 12.2 Kaufmann’s arrangement for measuring e/m of electrons from radioac-
tive atoms. Electrons from a point source of radioactive material at A pass between
plates K across which is an electric field perpendicular to the plates; the electrons pass
through a small hole B and strike a photographic plate in the z-y plane Q. A stack
of permanent magnets provided the entire apparatus with a uniform magnetic field B
parallel but opposite to E. The curve ABQ is the trajectory of one electron along a
circular arc of radius ρ.

choice in 1901 is remarkable when you realize that radioactivity was
only discovered in 1896 and the electron in 1897. As did J.J. Thomson,
Kaufmann used a combination of electric and magnetic fields to measure
e/m. But where Thomson had the E and B fields at right angles to each
other, Kaufmann had them parallel.

Electrons from a tiny grain of radioactive material passed through this
arrangement of fields and struck a photographic plate placed in the CPQ
(y-z) plane in Fig. 12.2.

If the electrons all had the same velocity, they would follow a single
path such as ABQ in Fig. 12.2 and they would all strike a single point on
the photographic plate, e. g. the point Q for the trajectory ABQ. However,
electrons from radioactive atoms have a wide range of velocities, and they
will follow a correspondingly wide range of trajectories.

Kaufmann realized that the electric field E would deflect electrons in
the y direction (Fig. 12.2) inversely proportional to the square of their
velocity, i.e ∝ 1/v2, while a magnetic field B parallel to E would deflect
the electrons in the z direction ∝ 1/v. This was well known—see p. 239. As
a result, in an ideal geometry the electrons arriving at the photographic
plate would lie on a parabolic curve y = kz2. The constant k would depend
on the known geometry of his apparatus and on e/m the charge-to-mass
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ratio of the electron. In principle he could determine e/m for each point
on the curve; that is, he could find e/m for electrons with quite different
velocities. It’s a clever idea.2

Of course, if m varies with v, then k will change with v, and the
curve where the electrons strike the photographic plate will deviate from
a parabola. By measuring the amount of deviation Kaufmann could
determine by how much the mass changed as a function of v.

Kaufmann exposed a photographic plate for 48 h. He carefully measured
the coordinates of five different points on the curve that appeared on the
developed plate. From his measurements he determined the velocities and
charge-to-mass ratios of electrons arriving at each of these points. The
trajectory of one particular electron is shown in Fig. 12.2 along with a
dashed line showing the curve formed by electrons with other velocities.

Data based on Kaufmann’s measurements are shown in Table 12.1. The
table shows velocities and corresponding values of e/m for his five data
points. It is clear that e/m gets smaller as the velocity gets larger. This
is just the effect that you would expect if m grows larger with speed.
Also included in the table are values of γ = 1√

1−v2/c2
corresponding to

the measured values of v. If the observed variation in e/m arises because
m = γ m0, then multiplying any measured value of e/m by its correspond-
ing γ should give e/m0. The average of all the values of e/m0 obtained
from Kaufmann’s data is 1.732×1011 C/kg, which agrees remarkably well
with the currently accepted value of 1.759 × 1011 C/kg.

TABLE 12.1 e/m for electrons of different speeds va

Velocity v e/m e/m0 γ m/m0

(108 m/s) (1011 C/kg) (1011 C/kg)

2.815 0.620 2.891

2.674 0.751 2.205

2.526 0.927 1.854

2.366 1.066 1.627

2.230 1.175 1.495
a These data are adapted from W. Kaufmann, “Die magnetische
und electrische Ablenkbarkeit Becquerelstrahlen und die scheinbare
Masse der Elektronen,” Nachrichten von der königl. Gesellschaft der
Wissenschaften zu Göttingen 2, 143–155 (1902).

2It’s also difficult to do and requires good vacuum, stable power supplies, and measurements
accurate to a small fraction of a millimeter. In fact, although Kaufmann showed that mass
increased with velocity, he was never able to use his measurements to convincingly confirm
Einstein’s theory compared to other plausible theories of the time.
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FIGURE 12.3 Comparison of results derived from Kaufmann’s data (solid dots) with
Einstein’s prediction (solid line).

� EXERCISES

3. Use the above prescription to convert the values of e/m tabulated
in Table 12.1 to e/m0, and calculate the average value of e/m0. Your
results should show that Einstein’s prediction that mass will vary as
m/m0 = γ is supported by Kaufmann’s experiment.

4. Another way to show that Einstein’s prediction is correct is to
compute m/m0 from Kaufmann’s data and compare it to the values of
γ calculated for the corresponding values of v. To find m/m0 you need
only divide the accepted value of e/m0 by the measured value of e/m.
Do this and put the values into column 5 of Table 12.1.

The graphical comparison of m/m0 and v/c in Fig. 12.3 shows that
Einstein’s theory is consistent with Kaufmann’s observations.

12.3 MOMENTUM AND ENERGY

If the mass of an object depends on its velocity, how does this affect our
concepts of momentum and kinetic energy?
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Relativistic Momentum

Let’s begin by asking: What is the momentum of a particle in a frame
where the particle is moving at velocity v? It turns out that for momentum
to be conserved we must use the following specification for momentum:

p = mv = γm0v.

This is the quantity that you must use to analyze collisions of moving par-
ticles, and it is the quantity p that you obtain from the relation p = qBR
(Eq. 2 on p. 205) when you deflect charged particles by a uniform mag-
netic field B.3 For a particle moving with speed v, the combination γ m0

gives the increased mass. This increase is confirmed by measurements.
In Kaufmann’s e/m experiment, for example, the momentum determined
from the curvature in a magnetic field yielded a larger value of m for a
high velocity v and hence a smaller e/m than for a low velocity.

� EXAMPLES

2. Suppose that an electron has a velocity of v = 0.25c. What is its
momentum? By what percent does its value of e/m differ from e/m0,
the low-energy result?

γ =
1

√
1 − (0.25c/c)2

=
1√

1 − 0.0625
= 1.0328,

p = 1.0328 × 9.11 × 10−31 × 0.25 × 3 × 108

= 7.05 × 10−23 kg m/s.

You can get the answer to the second part of the question by noting
that if m is multiplied by 1.0328, then e/m must be divided by the
same number. So

e

m
=

1.7587 × 1011

1.0328
= 1.7028 × 1011 C/kg,

or a 3.3% decrease.

3Buried in this statement and in the treatment of Kaufmann’s data is a nontrivial assumption:
Unlike mass, the electric charge is the same in all reference frames regardless of relative veloc-
ity. The success of the theory of electrodynamics, which deals with the transformations that
determine how electric and magnetic fields appear in different reference frames, shows that this
assumption is correct.
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3. What is the radius of curvature of the path of an electron moving
with v = 0.25c in a magnetic field of B = 1T?

You can answer this question using Eq. 2 and the value of the
momentum p from the previous example.

R =
p

eB
=

7.05 × 10−23

1.602 × 10−19 × 1
= 4.4 × 10−4 m = 0.44mm.

Relativistic Kinetic Energy

To handle kinetic energy correctly at high speeds you need to rethink
the idea slightly. Kinetic energy is the additional energy that an object
acquires because it is moving. Therefore, kinetic energy is the difference
between the energy of a moving object, mc2, and its energy at rest, m0c

2:

K = mc2 − m0c
2 = (γ − 1)m0c

2. (8)

What would be the best approximation of this equation at low veloci-
ties, i.e., what should K be when v/c � 1? You know the answer, but you
can use the binomial expansion to prove that it is the familiar formula for
kinetic energy

K = m0c
2

[(

1 − v2

c2

)−1/2

− 1

]

≈ m0c
2

[

1 +
1
2

v2

c2
+ · · · − 1

]

= m0c
2 v2

2c2

=
1
2
m0v

2.

Once again, Newtonian mechanics is the low-velocity approximation to
Einsteins’s theory; i.e., K is very accurately the old familiar quantity
when speeds are small compared to c.

The equality of E = mc2 is very general. It applies to all forms of
energy, not just to kinetic energy. What effect does potential energy, for
example, have on the mass? To be consistent with our principle of energy
conservation, we have to conclude that these other forms of energy have
mass also. Where would such mass be found? It can only be a part of the
rest mass. But this will be the rest mass of the entire system, not just
in a single part of the system, so it is not always clear where the new
energy-associated mass is located in the system. Nevertheless, it must be
the case that rest mass can include such things as thermal energy—the
3
2 kBT of average random-motion energy you learned about when studying
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the kinetic theory of gases—and potential energy. Does this mean that
you are a little more massive at the top of a hill (where your potential
energy is greater) than at the bottom?

� EXAMPLES

4. Find the change in mass corresponding to the change in gravi-
tational potential energy of an 80 kg student after he climbs a 60m
high hill. Assume rather unreasonably that there is no loss of mate-
rial through such things as respiration or perspiration. Is such a mass
change detectable?

ΔE = mgΔh = 80 × 9.8 × 60 = 47, 040 J,

Δm =
ΔE

c2
=

47, 040
9 × 1016

= 5.2 × 10−13 kg.

It is not likely to be measured. Your gain in weight has nothing to do
with climbing hills!

But wait! What about the energy that was used to do the work in
climbing the hill? Since it had to come from chemical reactions in the
body, all that has been done has been to convert chemical potential
energy to gravitational potential energy. Both forms have equivalent
mass, so there is no net change at all. Only if some outside agent
(a roommate’s car, perhaps) carried you up the hill would your mass
change.

� EXERCISES

5. Consider an electron and a point charge of −1μC. At first the two
particles are at rest very far apart. What will be the change in the mass
of this system if they are arranged to be at rest and 10mm apart?

6. Calculate the change Δm in the combined mass m of a positive
charge of 50 e and an electron when both are at rest and a distance
1 × 10−12 m apart, relative to their combined mass when both are at
rest and very far apart.

7. In x-ray machines electrons are accelerated through 100 kV or more.
What is the speed of a 100 keV electron? What is its momentum? How
much error do you make in your answers if you use the Newtonian
equations instead of the relativistically correct ones?
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Two things to remember:
It is common to refer to a particle by its kinetic energy. Thus when the
previous problem told you that you have a 100 keV electron, you are
expected to know that this refers to the electron’s 100 keV of kinetic
energy, not its total energy, which includes its rest energy and is E =
m0c

2 + K = 611 keV.
It is also usual to describe the momentum and energy of a moving par-

ticle from “our” rest frame. We call this reference frame the “laboratory,”
or “lab,” frame of reference. For example, the curved path of a charged
particle in a magnetic field tells you the particle’s momentum in the lab
frame. Unless they state otherwise, all the problems in this book ask for
results in the lab frame.

Relation Between Energy and Momentum

It is more convenient to work with momenta and energies directly than
it is to first calculate the velocity, find the relativistic factor γ, and then
calculate kinetic energy or momentum. The momentum of a particle with
a charge q accelerated to a high energy is often measured by bending it in
a magnetic field, and its kinetic energy K is often known from the voltage
V used to accelerate it, K = qV .

For such circumstances it is very helpful to have a relationship between
momentum p and total energy E. You can find such a relationship from
knowledge that E = γm0c

2 and p = γm0v. First square each of these
equations to get

E2 = γ2m2
0c

4 =
m2

0c
4

1 − v2/c2
,

p2 = γ2m2
0v

2 =
v2/c2

1 − v2/c2
m2

0c
2.

Multiply the second equation by c2 to give it the same physical dimensions
(energy squared) as the first and then subtract the second from the first.
This will give

E2 − p2c2 =
1

1 − v2/c2
m2

0c
4 − v2/c2

1 − v2/c2
m2

0c
4 =

(
1 − v2/c2

1 − v2/c2

)

m2
0c

4.

From this you can see that

E2 = p2c2 + m2
0c

4, or E =
√

p2c2 + m2
0c

4, (9)

which, as desired, enables you to find the total energy of a particle of
known rest mass m0 if you know its momentum, or to find the magnitude
of its momentum if you know its total energy.



12.4. MASSES IN eV/c2; MOMENTA IN eV/c 387

� EXAMPLES

5. Find the momentum of a 100 keV electron (Exercise 7. p. 385)
without finding γ. Use SI units.

The basic approach is to solve Eq. 9 for p. This gives

p =

√
E2 − m2

0c
4

c2
.

Then you need to determine E, and to do this you need to know m0.
From p. 635 of the appendix or from Exercise 17 in Chap. 9 you can
find that m0 = 9.11 × 10−31 kg for an electron. Then

E = K + m0c
2 = qV + m0c

2

= 105 × 1.6 × 10−19 + 9.11 × 10−31 × 9 × 1016 = 9.80 × 10−14 J,

and

p =

√
(9.8 × 10−14)2 − (8.20 × 10−14)2

9 × 1016
= 1.79 × 10−22 kgm s−1.

This is pretty messy. An easier and more common way to work with E
and p is to abandon SI units and work with units based on the electron
volt (eV).

12.4 MASSES IN eV/c2; MOMENTA IN eV/c

Because units of electron volts are widely used in measurements of atomic
particles, it is convenient to express their masses and momenta in terms
of electron volts.

� EXAMPLES

6. To see how to use these units, consider a 100 eV electron. Suppose
you want to find its velocity. It is of such low energy, i.e., v � c, that
you can use

K =
1
2
m0v

2.

If you multiply the right-hand side by c2/c2, you will get

K =
1
2
m0c

2 v2

c2
.
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In this form the convenience of the units becomes more evident.
Knowing that m0c

2 for an electron is 511 keV, you get

100 =
1
2
· 511 × 103 · v2

c2
,

which you can solve for v/c,

v

c
=

√
2 × 100

511 × 103
= 1.98 × 10−2,

from which it follows that v = 5.94 × 106 m/s.

The trick is to bundle together the right combination of m and c to get
a quantity identifiable as an energy. Once you get used to it, using eV and
suppressing the factor c2 makes calculations easier and more informative.

� EXERCISES

8. What is the velocity of the 200 eV electrons used for measuring
e/m in many undergraduate laboratories?

� EXAMPLES

7. You can also use this trick to find momentum. Suppose you want to
know the momentum of a 100 eV electron. Because this is a low-energy
electron, you can use the Newtonian approximation

K =
p2

2m0
.

Multiplying the right side by c2/c2 gives

K =
p2c2

2m0c2
,

which can be solved for pc:

pc =
√

2Km0c2.

Now, if K is in eV and m0c
2 is in eV, you will obtain pc in eV, so

pc =
√

200 × 511 × 103 = 1.011 × 104 eV,
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and you get p = 1.01 × 104 eV/c, or, more compactly, p = 10.1 keV/c.
The units eV/c are units of momentum commonly used in nuclear and
particle physics; they have dimensions M L T−1 like any other unit of
momentum.

8. Find the momentum of a 1MeV electron.
This electron has a kinetic energy twice its rest mass; therefore, it

is a high-energy electron for which you must use the relativistically
correct equations

E = K + m0c
2 = 1 + 0.511MeV =

√
(pc)2 + (0.511)2,

pc =
√

(1.511)2 − (0.511)2 = 1.422MeV,

and thus p = 1.422MeV/c.

Momentum is frequently found by measuring the radius of curvature
R of a charged particle’s trajectory perpendicular to a uniform magnetic
field B.
Remember that a particle of charge e and momentum p will bend
according to the relationship

p = eBR. Eq. 2, p. 205

To use eV units in this equation requires a little ingenuity. Notice that
if you multiply both sides by c, the dimensions of the equation become
those of energy, i.e., pc has units of energy. At first glance it seems that
you must evaluate eBRc using consistent SI units and obtain an answer
in joules. This will certainly work, but notice that if you convert the right
side of the equation into electron volts, you divide by a conversion factor
that has a numerical value just equal to e. This means that if you drop
the factor of e and multiply B in tesla by R in meters and c in meters
per second, your answer BRc will come out numerically in eV.

� EXAMPLES

9. What is the value of pc of an electron moving in a circle of radius
1 cm perpendicular to a uniform magnetic field of 0.5 T? The answer
(in eV) is BRc = 0.5× 0.01× 3× 108 = 1.5× 106 eV = 1.5MeV. So the
momentum of this electron is 1.5 MeV/c.

10. What uniform magnetic field B will bend an electron having
momentum 1.422 MeV/c in a circle of radius R = 2.37 cm?
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Suppose you are unwilling to use eV units and cling to the SI. At
least start with pc = qRBc. Then you need to convert the left side into
joules:

1.422 × 106 [eV] × 1.602 × 10−19 [J/eV].

The right side will be

= 1.602 × 10−19[C] B[T] 0.0237[m] 3 × 108[m/s]

= 1.139 × 10−12[J/T] B[T].

Now solve for B.
But notice that the factor 1.602 × 10−19 appears on both sides of

the equation. On the left it is the conversion factor with units of J/eV;
on the right it is the elementary charge with units of C (coulombs).
Although the units are different, the numerical factor is the same, and
when you divide both sides by 1.602 × 10−19 J/eV, you get

1.422 × 106 eV = 0.0237 × 3 × 108 B [C·m·m/s·T·eV/J = eV]

where the equation F = qvB shows you that C·m·m/s·T is J (joule).
So why not take this fact into account right from the start and skip

the SI units?

B =
pc

Rc
=

1.422 × 106

0.0237 × 3 × 108
= 0.20 T.

11. Suppose you want to know the radius of curvature with which
an electron with momentum of 10 keV/c bends in a magnetic field of
10−3 T. Then

R =
pc

Bc
=

10 × 103

10−3 × 3 × 108
= 3.37 × 10−2 m = 3.37 cm.

� EXERCISES

9. A proton, (M0c
2 = 938MeV) bends with a radius of curvature of

1m in a magnetic field of 0.1T. What are the momentum and the
kinetic energy of that proton?
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� EXAMPLES

12. Here is a repeat of Example 5 using units of electron volts. You
are given that K = 100 keV, and you remember that for an electron,
m0c

2 = 511 keV. The total energy E is the sum of the kinetic energy
K and the rest energy, E = K + m0c

2, so E = 100 keV + 511 keV =
611 keV.

Equation 9 tells you that 611 keV =
√

(pc)2 + 5112, which you can
solve for pc:

6112 − 5112 = (pc)2,
pc = 335 keV and p = 335 keV/c.

� EXERCISES

10. Show that the momentum of 335 keV/c obtained in Example 12 is
the same as the value of 1.79 × 10−22 kgm s−1 obtained in Example 5.

To work easily in eV you need to know the masses of the electron and
the proton in eV/c2. It may also be helpful to know the energy equivalent
of one atomic mass unit, although for most purposes of this book you
can use the proton or hydrogen-atom mass instead. Energy equivalents of
these and other useful masses are summarized in Table 12.2. From now
on work all energy and momentum problems in units of eV (or keV or
MeV, etc.). The scale of these units is appropriate to atoms and smaller
particles.

TABLE 12.2 Some masses
in energy units

Entity mc2 (MeV)

electron 0.511

H atom 938.8

proton 938.3

neutron 939.6

1 u 931.5
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12.5 WHEN CAN YOU APPROXIMATE?

In the preceding examples we told you when to use the Newtonian ap-
proximation and when not to. What if you have to decide on your own?
How can you tell whether to use K = p2/(2m0) or K = E − m0c

2? Here
we give you some guidance and some rules of thumb. Where the rules
come from is left for later courses in physics.

Nonrelativistic Approximations

You will often have to solve one or the other of two related problems:
a. Given the momentum p, find the particle’s kinetic energy K.
b. Given the kinetic energy K, find the particle’s momentum p.

When v/c is small, you can solve these problems using the approximate
Newtonian equations:

K =
p2c2

2m0c2
,

or pc =
√

2Km0c2.

As a measure of how good an approximation is, it is usual to use the
“fractional difference” between the approximate and exact answers. (Frac-
tional difference is often referred to as “fractional error.”) Therefore, given
an approximate value Ka and an exact value Ke, you want

Ka − Ke

Ke
=

ΔK

Ke

to be small enough.
How small is “small enough”? It depends on what you are doing with

your answer. If you are building a bridge or a particle accelerator, you
want a smaller fractional error than if you are doing physics homework
problems. For physics problems a fractional error of a few percent is often
satisfactory. For the purposes of this book 2.5% is usually good enough.

� EXAMPLES

13. What is the fractional difference between 200 and 204? Between
200 and 220?

The answer for the first case is (204 − 200)/200 = 0.02, or, as one
often says, 2%. For the second case the fractional difference is 0.1, or
10%.
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The rest energy m0c
2 is the key quantity for judging the accuracy of

the approximate equations. The precision of results is governed by the
ratio of K or pc to the rest energy m0c

2. You need to know m0c
2 to judge

whether you can use approximate equations or if you must use the exact
ones.

For example, if the ratio of the particle’s kinetic energy to its rest
energy, K/(m0c

2), is 0.1, a value of p calculated from
√

2Km0 will deviate
from the exact value by 2.5%. In other words, if you have a 51.1 keV
electron and you calculate its momentum non-relativistically, your answer
will differ from the exact answer by about 2.5%. For a proton the kinetic
energy would have to be 94 MeV—10% of its rest energy—before the
non-relativistic equations would be in error by 2.5%.

� EXERCISES

11. What is the fractional error between the relativistic and non-
relativistic calculations of momentum if the electron has a kinetic
energy of 5.1 keV? 102 keV?

For a precision of 2.5% or better use the following rule of thumb:

• If K/(m0c
2) < 0.1, you may use nonrelativistic equations to find

momentum from kinetic energy.

� EXERCISES

12. Suppose you had a 50MeV proton. Would the Newtonian equa-
tions be good enough for calculating the proton’s momentum? How
much error would you make using the Newtonian equation?

If you know the momentum p and need to find the kinetic energy K,
the nonrelativistic equation K = p2/(2m0) will give an answer that has a
fractional deviation from the relativistically exact answer that is ≤2.5%
as long as pc/(m0c

2) <∼ 0.32. This means that for an electron with mo-
mentum of 162 keV/c the nonrelativistic equation will give an answer that
is 2.5% low.

So if 2.5% is good enough precision, you have the following rule:

• To find K from p you may use nonrelativistic equations when
pc/(m0c

2) < 0.3.
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What if you know v and want to find K or p? When do you need to
use the exact equations?

• To find K or p with an accuracy of 2.5% or better when you know v,
you can use non-relativistic equations if v/c <∼ 0.2.

If you would rather remember only one rule of thumb, just remember
the most restrictive:

• If the ratio of K/(m0c
2) or pc/(m0c

2) or v/c is <0.1, you can use
nonrelativistic equations with an error of less than 3%.

Ultrarelativistic Approximation

There is another extreme useful to know about. If the ratios of K or pc
to the rest energy m0c

2 are greater than ≈40, you can simply ignore the
m0c

2 terms in Eq. 9. The connections of E, K, and pc become

K ≈ E ≈ pc.

This is called the “ultrarelativistic” approximation, and it is good to
better than 2.5%.

� EXAMPLES

14. What is the momentum of a 1GeV electron? In this case
K/(m0c

2) is about 2000, so the particle is ultrarelativistic. Its
momentum is 1GeV/c.

12.6 SUMMARY

In the study of a moving particle the quantities of most interest are its
kinetic energy K, its closely related total energy E, and its momentum �p.

At high speeds, i.e., when v/c >∼ 0.1, the values of these quantities dif-
fer appreciably from the predictions of Newtonian physics. This different
behavior arises because inertial mass increases with a particle’s speed:

m =
m0√

1 − v2/c2
= γm0,
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where v is the particle’s speed, m0 is its mass in its rest frame of reference,
and

γ ≡ 1
√

1 − v2/c2
.

The relativistically correct formulas connecting total energy E, kinetic
energy K, momentum p, and mass m are

�p = m�v

E = mc2

E =
√

m2
0c

4 + p2c2

K = E − m0c
2.

The following relations are also useful:

v

c
=

pc

E
=
√

1 − 1
γ2

pc

m0c2
=
√

γ2 − 1

K

m0c2
= γ − 1.

In the limit of v/c <∼ 0.1 the relativistically correct equations are very
well approximated by the nonrelativistic Newtonian equations �p = m0�v,
K = p2/(2m0), and E = K+const. For many practical purposes when
v/c < 0.1 or K /(m0c

2) < 0.1 or pc/(m0c
2) < 0.3, the Newtonian

equations are sufficiently accurate and easier to use.
At speeds where v/c > 0.9997 or when K /(m0c

2) or pc/(m0c
2) > 40,

you can neglect the m0c
2 terms in the above equations. This is called the

ultrarelativistic approximation. Then K ≈ E and p ≈ E/c.
In modern physics the units of energy are electron volts (eV) and their

SI multiples such as keV, MeV, GeV, TeV. They are used as units of
kinetic energy and potential energy. By extension they are used as units
of mass, eV/c2, and units of momentum, eV/c. It is fairly common usage
to say that the mass of a particle is so many eV, e. g., the mass of a
proton is 938MeV. You are supposed to know that this number includes
the factor of c2.

You need to know the values of the speed of light c = 3 × 108 m/s and
the rest masses of the electron (511 keV/c2) and the proton (938MeV/c2).
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PROBLEMS

1. A 9.38MeV proton enters a magnetic field and is bent in a circle of
radius r = 0.2 m.

a. Is this a relativistic, nonrelativistic, or ultrarelativistic proton?
How do you know?

b. What is the extra mass of this proton arising from its motion? Give
your answer in the appropriate multiple of eV.

2. Suppose you have an electron traveling with a velocity such that
γ = 3.

a. What is its kinetic energy?
b. What is its momentum?
c. What would be its radius of curvature in a magnetic field of B =

0.1 T?
d. What is its velocity?

3. Suppose a stick and S′ are moving past S at a velocity such that γ = 3.
If the stick has a mass of 1 kg when it is at rest,

a. What does S′ measure its mass to be?
b. What does S measure its mass to be?

4. What is the kinetic energy of the stick in the previous question
a. as measured by S′?
b. as measured by S?

5. a. We know that E = mc2 = γm0c
2. Use this relation to give a

relativistically correct definition of kinetic energy K. Explain why
this is a sensible definition.

b. Show by a series expansion that for v/c � 1 your above definition is
well approximated by the usual classical formula for kinetic energy.

c. An electron is accelerated through a potential difference of 10V.
What is the relativistic increase in its mass? Explain.

6. A stationary particle having a rest mass energy of 1400MeV disin-
tegrates into two particles called “pions,” a π+ and a π−, that travel in
opposite directions, as shown schematically in Fig. 12.4. Each of the pions
has a rest-mass energy of 140MeV.
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π– π+

M(a)

(b)

FIGURE 12.4 A particle disintegrates into two pions (Problem 6).

a. Find the kinetic energy, in appropriate units, of each outgoing
particle.

b. What is the value of γ (“gamma”) for either pion?
c. When the pions are at rest, they have a lifetime of 0.28 ns. Accord-

ing to an observer in the laboratory, what is the lifetime of the
moving pions (in ns)?

7. A positively charged K meson—a K+ kaon—with a momentum p =
8.2 GeV/c enters a bubble chamber (a device in which charged particles
leave visible tracks) and decays into two pions: K+ → π+ + π0. The rest
mass of the kaon is 494 MeV/c2 and that of each pion is 140 MeV/c2.

a. Calculate the total energy of the kaon. Do this exactly.
b. What is the value of γ? Find the speed of the kaon in terms of c.

Is the ultra-relativistic approximation valid for this kaon?
c. The K+ has an average lifetime of 12.4 ns in its rest frame.

What lifetime would you measure in the rest frame of the bubble
chamber?

d. In the rest frame of the bubble chamber how far (on average) would
a kaon travel before decaying? What distance would this be in the
kaon’s frame of reference?

e. Suppose that the two pions have the same kinetic energy. What
would that kinetic energy be? What is the value of γ for either
pion? What is the magnitude of the momentum of either pion?

f. Assuming that the paths of the pions make equal angles θ, find θ
(Fig. 12.5).

8. The rest mass energies of a proton and an electron are 938MeV and
0.511MeV, respectively. Calculate the total energy of each of the following
particles:
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0

+

K+

FIGURE 12.5 A positively charged kaon traveling through a bubble chamber dis-
integrates into two pions. This diagram shows their momenta before and after the
disintegration (Problem 7(f)).

e e–

(a) (b)

FIGURE 12.6 An electron and a positron collide and become two photons (Problem 9).

a. a 10MeV proton.
b. an electron with γ = 1000.
c. a 500MeV electron.
Are any of these particles “ultrarelativistic?” If so, which one(s)?

9. There is a particle with the same mass as the electron but positively
charged. It is called a “positron.” The “Tristan” particle accelerator at
Tsukuba, Japan, accelerates both electrons and positrons to energies of
25GeV and then directs them into head-on collisions in which they an-
nihilate one another; i.e., they turn into a pair of high-energy photons,
as illustrated in Fig. 12.6. Give your answers to the following questions
in eV.

a. Are these particles nonrelativistic, relativistic, or ultrarelativistic?
Justify your answer briefly.

b. Find the momentum of a 25GeV electron.
c. Suppose a single new particle is formed in the collision of a positron

and an electron in this machine. Determine the momentum, kinetic
energy, and rest mass of such a particle.

d. If instead of forming a new particle, all of the electron and positron
energy is used to produce two photons of equal wavelength traveling
in opposite directions (See Fig. 12.6b):
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i. Estimate the wavelength of each photon.
ii. Why are two photons, rather than one, generated? (Hint:

consider the conservation laws.)

10. What magnetic field will bend a 1.02MeV electron in a circle with
a radius of 1m?

11. What magnetic field will bend a 1.02MeV proton in a circle with a
radius of 1m?

12. What magnetic field is required to bend a 1GeV electron in a circle
10m in radius?

13. What magnetic field is required to bend a 1GeV proton in a circle
10m in radius?

14. What is the velocity of a 1.02MeV electron? Express your answer
as a fraction of the speed of light c.

15. An electron in a magnetic field of 1 kG (0.1 T) is bent in an arc with
a radius of 1m. What is the electron’s kinetic energy?

16. For each of the preceding six questions, justify using the nonrela-
tivistic approximation, the ultrarelativistic approximation, or the exact
relativistic equations.

17. The rest mass energies of the electron and proton are respectively
511 keV and 938MeV. For the cases i–iv below:

a. Determine whether the particles are nonrelativistic or ultrarela-
tivistic. Justify your answer.

b. Calculate the kinetic energies (in eV) for each case, using the ap-
propriate approximate formulas in each case and also the exact
relativistic formulas.
i. An electron with a momentum of 10 keV/c.
ii. An electron with a momentum of 10GeV/c.
iii. A proton with γ = 50.
iv. A proton with v/c = 0.05.

18. A proton and an antiproton each traveling with a momentum of
10GeV/c collide head-on in a high-energy physics experiment. The proton
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and antiproton have equal rest masses (938MeV/c2), and charges of
opposite sign but equal magnitude.

a. What is the total energy before the collision?
b. If they collide to form a new particle, determine its momentum,

charge, and rest-mass energy.
c. The new particle is unstable and decays into two pions, π+ and

π−, both of which have rest masses of 140MeV/c2, and opposite
but equal-magnitude charges. Find the resulting kinetic energy of
each pion.

19. What is the speed, relative to the speed of light, of an electron with
kinetic energy equal in value to its rest mass?

20. A typical nuclear reactor produces about 2.5 × 109 J of thermal
energy in 1 s.

a. What mass does this energy correspond to?
b. If 200MeV of energy is released per fission, how many fissions occur

per second in this nuclear reactor?
c. What fraction of the mass of a 235U nucleus is converted into

thermal and radiant energy when it undergoes fission?

21. Find the energy released in the deuterium–deuterium fusion reaction
2H + 2H → 3He + 1n.

The rest masses of 2H, 3He, and the neutron 1n are 2.014102 u, 3.016029 u,
and 1.008665 u respectively.

22. Consider the decay 55Cr → 55Mn + e−, where e is an electron.
The nuclei 55Cr and 55Mn have masses of 54.9279 u and 54.9244 u, respec-
tively. Calculate the mass difference of the reaction. What is the maximum
kinetic energy of the emitted electron?

23. In the electron–positron collider at Cornell University, electrons and
positrons acquire oppositely directed momenta of 4.0GeV/c before they
collide head-on.

a. Suppose that after the two particles collide they unite to form a
new particle at rest. What is the rest mass of the new particle?

b. Suppose the new particle decays into a proton and an antiproton
that move in opposite directions. What is the kinetic energy of
either particle?

c. What is the velocity relative to the speed of light, and what is the
momentum of either particle?



1313C H A P T E R

The Granularity
of Light

13.1 INTRODUCTION

The discovery of the electron swiftly led to better understanding of the
nature of matter. This in turn led to a revolution in the understanding
of the nature of light. The most surprising outcome was the discovery
that under many circumstances light and other forms of electromagnetic
radiation behave like particles instead of waves. There are two outstand-
ing examples of light behaving like particles. One example is called “the
photoelectric effect” and the other “the Compton effect.”

13.2 THE PHOTOELECTRIC EFFECT

Discovery of the Photoelectric Effect

In 1887 Heinrich Hertz showed that, as Maxwell had predicted, oscillating
electric and magnetic fields produce radiation that travels with speed c.
In effect, Hertz discovered electromagnetic radiation in the form of radio
waves and provided convincing evidence that visible light is just a shorter
wavelength form of such radiation. While doing this work, Hertz also
discovered the photoelectric effect.

On one side of a room he generated radio waves by means of a high-
frequency current sparking across a gap. The resulting waves crossed the
room and induced sparking in a properly adjusted detecting apparatus.
He observed that this induced spark was much larger when the metal
tips of the spark gap were illuminated with light from the sparks of the
generator across the room. When the light from the generating sparks was
passed through glass before reaching the detecting spark gap, the spark

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 401
DOI 10.1007/978-0-387-79080-0 13, c© Springer Science+Business Media, LLC 1999, 2010
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became smaller, but when the light came through a quartz plate, the
induced spark remained large. Hertz knew that glass absorbs ultraviolet
light and that quartz does not, so he concluded that it was ultraviolet
light causing the spark in the detector to become larger.1

In 1888, shortly after Hertz’s observations, Hallwachs found that a
negatively charged zinc plate would discharge when illuminated with ul-
traviolet light, while a positively charged plate would not.2 This emission
of negative electricity from the metal when illuminated with light of suit-
ably short wavelength is called the “photoelectric effect.” In 1889 Elster
and Geitel showed that the photoelectric effect could be produced using
visible light on metals that were amalgams of mercury with the alkali
metals cesium, sodium, and potassium, as well as with zinc.

As you have seen, it was another decade before techniques were devel-
oped that gave reliable measurements on charged particles such as the
electron. Understanding of the photoelectric effect did not progress much
until it was possible to measure directly the actual charges released when
light struck these metals.

Properties of the Effect

In 1899, two years after discovering the electron, J.J. Thomson, in
England, and Philipp Lenard, in Germany, measured the charge-to-mass
ratio q/m of the negative charges emitted in the photoelectric effect. They
found q/m to be similar to the ratio already measured by Thomson for
cathode rays, i.e., electrons, and concluded that the photoelectric charges
must also be electrons.

Figure 13.1 is a diagram of the apparatus Lenard used to study the
electrons emitted when light strikes a metal. Electrons produced using
light are often called “photoelectrons.” He used the apparatus both to
measure the q/m ratio of the photoelectrons and to learn some things
about their energy. The apparatus is in some ways like the one used to
measure e/m. Here the cathode rays are produced when ultraviolet light
from S shines through the window Q and strikes the cathode C, releasing
charges. The flow of charges initiated by the light is often called the
“photocurrent.” The charges emitted at the cathode C have some initial
energy Ki, and they acquire more kinetic energy by passing through a
potential difference V maintained between C and A. The charges that
pass through the hole in A proceed on with kinetic energy

1
2
mv2 = e V + Ki.

1Heinrich Hertz, Electric Waves, MacMillan & Co., London and New York, 1893.
2W. Hallwachs, Ann. d. Phys. 33, 301 (1888).
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FIGURE 13.1 Lenard’s apparatus for measuring q/m and Kmax of photoelectrons. The
dashed oval curve surrounds the region where a magnetic field is applied perpendicular
to the plane of the page.

In Fig. 13.1 the dashed oval shows where a uniform magnetic field B
can be applied directed out of the plane of the paper. When the field is
off, charges coming through the hole A strike the anode P1, and there is a
photocurrent in meter 1; when the field is on and properly adjusted, the
charged particles bend in a circle of radius R onto P2. Then in meter 2
there is a photocurrent that becomes maximum for some value of B. R
is measured from the geometry of the apparatus. If V is large enough so
that eV � Ki, you can combine the energy equation with mv = eBR
and show that

e

m
=

2V
B2R2

. (1)

Equation 1 is the same as Eq. 8 derived in Chap. 9 (p. 241). Lenard
measured q/m to be 1.2 × 1011 C/kg and concluded that the emitted
charges were electrons.

� EXERCISES

1. How does this value compare with the value of e/m obtained by
Thomson as described in Chap. 9? With the currently accepted value?
Why do you suppose people measuring values of e/m that differed by
≈ 50% or more all agreed that they were seeing the same particle?
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Lenard observed that some photocurrent flowed even when the voltage
of C was made positive—up to 2.1V—relative to A. He realized that this
meant that some of the electrons were emitted with enough energy to
escape the attraction of plate C when it was positively charged. When
the voltage on C became too positive, that is, greater than 2.1V, no more
charge flowed. This result meant that the photoelectrons had a maximum
kinetic energy of 2.1 eV.

Lenard’s most surprising observation was that an increase in the in-
tensity of the incident light led to a proportional increase in the number
of photoelectrons but did not change their maximum energy! Only when
Lenard varied the frequency of the incident light did the maximum en-
ergy change. Later, more refined experiments confirmed these results
and showed that the higher the frequency of incident light, the higher
would be the maximum energy of the emitted electrons. In Fig. 13.2
schematic plots of photocurrent Ipc vs. the cathode voltage V show the
effects of changing the intensity and also the frequency of the illuminating
light.

(a)

(b)

Ipc

I1

I2

I3

f2

f1

f3
f1<f2<f3

I1<I2<I3

Ipc

5 –5 –10 –15

5 –5 –10 –15

V (volts)

V (volts)V01
V02

V0

FIGURE 13.2 Photocurrent Ipc vs. cathode voltage V (a) for different intensities I1,
I2, I3 and (b) for different frequencies f1, f2, and f3 of incident light. Increases in
intensity increase the photocurrent but do not change the voltage V0 corresponding to
Kmax; only increases in frequency increase Kmax.



13.2. THE PHOTOELECTRIC EFFECT 405

� EXERCISES

2. When you shine ultraviolet light on a zinc plate connected to a
charged electroscope, it discharges when negatively charged but not
when positively charged. Use the discovery that the charges emitted in
the photoelectric effect are electrons to explain these observations.

There was another surprising property of the photoelectrons. They be-
gan to flow as soon as the cathode was illuminated; there was no time
delay between the arrival of the light and the emission of photoelectrons.
This was unexpected for the same reason that it was a surprise to find
that the maximum energy of the electrons did not depend on the intensity
of light. Recall that the model of light as a wave implies that light emitted
from a source spreads out through space and, like a water or sound wave,
becomes ever weaker the farther it is from its source.

The fact that the intensity of light from a point source of light decreases
as 1/r2 as you move a distance r from the source follows from the geometry
of a sphere. As an example, consider light from the Sun, which emits a
total of W0 = 3.9 × 1026 J/s of electromagnetic radiation (mostly in the
visible spectrum). By the time this radiation reaches Earth 1.5 × 1011 m
from the Sun, its energy is spread over a sphere of area

4πr2 = 4π(1.5 × 1011)2 = 2.8 × 1023 m2,

so that measurements of the solar energy incident at the top of Earth’s
atmosphere show that the amount of energy incident per second per unit
area (the definition of intensity) is

3.9 × 1026

2.8 × 1023
= 1390 J s−1 m−2.

As the sunlight travels further and further, the area of the surrounding
sphere grows as r2, so the energy is spread over a larger area, and its
intensity drops as 1/r2. Thus, at the planet Jupiter, which is 5.2 times
further from the Sun than Earth, the intensity of sunlight striking the
outer atmosphere of Jupiter is

1390
(5.2)2

= 51J s−1 m−2.

To see what is surprising about the fact that photoelectrons are emitted
as soon as light strikes the metal, consider how quickly an atom could
accumulate energy from a wave and get enough to eject the photoelectron.
Assume that the photoelectric effect is to be produced with a narrow band
of frequencies of sunlight, say between 700.0THz and 700.3THz (a deep
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blue light). This range contains about 7× 10−5 of the total energy in the
sunlight, and only half of that reaches the ground. Therefore, the intensity
of the light for our experiment might be in the range of

3.5 × 10−5 × 1390 = 0.049 J s−1 m−2.

A beam of light with this intensity is very easy to see.
The research of Lenard and others showed that it takes different

amounts of work to release an electron from different metals. Suppose
you have a metal which requires about 2.9 eV to release an electron. How
long do you expect it to take light with an intensity of 0.049 J m−2 s−1 to
supply the necessary 2.9 eV to an atom? If the energy of light is spread
smoothly over space, then the rate that energy is supplied to an atom is
Wa = Iπr2, where πr2 is the cross-sectional area of the atom of radius r
and I is the intensity of the light. For an atom with a typical radius of
0.2 nm,

Wa = 0.049π(0.2 × 10−9)2 = 6.2 × 10−21 J s−1,

or

Wa = 0.038 eV s−1.

This result tells you that if this light were arriving as a wave spreading
out from its source, it would take about 76 seconds before the incident
light could supply the 2.9 eV the atom needs to release an electron.

� EXERCISES

3. Complete the calculation to show that it would take about 76
seconds, or well over a minute, to release one electron under the
assumptions discussed above.

Einstein’s Explanation: E = hf

The essentially instantaneous emission of an electron was an extraordinary
result, totally at odds with classical physics. Sir William Bragg described
the strangeness of the effect very well when he said:

It is as if one dropped a plank into the sea from a height of 100 feet,
and found that the spreading ripple was able, after travelling 1000
miles and becoming infinitesimal in comparison with its original
amount, to act on a wooden ship in such a way that a plank of
that ship flew out of its place to a height of 100 feet.
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Think about this image. When you understand it, you will understand
why the photoelectric effect was so remarkable. No matter how low the
intensity of the light, energy was either delivered instantly and completely
to the atom or not at all.

The idea of the continuous, smooth spreading of electromagnetic energy
must simply be wrong. Einstein was the first to accept that possibility.
He generalized an idea of Max Planck and asserted that light (both the
visible part and all other forms of electromagnetic energy) carries energy
in indivisible amounts, or “quanta.” Each quantum of light of frequency f
has an energy of hf , where h is a constant known as “Planck’s constant”
with the value 6.63 × 10−34 J s.

� EXERCISES

4. Find the value of h in eV s, units that will often be useful in this
book.

Your answer h = 4.14 × 10−15 eV s means that light of frequency
700THz consists of many packets, or quanta, each carrying an energy
of 700 × 1012 × 4.14 × 10−15 = 2.9 eV.

If that is the case, said Einstein, then we can understand that each
electron is emitted immediately following the absorption of a single quan-
tum of light. It is then evident that reducing the intensity of the light
just reduces the number of quanta, but not the time it takes a particular
quantum to be absorbed and produce the emission of an electron.

Also, it is clear from conservation of energy that no electron can be
ejected from the metal with more energy than the quantum of light
brought to it in the first place. In fact, experimental evidence showed that
even the electrons emitted with maximum energy did not have the full
energy supplied by the “photon,” as a quantum of light is often called.
Einstein understood that it would take some energy to break the elec-
tron loose from the surface; this energy is called the “work function” of
the metal and is often represented by the lowercase Greek letter phi, φ.
Einstein summarized his ideas by a simple statement of the conservation
of energy,

Kmax =
1
2

mv2
max = hf − φ, (2)

which says that the maximum kinetic energy a photoelectron can have is
the amount carried in by the photon less the energy used to break the
electron loose.
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Experimental Verification of Einstein’s Equation

Precise experimental verification of Einstein’s equation was difficult for
practical reasons. The energies of emitted photoelectrons depend sen-
sitively on the state of the metallic surface. Metal surfaces are always
coated with oxide layers, and surfaces usually have thin films of oil or
other contaminants. It is difficult to prepare surfaces so that from exper-
iment to experiment the surface is in the same state. Millikan3 partially
solved this problem by installing a machine tool in an evacuated box and
using it to shave off a thin layer of metal to make a surface in a well-
defined state of cleanliness. Even then, it was hard to get reproducible
results because a vacuum is never perfect, and a surface will quickly ox-
idize and pick up contaminants after it is cleaned. Millikan’s results were
convincing because he found an independent way to determine φ, and
then he showed that there was a way to prepare the surface so that φ
remained unchanged over several weeks. The surface was quite dirty, but
it was reproducibly dirty. That was enough to make his measurements
meaningful.4

Millikan measured the maximum kinetic energy of photoelectrons emit-
ted from sodium metal illuminated with various wavelengths of light. His
apparatus, shown schematically in Fig. 13.3, was entirely contained in
vacuum. The wheel W would rotate one of the three metal cylinders—
one of sodium metal, one of lithium, and one of potassium—under the
knife K, which then shaved off a layer of metal to clean the surface. The
cylinder was then rotated around to face a window O through which came
a beam of monochromatic light.

The energy of the electrons was determined by measuring the photocur-
rent versus the electric potential difference between the sodium metal and
the wire mesh B and collector C. This electric potential difference is the
cathode voltage, V , and when it is positive, it impedes the flow of the
electrons from the sodium cathode to the mesh and the anode. The cath-
ode voltage was varied until the photocurrent vanished. The value of V0 at
which electrons just cease to flow corresponds to the maximum electron
energy, i.e., Kmax, because

1
2
mv2

max = eV0

3R.A. Millikan, A direct photoelectric determination of Planck’s “h,” Phys. Rev. 7, 355–388
(1916); Einstein’s photoelectric equation and contact electromotive force, Phys. Rev. 7 (Second
series), 18–32 (1916).
4This is another situation where inadequate vacuum resulting from the limits of the technol-
ogy of the day caused much confusion that was cleared up only by ingenious design of the
experiment and by carrying it out very carefully.
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light

alkali
metal

rotating knife

FIGURE 13.3 Diagram of Millikan’s photoelectric effect apparatus. Taken with per-
mission from R.A. Millikan, Phys. Rev. Vol. 7, 355–388 (1916), c©1916 The American
Physics Society.

TABLE 13.1 Experimental values of photocurrent Ipc vs. cathode voltage V for

sodium illuminated with six different wavelengths of lighta

546.1 nm 433.9 nm 404.7 nm 365.0 nm 312.6 nm 253.5 nm

V0

(V)
Ipc

(mm
defl)

V0

(V)
Ipc

(mm
defl)

V0

(V)
Ipc

(mm
defl)

V0

(V)
Ipc

(mm
defl)

V0

(V)
Ipc

(mm
defl)

V0

(V)
Ipc

(mm
defl)

0.253 28 0.829 44 0.934 82 1.353 67.5 1.929 52 2.452 68

0.305 14 0.889 20 0.986 55 1.405 36 1.981 29 2.568 38

0.358 7 0.934 10 1.039 36 1.458 19 2.034 12 2.672 26

0.410 3 0.986 4 1.091 24 1.510 11 2.086 5 2.777 16.5

1.143 10 1.562 4 2.882 8

1.196 3

0.46 V 1.03 V 1.21 V 1.59 V 2.13 V 3.03 V
a Adapted from Millikan, A direct photoelectric determination of Planck’s “h,” Phys. Rev. 7
355–388 (1916). Three entries from his table have been corrected to agree with his graphs, and
every entry has been corrected for 2.51V of contact potential. The bottom row of the table

contains the values of V0 at which Ipc goes to zero as determined by Millikan’s extrapolation.
The current was read as millimeters of deflection (mm defl) on the scale of an electrometer.

(after correcting for the voltage produced by the battery action of the
different metals of which the apparatus was made).

Millikan made careful measurements using several different wavelengths
of light on lithium, sodium and potassium. His data for sodium are given
in Table 13.1. These data illustrate an important difficulty of experi-
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FIGURE 13.4 Use of extrapolation to determine the cathode voltage V0 at which the
photocurrent Ipc → 0 for 546.1 nm light on sodium.

ments that try to determine the point at which a quantity becomes zero.
Accurate location of this point is usually difficult because there are always
a few electrons around from stray light or other sources, and they obscure
the zero point. The answer is found by measuring V at points where the
photocurrent is not zero and then determining V0 by extrapolation, as
shown in Fig. 13.4. There is always some guesswork in such extrapolation
because the data points that will best inform you about where the zero
point is are also the least reliable data points because they are small and
more like the obscuring background. Millikan’s extrapolated values are
given in the last row of Table 13.1.

� EXERCISES

5. Try some extrapolation yourself. Find the zero points for 433.9 and
404.7 nm light. How well do your values agree with Millikan’s?

� EXAMPLES

1. How can you find the work function from Millikan’s data? For
546.1 nm light the cathode voltage at which the photocurrent be-
comes zero (found by extrapolation) is 0.46V; therefore, the maximum
energy Kmax of electrons from the photoelectric effect induced with
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TABLE 13.2 Work functions of some
metals

Metal Work function (eV)

silver 4.73

aluminum 4.20

calcium 2.7

cesium 1.9

potassium 1.76–2.25

sodium 1.90–2.46

rubidium 1.8–2.2

copper 4.1–4.5

iron 4.72

nickel 5.01

platinum 6.30

this light is 0.46 eV. Because the energy of a 546.1 nm photon is
1240/546.1 = 2.27 eV, the work function must be 2.27−0.46 = 1.81 eV.

� EXERCISES

6. Calculate the work function using Millikan’s data for λ = 433.9,
404.7, 365.0, 312.6, and 253.5 nm. How do your answers compare among
themselves? With the value(s) given in Table 13.2?

7. Consider Eq. 2. In a plot of Kmax of the photoelectrons vs. the
frequency of the incident light, what functional dependence and shape
of curve do you expect? What should be the slope?

8. Use Millikan’s data to determine values of Kmax. Plot them versus
frequency. Do the slope and intercept agree with what you would expect
from Eq. 2? Your results should show excellent agreement between
Millikan’s measurements and Einstein’s predictions.

So Einstein was right. Electromagnetic radiation has its energy in pack-
ets. It is quantized. Light of frequency f has a smallest indivisible amount
of energy hf . Light possesses a kind of atomicity; it consists of photons.
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� EXAMPLES

2. What is the maximum velocity of photoelectrons emitted when
250 nm light strikes a clean aluminum plate?

Notice that in addition to answering the question, this example in-
troduces you to an efficient way to calculate a photon energy hc =
1240 eV nm because

hc = 4.136 × 10−15 eV s × 2.9979 × 108 m s−1 = 1240 eV nm.

To find the maximum possible velocity, find hf and φ and then use
conservation of energy Eq. 2 to calculate the maximum possible kinetic
energy of an emitted electron. For Al, φ = 4.20 eV (see Table 13.2).
For 250 nm light,

hf =
hc

λ
=

1240
250

= 4.96 eV.

(Learn to use this way to connect hf and λ; it permits you to use photon
energies given in eV and wavelengths given in nm without having to
convert them to SI units.)

From conservation of energy
1
2
mv2

max = 4.96 − 4.20 = 0.76 eV.

To find vmax rewrite the above to have mass in units of eV/c2,

1
2
mv2

max =
1
2
mc2

(vmax

c

)2
= 0.76 eV,

which you can solve for vmax/c:

vmax

c
=

√
2 × .76
mc2

=

√
1.52

511 × 103
= 1.73 × 10−3,

so

vmax = 1.73 × 10−3c = 5.2 × 105 m s−1.

13.3 PHOTOMULTIPLIER TUBES: AN APPLICATION
OF THE PHOTOELECTRIC EFFECT

Within five years of its discovery the photoelectric effect was used to
measure ultraviolet radiation from the Sun. Since then, many instruments
for detecting and measuring light have been based on the photoelectric
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effect. One of these, the photomultiplier tube, is widely used in industry
and in research. This device can detect individual photons; it can directly
demonstrate the granularity of light.

How the Photomultiplier Tube Works

The photomultiplier uses two different effects: the photoelectric effect and
electron multiplication. When a photon strikes a surface coated with a
material with low work function, an electron is sometimes emitted. This
is just the photoelectric effect, and it represents a conversion of light
energy into an electric current, i.e., into the motion of an electric charge.

A single electron charge is difficult to detect, and it is desirable to
amplify it. This is done by placing nearby a second surface at a voltage
positive with respect to the first. The electron emitted from the first
surface is then accelerated toward the second surface. It gains enough
energy so that when it strikes the second surface, it causes the emission
of several electrons. This process is called “secondary emission,” and it
multiplies the electrons.

The multiplication can be repeated by placing a third surface nearby
with a voltage positive relative to the second. Then if the surfaces are
properly shaped and arranged, the electric fields associated with the volt-
age difference between them will direct all the electrons emitted from the
second surface onto the third one. Each impacting electron causes the
emission of several electrons, and the multiplication repeats, as shown in
Fig. 13.5.

Parts of a Photomultiplier Tube

The surfaces that emit and collect electrons are called the “electrodes”
of the photomultiplier. The first electrode, where the photoelectric effect
occurs, is called the “photocathode.” The last electrode, where the mul-
tiplied electrons emerge as a current, is called the “anode.” (You can see
that these names are adapted from Faraday’s names for the parts of an
electrolytic cell.) The electrodes between the photocathode and the anode
are called “dynodes.” It is at the dynodes that electron multiplication
occurs.

An electron from the photocathode passing down a string of dynodes
each 100 volts higher than the preceding one can give rise to an overall
amplification from 103 to 108. Exactly what amplification occurs depends
upon the voltage between the dynodes, the material of which the dynodes
are made, the total number of dynodes in the string, and the particular
geometric arrangement of the dynodes. Figure 13.5 shows schematically
one possible arrangement of photomultiplier electrodes.
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FIGURE 13.5 Schematic diagram of electrodes and electron multiplication in a
photomultiplier tube.

� EXERCISES

9. What is the overall amplification of a photomultiplier tube that
has nine dynodes and an electron multiplication factor of six at each
dynode?

Among the many practical considerations in the design of photomul-
tiplier tubes is finding photocathode materials that can emit an electron
for long wavelengths of light, i.e., materials with especially low work func-
tions. Even with enough energy, not every photon causes the emission of
an electron. Therefore, we look for materials in which production of a pho-
toelectron is both energetically possible and maximally probable. Some
alkali metals produce only one photoelectron for every 1000 incident pho-
tons, while some mixtures of alkalis, e. g., the multialkali Na K Sb Cs,
can produce as many as 300 electrons for every 1000 photons. This ratio
is very important and is called the “quantum efficiency.” The two ex-
amples here illustrate quantum efficiencies of 0.1% and 30%. A quantum
efficiency of 30% is about as large as you can get with visible light.
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Scintillation Counting of Radioactivity: A Useful Application

When an energetic charged particle or a high-energy photon strikes a piece
of matter, it may impart all or some of its energy to an electron in the
matter. The electron’s energy will often go to make a small flash of light,
and if the crystal is transparent, as is, for example, sodium iodide doped
with thallium, NaI(Tl), this flash can be detected. A small flash of light is
called a “scintillation.” By detecting and counting the scintillations, one
detects and counts incident particles. Even better, the size of the light
flash is proportional to the amount of energy the particle or incident pho-
ton leaves in the crystal. By comparing the amounts of light in different
scintillations one compares the energies of incident particles. The scintil-
lator converts the energy of an invisible charged particle or high-energy
photon into a pulse of low-energy visible photons.

The photomultiplier tube is very effective for counting such scintil-
lations. The tube (see Fig. 13.5) is arranged to view the crystal into
which the incident particles are directed. Photons from a scintillation
strike the photocathode of the photomultiplier, which emits a tiny pulse
of electrons. These are then amplified, and there appears at the anode an
electrical pulse signaling the presence of an incident particle; the pulse
size is proportional to the energy deposited in the crystal by the detected
particle.

13.4 SUMMARY

Electromagnetic radiation comes in discrete packets of energy called pho-
tons. For radiation of frequency f , the energy of a single photon is hf ,
where h is an experimentally determined constant called “Planck’s con-
stant.” Its value is 4.14×10−15 eV s, but it is especially useful to remember
that hc = 1240 eVnm.

Einstein’s idea of the granularity of light explained the photoelectric
effect. He showed that if light came in discrete quanta, then radiation of
frequency f upon being absorbed into a surface could release electrons
with a maximum kinetic energy

1
2
mv2

max = hf − φ,

where φ is the work function of the surface. Millikan’s experimental
measurements verified Einstein’s predictions.
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PROBLEMS

1. You have been put in the basement of a building from which you can
escape only by riding up to the ground floor on a coin operated elevator
that requires $2. Someone passes you a $5 bill through the bars of the
basement window. Fortunately, the elevator’s money slot makes change.
There is also in the elevator a video game that requires $0.50 per game.

a. What is the maximum amount of money that you can have left
when you reach the ground floor?

b. What is the minimum amount of money that you can have left
when you reach the ground floor?

c. How is this situation analogous to the photoelectric effect?

2. Light is directed onto a metal surface for which the work function
is 2 eV. If the light’s frequency f is such that hf = 5eV, what is the
maximum energy with which an electron can be emitted from the surface?

3. Light with wavelength of λ = 450 nm shines on a cesium sample, and a
photoelectric current flows. With a retarding voltage of 0.85 V the current
goes to zero.

a. What is the maximum kinetic energy of electrons emitted by the
cesium?

b. Find the work function for cesium.

4. A marvelous new metal, phonium, is found to have a work function
of 1 eV.

a. If a photon of 3 eV energy strikes phonium and causes the emission
of an electron, what is the maximum kinetic energy that electron
can have?

b. Light of wavelength 620 nm strikes phonium. What is the maximum
energy of electrons emitted by the photoelectric effect under these
circumstances?

c. What are two features of the photoelectric effect that support
the idea that light energy comes as multiples of some smallest,
indivisible packet?

d. What is the highest energy photon that can be produced when elec-
trons that have been accelerated through 40 kV stop by a sudden
collision with a tungsten anode?
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FIGURE 13.6 Photocurrent vs. cathode voltage (Problem 5).

5. The schematic diagram in Fig. 13.6 shows an apparatus for studying
the photoelectric (PE) effect. When light of wavelength 620 nm shines on
the cathode, electrons are emitted. The current I of electrons that reach
the anode across a potential difference V is measured on the ammeter A.
(In what follows neglect any contact potential.)

a. What did Einstein conclude about the nature of light in order to
explain the various features of the PE effect?

b. As the voltage V is varied from negative to positive values, the
current I changes as shown in the graph above.
i. Why is the current of emitted electrons not zero when V < 0?
ii. What is the maximum kinetic energy of an electron emitted

when 620 nm light strikes the cathode?
c. On the same graph, sketch how the current I varies as V is changed

when the cathode is illuminated with 310 nm light.
d. What is the work function (in eV) of the cathode?

6. Visible light from a mercury lamp is composed mainly of five wave-
lengths: 615 nm, 579 nm, 546 nm, 435 nm, and 405 nm. The lines are
colored blue, violet, red, green, and yellow (in no particular order). When
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FIGURE 13.7 A photoelectron is just prevented from reaching the anode (Problem 6).

passed through a diffraction grating, the colors separate as shown in
Fig. 13.7 (only one side of the pattern is shown).

a. Identify the color and wavelength of λ1 in the figure.
b. By appropriate placement of the apparatus, one of the five wave-

lengths is selected and illuminates the cathode in a photoelectric
experiment. If the violet line is used, the stopping potential Vstop =
0.762V. What is Vstop for the blue line?

c. What is the stopping potential when red light from the mercury
lamp is used? Explain your result carefully.

7. An electric discharge causes atomic hydrogen to emit photons with
energies of 1.89, 2.55, and 2.86 eV. In an experiment these are passed
through a 1mm wide slit and then through a diffraction grating that has
5000 rulings per centimeter. The photons then go on and strike a screen
1m away.

a. What are the wavelengths of these photons?
b. Describe what appears on the screen and where. Be quantitative.

Also give colors and tell how you know them.
c. Explain why these results suggest that light is a wave?

8. Millikan’s photoelectric data for a lithium cathode are:

λ (nm) 433.9 404.7 365.0 312.5 253.5

V0 (V) 0.55 0.73 1.09 1.67 2.57

Make a plot of the stopping potential versus frequency and find:
a. The value of Planck’s constant.
b. The work function of lithium.
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c. The cutoff frequency below which no electrons are emitted from
the lithium cathode.

9. The stopping potential for photoelectrons emitted from a photocath-
ode surface illuminated by light of wavelength 491 nm is 0.63V. When the
wavelength is changed to a new value, the stopping potential is found to
be 1.43V.

a. What is the new wavelength?
b. What is the work function of the surface?
c. Use Table 13.2 to identify the material of which this photocathode

might be made.

10. An experimental physicist tells you that when she studied photoe-
mission from a certain material, she found the work function to be 2.35 eV
and the threshold wavelength (i.e, the wavelength at which electrons just
begin to be emitted) to be 438 nm. Would you believe these results or ask
that she repeat her measurements? Justify your answer.
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X-Rays

14.1 INTRODUCTION

As the nineteenth century came to a close, three discoveries revolution-
ized physics, set the stage for remarkable technological developments, and
ushered in a new century and a new physics. In 1895 Roentgen discovered
x-rays; in 1896 Becquerel discovered radioactivity; in 1897 J.J. Thomson
discovered the electron. Each discovery became a new tool with which
physicists explored the atom and made the discoveries that have led to
the extraordinary technology that underpins our society today.

Each discovery resulted in a similar pattern of exploration. A new
particle or radiation was discovered. Its properties were determined; a
technology for its production was developed; and once its properties were
understood, it was used to explore matter further. For example, after
the discovery of x-rays, physicists learned to generate them, detect them,
measure their energy, produce beams of them, and use them as probes to
explore the way in which crystals are built up of atoms.

In this chapter we discuss the technology for producing and measuring
x-rays. A later chapter will discuss how x-rays are used to probe and
reveal basic features of atomic structure.

14.2 PROPERTIES OF X-RAYS

Roentgen discovered x-rays while studying cathode rays. He noticed that
certain materials outside and a little distance away from the cathode-ray
tube would fluoresce, i.e., give off light, when cathode rays were striking

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 421
DOI 10.1007/978-0-387-79080-0 14, c© Springer Science+Business Media, LLC 1999, 2010
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the wall of the tube. He realized that some new form of radiation was
traveling from the tube to make the material fluoresce. He did not then
know that it was short-wavelength electromagnetic radiation, so he called
the mystery radiation “x-rays.”

He quickly found that x-rays would cause fluorescence in many mate-
rials, that they would darken photographic plates, and that they would
cause air to become electrically conducting. Fluorescence, photography,
and ionization are still important ways to detect and measure x-rays.

14.3 PRODUCTION OF X-RAYS

You can produce x-rays by sufficiently large acceleration of any kind of
charged particle. Electrons, because of their small mass, are the easiest
and most practical to accelerate. The simplest way to give electrons a
large acceleration is to bring them to an abrupt stop by colliding a beam
of them with a metal target. The “Coolidge tube” shown in Fig. 14.1
works this way. Electrons are boiled off a hot cathode C, formed into a
beam, and accelerated to a potential of some tens of thousands of volts—
10kV to 100 kV. They then smash into a water-cooled metal target T,
often made of copper or tungsten or molybdenum. The collision produces
x-rays. The target is set at an angle so that x-rays can come off at a right
angle to the tube without being absorbed by the target material.

Target T
(anode)

Heater coil

C

e–

X-rays

30-150 kV

FIGURE 14.1 Diagram of a Coolidge tube for the production of x-rays. Electrons are
boiled off from the cathode C, which is heated by the current produced by a power
supply that is not shown. Electrons from C are accelerated toward target T by voltage
from a high-voltage source. X-rays are produced when the electrons strike the target.
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� EXAMPLES

1. You can see why water cooling might be needed. An electron current
of 10mA at 50 kV delivers 10 × 10−3 × 50 × 103 = 500W of power to
the target. Water cooling is a practical way to carry off this heat.

� EXERCISES

1. How much power would be delivered to the target by a 75 kV,
10mA beam of electrons?

14.4 X-RAYS ARE WAVES

The wave nature of x-rays remained hidden for more than 15 years after
their discovery. As you know from Chap. 10, the test for wave nature
is to look for interference. The results of early investigations were am-
biguous. The shadow cast onto a photographic plate by x-rays passing
around a sharp edge showed a faint fuzziness that might be diffraction.
The problem was that if x-rays were waves, their wavelengths were so
short that they did not exhibit much diffraction in the sizes of slits one
could make in a machine shop and use in a laboratory. Indeed, the un-
successful attempts at observing diffraction implied that the wavelength
must be shorter than 0.1 nm, more than a thousand times less than the
wavelength of visible light.

In 1912 von Laue suggested that nature provides slits or gratings with
dimensions small enough to diffract waves as short as the x-rays might
be.1 From indirect evidence of shapes and sizes it appeared that crystalline
matter was composed of atoms laid out in simple patterns with regular
spacings of the order of a few tenths of nanometers. Von Laue realized
that such arrays should act as three-dimensional diffraction gratings for
x-rays, and he predicted that when a beam of x-rays of many different
wavelengths passed through a crystal, interference would cause a single

1W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei Röntgenstrahlen,”
(Interference phenomena with Roentgen rays), Sitzungsberichte d. Bayer. Akademie der
Wissenschaften, 303–322 (1912); an abridged translation is given in The World of the Atom,
edited by Henry Boorse and Lloyd Motz, Basic Books Publishers, New York, 1966, pp. 832–838.
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FIGURE 14.2 (a) Friedrich and Knipping’s apparatus for producing and detecting
x-ray diffraction: X-rays are collimated by apertures in the lead plates H and then
diffracted by crystal C. (b) An example of the diffraction data they obtained: The
black dots are places where diffraction concentrated the x-rays on the photographic
plate. By permission of Oxford University Press from M. Siegbahn, The Spectroscopy
of X-Rays, p. 14, Oxford University Press, 1925.

incident beam to emerge as a sheaf of beams the way a single beam of
many wavelengths of light on a diffraction grating emerges as a fan of
beams. He predicted that x-rays passed through a crystal would make a
pattern of dots on a photograph placed to intercept the emerging sheaf
of beams.

Acting on von Laue’s idea, Friedrich and Knipping did the simple
experiment diagrammed in Fig. 14.2a. They used a crystal of copper
sulfate (because it was easy to obtain) and a beam of x-rays contain-
ing a broad range of wavelengths. The very first results confirmed von
Laue’s prediction. Figure 14.2b shows the pattern Friedrich and Knip-
ping obtained. Each dot in the pattern corresponds to a diffracted beam
caused by constructive interference from the regular array of atoms in
the three-dimensional crystal. The experiment established that x-rays are
waves and confirmed that crystals are three-dimensional ordered arrays
of atoms.

Nowadays, the pattern of dots produced when a beam of x-rays con-
taining a broad range of wavelengths diffracts from the crystal is called a
“Laue pattern,” and the dots are called “Laue spots.” For his work von
Laue received the Nobel Prize in physics in 1914.

14.5 THE BRAGG LAW OF CRYSTAL DIFFRACTION

The work of von Laue, Friedrich, and Knipping established the wave na-
ture of x-rays, but it did not provide a quantitative description to guide
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FIGURE 14.3 Bragg conditions for constructive interference of x-rays in a crystal.
(a) Geometry for derivation of the Bragg law; (b) illustration of the presence of different
sets of Bragg planes; in this illustration five different planes can satisfy the Bragg law
for five different wavelengths and so produce five Laue spots.

further exploration. A quantitative theory was developed by W.H. Bragg
and W.L. Bragg, father and son.2

They recognized that Laue spots could be described as arising from
the constructive interference of x-rays reflected from parallel planes of
atoms in the crystal. It is as though each atomic plane acts as a slightly
reflective mirror, so that a small portion of the x-ray radiation of wave-
length λ incident on an atomic plane at a grazing angle θ (see Fig. 14.3)
is reflected—mirror-like—at the same angle θ. The rest of the radiation
passes through this plane and a part of it is reflected at the same angle
θ by the next plane immediately below, and so on, so that there emerges

2W.H. Bragg and W.L. Bragg, “Reflection of x-rays by crystals,” Proc. Roy. Soc. (London),
Series A, 88 (1913), 428–438; reprinted in part in The World of the Atom, pp. 845–852. See also
X-Rays and Crystal Structure, W.H. Bragg and W.L. Bragg, G. Bell and Sons, Ltd., London,
1915.
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from the crystal in the direction θ radiation made up of the combined
reflections from a large number of parallel atomic planes. The intensity of
the reflected beam is significant only when the individual reflected waves
interfere constructively.

The condition for constructive interference of the waves reflected from
neighboring atomic planes follows from the geometry shown in Fig. 14.3a.
In the diagram, the lines are perpendicular to and in the direction of travel
of the incident and reflected wavefronts.3 They represent the wavefronts
arising from reflections of wavefront 1 at two neighboring atomic planes.
Because triangles O1Oa and O1Oc are identical, the lines O1a and O1c
are of equal length, so wavefront 1 reaching a and wavefront 2 reaching
c will have traveled the same distance. And then wavefront 1 traveling
from a and wavefront 2 traveling from b will travel the same distance to a
distant detector. But you see from the diagram that wavefront 2 must also
travel an extra distance cO2 +O2b = 2d sin θ. For there to be constructive
interference between the two wavefronts, this extra distance must be an
integer number n of wavelengths λ, i.e.,

2d sin θ = nλ. Bragg Law (1)

The integer n is called the “order” of the reflection. Whenever the Bragg
condition is satisfied, a Laue spot appears.

It is important to realize that many different sets of planes of atoms can
be imagined in the same crystal. This point is illustrated by the different
sets of lines connecting the dots in the diagram of Fig. 14.3b. Each set of
planes can reflect x-rays. Of course, the spacings of these different sets of
planes are different, and the angles of incidence of incoming x-rays vary
with respect to the different sets of planes. The intensity of the diffracted
beams drops off as the density of atoms in a plane decreases. The many
spots in the Laue photograph (Fig. 14.2) arise because the incident beam
contains a continuum of wavelengths, and the various planes of the crystal
select out those wavelengths that satisfy Eq. 1 and reflect them as beams
that are recorded on the film.

� EXAMPLES

2. Suppose x-rays strike a crystal plane at a grazing angle of 20 ◦, and
suppose the spacing d between the planes of the crystal is 0.2 nm. What

3Such lines are called “rays”.
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wavelength will emerge at 20 ◦ to the crystal? The first-order value of
λ is just

λ = 2d sin θ = 2 × 0.2 sin 20 ◦ = 0.137 nm.

There might also be a second-order or a third-order wavelength present.

� EXERCISES

2. Suppose the crystal in the above example is rotated to 30 ◦ with re-
spect to the incident beam and the detector is rotated to 30 ◦ with
respect to the crystal. What is the wavelength of the x-rays that are
detected?

Powder Diffraction Patterns

If you use x-rays of a single wavelength, you can also obtain diffraction
patterns from powdered samples. A powdered sample of crystalline ma-
terial consists of many small crystals randomly oriented relative to each
other; foils of hammered metal may also consist of many small randomly
oriented crystals. When such a sample is irradiated with x-rays, the out-
going diffracted x-rays form a pattern of concentric rings like that shown
in Fig. 14.4a and not the array of spots observed in the Laue experiments.
Such diffraction from many small randomly oriented crystallites is called
“Debye–Scherrer diffraction.”

Each ring of the Debye–Scherrer diffraction pattern (Fig. 14.4) cor-
responds to a different spacing between planes in the crystal being
irradiated. To see how a ring might arise, consider a single set of par-
allel atomic planes within a tiny crystal. If the crystal is tipped so that
the incoming beam is incident at the angle θ satisfying the Bragg law, a
beam will be diffracted and emerge at an angle 2θ relative to the incident
beam and at an angle θ relative to the plane of the crystal, as illustrated
schematically in Fig. 14.4b. For the particular spacing d there will be
a few other orientations of the crystal relative to the beam that satisfy
the Bragg law. These orientations correspond to the higher orders, i.e.,
n = 2, 3, etc.

If the crystal can be tipped only about an axis perpendicular to the
plane of the page, as in Fig. 14.4b, the outgoing Bragg reflected beam will
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FIGURE 14.4 Why small randomly oriented crystallites produce ring-shaped x-ray
diffraction patterns: (a) example of Debye–Scherrer diffraction; (b) schematic illus-
tration of a crystallite satisfying the Bragg law for the incident x-ray wavelength;
(c) randomly oriented crystallites will produce a cone of radiation at an angle 2θ to the
axis of the incident beam; this forms the circular pattern on the photograph.

lie only in that plane. However, if the crystal were rotated about an axis
parallel to the incident beam, the beam would go off at some angle out
of the plane of the page. Therefore, from a sample consisting of a large
number of tiny crystallites oriented every which way, the outgoing beams
will lie along the surface of a cone around the incident beam, as shown
in Fig. 14.4c. When these cones meet a photographic plate some distance
away, they produce circles like those shown in Fig. 14.4a.

� EXERCISES

3. Explain what pattern might appear on the photograph if the x-rays
had a continuum of wavelengths. Why would this not be useful?
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14.6 A DEVICE FOR MEASURING X-RAYS:
THE CRYSTAL SPECTROMETER

The Braggs realized that diffraction from the planes of a single crystal
spread x-rays out in space according to their wavelengths, and that this
property could be the basis for constructing a spectrometer for x-rays.
To make their x-ray spectrometer they arranged a crystal at an angle θ
relative to the beam coming from an x-ray tube and placed a detector at
an angle θ relative to the crystal, as shown in Fig. 14.5. According to Eq. 1,
only those x-rays with wavelength λ = 2d sin θ or, less likely, some simple
fraction, e. g., λ/2, λ/3, will undergo Bragg reflection through the angle θ.
Thus the device selects out from all the different wavelengths of incident
x-rays the particular wavelengths that will produce a beam at angle θ.
As θ is changed (by rotating the crystal), the wavelength of the Bragg
reflected beam changes as determined by the Bragg equation. Then the
detector is rotated to the new value of θ to intercept the outgoing beam
of the new wavelength. By successive rotations of crystal and detector,
through θ and 2θ respectively, you can measure the intensity of x-rays as
a function of λ.

Determining the Spacing of Atoms in Crystals

Notice that to extract useful numbers you need to know either the spacing
d between planes of atoms in the crystal or the wavelength λ. If you know
the crystal spacing, you can use the crystal spectrometer to measure x-ray
wavelengths. If you know the wavelength, then you can use those x-rays
to measure the spacings of various crystals and so learn how crystalline
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FIGURE 14.5 Schematic diagram of a Bragg spectrometer.
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solids are put together. Physicists do both: They use crystals to study
x-rays; they use x-rays to study crystals. But how do they get started?
It is necessary to measure some crystal spacing or some x-ray wavelength.
After that you can use one to measure others. Where do you get the first
measurement?

From its Laue pattern the Braggs were able to infer that the Na and
Cl atoms of a crystal of table salt sit on the corners of a cube equally
spaced a distance d from one another. For such a simple structure the
volume occupied by a single atom is d3, and a numerical value of d3

can be calculated from the molar weight MM, the density ρ of salt, and
Avogadro’s number NA.

A mole of NaCl has a mass of M = 35.453 + 22.99 = 58.443 g, and the
density of salt is ρ = 2.163 g cm−3. Therefore, the volume of a mole of
NaCl is

58.443
2.163

= 27.01 cm3.

Because 1 mole of NaCl contains 2 moles, i.e., 2NA, of atoms, each atom
occupies a volume

d3 =
27.01

2 × 6.022 × 1023
cm3,

from which it follows that

d = 2.820 × 10−8 cm = 0.2820 nm.

It is common, especially in older books, to measure atomic-sized lengths
in angstroms (Å) where 1 Å = 10−8 cm = 10−10 m = 0.1 nm. In these
units the spacing between the planes of a rock salt crystal is d = 2.82 Å.
In modern textbooks, however, it is customary to use nanometers for
atomic-sized dimensions, and we will do that.

Knowing the spacing of a rock-salt crystal, you can make quantitative
measurements of the yield of x-rays as a function of wavelength, and you
can find spacings of other crystals.

� EXAMPLES

3. For example, one might take x-rays from a tungsten target, form
them into a beam with slits, as in Fig. 14.5, and allow them to strike
a crystal of rock salt. The x-rays emitted at an angle of, let’s say, 25 ◦
will then have a wavelength of λ = 2d sin θ = 2 × 0.2820 × sin 25 ◦ =
0.2384 nm.

In this way the Bragg spectrometer is used to measure unknown x-ray
wavelengths.
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� EXAMPLES

4. The x-rays coming from the rock-salt crystal in Example 3 are
allowed to strike a calcite crystal (CaCO3). The calcite crystal is rotated
until there is a strong reflection from it. This occurs when the angles of
grazing incidence and reflection are each 23.1 ◦. From this measurement
you can deduce that the spacing of the planes of atoms in the calcite
crystal is

d =
0.2384

2 sin 23.1 ◦ = 0.3036 nm.

In this way a known x-ray wavelength is used to find an unknown
spacing of atoms, i.e., the x-rays are used to explore the structure of
crystalline matter.

� EXERCISES

4. At what angle would such a beam of x-rays reflect strongly from a
quartz crystal? From a mica crystal?

It is important to keep in mind that there are many other sets of planes
within the crystals, and each set will give rise to an x-ray beam when the
Bragg law is satisfied. The theory of these is elaborate, but the above
simple examples suffice to show you how x-rays can be used to find new
details of atomic structure.

The spacing of the calcite crystal is useful information because calcite
was a crystal frequently used in early x-ray spectrometers. Its spacing and
those of some other historically important crystals are given in Table 14.1.

TABLE 14.1 Spacing between
planes of commonly used crystals
at 18 ◦C

Crystal d (nm)

Calcite CaCO3 0.3036

Rock salt NaCl 0.2820

Quartz SiO2 0.4255

Mica SiO2 0.9963
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14.7 CONTINUUM X-RAYS

Using known crystal spacings you can make a spectrometer from any
convenient crystal and measure how much of each different wavelength
is present in the x-rays. Ulrey used a Bragg spectrometer with a calcite
crystal to measure the intensity of x-rays from a tungsten target as a
function of the angle of orientation θ of the crystal. This angle is related
to the wavelength by the Bragg law, Eq. 1.

Remember that in a Bragg spectrometer (Fig. 14.5) the detector is
rotated to view an exit angle θ corresponding to the angle of grazing
incidence θ. In other words, the detector must always be at an angle of
2θ relative to the axis of the incident beam of x-rays in order to register
the intensity of the x-rays diffracted through the Bragg angle θ. With
Vacc = 50 kV and setting the crystal and detector at many different angles,
Ulrey obtained the data shown in Table 14.2: the intensity distribution of
the x-rays produced when energetic electrons strike a tungsten (W) anode
in an x-ray tube.

Ulrey’s data4 are plotted in Fig. 14.6 for several values of Vacc. They
show two particularly interesting features: a continuous, smooth variation

TABLE 14.2 Intensity of X-rays vs. angle of grazing exit θ
from calcitea

X-Ray intensity θ X-Ray intensity θ

(relative units) (degrees) (relative units) (degrees)

1.9 2.45 6.4 6.24

5.0 2.83 5.6 6.62

6.8 3.30 4.8 6.91

8.6 3.59 4.1 7.19

9.5 3.87 3.2 7.57

9.9 4.25 2.6 7.86

9.9 4.53 2.3 8.14

9.6 4.91 2.0 8.52

9.1 5.29 1.7 8.81

8.0 5.58 1.5 9.19

7.0 5.86
a Taken from Ulrey, Phys. Rev. 11, 401 (1918).

4C.T. Ulrey, “Energy in the continuous x-ray spectra of certain elements,” Phys. Rev. 11,
401–410 (1918).
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FIGURE 14.6 Relative intensity of continuum x-rays from electrons striking a tung-
sten target. Each curve is labeled with the voltage through which its corresponding
electrons were accelerated. Taken with permission from C.T. Ulrey, Phys. Rev. 11,
401–410 (1918) c©1918 The American Physical Society.

of intensity from long wavelengths down to some short wavelength and a
sudden termination, or “cutoff,” of the curve at that short wavelength.

The continuum is to be expected from the simple picture of how
x-rays are produced. Not all electrons striking the target undergo the
same acceleration; some are accelerated suddenly, some less so. The
distribution of wavelengths should follow the distribution of accelera-
tions. The largest intensity corresponds to the acceleration that occurs
with greatest probability.

But the short wavelength cutoff warns us that this simple picture is
incomplete. Although we might expect extremely sudden decelerations to
be less probable, there is no reason in classical physics why their probabil-
ity should suddenly drop to zero. Classical physics leads us to expect that
the continuum will peter out at short wavelengths, not stop suddenly.

14.8 X-RAY PHOTONS

The short-wavelength cutoff is explained by the granular nature of electro-
magnetic radiation. Just as there are photons of visible light, so also are
there x-ray photons, and x-ray energy comes in packets E = hf = hc/λ.
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Because x-ray photons cannot have energy larger than the maximum
kinetic energy of the incident electrons, electrons of charge e acceler-
ated through a voltage V cannot produce photons with energies greater
than eV . Therefore, there will be a shortest possible λ, and it will be

λcutoff =
hc

eV
. (2)

In Fig. 14.6 the curves are labeled with the accelerating voltage applied
to the x-ray tube. As expected, the value of the cutoff wavelength becomes
smaller as the accelerating voltage is increased.

� EXAMPLES

5. What should be the cutoff wavelength for an accelerating voltage
of 30 kV?

Electrons accelerated through 30 kV cannot deliver more than 30 keV
of energy to the target. Therefore, the shortest possible x-ray wave-
length is hc/(eV ) = 1240/30 000 = 0.0413 nm. This agrees well with
Ulrey’s data.

Table 14.3 shows cutoff wavelengths determined from Ulrey’s data for
various accelerating voltages.

� EXERCISES

5. Use Eq. 2 to predict the cutoff wavelengths for the curves labeled
40 kV and 20 kV in Fig. 14.6. How do your answers compare with
Ulrey’s data?

TABLE 14.3 X-Ray tube voltage and
cutoff wavelengths

Tube voltage (kV) λcutoff (nm)

20 0.062

30 0.0413

40 0.031

50 0.0248
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6. In an old fashioned color-television tube electrons pass through
a potential difference of 30 kV before they strike the phosphorescent
screen at the end of the tube. What is the maximum energy that an
x-ray photon can have coming from this tube? What is the wavelength
of that photon?

7. In the previous exercise what (approximately) is the most probable
energy of photon that will be produced by the TV tube?

14.9 THE COMPTON EFFECT

Introduction

The existence of the short wavelength cutoff is a reminder that x-rays
do not always behave like waves. Indeed, studies with the crystal spec-
trometer and other techniques for measuring x-rays show that in some
circumstances they behave like hard, featureless particles. Photons can
collide with electrons and bounce off them like tiny BBs.

Bragg scattering is an important special case of the interaction of x-rays
with matter, but it is not the only kind of x-ray scattering. A beam of
x-rays directed at a crystal will result in the weak emission of x-rays at
all angles relative to the incident beam. In the early 1920s, the American
physicist Arthur Holly Compton studied this kind of x-ray scattering. He
scattered x-rays of a single well-defined wavelength from a small piece
of carbon and observed that at scattering angles other than 0 ◦ some
of the scattered radiation came out with its wavelength unchanged and
some came out with its wavelength increased. He explained the change in
wavelength as the result of a billiard-ball-like collision of an x-ray photon
with a nearly free electron of a carbon atom. Such a change in wavelength
(or energy) of a photon after it scatters from a charged particle is called
the “Compton effect.”

The discovery and explanation of the Compton effect decisively per-
suaded physicists of the granularity of light. This was important because
the idea of corpuscular electromagnetic radiation, e.g., photons of light
or of x-rays, was widely doubted even after Einstein explained the
photoelectric effect in terms of the absorption of photons.
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Compton Scattering

Figure 14.7 shows a diagram of the apparatus Compton used to exhibit the
effect. X-rays of a well-defined wavelength5 were generated by a specially
designed x-ray tube and directed at a small block of graphite (carbon)
place near the anode at the point R in the figure. The x-ray source and
the graphite were surrounded by a lead box. The graphite scattered the
x-rays in all directions, but collimating slits S1 and S2 allowed only x-
rays scattered through a chosen angle θ to escape from the box. For the
setup shown in Fig. 14.7 the scattering angle is θ = 90 ◦. These scattered
x-rays are quite weak, so the graphite must be placed close to the anode
to increase their intensity.

To measure the wavelengths of the scattered x-rays, Compton let them
strike a calcite crystal that he used as an x-ray spectrometer. By rotating
the calcite and the detector, as shown in Fig. 14.5, and using the Bragg
Law, he could measure the intensity of the scattered x-rays as a function
of their wavelength.

Figure 14.8 shows Compton’s results for scattering angles θ = 45 ◦,
90 ◦, and 135 ◦. The y-axis in each figure is the intensity measured by the
detector. The x-axis displays the Bragg angle θB of reflection from the
calcite crystal in the spectrometer. To find the wavelength of each peak,

FIGURE 14.7 Diagram of Compton’s apparatus. Taken with permission from
A.H. Compton, Phys. Rev. 22, 409–413 (1923) c©1923 The American Physical Society.

5In addition to the spectrum of continuum radiation (Sect. 14.7), x-ray tubes also emit intense
radiation at one or more well-defined wavelengths. These “characteristic” wavelengths become
much more intense than the continuum radiation as the accelerating voltage is increased; you
will encounter them again in Chap. 17.



14.9. THE COMPTON EFFECT 437

A

B

C

6 30 7 7 30

Scattered by
graphite at

45

90
Scattered at

135

FIGURE 14.8 Compton’s data showing the appearance of the longer-wavelength
x-rays as the scattering angle θ is increased; the abscissa is the angle θB of the Bragg
spectrometer. Taken with permission from A.H. Compton, Phys. Rev. 22, 409–413
(1923) c©1923 The American Physical Society.

you apply Bragg’s Law to θB. (Note that there are two different angles
in this discussion: θ is the angle through which x-rays are scattered from
the graphite, and θB is the angle of reflection from the calcite crystal of
the spectrometer.)

� EXAMPLES

6. For calcite d = 0.3036 nm. From the scale of Fig. 14.8 you can see
that the primary peak occurs at 6 ◦ 42′ = 6.7 ◦. The wavelength of the
x-rays making this peak must then be

λ = 2 × 0.3036 sin 6.7 ◦ = 0.0708 nm.

The figure shows that a second peak emerges and moves toward larger
Bragg angles as the scattering angle is increased. Larger Bragg angles
correspond to longer wavelengths and thus to lower photon energies.
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TABLE 14.4 Relative intensity of X-rays scattered
from carbon

θ = 135 ◦ Wavelength θ = 135 ◦ Wavelength

Intensity (nm) Intensity (nm)

4.3 0.0688 13.8 0.0734

0.5 0.0689 20.0 0.0739

5.5 0.0697 25.8 0.0745

8.0 0.0703 25.6 0.0750

13.0 0.0707 18.9 0.0754

7.8 0.0713 10.8 0.0760

3.0 0.0719 4.8 0.0765

2.8 0.0725 2.0 0.0773

11.0 0.0729

� EXERCISES

8. Use the data in Fig. 14.8 to find the wavelength of the lower energy
photons when the scattering angle is 90 ◦.

Table 14.4 shows the data Compton obtained when he scattered
0.0708 nm radiation, looked at x-rays coming out at 135 ◦, and used the
Bragg Law to find their wavelengths.

� EXERCISES

9. Make a graph of the data in Table 14.4 and draw a smooth curve
though the points. Label the peak that has the same wavelength as the
incident photons; label the peak that arises from Compton scattering.
By how much is the wavelength shifted?

The occurrence of the shifted peak is the Compton effect. Compton
explained the effect as due to elastic scattering, i.e., scattering like that of
hard spheres bouncing off each other. One of the “spheres” was an electron
in the carbon; the other was a packet of electromagnetic energy—the
photon. Elastic scattering of a photon from an unbound charged particle
is called “Compton scattering.”
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The fact that Compton’s explanation worked so well led to general
acceptance of the concept of the particle-like photon with energy hf ,
where h is Planck’s constant and f is the frequency of the radiation.

Derivation of the Energy Change of a Compton Scattered Photon

Figure 14.9a is a diagram of the scattering process as Compton imagined
it. A photon of energy hf enters from the left and strikes a stationary
electron of rest mass m. After the collision, the electron recoils away
with momentum pe at an angle φ with respect to the line of motion of
the incident photon, and a photon of energy hf ′ travels away at an angle
of θ; the electron stops inside the target and is not measured. Because
the electron has gained energy from the collision, the outgoing photon’s
energy of hf ′ will be less than that of the incoming photon hf .

Although the data in Table 14.4 are the wavelengths λ and λ′, it is more
convenient to discuss Compton scattering in terms of the corresponding
frequencies f and f ′ and derive a relationship between f ′ and f and the
scattering angle θ.

To do this use the relativistically correct expressions for conservation
of energy and momentum. First notice that the relation of photon energy
to photon momentum is

E = hf =
√

0 + p2c2

because m0 = 0 for a photon. Therefore, for a photon,

E = hf = pc.

� EXERCISES

10. Show from the above equation that for a photon, p = h/λ.

p

pe

p

Before After

(a) (b)

FIGURE 14.9 (a) Schematic representation of a Compton scattering event. (b)
Momentum diagram of Compton scattering.



440 14. X-RAYS

Now use this relationship between photon energy and photon momen-
tum to write down the total energy of the photon and electron before the
collision and after. Before the collision, the energy is just the photon’s
energy plus the rest energy of the electron: pc + mec

2. After the collision,
the total energy is the photon’s somewhat lower energy p′c plus the elec-
tron’s larger energy, as shown below. Because energy is conserved, the
total energy before the collision equals the total energy after:

pc + mec
2 = p′c +

√
m2

ec
4 + p2

ec
2, (3)

where pe is the momentum of the recoiling electron and me is its rest
mass.

To find the relation of the scattering angle of the photon and its
momentum after scattering, use conservation of momentum as well as
conservation of energy. Conservation of momentum gives two more equa-
tions that you can use to eliminate pe from Eq. 3 so that you can find the
photon’s momentum and thus its energy.

In Fig. 14.9a a photon travels toward positive x and scatters from an
electron as shown. The electron recoils at an angle φ while the photon goes
off at an angle θ relative to the x-axis. Figure 14.9b shows that there are
two momentum equations, one for vertical, or y, momentum, and the other
for horizontal, or x, momentum. In the y direction the total momentum
is initially zero, so after the collision the amount of momentum up must
equal the amount down, and

p′ sin θ = pe sinφ. (4)

The amount of momentum in the x direction before the collision equals
the total amount in the x direction after, so

p = p′ cos θ + pe cos φ. (5)

Our aim is to find p′ of the outgoing photon in terms of the incident p
and the scattering angle θ. This means that we need to eliminate both φ
and pe from Eqs. 3, 4, and 5.

Whenever you have an angle α appearing in trigonometric functions
that you want to eliminate from a set of equations, the first approach is
to see whether you can combine the trig functions in such a way that you
can use the identity sin2 α + cos2 α = 1.

Rewrite Eq. 5 as

p − p′ cos θ = pe cos φ (6)

and square it to get

p2 + p′2 cos2 θ − 2pp′ cos θ = p2
e cos2 φ.
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Square Eq. 4 to get

p′2 sin2 θ = p2
e sin2 φ.

Add the two equations and use the trig identity to eliminate φ:

p2
e = p2 + p′2 − 2pp′ cos θ. (7)

� EXERCISES

11. Show that Eq. 7 is correct by deriving it as above but include any
missing steps.

Replace p2
e in Eq. 3 with the expression given by Eq. 7, to eliminate the

electron momentum. The result is an explicit expression for p′ in terms
of the incident p and the outgoing scattering angle θ:

(pc − p′c + mec
2)2 = m2

ec
4 + p2

ec
2,

(pc − p′c + mec
2)2 − m2

ec
4 = p2

ec
2 = p2c2 + p′2c2 − 2pp′c2 cos θ,

pp′(1 − cos θ) = mec(p − p′), (8)

p′ =
mepc

p(1 − cos θ) + mec
. (9)

� EXERCISES

12. Do this entire derivation from start to finish.

13. From Eq. 9 show that f ′ in terms of f and θ is

hf ′ =
hf

hf
mec2

(1 − cos θ) + 1
, (10)

which is very convenient for calculating how the energy of a photon
changes when it scatters.

It is often helpful to express these photon energies relative to the rest
energy of the electron. Notice that if you define the ratio of the photon
energy to the electron rest energy as

x =
hf

mec2
,
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you can write Eq. 10 in the compact form

x′ =
x

x(1 − cos θ) + 1
. (11)

� EXAMPLES

7. Remembering that the rest mass energy of an electron is 511 keV,
suppose a 256 keV photon undergoes Compton scattering through 180 ◦.
What will be the energy of the outgoing photon? What will be the
energy of the recoiling electron?

For this case x = 1
2 . Since cos θ = −1, it follows from Eq. 11 that

x′ = 1
4 . This means that hf ′ = 511/4 = 128 keV. Because the electron

must have the remaining part of the energy, its kinetic energy in this
particular case will be 128 keV.

Another virtue of this version (Eq. 11) of the Compton scattering equa-
tion is apparent if you want to know about Compton scattering from
particles other than an electron. Suppose you want to know what happens
to a photon that scatters off a proton, mpc

2 = 938MeV.

� EXAMPLES

8. To see what happens when a 256 keV photon scatters 180 ◦ from a
proton, calculate x = 0.256/938 = 2.729 × 10−4, from which it follows
that x′ = 2.728 × 10−4. There is hardly any effect.

� EXERCISES

14. If a 100 keV photon scatters from an electron through an angle of
90 ◦, what will be the recoil energy of the electron?

15. What is the maximum energy that an electron can acquire from
a 600 keV photon by means of Compton scattering?

The Compton effect is customarily described as a change in wavelength
rather than as a change in frequency. To get it in that form divide both
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sides of Eq. 8 by pp′ and also by me. This gives

1 − cos θ

me
= c

(
1
p′

− 1
p

)

= c

(
λ′

h
− λ

h

)

,

where p and p′ have been replaced by h/λ and h/λ′ respectively, and it
follows that

λ′ − λ =
h

mec
(1 − cos θ). (12)

When physicists refer to the “Compton scattering equation” or to the
equation for “Compton wavelength shift,” they mean Eq. 12, which gives
the change in wavelength of the scattered photon as a function of its angle
of scattering.

Equation 12 shows the curious fact that the change in wavelength due
to Compton scattering does not depend upon the frequency (i.e., energy)
of the incident photon.

� EXERCISES

16. Is the frequency shift of the scattered photon independent of the
frequency of the incident photon? Explain.

17. Table 14.4 shows actual Compton scattering data. What is the
energy of the 0.07078 nm incident photon? Calculate the shift in wave-
length you would expect when that photon scatters through 135 ◦. How
well does your answer compare with the data shown in Table 14.4?

Compton Scattering and the Detection of Photons

Radioactive materials often emit energetic photons called, for historical
reasons, “gamma rays.” Radioactive cesium emits a gamma ray with an
energy of 662 keV. Obviously, this is not a visible photon.

� EXERCISES

18. How do you know that this photon is not visible?

As previously noted, such photons, although not visible themselves,
can cause other materials to emit visible light. We described in Chap. 13
how a photon can deposit energy in a crystal of sodium iodide [NaI(Tl)]
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and cause the crystal to give off a flash of light that can be detected
with a photomultiplier tube. By measuring the relative intensity of the
scintillations you can measure the relative amounts of energy left by the
photons in the crystal.

A common measurement of photons is to count the number of flashes
that appear in the crystal and sort the counts according to how bright
the flashes are.

The graph in Fig. 14.10 was obtained after hundreds of thousands of
photons passed through a NaI(Tl) crystal. Of these, somewhere between
1% and 10% produced flashes of light. The flashes were counted and sorted
according to their brightness. The graph shows the number of flashes
on the y-axis and the brightness along the x-axis. Because brightness is
proportional to energy deposited in the crystal, it is convenient to label
the brightness scale with the corresponding photon energy, and that is
done here.

If flashes came only from complete absorption of incoming single-energy
photons, there would be only one size of flash. In Fig. 14.10 you can see
that many of the flashes correspond to photons of 662 keV. This group of
photons is labeled “photopeak” on the graph. The energies of the emitted
photons are very closely the same, but because the flashes of light that
they produce vary somewhat in brightness, the peak in the graph is wide.
We say that the “resolution” of the instrument is not perfect. The name
“photopeak” always refers to the peak corresponding to the full energy of
the incident photon.
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FIGURE 14.10 Distribution of energy deposited in a NaI(Tl) crystal by 662 keV
photons emitted following the radioactive decay of 137Cs.
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Figure 14.10 shows that other things are going on besides absorption
of 662 keV photons. The experimenter detected flashes of light over quite
a range of brightnesses corresponding to the absorption of energy from
0keV up to 800 keV. Two features show up particularly: the bump labeled
“backscatter” and the sudden drop from a constant level of counts labeled
“Compton edge.”

It turns out that there are several ways for a photon to deposit energy
in a crystal, and these depend on the energy of the photon. For example,
between 250 keV and 1.02 MeV a photon is most likely to do either of two
things. It may produce a photoelectron in the crystal and leave all of its
energy in the crystal. Or it may Compton scatter off a nearly free electron
of some atom and leave the crystal; the energy left in the crystal is then
whatever was given to the electron by the Compton scattering. This will
produce a smaller flash of light than total absorption because the energy
left in the crystal is smaller. It is in this way that most of the lower-energy
light pulses occur.

You can use your knowledge of Compton scattering to calculate the
energies at which the backscatter peak and the Compton edge occur.
The Compton edge corresponds to an event in which a photon enters the
crystal and undergoes 180 ◦ Compton scattering from an electron of one of
the crystal’s atoms and then leaves the crystal with reduced energy. The
electron remains behind with increased energy, which goes to produce a
flash in the crystal. The electron can not acquire more energy than the
amount imparted when the photon scatters through 180 ◦, so there is a
noticeable decline in the number of light pulses beyond this energy. This
decline is called the “Compton edge.”

� EXERCISES

19. Under what circumstances will a photon that is Compton scat-
tered out of the crystal leave the most possible energy with the electron
from which it scattered?

20. Calculate the maximum energy that a 662 keV photon will impart
to an electron. How does your answer correspond to the energy on the
axis of the graph in the region labeled “Compton edge”?

21. To what do you attribute the counts observed at energies below
the Compton edge?

The backscatter occurs because the NaI crystal is surrounded by dense
material, and there is a fair probability that some photons will enter the
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crystal, pass through it unabsorbed, and then scatter off electrons of sur-
rounding metal (usually aluminum, but it does not make much difference).
These photons scatter back into the crystal (hence the name, backscat-
ter) where they are absorbed. The crystal is usually arranged so that only
those photons that bounce directly back are likely to reenter the crystal.
Of course, photons that have scattered through 180 ◦ are reduced in en-
ergy, and the flashes of light that they can produce will not be as bright
as those produced by the full-energy photons.

� EXERCISES

22. What is the energy of a 662 keV photon after it Compton scatters
180 ◦ off Al? Off Si? Off Fe?

23. Compare your answer to the previous question with the energy
corresponding to the “backscatter peak” in the graph. Why should they
be the same?

14.10 SUMMARY

Useful Things to Know

X-rays are usually produced by sudden acceleration of charged particles.
In practical circumstances x-rays are made when energetic electrons are
brought to a sudden halt by collision with a metal electrode.

The existence of Laue diffraction spots and Debye–Scherrer diffraction
rings shows that x-rays are waves with wavelengths a thousand times
smaller than those of visible light.

Diffraction of x-rays by crystals obeys the Bragg law

2d sin θ = nλ, Bragg Law

where d is the spacing between successive planes of atoms in the crystal,
θ is the angle of grazing incidence, λ is the wavelength of the x-rays, and
n is an integer n = 1, 2, . . . . In any given crystal there will many sets of
planes with different spacings. The Bragg law holds for each set.

The Bragg law is the basis for the design and operation of the crystal
spectrometer. With this device it is possible to measure x-ray wavelengths
and map out the intensity of x-ray emissions as a function of wavelength.

X-rays also exhibit particle-like behavior. To understand the short-
wavelength cutoff of the continuous x-ray spectrum, it is necessary to
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assume that x-rays are photons each with energy E = hf . Further-
more, the Compton effect, i.e., the decrease in energy of x-rays as the
angle at which they are scattered from free or weakly bound electrons
increases, can be understood as resulting from the scattering of one small
structureless object by another.

Some Important Things to Keep in Mind

If the wavelengths of x-rays are thousands of times smaller than those
of visible light, they can in principle be used to probe the structure of
objects thousands of times smaller than the smallest things we can see
with our eyes. But notice that x-ray photons are going to be thousands
of times more energetic than visible ones; the energy scale shifts from eV
to keV.

X-rays are a valuable probe that can yield interesting information about
structures as small as 0.1 nm, that is, as small as atoms. By making x-rays
of energies of 100 keV and higher, it is possible to probe even smaller
structures.

Studies of atoms with x-rays supported two major advances of under-
standing about atoms. The works of von Laue and the Braggs showed
that crystals are made of regular arrays of atoms. The Compton effect
provided quite direct evidence that the electrons are constituent parts of
every atom.

Be able to convert from energy to wavelength and vice versa without
hesitation.

� EXAMPLES

9. For example, what is the wavelength of a 100 keV photon? Because
E = hf = hc/λ, a 100 keV photon has a wavelength λ = hc/E. Never
forget that hc = 1240 eVnm. Then if you know E in units of eV, you
can immediately get that λ = 1240

100×103 = 0.0124 nm.

� EXERCISES

24. What is the wavelength of a 12.4 keV photon?
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FIGURE 14.11 Representation of a crystal lattice (Problem 1).

d110 d210

a

FIGURE 14.12 Schematic representation of a cubic crystal with interatomic spacing
a (Problem 2).

PROBLEMS

1. The Bragg Law for crystal diffraction of x-rays is 2d sin θ = λ. Use
Fig. 14.11 to show:

a. What the symbols d and θ refer to.
b. What is meant by Bragg diffraction.

2. Figure 14.12 shows a cubic crystal with interatomic spacing a. Use
trigonometry to find the interplanar spacings in terms of a for the atomic
planes indicated by d110 and d210.
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3. Using the data in Table 14.2 on p. 432 and the fact that Ulrey’s
spectrometer used a calcite crystal:

a. Calculate the wavelengths corresponding to angles of reflection,
and then plot the intensity of the x-radiation vs. λ.

b. What is the energy of the photon that corresponds to the
wavelength at which the intensity is a maximum?

c. By extrapolation of your graph determine the short-wavelength
cutoff.

d. What is the voltage difference through which these electrons passed
before they struck the tungsten anode of the x-ray tube?

4. Electrons in an x-ray tube are accelerated through a potential
difference of 50 kV.

a. What is their kinetic energy?
b. What is the speed of these electrons in terms of c?
c. Are relativistic effects important in

i. determining the kinetic energy?
ii. determining the speed?

5. Ulrey observed that continuous x-ray spectra generated with elec-
trons produced with the x-ray tube voltages shown in Table 14.3 (p. 434)
exhibited sharp cutoffs at the wavelengths shown in the table.

a. Predict what sort of a curve you will get if you plot f (or hf) vs.
V . Explain your prediction.

b. Using the insights you generated to make your prediction in the
preceding, derive a formula relating the voltage V of an x-ray tube
to the maximum frequency fmax of the emitted radiation.

c. Why is this formula familiar to you?

6. Some teachers like to use general questions in exams such as:
a. What is the Compton effect?
b. How is the Compton effect important to our understanding of the

nature of electromagnetic radiation?

7. A photon Compton-scatters from an electron through an angle of 90 ◦,
as shown in Fig. 14.13. In doing so, it loses half its initial energy:

a. What is the photon’s initial wavelength?
b. What are the initial and final energies of the photon?
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FIGURE 14.13 Compton scattering event (Problem 7).
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FIGURE 14.14 Compton scattering arrangement for Problem 8.

c. Suppose the photon scattered through 180 ◦ instead of 90 ◦. What
would be its final wavelength and energy (λ′, E′)?

d. When the photon scatters through 180 ◦, what is the final energy
of the electron?

8. Monochromatic x-rays of wavelength λ = 0.243 nm are produced in
the following way: Electrons bombard a metal target in a standard x-ray
tube, and the resulting radiation is reflected from a crystalline material,
as shown in Fig. 14.14.

a. What is the purpose of the crystal?
b. What is the minimum accelerating voltage Vacc that could have

produced x-rays of this λ?
c. The reflected x-rays go on to collide with a carbon block C, where

their wavelength is shifted to λ′ by the Compton effect. For the
direction shown in the drawing, calculate the change in wavelength.

d. Does the x-ray gain or lose energy in this process? Where does
the energy go? What is the most striking assumption made by
Compton in his analysis of this phenomenon?
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B: Carbon

A: Source

C: Crystal
(CaCO3)

FIGURE 14.15 A Compton scattering arrangement in which the incident x-rays have
a single well-defined wavelength (Problem 9).

90

Vacc

FIGURE 14.16 Compton scattering arrangement for Problem 10.

9. Write a short description of the experiment depicted in Fig. 14.15.
Include the following:

a. Identify and explain the purpose of items A, B, and C in Fig. 14.15.
b. Discuss the significance of the experiment. Why were the exper-

imental results, and the analysis of those results, important and
surprising?

10. X-rays from an x-ray tube are Bragg reflected as shown in Fig. 14.16
from the planes of a calcite crystal spaced 0.3036 nm apart. Photons of
wavelength λ = 0.3654 nm emerge from the crystal at an angle α with re-
spect to their initial direction (see Fig. 14.16) and are Compton scattered
through an angle of 90 ◦ as they pass through a second material.

a. Find the angle α that the diffracted photon forms with its initial
direction.

b. What is the minimum accelerating voltage Vacc that would produce
a photon of the given wavelength?
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c. How much energy was lost by the photon, and where did the
energy go?

11. Figure 14.8 (p. 437) shows three of Compton’s scans obtained using
calcite as the crystal in the analyzing Bragg spectrometer.

a. Use the information on the x-axis to calculate the wavelengths of
the two peaks of the scattered radiation for each plot.

b. From the incident wavelength and the scattered angle use Comp-
ton’s equation to calculate the wavelength of the radiation that
scattered from electrons for each plot.

c. Compare the results of (a) and (b).
d. For each case calculate the energy gained by the scattered electron.

12. Explain why the sum of the backscatter energy Eback and the energy
of the Compton edge Eedge should equal the energy of the photopeak
Ephoto, i.e.,

Eback + Eedge = Ephoto.

Find the values of these three quantities in Fig. 14.10 on p. 444 and show
whether or not they obey the expected relationship.

13.a. An electron tube (Fig. 14.17a) generates x-rays of intensity I1(λ),
as shown in Fig. 14.17b. What is the voltage applied to the electron
tube?

b. The x-rays from the tube are incident on a crystal. It is observed
that the x-rays that undergo Bragg diffraction emerge at the angle
shown in Fig. 14.18a. The intensity of the emerging beam I2(λ) is
shown in Fig. 14.18b. What is the spacing d between the planes of
the crystal from which the x-rays have diffracted?

0.02 0.06  (nm)

I1

I1

(a) (b)

V

FIGURE 14.17 Intensity distribution of x-rays vs. λ for Problem 13(a).
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d 50

Crystal

210

FIGURE 14.18 Schematic of Bragg crystal and diffracted x-ray intensity for
Problem 13(b).

0.02 0.06  (nm)

I3

I2

I3

(a) (b)

130

Carbon

= ?

FIGURE 14.19 Compton scattering and Compton effect for Problem 13(c).

c. The x-rays of part (b) are incident on a block of graphite, as
shown in Fig. 14.19a. Photons Compton scattered through 130 ◦
are observed to have a distribution of intensity I3 vs. wavelength, as
shown in Fig. 14.19b. Calculate the wavelength λ′ of the scattered
x-rays.

d. How much energy is gained by electrons that Compton scatter
photons 130 ◦ as in part (c)?

14. X-rays generated in an x-ray tube are Bragg-reflected through 90 ◦ by
a crystal (xtal in Fig. 14.20). The Bragg-reflected x-rays have a wavelength
λ = 0.4000 nm.

a. What is the spacing between the crystal planes causing this
reflection?
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FIGURE 14.20 An x-ray photon Bragg scatters from a crystal (xtal) and then
Compton scatters from carbon (Problem 14).

1.0° 2.0° 3.0°

Intensity 

FIGURE 14.21 Spectrum of x-rays Bragg scattered from crystal planes separated by
0.94 nm (Problem 15).

b. What is the wavelength λ′ of the 0.4000 nm x-rays after they Comp-
ton scatter through 90 ◦from an amorphous carbon block as shown
in Fig. 14.20? Keep 4 significant figures in your answer.

c. How much energy did each x-ray photon lose when Compton-
scattered through 90 ◦?

d. It takes 11.2 eV to eject an electron from a carbon atom (i.e., to
ionize the atom). What is the kinetic energy of the ejected electron
after it has left the atom?

15. An x-ray beam containing radiation of two distinct wavelengths scat-
ters from a crystal, yielding the intensity pattern shown in Fig. 14.21. The
spacing between the planes of the scattering crystal is 0.94 nm. Find the
two wavelengths.
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Particles
as Waves

15.1 INTRODUCTION

You have seen that waves can act like particles. The energy of light waves
is packaged in quanta called photons. Photons can scatter from electrons
like tiny hard objects. If this behavior is not surprising or mysterious
enough, it turns out that particles can act like waves. Electrons, protons,
neutrons, and atoms all can exhibit interference and other forms of wave
behavior.

15.2 THE DE BROGLIE WAVELENGTH

The first clue that particles might have wavelike behavior came when
Louis de Broglie noted (as you saw in Chap. 14) that the momentum of
a photon is

p =
hf

c
=

h

λ
(1)

and suggested that perhaps particles might obey the same equation. In
other words, he proposed that particles might behave as waves with a
wavelength of

λ =
h

p
. (2)

This wavelength of particles is called the “de Broglie wavelength.”
What would be the size of such a wavelength? Some examples will show

you how the wavelength of a particle depends on its kinetic energy K.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 455
DOI 10.1007/978-0-387-79080-0 15, c© Springer Science+Business Media, LLC 1999, 2010
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� EXAMPLES

1. What is the de Broglie wavelength of a 10 keV electron? To answer
this question, first find the momentum of the 10 keV electron. Because
this energy is less than 10% of the electron’s rest energy, you can
use the nonrelativistic expression connecting momentum p and kinetic
energy K:

p2

2me
= K.

To do your calculation in eV units, multiply and divide the left side
by c2 and solve for pc. This gives you

pc =
√

2Kmec2 =
√

2 × 10 × 511 = 101.1 keV.

From this calculated momentum, you can find the 10 keV electron’s
wavelength:

λ =
h

p
=

hc

pc
=

1240
101.1 × 103

= 0.0123 nm.

2. What if the electron is relativistic? For example, suppose it has a
kinetic energy of 1MeV. You use the approach of the previous example,
but now you must calculate the momentum using the relativistically
correct formula

pc =
√

2K m0c2 + K2 =
√

2 × 1 × .511 + 12 = 1.422 MeV,

from which it follows that

λ =
hc

pc
=

1240
1.422 × 106

= 8.72 × 10−4 nm.

This is very small.

3. At what energy will an electron have the same wavelength as a
10 keV x-ray? A 10 keV x-ray has a momentum of 10 keV/c and a wave-
length of λ = 1.240/10 = 0.124 nm. An electron will have the same
wavelength when it has the same momentum—10 keV/c. The kinetic
energy K of an electron with that momentum is

K =
p2c2

2mec2
=

102

1022
= 98 eV.

The answers to Examples 1 and 3 highlight the fact that a pho-
ton and a particle with the same momenta (and, therefore, same
wavelength) will usually have quite different energies. This is because
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the particle has rest mass and the photon does not. Conversely, a
particle and a photon with the same energy will usually have very
different wavelengths: A 10 keV photon has a momentum of 10 kev/c,
about one-tenth the momentum of a 10 keV electron, so the photon’s
wavelength is

λ =
hc

pc
=

1.24
10

= 0.124 nm,

about 10 times larger than the wavelength of the 10 keV electron.

� EXERCISES

1. Find the wavelength of a 50 keV photon and compare it to the
de Broglie wavelength of a 50 keV electron.

2. What energy of photon will have the same wavelength as a 50 keV
electron?

15.3 EVIDENCE THAT PARTICLES ACT LIKE WAVES

De Broglie’s idea that particles might have a wavelength has been strongly
confirmed for all kinds of particles: electrons, neutrons, protons, atoms,
subnuclear particles, etc. What is the evidence for such a wavelength?
How can particles be made to exhibit wave-like behavior? The above ex-
amples suggest an approach: Create a stream of particles with an energy
that corresponds to a wavelength for which a crystal is an appropriate
grating, and see if you observe diffraction or other interference phenom-
ena when the beam of particles strikes the crystal. Some version of this
approach was used in the first experiments that exhibited wavelike behav-
ior of particles—. G.P. Thomson’s experiments, Davisson’s and Germer’s
experiment, and Stern’s experiment. The following section describes these
experiments and also double-slit interference produced with electrons and
the diffraction of neutrons by a crystal lattice. (The neutron is a neutral
particle with mass a little larger than the mass of a proton.)

G.P. Thomson’s Experiment

G.P. Thomson, the son of the J.J. Thomson who discovered the elec-
tron, took a very straightforward approach. If particles are waves, then a
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FIGURE 15.1 Schematic diagram of G.P. Thomson’s apparatus for the study of
electron diffraction.

beam of electrons of an appropriate momentum passing through a poly-
crystalline foil should make a diffraction pattern of concentric rings like
the pattern made by x-rays when they diffract through a polycrystalline
sample, as described in Chap. 14. (See Fig. 14.4 on p. 428.)

To see whether electrons would produce such a pattern, Thomson used
the apparatus shown schematically in Fig. 15.1. Electrons with kinetic
energy of about 40 keV were produced in the tube A and then formed into
a beam by passage through a tube B of bore 0.23mm and length 6 cm.
They struck and passed through a thin, polycrystalline gold foil at C. The
resulting pattern of the electrons could be viewed on a phosphorescent
screen E or recorded on a photographic plate D that could be lowered in
front of the screen. The distance from the foil to the screen was 32.5 cm.

The electrons made the pattern shown in Fig. 15.2; it is repro-
duced from Thomson’s publications.1 The rings are clearly analogous
to those seen in the Debye–Scherrer patterns of x-ray diffraction from
polycrystalline samples in Fig. 14.4.

Do these results agree with de Broglie’s predictions? To answer this
question, compare the pattern with the predictions of the Bragg law for
x-ray diffraction in crystals:

2d sin θ = nλ. (3)

First, recall from Chap. 14 that Debye–Scherrer diffraction of x-rays
produces a pattern of rings, one for each order, n = 1, 2, 3, . . . , for each dif-

1G.P. Thomson, “The diffraction of cathode rays by thin films of platinum,” Nature 120,
802 (1927); “Experiments on the diffraction of kathode rays,” Proc. Roy. Soc. London A117,
600–609 (1928); The Wave Mechanics of Free Electrons, McGraw-Hill, New York, 1930.
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FIGURE 15.2 The diffraction pattern from electrons on a polycrystalline gold foil
observed by G.P. Thomson.

b

(100) (110) (111)

FIGURE 15.3 Miller indices of some important planes in a cubic crystal—the atoms
are located at the corners of a cube.

ferent set of crystal planes. Therefore, the production of a similar pattern
of rings by electrons strongly suggests that the electrons are undergoing
Bragg diffraction like x-rays.

Second, using the various possible spacings d for a gold crystal, you can
analyze the rings quantitatively. Figure 14.3 (p. 425) shows you that the
value of d depends on which set of planes you are considering. For labeling
the sets of planes there is a notation that we introduce here without much
explanation.

Crystal planes are specified by a set of three small integers called Miller
indices. They are usually written in parentheses in the form (h k �). For
example, the familiar, obvious parallel planes shown in Fig. 15.3a are
denoted by (100). The planes that pass through a crystal at 45 ◦ as shown
in Fig. 15.3b are labeled (110).

You can use the Miller indices of a crystal plane and the lengths
of the sides of the smallest unit of the crystal to find the spacing
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TABLE 15.1 Lattice constants
for some common cubic crystals

Element Lattice constant

b (nm)

Al 0.404

Au 0.407

Ni 0.352

Cu 0.361

between adjacent planes. It is particularly simple to do this for the
planes of cubic crystals. For cubic crystals the spacing d between
the planes is related to b the shortest distance between neighboring
atoms—this is the length of the edge of the elementary crystal cube—by
the expression

d =
b√

h2 + k2 + �2
, (4)

where (h k �) are the Miller indices.
Table 15.1 lists values of b for a number of different cubic crystals. This

quantity b is usually called the “lattice constant.”

� EXAMPLES

4. What is the spacing between adjacent (111) planes of a gold crystal?
Table 15.1 gives the lattice constant for gold b = 0.407 nm. This means
that the spacing between adjacent (111) planes is 0.407/

√
3 = 0.235 nm.

� EXERCISES

3. What is the spacing between the (110) planes of gold?

4. What is the spacing between the (331) planes of gold?

There is one more point to make about spacings between planes of a
crystal. You will sometimes see reference to planes like (h k �) = (200)
which means that the spacing between such planes is d = b/2. But how
can that be? If the spacing between planes is d = b, there should not be
any atoms halfway between these two planes. And there aren’t. Bragg
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reflection from (200) planes is the same thing as second-order Bragg
reflection, i.e., n = 2, from the (100) planes.

To see that this is so, look at Eq. 3. For (200) planes, d = b/2, and the
equation becomes

2
b

2
sin θ = λ or 2b sin θ = 2λ,

which is the same as Eq. 3 for (100) with n = 2; i.e., it is the second-order
result. It is customary to deal with higher orders in the Bragg equation
by using only n = 1 and then including the higher orders by appropriate
choice of Miller indices and the corresponding value of d.

Now you can understand Thomson’s experimental proof of the validity
of de Broglie’s idea. One of his tests was to observe how the diameter D
of one ring—the one produced by the (200) planes—varied as he varied
the voltage V through which the electrons were accelerated. He obtained
the data shown in Table 15.2.

Note that D V 1/2, the product of the diameter of the ring and the
square root of the accelerating voltage, is nearly constant. This is
Thomson’s proof that de Broglie was correct and λ = h/p.

Why is D V 1/2 constant if λ = h/p? First, the kinetic energy K of the
electrons is proportional to the acceleration voltage V because K = e V ,
and for these non-relativistic electrons K is proportional to the square of
the momentum because

p2

2m
= K = e V.

Therefore, the momentum p of the electrons is proportional to the square
root of the accelerating voltage, i.e.,

p ∝ V 1/2.

TABLE 15.2 Diameter of the (200)
diffraction ring vs. electron voltage

Acceleration Diameter DV 1/2

voltage D (cm) (cm keV)1/2

V (kV)

24.6 2.50 12.4

31.8 2.15

39.4 2.00 12.6

45.6 1.86

54.3 1.63 12.0

61.2 1.61 12.6
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Consequently, if de Broglie is correct and λ is proportional to 1/p, it
follows that λ ∝ 1/V 1/2.

Then, if the electrons do behave like waves, the ring diameter D will
follow from the Bragg law, 2d sin θ = λ. If the scattering angle 2θ is small,
sin 2θ ≈ r/L, and sin θ ≈ r/2L, where r is the radius of the diffraction
ring and L is the distance from the gold foil to the photographic plate (see
Fig. 14.4, p. 428, and Fig. 15.1, p. 458). But the radius r is proportional
to the diameter D, so for fixed values of d and L,

D ∝ λ,

from which it follows that

D ∝ 1
V 1/2

or D V 1/2 = constant

if de Broglie is correct.
You can see from the entries in the third column of Table 15.2 that

DV 1/2 is nearly constant. It convinced most physicists that de Broglie
was correct, and he was awarded the 1929 Nobel prize in physics.

Thomson further confirmed de Broglie’s theory by analyzing the other
diffraction rings shown in Fig. 15.2. He showed that they arose from Bragg
diffraction from the (111), (200), (220), (113) + (222), and (331) + (420)
crystal planes. (In the last two cases, rings from two different sets of
indices fell too close to one another to be distinguished.)

� EXERCISES

5. Calculate the values for DV 1/2 that are missing from Table 15.2.

6. Functional relationships are often verified by plotting measured
quantities in some form that will give a straight-line graph if the
expected relationships are correct. How would you plot the data of
Table 15.2 to determine whether de Broglie was correct? Do it.

7. Show why it might be difficult to distinguish experimentally be-
tween diffraction from the (113) and (222) planes or between the (331)
and (420) planes.

The Experiment of Davisson and Germer

The first experiment to show the wave nature of electrons was done by
C.J.Davisson and L.H. Germer, working in the laboratories of the Western
Electric Company, the manufacturing arm of the American Telephone and
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Telegraph Company. Their original interest was to study the emission
of secondary electrons from the electrodes of vacuum tubes (secondary
electrons were produced when the electrons the tubes were intended to
control struck the electrodes). When Davisson directed a beam of electrons
at various samples, he observed that about 1% of the incident electrons
were reflected back from them. He realized that the reflected electrons
might be used to probe the structure of the atom just as E. Rutherford
(about whom more later) used alpha particles to probe atomic structure.2

Davisson and Germer observed that when a beam of 54 eV electrons
struck the (111) surface of a nickel crystal perpendicularly, the electrons
diffracted just as light would diffract from a reflection grating.3 The
rows of atoms on the crystal surface acted as the lines of the grating, and
the distance between these rows of atoms corresponded to the grating
spacing D. A diffraction maximum in the intensity of reflected electrons
occurred just where the grating equation D sin θ = λ predicted for waves
of wavelength λ = h/p.

For their experiment Davisson and colleagues used the apparatus shown
schematically in Fig. 15.4. It was designed to find how the intensity of the
outgoing electrons varies as a function of the angle between the incident
beam and the scattered electrons. They could measure the intensity of

e–
Tungsten
filament

Detector

Detector
angle

Nickel
crystal

FIGURE 15.4 Schematic diagram of the apparatus of Davisson and Germer.

2For a short readable history of the Davisson–Germer experiment, read Richard K. Gehrenbeck,
“Electron Diffraction Fifty Years Ago,” Physics Today 31(1), 34–41 (1978).
3Because of their electrical charge and low energy, the electrons penetrate no more than a few
layers of atoms into the crystal surface, and therefore grating diffraction is a better description
of what happens to such low-energy electrons than Bragg reflection from many planes in a
three-dimensional crystal lattice.
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electrons at any scattering angle they chose by moving the detector to
that angle. They could also rotate the target and change the angle at
which incident electrons hit the target’s surface.

An electron gun made a beam of electrons with energy that could be
varied from a few eV to around 200 eV. This beam was directed onto a
target of single-crystal nickel, and electrons reflected from the target were
detected and measured by catching them in a metal box.

The cut and orientation of the crystal determine which rows of atoms
will be exposed to the incident electrons. The spacing between the rows
of atoms affects the experimental results because it is the grating spac-
ing. For the experiments of Davisson and Germer the face-centered cubic
crystal was cut at right angles to the cube’s diagonal, i.e., at 45 ◦ to each
face exposing the (111) face as shown in Fig. 15.5b. Their electron beam
came in normal to that face. For this orientation the rows of atoms on
the (111) face are D = 0.215 nm apart, and this is the grating spacing.

Davisson and Germer looked at the variation of intensity of the scat-
tered electrons as a function of scattering angle for different energies of
the incident beam. Their results are shown in Fig. 15.6, where the electron
intensity is plotted on polar graphs. Each point on these graphs shows the
intensity of the scattered electrons and the angle at which it was mea-
sured. The intensity is given by the length of the radial distance from
the origin to the curve, and the angle at which this intensity occurs is
the angle that a line from the origin to the curve makes with the vertical
axis. The progression of the data is striking. At all incident energies the
intensity of electrons scattered directly backwards with a reflection angle
of 0 ◦ is high and then drops off rapidly at larger reflection angles. But no-
tice what happens as the electron energy is increased. For 40 eV incident
electrons the intensity of the reflected electrons drops off smoothly as the
angle is increased from 0 ◦ to 90 ◦. For 44 eV incident electrons a bump

e–

(a) (b) (c)

FIGURE 15.5 The arrangement of atoms of a Ni crystal. The (111) face is shown
in (b). Taken from J. Frank. Instit. Vol. 206, C.J. Davisson, “Are Electrons Waves?”
(1928) with permission from Elsevier Science.
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FIGURE 15.6 This succession of polar plots of the intensity of electrons reflecting
off the surface of a nickel crystal shows that a diffraction maximum occurs at 50 ◦

when the electrons are accelerated through 54 V. Taken from J. Frank. Instit. Vol. 206,
C.J. Davisson, “Are Electrons Waves?” (1928) with permission from Elsevier Science.

appears in the number of electrons reflected at 50 ◦. The bump grows to a
maximum as the energy is increased to 54 eV and then diminishes as the
incident energy is increased further.

This bump is the expected interference maximum. According to the
grating equation it should occur at 50 ◦ for a wavelength of

λ = 0.215 sin 50 ◦ = 0.215 × 0.766 = 0.165 nm.

How does this wavelength compare with de Broglie’s prediction? An
electron with kinetic energy K = 54 eV has a momentum given by

pc =
√

2mec2K =
√

1.02 × 106 × 54 = 7.43 × 103 eV.

The de Broglie wavelength of such electrons is then

λ =
hc

pc
=

1240
7430

= 0.167 nm.

This degree of agreement is convincing. Many other measurements provide
equally good agreement. In 1937 Davisson and Thomson shared a Nobel
Prize for their independent experimental confirmation of the wave nature
of particles.

“Double-Slit” Interference with Electrons

A striking example of wave behavior of electrons is the generation of
a double-slit interference pattern by Möllenstedt and Düker.4 Their
apparatus is shown schematically in Fig. 15.7a. For two slits they used a
thin metal-coated quartz fiber and applied to it a voltage of about 10V.

4G. Möllenstedt and H.Düker,“Fresnel interference with a biprism for electrons,” Naturwiss.
42, 41 (1955); H. Düker, “Interference pattern of light intensity for electron waves using a
biprism,” Z. Naturforsch. 10a, 256 (1955).
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FIGURE 15.7 Double-slit interference of electrons: (a) apparatus; (b) interference
pattern. Taken from H. Düker, Z. Naturforsch, 10a, 256 (1955) with permission of the
publisher.

This device slightly deflected the 50 nm wide beam of 19.4 keV electrons
coming from the assembly of cathode, anode, and demagnifying electrodes
in such a way as to make the electrons behave as though they had come
from the two sources. (In optics this effect can be obtained with a device
called a biprism, so that is the label given to the electrical equivalent
in Fig. 15.7a.) The electrons then formed the interference pattern on a
photographic plate as shown in Fig. 15.7b. Notice how strikingly it resem-
bles the optical double-slit interference pattern described in Chap. 10.
In Fig. 15.7b the bright lines are where the electron waves interfere
constructively, and the black spaces represent destructive interference.
Electrons interfere just like photons.5

5There is a certain amount of art that goes into a picture like Fig. 15.7b. If only the slits
were producing the spacing of the electron fringes, they would be about 160 nm apart and
very difficult to see. To make the pattern visible, a cylindrical electrical lens was used to
magnify electrically the fringe-to-fringe dimension by a factor of 160. To suppress the effects
of irregularities in the shape of the fiber, magnification of the dimension along the fringe was
limited to between a factor of 5 and 10. Then the overall pattern was magnified optically a
factor of 20 to make the picture with visible fringes.
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� EXERCISES

8. What is the wavelength of 19.4 keV electrons?

9. Suppose the effective separation of the sources of interfering
19.4 keV electrons was 6 μm and the effective distance from these
sources to the photographic plate was 11 cm. What would be the
distance between adjacent fringes on the photograph?

10. Suppose the fringes of the previous problem were magnified by
a factor of 160 before they struck the plate. And then suppose the
photograph was enlarged by a factor of 20 when it was printed. What
then would be the spacing between the fringes? Compare your answer
with the spacing of the fringes shown in Fig. 15.7b.

Waves of Atoms

The wavelike behavior of particles is quite general. In 1931 Estermann,
Frisch, and Stern6 showed that a beam of helium atoms would diffract
from the surface of a crystal of LiF and that the wavelength of the atoms
was what the de Broglie relationship predicted.

Since 1932, when the neutron was discovered, this neutral particle with
a mass slightly larger than that of a proton has been widely used for
diffraction studies of crystals and other matter. Figure 15.8 shows a com-
parison of diffraction data taken using the same wavelengths of x-rays and
neutrons.7 The target was powdered copper. The counter angle 2θ is twice
the diffraction angle. The peaks occur at the angles where Debye–Scherrer
maxima occur. In this case the diffraction patterns are not recorded on
a flat screen, which would show the Debye–Scherrer circles, but with a
detector that moves in an arc around the sample so that it crosses the
circles and measures them as intensity maxima at their corresponding
angles. The similarity of the two spectra is striking.

The energy of the neutrons was measured to be 0.07 eV. To under-
stand the resulting diffraction patterns you need to know the neutrons’
wavelength.

6I. Estermann, and O. Stern, “Diffraction of molecular rays,” Zeit. f. Physik 61, 95–125 (1930).
7C.G. Shull and E.O. Wollan, “X-ray, electron and neutron diffraction,” Science 108, 69–75
(1948).
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FIGURE 15.8 Bragg diffraction patterns for λ = 0.1 nm neutrons and x-rays in
powdered copper. Taken with permission from C.G. Shull and E.O. Wollan, “X-Ray,
Electron, and Neutron Diffraction,” Science 108, 2795, 69–75 (1948) c©1948 American
Association for the Advancement of Science.

� EXAMPLES

5. To find the neutron wavelength from the de Broglie formula
λ = h/p, first find the momentum p from the kinetic energy K =
0.07 eV. For such a low energy you can find the product pc from
the nonrelativistic relationship using the fact that for a neutron,
mc2 = 939 × 106 eV:

pc =
√

2mc2K =
√

2 × 939 × 106 × 0.07 = 1.146 × 104 eV.

This value of pc implies that the wavelength is

λ =
hc

pc
=

1240
1.146 × 104

= 0.11 nm.

This is a wavelength just about the size of an atom, and therefore just
right for probing the structure of something made up of atoms, such as a
crystal or a molecule. Moreover, because neutrons are electrically neutral
they can, unlike electrons, pass through substantial amounts of matter
without much attenuation; this property makes them exceptionally useful
probes for studying crystalline structure.
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� EXAMPLES

6. If these 0.07 eV neutrons are undergoing Bragg diffraction in the
copper crystallites, at what angle should there be a maximum due to
reflections from the (111) planes?

Use the Bragg law to answer this question, and solve 2d sin θ = λ for
sin θ. First find d. From Table 15.1 note that the lattice constant for
Cu is 0.361 nm, so the spacing d between the (111) planes is

d =
0.361√

3
= 0.208 nm,

which yields

sin θ =
λ

2d
= 0.260,

so that θ = 15.1 ◦, and there should be a peak at the counter angle
2θ = 30.2 ◦. There is!

� EXERCISES

11. Calculate the counter angle at which you would expect to see
a diffraction maximum from the reflection of 0.07 eV neutrons from
the (200) plane of copper. Compare your result to the value given in
Fig. 15.8.

12. Think of and prepare a nice graphical illustration to show that all
the peaks in the neutron diffraction spectrum of Fig. 15.8 are consistent
with Bragg diffraction.

15.4 SUMMARY AND CONCLUSIONS

All the objects you have learned to think of as particles—electrons, helium
atoms, neutrons, protons—exhibit diffraction and interference just like
waves. They act like waves with a wavelength λ given by the de Broglie
relationship

λ =
h

p
,

where p is the momentum of the particle and h is Planck’s constant.
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Some Useful Things to Know

Diffraction and interference are basic tools for working with particles.
Consequently, you need to be able to find a particle’s wavelength given
its energy or momentum in order to predict how a beam of such particles
will interact with an array of other particles, e. g., in a crystal lattice
according to the Bragg law. Fairly often, this means that you must find
the momentum p when you are given the kinetic energy K.

Before you can find the momentum of a particle from its kinetic energy,
you must also be able to tell whether you can get by with the nonrelativis-
tic relationship between momentum p and kinetic energy K of a particle
of mass m,

pc =
√

2mc2K,

or whether you need to use the relativistically correct relationship

pc =
√

2Kmc2 + K2.

The rule of thumb developed in Chap. 12 is that the nonrelativistic for-
mula will be accurate to 2.5% if K/(mc2) ≤ 0.1. If K/(mc2) ≥ 0.1, it will
be necessary to use the relativistically correct formula.

And of course, you must be able to solve all parts of this problem
using only units of electron volts (eV). For this purpose it is helpful to
remember that hc = 1240 eVnm. Also remember that for an electron,
mc2 = 511 keV; for a proton, mc2 = 938MeV; for a neutron, mc2 =
939MeV.

Waves, Energy, and Localization

Two important implications follow from the wave nature of particles.
First, the smaller the object you study, the more energetic must be the
probe. Second, particles can not be sharply localized in space.

Probing Small Objects Requires Large Energies

Remember from what you learned about waves that when you probe
a structure you cannot learn about details that are smaller than the
wavelength of your probe. Because the de Broglie wavelength is inversely
proportional to momentum, the smaller you make the probe, the greater
you must make its momentum.

Kinetic energy is proportional to the square of the momentum in the
nonrelativistic case and proportional to momentum in the ultrarelativistic
case. This means that the smaller is the thing you wish to probe, the
larger must be the energy of the particles with which you do the probing.
Since everything we know about tiny structures we learn by probing with
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something—photons, protons, electrons, or a number of other particles
we have not yet talked about—the need for higher and higher energies to
look at smaller and smaller objects is important to keep in mind.

Let’s look at one consequence of this idea. Suppose you wish to study
the internal structure of an atom with a beam of electrons. How energetic
must the beam be?

� EXAMPLES

7. An atom is about 0.1–0.2 nm in size. If you want to see struc-
ture that is 1% of this size, you will want to have electrons that
have a wavelength no larger than 0.001 nm. The momentum of such
electrons is

pc =
hc

λ
=

1240
0.001

= 1.24 × 106 eV.

Remember the rule for going from momentum p to kinetic energy K:
Use relativistically correct equations if pc ≥ 0.2mc2. Clearly, that is the
case here, because 1.24 × 106 ≥ 0.2 × 0.511 × 106 eV. Therefore,

K =
√

m2c4 + p2c2 − mc2 =
√

0.5112 + 1.242 − 0.511 = 0.83MeV.

In other words, to probe the structure of an atom to 1% requires you
to use about 1MeV electrons.

� EXERCISES

13. The Thomas Jefferson National Accelerator Facility, in Newport
News, Virginia, produces a beam of high-energy electrons for probing
the interior of nuclei. It is designed to look at structures as small as 3×
10−16 m. Roughly, what is the lowest electron energy that will achieve
this design goal?

Particles are not Sharply Localized

The second important implication of the wave nature of particles (and
the particle nature of waves) is that they can not be sharply localized;
a wave by its very nature is spread out in space. This basic feature of a
wave has forced physicists to conclude that until its position is actually
measured an electron is located in more (sometimes many more) than one
place at the same time. This strange idea also applies to momentum; i.e.,
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until its momentum is measured, a particle can have a range of different
momenta at the same time. The idea that an entity can simultaneously
have more than one value of some definite physical property is essential
to the successful description of the interactions and properties of atoms
and subatomic particles. Chapter 19 discusses these matters further.

PROBLEMS

1. If a 2 keV electron has a wavelength of 0.0274 nm,
a. what will be the wavelength of a 32 keV electron?
b. what will be the wavelength of a 512 keV electron?

2. Measure directly from the circles in Fig. 15.2 on p. 459 and show
that the progression of circle diameters is what you would expect for the
diffraction of de Broglie waves.

3. Thomson says that the photographic plate that took the image shown
in Fig. 15.2 on p. 459 was 32.5 cm from the gold foil. Use that number
and the fact that the diameter of the (200) diffraction ring was 2.5 cm
for 24.6 keV electrons to find the lattice constant of the gold foil. How
does your result compare with the value given in Table 15.1? Warning:
Remember that the angle of the diffraction ring relative to the incident
beam is twice the diffraction angle θ.

4. Suppose you wanted to probe the structure of an atom using a beam
of electrons. If you wanted to see structure on the order of the size of 0.1
of the radius of an atom, what energy of electrons would you need?

5. When you hold a wire or hair in front of a laser beam you get a
diffraction pattern resembling what you get when you pass the laser beam
through a slit of the same width.

a. 2 eV photons diffracting around a wire as shown in Fig. 15.9 go on
to strike a screen 1m away. If the first minimum of the pattern oc-
curs at 6.2mm from the center of the pattern, what is the diameter
of the wire?

b. Suppose the wire is 50μm in diameter and you wish to make the
same diffraction pattern with electrons instead of with photons.
What energy must the electrons have to produce a first minimum
6.2mm from the center of the pattern?
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FIGURE 15.9 Light diffracting around a wire as in Problem 5.
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FIGURE 15.10 For Problems 6 and 7: (a) potential energy of an electron in an atom;
(b) the probability of a collision between the electron and the atom as a function of
the electron’s kinetic energy.

c. Suppose instead of a great, huge, thick wire, you had a wire of
the diameter of a nucleus, i.e., ≈10−14 m. What energy would the
electrons have to have in order to produce a diffraction minimum
6.2mm away from the central maximum on a screen 1m away?

d. If the second maximum occurs at 9mm, what is the angle through
which the photons or electrons have been scattered to reach that
point on the screen? Give your answer in radians.

6. In Fig. 15.10a the solid line shows a simplified version of the potential
energy of an electron in an argon atom. The dashed line shows the total
energy of a particular electron.

a. Is this electron bound in the argon atom? How do you know?
b. What is the electron’s kinetic energy when it is at 0.05 nm?
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c. What is the de Broglie wavelength of the electron when it is 0.25 nm
from the origin?

d. What is the electron’s de Broglie wavelength when it is at the
center of the atom?

7. In the 1920s a physicist named Ramsauer sent a beam of electrons
through a small amount of argon gas. He measured how many electrons
collided with the argon atoms as he varied the electron kinetic energy K.
His data are shown in Fig. 15.10b.

a. Bohr showed that the collision probability should be smallest when
the de Broglie wavelength inside the atom is equal to the diameter
of the argon atom. Show that if Fig. 15.10a is a good representation
of an argon atom, Ramsauer’s data confirm Bohr’s prediction.

b. Suppose you do the experiment with an atom like that shown in
Fig. 15.10a, except that now the potential energy inside the atom
is −17.8 eV. If the minimum collision probability occurs when K =
1.0 eV, what is the diameter of the atom?

8. From a Bragg diffraction experiment, the wavelength of monoener-
getic electrons is found to be 0.06 nm. What is the kinetic energy of these
electrons?

9. To probe the structure of a nucleus means looking at matter 10−15 m
in size or smaller. What wavelength of probe would you want in order to
study lengths this small?

10. What energy electron has a wavelength of 10−15 m?

11. What energy proton has a wavelength of 10−15 m?

12. The Davisson-Germer experiment (p. 462 et seq.) is another test
of the de Broglie hypothesis λ = h/p. In this experiment an electron
beam was incident perpendicular to the (111) face of a nickel crystal (see
Fig. 15.12). Electrons interact strongly with the metal so that only the
top few atomic planes are involved. The geometry of the incident and
outgoing rays is shown in Fig. 15.12 for a single plane of atoms. Davisson
and Germer found constructive interference at θ = 50 ◦ when the electrons
were accelerated through 54 V.

a. Using Fig. 15.11, prove that constructive interference occurs if
d sin θ = nλ where n is an integer.

b. Find the electrons’ de Broglie wavelength.
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FIGURE 15.11 Schematic representation of the rays of an electron wave incident upon
and reflected from a plane of nickel atoms (Problem 12).
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FIGURE 15.12 Arrangement for electrons to interact with a crystal (Problem 13).

c. Find the interatomic distance d.
d. What is the next higher voltage where an interference peak will

occur at 50 ◦?

13. Electrons accelerated through a potential difference V pass through
a narrow slit and strike the face of a cubic crystal, as shown in Fig. 15.12.
When an electron detector (an ammeter) is placed in the position shown,
a maximum current is recorded on the meter when V = 50 volts.

a. What is the kinetic energy of the electrons after passing through
the anode slit?

b. Find the momentum of these electrons in units of eV/c. If an
approximation can be used, then do so, but explain clearly why
its use is justified.
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c. What is the de Broglie wavelength of the electrons?
d. From your above answers and the information given in the drawing,

find the interatomic spacing b in the crystal. (Hint: What atomic
planes are responsible for the reflection?)

14. A beam of electrons having a well-defined energy is incident on
a pair of very narrow slits whose center-to-center separation is 0.1μm
(Fig. 15.13). On a fluorescent screen 2m away the electrons produce an
intensity pattern whose maxima are spaced by 1mm.

a. What does the very existence of such an intensity pattern tell you
about electrons?

b. What is the momentum of these electrons?
c. What is their kinetic energy?

15. A double-slit device known as an “electron biprism” is capable of
producing interference patterns with electrons. With such a device, a team
of experimenters recently was able to produce double-slit fringes with
angular separation of 4.0 × 10−6 radians, using electrons that had been
accelerated through a potential difference of 50 kV (Fig. 15.14.)

a. Show that the de Broglie wavelength of the electrons in this
experiment was 5.5 pm.

2 m

1 mm

0.1 μm

e-

Intensity
on screen

FIGURE 15.13 Electrons incident on a pair of slits (Problem 14).

e–

= 4.0  10–6 rad+

FIGURE 15.14 Experimental arrangement for producing electron-interference
patterns (Problem 15).
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b. What was the path difference between the interfering electron
waves for the first minimum on either side of the central maximum?

c. What was the distance between the slits in this experiment?
d. If the accelerating voltage were increased from 50 kV to 200 kV,

how would the angular separation between the fringes change?
Explain briefly. A detailed calculation is not necessary.

16. Figure 15.15 shows a double-slit interference pattern for neutrons.
Neutrons from a nuclear reactor were slowed and then directed into a
double-slit apparatus with slit spacing of d = 126 μm and slit width
b = 22 μm. When a neutron detector 5m away from the slits was moved
perpendicular to the neutron beam, it recorded the interference pattern
shown in Fig. 15.15. Each data point is the number of neutrons detected
in 125 min.

a. Using a rule and scale on the figure, find the distance between
interference maxima.

b. Find the de Broglie wavelength of the neutrons.
c. What is the neutron velocity?

17. A gas of C60 molecules was created in an oven at temperature T .
A beam of molecules escaped through a small hole in the oven, passed
through the diffraction grating, and was detected at a distance of 1.2 m
from the grating. The number of molecules detected as a function of the
detector’s distance from the center line is shown in Fig. 15.16.

a. From their data the experimenters determined the de Broglie wave-
length of the C60 molecules was 4.6 pm. What was the distance
between neighboring slits in the diffraction grating?

FIGURE 15.15 Interference pattern of slow neutrons obtained by Zeilinger et al. Rev.
Mod. Phys. 60, 1067 (1988) (Problem 16).
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FIGURE 15.16 Interference pattern of C60 molecules (buckyballs) obtained by Nairz
et al., “Quantum interference experiments with large molecules,” Am. J. Phys. 71
319–325 (2003) (Problem 17).

b. How fast were the C60 molecules moving?
c. Estimate the temperature T of the oven assuming that the molec-

ular speed you found in part (b) is ≈ vrms of the molecules in the
oven.

d. Suppose that helium atoms (mass = 4 u) were used instead of C60

molecules and that the same interference pattern was found. Find
the ratio between the speed of the He atoms and the speed of the
C60 molecules.



1616C H A P T E R

Radioactivity
and the Atomic Nucleus

In 1896 Henri Becquerel discovered that compounds containing uranium
emit radiations that can penetrate opaque paper and even thin sheets of
metal and cause photographic plates to darken. Like x-rays, these emis-
sions ionized air and caused electroscopes to discharge, but unlike x-rays,
they occurred without any external source of excitation. Becquerel’s stu-
dent, Marie Curie, named this spontaneous emission of ionizing radiation
“radioactivity.”

Research soon showed that radioactivity was not rare. Within a few
years, Marie and Pierre Curie, working in France, discovered two pre-
viously unknown chemical elements, polonium and radium, that were
radioactive. Over the next decade or so their work and the studies they
inspired identified dozens of different radioactivities. Ernest Rutherford,
at first in England, later with Frederick Soddy in Canada, and then again
in England characterized and identified the radiations. They and their
colleagues found that radioactive atoms emit either helium ions or elec-
trons and as a result change into other atoms—a stunning overthrow of
the idea of immutable, eternal chemical elements.

The helium ions and electrons emitted from radioactive atoms have
energies typically 106 times greater than the energies characteristic of
chemical bonding; moreover, in some cases they continue being emitted
for billions of years (Gy). This was so puzzling at first that some physicists
seriously considered that energy might not be conserved.

Such a drastic hypothesis became unnecessary after it was found that a
given sample does not emit particles indefinitely; the radioactivity always
runs down eventually. The large magnitude of the energies became under-
standable later when Rutherford discovered that every atom possesses a
compact, extremely dense, positively charged core—the atomic nucleus.
This discovery ultimately led to the recognition that nuclei are composed

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 479
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of two different kinds of particles, protons and neutrons, held together by
a new force, different from the electromagnetic and gravitational forces,
and much stronger. As you will see, the strength of the new force and the
small dimensions of the nucleus can explain the large energies released in
radioactivity.

Rutherford also was one of the first to realize that each species of
radioactive atom has a well-defined, characteristic probability for under-
going spontaneous disintegration and transformation. This discovery was
gradually understood to mean that the moment in time at which any in-
dividual atom will decay is purely random and unpredictable in principle,
so that radioactive decay deeply contradicts Newtonian ideas of causality.
This kind of fundamental randomness required the introduction of rev-
olutionary new ideas into physics, ideas with implications that are still
surprising and mystifying physicists.

16.1 QUALITATIVE RADIOACTIVITY

Becquerel Discovers Radioactivity

In the early weeks and months after Roentgen’s discovery of x-rays
there was intense activity in many laboratories directed towards dis-
covering the source and nature of the rays. When the French physicist
Henri Becquerel attempted to understand the production of x-rays, he
accidentally discovered an entirely new phenomenon—radioactivity.

Many substances that have been bombarded by cathode rays or illumi-
nated by beams of light continue to emit light after the incident radiation
has been turned off. This delayed emission of light is called “fluorescence.”
Becquerel speculated that x-rays might be associated with fluorescence.
To test his idea he wrapped a photographic plate in black paper so that
no light would leak in. Then he coated the outside of the wrapper with
uranium sulfate salts, which were known to fluoresce strongly when il-
luminated by sunlight. His idea was to let sunlight strike the salts and
produce fluorescence. Then any x-rays that were produced would pene-
trate the opaque wrapper and expose the photographic plate inside. After
letting the package sit all day in the sun to give the material plenty of
time to produce the supposed penetrating radiation from the fluorescence,
he opened the package in the dark and developed the plate. He found
that the plate had darkened in just the way that photographic materi-
als respond to x-rays. However, another plate showed the same degree of
blackening even though it had been exposed to less sunlight and there-
fore less fluorescence. When uranium salts were not exposed to sunlight
at all and so could not fluoresce, the wrapped photographic plates still
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(a) (b)
FIGURE 16.1 (a) The smudgy patches on Becquerel’s photographic plate that signaled
the existence of radioactivity. Notice the faint outline of a cross produced where a metal
cross was placed to keep radiation from reaching the plate. (b) Some experiments
were performed using uranium salts in ampoules like these. c©Bibliotheque Centrale
M.N.H.N. Paris, 1998.

exhibited the same darkening. At this point, Becquerel concluded that he
was dealing with something other than x-rays. Results of one of his ear-
liest experiments are shown in Fig. 16.1. Only forty-nine years separate
these smudges from the explosion of the first atomic bomb.

To show that it was the uranium in the salt that was responsible for
the radiations that darkened photographic plates, Becquerel exposed the
plates to a piece of uranium metal. If the radiations come from uranium,
you would expect the effect on the plates to be stronger from the higher
concentration of uranium in the metal than from the lower concentration
in the salt. This is just what he observed.

Becquerel established that the radiations could cause the discharge of
charged electroscopes, and he began to quantify how much radiation a
sample of radiating material produced. He took the amount of darkening
of photographic film, or the rate at which an electroscope discharged, to
be a measure of what he called the “activity” of the sample. If one sample
darkened film more or discharged an electroscope faster than another, he
said that the sample had greater “activity.” Quantitative measures of
activity are now much more concrete and precise.

Becquerel found that the penetrating radiation that darkened his pho-
tographic plates could be bent by magnetic fields in the same way as
cathode rays. He showed that the charged particles had a velocity of
about 1.6 × 108 m s−1 (more than half the speed of light) and a charge-
to-mass ratio of about 1011 C/kg. Remember that e/m for electrons is
1.76 × 1011 C/kg. In Chap. 12 you saw how in 1900 Kaufmann showed
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that one kind of radioactive ray had a charge-to-mass ratio of the order
of 1011 C/kg. This and other evidence established that energetic electrons
were being emitted.

� EXERCISES

1. What is the energy of the electrons found by Becquerel?

The Curies Discover New Radioactive Elements

Becquerel’s work motivated the start of two extraordinary research efforts,
that of Marie and Pierre Curie, and that of Ernest Rutherford. Marie
Sklodowska was a brilliant young student from Poland at the Sorbonne,
in Paris, when she met and married Pierre Curie, a recent recipient of a
doctoral degree. Becquerel’s results became known just at the time when
Marie Curie was casting about for a topic for her own doctoral research.
She decided to look for other materials exhibiting radioactivity. In 1898
she found that thorium was also radioactive, but she was not alone in
discovering it.

She did notice, however, that the mineral ore from which uranium was
extracted was several times more active than uranium itself. She deduced
that there had to be other unknown substances present that were much
more active than uranium. That same year she succeeded in separating a
chemically distinct radioactive material that was considerably more active
than uranium or thorium. As it was apparent that she had discovered a
new chemical element, she named it “polonium” in honor of her homeland.

A second radioactive substance also was observed to separate out along
with barium from the ore. By heroic efforts Marie Curie extracted and
purified about 0.1 g of this substance from a ton of ore. The new element
was roughly a million times more active than an equivalent amount of
uranium. She was able to determine its atomic weight, now known to
be 226.0 u, and enough of its chemical properties to be sure that it was
another new element. She named it “radium.”

From the perspective of more than a century later you may find it hard
to appreciate the great significance of the Curies’ accomplishments. They
showed that radioactivity could be used to identify new elements, ele-
ments that began to fill a large gap in the periodic table between bismuth
(Z = 83) and thorium (Z = 90). Even more important, their discovery of
new radioactive elements showed that radioactivity was more than just a
peculiarity of one or two elements. It became clear that radioactivity is
both widespread in nature and related in some basic way to the internal
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structure of individual atoms. Their work was a major contribution to
the realization that radioactivity represented a new physical phenomenon
profoundly different from any previously known.

The Curies also greatly advanced experimentation on radioactivity. By
purifying radium, they made available a strong source of radiation that
could easily be used for further research; it was no longer necessary to
depend on the weakly active uranium samples that took a day to cause
darkening of a photographic plate. They also began quantitative studies of
the rate at which a gas is ionized by radium emissions; these studies led to
the development of a standard for expressing the activity of a radioactive
substance. The activity of 1 g of radium became the standard, and other
activities were measured and described in equivalent grams of radium.

Alpha, Beta, and Gamma Rays

Many people had a hand in the early discoveries of radioactivity, but
Ernest Rutherford was largely responsible for making sense of the phe-
nomenon. One question that arose immediately after the discovery of
radioactivity was whether the radiations were x-rays or something differ-
ent. Rutherford, working in the laboratory of J. J. Thomson (of the e/m
experiment) became interested in finding the answer. He soon identified
two kinds of rays. The first were easily stopped by very thin foils; the oth-
ers were much more penetrating. The easily stopped rays he named “α
rays”; the more penetrating rays he named “β rays.” A 0.02mm thick foil
of aluminum or a piece of ordinary paper would stop 95% of the radiations
from uranium. These were alpha rays. Clearly, the more penetrating ion-
izing radiation—the other 5%—were beta rays and caused the darkening
of Becquerel’s photographic plates or the discharge of an electroscope.

It was natural to analyze the two kinds of rays by electric and magnetic
fields (see Fig. 16.2). As already mentioned, e/m measurements showed
beta rays to be very similar to the cathode rays of J. J. Thomson. The
conclusion was that beta rays are energetic electrons.

Alpha radiations bend in a magnetic field as energetic, positively
charged particles with the charge-to-mass ratio of fully ionized helium
(He++). The fact that helium gas, relatively rare on Earth, was often
found in minerals that contained significant amounts of uranium or
thorium suggested to Rutherford that alpha particles are helium ions.

At the University of Manchester, in England, Rutherford did experi-
ments that directly showed that alpha particles are ionized helium atoms.
He built an apparatus that collected the alpha particles as they stopped.
Even with the much stronger sources of radioactivity that were by then
available, he had to run his experiment for several months. At the end
of that time he could show by optical spectroscopy that his previously
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Lead
Sample

FIGURE 16.2 A schematic diagram of the behavior of different kinds of radioactive
rays in a magnetic field: the α rays bend as positively charged particles with small q/m;
the β rays bend as negatively charged particles with q/m of an electron; the γ rays are
not affected by the magnetic field.

empty apparatus now contained measurable amounts of helium. This was
the outcome to be expected if alpha particles were helium ions and formed
neutral atoms as they stopped in the apparatus.

� EXERCISES

2. What is the charge-to-mass ratio of an ionized hydrogen atom (pro-
ton)? Of doubly ionized helium? Would it be difficult to distinguish
hydrogen from helium by their charge-to-mass ratios?

3. As part of measuring the charge-to-mass ratio of alpha rays from ra-
dium, Rutherford measured their velocity and got about 2.5×107 m s−1.
Later, more accurate measurements gave 1.53×107 m s−1. Assume that
alpha particles are helium ions, and use the later value of velocity to
calculate the energy of these alphas.

By 1900 a third kind of ray was identified. They were named “γ rays.”
They are quite penetrating, but as Fig. 16.2 shows, they do not bend
in a magnetic field and therefore cannot be charged particles. Later,
after they were found to behave like x-rays, gamma rays were recog-
nized to be energetic photons. They are emitted following the emission of
alpha or beta rays and without radioactive transformation of the emitting
atom.
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� EXERCISES

4. What is the direction of the magnetic field that produces the
deflections shown in Fig. 16.2?

Radioactive Atoms of One Element Change into Another

It soon became evident that in the radioactive process, atoms of uranium,
thorium, and so on were actually changing into other kinds of atoms, a
process called “transmutation.” Rutherford realized that the emitted ra-
diation was a result of these changes. But changing atoms? The phrase is
a self-contradiction because the word atom means uncuttable, and gen-
erations of chemical studies had convinced people that the elements were
just that—elemental, fundamental building blocks of matter. To suppose
now that atoms could transform violated ideas built up over more than a
century.

Let’s consider some of the evidence for the occurrence of such changes.
Uranium compounds emit both alpha and beta rays. Rutherford and
Soddy1 found that they could by chemical means separate from the ura-
nium whatever was emitting beta rays, while leaving almost all the alpha
activity behind with the uranium. They called the beta-emitting frac-
tion uranium-x and denoted it at first by UX and later by UX1. They
observed that the beta activity gradually built up again in the uranium
sample and could then be separated again as more UX1. Significantly, the
chemical techniques to separate the UX1 were the same as those required
to separate thorium from uranium, and it is now known that UX1 is the
mass-234 isotope of thorium.

Second, a buildup of an alpha-emitting, radioactive gas was observed
in closed vessels containing samples of radium. Like the beta activity of
UX1, this alpha-emitting substance could be drawn off a radium sample.
This substance had the chemical characteristics of a noble gas. Initially
called “emanation,” this gas is now called “radon”—a household word in
recent years.

Third, the observed radioactive elements were found to group into dif-
ferent families that we call “radioactive series” or “chains of radioactive
decay.” The members of each family have atomic masses differing by
integer multiples of 4 u. Consequently, there are four possible different

1Frederick Soddy, 1877–1956, English physicist who worked with Rutherford at McGill Uni-
versity, in Canada. They proposed the disintegration theory of radioactivity. Soddy introduced
the idea of “isotope” to explain how there could be several different radioactivities for a given
chemical element. He received the 1921 Nobel Prize in chemistry.



486 16. RADIOACTIVITY AND THE ATOMIC NUCLEUS

chains. One has atomic masses that are integer multiples of 4, i.e., 4n—
where n is any integer; another has masses that are integer multiples of
4 plus 1, i.e., 4n + 1; another has masses that are 4n + 2; and a fourth
chain has masses that are 4n + 3. You can see that such families exist
because only the emission of an alpha particle changes the mass of a ra-
dioactive atom appreciably, and it changes the mass by ∼4 u. Emission of
a beta ray changes the atomic number by one unit, but barely affects the
atomic mass.

� EXAMPLES

1. Most naturally occurring uranium atoms have an atomic weight of
238 u. To what decay chain do they belong? Divide 238 by 4; you get
59 with a remainder of 2. Therefore, this uranium isotope belongs to
the 4n + 2 decay chain.

As Fig. 16.3 shows, an atom that emits an alpha ray transforms into
an atom two elements lower down the periodic table; beta emitters trans-

Th90
234 Th    90

230

Pa91
234

Ra    88
226

Rn   86
222

Po    84
218

Pb    82
214

Bi     83
210

Po84
214

Pb82
210

Bi     83
214

U92
234U92

238

FIGURE 16.3 A map of a sequence of radioactive transformations and their half lives.
The end of the sequence at mass-206 lead is not shown.
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form to elements one position up the periodic table. Thus, the mass-238
uranium atom that emits an alpha particle becomes a mass-234 thorium
atom. And when that thorium atom emits a beta ray it becomes a mass-
234 protactinium atom, which a short while later emits a beta ray and
becomes a mass-234 uranium atom. The occurrence of such radioactive
“transformations” overthrew the fundamental, deeply held belief in the
immutability of chemical elements.

Radioactivity also forced physicists and chemists to enlarge what is
meant by an atom of a chemical element. In the course of the ra-
dioactive decays just described, the mass-238 uranium atom changed
into a mass-234 uranium atom. To understand radioactive transmuta-
tions it was necessary to recognize that there can be atoms of the same
chemical element that have substantially different masses; these different
atoms of the same chemical element are called isotopes—another atomic
surprise.

� EXERCISES

5. To what radioactive series do radium atoms with atomic mass of
226 u belong?

6. Identify the decay chains of the elements listed in Table 16.1.

7. What will be the mass of the isotope of lead that is the end product
of the radioactive decay of mass-238 uranium?

TABLE 16.1 Some of the first discovered radioactivities

Name Symbol Atomic
number Z

Mass number
A

Half-life

polonium Po 84 210 138.4 d

radon, thoron,
thorium emanation

Rn, Tn
Em

86 220 55.6 s

radon Rn 86 222 3.83 d

radium Ra 88 226 1600 y

thorium Th 90 232 14.1 × 109 y

thorium Th, UX1 90 234 24.1 d

uranium U 92 238 4.47 × 109 y
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16.2 QUANTITATIVE PROPERTIES OF RADIOACTIVITY

Measures of Activity

After it was recognized that each instance of alpha or beta radioactivity
corresponds to the disintegration and transformation of a single atom, ac-
tivity was defined to be the number of disintegrations per second. In honor
of the Curies, a commonly used unit of activity is the “curie,” abbreviated
Ci. By international agreement one curie (1Ci) of activity is 3.7 × 1010

radioactive emissions per second. This is almost the activity of one gram
of radium, so it is approximately correct to say that the activity of 1 g of
Ra is 1Ci.

� EXERCISES

8. Suppose a 100μg sample of Ra causes an electroscope to discharge
in 30 s, while 15 g of an unknown sample of radioactivity causes it to
discharge in 100 s. What is the activity of the unknown?

The official SI unit of activity of radioactive substances is called the
“becquerel” and is abbreviated Bq. A becquerel is defined to be one
disintegration per second. Therefore, 1Ci = 3.7 × 1010 Bq.

Radioactive Decay and Half-Life

The persistence of radioactivity posed a major mystery. Uranium and
thorium samples emit very energetic particles at an apparently steady
rate. Their activities seemed to stay constant. Could a sample really keep
releasing such energetic particles indefinitely?

The answer to this question came when new and different radioactive
substances were separated from uranium and thorium. For example, the
UX1 that Rutherford and Soddy chemically separated from uranium and
that carried all the beta activity showed measurable changes in activ-
ity over time. Rutherford observed that UX1’s beta activity exhibited a
gradual decay after it had been separated from uranium. He measured
the ionizing current produced by UX1 and observed that it dropped off
over time, as shown in Table 16.2.

In about 24 days, the activity of UX1 decreased to half of its initial value
and kept decreasing by half in each succeeding 24-day period. The time
for the activity to fall by one half is called the “half-life,” or T1/2. Every
radioactive substance has been found to have its own unique half-life,
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TABLE 16.2 Ionizing current caused by UX1 over several months

Ionizing Elapsed Ionizing Elapsed Ionizing Elapsed
current time current time current time

(arb. units) (d) (arb. units) (d) (arb. units) (d)

124.6 0 55.4 28 23.9 56

114.3 2 53.6 30 23.3 58

111.2 4 48.7 32 22.0 60

109.1 6 47.8 34 21.4 62

96.2 8 42.3 36 19.2 64

93.0 10 42.1 38 18.2 66

85.6 12 39.9 40 16.5 68

81.3 14 38.2 42 17.1 70

80.2 16 36.1 44 15.4 72

72.2 18 34.3 46 15.1 74

68.3 20 30.8 48 13.5 76

65.9 22 29.2 50 14.1 78

59.5 24 26.4 52 11.8 80

57.4 26 25.1 54

and therefore all radioactive materials do eventually run down. Changes
in the activity of uranium were difficult to detect because for uranium
T1/2 = 4.5 × 109 y, so that in any reasonable period of time the relative
change of activity was not measurable.

The data in Table 16.2 behave in a way familiar to students of growth
and decay: the ionization current falls off exponentially. Using the ionizing
current produced in an electroscope by a sample of UX1 as a measure of
the sample’s activity, Rutherford and others observed that relative to
the initial current I0, the ionizing current I being produced by the beta
radiations from UX1 diminished exponentially with the passage of time,

I = I0 e−λt, (1)

where λ is called the “decay constant” or “disintegration constant.”
This behavior of the ionizing current is just what you would expect if

the activity of a sample is proportional to N , the number of atoms that
have not yet decayed. To see why this is so, realize that each radioactive
emission decreases N , and in a time Δt, N decreases by ΔN atoms. The
activity—the number of disintegrations per second—is the ratio ΔN/Δt.
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If, as claimed, the activity is proportional to N then
ΔN

Δt
= −λN, (2)

where λ the constant of proportionality will turn out to be the decay
constant in Eq. 1. The minus sign tells you that N is decreasing with
time. For the normal case of large N and comparatively small ΔN , you can
approximate ΔN/Δt by a derivative. (This means that you are treating
the discrete decays and integer changes in numbers as smoothly varying
functions.) In other words, you are replacing Eq. 2 with

dN

dt
= −λN. (3)

Integrating this equation for N as a function of time, you get

N = N0 e−λt, (4)

where N0 is the number of radioactive atoms at time t = 0. Equation 4 is
the law of radioactive decay: In the absence of any source that is producing
them, the number of radioactive atoms decreases exponentially over time.

Differentiation of Eq. 4 shows that if the equation is correct, then the
activity of a UX1 sample should diminish exponentially as was observed.
Differentiation with respect to time gives the activity A:

A =
∣
∣
∣
∣
dN

dt

∣
∣
∣
∣ = λN0 e−λt = A0 e−λt, (5)

where A0 is the activity at time t = 0. The ionizing current is produced
by a small but fixed fraction of the radiations emitted by UX1, so I ∝ A
(and I0 ∝ A0), and Eq. 2 follows from Eq. 5, i.e. the ionizing current
that Rutherford measured will have the same exponential decay as the
sample’s activity.

� EXAMPLES

2. A good test of whether radioactivity obeys Eqs. 4 and 5 is to plot
the logarithm of the measured activity against time. If the result is a
straight line, you know that the decay is exponential.

Figure 16.4 shows that Rutherford’s UX1 data obey the relationship
nicely.

The decay constant λ tells you how long a sample will last. Notice that
if λ is large, a sample will decay quickly; if λ is small, the sample will be
long-lived. Equivalently, for a given number of atoms, a large value of λ
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FIGURE 16.4 Plot of the logarithm (base 10) of the activity of UX1 vs. time. The
straightness of the line shows that the decay of UX1 is exponential.

means a high activity. In other words, the decay constant is a measure of
the probability that an atom will decay.

As long as the number of radioactive decays ΔN is small compared to
the number of atoms present N , the probability that an atom will decay
in the time interval Δt is the ratio of ΔN to N . Referring back to Eq. 2,
you can see that the probability is λΔt that an atom will decay in a time
interval Δt. As long as this probability is much less than one, you can
say that λΔt is the probability that an atom will decay within the time
interval Δt.

You now have two measures of the likelihood that an atom will de-
cay, the half-life T1/2 and the decay constant λ. These two quantities are
connected through the decay law, Eq. 4.

� EXAMPLES

3. To see how to find λ if you know T1/2, consider the case of UX1.
If you know the half-life, you can find λ without knowing either

dN/dt or N . For UX1, T1/2 is 24.1 days, or 24.1× 86 400 s. During this
time the activity drops to one-half of its initial value, and because the
activity dN/dt is proportional to N , the number of radioactive atoms
N must have dropped to half of the initial value, i.e., N/N0 = 1

2 . You
can use this fact and Eq. 4 to write

1
2

= e−λT1/2 = e−λ 24.1×86 400,
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which connects T1/2 and λ. To solve for the constant in the exponent,
take the natural logarithm of both sides of the equation. Since ln 2 =
0.693, you get

λ =
0.693

2.1 × 106
= 3.3 × 10−7 s−1.

In general, the decay constant is related to the half-life by the equation

λ =
ln 2
T1/2

. (6)

4. To see how to find T1/2 if you know λ, consider the case of radium.
You can use the definition of the curie to find the decay constant

of radium. Remember that a curie is an activity of 3.7 × 1010 s−1 and
is nearly equal to the activity of 1 g of radium. Because the atomic
weight of radium is 226 u, one gram contains 1/226 of a mole of Ra
atoms. Therefore, for a one-gram sample, N0 is Avogadro’s number
divided by 226, and the activity of one gram of radium is, from Eq. 5,

−dN

dt
= λ

6.02 × 1023

226
= 3.70 × 1010 s−1,

from which it follows that

λ = 1.39 × 10−11 s−1,

which with Eq. 6 gives

T1/2 =
ln 2
λ

= 4.99 × 1010 s,

which is 1580 years, slightly different from the currently accepted value
of 1600 y for T1/2 of Ra because modern measurements show that the
activity of 1 g of Ra is 0.988Ci, 1.2% smaller than was thought when
the curie was defined.

� EXERCISES

9. Derive the general relationship between T1/2 and λ.

It can be shown that Eqs. 4 and 5 imply that radioactive decay is a
purely random occurrence. Although you can know from measurement the
probability of decay, there is no way to predict when a particular atom will
disintegrate. It is as though the atoms are playing Russian roulette. Each
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atom has a revolver with a cylinder containing many empty chambers and
one loaded one. In the course of a second each atom spins its cylinder,
puts the gun to its head and pulls the trigger. λ is the probability that
the gun will go off. During the next second all the remaining atoms spin
the cylinders of their guns and play another round. The value of λ found
in Example 16.4 shows that 139 Ra atoms out of every 1013 lose in each
round of Russian roulette. The UX1 atoms play a much tougher game. In
a 1-s round of Russian roulette, 33× 105 UX1 atoms out of 1013 will lose.

The exponential decay law implies that in any given time interval the
nucleus has the same chance of emitting a particle as in any other similar
interval. This is strange. People do not age this way. Barring accidents,
there is a relatively narrow range of ages in which people die. If they be-
haved like radioactive nuclei, half of the original population would die by
a certain age, let’s say forty. And half of the remaining population would
die by the age of eighty, half again by one hundred and twenty and so
on. Thus in a population of two million people, one-half million should be
over one hundred and twenty, and nearly two thousand over four hundred
years of age! We know that there are various aging processes and that peo-
ple do not just die for no reason. Stars are the same. Stars like our Sun
have fairly well-defined lifetimes. They do not just up and die at random.
Why are nuclei so different from people and stars? How can one nucleus
live for perhaps 1 s and another identical nucleus for ten billion years?

� EXERCISES

10. The most common naturally occurring uranium atoms have a half-
life of 4.47 × 109 y. What is their decay constant? What are their odds
to lose at Russian roulette if they spin the cylinder once?

11. A certain kind of rubidium atom has a decay constant of 7 ×
105 s−1. What is the half-life of these atoms?

12. In the previous exercise what difficulty occurs when you try to
answer the question: “What is the probability that one of these special
rubidium atoms will decay in a second?” How can you get around the
difficulty?

We have touched the edges of a very profound problem here. Today, as
they have for nearly a century, physicists hotly discuss and disagree about
the meaning of the apparently causeless randomness at the atomic and
nuclear levels. The issue will arise repeatedly as you study more physics.
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16.3 DISCOVERY OF THE ATOM’S NUCLEUS

As soon as their energies, masses, and charges were known and reliable
sources were developed, alpha rays were used to probe the atom’s insides.
The startling result was the discovery that atoms are mostly empty space
containing a tenuous cloud of electrons around a dense, compact nucleus.

Alpha Particles as Probes of the Atom

In 1906 Rutherford observed that when a narrow beam of alpha parti-
cles passed through a sheet of mica, it made a slightly broader line on
a photographic plate than when the mica was removed. He realized that
the alphas were scattering from the atoms in the mica, but only through
quite small-angles. In 1908 his student, Hans Geiger, examined this small-
angle scattering in more detail. These first studies were interpreted using
a model of an atom suggested by J. J. Thomson, who pictured the atom
as an assemblage of electrons embedded in a sphere of smeared-out pos-
itive charge. Because the electrons were embedded within the positive
charge like plums in a pudding, the model was called “the plum-pudding
model.” The Thomson idea seemed to explain some observations but not
all of them.

Thomson’s model implies that alpha particles passing near an atom will
scatter only through small angles. You can see this is so by estimating an
upper limit for the scattering of an alpha particle from an electron. Such
a collision is like a bowling ball striking a ping pong ball, because the
alpha particle is so much more massive than an electron. If you imagine a
bowling ball just brushing the edge of a ping-pong ball, you may see that
the electron is never going to scatter through an angle larger than 90◦.

The mass of an electron is 0.511MeV/c2 ; the mass of an alpha particle
is about 4 × 931.5MeV/c2 . The ratio of Mα/me = 7300. Consequently,
when a massive alpha particle moving with a velocity vα and momentum
pα = Mαvα collides head-on with an electron sitting at rest, the alpha
imparts to the electron a forward velocity of 2 vα. Thus the maximum
possible change in momentum of the electron is

Δp = 2mevα � pα. (7)

If the momentum Δp were carried away from the alpha particle at a
right angle, the alpha would be deflected through through an angle θ, as
shown in Fig. 16.5, where

θ ≈ tan θ =
Δp

pα
.



16.3. DISCOVERY OF THE ATOM’S NUCLEUS 495

p
p

p

p
tan   =

FIGURE 16.5 Upper limit of small-angle scattering produced by a small change in
momentum.

Although the alpha cannot lose this much momentum at right angles, and
the calculated deflection is greater than the largest possible scattering
angle, the result serves as an upper limit of what is possible. Notice that
the angle is just twice the ratio of the masses of the two particles:

θ = 2
me

Mα
=

1
3650

= 0.0003 rad = 0.015◦.

Clearly, the electrons in an atom would be unlikely to scatter the alpha
very much even if there were many such collisions.

But might the positive charge itself produce appreciable scattering?
Again a simple model is informative. Imagine that the atom is a ball of
positive charge of radius R and some charge Ze, where e is the elementary
charge and Z is some integer. Then the maximum force exerted on the
alpha particle, which itself has a radius rα � R, by the atom’s positive
charge would be, from Coulomb’s law,

F = kc
Zα Z e2

R2
,

where Zα is the number of elementary charges on an alpha particle, i.e.,
2, and kc is the constant 9 × 109 Nm2 C−2 appearing in the Coulomb
force law. You might think that the force would get larger if the alpha
particle approached closer than the surface of the atom, but this is not
so. Inside a ball of charge the force on the alpha particle is proportional
to the alpha’s distance from the ball’s center, dropping to zero as the
alpha particle moves to the center. This means that you can estimate the
force by taking its value just at the surface of the sphere, where it will be
largest.

To make it easy to estimate the change in momentum, use this max-
imum value of the force and assume that it acts constantly over a time
interval equal to the time Δt for an alpha to travel a distance equal to
the diameter of the atom:

Δt =
2R
vα

.
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This gives an upper bound on the change in momentum of

F Δt = kc
e2ZαZ

R2

2R
vα

,

which implies a maximum angle of scattering of

θ =
Δp

p
= 2kc

e2ZαZ

RMαv2
α

. (8)

The radius R of an atom is about 0.1 nm; Z for a gold atom is 79; 1
2Mαv2

α

is the kinetic energy of an alpha particle, or about 5MeV; and, of course,
kce

2 = 1.44 eVnm.

� EXERCISES

13. Show that the above estimate of the maximum angle of scattering
gives about 0.026◦ for alphas scattering from gold atoms.

Discovery of the Atomic Nucleus

Rutherford had another student, Ernest Marsden, look for larger-angle
scattering. The method of detection was interesting. When individual al-
pha particles hit a screen coated with zinc sulfide they make a flash of
light, or “scintillation,” that can be seen by the completely dark-adapted
human eye. This was a very sensitive technique for observing rare events.
For the reasons given above, Rutherford did not expect to see any large-
angle scatterings. According to the Thomson model, scatterings through
large angles would have to be the result of many successive small-angle
scatterings. Since each would be random, the successive scattering direc-
tions would tend to average out, and only on very rare occasions would
the events add up to a significant overall deviation.

The experiment was set up using an intense source of alphas in an evac-
uated chamber (Fig. 16.6). A narrow beam was formed by a pair of thin
metal plates with small holes that served to collimate the stream of alpha
particles. Gold foil was used as a target in order to get massive atoms of
a material that could easily be made into sheets so thin that alphas could
pass through. Marsden immediately began seeing significant numbers of
alphas deflected through fairly large angles. After he modified the appa-
ratus to allow observation of alphas scattered in any direction, he saw
scintillations at even larger angles, some even in the straight backwards
direction. He found that 1 out of every 8000 alphas scattered through an
angle of 90◦ or more.
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FIGURE 16.6 Apparatus used by Geiger and Marsden. Alpha particles from a source
R pass through a collimator D and strike a foil F. Scintillations from scattered particles
are produced on the screen S and are observed with a microscope M. The chamber is
evacuated and can be rotated to different angles about the foil.

This result was a complete surprise. Because a solid is a collection
of atoms in contact with one another, the alphas had to pass through
hundreds of atoms to get through the foil. The experiment showed that
the material was very porous, that most of the alphas passed through
it like bullets through a rain shower. Astonishingly, however, the same
material exerted very strong forces on the few alpha particles that were
bounced back. As Rutherford said, “It was quite the most incredible event
that has ever happened to me in my life. It was almost as incredible as if
you fired a 15-inch shell at a piece of tissue paper, and it came back and
hit you.”

� EXERCISES

14. Show that the simple model used above to estimate the small-
angle scattering will produce larger angles of scattering if you imagine
that the positive charge has a much smaller radius R than assumed
above.

Rutherford realized that the scattering of the alpha particles through
large angles could be explained if the positive charge of the atom is con-
centrated very compactly in the center of the atom. Indeed, the crude
approximation of Eq. 8 suggests that if R, the radius of the positive ball
of charge, is 10−3 to 10−4 smaller than the radius of the atom, then θ will
be large. This makes sense, because near such a compact ball of charge
the electric field is very large, and an alpha particle passing close to the
compact core would experience a very large force. In the case of a head-on
collision, an approaching alpha particle slows down and comes to a halt at
the distance r from the charge where the alpha’s initial kinetic energy is
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b
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FIGURE 16.7 Trajectories of two scattered alpha particles. The upper alpha particle
is scattered through an angle θ < 90◦; the other alpha particle collides nearly head on
with the nucleus and scatters through θ ≈ 180◦. The quantity b, the distance of closest
approach if there were no electric force present, is called the scattering parameter.

completely converted to electrostatic potential energy; then it accelerates
backwards away from the atom until it is far away and has regained its
original speed. This is scattering through 180◦, as shown by the trajectory
at the bottom of Fig. 16.7. The upper trajectory in Fig. 16.7 shows the
deflection through a smaller angle of an alpha particle that is not incident
directly head-on to the atom. The amount of deflection is less the farther
the alpha is from a head-on collision. This kind of scattering of one atom
from another owing to the Coulomb force between their nuclei is called
“Rutherford scattering” or “Coulomb scattering.”

Assuming that the scattering center, i.e., the nucleus, acted as a point
charge, Rutherford calculated that the number of alpha particles scatter-
ing through an angle θ will be proportional to the square of the charge
Ze of the scattering nuclei and inversely proportional to the fourth power
of the sine of half of the scattering angle, θ/2. He also predicted that the
number scattered would be proportional to the inverse of the square of
the energy of the alpha particles, Eα. In short he predicted

ΔN ∝ Z2

E2
α sin4

(
θ
2

) , (9)

where ΔN is the number counted.
Geiger’s and Marsden’s experimental data on the scattering as a func-

tion of angle could then be compared with Rutherford’s theory. These
data are shown in Table 16.3, which has several interesting features. For
example, it shows convincingly that Rutherford’s prediction that ΔN is
proportional to 1/ sin4

(
θ
2

)
is correct. If such a proportionality holds, then

the product of ΔN and sin4
(

θ
2

)
should be a constant. Column 4 shows that

the product varies by no more than ±20%, while the number of counts
varies by almost four orders of magnitude.
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TABLE 16.3 Number of alpha particles scattered through various

angles θ from gold

Scattering Number of

angle, θ sin4 θ
2

scintillations ΔN sin4 θ
2

(deg) ΔN

150. 0.8705 33.1 28.8

135. 0.7286 43.0 31.3

120. 0.5625 51.9 29.2

105. 0.3962 69.5 27.5

75. 0.1373 211. 29.0

60. 0.0625 477.

45. 0.02145 1435.

37.5 0.01068 3300. 35.2

30. 0.004487 7800.

22.5 0.001449 27300. 39.6

15. 0.0002903 132000. 38.3

30. 0.004487 3.1

22.5 0.001449 8.4

15. 0.0002903 48.2

10. 5.77 × 10−5 200.

7.5 1.83 × 10−5 607.

5. 3.62 × 10−6 3320.

� EXERCISES

15. Fill in the blanks of column 4 of Table 16.3.

16. Compare the variation of the product with the variation of ΔN
for the bottom six entries of Table 16.3.

17. Plot the data of Table 16.3 in such a way that they should all lie
on the same straight line if Rutherford’s theory is correct.

Another feature of Table 16.3 deserves notice. Stop and think a mo-
ment about how these data were obtained. Imagine that you are one of
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two people sitting in a completely darkened room holding mechanical
counters and counting the flashes of light from a tiny screen only a few
cm2 in area. It took you close to an hour of sitting in total darkness before
your eyes became sufficiently adapted to be able to detect the tiny flashes
adequately. Even then you could reliably count no more than 90 scintil-
lations per minute and no fewer than 5. How do you suppose someone
counted the 1 32 000 counts shown in Table 16.3? Or how did they get
33.1 counts?2

To deal with the limitations of these human detectors several tactics
were used. The simplest was to put in front of the alpha source an aperture
made small enough to limit the number of alphas until their frequency of
scattering was within human capacity to count them and then correct the
data to make them correspond to some standard size of aperture. Another
approach was to start with a very active source, say 100mCi, with a short
half-life, e. g., 222Rn with a half-life of 3.82 d. At the beginning of the
experiment observers would make measurements at the large scattering
angles where the yield is small; then as the days went by and the activity
dropped they would make measurements at smaller angles, where the yield
was larger. Of course, they had to correct their data for the fact that the
decay of the source led to a diminished number of incident alphas.

� EXERCISES

18. If the counts in the two sets of data in Table 16.3 differed only
because of a change in aperture size, what ratio of aperture diameters
would account for the observed differences?

19. Suppose that it took 10 days to do an experiment in which 222Rn
was the source of alpha particles. At any given angle what would be
the ratio of the number of scattered alpha particles at the beginning of
the experiment to the number scattered at the end of the experiment?

2J.B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Macmillan
Co., 1964, p. 4-5, writes: “. . . at one famous laboratory during this period all intending re-
search students were tested in the dark room for their ability to count scintillations accurately.
Only those whose eyesight measured up to the standards required were accepted for nuclear re-
search; the others were advised to take up alternative, less physically exacting, fields of study. . .
Marsden, who counted hundreds of thousands of scintillations in his historic experiments on
α-particle scattering, has recalled how on train journeys his colleague Geiger would urge him
not to put his head out of the window, lest a chance smoke particle should impair his efficiency
as a human scintillation counter. Truly the early nuclear physicists needed to be men of vision.”
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20. Geiger’s and Marsden’s alpha source was 222Rn and they did their
experiment 51 h after the 100mCi source was prepared. By what factor
should they multiply the initial source activity to get the activity at
the time they ran their experiment?

Rutherford’s successful explanation of these data established the valid-
ity of the assumption that each atom contains a very small, dense core of
charge. Rutherford named this compact center of the atom the “atomic
nucleus,” often called just the “nucleus” for short.

Nuclear Size and Charge

Rutherford scattering provides a way to determine the size of a nucleus.
The scattering formula Eq. 9 is valid only when the alpha and the nucleus
do not come into contact. This assumption works because it is a general
result that the electric field outside a sphere of charge (the nucleus in this
case) is the same as that of a point charge. Therefore, an alpha particle will
experience the field of a point charge as long as it does not go inside the
surface of the nucleus. If the alpha does penetrate the nucleus, however,
then the force will not be that of a point charge of magnitude Ze, and
Eq. 9 will no longer be correct.

The easiest case to analyze is a head-on collision, where the incident
alpha particle slows down and stops when all its kinetic energy becomes
electrostatic potential energy. Then the distance of closest approach is the
value of r that gives a value of the potential energy equal to the alpha’s
incident kinetic energy

1
2
Mαv2

α = kc
e22Z

r
. (10)

Here r is the distance between the center of the alpha particle, of charge
2e, and the center of the nucleus, of charge Ze. The other symbols are as
defined for Eq. 8. Suppose the energy of the alphas is 5MeV. Then the
distance of closest approach to a gold nucleus will be

r =
1.44 × 2 × 79

5 × 106
= 4.55 × 10−5 nm = 45.5 fm.

� EXERCISES

21. What would be the distance of closest approach for 5MeV alpha
particles bombarding an aluminum foil?
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Of course, when the distance of closest approach brings the alpha par-
ticle inside the surface of the nucleus, Eq. 10 will no longer be valid,
because inside the nucleus the electric field of the charge Ze is no longer
the electric field of a point charge. This means that to find the nuclear
size all you need to do is keep increasing the energy of the incident al-
phas until the experimental results deviate from the predictions of Eq. 9.
Experiments show that for gold, Rutherford’s theory no longer correctly
predicts the distance of closest approach when r ≤ 8.9 fm; for aluminum
the theory fails when r ≤ 5.5 fm; for nitrogen it fails when r ≤ 4.8 fm. We
infer that the theory fails at these values of r because the outer edge of
the alpha is starting to penetrate the nuclear surface, and we conclude
that these values of r represent the radius of the nucleus plus the radius of
the alpha particle. Many experiments have shown that nuclei have radii
a few femtometers in size and, in general, the nucleus of an atom with
an atomic mass A has a radius rN that is reasonably well given by the
expression

rN = 1.2 fm × A
1
3 . (11)

� EXERCISES

22. From Eq. 11 what is the radius of an alpha particle?

23. What is the radius of an aluminum nucleus? Is your answer con-
sistent with the observation that Rutherford’s theory does not hold for
a head-on closest approach of 5.5 fm?

24. What is the radius of a gold nucleus? Is your answer consistent
with the observation that Rutherford’s theory does not hold for a head-
on closest approach of 8.9 fm?

25. What is the radius of a proton?

Rutherford also realized that alpha scattering could be used to deter-
mine the charge of a nucleus. Measurements made on several different
metals showed that the nucleus has a number of elementary charge units
approximately equal to half of its atomic mass. In 1913 Moseley’s work
on atomic x-rays, described in Sect. 17.4, further supported the nuclear
model and confirmed the Dutch amateur scientist Van der Broek’s pro-
posal that the number of elementary charges in the nucleus of a chemical
element is the same as the element’s atomic number Z.

Rutherford’s work established the existence of the atomic nucleus.
For this reason Rutherford is recognized as the discoverer of the atomic
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nucleus and the founder of the nuclear model of the atom. In this model
a positive charge Ze is concentrated along with most of the mass of the
atom in a volume about 10 fm in diameter. This is only about 10−4 of
an atomic diameter and means that an atom is mostly empty space. Be-
cause atoms are electrically neutral, there must be Z electrons filling the
relatively large empty volume around the nucleus. Rutherford’s discover-
ies produced the most profound change in the concept of the atom since
Dalton’s ideas a little over 100 years earlier.

� EXERCISES

26. Approximately what fraction of the volume of a gold atom is
occupied by its nucleus?

27. Approximately what fraction of the mass of a gold atom is in its
nucleus?

28. Estimate the density of nuclear matter. If all the people in your
college or university were compressed into a sphere with the density of
nuclear matter, how large would the sphere’s diameter be?

29. What is the preferred plural of “nucleus”?

16.4 NUCLEAR ENERGIES

As noted earlier, the energies of the radiations emitted in radioactivity
are astonishingly large. Individual alpha particles have energies on the
order of 5MeV. The average energy of emitted beta particles is typically
a few MeV. The discovery of the nucleus made it possible to explain such
large energies.

Energies of Alpha and Beta Particles

Measurements of alpha and beta particles show that they are more ener-
getic than the highest-energy cathode rays produced. The velocities found
when measuring the charge-to-mass ratios of beta rays and of alpha rays
show that these particles have energies on the order of several MeV.

To measure such energies you can use some of the tools you learned
about in Chap. 12 to analyze results obtained from magnetic deflection
experiments.
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� EXAMPLES

5. For example, when the betas from UX1 enter a uniform magnetic
field of 0.04T, some of them bend into a circular arc with a radius of
about 2.8 cm. What is the energy of these beta rays?

Recall from Chap. 12 that the momentum p of particles of mass m and
charge q = Ze can be directly obtained from the radius of curvature R of
their path in a magnetic field B in units of eV, using

pc = ZBRc, (12)

where Z is 1 for an electron or a proton, 2 for an alpha particle, and so on.
(As usual, Eq. 12 has been divided by a number equal to the elementary
charge in order to convert joules to eV; as a result, a factor e has been
removed from the equation.)

If the particle is nonrelativistic, you can calculate its kinetic energy K
from

K =
p2c2

2mc2
.

If the particle is relativistic, you must use

K =
√

m2c4 + p2c2 − mc2. (13)

For our example,

pc = 1 × 0.04 × 0.028 × 3 × 108 = 3.35 × 105 eV.

When you compare this number to the rest energy of an electron, you
find that pc/(mc2) = 0.656. This is not small compared to 1, so you should
use the fully relativistic Eq. 13, from which it follows that

K = 0.511
(√

1 + 0.6562 − 1
)

= 0.511 × 0.197 = 0.101MeV.

� EXERCISES

30. Calculate the kinetic energy of alpha particles that bend with a
radius of R = 0.63m in a magnetic field of B = 0.5T. Assume that the
alpha particles are doubly charged helium atoms with atomic masses
of 4 u; 1 u has a mass of 931.5MeV/c2 .

Your answer to Exercise 30 should be 4.8MeV, which is the energy
of an alpha particle emitted by radium. It is an extraordinary amount
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of energy. Because one gram of radium emits 1Ci, or 3.7 × 1010 alphas
per second, a 1 g sample of radium will give off energy at a rate that
is the energy per particle times the number of particles per second =
4.8 × 106 × 1.6 × 10−19 × 3.7 × 1010 J/s = 0.028 J/s.

To appreciate the significance of such a number, compare it with more
familiar quantities such as the heat from burning one mole of hydrogen
gas to make water, one of the more energetic chemical reactions known
(recall the Hindenburg). This will produce about 2.9× 105 joules of heat,
as you can verify by looking up the heat of formation of one mole of water.
A mole of radium, 226 grams, gives off 6.78 J/s. Although it will take a
mole of radium nearly 12 h, or half a day, to produce the same energy as
burning the equivalent number of hydrogen molecules, the radium keeps
on producing energy for thousands of years! The energy that comes out
in an alpha particle is more than a million times that released when two
atoms of hydrogen combine with an atom of oxygen.

� EXERCISES

31. Calculate the ratio of energy released by the radioactive decay of
a mole of radium to the energy released when a mole of H2 burns:

2H2 + O2 = 2H2O + heat.

32. How long will it take a mole of radium to yield 90% of its
radioactive energy?

It is simpler to compare radium and H2O using electron volts.

� EXAMPLES

6. How many electron volts of energy are released in the formation of
an H2O molecule compared to the number released in the emission of
an alpha particle?

We have that the formation of 6×1023 water molecules releases 290 kJ.
Converting this amount of joules to electron volts you find that this is the
same as releasing

2.9 × 105

1.6 × 10−19
= 1.8 × 1024 eV.

The amount of eV per water molecule is this number divided by 6× 1023,
which is 3.0 eV.
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This result shows that while chemical reactions occur at energies of a
few electron volts (eV) per atom, alpha decays involve millions of elec-
tron volts (MeV). Radioactivity was thus clearly revealed to be a new
phenomenon profoundly different from anything previously known.

In this age of big numbers and super hype, of trillion dollar debts,
nuclear bombs, and space probes (the last, of course, still depending on
burning hydrogen with oxygen), it takes an effort of imagination to put
oneself in the place of those early workers in radioactivity. But try to
appreciate the impact of magnifying virtually overnight by a factor of a
million the energies that people were used to.

Where could the energy possibly be coming from? What kind of mecha-
nisms could convert such huge amounts of stored energy to kinetic energy?
The presence of radioactive species with half-lives short enough to show
detectable decreases in activity indicated that the energy had to be coming
from some process drawing on a limited though large store of energy.

To see how a tiny nucleus of positively charged matter might store
the high energies involved in radioactivity, consider the potential energy
involved in the forces that hold the charge in place. Unlike the Thomson
model, in which negative electrons were imagined to be sprinkled around,
neutralizing small regions of the atom, the nuclear model has a lot of
positive charge in a very small volume.

� EXAMPLES

7. What is the electrostatic potential energy of an alpha particle in
uranium?

For Z = 92, you can imagine 2 elementary charges being repelled by
the other 90 at distances on the order of 7.4 fm. The potential energy
will then be

P.E. =
kce

2 × 2 × 90
7.4

= 35MeV,

where you should use the convenient fact that kce
2 = 1.44 eVnm

= 1.44MeV fm so that you can use the nuclear radius directly in
femtometers and get your answer directly in MeV.

This very large energy implies a strong repulsive force between the
positively charged alpha and the positive charge of the rest of the nucleus.
How do all these positively charged particles stay together when the forces
pushing them apart are so large?
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There must be very strong attractive forces in the nucleus, strong
enough to overcome the large electrostatic repulsion between protons.
These forces are something new. They hold the nucleus together, so we
call them “nuclear forces.” They produce a large negative potential en-
ergy; they bind the nucleus together; and they hold the alpha inside for
the lifetime of the uranium atom before it decays.

� EXERCISES

33. Repeat the above calculation to estimate the minimum negative
nuclear energy required to compensate for the positive electrostatic
energy so that a gold nucleus can stay together. Imagine that the two
halves of the gold charge, Z/2, are point charges 12 fm apart.

The scale of the energies involved makes it plausible that the nucleus
is the region where most of the atom’s mass is located and where most of
the action occurs in the emission of radioactive particles.

16.5 THE NEUTRON

The next major advance in understanding the nucleus came in 1932 when
Chadwick discovered the neutron. The identification of the neutron as a
component of the nucleus on an equal footing with the proton completed
the basic picture of the nucleus that we have today.

The neutron was the third basic particle to be discovered—the electron
and the proton were discovered first. The neutron is electrically neutral
and has a mass of 1.0086649 u, slightly larger than the mass of a proton.
Although they are stable inside many nuclei, neutrons outside of a nucleus
are radioactive and decay with a half-life of 10.4min.

Every nucleus is made up of neutrons and protons. The number of pro-
tons is Z, the atomic number of the corresponding element. The number
of neutrons is often designated N . The sum of these two numbers is called
the “mass number” of the nucleus and is usually written as A. The mass
number of an atom is the integer nearest to its atomic weight. Collectively,
the neutron and the proton are referred to as “nucleons.” Thus the mass
number A is the number of nucleons in a nucleus,

Z + N = A.

Each combination of Z and N specifies a unique nucleus. Nuclei with
the same value of Z and different values of N are called isotopes. You
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have met isotopes before, but now that you know about neutrons you
can see how there might be a mass-one hydrogen and also a mass-two
hydrogen atom. Mass-two hydrogen has a nucleus consisting of a proton
and a neutron. There is also a radioactive isotope of hydrogen with A = 3.
The nucleus of this isotope has two neutrons and one proton.

There is a standard notation for representing different nuclei. It uses the
chemical symbol to indicate the value of Z (which means that fairly often
you will need to look at a periodic table of the elements to find out Z) and
has the mass number as a left-hand superscript. Thus the proton is just
1H. The mass-2 isotope (called “deuterium”) is 2H. The mass-3 isotope
(called “tritium”) is 3H. The alpha particle is just the helium nucleus 4He.
(There is another, very rare, stable isotope of helium, 3He, which as you
can see has one neutron fewer than 4He.)

Sometimes the value of Z is supplied explicitly; then it is written as
a left-hand subscript.3 For instance, there are two naturally occurring
nonradioactive isotopes of carbon: 13

6 C and 12
6 C. There is also a radioactive

isotope of carbon that occurs in nature: 14
6 C. Note that as must be the

case, Z = 6 for all the carbon isotopes.
The general form of this notation is A

ZXN , where X represents any
chemical element symbol and A, Z, and N are respectively the nucleon,
or mass number; the atomic number; and the neutron number. The en-
tire assemblage of neutrons, protons, and electrons is called a “nuclide.”
There are 272 stable nuclides plus 55 radioactive nuclides that occur natu-
rally on Earth. About two thousand radioactive nuclides have been made
artificially.

Visualizing a nucleus as a collection of Z protons and N neutrons helps
to understand the transformations that result from radioactive decay.
Alpha decay removes from the nucleus two neutrons and two protons;
it reduces A by 4 units and Z by 2 units. That is why uranium-238
(23892 U) turns into thorium-234 (23490 Th), and, in general, alpha decay can
be described as

A
ZX →A−4

Z−2 Y + α.

Beta decay causes a neutron in the nucleus to become a proton. As a
result, Z increases by 1 unit, but A does not change. There is a different
kind of beta decay we have not discussed in which a positively charged(!)
electron (called a “positron”) is emitted and a proton becomes a neutron.
For this so-called positron emission A does not change, but Z decreases
by one unit.

3Occasionally, the neutron number is given also, as a right-hand subscript, e. g., 14
6
C

8
.
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Gamma-ray emission does not change A, Z, or N . It does reduce the
energy stored in a nucleus, and it changes some nuclear properties we
have not talked about.

Because each nuclide is uniquely characterized by its values of Z and
N , it is convenient to lay out the nuclides in a chart where Z is along one
axis and N along the other. Then each nuclide can be represented as a
box located at the coordinates (N ,Z). A piece of such a chart is shown in
Fig. 16.8; you can also find such charts on the World Wide Web.

� EXERCISES

34. Get a chart of the nuclides on the World Wide Web at the URL
http://www.nndc.bnl.gov/chart/reZoom.jsp?newZoom=1.

Use the chart to find and write down the chain of decays that con-
nects the atoms of 235U to the first nonradioactive nucleus in the 4n+3
chain.

16.6 SUMMARY

Radioactivity led to the discovery of the atomic nucleus. This tiny core
of the atom contains 99.98% of its mass in about 10−12 of the atom’s
volume. The nucleus consists of particles called nucleons of which there are
two different kinds—the proton and the neutron. The number of protons
in a nucleus is the atomic number Z of the atom, and it determines
uniquely which chemical element an atom is. The neutron number N
then determines which isotope of the element the atom is. The number
of nucleons in an atom is called its mass number A, and Z + N = A. A
nucleus with mass number A has a radius of about

1.2 × A
1
3 × 10−15 m.

An isotope of element X is specified using the notation
A
ZXN ,

where the Z and N values are often omitted because they are redundant
(if you know the atomic number of X).

Radioactivity revealed that some kinds of atoms can spontaneously
transform into others. Some do this by emitting an α particle (a helium
nucleus, i.e., 4He), which decreases Z by 2 units and A by 4 units. Others
emit a beta ray (electron), which decreases Z by 1 unit but leaves A
unchanged.
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Nuclei of a given kind will emit alpha rays with characteristic, well-
defined energies on the order of 5MeV. Gamma radiations also are emitted
with well-defined, characteristic energies just like the visible line-spectra
emitted from atoms, except that gamma-ray energies can be several MeV
in magnitude rather than the few eV of visible light. By contrast, beta-
decay electrons do not come out with well-defined energy. Usually there
is nothing like a line spectrum of electrons. In a collection of identical
nuclei that undergo beta decay, some will emit low-energy electrons and
some high, with energies ranging from 0 up to some maximum energy on
the order of a few MeV.

Each type of radioactivity obeys the law of radioactive decay

N = N0e
−λt,

which shows that the emitting nuclei decay away exponentially over time.
The rate of decay is specified by the disintegration constant λ, which is
unique to each species of nucleus and to each type of decay. In nuclear
physics it is common to use the half-life T1/2 instead of the disintegration
constant, where

T1/2 =
ln 2
λ

.

The energies associated with nuclear properties are 5 to 6 orders of
magnitude greater than those observed in the atomic processes typical
of chemical interactions. These large energies and the fundamentally ran-
dom nature of radioactive decay can be taken into account only by new
physics: the identification of a new force in nature, the so-called “strong,”
or “nuclear,” force, and the ideas of quantum mechanics.

PROBLEMS

1. Marie Curie had to process a large amount of ore to extract 0.1 gram
of radium. The reason was that the radium isotope she discovered (T1/2 =
1600 y) was a decay product of mass-238 uranium (T1/2 = 4.5 × 109 y),
and over geological spans of time would exist only in equilibrium with the
uranium from which the radium originated.

a. Explain why at equilibrium the activities of radium and uranium
are equal and show that under these conditions

λU NU = λRaNRa.

b. Under equilibrium conditions, what will be the ratio of the number
of Ra atoms NRa to the number of U atoms NU? Tests on old
uranium deposits show that they contain this ratio of radium to
uranium.
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c. Marie Curie discovered radium in tailings of pitchblende, the prin-
cipal uranium-bearing ore. Assume that when originally mined
her ore was 50% uranium by weight. How many kilograms of
pitchblende tailings did she have to process to isolate 0.1 g of
radium?

2. What would be the potential energy of a particle of charge +2e a
distance of 10 fm from a particle of charge +90e?

3. Two protons approach each other towards a head-on collision with
kinetic energies of 100 keV each.

a. What is the total momentum of the system? Explain your
reasoning.

b. Before the collision, when they are far away from each other, what
are the system’s total kinetic energy Ktot and its electrical potential
energy U?

c. What is Ktot at the point of closest approach? Find the separation
r0 between the two protons when they are at the point of closest
approach.

d. What is the force (magnitude and direction) that one proton exerts
on the other when they are separated by a distance r0?

e. What did Rutherford conclude from his analysis of Geiger and
Marsden’s experiment with α particles?

4. If a gold nucleus has a radius of 7 fm, what is the maximum kinetic
energy that an alpha particle can have and still not penetrate the surface
of the nucleus during a head-on collision?

5. What is the closest distance that a 1-MeV proton can come to a gold
nucleus?

6. How much error would you make if you worked Example 16.5 nonrel-
ativistically? Considering other values you have seen for early measure-
ments of e/m, do you think that Becquerel would have been bothered by
such a discrepancy?

7. Table 16.4 shows data taken by Geiger and Marsden for a study of
large-angle alpha scattering (H. Geiger and E. Marsden, “The laws of
deflection of α-particles through large angles,” Phil. Mag. 25, 604–623
(1913)).
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TABLE 16.4 Large-angle alpha scattering data (Problem 7)

θ No target Target Subtract ΔN sin4 θ
2

(deg) (cpm) (cpm) back-

ground

150 0.2 4.95

135 2.6 8.3

120 3.8 10.3

105 0.6 10.6

75 0.0 28.6

60 0.3 69.2

Some of the data in Table 16.4 were taken without any target in order to
determine what background counts might be. Do the correction for back-
ground, and show that the corrected data obey the 1/ sin4 θ

2 dependence
expected for Rutherford scattering.

8. Figure 16.8 on p. 513 is a small piece of a chart of the nuclides. From
the chart find and write down in standard nuclide symbols:

a. Three stable nuclides that are not isotopes of one another.
b. Three stable isotopes of the same element; give their relative

abundance in nature.
c. Three radioactive nuclides; give their half-lives and their decay

products.

9. Which of the nuclides in the chart on p. 513 is naturally occurring
and radioactive? Is it more likely to be a nuclide that was created at the
time of the formation of Earth or one that is made by cosmic rays? Why?

10. Of the stable nuclides shown in the chart on p. 513, how many
individual nuclides are there that have both an odd number of protons
and an odd number of neutrons?

11. The chart on p. 513 shows that for very light nuclides the number of
protons and number of neutrons is roughly equal. But as the mass number
increases, in any given stable nucleus there get to be more neutrons than
protons. Can you suggest why this might be?

12. The mass of a deuterium atom is 2.01410177 u. How much energy is
needed to break it into a hydrogen atom (1H) and a neutron?



PROBLEMS 513

22

T
i

4
7
.8

8

T
it
a
n
iu

m

σ
a

6
.1

,
2
.9

T
i4

1
80

m
s

β
+

(p
)

4.
73

4,
3.

08

E
12

.9
5

T
i4

2
0.

20
s

β
+

6,
··
·

γ
61

1.
2 E
7.

00

T
i4

3
0.

50
s

β
+

5.
80

,
··
·

γ
22

88
,
84

5

E
6.

87

T
i4

4
52

s

ε γ
78

.4
,
67

.8

E
.2

68

T
i4

5
3.

07
8

h

β
+

1.
04

,
ε

γ
71

9.
4,

14
07

.8

E
2.

06
3

T
i4

6
8.

0

σ
γ

.6
,
.4

45
.9

52
63

0

T
i4

7
7.

3

σ
γ

1.
7,

1.
6

46
.9

51
76

4

T
i4

8
73

.8

σ
γ

7.
9,

3.
6

47
.9

47
94

7

T
i4

9
5.

5

σ
γ

2.
2,

1.
2

48
.9

47
87

1

T
i5

0
5.

4

σ
γ

.1
77

,
.1

1

49
.9

44
79

2

21

S
c

4
4
.9

5
5
9
1

S
ca

n
d
iu

m

σ
a

2
7
.2

,
1
2

S
c4

0
18

2
m

s

β
+

5.
7,

··
·

γ
37

34
,
75

4

E
14

.3
20

S
c4

1
59

6
m

s

β
+

5.
5,

··
·

γ
25

75
,
29

59

E
6.

49
4

S
c4

2
68

2
m

s

β
+

5.
40

,
··
·

γ
31

2.
4,

15
24

.6

E
6.

42
5

S
c4

3
3.

89
h

β
+

1.
20

,
.8

2
ε

γ
37

2.
8

E
2.

22
1

S
c4

4
3.

93
h

β
+

1.
47

,
ε

γ
11

57
.0

,
··
·

E
3.

65
3

S
c4

5
10

0

σ
γ

(1
0+

7)
,(

5+
7)

44
.9

55
91

0

S
c4

6
83

.8
1

d

β
−

.3
57

,
··
·

γ
11

20
.5

,
88

9.
3

E
2.

36
7

S
c4

7
3.

34
9

d

β
−

.4
39

,
.6

00
γ

15
9.

4 E
.6

01

S
c4

8
43

.7
h

β
−

.6
6,

··
·

γ
98

3.
5,

··
·

E
4.

00

S
c4

9
57

.3
m

β
−

1.
99

,
··
·

γ
17

62
,
16

23

E
2.

00
0

20

C
a

4
0
.0

7
8

C
a
lc

iu
m

σ
a

.4
3
,
.2

4

C
a3

5
0.

06
s

β
+

(2
p
)

1.
87

,
2.

21

E
15

.6

C
a3

6
∼

0.
1

s

β
+

(p
)

2.
62 E
10

.9
8

C
a3

7
17

3
m

s

β
+

(p
)

3.
10

3

E
11

.8
4

C
a3

8
0.

44
s

β
+

γ
15

68 E
8.

74

C
a3

9
86

1
m

s

β
+

5.
49

γ
25

22 E
6.

53
1

C
a4

0
96

.9
41

σ
γ

.4
1,

.2
2

39
.9

62
59

1

C
a4

1
10

3
ky

ε n
o

γ

E
.4

21

C
a4

2
0.

64
7

σ
γ

.7
,
.4

41
.9

58
61

8

C
a4

3
0.

13
5

σ
γ

6,
4

42
.9

58
76

7

C
a4

4
2.

08
6

σ
γ

.8
4,

.5
9

43
.9

55
48

1

C
a4

5
16

2.
7

d

β
−

.2
58

γ
12

.4 E
.2

57

C
a4

6
0.

00
4

σ
γ

.7
,
.9

45
.9

53
68

7

C
a4

7
4.

53
6

d

β
−

.6
94

,
1.

99
0

γ
12

97
.1

E
1.

98
5

C
a4

8
0.

18
7

σ
γ

1.
1,

.9

47
.9

52
53

5

19

K

3
9
.0

9
8
3

P
o
ta

ss
iu

m

σ
a

2
.1

,
1
.0

K
35

0.
19

s

β
+

γ
29

83
,
25

90

E
11

.8
8

K
36

34
2

m
s

β
+

9.
9,

5.
3

γ
19

72
,
24

34

E
12

.8
1

K
37

1.
23

s

β
+

5.
13

,
··
·

γ
27

96
,
··
·

E
6.

15
0

K
38

7.
63

m

β
+

2.
68

,
··
·

γ
21

67
.7

,
··
·

E
5.

91
3

K
39

93
.2

58
1

σ
γ

2.
1,

1.
0

38
.9

63
70

67

K
4
0

0.
01

77

1.
27

7
G

y

β
−

1.
33

,
ε,

β
+

E
−

1.
31

E
+

1.
51

5

K
41

6.
73

02

σ
γ

1.
46

,
1.

4

40
.9

61
82

59

K
42

12
.3

6
h

β
−

3.
52

,
··
·

γ
15

24
.6

E
3.

52
6

18

A
r

3
9
.9

4
8

A
rg

o
n

σ
a

.6
6
,
.4

2

A
r3

2
98

m
s

β
+

γ
46

1.
1,

70
7.

4

E
11

.1
5

A
r3

3
17

4
m

s

β
+

γ
81

0.
5

E
11

.6
2

A
r3

4
84

4
m

s

β
+

5.
03

7
γ

66
6.

5,
31

29

E
6.

06
1

A
r3

5
1.

77
s

β
+

4.
94

3
γ

12
19

.2
,
17

63

E
5.

96
5

A
r3

6
0.

33
7

σ
γ

5.
2,

.4
1

35
.9

67
54

6

A
r3

7
35

.0
d

ε

E
.8

13

A
r3

8
0.

06
3

σ
γ

.8 37
.9

62
73

2

A
r3

9
26

9
y

β
−

.5
65

n
o

γ

E
.5

65

A
r4

0
99

.6
0

σ
γ

.6
5,

.4
1

39
.9

62
38

4

A
r4

1
1.

82
h

β
−

1.
19

8
γ

12
93

.6

E
2.

49
2

17

C
l

3
5
.4

5
3

C
h
lo

ri
n
e

σ
a

3
3
.5

,
1
2

C
l3

2
29

7
m

s

β
+

9.
47

,
4.

7
γ

22
31

,
47

70

E
12

.6
9

C
l3

3
2.

51
1

s

β
+

4.
5,

··
·

γ
84

0.
9,

19
66

.2

E
5.

58
3

C
l3

4
1.

52
6

s

β
+

4.
47

E
5.

49
23

C
l3

5
75

.7
7

σ
γ

43
.6

,
15

34
.9

68
85

27
2

C
l3

6
30

1
ky

β
−

.7
09

;
β

+
.1

2
ε E

− .
70

9
E

+
1.

14

C
l3

7
24

.2
3

σ
γ

.0
5+

.3
8

36
.9

65
90

32

C
l3

8
37

.2
m

β
−

4.
91

,
1.

11
γ

21
68

,
16

42

E
4.

91
7

C
l3

9
55

.6
m

β
−

1.
91

,
··
·

γ
12

67
.2

,
25

0.
3

E
3.

44

C
l4

0
1.

38
m

β
−
∼

3.
2

γ
14

60
.8

,
28

40

E
7.

51

16

S

3
2
.0

7

S
u
lf
u
r

σ
a

.5
3
,
.2

5

S
30

1.
18

s

β
+

4.
42

,
5.

09
γ

66
7.

2

E
6.

13
8

S
31

2.
56

s

β
+

4.
39

γ
12

66
.2

E
5.

39
6

S
32

95
.0

2

σ
γ

.5
3,

.1
3

31
.9

72
07

05

S
33

0.
75

σ
γ

.4
5,

.2
3

32
.9

71
45

83

S
34

4.
21

σ
γ

.2
9,

.2
6

33
.9

67
86

65

S
35

87
.2

d

β
+

.1
67

4
n
o

γ

E
.1

66
8

S
36

0.
02

σ
γ

.2
3,

.1
7

35
.9

67
08

09

S
37

5.
05

m

β
−

1.
76

,
··
·

γ
31

04 E
4.

86
53

S
38

2.
84

h

β
−

.9
9,

··
·

γ
19

41
.9

E
2.

94

S
39

11
.5

s

β
−

γ
13

01
,
16

97

E
6.

6

15

P

3
0
.9

7
3
7
6
2

P
h
o
sp

h
o
ru

s

σ
a

.1
8
0
,
.0

8

P
29

4.
14

s

β
+

3.
94

,
··
·

γ
12

73
.4

,
··
·

E
4.

94
4

P
30

2.
50

m

β
+

3.
24

,
ε

γ
22

35
.2

E
4.

23
3

P
31 10
0

σ
γ

.1
80

,
.0

8

30
.9

73
76

2

P
32

14
.2

8
d

β
−

1.
70

9
n
o

γ

E
1.

71
1

P
33

26
.3

d

β
−

.2
49

n
o

γ

E
.2

49

P
34

12
.4

s

β
−

5.
1,

3.
2

γ
21

27
.7

E
5.

37
5

P
35

47
s

β
−

2.
3

γ
15

72
.3

E
3.

98
9

P
36

5.
7

s

β
−

γ
32

91
,
90

2

E
10

.4
1

F
IG

U
R
E

1
6
.8

E
a
ch

sq
u
a
re

is
a

d
is
ti
n
ct

n
u
cl

id
e.

T
h
e

a
to

m
ic

n
u
m

b
er

Z
in

cr
ea

se
s

v
er

ti
ca

ll
y

fr
o
m

1
5

to
2
2

h
er

e,
a
n
d

th
e

n
eu

tr
o
n

n
u
m

b
er

N
in

cr
ea

se
s

fr
o
m

le
ft

to
ri
g
h
t,

g
o
in

g
fr

o
m

1
0

to
2
8

h
er

e.
T

h
e

co
lu

m
n

o
f
sq

u
a
re

s
a
t

th
e

le
ft

h
a
n
d

ed
g
e

sh
ow

th
e

n
a
m

e,
sy

m
b
o
l,

a
n
d

ch
em

ic
a
l
a
to

m
ic

w
ei

g
h
t

o
f

th
e

el
em

en
t

o
f

th
e

a
d
ja

ce
n
t

ro
w

o
f

n
u
cl

id
es

.
E

a
ch

g
re

y
sq

u
a
re

is
a

st
a
b
le

n
u
cl

id
e;

it
s

p
er

ce
n
ta

g
e

n
a
tu

ra
l

a
b
u
n
d
a
n
ce

is
g
iv

en
ju

st
b
el

ow
it
s

sy
m

b
o
li
c

n
a
m

e
a
n
d

m
a
ss

n
u
m

b
er

A
;

th
e

sq
u
a
re

w
it
h

a
b
la

ck
b
a
r

is
a

n
a
tu

ra
ll
y

ra
d
io

a
ct

iv
e

n
u
cl

id
e,

h
er

e
4
0
K

w
ri

tt
en

a
s

K
4
0
.
T

h
e

u
n
sh

a
d
ed

sq
u
a
re

s
re

p
re

se
n
t

ra
d
io

a
ct

iv
e

n
u
cl

id
es

,
a
n
d

th
e

n
u
m

b
er

b
el

ow
th

e
sy

m
b
o
l
is

it
s

h
a
lf
-l
if
e

a
n
d

th
e

n
ex

t
li
n
es

sh
ow

th
e

p
ri
n
ci

p
a
l
k
in

d
s

o
f
d
ec

ay
.



514 16. RADIOACTIVITY AND THE ATOMIC NUCLEUS

FINDING THE RADIUS OF A NUCLEUS

Introduction

With modern accelerators it is possible to impart to particles momenta
high enough to correspond to a deBroglie wavelength short enough to
probe the size of a nucleus. Figure 16.9 shows some particularly good
data showing the diffraction pattern that arises when 800MeV protons
scatter from a nucleus of 208Pb. From the theory of diffraction and these
data you can determine the diameter of the 208Pb nucleus.

Diffraction from a Circular Cross Section

The diffraction you have studied is from a single slit. If the slit has a
width b, then there will be diffraction minima at angles θn such that
b sin θn = nλ where λ is the wavelength of the diffracting wave and n is
any integer up to the limit determined by the sine function.
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FIGURE 16.9 This is the diffraction pattern from the scattering of 800 MeV protons
from 208Pb. It is plotted on a semilog scale in order to show the very wide range of
magnitudes of the diffraction maxima. Taken with permission from G.F. Bertsch and
E. Kashy, “Nuclear Scattering,” 61, 859–859. c©1993 American Association of Physics
Teachers.



PROBLEMS 515

Diffraction from a circular aperture or from a circular cross section—do
you remember Babinet’s principle?—is slightly different from the case of
a slit. The first diffraction minimum occurs when

b sin θ = 1.22λ.

The other minima occur very nearly according to the expression

b sin θn = 1.22λ + (n − 1)λ, (14)

where b is the diameter of the circular stop.
Consequently, for angles small enough for the small-angle approxima-

tion to hold, the angular separation of any two adjacent diffraction minima
will be

θ(n+1) − θn = Δθ =
λ

b
. (15)

Find the Nuclear Radius

a. Find the wavelength λ of 800MeV protons.
b. Then use the data shown in Fig. 16.9 and determine the diameter

of 208Pb. Check to see whether the first minimum falls at 1.22
times Δθ.

To check your answers and to see some more interesting information
about nuclear radii, you may want to look at G.F. Bertsch and E. Kashy,
“Nuclear scattering,” Am. J. Phys. 61, 858–859 (1993) from which this
problem is adapted.
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Spectra
and the Bohr Atom

17.1 INTRODUCTION

We come now to a new aspect of atoms: the existence of discrete energy
states. Niels Bohr’s idea that atoms can possess only certain well-defined
amounts of energy was a major development in our understanding of
atoms. In 1911 Bohr, a young Dane who had just received his Ph.D.
in physics from the University in Copenhagen, came to England to
visit for a year. He worked for a while in J.J. Thomson’s laboratory in
Cambridge, and then in early 1912 Bohr transferred to Manchester to
work with Rutherford. Inspired by Rutherford’s concept of the atomic nu-
cleus, Bohr subsequently developed a nuclear model of the hydrogen atom
that predicted the wavelengths emitted in the spectrum of atomic hydro-
gen. The agreement of his predictions with observations was startlingly
good.

Bohr’s nuclear model of the atom introduced two new ideas about the
inner working of atoms that are basic to our present-day understand-
ing of the atom: Atoms can exist only in special “stationary” states of
well-defined energy; and an atom’s angular momentum comes in integer
multiples of h/(2π) (i.e., h̄). Bohr’s model illustrates these ideas even
though the model has been replaced by quantum mechanics. Despite its
fundamental defects, Bohr’s model continues to be of practical use be-
cause it often provides helpful insights into complicated problems more
easily than does the full mathematical treatment of quantum mechanics.
For these reasons we will examine Bohr’s model—frequently called “the
Bohr atom”—in some detail.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 517
DOI 10.1007/978-0-387-79080-0 17, c© Springer Science+Business Media, LLC 1999, 2010
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17.2 ATOMIC SPECTRA

You have already seen in Chap. 10 that each particular kind of atom
emits light of well-defined characteristic wavelengths. Measurement, tab-
ulation, and analysis of these wavelengths are the tasks of the subfield of
physics called “spectroscopy.” Quite soon after the discovery of the ex-
istence of these well-defined wavelengths, spectroscopists noted striking
patterns and regularities among the observed wavelengths. Bohr showed
that these patterns reveal much about the internal structure of the atom.

Wall Tapping and Bell Ringing

Historically, atoms have been difficult to study because they are so small.
To get around this difficulty we have had to find ways to investigate ob-
jects too small to see, feel, or sense directly. One way is to collect a huge
number (moles) of identical copies of the objects and look at their collec-
tive behavior. This is what you do when studying the pressure of a volume
of gas or a chemical reaction. Another way is to whack the objects some-
how and see whether interesting pieces break off. Cathode rays (electrons)
and x-rays are some of the results of such whacking. Rutherford’s alpha
scattering from gold foils is another example of learning about atoms by
whacking them quite hard. Although the results are interesting and in-
formative, bashing objects lacks finesse and surely greatly modifies what
you are studying.

You can also learn about an object by jiggling it gently and seeing what
you can deduce from its subsequent wiggles. Have you ever tried to find
a framing member of a house wall behind plaster or wallboard? A simple
way is to go along the wall tapping with your finger. The sound will change
when you reach the more solid area right over a support piece. The sound
is a result of vibrations set up by your tapping, and the combination
of vibrations changes character as the structure of the wall beneath the
tapping changes. You use the quality of the sound to infer what structure
lies beneath the point on which you tap.

You already use differences in the quality of sound to infer differences in
structure. For example, you can easily tell the difference between a bell be-
ing struck and a piano string being hit. You can tell a banjo from a guitar,
a saxophone from a tuba. The structure of each instrument determines its
distinctive tone; the structure determines how much vibration of each fre-
quency occurs whenever the object is excited in some way. In principle, it
should be possible to learn something about the internal structure of the
device by analyzing the combinations of frequencies present in any tone.
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Something like this can be done with atoms using light rather than
sound. Atoms made to vibrate will emit electromagnetic radiation, as
was discovered in studies that began in the middle of the nineteenth
century. The work of Kirchhoff, Fraunhofer, Balmer, Rydberg, and many
others showed that each atomic element emits a distinctive pattern of
light frequencies when properly stimulated. In Chap. 10 you learned that
such a pattern is called the “spectrum” of the element.

Atomic Spectral Signatures

If each species of atom has a unique and distinctive spectrum, it is natural
to think that spectra might tell us something about the internal structure
of atoms. For testing this idea, hydrogen is the best choice because it has
the simplest spectrum of all the atomic elements.

The simplicity is evident in Fig. 17.1, which shows a hydrogen-atom
spectrum photographed by one of the authors. Notice the striking regu-
larity with which the lines progress. They form a series of lines that get
closer and closer together as the color goes from red (long wavelength)
to violet (short wavelength) to the (invisible) ultraviolet. The series of
lines approaches a well-defined limit, called the “series limit.” (There are
also lines in the picture that come from hydrogen molecules rather than
hydrogen atoms; ignore these.)

The pattern’s regularity is mathematically simple. In 1885 a Swiss
school teacher named Johann Balmer devised a simple algebraic formula
that accurately describes the sequence of observed wavelengths:

λn = 364.6
n2

n2 − 4
nm

FIGURE 17.1 Photograph of the visible and near-ultraviolet spectrum of hydrogen.
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where 364.6 nm is a constant chosen to match the formula to the observed
wavelengths, and n is any integer greater than 2. A few years later
Rydberg rearranged Balmer’s formula into the form usually used today:

1
λn

= R

(
1
4
− 1

n2

)

. (1)

� EXERCISES

1. Find the constant R from one of the wavelengths given in Fig. 17.1.

2. Plot a graph of 1/λn vs. 1/n2 to obtain a value for R from the
slope. Check with the result of the previous problem.

3. Calculate the shortest wavelength, called the series limit, in the
Balmer series.

Balmer’s formula by itself was not earthshaking and did not immedi-
ately lead to any new insight into atomic structure. What it did do was
to give hints and clues for discovering other series. For example, Rydberg
rewrote the first term as 1/22 and generalized it to 1/n′2. Then Eq. 1
became

1
λn

= R

(
1

n′2 − 1
n2

)

, (2)

and when he assumed other integer values of n′ he predicted entirely new
series with different sets of wavelengths and different series limits. The
series predicted for n′ = 1 was later found by Lyman in the far ultraviolet
spectrum of atomic hydrogen; another series predicted for n′ = 3 was
found in the near infrared spectrum by Paschen.

� EXERCISES

4. Calculate the series limits for the Lyman and Paschen series.

5. Find the first three lines (longest wavelengths) for the Lyman series.

6. Find the first three lines of the Paschen series.

7. Using the same scale of wavelengths, draw the positions of the first
three lines and the series limits of all three series described above.



17.3 THE BOHR ATOM 521

These regularities in the spectra of atomic hydrogen provided Bohr
with important clues to the inner workings of the atom. He devised a
model of the hydrogen atom that exactly predicted its spectrum. Let’s
see how he did that.

17.3 THE BOHR ATOM

Need for a Model

J. J. Thomson’s “plum pudding” model of the atom (see Sect. 16.3)
could not predict the details of the observed spectrum of hydrogen or
any other element. Initially, the nuclear model was also unpromising. In
the first place, classical physics showed that electrons bound to a posi-
tively charged nucleus must revolve in orbits. But why would they have
only those particular orbits that represented the special set of frequen-
cies observed in the spectrum of hydrogen? Even more of a problem was
how they could stay in orbit. Any orbiting charged particle must radi-
ate electrical energy due to the acceleration it undergoes as it is bent
into the circular, or perhaps elliptical, orbital path. Thus orbiting elec-
trons would constantly lose energy and spiral in to the nucleus, just as
Earth-orbiting satellites that are low enough to encounter some atmo-
sphere gradually lose energy and spiral in to Earth. In the case of atomic
electrons, though, the time to decay would be microseconds or less, not
months or years! Classical physics had no way to explain why we have
atoms at all or why they have the sizes they do.

Bohr’s Ideas

Bohr was successful by being able to unstick himself from the accepted
rules about how things should work. That in itself, though, is not neces-
sarily remarkable. There is many a crank around doing the same thing.
What was remarkable was Bohr’s ability to invent new rules that worked
and could be generalized to predict new results. We will not try to re-
produce his actual steps, but will trace a similar path that is easier to
follow.

Bohr decided to ignore classical physics’ inability to account for stable
atoms. He gave up trying to relate the hydrogen spectra directly to in-
ternal motions, and he took the nuclear model at its face value. If there
had to be stable orbits, he reasoned, one should make stability a basic
property of the model rather than worrying about how orbits couldn’t be
stable.
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Turning first to the spectrum problem, you can get new insights into
Rydberg’s version of the Balmer formula by using the photon idea to
connect wavelength to energy. Since c/λ is frequency, and the Planck
constant, h, times frequency is energy, you can multiply both sides of
Rydberg’s equation by hc to get

E =
hc

λ
= hf = hcR

[
1
4
− 1

n2

]

,

which is Eq. 1. Substituting the experimentally observed value of 1.097×
10−2 nm−1 for R and 1240 eVnm for hc gives

hf = 13.6
[
1
4
− 1

n2

]

eV. (3)

In terms of photons it does not make sense to think of the hydrogen
atom as “ringing” in some complicated way like a musical instrument. Any
one hydrogen atom must emit a photon with essentially only one frequency
for any one event. This suggests that a single photon is emitted whenever
a single hydrogen atom changes its energy. This photon must have one of
the wavelengths observed by spectroscopists (656 nm, 486 nm, . . . ). If the
atom had an energy Ei before and Ef after emission of the photon, the
photon energy would be:

hf = Ei − Ef , (4)

where we assume Ei > Ef because an atom would have to lose energy
to produce a photon. Comparing Eq. 3 with Eq. 4, it is natural to think
of the two terms on the right-hand side of Eq. 3 as separate energies.
These different energies might be energies of different configurations of
the atom, what we call “energy states” of the atom.

The important idea here is the assumption that the atom exists only
in particular definite energy states. This is quite different from classical
physics, where the energy of a system can vary continuously. It is like
saying that a baseball thrown near the surface of the Earth can have 2 J
of energy or 3 J of energy, but nothing in between.

Quantizing the Hydrogen Atom’s Energies

Using classical mechanics Bohr derived an expression for the energy of the
electron in the atom as a function of the distance r between the electron
and the nucleus (proton). Then he took a giant step beyond classical
physics: He invented a rule that permitted only certain values for the
atoms’s energy E. In this way he was able to explain Eq. 3. Today we say
that Bohr “quantized the energy” of the atom.
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Bohr assumed that the electron is kept in a circular path around the
nucleus by the attractive Coulomb force between the electron and the pro-
ton that is the nucleus of the hydrogen atom. Why its energy did not leak
away as classical physics predicted he did not know. It obviously didn’t,
so he set the question aside to be dealt with at some future time. The
proton is so much more massive than the electron that it remains nearly
stationary while the electron moves around it. Then since the Coulomb
force (p. 159) is supplying the centripetal force, it follows that

mv2

r
=

kce
2

r2
. (5)

(Because the proton charge is +e and the electron charge is −e, the
electrical force is attractive.) Rewriting Eq. 5 in terms of momentum,

p2

mr
=

kce
2

r2
,

you get two expressions, one for momentum p and one for orbital kinetic
energy K:

p =

√
mkce2

r
(6)

and

K =
p2

2m
=

kce
2

2r
. (7)

Because electrostatic potential energy U is

U =
−kce

2

r
,

the total energy, i.e., the sum of the kinetic and potential energies, is

Etot = K + U = −kce
2

2r
. (8)

Notice that the total energy depends only on r. Therefore, for the total
energy to take on only certain values, there must be some rule that corre-
spondingly constrains r. Here Bohr took a bold step. In effect he said that
the rule is that the product of the radial position r and the momentum
p must always be some integer multiple n of the Planck constant divided
by 2π, i.e.,

rp = n
h

2π
≡ nh̄. (9)

There was no precedent for this rule, although there surely had to be
some connection to the Planck constant. After all, something had to take
on specific values, had to be quantized, and h was already associated with
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the quantum of light, the photon. There are several equivalent ways to
rationalize Eq. 9. One is to recognize that rp is the so-called angular mo-
mentum of the system. Equation 9 then states that the allowed values of
the angular momentum are integer multiples of h̄, i.e., the angular mo-
mentum is quantized in units of h̄. This assertion is validated by modern
quantum theory. Because we have not discussed angular momentum in
this book, let’s consider an argument that makes use of the wave nature
of matter introduced in Chap. 15. Although not logically sound, it is a
convenient mnemonic.

Consider the implications of the electron having wave properties. In
the presumed “orbit” such a wave must come back on itself. If after each
circling of the nucleus the wave’s phase has changed by an exact mul-
tiple of 2π, the succession of waves will reinforce constructively. If the
phase difference is anything else, there will be destructive interference
over time. In other words, only those circular orbits will exist for which
the circumference is an integer number of wavelengths 2πrn = nλ. (It
is stretching things to use the idea of a wave along the circumference of
a circle and yet assume an exact radius.) Using the de Broglie relation
between wavelength and momentum,

p =
h

λ
=

hn

2πrn
,

and substituting for p from Eq. 6 yields a special set of values of r, which
we denote as rn:

rn =
n2h2

4π2mkce2
. (10)

We can use these values of rn to find the allowed energies of the hydro-
gen atom. Replacing rn in the total energy equation, Eq. 8, by Eq. 10 gives
a set of discrete energies En one for each integer value of n = 1, 2, 3 . . . :

En = −2π2mk2
ce

4

n2h2
. (11)

These special values of E that can occur are called “energy states”
or “energy levels”. The lowest energy E1, i.e., n = 1, is often referred
to as the “ground state” of the atom. Because of this association of the
energy states of the hydrogen atom with the integers n, it is customary
to label the energy states with the index n. Because the restriction of
n to integer values forces there to be a finite difference, a quantum of
difference, between energies, the index is called a “quantum number.”
For atoms more complicated than hydrogen, n continues to be very im-
portant, but other such indices are needed as well, and they are all called
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quantum numbers. To distinguish the n quantum number from the others,
it is called the “principal quantum number,” or, sometimes, the “radial
quantum number.”

The difference in energy between a lower-energy state of quantum
number n′ and a higher-energy state of quantum number n, is just

En − En′ =
2π2k2

ce
4m

h2

[
1

n′2 − 1
n2

]

.

Therefore, if, as Eq. 4 proposes, a photon of energy hf is emitted when the
atom changes from state En to state En′ , the photon’s energy would be

hf = En − En′ =
2π2k2

ce
4m

h2

[
1

n′2 − 1
n2

]

,

which has exactly the same form as Eq. 3 when n′ = 2. Putting in values
for the constants to find the factor multiplying the bracketed terms gives

2π2k2
ce

4mc2

(hc)2
=

2π21.442 511 × 103

12402
= 13.6 eV,

exactly as observed experimentally.
This is a spectacular result. Until Bohr, Eq. 1 was only an empirical

guess, and the value of R was an experimentally determined number.
Bohr’s model of the internal structure of an atom yielded an expression
for R in terms of fundamental constants from several areas of physics that
when evaluated numerically is in exceptionally good agreement with the
experimental value. Clearly, Bohr’s result cannot be just a fluke. There-
fore, although the model with its ad hoc assumptions has serious flaws,
some of its elements must be correct and must play a role in a full theory
of the atom.

Although the wave nature of the electron makes the concept of an
orbit with a well-defined value of r questionable, the calculated values of
rn from Eq. 10 do correspond roughly to the atom’s size. The smallest
one, r1, is often given a special symbol, a0,

a0 =
h2

4π2mkce2
= 0.0528 nm,

and is called the “first Bohr-orbit radius.” All other possible Bohr-model
radii are thus

rn = n2 a0 = 0.0528n2 nm,

where the quantum number n can take on any integer value. In Chap. 19
you will see that the value of a0 is what is obtained when you use
Heisenberg’s uncertainty principle to estimate the minimum energy of
the hydrogen atom. This means that the Bohr model is consistent with
this fundamental principle.
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Do not attribute too much significance to these values of rn. Do not
think that the electrons move in well-defined orbits in the atom. The
uncertainty principle emphatically denies the possibility of such orbits.
The electron in an atom is much more wavelike than particle-like. It does
not and cannot have a well-defined location. Thus, although the value of
rn gives an indication of the spatial extent of a hydrogen atom that has an
amount of energy En, rn does not label the path of an electron inside the
atom the way a planetary radius labels the planet’s orbit around the Sun.

Energy-Level Diagrams

It is possible to describe any atom in terms of its energy states. An
important graphical aid for representing the energies of an atom is the
“energy-level diagram.” As an example, consider the hydrogen atom. You
can calculate the energies En of its quantum states from the relation

En = −13.6
n2

eV

and arrange them vertically on a scale, as shown in Fig. 17.2. The lines
represent the “energy levels” of the atom. In the diagram shown here, the
zero of the scale is the energy for n equal to infinity. Note that from Eq. 10,
this condition corresponds to an infinite separation between the electron
and the nucleus, i.e., the hydrogen atom would be ionized. This means
that 13.6 eV of energy is required to free an electron from the hydrogen
atom in its ground state.

The energy-level diagram looks like a ladder with “rungs” getting closer
together as they approach the top. A photon is emitted by an atom when
it drops from one energy level to a lower one. The energy of the emit-
ted photon is equal to the difference in energy between the initial and
final energy states of the atom. We say that the atom has undergone a
“transition” from one energy state to another.

You can use this picture to understand the various spectral series that
are emitted by gaseous atomic hydrogen. A hydrogen atom can undergo
a transition from any higher energy state to any lower one. Different
transitions have different probabilities of happening. If a hydrogen atom
is ionized, an unbound electron, i.e., an electron outside of the atom, can
make a transition to any energy level of the atom.

In the laboratory, when an electric current is passed through hydrogen
gas in a thin glass tube, the resulting electric discharge ionizes some hy-
drogen atoms and excites the electrons in others to higher energy states.
After excitation an atom loses its energy by a cascade of successive jumps.
Which jumps occur differ from one atom to the next, and there is no
guarantee that any given atom will go from any particular energy state



17.3. THE BOHR ATOM 527

0

– 2

– 4

– 6

– 8

– 10

– 13.6

– 12

n = 1

n = 2

n = 3
n = 4
n = 5

n = ∞
E

n
er

g
y
 (

eV
)

Balmer Series

13.6E5 = – 25 = – .54 eV

E4 = – 13.6
16 = – .85 eV

E3 = – 13.6
9 = – 1.51 eV

E2 = – 13.6
4 = – 3.40 eV

E1 = – 13.6
1 = – 13.6 eV

FIGURE 17.2 Energy-level diagram of the hydrogen atom.

to another. The process is quite random, and the atom can de-excite by
skipping steps. (Modern quantum theory can predict the probabilities of
these transitions, but the Bohr model cannot.) The result is that when
a collection of atoms de-excites, photons of many wavelengths will be
emitted by different atoms. For any given atom, the whole sequence of
photon emissions down to the ground state usually takes a very short
time, from microseconds to nanoseconds. An observed spectrum is made
up of photons emitted from a variety of different transitions occurring in
many different hydrogen atoms.

The transitions that produce the Balmer series of spectral lines are
shown in Fig. 17.2 by the vertical wavy arrows connecting higher energy
states with the n = 2 energy level. Note that the final state of the Balmer
line transitions is not the lowest possible energy state of the atom. After
a Balmer transition, the hydrogen atom will change into its lowest, most
stable, energy state—its ground state. In other words, it will make a
transition from n = 2 to n = 1, and it will emit a photon that has a
wavelength too short (energy too high) to be visible to the eye.
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The Balmer series is apparent in the laboratory because it is the only
series that consists of wavelengths of visible light. Even so, only three or
four of the possible transitions to the n = 2 level are visible; the rest are
in the ultraviolet and beyond the sensitivity of the eye.

The diagram suggests other possible series. For example, there should
be a series that has a final state n′ = 1. This is the Lyman series, consisting
entirely of spectral lines with photon energies of 10.2 eV or more.

� EXERCISES

8. Redraw the diagram in Fig. 17.2, and show on it the possible Lyman
series transitions.

9. In the hydrogen spectrum the lines of the Paschen series are
transitions to n′ = 3. Use Fig. 17.2 to determine the energies of the
first (lowest energy) two lines of this series.

� EXAMPLES

1. What photon energies would be produced from atoms excited to
n = 3?

The electron could go to the ground state by two routes. One would
be to jump directly to n = 1, emitting the second line of the Lyman
series, or it could go from 3 to 2 and then to 1. These transitions would
be the first lines of the Balmer and Lyman series, respectively. Thus
there are three possible photon energies:

E3 − E1 = −1.51 + 13.6 = 12.1 eV,

E3 − E2 = −1.51 + 3.4 = 1.9 eV,

E2 − E1 = −3.4 + 13.6 = 10.2 eV.

� EXERCISES

10. Eventually, two more hydrogen series in the infrared were identi-
fied: the Brackett series with n′ = 4, and the Pfund series with n′ = 5.
Find the photon energies of the first two lines in each series.
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11. What are the wavelengths of the lines calculated in the previous
problem?

12. Suppose a group of hydrogen atoms are all excited to n = 5. How
many different photon energies are emitted as the assemblage decays?

13. Find the energies of all the photons that could be emitted from
hydrogen atoms excited to n = 4.

17.4 CONFIRMATIONS AND APPLICATIONS

Bohr’s model produced some remarkably accurate results. But in
important ways it was ad hoc, introducing some strange new concepts just
to explain a limited set of data. For the new ideas to become credible,
there had to be further predictions that could be confirmed by experiment.

Energy Levels

Existing only in one well-defined state of energy or another, an atom can
lose energy only in discrete amounts. But if energy is emitted only in cer-
tain well-defined amounts, energy also can be absorbed only in discrete
amounts. If a particular atomic transition emits a photon of a certain en-
ergy, the same energy must be absorbed in order to reverse the transition
and raise the atom from a lower to a higher energy level.

You can add energy to atoms just by shining light on them. If a photon
in a beam of light meets an atom and if the photon’s energy hf is exactly
equal to the difference between the atom’s present energy state and some
higher energy state, the photon can be absorbed by the atom, and the
atom will be excited to the higher energy level. The absorbed photon is
then lost from the light beam. If nothing is in the path of a beam of light
traveling from a hot body such as a lamp filament and passing through
a slit and a diffraction grating, the grating spreads the beam out into a
continuous spectrum of colored light ranging from red to violet. If there
is a gas between the source and the spectrometer slit and if that gas
absorbs light at certain well defined wavelengths, the intensity of light
will be reduced in the spectrum at the positions corresponding to the
absorbing wavelengths. As a result there appear in the spectrum thin
strips of reduced intensity that are dark compared to the brighter parts
of the spectrum. These dark strips are called “absorption lines.”
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It is also possible to make a beam of light of a single wavelength that can
be varied. If as the wavelength is changed it takes on a value corresponding
to the photon energy that matches the energy of a transition, the beam
will be sharply absorbed and its passage through the gas will be much
diminished.

Suppose you were to send a beam of visible light through ordinary hy-
drogen gas in a transparent container. Would photons at the wavelengths
of the Balmer series be absorbed? No, not if the Bohr idea is correct.
Aside from the complications of the hydrogen molecule, absorptions cor-
responding to the Balmer series must all start from the n = 2 level, but
at ordinary temperatures there would be no H atoms excited to this state
and capable of absorbing the light that is present.

A gas of hydrogen atoms could absorb only the much higher energy
photons of the Lyman series. These are the only transitions that start
from the lowest energy state of the atom.

Rydberg Atoms

You can imagine using a mixture of ordinary visible light and ultraviolet.
The ultraviolet might excite an atom to its n = 2 energy level, and then
a visible photon could excite a Balmer transition from this state to some
higher state. This is not practical using ordinary light sources because
they are too weak: The atom will return to its ground state long before a
visible photon arrives to induce a Balmer transition upwards. With lasers,
however, it is possible to induce double absorption. Lasers can produce
enormous numbers of photons with very well defined frequency. The fre-
quency of one laser can be adjusted to exactly the right energy to excite
atoms from their ground states to some particular excited state. Then if
these excited atoms are illuminated with a large number of photons from
a second laser set to a wavelength to induce a transition upward from the
excited state, it becomes likely for such a transition to occur before the
atoms de-excite to the ground state.

By such two-step excitation it is possible to make atoms in states with
very high values of n. Any atom, not just hydrogen, in a high-n energy
state obeys the Rydberg formula, Eq. 3. Consequently, such highly excited
atoms are called “Rydberg” atoms, and the energy states with high values
of n are called “Rydberg states.” It is as though the excited electron is
so far from the nucleus that the negative charge of the other electrons
neutralizes all but one of the positive charges of the nucleus. As a result,
the atom’s nucleus and innermost electrons look to the excited electron
like a hydrogen nucleus, and the Bohr model describes it quite well. Atoms
have been prepared with n as large as 400!
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� EXERCISES

14. Find the Bohr radius of a hydrogen atom with n = 400.

If you have done the calculation of the previous problem correctly, you
found the dimensions of the n = 400 atom to be as large as objects that
can be seen with a high-powered microscope. However, you could not
“see” such a Rydberg atom. An atom in a high-n state is very fragile; any
photon of visible light would ionize it.

� EXERCISES

15. Confirm the previous statement by finding the energy of the n =
400 level and comparing the ionization energy to that of the lowest-
energy photon that is visible (wavelength around 700 nm).

16. Suppose you irradiated hydrogen atoms with light consisting of
photons with a continuous distribution of energies from 0 to 14 eV.
What spectral series would be observed in absorption, assuming that
you have the right equipment and that double-photon absorption is
negligible.

Note that we have discussed only hydrogen atoms even though the gas
comes as diatomic molecules; molecules are beyond the scope of the Bohr
theory. However, the usual way of exciting hydrogen is to pass current
at high voltages through a sample of gas. The ions created have enough
energy to dissociate the molecules, and we get enough single atoms to
produce the atomic spectrum. Usually, radiation from excited molecules
is also present, and we just ignore it when studying the atomic spectral
series.

The Franck–Hertz Experiment

You can also add energy to atoms by bombarding them with energetic
particles. Electrons accelerated through an electric potential difference of
a few volts will excite atoms when they collide with them. Just as photons
do, colliding electrons lose energy in discrete amounts. That is, only the
exact energy difference between two levels is absorbed, because there is
no way for an atom to exist at any energy in between. There is an im-
portant difference in the way photons and electrons lose energy to atoms.
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For photons it is all or nothing. They either lose all their energy and
disappear, or they lose nothing and continue on. Only when the photon
energy exactly matches the transition energy is the photon absorbed. Free
electrons, on the other hand, can lose part of their energy to the atom and
retain the rest. They can lose an amount equal to the energy of the tran-
sition that is induced in the atom, and continue on with whatever energy
is left over. Free electrons with any energy over the minimum necessary
to induce a transition can and will induce transitions.

A year after the Bohr model was published, J. Franck and G. Hertz
bombarded mercury atoms with energetic electrons to exhibit directly
the existence of discrete atomic energy levels. They accelerated electrons
through a vapor of mercury and showed that the electrons lost energy to
the mercury atoms in discrete amounts. Figure 17.3 shows how this was
done. Electrons were accelerated from the filament to the accelerating
electrode. The accelerating electrode was a mesh, so that the accelerated
electrons passed through it. They were then decelerated by the retarding
voltage Vret of 2–3V between the accelerating electrode and the collecting
electrode.

As the accelerating voltage Vacc was increased from 0 to about 6V,
the number of electrons reaching the collecting electrode, measured by
the current meter, increased, but instead of rising steadily as Vacc was
increased further, the number dropped to a minimum at Vacc ≈ 8V. As
Fig. 17.4 shows, the number of electrons reaching the collecting electrode
varied regularly as the accelerating voltage was increased towards 40V.
The collector current fell to a minimum every time the accelerating voltage
changed by 4.9V.

Collection
electrode

Hg atoms

e- e-

Current
meter

-– +
+

˜2-3 V0 → 40 V
Accelerating

voltage

Accelerating electrode
open mesh

FIGURE 17.3 Schematic of a version of the Franck–Hertz experiment. The
arrangement of applied voltages with typical values is shown.
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FIGURE 17.4 Typical current vs. accelerating voltage data in a Franck–Hertz
experiment on mercury vapor.

The regular fluctuations in the collector current are just what is ex-
pected if the free electrons give up their energy to mercury atoms in
quanta of 4.9 eV. An electron accelerated through 6V would have a kinetic
energy of 6 eV. For example, this would be enough to permit it to pass
through a retarding potential of 3V and reach the collecting electrode.

� EXERCISES

17. What would be its kinetic energy when it reaches the collecting
electrode?

But if a 6 eV electron loses 4.9 eV of energy in a collision with a mercury
atom somewhere between the filament and the accelerating electrode, it
will reach the accelerating electrode with only 1.1 eV of kinetic energy.
Then it will not have enough kinetic energy left to overcome the retarding
potential and reach the collecting electrode, and it will not contribute to
the current measured by the meter in Fig. 17.3. This absorption of energy
by the Hg atoms will cause the electron current reaching the collecting
electrode to decrease.

The most striking feature of the graph in Fig. 17.4 is the sharp drop in
the current at periodic intervals of the accelerating voltage. The analysis
above suggests that every time an electron gains another 4.9 eV or so in
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the space between the electrodes, it will have enough energy to excite
another mercury atom. It is then highly likely that it will lose the energy
it has gained and then not have enough to pass through the retarding
potential. This means that the mercury atom must have an excited state
that is 4.9 eV above the ground state. Some complications having to do
with the work function produce an offset of ≈ 2V in the voltage of the first
dip, but after that, as the accelerating voltage is increased, the electron
will acquire enough energy to lose 4.9 eV in one collision and then gain
enough more to lose another 4.9 eV in another collision. The succession
of dips in Fig. 17.4 are the result of losses of energy from such multiple
collisions. The diagram in Fig. 17.5 shows schematically a possible version
of successive gains and losses of energy by an electron as it passes from
the filament to the accelerating electrode.

The Franck–Hertz experiment was an important confirmation of the
existence of energy levels in atoms. In a later experiment Hertz ob-
served the light emitted by the mercury atoms as they decayed back
to the ground state. As you would expect, these photons had 4.9 eV of
energy.
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FIGURE 17.5 Diagram showing the mechanism of multiple collisions in a Franck–
Hertz experiment. Because the collection and screening electrodes have work functions
different from that of the filament, the effective acceleration voltage is 2V less than the
applied voltage.
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� EXERCISES

18. For defining the voltage differences it is more reliable to pick the
voltages of the highest currents just before the start of the dips. Find
the voltages of peak currents in the graph above and plot a graph of
Vp versus n, the number of collisions. Take the slope to obtain the best
value for the voltage difference.

Hydrogen-like Ions

The Bohr model only works well for simple two-body systems like hy-
drogen atoms or Rydberg atoms. When the atom has more electrons
than the hydrogen atom, the potential energy of each electron becomes
very complicated, arising now from the constantly changing distribution
of the other electrons as well as the nuclear charge. However, there are
some other simple two-body combinations of charged particles besides
the hydrogen atom. For example, if the helium atom, which has a doubly
charged nucleus, is singly ionized, it will look like a hydrogen atom with
two units of nuclear charge. It is easy to include the effect of a different
nuclear charge in Eqs. 5–11.

Recall that in these equations the product q1 q2 was written as −e2

because the charge of the hydrogen nucleus is just e. If there were a larger
charge on the nucleus, it would have to be written as Ze, where Z is the
atomic number of the atom. When the factor of e2 is replaced with Ze2,
Eqs. 5, 7, 10, and 11 become, respectively,

mv2

r
=

Zkce
2

r2
, (12)

K =
Zkce

2

2r
, (13)

r =
n2h̄2

mkcZe2
, (14)

hf =
mZ2k2

ce
4

2h̄2

[
1

n′2 − 1
n2

]

= 13.6Z2

[
1

n′2 − 1
n2

]

eV. (15)

Equation 15 applies to any low-mass atom that has had all but one of
its electrons removed. For example, it describes quite accurately the lines
of the spectrum of He+ and of Li++.
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� EXERCISES

19. For singly ionized helium, calculate the energies of the first three
lines of the series equivalent to the Lyman and Balmer series.

20. Show that some of the “Balmer-series” lines of singly ionized he-
lium are the same as lines of the hydrogen Lyman series. Which ones are
they, in general? This correspondence was a source of confusion when
spectral lines of He ions were first observed in the solar spectrum; some
people speculated that they were seeing a new form of hydrogen not
found on Earth.

21. Find the energies of the first lines of the series in doubly ionized
lithium that are equivalent to the Lyman and Balmer series.

17.5 HOW ATOMS GOT THEIR (ATOMIC) NUMBERS

Introduction

Mendeleev’s periodic table of the elements was a significant advance in
chemistry. It made explicit the empirical observation that similarities in
the chemical properties of the elements recur periodically as atomic mass
increases. For over 40 years it was a useful guide for scientists, but it
provided no explanation for the periodicity of properties of the elements.
Then, in the early decades of the twentieth century dramatic advances
in physics revealed the structure of atoms and uncovered the physical
basis of the periodic table. This section tells you about one of these great
advances: how physicists learned that the atomic number—the number
that specifies the position of an atom in the periodic table—is the number
of positive charges in the atomic nucleus.

How many Elements can there be?

In his 1869 table Mendeleev exhibited the periodic recurrence of the chem-
ical properties of the elements by putting elements with similar chemical
behavior in rows and ordering them in columns according to their atomic
weights. Thus, in one row he put lithium (A = 7), sodium (A = 23),
potassium (A = 39), rubidium A = 85.4), and cesium (A = 133). These
alkali metals show similar chemical behavior; for example, they all form
similar compounds with oxygen: Li2O, Na2O, Rb2O, and Cs2O.

Modern periodic tables like the one on p. 642 put elements with similar
properties in columns and with increasing mass along the rows. Modern
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periodic tables are also complete and correctly ordered, while Mendeleev’s
table had empty spaces corresponding to undiscovered elements, and it
had some elements in wrong places.

In the 1890s physicists and chemists discovered the noble gases—
helium, neon, argon, krypton, and, later, radon—and added an entire
new column to the table. Given that discovery, you might ask: Is today’s
periodic table complete? Might there be other elements that have been
overlooked? The fact that the atomic number is the number of charges in
the nucleus Z assures us that the answer to this last question is “No.”

Immediately after Rutherford discovered the atom’s nuclear core
(Chap. 16), Bohr showed that the nuclear charge Ze determines the scale
of the energy states of an atom (p. 535). In 1913 H. G. J. Moseley mea-
sured the wavelengths of x-rays emitted by many different kinds of atoms
and showed that each chemical element is uniquely identified by its nu-
clear charge Ze, that there is a one-to-one correspondence between Z and
a chemical element. In other words, the nuclear charge number Z specifies
the position of an element in the periodic table and is, therefore, the same
as the atomic number—the serial number of the element in the periodic
table. Up to the time Moseley did his experiments the atomic number
could only be determined empirically. Moseley found its physical basis: It
is the number of positive charges in the nucleus.

From this fact it follows that there can only be as many elements as
there are integers Z; once you have found 83 elements with values of Z
from 1 to 83, you have found all the elements from hydrogen to bismuth.
The only other possible elements must have Z > 83. Some of these exist
in nature, and it is possible to make others by adding charges to the
nucleus.1

The properties of x-ray line spectra were the basis of Moseley’s discov-
ery that Z is the atomic number, and you need to learn about them to
understand his experiment.

X-Ray Line Spectra

In 1905, a decade after Roentgen discovered x-rays, the British physicist
Charles Barkla found that a target struck by a beam of high energy x-rays
emitted x-rays distinctly different in behavior from those in the incident
beam. He called the incident x-rays “primary,” and the different outgoing

1Nuclear physicists and nuclear chemists do this. They have made elements up to Z = 118, but
these high Z elements are difficult to make and are radioactively very unstable. For example,
experimentalists have observed only two or three atoms of Z = 118, and these lived only a few
milliseconds. It takes a while before these are given official names. In 2010 element Z = 112
was officially named copernicium and given the symbol Cn.
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x-rays “secondary.” By measuring the absorption of the secondary x-rays
in sheets of material placed between the emitting target and the x-ray
detector, Barkla showed that the energy (frequency) of the secondary
x-rays was characteristic of the target (anode) material. For example,
secondary x-rays from an iron target were more energetic than those from
an aluminum target. He discovered that the secondary x-rays emitted by
a target are unique to the chemical element the target is made of, so he
called them “characteristic x-rays,” and pointed out that they could be
used to identify the target material. Barkla had discovered a new means
of chemical analysis.2

From his measurements of the absorption of x-rays Barkla found that
an anode emits two distinctly different types of characteristic x-rays—
a more penetrating type (shorter wavelengths, higher energy) that he
called K radiation or K x-rays, and a more easily absorbed type (longer
wavelengths, lower energy) that he called L radiation.

Later, after x-rays were found to be waves and the x-ray spectrom-
eter was developed, it became clear that Barkla’s K and L radiations
were x-ray line spectra (see Fig. 17.6). These are x-rays with well defined
frequencies that show up as high intensity peaks on the background of
continuum radiation discussed in Chap. 14. When the energy of electrons
bombarding the anode is increased, the intensity of the emitted x-ray
lines increases relative to the background, but their wavelengths remain
unchanged. These emissions are called x-ray lines because they are anal-
ogous to the spectral lines in the visible light spectra of atoms. And like
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FIGURE 17.6 An x-ray spectrum showing continuum and characteristic x-ray lines
from element of atomic number 40 when bombarded with 20 KeV electrons. The
subscripts α and β are explained on p. 544 in the text.

2Charles Barkla was awarded the 1917 Nobel Prize in physics. In addition to discover-
ing characteristic x-rays, he confirmed that x-rays are electromagnetic radiation by showing
experimentally that they can be polarized. His doctoral advisor was J. J. Thomson.
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visible spectral lines, x-ray lines are a unique fingerprint of the emitting
atom. Moseley studied x-ray line spectra, (characteristic x-rays) and dis-
covered a simple relationship that allowed him to predict the frequencies
(energies) of x-rays from any element and to see that the charge of the
atomic nucleus is the property that gives an atom its identity.

Moseley’s Experiment

Moseley3 knew from Rutherford’s work that an atom has a nucleus with
a nuclear charge roughly A/2 times the elementary charge e, where A is
the atomic mass. (And from Barkla’s studies of x-ray absorption, he knew
that the number of electrons in an atom was also roughly A/2 as necessary
to balance the nuclear charge and produce an electrically neutral atom.)
Consequently, Mendeleev’s ordering of the elements by mass number A
was roughly the same as ordering them by nuclear charge number Z. Now
Moseley showed that Z gave an exact and unambiguous ordering; Z, not
A, was an element’s serial number in the periodic table.

Moseley designed and constructed an ingenious spectrometer that
allowed him to quickly and accurately measure the wavelengths of
the characteristic x-rays emitted by various elements. His spectrometer
(Fig. 17.7) had two novel features. First, it used photographic film rather
than an electrometer to record x-ray intensities. Second, it had multiple
targets (anodes) mounted on a carriage inside the x-ray tube, so that
he could change the element he was studying without losing the tube’s
vacuum. Working mostly on his own, in just over one year of intense ef-
fort Moseley measured the line spectra of 38 elements. Some of his early
results4 are summarized in Table 17.1 and in Fig. 17.8.

Moseley found that when he plotted the square root of the frequency f
(or equivalently, as we plot it in Fig. 17.8, the square root of the photon

3From 1910 to 1913 Moseley was at the right place at the right time. He was a graduate
student in Rutherford’s laboratory at the University of Manchester as Rutherford established
the nuclear model of the atom (1911) (Chap. 16). Bohr spent four months at Manchester in
1912, and then went home to Denmark and conceived and published in 1913 his revolutionary
model of the hydrogen atom. In 1912 and 1913, von Laue, Friedrich, and Knipping in Germany
established the wave nature of x-rays, and the Braggs, at the University of Leeds—36 miles from
Manchester—devised the first x-ray spectrometer (Chap. 14). Responding to these advances,
Moseley, with Rutherford’s support and advice from the Braggs, began studying x-rays. He
built an x-ray spectrometer and studied x-ray diffraction, and finished his thesis. Then he built
a new spectrometer and, in November, measured K x-rays of some 10 chemical elements. That
month he moved to Oxford, set up a new laboratory, rebuilt his apparatus, and measured
K and L x-rays from some 20 more elements. This work was published in May. A year later he
was shot dead by a sniper in World War I.
4 Moseley, “The high-frequency spectra of the elements,” Phil. Mag. 26, 1024–1034 (1913);
http://web.mit.edu/8.13/www/pdf files/moseley-1913-high-freq-spectra-elements-part2.pdf.
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FIGURE 17.7 Moseley’s apparatus for measuring K and L x-rays from a succession of
samples. The shafts with the brass spools attached can be rotated without breaking the
vacuum. When the spool rotates it takes up the silk thread and pulls a carriage along
on its wheels. The samples are mounted on the carriage, and when properly positioned
a sample becomes the anode struck by electrons from the cathode.

TABLE 17.1 X-ray data for ten elements and Moseley’s law

Z Element λ (nm) hf (eV) Q A Q + 1

20 Ca 0.3357 3694 19.01 40.09 20.0

21 Sc 44.1

22 Ti 0.2766 4483 20.97 48.1 22.0

23 V 0.2521 4919 21.97 51.06 23.0

24 Cr 0.2295 5403 23.02 52.0 24.0

25 Mn 0.2117 5854 23.96 54.93 25.0

26 Fe 0.1945 6375 25.00 55.85 26.0

27 Co 0.1796 6904 26.02 58.97 27.0

28 Ni 0.1664 7451 27.03 58.68 28.0

29 Cu 0.1548 8010 28.02 63.57 29.0

30 Zn 0.1446 8575 28.99 65.37 30.0

energy hf) of the K radiation against the atomic number of the emitting
substance, a straight line fit the data remarkably well. He saw that he
could define a dimensionless constant Q,

Q =

√
hf
3
4E0

, (16)

that had the property that it increased in steps of 1 from one element
to the next if E0 is taken to be 13.6 eV. This behavior of Q is apparent
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FIGURE 17.8 The data points are the square roots of Moseley’s measured x-ray
energies vs. atomic number Z. The straight line is the graph Eq. 16.

in Table 17.1, and he observed that Q + 1 corresponded to the atomic
number of the anode’s metal. As he wrote:

We have here a proof that there is in the atom a fundamental
quantity, which increases by regular steps as we pass from one
element to the next. This quantity can only be the charge on the
central positive nucleus, of the existence of which we already have
definite proof [from Rutherford].

� EXERCISES

22. Find the wavelength, energy, and Q for the element scandium
(Sc), missing from Table 17.1.

Notice from Table 17.1 that if Mendeleev had followed his rule of order-
ing the elements by their masses, he would have put nickel before cobalt.
He broke his rule because of their chemical properties, but Moseley’s
technique unambiguously established, independently of their chemical
properties or their masses, that cobalt’s atomic number is one unit less
than nickel’s.

By establishing that the atomic number is the number of positive
charges in the nucleus, Moseley made it clear that the number of possible
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elements is limited. In his papers he pointed out that 75 elements were
known with atomic numbers up to 79—the atomic number of gold—so as
of 1913 there were only 4 chemical elements lighter than gold still to be
found. He could specify their atomic numbers and predict the wavelengths
of their characteristic x-rays.5

X-Ray Line Spectra and the Bohr Model

Moseley observed that the energies of K and L x-rays increased in a regular
way as he chose heavier elements further along in the periodic table. He
could see that the regularities that he observed were analogous to those in
the spectrum of the hydrogen atom, and he felt there must be a connection
between the line x-rays and the Bohr model.

Such a connection was established by a simple model of multi-electron
atoms. Spectroscopic data suggested that in atoms with several or more
electrons the atom’s energy states form groups. In each group the states
are close together in energy, but between the groups there is a consid-
erable separation in energy. These well defined groups of energy states
are called “shells” of energy, and there is one shell for each value of the
principal quantum number n = 1, 2, . . . . It also turns out that there can
not be more than 2n2 electrons in a shell with principal quantum number
n. This rule is called the “Pauli exclusion principle”6 or, for short, the
“exclusion principle.”

Here is how shell structure and the exclusion principle explain the
generation of characteristic x-rays. Because of the exclusion principle,
electrons in higher-energy shells cannot make transitions to lower-energy
shells when these shells are filled with electrons. But when electrons accel-
erated in an x-ray tube strike atoms of the anode, some of the collisions
will knock an electron out of the lowest-energy shell. In such an atom
there will then be a vacancy in the n = 1 shell that can be filled by the
transition of an electron from a higher-energy shell to the lower-energy
one. When such a transition occurs, a photon is emitted with an energy
equal to the difference between the energies of the two shells as illustrated
by Fig. 17.9. This photon is one of the characteristic x-rays.

The Bohr model can predict with useful accuracy the energy of a char-
acteristic x-ray photon. As Eq. 15 shows, the Bohr model predicts this will
scale as Z2. For example, consider the energy of an electron in the n = 1
shell of an element with nuclear charge Z = 40 (zirconium). According to
Eq. 15, its energy will be about −402 × 13.6 = −22 000 eV.

5They have all been discovered—hafnium (72Hf), rhenium (75Rh), technetium (43Tc), and
promethium (61Pm). These last two are radioactive and must be produced artificially.
6Quantum mechanics explains the Pauli exclusion principle, but for now you can be like
physicists in the early 1920s and just accept it as an empirically established rule.
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FIGURE 17.9 Schematic representation of energy shells of an atom, illustrating how
x-rays can be produced by transitions from a higher-energy shell to a hole in the
lower-energy shell.

� EXERCISES

23. Show that the energy of an electron in the n = 2 shell of a Z = 40
nucleus would be on the order of −5500 eV.

Then if an electron in the n = 2 shell changes from its energy state
of −5500 eV to the available −22 000 eV energy state in the n = 1 shell,
it will lose −5500 − (−22 000) = 16 500 eV. This energy comes out as an
x-ray photon.

Because of the presence of other electrons, it is unlikely that the electron
making the transition will see the full nuclear charge Z. Then maybe the
scale factor will be (Z − s)2 instead of Z2, where s corrects for the effects
of the other electrons. If you put these ideas together in a single formula,
you get

hf = (Z − s)2E0

(
1
12

− 1
22

)

=
3
4
E0(Z − 1)2. (17)

With s = 1 and E0 = 13.6 eV this is exactly the equation that Moseley
inferred from his measurements of Kα x-rays, i.e., it is the same as Eq. 16
on p. 540. For zirconium (Z = 40) Eq. 17 predicts

hf = (40 − 1)213.6
3
4

= 15 500 eV,

which agrees well7 with the energy of the Kα peak in Fig. 17.6.

7The model accurately predicts values for ΔE = En − En′ , the differences between energy
levels, but it inaccurately predicts the energy En of any given level: For Zr the Bohr model
predicts E1 = −22 keV, but the observed value is −18 keV
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Figure 17.6 shows two peaks close together. In general, characteristic
x-rays are emitted in groups. There will be several K lines with somewhat
different wavelengths; the same is true for the L lines. For the K lines the
two lines with the longest wavelengths (smallest frequencies) are called
Kα and Kβ x-ray lines. In terms of an atom’s energy shells, the Kα line
arises from a transition from the n = 2 shell to the n = 1 shell, and the
Kβ results from a transition from and n = 3 to n = 1.

The L x-ray lines, which have longer wavelengths (lower energy) than
the K x-rays, arise from transitions of electrons from higher-energy shells
into a vacancy in the n = 2 shell. In particular, the Lα x-rays correspond
to transitions from n = 3 to n = 2, and Lβ x-rays from n = 4 to n = 2.

� EXERCISES

24. Calculate the energy of the Kβ line from Z = 40. Compare your
answer to the value of the Kβ peak in Fig. 17.6.

17.6 SUMMARY

The Bohr Model

Bohr explained the spectral series of the hydrogen atom. He hypothesized
that the energy of the photons emitted by hydrogen was equal to the
difference in energies of specific, well-defined energy states. The allowed
states were those for which the angular momentum of the electron was
an integer multiple of h̄. When in these states, the electron interacted
with the nucleus by means of the Coulomb force and satisfied the law of
conservation of mechanical energy. These three assumptions justify the
following four equations:

hf = En′ − En,

rp = n h̄,

mv2

r
=

kcZe2

r2
,

E =
p2

2m
− kcZe2

r
,

where the symbols are as defined earlier in the chapter. The integer
quantity n is the principal quantum number.
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From these assumptions Bohr’s model predicts that

En = −2mπ2k2
cZ

2e4

n2h2
,

hf =
k2
cZ

2e4m2π2

h2

[
1

n′2 − 1
n2

]

= −13.6Z2

[
1

n′2 − 1
n2

]

eV,

rn =
n2h2

4π2mkcZe2
= n2a0,

a0 = 0.0528 nm.

Limitations of the Bohr Model

Bohr’s major innovation was the idea of well-defined, discrete energy lev-
els. His model worked well for single-electron atoms, but he as well as
others recognized that it was an unsatisfactory theory. It met with very
little success in atoms with more than one electron. It was completely
unable to predict how rapidly transitions between states occur, nor could
it explain the relative intensities of the various spectral lines. Moreover,
it was inconsistent in its approach. It used classical derivations for a very
nonclassical situation. Having electrons in orbits to which classical me-
chanics was applied, but then forbidding the electrons to radiate, was
definitely an uncomfortable way of producing a theory. Using the wave
nature of electrons to help suggest why the orbiting electrons do not radi-
ate is no more satisfactory. To talk of an electron with a specific orbit but
then consider it to be a wave mixes two different kinds of descriptions,
and the good result does not justify the bad logic.

A complete, consistent theory of the atom came with the develop-
ment of quantum mechanics. This theory, which used several of Bohr’s
fundamental ideas, superseded the Bohr model.

X-Ray Line Spectra

The existence of x-ray line spectra, sharp peaks (“lines”) in the x-ray
spectrum, is explained by an extension of Bohr’s model. Characteristic
x-ray lines suggest the existence of shells of energy in the atom. The
exclusion principle says that there can not be more than 2n2 electrons
in shell n. This means that there cannot be transitions into a full shell.
However, when holes are created in a lower-energy shell, for example by
bombardment with energetic particles, transitions become possible, and
they result in the emission of characteristic x-rays. Transitions to the n =
1 shell give rise to K x-rays; transitions to the n = 2 shell yield L x-rays.
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Moseley’s Law, the Atomic Number, and the Periodic Table

Moseley’s measurement of K and L x-ray line spectra from many different
elements showed that the square root of the energy of these x-ray photons
increases linearly with the nuclear charge number Z, i.e.,

√
hf ∝ Z. His

work established that this number is the atomic number—the parameter
that orders the elements in the periodic table.

Moseley’s work made x-rays a practical, reliable way to identify the
chemical composition of a substance.

Moseley’s research significantly accelerated the acceptance of
Rutherford’s idea that every atom has a compact nucleus. His work also
gave more credibility to Bohr’s idea that atoms have definite energy states
and emit photons when they change from a state of higher energy to one
of lower energy. The two ideas were so radical that most physicists viewed
them with great skepticism. Moseley’s results convinced many that these
ideas had to be taken seriously.

PROBLEMS

1. Bohr showed that the possible energy states of a hydrogen atom are
accurately given by the expression En = −13.6

n2 eV, where n is any integer
1 ≤ n < ∞.

a. Draw to scale a level diagram of hydrogen showing the first 5 or 6
energy states. Label the energies of the lowest 4 states.

b. Show on your diagram the transitions that give rise to the three
lowest energy lines of the Balmer series.

c. What is the energy of the photon emitted when a hydrogen atom
goes from its first excited state to its ground state?

d. What is the wavelength of that photon?

2. Atoms of the never-discovered element fictitium (Fi) have energy
states as shown in Fig. 17.10.

a. What would be the energies of photons emitted after a vapor of Fi
is bombarded with 3.7 eV electrons?

b. What would be the energies of photons emitted after a vapor of Fi
is bombarded with 3.7 eV photons?

c. Assume that Fi is in its ground state. What is the longest-
wavelength photon that this atom can absorb?
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FIGURE 17.10 Energy levels of a fictitious element (Problem 2).

d. Fi has a nucleus with a radius of 4 fm. Use the Heisenberg uncer-
tainty principle to estimate the kinetic energy of a proton confined
within this region.

3. Bohr derived the energy levels and the corresponding radius r of the
hydrogen atom from the following three relations:

pr = n h̄,

Etot =
−kce

2

2r
,

p2

2m
=

kce
2

2r
,

where p is the momentum of an electron of mass m and charge e orbit-
ing a distance r from the center of the positively charged nucleus; n is
any integer 1, 2, . . . ; kc is the Coulomb force constant; and h̄ is Planck’s
constant divided by 2π.

a. Obtain an expression for the radius of the lowest Bohr energy
state of an atom in terms of fundamental constants. Evaluate your
results.

b. Use the above relations to show that the possible energy states of
an H atom are

En = −mk2
ce

4

2h̄2n2
.
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c. Show that the value of this expression = −13.6
n2 eV.

d. Draw to scale a level diagram of the H atom showing the four
lowest of these energy levels. Show on your diagram the transi-
tions that produce spectral lines in the Balmer series, and calculate
the wavelength of the lowest-energy photon emitted in the Balmer
series.

4. What is meant by the “stationary states” that Bohr postulated?

5. Give the names of five series of spectral lines that appear in the spectra
of hydrogen atoms.

6. What are two fundamental assumptions necessary for Bohr’s model
of the hydrogen atom that are in conflict with the ideas of classical
mechanics?

7. A 50 kV accelerating voltage is applied to an x-ray tube as shown in
Fig. 17.11. When electrons from the cathode crash into the target, Kα

radiation of wavelength λKα
= 0.0723 nm is emitted.

a. What is the atomic number Z of the target material? Hint: Recall
that the energy levels of an electron orbiting a nucleus of charge
+Ze are given by

En = −13.6
Z2

n2
eV.

b. The Kα photons strike a carbon block and undergo Compton
scattering, as shown in Fig. 17.11. If the photon is scattered
through an angle φ = 180◦, the scattered photon has a wavelength
λ = 0.0771 nm.

50 kV

e–

FIGURE 17.11 X-ray generation and Compton scattering geometries for Problem 7.



PROBLEMS 549

4
3

2

n=1

E
n
er

g
y
 (

eV
)

0

–3.4

–13.6

FIGURE 17.12 Energy levels of the hydrogen atom (Problem 10).

c. Find the kinetic energy and the momentum imparted to the
electron in the scattering event. Use appropriate units. In what
direction is p?

8. Who was Henry Gwyn Jeffreys Moseley and when, where, and how
did he die?

9. How did Moseley’s work relate to Bohr’s model of the atom?

10. Figure 17.12 is a diagram representing the possible energy states
of a hydrogen atom. The lowest energy state (n = 1) has an energy
of −13.6 eV. The next lowest state (n = 2) has an energy equal to
−13.6/22 = −3.40 eV, etc.

a. What are the energy and wavelength of the photon emitted when
a hydrogen atom changes from its n = 2 to its n = 1 state?

b. Identify the transitions that produce the Hα, Hβ, and Hγ lines of
the Balmer spectrum. These are three visible lines easily observed
in laboratory. What is the color of each of the three lines?

11. A certain atom is stripped of all but one of its electrons. The lowest
seven energy levels of the remaining electron are shown in Fig. 17.13.

a. If the electron is initially in the n = 3 state, what is the minimum
energy that must be added to the ion to remove the electron?

b. Visible light (400 < λ < 700 nm) is emitted when the electron
makes a transition from an initial state ni to a final state nf . What
is the smallest value of nf that would result in the emission of
visible light?
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FIGURE 17.13 The energy states of an atom with all but one of its electrons removed
(Problem 11).

c. What is the atomic number Z (i.e., the nuclear charge Ze) of the
ion?

d. In the Bohr model of a one-electron atom or ion, does the elec-
tron’s kinetic energy increase, decrease, or stay the same when n
increases? Provide a mathematical explanation of your answer.

12. What is meant by the binding energy of a system? Give a numerical
example of the binding energy of an atom. Of a nucleus.

13. Consider an x-ray tube with an anode made of a Ni–Cr alloy and to
which 20 kV has been applied.

a. If ZCr = 24 and ZNi = 28, what are the energies of the Kα lines
(ni = 2 to nf = 1) emitted by each element?

b. Make a sketch of the x-ray spectrum (I vs. λ) you would expect to
see emitted by the Ni–Cr anode. Your wavelength scale should be
accurate. Explain the main features of the spectrum.

c. If you analyze the spectrum by sending the x-rays to a crystal with
d100 = 0.3 nm, at what angle (2θ) will 0.28 nm x-rays be diffracted
by the (100) plane?

d. Find the momentum in eV/c of electrons with a de Broglie
wavelength of 0.28 nm.

e. Sketch an apparatus that could be used to generate electrons with
the momentum of part (d). If there are hydrogen atoms in the
apparatus, could they be ionized by those electrons? Explain.
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TABLE 17.2 Lα X-ray lines measured by Moseley

Element Z λ (nm) Element Z λ (nm)

Zr 40 0.6091 Sm 62 0.2208

Nb 41 0.5749 Eu 63 0.2130

Mo 42 0.5423 Gd 64 0.2057

Ru 44 0.4861 Dy 66 0.1914

Rh 45 0.4622 Er 68 0.1790

Ag 47 0.4170 Ta 73 0.1525

Sn 50 0.3619 W 74 0.1486

Sb 51 0.3458 Os 76 0.1397

La 57 0.2676 Ir 77 0.1354

Ce 58 0.2567 Pt 78 0.1316

Pr 59 (0.2471) Au 79 0.1287

14. Moseley measured the Lα x-ray lines of 24 elements from zirconium
to gold. Some of his data are given in Table 17.2.

a. Show that plotted as Moseley would have plotted them, these
data lie on a straight line. From your graph determine which ele-
ments would produce Lα x-rays with wavelengths of 0.2382 nm and
0.4385 nm.

b. Determine the slope and the screening correction that satisfy

hf = A(Z − s)2.

c. Compare your value of A with what you would expect from the
Bohr-model explanation of L x-rays.

d. Discuss the significance of the value of s that you obtain.



1818C H A P T E R

The Heisenberg
Uncertainty Principle

18.1 INTRODUCTION

The photoelectric effect showed that waves behave like particles. A wave
with a frequency f has a minimum packet, or quantum, of energy
E = hf , where h is Planck’s constant. Compton showed that when hf
is comparable to the rest mass energy mc2 of an electron, the scattering
of electromagnetic radiation from electrons behaves like the scattering of
one compact object from another. The particle-like behavior of light seems
so prominent in these cases that the quantum of light has been given the
particle-like name of “photon.” Individual photons can be detected with a
photomultiplier tube; such detection also suggests a degree of localization
in space that is characteristic of particles rather than waves.

The fact remains, however, that photons—even a single photon!—can
behave like a wave. Photons give rise to double-slit interference: When
a beam of photons passes through two slits, the characteristic pattern of
fringes appears on the screen behind the slits. Depending upon the ex-
perimental setup, light can exhibit wave properties or particle properties.
Niels Bohr called this combination of properties “wave-particle duality.”
But isn’t such a dual nature self contradictory? A particle is an object
with a definite location; a wave can extend over large distances. How can
an object be both localized and spread out? How can an entity behave
like a particle in some circumstances and like a wave in others?

Moreover, wave-particle duality is not just a quirk of photons. It is
a general feature of all quantum systems. In Chaps. 13, 14, and 15, you
saw that things you think are particles, such as electrons, can sometimes
behave as waves, and things that you think are waves, such as light, can
sometimes behave as particles. In Chap. 15 you saw that electrons, and

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 553
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all other objects that you customarily think of as particles, can exhibit
wavelike interference and diffraction. Wave–particle duality is a feature
of all atomic and subatomic matter. It is, therefore, a profound aspect of
nature, and theories of matter and energy must include it.

In the 1920s, physicists created a theory of the behavior of microscopic
matter that incorporated wave–particle duality. This theory is called
“quantum mechanics.” Quantum mechanics revolutionized physics and
changed physicists’ ideas about causality and measurement and what it
means to know something about the physical world. Even now, more
than eighty years later, physicists argue heatedly about the meaning
of quantum mechanics and the inferences one may draw from quantum
theories.

This chapter introduces you to the Heisenberg uncertainty principle.
It states a fundamental feature of quantum theory that, among other
things, specifies the sizes and energies of atomic and subatomic systems
and resolves the apparent contradiction of wave-particle duality.

18.2 BEING IN TWO PLACES AT ONCE

Why can’t something be both a particle and a wave? Perhaps you don’t
think there is much of a problem here. If so, consider the following
hypothetical experiment that could certainly be done in principle.

A beam of electrons is allowed to strike two narrow slits close enough
together to produce a nice interference pattern on a photographic plate.
Imagine that the intensity of the electrons is turned down so that only 1
electron arrives at the photographic plate each hour. It would be tedious
and expensive, but imagine that you exposed a plate and developed it
after 1 h; and then exposed a second plate for 2 h and then developed it;
and then exposed a third plate for 3 h and developed it; and so on. What
would you see on the succession of plates?

The answer is what you would expect. On the first plate there would
be one exposed grain of silver halide somewhere on the plates from the
arrival of 1 electron during the 1 h of exposure. On the second plate there
would be two exposed grains of silver halide from the arrival of 2 electrons
during the 2 h of exposure; on the third there would be 3 exposed grains;
on the fourth 4; and so on.

What would be the pattern of these exposed grains? At first there
would be no apparent pattern. The number of exposed grains would be
too few to show a pattern. But as the number of exposed grains reached
into the hundreds and thousands, a distinct pattern would appear. It
would be the pattern of interference fringes you have come to know and
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love. Although the electrons arrive one at a time an hour apart, they
still form an interference pattern. Electrons preferentially arrive at the
places corresponding to maxima in the fringe pattern; they do not arrive
at places corresponding to minima in the pattern.

The point is that interference occurs for the individual electrons; it
occurs electron by electron. The same story is true for photons. Illumi-
nate a pair of closely spaced slits with a laser beam that has been made
so weak that only 1 photon goes through the slits each hour. We could
detect these with the cumbersome succession of photographic plates used
for the electrons, but it speeds things up if instead we imagine an array
of photomultiplier tubes in place of the screen. To each of these we at-
tach a counter so we can keep track of how many photons arrive at each
photomultiplier tube. About once an hour one of these counters will go
“click” and record the arrival of a photon. After many hours a pattern
will emerge. The counters near the maxima of the interference pattern will
have many counts; the counters near the minima will have few or none.
Single photons preferentially arrive at places corresponding to maxima
in the fringe pattern; they will not arrive at places corresponding to the
minima. This process is illustrated schematically in Fig. 18.1.

Interference occurs for individual photons; it occurs photon by photon.
Does this bother you? If it doesn’t, consider the following. Suppose you

block one of the slits and do the above two experiments again. What will
you see? This time you will see a single-slit diffraction pattern build up
slowly one photographic grain or one click at a time. If the slits are narrow
enough so that the first single-slit diffraction minimum is off the edge of
the screen, then you will see only a smooth, nearly uniform distribution
of exposed photographic grains or counter clicks. Electrons (or photons)
will now go to places where they did not go when there were two slits.

Now think about this. When there are two slits, how does a single
photon or electron “know” that it may not go to the places where the
minima occur? When there is only one slit, how does a single electron or
photon “know” that it can go to the previously forbidden places? If an
electron passes through the bottom slit, how does it “know” whether or
not the top slit is open?

For one-particle-at-a-time interference to occur, each particle must in
some sense pass through both slits. Only then can you have a theory
that is both internally consistent and in agreement with experimental
observation. But this is a claim that the particle can be in two different
places at once! The claim flies in the face of all our experience and the
physics of Newton, Maxwell, and Einstein. How can such a curious idea
be true?

The idea should make you deeply uneasy because an electron—or any
particle—usually has a well defined position. For example, it is detected
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FIGURE 18.1 Hypothetical one-particle-at-a-time interference experiment. The open
circles labeled P1 are counts recorded when only slit 1 is open; the shaded circles labeled
P2 are counts recorded when only slit 2 is open; the half-shaded circles P1,2 are the
counts recorded when both slits 1 and 2 are open. The set of images in the bottom
half of the figure show the gradual emergence of the double-slit interference fringes as
particles are recorded over an ever longer time interval. Taken with permission from
J.G. Hey and Patrick Walters, The Quantum Universe, Cambridge University Press,
1987.

in a well-defined, localized region of space—the photomultiplier tube or
the photograph grain. That spatial localization makes apparent that the
electron or the photon is a particle.

How can something so localized go through two separate slits at the
same time? Quantum theory connects localization to measurement. The
theory says that a particle can be prepared experimentally to be in a range
of positions and that the act of measurement selects one of these. This
means that an electron is in a wide range of positions as it approaches
the photographic plate; then interaction of the electron with a grain of
silver halide in the emulsion selects one of these positions. When there
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are two slits, the range of possible positions of the electron or photon
does not include those positions that correspond to the minima of the
interference pattern.

The urge to deny this picture is strong. “Surely,” you will say, “I can
measure through which slit the particle passes.” You are then demanding
that it pass definitely through one or the other slit as you would expect
a classical particle to do. You can make such a measurement in any of
several ways. For example, you might shine light on electrons as they come
through one of the slits and use the resulting Compton scattering to signal
the electron’s passage. In other words, an electron passing through the
illuminated slit will scatter light that can be detected, and the detection of
a flash of light tells you that this electron passed through the illuminated
slit. This possibility is consistent with our general principle: The particle
is to be thought of as being in different places at the same time, but
when you measure it you select out one of them. If you measure the
next electron, you will find that it went through one slit or the other.
The result of each measurement will be perfectly definite, but it will be
unpredictable. You might find that 50% of your measurements find the
electron passing through one slit and 50% through the other.

But if you can tell through which slit the particle came, then how can
it interfere with itself? How can it contribute to producing the double-slit
interference pattern? Well, it cannot. And here something quite inter-
esting occurs. If you do an experiment, any experiment, that determines
through which slit the electrons pass, the double-slit interference pattern
does not occur.

This should not be so surprising, because in doing the experiment you
have an effect on the electron. If no experiment is done, the electrons
that come through the slits have some distribution of momenta in the y
direction. But obviously, they do not have all values of py. For example,
they do not have those values of py that would cause them to arrive at
the minima of the interference pattern. However, in order to find through
which slit the particle came, it is necessary to interact with the particle,
for example, by shining light on it. The resulting Compton scattering
changes the distribution of components of momentum in the y direction;
it introduces components that permit the electron to arrive at places on
the screen that were forbidden to it before its position was measured.
These new components wash out the double-slit pattern, leaving only the
broader single-slit pattern.

Here can be seen the importance of the quantum. According to classical
physics we can reduce the energy of an electromagnetic wave of frequency
f to an arbitrarily small amount. If you really could do this, then you
could determine through which slit the electron came with light that had
its energy reduced to the point that its interaction with the electron was
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negligibly small. But you cannot; light of a given frequency comes with
an energy of at least hf , no less, and so it has a momentum of hf/c. This
is enough to add the missing components of momentum to the electron
and so wipe out the interference pattern.

Of course, you could reduce the frequency f . This works. At a
sufficiently low frequency the interference pattern is not affected by the
interaction of the photons with the electrons. However, nothing is gained.
As you reduce f , you are increasing the wavelength λ. As λ increases, the
precision with which you localize the particle gets worse, because waves of
wavelength λ will show you where something is to only roughly ±λ/2. In
fact, just when the photon energy is low enough so that it does not destroy
the interference pattern, the wavelength has become so large that you can
no longer tell through which slit the electron passed. The experiment no
longer selects out a well-defined location.

18.3 HEISENBERG’S UNCERTAINTY PRINCIPLE

There seems to be a conspiracy here. Experiments that exhibit the
particle-like behavior of something destroy its wavelike behavior. Ex-
periments that show the wavelike behavior of something destroy its
particle-like behavior. As a result, contradictory wave and particle be-
havior can never occur together. Nature is constructed in such a way that
no experiment can ever exhibit the contradictory properties at the same
time. Therefore, the apparent contradiction can never arise.

The fact that Nature always behaves so that particle and wave prop-
erties cannot be exhibited simultaneously is equivalent to the following
fundamental principle. Any physical situation that forces an electron into
a narrow range of positions Δx will at the same time impart to the elec-
tron a wide range of momenta in the x direction Δpx. The converse is true.
Any physical situation that forces the electron into a narrow range of mo-
menta Δpx gives it a broad range of positions Δx. Werner Heisenberg
showed that in general, the product of Δx and Δpx is never smaller than
h/(4π). It can be larger, but for most physical systems of interest the
product is of the order of h or h/(2π). In its exact form the Heisenberg
uncertainty principle is written1

Δx Δpx ≥ h

4π
=

h̄

2
. Heisenberg uncertainty principle (1)

1The quantity h/(2π) is used so often that it gets its own symbol, an h with a line through
it, which is written h̄ and is called “h-bar.” Just as it is useful to know that hc = 1240 eV nm,
it is useful to know that h̄c = 197 eV nm. For quick calculation and easy recollection many
physicists take h̄c to equal 200 eV nm.
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The uncertainty principle is at the heart of quantum mechanics. It
applies to all particles and things built from them. It applies to many pairs
of physical quantities other than position and momentum. For example,
there is an uncertainty relationship between energy and time: ΔEΔt ≥ h̄

2 .
You may feel there is a certain vagueness about the principle. What do

Δx and Δpx mean? Is their product greater than h/(2π) or is it equal?
When is it one or when is it the other? Should the right-hand side of Eq. 1
be h/(4π) or h/(2π) or even, as it is sometimes written, just h? Vagueness
may be appropriate for something called the “uncertainty principle,” but
it is not as bad as it sounds. Precise definitions of Δx and Δpx are given
below, but you will not need them. More important for you are order-of-
magnitude arguments with the uncertainty principle, where approximate
values of Δx and Δpx can be inferred from basic geometry and physical
considerations. Also, for such order-of-magnitude calculations, the partic-
ular choice of h/(4π), h/(2π), or h is not very important, and for many
purposes it is convenient to use the simplified forms

Δx Δpx ≥ h̄ or ΔEΔt ≥ h̄. (2)

rather than Eq. 1.

� EXERCISES

1. Show that h̄c equals 197 eVnm.

2. Show that ΔE Δt ≥ h̄ is dimensionally correct.

Δx and Δpx are defined to be standard deviations of distributions. The
idea of a distribution was developed in the appendix of Chap. 5 which
shows how gas pressure and temperature connect to molecular velocity.
The argument was that the molecules of a gas have various different ve-
locities that span some range. Then you could imagine dividing this range
of velocities into small intervals of velocity of width dv. Such intervals are
often called “bins.” If you label the velocity of the ith bin to be vi, and
then count the number of molecules with velocities in the small range
vi to vi + dv, you will get ni, the number of molecules in the ith such
bin. The set of values ni represents the distribution of velocities. From
this distribution you can compute an average value of the square of the
velocity 〈v2〉 using the relationship

〈v2〉 =
∑

niv
2
i∑

ni
.
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Given a distribution of the positions x, you could find 〈x〉 and 〈x2〉; if
you had a distribution of the momenta px, you could find 〈px〉 and 〈p2

x〉.
The formal definitions of Δx and Δpx are

Δx = |〈x〉2 − 〈x2〉|1/2,

Δpx = |〈px〉2 − 〈p2
x〉|1/2.

You may recognize that each of these is a quantity called “the standard
deviation” of a distribution. It is a measure of the spread of values within
the distribution.

The mathematics of distributions and quantities like Δx are the same
for quantum mechanics as for calculating Δv for gas molecules. The
meaning of the spread of values, however, is quite different for quantum
mechanics than for the kinetic theory of gases. Kinetic theory assigns
a definite value of velocity to each atom, and the spread of the distri-
bution arises because there are many molecules with different velocities.
Quantum mechanics ascribes all the velocities of the distribution to each
particle and says that a particle will have a definite velocity only when
you measure it.

� EXAMPLES

1. To see how the definition of Δx works, consider a uniform beam of
electrons directed at a slit of width a. What is Δx for electrons passing
through such a slit? Suppose you divide the slit into 10 intervals of
width 0.1a. To find Δx, you first need to find 〈x〉 and 〈x2〉.

To calculate these quantities you need to place a coordinate system
on the aperture. It is convenient to place the origin at the center of
the slit. Calculation of 〈x〉 is then particularly easy. The symmetry of
the problem shows that 〈x〉 will be 0, because there will be as much
negative x below this origin as there is positive x above it. A similar
symmetry argument is often used to calculate 〈px〉.

If you assume that passage through the slit is as likely at any place
within the aperture as any other, calculation of 〈x2〉 is straightforward.
Each bin is 0.1a wide; the values of x run from −0.5a to +0.5a, so the
values of x2 run from 0.25a2 down to 0 and then back up to 0.25a2.
Therefore, the sum runs over 5 intervals from 0.025a2 down to 0 and
back up another 5 intervals to 0.025a2. The process is shown in Fig 18.2.
You can write the sum as 0.1(0.1a)22[1 + 4 + 9 + 16 + 25] = 0.11a2, so
Δx = 0.33a.
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a

0.5a

0.4a
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0.2a
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0
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-0.4a

-0.5a

FIGURE 18.2 Calculation of 〈x2〉 for a slit of width a (viewed from above).

� EXERCISES

3. The above example used the largest value of x2 occurring in each
bin. What would be 〈x2〉 and Δx if you chose the value of x2 at the
midpoint of each interval?

For many purposes, however, you can skip all such calculation and
observe from the physical setup that Δx ≈ a.

18.4 ATOM SIZES AND ENERGIES FROM
THE UNCERTAINTY PRINCIPLE

The uncertainty principle relates average kinetic energy 〈K〉 to spatial
confinement, and you can use this fact to predict important features of
systems built up from particles. First, you use the uncertainty principle
to find values for 〈px〉 and 〈p2

x〉. If the system has symmetry, 〈px〉 will be
0. If the particle is bound, say if it is an electron going around a proton,
then 〈px〉 will also be 0, because on average a bound particle has no net
motion in any direction. For systems with 〈px〉 = 0, you have the very
useful result that (Δpx)2 = 〈p2

x〉 = 2m〈K〉.
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� EXAMPLES

2. Consider an electron confined to a region of space about the size
of an atom, so that Δx ≈ 0.1 nm. Then the uncertainty principle tells
you that Δpx ≈ h̄/Δx. Squaring both sides, you get

(Δpx)2 = 〈p2
x〉 ≈

h̄2

(Δx)2
.

Because 〈p2
x〉 = 〈p2

y〉 = 〈p2
z〉 and K ≈ (p2

x + p2
y + p2

z)/(2m), it follows
that the average kinetic energy K of the bound electron is

K = 3
〈p2

x〉
2m

=
3h̄2

2m(Δx)2
=

3(h̄c)2

2mc2(Δx)2
=

3×1972

2×0.511×106×0.01
= 11.4 eV.

Although such calculations are approximate, the result is very
informative. It says that simply by virtue of its confinement within the
space of an atom, an electron will necessarily have an average kinetic en-
ergy of the order of 10 eV. As a general rule, the more closely confined a
particle is, the greater is its average kinetic energy.

This result also tells you something about the force holding the electron
in confinement. For the electron to be bound to the atom, its total energy,
kinetic plus potential, must be negative. This means that in attracting the
electron to the atom, the force must reduce the total energy of the electron
by more than enough to offset the kinetic energy.

Does it? The hydrogen atom is formed by the electrical attraction
between the positively charged proton and the negatively charged elec-
tron. These behave like point charges, so you can calculate their energy
of interaction from the formula for the electrical potential energy be-
tween two point charges. For an atom ≈ 0.1 nm in diameter, the two
charges are separated by a distance of 0.05 nm, and their potential
energy is

U =
−kce

2

r
=

−1.44
0.05

= −28.8 eV.

The total energy would then be 11.4 − 28.8 = −17.4 eV. The total en-
ergy is negative, and the fact that the electron and the proton form a
bound system about 0.1 nm in diameter is consistent with the Heisenberg
uncertainty principle.

The example above assumed knowledge of the size of an atom and
deduced the average kinetic energy of an electron held inside the atom. If
instead of knowing the size, you know the forces between the interacting
parts of the atom, you can use the uncertainty principle to estimate the
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atom’s size. Like any physical system, the atom will configure itself to
achieve the lowest possible total energy. You might think that this would
occur when the distance between the two charges goes to zero, because
then the electron’s potential energy goes to negative infinity. However,
the uncertainty principle warns you that confinement of an electron to a
smaller and smaller volume of space will lead to an unbounded increase
in the electron’s kinetic energy. The atom takes on a size that minimizes
the sum of these two effects. You can find that size by expressing the total
energy in terms of size and then finding the radius that gives a minimum
total energy.

� EXAMPLES

3. The total energy E of an electron of mass m and charge −e
interacting with a proton of charge e separated by an unknown distance
r is

E =
p2

2m
− kce

2

r
.

As you have already seen, the uncertainty principle connects the
kinetic energy of the electron to the size of the atom. According to
the uncertainty principle, confinement to a region Δx ≈ r, the radius
of the atom, means that the electron must have Δp =

√〈p2〉 ≥ h̄/r.
Consequently, its kinetic energy will be

p2

2m
≈ h̄2

2mr2
.

Therefore, the total energy of the atom can be written as

E ≈ h̄2

2mr2
− kce

2

r
.

To find the value of r that minimizes E, differentiate E with respect
to r; set the result equal to zero; solve for r.

dE

dr
= − 2h̄2

2mr3
+

kce
2

r2
= 0.

solving this for r you get,

r =
h̄2

mkce2
=

(h̄c)2

mc2kce2
=

1972

0.511 × 106 × 1.44
= 0.0527 nm.

This result is very satisfactory, because it is the size of the radius a
real atom. This value is also precisely the radius of the hydrogen atom
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obtained from the Bohr model. Obtaining the right order of magnitude for
the radius of atoms using the uncertainty principle is convincing evidence
that the principle is fundamental.2

� EXERCISES

4. Use the expression just obtained for the radius of the hydrogen
atom and derive an expression for the total energy of the hydrogen
atom in terms only of fundamental constants such as e, h̄, c, and the
mass of the electron m.

5. (a) Evaluate the expression you obtained in the previous problem
to give a numerical value for the total energy. (b) Your answer should
be negative. Why? What does a total negative energy mean?

The arguments relating the energy of an electron in an atom to the size
of the atom also apply to the atomic nucleus.

� EXAMPLES

4. For example, you can use the uncertainty principle to show that
the kinetic energy of a neutron in a nucleus of diameter 10 fm is of
the order of 25 MeV. Think of the nucleus as a box 10 fm on a side.
Confinement in the x-direction means

Δpx c ≈ hc

Δx
=

1240[ MeV fm]
10[ fm]

= 124 MeV

and because Δpx c =
√〈p2

xc2〉a it follows that the average kinetic
energy associated with the x-motion of a neutron confined to 10 fm is

〈p2
xc2〉

2m0c2
=

1242

2 × 939
≈ 10 MeV.

Because the neutron moves in the y and z directions as well as x, this
result implies that the kinetic energy of the neutron in the nucleus will
be of the order of K = 3 × 10 ≈ 30 MeV.

Notice how this result highlights a fundamental question about the
nucleus. If the neutron has a kinetic energy of ∼ 30 MeV, what holds

2The precise agreement with the Bohr model occurs because we knew to choose the form of
the uncertainty principle that would produce this agreement.
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it in the nucleus? The answer had to be a new force, a force that had
not been observed before, a force between nucleons that is immensely
strong at short range but weak when the nucleons get farther apart
than ∼ 10 fm.

� EXERCISES

6. Estimate the minimum potential energy required for a neutron to
remain bound inside an atomic nucleus.

7. Why didn’t Rutherford use the uncertainty principle to estimate
the energy of a proton in a nucleus?

18.5 GENERAL FEATURES OF THE
UNCERTAINTY PRINCIPLE

The uncertainty principle is a basic law of nature. It embodies the fact
that a particle can never be made to exhibit at the same time wavelike
properties of interference and particle-like properties such as billiard-
ball scattering. No contradiction between wave and particle behavior can
occur.

The fundamental nature of the uncertainty principle is also apparent
in the fact that you can use it to estimate the size, internal kinetic energy,
and binding energy of atomic and nuclear systems. From the uncertainty
principle it follows that the smaller, more compact a system of particles
is, the higher their kinetic energy is and the more strongly they must be
bound to offset the high kinetic energy. The smaller a system of particles
is, the greater must be the forces holding the particles together.

In general a quantum system exists in a superposition of many different
states, e. g. different locations, but when a measurement is made on the
system, the system takes on some particular, definite value from among
the many possible. Which one of the possible values will be obtained
in any given measurement is entirely unpredictable. Quantum theory can
only predict the probability of each outcome, i.e., how many times a given
value will be obtained when a large number of measurements are made
on identical systems.
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Notice that the uncertainty principle also implies that the act of
measurement of one quantity will cause the particle to take on a range
of new values of some complementary quantity. For example, consider
the Heisenberg relations for position and momentum, Δx Δpx ≈ h̄. Any
useful measurement of position puts the system into a narrow range of
locations Δx, but, according to the uncertainty principle, this will impart
to the system a broad range of momenta Δpx. The result will always
be that the more precisely you measure position, the less precisely you
will know momentum, and conversely. The uncertainty principle places
fundamental, general limits on what can be measured and what can be
learned about nature from measurement.

PROBLEMS

1. 650 nm light passes through two very narrow slits separated by 10
μm and then strikes a screen 1m distant.

a. Describe what appears on the screen and where.
b. Suppose the screen were replaced with an array of photon counters,

and the intensity of the incident light were reduced to 1 photon per
minute. What would be detected on the arrays of counters?

c. If one of the two slits were blocked, what would appear upon the
screen? Assume that the width of the single slit is 1μm.

d. What is the puzzle implicit in your answers to (b) and (c), and
how does the Heisenberg uncertainty principle resolve this puzzle?

2. How does the Heisenberg uncertainty principle resolve the apparent
paradox that light and electrons each exhibit wave properties in some
circumstances and particle properties in other circumstances?

3. State clearly the Heisenberg uncertainty principle. Explain what the
symbols mean. Explain what the uncertainty principle is saying about the
behavior of physical systems.

4. Use the uncertainty principle to estimate the kinetic energy of an
electron confined to the region of an atom. (You should know a reasonable
dimension for an atom.)

5. Use the uncertainty principle to estimate the kinetic energy of a
neutron confined to a nucleus.
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6. If the average kinetic energy of an electron in the outer regions of an
atom is 2 eV, what will be its average kinetic energy if it is confined to a
nucleus?

7.
a. Explain how the uncertainty principle sets the scale of energies of

small, bound systems.
b. Suppose you had reason to believe that there is a particle called

the “quark” that is confined to a region of about 1 fm. Estimate
the momentum of the quark. What do you need to know before
you can estimate its kinetic energy?

8. Estimate the minimum possible kinetic energy of an alpha particle
confined to a nucleus of diameter 7 fm.

9. Can an electron be confined to the volume of a nucleus by the Coulomb
attraction between the electron and the nuclear charge? To answer this,
find the approximate average kinetic and potential energies of the electron.

a. Take the nuclear charge to be Z = 100 and estimate the aver-
age distance between electron and nuclear charge to be ≈ 1 fm.
(This approximation concentrates all the nuclear charge into a tiny
sphere of radius less than 1 fm; this is not a good approximation
but it won’t change the answer.) Calculate the average potential
energy of the electron.

b. Estimating the uncertainty Δx to be ≈ 1 fm, evaluate the average
kinetic energy.

c. Use your answers to (a) and (b) to answer the question.
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Atoms,
Photons, and
Quantum Mechanics

19.1 INTRODUCTION

Quantum mechanics was the outcome of physicists’ twenty-five year strug-
gle to understand the behavior of matter and light at the atomic level.
This struggle began in 1900 when Max Planck explained the spectrum
of light from a hot body by an ad hoc assumption that atoms absorb
and emit light in bundles of energy. In 1905 Einstein argued convinc-
ingly that light is itself quantized in bundles of energy and used the idea
to explain the photoelectric effect (Chap. 13). Rutherford and Moseley
showed (Chaps. 16 and 17) that the atom is made of discrete elements,
and Bohr showed (Chap. 17) that atoms take on definite, or as we say
today, quantized states of energy.

The need to resolve the paradox of wave-particle duality became acute
when G. P. Thomson and Davisson and Germer confirmed de Broglie’s
idea that particles can behave like waves (Chap. 15). The resolution
occurred in 1925 when Heisenberg, Born, Kramers, Schrödinger, and
Dirac formulated a coherent theory with well defined rules for calculat-
ing properties and behavior of light and atoms—the theory of quantum
mechanics.

You have already met some quantum mechanics in the Heisenberg un-
certainty principle (Chap. 18). It embodies a basic feature of quantum
mechanics: A physical entity can be in a superposition of distinct mea-
surable states subject to a fundamental limitation. The more states of one
kind the entity possesses, the fewer states it has of another kind, e. g., it
can have many positions but few momenta, or vice versa. The principle is
general; it applies not just to momentum and position, but also to other
pairs of physical quantities.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 569
DOI 10.1007/978-0-387-79080-0 19, c© Springer Science+Business Media, LLC 1999, 2010



570 19. ATOMS, PHOTONS, AND QUANTUM MECHANICS

It may be fundamental and general, but the uncertainty principle does
not predict details. It does not tell you what energy states an atom
will have or what their lifetimes will be. To make quantitative predic-
tions of outcomes of experiments you need detailed rules. This chapter
presents some of these and shows you how quantum mechanics combines
an expanded conception of superposition with some basic ideas of prob-
ability to accurately describe the interference of individual photons in a
Mach-Zehnder interferometer.

19.2 BASIC IDEAS OF QUANTUM THEORY

Superposition and the Uncertainty Principle

Superposition is a fundamental principle of quantum physics. The super-
position of waves was introduced in Chap. 10, but for quantum mechanics
the idea must be enlarged, reinterpreted, and made to satisfy restric-
tions imposed by “indistinguishability,” and by the uncertainty principle.
Indistinguishability and the uncertainty principle each specify limits on
superposition that result in a consistent description of the atomic and
subatomic world.

For example, to understand what it means for an entity to be “spread
out” requires an enlarged meaning of superposition. You must think of the
entity as simultaneously occupying many different positions, i.e., being in
a superposition of different locations, being in more than one place at
once. The quantity Δx is a measure of how many locations are occupied
by the entity, and Δpx is a measure of the range of the entity’s momenta.

Nature eliminates the self-contradiction of wave-particle duality by
placing an important restriction on superposition. This restriction is de-
scribed by the Heisenberg uncertainty principle which says that an entity
can not have a narrow range of positions and a narrow range of momenta
at the same time. The equation ΔxΔpx ≥ h̄ tells you that objects can
either behave as particles (Δx is small) or as waves (Δpx is small and
therefore Δλ is small), but not as both simultaneously.

You have seen how double-slit interference exhibits this limitation. If
you set up your experimental apparatus to localize a particle enough
to know which slit it passes through, it loses its wave nature and there
is no interference pattern. If you arrange your apparatus to make Δx
large enough so that you can’t tell through which slit the particle passes,
then Δpx becomes small, and the particle has a wavelength well enough
defined to result in an interference pattern. Although wave and particle
properties are contradictory, Nature avoids the contradiction by behaving
only in ways that do not manifest both properties at the same time.
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The uncertainty principle and superposition are fundamental to un-
derstanding atoms and their behavior. Both ideas apply far beyond the
particular case of a single entity occupying a range of positions or possess-
ing a range of momenta. Many other pairs of physical properties obey an
uncertainty principle, e. g. energy and time, and angular momentum and
angular position. All aspects of quantum behavior exhibit superposition,
e. g. a hydrogen atom can be in a superposition of energy states.

Random chance is a basic property of quantum theory. Every quantum
event is fundamentally random. It is pure chance whether a photon re-
flects from or passes through a beam splitter. It is pure chance whether a
radioactive atom decays or does not decay. Quantum theory uses “prob-
ability amplitudes” and their associated “probability” to deal with such
randomness.

The following sections explain these ideas and illustrate them by using
them to analyze experiments that try to answer the following questions
about how photons behave.

• When a single photon passes through an interferometer, how does it
“know” not to go to the places on a screen where interference minima
occur? That is, does interference really occur “one photon at a time”?

• Suppose you add to your interferometer a special gadget. When the
gadget is turned on, you can know which path the photon took through
the interferometer, but when it is turned off, you can not know. What
happens to interference when you turn the gadget on? When you turn
it off?

19.3 DOWN CONVERSION, BEAM SPLITTING,
COINCIDENCE COUNTING

Photon experiments often use down converters, beam splitters, and coin-
cidence counters, so you need to understand what these devices do. Begin
by considering a simplified, idealized experiment that tests what happens
to a photon incident on a reflecting surface. The next section (p. 575)
will show you how actual experiments use these devices to exhibit the
surprising behavior of single photons.

When light strikes a glass surface, some light reflects from the glass
and some passes through. Ordinary window glass reflects about 4% of
the incident light and transmits the rest. By coating the glass with a
thin layer of reflecting metal, such as aluminum, you can increase how
much light is reflected. Any glass surface used to divide an incident beam
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of light is called a “beam splitter.” If it has been coated to reflect 50%
and to transmit 50% of the light, it is said to be a “50–50 beam splitter.”

The splitting of a beam is easily explained when light is viewed as a
wave. Upon striking the beam splitter, the wave divides into two waves
of smaller amplitude but unchanged frequency; the reflected part comes
back from the surface, and the transmitted part passes through it. But if
light consists of photons, i.e. quanta or chunks, what happens to a photon
when it strikes the glass? Does the photon separate into two pieces? Sep-
aration seems unlikely because the energy of the quantum would then be
divided and the outgoing pieces would have frequencies (and, of course,
wavelengths) much different from those of the incident photon.

There have been two obstacles to experiments to answer this question.
First, there had to be advances in technology before it became possible
to be sure that only one photon was in the apparatus. Second, detectors
detect only a fraction of the photons incident on them. This fraction is
called the “efficiency” of the detector. For example, the maximum de-
tection efficiency of photomultiplier tubes is about 30% and only for a
narrow range of wavelengths. Again, technological advances have helped,
but it is still the case that no experiment can tell you what happens to
every photon.

The first obstacle is overcome by an ingenious device called a “down
converter.” A down converter converts one short wavelength photon into
two longer wavelength photons. This is a relatively rare occurrence;
for example, when a 350 nm photon enters a carefully prepared beta
barium borate crystal, roughly one time out of 1011 the incident pho-
ton is absorbed and two 700 nm photons emerge in slightly different
directions.

A down converter makes it possible to be sure you are recording the
behavior of a single photon and not more. To do this you detect coinci-
dences between the pair of photons that come out of the down converter.
If you detect one of the pair, you know that the other one exists, and if
you detect the second one within some short time interval of your detec-
tion of the first, you can be quite sure that it is a single photon that has
passed through your apparatus.

Figure 19.1 shows a diagram of a setup to detect a photon coming out
of a beam splitter. One of the photons produced by down-conversion is
directed onto the beam splitter BS, which has outputs viewed by detectors
D1 and D2; the other photon is sent to detector D0. You arrange the
experiment so that detectors D1 or D2 record photons only if you also
record a photon at D0. This method of detection is called “coincidence
counting”; you record a photon in D1 or D2 only when you detect it within
a narrow interval of time—say a few nanoseconds—of the time that you
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down converter
D0 BS

D2

D1

FIGURE 19.1 A schematic diagram of an apparatus to measure the outputs from a
beam splitter BS after a photon passes through it. One photon from a pair produced
in a down converter is detected in detector D0; the other photon is detected in D1 or
D2. The recorded data are coincidences of D1 or D2 with D0.

detect a photon in D0. Having detected a photon at D0, you know there
is another photon in your apparatus, and when you detect an output at
D1 or D2 in coincidence with the detection at D0 you can be quite sure
the photon at D1 or D2 is the other down-conversion photon.

With 100% efficient detectors (unrealistic idealization) you could test
directly whether a photon splits at BS. You could count N(D0), the
number of photons detected by D0, and also record all the coincidences
between D0 and D1, i.e., N(D0,D1), and all the coincidences between D0

and D2, i.e., N(D0,D2). If you found that

N(D0) = N(D0,D1) + N(D0,D2),

you could conclude that every photon entering the apparatus went either
to D1 or to D2 and that no photon divided at the beam splitter. How-
ever, because efficiencies are of the order of 80% or less, there are always
photons that pass undetected through the apparatus; maybe one of these
split.

You could also look for coincidences between D1 and D2, thinking that
if a photon split, its pieces would arrive in each of these detectors at the
same time. In principle this is o.k., but in practice the pieces of the “split
photon” would have energies below the threshold of the detectors, and
there would be no detection even if they were present. All experiments
that have actually been done are consistent with the conclusion that a
photon does not split at the beam splitter.

Given that only about one out of 1011 photons incident on a down-
converter crystal converts into two photons of equal lower frequencies,
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you might ask: Are there enough photons in the beam entering the crys-
tal to produce a useful yield? To answer this question you need to take
into account that no detector registers every incident photon; your ob-
served count rate will always be less than the actual number of photons
arriving per unit time. And when you use two detectors in coincidence, the
overall efficiency is smaller yet because it is the product of the individual
efficiencies. Despite all these factors reducing the observed count rate, a
rough calculation shows that it is not difficult to have enough photons to
do these experiments.

� EXAMPLES

1. To estimate how many photons might be incident on the down-
converter crystal, assume for convenience of calculation that you have
λ = 310 nm light from a 1.6 mW laser entering the down converter.
(This is modest laser power; a typical red laser-pointer has a 5mW
beam.) A 310 nm photon has an energy of hf = 1240

310 = 4 eV. A beam
power of 1.6 mW is 1.6×10−3/1.6×10−19 = 1016 eV s−1. Therefore, this
1.6 mW beam delivers 2.5×1015 photons s−1, and you might reasonably
expect

2.5 × 1015

1011
= 25000 down converted pairs per second.

This means there will be 50 000 photons in all, 25 000 for each detector.

2. However, because of geometry, detectors intercept only a small frac-
tion of these photons. Moreover, as noted above, no detector detects
every photon incident on it. Suppose your detector can collect only 10%
of the photons emitted from the crystal, and suppose it can register
about 10% of the photons that it collects. The percentage of success-
ful detections is called the “detector efficiency.” (The efficiency is the
same thing as the probability of registering a detection.) Thus, if 25 000
photons s−1 come out of the crystal, and 2500 of them reach a detec-
tor and the detector is 10% efficient, you will observe a count rate of
2500 × 0.10 = 250 counts s−1.

3. But notice what a 10% efficiency does to the probability of coin-
cidence detection. If each detector has an efficiency of ε = 0.10, i.e.,
10%, the probability that you will register counts in both detectors at
the same time is 1%, the product of the two efficiencies, i.e., for this
example the overall efficiency is 0.10 × 0.10 = 0.01, and you will see a
count rate of about 25 s−1. Count rates are often give in units of hertz;
so for this example you can expect the rate of coincidences to be 25 Hz.
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19.4 INTERFERENCE OF QUANTA

If a photon does not split at a beam splitter, what determines whether a
photon is reflected or transmitted by the beam splitter? The disturbing
answer is that the result is pure chance. There is nothing about the inci-
dent photon or about the splitter that determines which way the photon
will go from the beam splitter. If you are not disturbed by this statement,
think about it until you are. Einstein never was able to accept that the
result was in principle unpredictable. As Feynman has pointed out,1 this
behavior contradicts the belief that it is an essential feature of science that
if you do two experiments with identical set ups, identical initial condi-
tions, identical particles, etc., you must get identical results. Experiments
with beam splitters show this is not so. Experiments identical in every
respect can have different outcomes, and the outcome for any particular
photon can not be predicted.

A second profound question has already been touched upon. If photons
don’t divide, how do they interfere? How can the passage of individual
photons (or electrons) through an interferometer produce an interference
pattern? As already mentioned, the answer is that in some sense an in-
dividual particle must be in more than one place at the same time. You
can make this seem less weird if you say instead that the principle of
superposition needs to be reinterpreted, but the reinterpretation requires
serious revision of your intuitions about the nature of reality.

To see why such reinterpretation is necessary, consider the interference
of photons in a Mach-Zehnder interferometer—a type of interferometer
that is particularly convenient for working with laser beams. As shown
schematically in Fig. 19.2, a Mach-Zehnder interferometer consists of a
pair of beam splitters and a pair of mirrors. The two photons from the
down-conversion source are directed so that one (called the idler) goes
to detector F; and the other (called the signal) enters the interferometer
and comes to the beam splitter BS1. The beam splitter offers the signal
photon a choice of paths of length �1 or �2; the mirrors M1 and M2 direct
the photon to the second beam splitter BS2, so that a photon can end
up either at D1 or at D2. Notice that there is no way to tell whether the
signal photon arrived at D1 (or D2) by path �1 or �2; the two paths are
indistinguishable.

If �1 
= �2, then for light of wavelength λ there is a phase difference φ =
2π
(

�2−�1
λ

)
associated with the difference in path lengths. The detector

1Richard Feynman, The Character of Physical Law, MIT Press, Cambridge (1965), p. 147.
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FIGURE 19.2 A photon from a laser (not shown) enters a down converter and two
photons emerge—the idler photon and the signal photon. The signal photon enters
the Mach-Zehnder interferometer. By detecting only signal photons that arrive at D1

or D2 in coincidence with idler photons arriving at F, you can be sure that the re-
sulting interference pattern arises from just one photon at a time passing through the
interferometer.

at D1 will register photons when the phase difference is a multiple of
2π radians; no photons will be detected when the phase difference is an
odd multiple of π radians. This is interference.

If, while counting photons in the detector at D1, you vary the length
of one path, say �2, you get variations in the number of counts as shown
in Fig. 19.3. By analogy with visible interference patterns, this pattern
of cyclic variation in the number of counts as you change the difference
between the path lengths is called a fringe pattern.

To be sure you are looking at the behavior of only one photon in the
interferometer, you use the same trick as in Sect. 19.3: You use a down
converter as a source of pairs of photons. You send one of a pair directly
into detector F; you send the other through the interferometer to detector
D1. By detecting them in coincidence, you see a single photon’s contribu-
tion to the interference pattern. The data shown in Fig. 19.3 are counts
of coincidences. These data show that the interference pattern builds up
one photon at a time.

You can explain the observed interference by treating the light entering
the interferometer as a wave, but that evades the fact that at D1 the light
passed through the interferometer and was detected as single photons.2

How can you reconcile the granularity of light with its wavelike behavior?

2You can attach an audio speaker to the detector, so that it produces a single distinct click
when a photon arrives. This is what physicists are thinking of when sometimes they speak of
detection as occurring “one click at a time.”
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/

FIGURE 19.3 Photon counts recorded by a detector at D1 in Fig. 19.2. The solid
curve is what quantum mechanics predicts.

19.5 PROBABILITY AMPLITUDES
AND PROBABILITIES

Introduction

You can get a consistent description of wave-like and particle-like behavior
of an object by shifting emphasis from the object itself to its processes.
Stop worrying about the nature of a photon at a beam splitter and focus
on what can happen to it; it can undergo reflection or transmission. Make
a theory that predicts the probability of each possible outcome. For the
50–50 beam splitter, the probability should be 1/2 for reflection and 1/2
for transmission.

However, in order for quantum theory to account for interference and
other effects of superposition, the theory must associate with each possible
process or outcome a phase of some sort as well as some measure of how
probable the outcome will be. Such an association is achieved by assigning
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to each process two numbers, a magnitude and a phase angle. This pair
of numbers together is called a “probability amplitude.”3

Probability

Before you can understand probability amplitudes, you need to know a few
things about probabilities. Keep in mind that a probability amplitude is
not a probability; probability is the likelihood of an outcome. You already
have an intuitive understanding of this. Asked, “What is the probability
of getting ‘heads’ when you flip a coin?” you would answer 1/2. Similarly,
you would say the probability is 1/6 of rolling a 3 with a cubical die.
Consciously or not, you noted that a two-sided coin has only two possible
outcomes, and they are equally likely. Similarly, a six-sided die has 6
possible outcomes, and they are equally likely. For such simple cases, you
can predict the probability P of any specific outcome by taking the ratio
of the number of ways N(A) to get some specific outcome A among the
total number of possible outcomes Ntotal:

P =
N(A)
Ntotal

.

What if you ask a more complicated question like “What is the prob-
ability of getting three heads in a row when you flip a coin?” You could
work this out by writing out all the possibilities: HHH, HHT, HTH, HTT,
THH, THT, TTH, TTT. There are eight possibilities, Ntotal = 8, and only
one way to get HHH, N(HHH) = 1 so P (HHH) = 1/8. But if the proba-
bility of each outcome is independent of the others, their joint probability
is the product of the individual probabilities. For the example here, the
individual probability of getting each H is each 1/2 so the probability

P (HHH) = P (H) P (H) P (H) = 1/8.

In general multiply the probabilities of independent events to get their joint
probability, i.e., if the probability of outcome 1 is P (1) and the probability
of outcome 2 is P (2), the probability of obtaining both outcomes 1 and
2 is

P (12) = P (1) P (2). probability of joint events (1)

It is also useful to know that the probability of an outcome consisting
of a combination of several mutually exclusive possibilities is the sum
of the probabilities of obtaining each individual outcome. For example,

3Sometimes people call the magnitude itself an “amplitude.” The use of the word “amplitude”
to designate one part of something that is also called an “amplitude” is unfortunate, but deal
with it as best you can.
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suppose you ask “What is the probability of getting at least one tails
when you flip a coin twice?” The possibilities are HH, HT, TH, and TT.
Each has a probability of 1/4. The probability of getting at least one tails
is 1/4+1/4+1/4 = 3/4. In general the probability of an outcome that is
a set of mutually exclusive events is the sum of the probabilities of the
occurrences of the individual events.

P (T) =
n∑

i=1

P (xiT) probability of mutually exclusive events (2)

where P (xiT) represents the probability of getting anything and at least
one T.

� EXERCISES

1. When you roll a die, what is the probability that you get an even
number? Which of Eqs. 1 and 2 applies here?

2. When you roll a die, what is the probability that you will roll either
and even number or a 3? Which of Eqs. 1 and 2 applies here?

3. What is the probability you will get an even number on the first roll
and the number six on the second roll? Which of Eqs. 1 and 2 applies
here?

As you know, predictions using probability are not exact. When you
perform N measurements, looking each time for an outcome that has a
probability P , you do not expect to get exactly NP outcomes; i.e., if you
flip a coin 1000 times, it is quite unlikely that you will get exactly 500
heads. But the more times you flip the coin, the closer to 1/2 will become
the ratio Nheads/Ntosses. In one experiment 100 tosses gave 54 heads; 1000
tosses gave 480 heads; and 10 000 tosses gave 5018 heads. You can see that
the ratio approaches closer and closer to 1/2, i.e., .54 → .480 → .5018.
This effect is called the “law of large numbers.”

According to Newtonian mechanics (often called classical mechanics),
there is actually nothing probabilistic about rolling a die or flipping a
coin. If you know the initial position and velocity of a die and the impulse
you impart to it as you roll it, you can calculate the outcome by the laws
of mechanics. You resort to probability because it is impractical to find
the initial conditions with precision sufficient to predict an outcome, and
it is easier to assume that these conditions vary randomly from throw to
throw; you do not assume that the conditions are in principle unknow-
able. But quantum systems always possess a superposition of different
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initial positions and velocities, and, therefore, it is in principle impossible
to know the initial conditions and predict the outcome of any single mea-
surement. Where it is a convenient tool in classical physics, probability is
fundamental to quantum physics.

Probability Amplitudes

For correct description of the interference phenomena that occur in quan-
tum systems, a phase angle needs to be associated with each possible
outcome. This is done by assigning to each possible quantum process a
“probability amplitude,” a mathematical entity that has both a mag-
nitude and a phase angle. Thus in Fig. 19.1 (p. 573), the probability
amplitude for a photon to pass through a 50–50 beam splitter and arrive
at detector D2 is p1 = ( 1√

2
, 0 rad).

The probability of an outcome is the square of the magnitude of its
probability amplitude. This is important; it is the connection between
probability, something you can measure, and probability amplitude, some-
thing theory can predict.The square of the magnitude of p1 is 1/2, so the
probability of a photon being transmitted by the beam splitter is 1/2.

� EXERCISES

4. In Fig. 19.1 the probability amplitude is p2 = ( 1√
2
, π

2 rad) for a
photon to arrive at detector D1 by reflection from the beam splitter.
What is the probability of this outcome? Remember, the probability is
the square of the magnitude of the probability amplitude.

Given that there are only two possible outcomes, you are not surprised
at the answer. In fact, you probably wonder, “Why bother with 1/

√
2?

Why not just give the probability as 1/2? Why complicate things with a
probability amplitude?” The answer is that with the probability ampli-
tude and a few simple rules you can construct the probability amplitude
of a complicated process from simpler probability amplitudes of different
parts of the process.

Product Rule for Probability Amplitudes

Product Rule: When two (or more) processes occur in succession, the
probability amplitude for the outcome is a special kind of product of
the individual probability amplitudes. The probability amplitude for a
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succession of processes has a magnitude which is the product of the mag-
nitudes of the individual processes, and it has a phase which is the sum
of the phases of the individual processes. As a specific example, suppose a
photon reflects first from one beam splitter and then from another. The
probability amplitude for the first event is p1 = ( 1√

2
, π

2 rad) and for the

second event it is p2 = ( 1√
2
, π

2 rad). The probability amplitude of the

combination of the two events has a magnitude of 1√
2

1√
2

= 1
2 and a phase

of π
2 + π

2 = π.

Addition Rule for Probability Amplitudes

Addition Rule: When an outcome can occur by two or more processes
that are mutually exclusive and indistinguishable, their probability ampli-
tudes add, and—this is important—they add like vectors. Consequently,
it is possible for one amplitude to cancel some or all of another. Then the
probability, which is the square of the magnitude of the combined am-
plitudes will be larger or smaller depending on the relative phase of the
amplitudes; the combined amplitude can even be zero. Such variations in
probability can show up as an interference pattern in your observations.
The general idea is applied in the following specific example.

� EXAMPLES

4. Here’s how to use the rules to predict the probability that a photon
passing through the Mach-Zehnder interferometer shown in Fig. 19.2
(p. 576) will be detected by D1. First, use the Product Rule to find
the probability amplitude for each path. For path 1 it is p1 = (1

2 , π
2 );

for path 2 it is p2 = (1
2 , π

2 + φ) where φ is some additional phase
change that you introduce by adjusting the apparatus. Second, use the
Addition Rule to find the probability amplitude for the overall outcome:
add p1 and p2 vectorially as in Fig. 19.4. The probability PB1 that a
photon will arrive at detector D1 is the square of the magnitude of the
combination of p1 and p2:

PB1 = p2
1 + p2

2 + 2p1p2 cos φ =
1
2
(1 + cos φ). (3)

Do you see how the difference in phases of p1 and p2 leads to interference
in the probability PB1? This equation produces the smooth curve that
fits the data in Fig. 19.3.
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ptot p2

p1

FIGURE 19.4 Probability amplitudes p1 and p2 add like vectors.

� EXERCISES

5. Calculate PB2 , the probability a photon will be registered by
detector D2 in Fig. 19.2.

6. What should be the value of PB2 + PB1? Is it?

Indistinguishability

To apply the Addition Rule correctly you need to understand what is
meant by “indistinguishable.” A couple of examples may help. Con-
sider the two paths through the Mach-Zehnder interferometer shown in
Fig. 19.2. A photon can arrive at detector D1 by either path: it can reflect
from BS1 and pass through BS2, or it can pass through BS1 and reflect
from BS2. If the two path lengths are the same, i.e. �1 = �2, nothing in
the apparatus or the outcome can tell you which path the photon took.
The two paths are indistinguishable.

Or suppose, as shown in Fig. 19.5, two identical photons, γ1 and γ2,
come from a down converter and arrive at a beam splitter at the same
time. There are four possible outcomes, each with its own probability
amplitude: photons γ1 and γ2 arrive together in detector D1 (call the
probability amplitude pD1D1); the two photons arrive together in detec-
tor D2 (for which the probability amplitude is pD2D2); γ1 arrives at D1

and γ2 arrives at D2 (for which the probability amplitude is pD1D2); γ1

arrives at D2 and γ2 arrives at D1 (for which outcome the probability
amplitude is pD2D1). Notice that nothing in the apparatus or the outcome
can distinguish between the last two possibilities. Consequently, the prob-
ability amplitude for registering a photon in D1 and D2 at the same time
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down
converter 

FIGURE 19.5 Two photons, γ1 and γ2, enter a beam splitter BS at the same time,
one at each entry port.

(coincidence) is the (vector) sum of the two probability amplitudes pD1D2

and pD2D1 . (As you will see in problem 5, for this particular case the sum
turns out to be zero.)

What might make different paths to an outcome be distinguishable? In
the first example, if one path were longer than the other, say �1 > �2, then
a photon would take longer to travel path 1 than to travel path 2, and the
paths could be distinguished by the photon travel times. In the second
case, suppose one photon had a measurably different frequency from the
other. Then it would in principle be possible to distinguish between pD1D2

and pD2D1 , and the Addition Rule would not be applicable.

The Uncertainty Principle, Coherence Length, and Indistinguishability

Given that interference occurs only between indistinguishable processes,
you might think that as soon as two path lengths in an interferometer
differ by any amount there would be no interference. This is not the case.
The uncertainty principle shows that there is always a range of differences
in the path lengths for which the paths are indistinguishable. You can see
that this is true in two different ways.

First, any set of photons will have some spread of wavelengths Δλ
however small. As a result, they will have a spread of momenta. This is
because p = h

λ and differentiation shows you that

Δp =
hΔλ

λ2
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where p is momentum. The uncertainty principle connects this spread of
wavelengths and momenta to a corresponding spread in space Δx:

ΔxΔp ≈ h = Δx
hΔλ

λ2

which can be rewritten as

�c = Δx =
λ2

Δλ
. coherence length (4)

The fact that a photon can not be localized any better than Δx means
that two path lengths that differ by no more than Δx are equivalent
and indistinguishable. Consequently, you can vary the difference between
path lengths by as much �c before interference disappears. This quan-
tity �c is important for understanding the behavior of any interference
phenomenon, and it is called the “coherence length.”4

Second, the time-energy version of the uncertainty principle limits how
distinguishable one path is from another by differences in a photon’s travel
time along the different paths. There is always some finite interval of time
Δt for which the two possibilities will be indistinguishable as long as the
travel times differ by less than Δt. If a photon has a spread of frequencies
Δf , then it has a corresponding spread of energies ΔE = hΔf . This
spread of energy means, according to the uncertainty principle, that you
will always be unsure by an amount Δt of the instant t0 at which the
photon was created. As a result, travel times (tdetection − t0) are always
uncertain by the same Δt and

τc = Δt =
h

ΔE
=

1
Δf

,

where τc is called the “coherence time.”
Notice that the coherence time and coherence length of photons are

directly related by the speed of light c, i.e., �c = c τc.

� EXERCISES

7. Show that Δf and Δλ are connected by the relation Δf = cΔλ
λ2 .

8. Then show that if �c = c τc, �c = λ2

Δλ .

4Using h rather than h̄/2 in the uncertainty principle gives a quantum definition of coherence
length that is the same as the definition used in classical wave theory.
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9. The spread in frequencies Δf is often referred to as “bandwidth.”
What are the coherence length and coherence time of a helium-neon
laser (λ = 632.8 nm) that has a bandwidth of 1.5 GHz?

10. Using this He-Ne laser, by approximately how much can you
lengthen one arm of an interferometer compared to its other before
you will cease to observe interference?

There is more to say about indistinguishability and about coherence.
For example, there are partially distinguishable processes that result in
partial interference. You can look forward to learning about such things
in some other book.

19.6 RULES OF QUANTUM MECHANICS

The properties of probability amplitudes and the idea of indistinguisha-
bility make it possible to reduce quantum theory to a few simple
rules.5

1. Outcomes of measurements are described in terms of probabilities P .
Values of P are predicted from probability amplitudes. A probability
amplitude has both a magnitude p and a phase φ, and the probabil-
ity P of an outcome is the square of the magnitude of the probability
amplitude for that outcome, i.e.,

P = p2. (5)

2. When an event consists of several sub-events in sequence, the prob-
ability amplitudes for each sub-event multiply together according to
the Product Rule, illustrated on p. 581. The magnitude of the total
probability amplitude is the product of the magnitudes of the indi-
vidual probability amplitudes; and the phase of the total probability
amplitude is the sum of their phases.

p = p1p2 and φtotal = φ1 + φ2. (6)

5To see how elegantly the great twentieth-century physicist Richard Feynman has done this
reduction, read his popular lectures QED: The strange theory of light and matter, (Princeton
University Press, 1985). For a more detailed treatment read R.P. Feynman, R.B. Leighton and
M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, 1965) Vol. 3, Chap. 3.
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3. When there are alternate ways by which an event can occur and
these ways are indistinguishable, the total probability amplitude is the
(vector) sum of the individual probability amplitudes as illustrated in
Example 4, and the probability P is the square of the magnitude of
this combination. Thus, for the case of two probability amplitudes p1

and p2 differing in phase by φ, the corresponding probability P is

P = p2
1 + p2

2 + 2p1p2 cos φ. (7)

4. Now comes the big difference between distinguishable and indistin-
guishable. When alternate ways by which an event can occur are
distinguishable, the total probability of the event is the sum of the
probabilities of the individual alternatives. This means

P = P1 + P2 = p2
1 + p2

2, (8)

and there is no term with phase dependence; there is no inter-
ference. Interference only occurs between probability amplitudes of
indistinguishable processes.

5. There is also a rule that tells you the phase of a probability amplitude
of a photon after it has traveled some distance. When a photon with a
wavelength λ travels a distance �, its probability amplitude acquires a
phase 2π�/λ. If there is only one path, you don’t need to worry about
the phase, but when there are two paths of lengths differing by less
than the coherence length, i.e., �1 and �2 such that |�2 − �1| ≤ �c, the
interference is governed by the phase difference φ where

φ =
2π
λ

(�1 − �2). (9)

Does Interference Occur One Photon at a Time?

As you have seen, the answer is “Yes.” The data in Fig. 19.3 show that the
observed interference pattern builds up one photon at a time. Moreover,
the rules of quantum theory predict that the interference pattern should
vary as the solid curve in Fig. 19.3. This curve is a graph of Eq. 3. You
can see that to within the usual statistical fluctuations of such counts, the
data confirm the theory.6

6You can find more detail on this experiment in “Interference with Correlated Photons:
Five Quantum Mechanics Experiments for Undergraduates,” by E.J. Galvez, C.H. Holbrow,
M.J. Pysher, J.W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, in American Journal
of Physics V. 73, p. 127 (2005).
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FIGURE 19.6 Diagram of a Mach-Zehnder interferometer with a bomb in one of its
arms.

Spookiness of Superposition

The “bomb” experiment is a hypothetical illustration of how strange the
consequences of superposition in quantum mechanics can be. Consider a
Mach-Zehnder interferometer set so the paths are indistinguishable and
φ = π. Thus the detector at B will detect no photons because P = 0
(see Eq. 3). However, if the paths are made distinguishable by blocking
one of the arms then the probability of detecting a photon at B becomes
P = 1/4. Half of the photons will be blocked; 1/4 of the photons will go
to port B; and 1/4 will go to port C.

Now suppose you have a bomb that gets triggered when a single pho-
ton hits it. If you place this hair-triggered bomb in arm 2 as shown in
Fig. 19.6, it makes the paths distinguishable, because, if a photon gets
through without setting off the bomb, you know that it took the other
path; and if the bomb goes off (and you survive) then you know the
photon took that path. Now send one photon into the interferometer.
Because the bomb makes the paths distinguishable, there is 25% prob-
ability that the photon will reach B. The fact that a photon reaches B
means that the photon that reaches it “knows” that there is a bomb in
arm 2 without going through it! (Remember: if the bomb were not there,
the two paths would be indistinguishable and because of the π phase dif-
ference, no photons would reach B.) The photon detects the bomb without
touching it! (Of course, this is not a failsafe way to detect bombs: there
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is also 50% chance that it will go kaboom.) The point is that quantum
mechanics makes some predictions that seem implausible, but when you
do the experiment, the results agree with quantum mechanics.

Indistinguishability: An Ingenious Experiment

The quantum mechanical consequences of indistinguishability are vividly
shown in an especially interesting experiment done by physicists at the
University of Rochester.7

A schematic diagram of their apparatus is shown in Fig. 19.7. It works
like a double-slit device, but instead of two slits, it has two down-converter
crystals of lithium iodate, labeled NL1 and NL2 in the figure. Into each
comes a beam of 351.1 nm light brought from an argon laser by way of
the beam splitter BSP. From each crystal come two beams of photons;
one is called the “idler” beam and is labeled i1 or i2; the other is called
the “signal” beam and is labeled s1 or s2. The exact values of wavelengths
of the idler and signal photons depend upon the geometry of the crystal
and the angle of incidence of the entering photon. In this experiment the
signal photons have wavelengths of 632.8 nm and the idler photons have
wavelengths of 788.7 nm.

� EXERCISES

11. Show that the frequencies of the outgoing beams add up to
the frequency of the incoming beam. Do this without converting the
wavelengths to frequencies.

NL1

NL2

M1

V1

V2

s1

s2

i2

i1BSP
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Di
IFi
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Coincidence

NDF
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FIGURE 19.7 Schematic diagram of two-crystal analogue of double-slit interference
apparatus. Taken with permission from X.Y. Zou, L.J. Wang, and L. Mandel, Phys.
Rev. Lett. 67, 318–321 (1991) c©1991 The American Physical Society.

7X.Y. Zou, J.L. Wang, and L. Mandel, “Induced Coherence and Indistinguishability in Optical
Interference,” Phys. Rev. Lett. 67, 318–321 (1991).
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The signal beams are brought together by the mirror M1 and recom-
bined at the output beam splitter BSO. As Fig. 19.7 shows, there are
two different paths, either NL1→M1→BSO→Ds or NL2→BSO→Ds, by
which signal light can reach the detector Ds, and differences in the dis-
tances along these paths will give rise to phase differences that result in
interference.

After photons pass through BSO, they pass through a filter IFs, which
eliminates any idler light so that only signal photons reach the detector
Ds. When the phase of the probability amplitude of the signal photons is
varied by shifting the output beam splitter BSO a little, the count rate in
the detector varies as shown in curve A of Fig. 19.8. It is an interference
pattern.

You know that double-slit interference occurs only as long as the appa-
ratus is arranged so that the two different paths by which the photon can
reach the output detector are indistinguishable. In an exactly analogous
way, an interference pattern occurs in the Rochester apparatus only as
long as the apparatus is arranged so that there is no way to tell from
which crystal the signal photon came to BSO; that is, as long as the two
paths are indistinguishable.

This is true even though the experimenters can tell from which crystal
a photon has come without disturbing the s1 or s2 photons. They use
the i1 and i2 photons from the down converters to identify from which
crystal a signal photon comes. No s2 photon is emitted without an i2
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FIGURE 19.8 Measured photon counting rate as function of displacement of BSO. The
distinction between curves A and B is explained in the text. Taken with permission from
X.Y. Zou, L.J. Wang, and L. Mandel, Phys. Rev. Lett. 67, 318–321 (1991) c©1991
The American Physical Society.
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photon. Therefore, if a detector Di, set up as shown in Fig. 19.7, records
the presence of an i2 photon at the same time Ds detects a photon, you
know that the photon at Ds must have come from NL2. This is just the
same as knowing from which slit a photon came in a double-slit setup,
although it is accomplished without any direct interaction with an s1 or
an s2 photon. What is the result? It is curve B of Fig. 19.8; there is no
interference.

Well, then, how do they get interference in the first place? To get in-
terference the apparatus must be set up so there is no possible way to
distinguish which path a photon took in reaching Ds. In an apparatus in
which it is in principle impossible to distinguish which path the photon
takes, interference occurs. This is like all the previously considered exam-
ples of interference, where a particle—an electron, a photon, a neutron,
or a buckyball—contributed to the build-up of an interference pattern by,
in some sense, passing through two slits at once.

The experimenters arranged their apparatus to make the two paths in-
distinguishable by carefully aligning it so that i1 photons passed through
the crystal NL2 and emerged exactly along the path that i2 photons fol-
lowed as shown in the diagram. Then the detector Di cannot tell whether a
photon arriving at Ds came from NL2 or NL1. Under these circumstances
the interference pattern of curve A was obtained.

It is important to understand that it is not the presence of Di or the ac-
tual detection of i2 photons that eliminates the interference pattern. Just
arranging the apparatus so that it contains information that distinguishes
which crystal the interfering photons came from is enough. Nature is con-
structed in such a way that indistinguishable paths lead to interference.
This means indistinguishable in principle, not just in practice. Perhaps
the Rochester experimenters Zou, Wang, and Mandel say it better:

Whether or not this auxiliary measurement with Di is actually
made, or whether detector Di is even in place, appears to make no
difference. It is sufficient that it could be made, and that the photon
path would then be identifiable, in principle, for the interference to
be wiped out.

To make this point experimentally the Rochester physicists carefully
aligned their apparatus to have the i1 and i2 beams exactly coincide. Un-
der these conditions they observed and recorded an interference pattern.
Then they inserted an absorber to block the i1 beam, as shown by the
dashed line in Fig. 19.7. With i1 blocked, any photon detected at Di sig-
nals that a photon detected at the same time with Ds is from NL2. Under
these new conditions, with an absorber blocking i1, the interference pat-
tern disappeared, and the observers measured curve B in Fig. 19.8. Notice
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that Di has nothing to do with this result; it does not have to be present
at all. Blocking i1 makes it possible in principle to distinguish the s2 pho-
tons from the s1 photons, and that is enough to guarantee that there is
no longer any interference.

� EXERCISES

12. Suppose the experimenters misaligned their apparatus just
enough so that the counter at Di could distinguish i1 photons from i2
photons by the slightly different directions from which they were com-
ing. Would the interference pattern be present? Explain your answer.

19.7 SUMMARY

This chapter emphasized photons rather than atoms because we wanted
you to see experimentally observed quantum behavior, and it is easier to
perform experiments on quantum behavior with photons than with atoms.
Nevertheless, atoms can be made to show the same quantum behaviors
as photons. Atoms can exhibit interference and interesting superpositions
of their properties. For example, physicists have made an atom laser in
which atoms act collectively and coherently just as photons do in an op-
tical laser. Of course, like photons, atoms can also behave as discrete
particles. Whatever the behavior of atoms, it is well described with prob-
ability amplitudes and the same quantum rules as describe the behavior
of photons.

Like a photon, an atom can interfere with itself, and to explain inter-
ference you need the strange idea that the atom occupies a superposition
of different positions all at the same time. Just as in the case of a photon,
superpositions of an atom obey the uncertainty principle: An atom with a
narrow range of locations always has a broad range of momenta; an atom
with a narrow range of momenta has a broad range of locations.

In general, a quantum system exists in a superposition of many different
states, e. g. different locations, but when a measurement is made on the
system, the system takes on some particular, definite value from among
the many possible. Which one of the possible values will be obtained
in any given measurement is entirely unpredictable. Quantum theory can
only predict the probabilities of outcomes, i.e., how many times a given
value will be obtained when a large number of measurements are made
on identical systems.
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The concept of indistinguishability was also introduced in this chapter.
Only indistinguishable processes can lead to interference. The ideas of
coherence length and coherence time connect indistinguishability and the
uncertainty principle. It provides the latitude that permits processes to
be indistinguishable over some range of differences of their properties.
Indistinguishability and its consequences are very important in quantum
theory, and the next chapter has more to say about these.

PROBLEMS

1. When a laser pointer is projected on a screen we see a red (λ =
670 nm) spot with an area of ∼1mm2. The intensity of the light reaching
the screen is 3mW.

a. Find the number of laser photons reaching the screen per unit time.
b. If you think of these photons as uniformly distributed through the

volume of the laser beam, how far apart are they? (Hint: How fast
are they going?)

2. Consider the Mach-Zehnder interferometer shown in Fig. 19.2 (p. 576).
Each beam-splitter reflects half and transmits half of the intensity of the
light that is incident on it. The interferometer has detectors D1 and D2

at its output ports.
a. The intensity of the incident light is I0. If you block one of the arms,

what is the intensity of the light exiting each of the interferometer
ports (in terms of I0)?

b. Both arms are now unblocked. The intensity of the light exiting to
D1 is I1 = (I0/2)[1+cos φ], where φ is the phase difference between
the beams from the two arms due to the difference between the
lengths of the two arms. Find an expression in terms of I0 and φ
for the intensity of photons exiting to D2. Hint: energy must be
conserved.

c. The wavelength of the light is 900 nm. Find I1 when the difference
between the lengths of the two arms (i.e., �1 − �2) is 2 μm.

d. Consider a signal photon entering the interferometer. The lengths
of the two arms are now the same (i.e., �1 = �2).
i. If the paths are indistinguishable, what is the probability that

the photon will be detected at D1?
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ii. If the paths are indistinguishable, what is the probability that
the photon will be detected at D2?

iii. If the paths are distinguishable, what is the probability that
the photon will be detected at D1?

iv. If the paths are distinguishable, what is the probability that
the photon will be detected at D2?

3. Consider the Mach-Zehnder interferometer shown in Fig. 19.9. It
has 50–50 beam splitters, which reflect 50% of the intensity of the light
incident on them and transmit the other 50%.

a. Find the probability of transmission through a 50–50 beam splitter.
b. Find the magnitude of the probability amplitude of going through

the beam splitter.
c. The probability amplitude of going through the two beam splitters

is the product of the individual probability amplitudes. What is
the magnitude of the probability amplitude for going from A to B
when arm 1 is blocked?

d. What is the probability of a photon to go from A to C when arm
2 is blocked?

e. If the two paths of the interferometer are distinguishable,
i. What is the probability of going from A to B when neither

arm is blocked?
ii. What is the probability of going from A to C when neither

arm is blocked?

M

M

BS

BS

B

C

A

l1

l2

FIGURE 19.9 Diagram of a Mach-Zehnder interferometer.
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f. If the paths through the interferometer are indistinguishable,
i. What is the probability for a photon to go from A to B when

φ = 3π?
ii. If 500 photons per second are incident to the interferometer

from A, how many photons reach B in 1 s when φ = 3π/2?
iii. If 500 photons per second are incident to the interferometer

from A, how many photons reach B when φ = 3π?
iv. Based on the previous question, how many photons reach C in

1 s when φ = 3π?
v. If 500 photons per second are incident to the interferometer

from A, what is the value of φ if 250 photons reach B in 1 s?

4. Consider the Mach-Zehnder interferometer shown in Fig. 19.9. As-
sume it has 20-80 beam splitters so that 20% of the light is reflected
through each beam splitter while 80% of the light is transmitted.

a. Find:
i. The probability amplitude for a photon to be reflected by the

beam-splitter.
ii. The probability amplitude for a photon to be transmitted by

the beam-splitter.
iii. The probability for a photon to go from A to B through arm

1 if arm 2 is blocked.
b. If the arms of the interferometer have the exact same length and

both arms are unblocked:
i. Find the probability of a photon going from A to B if the arms

are distinguishable.
ii. Find the probability of a photon going from A to B if the arms

are indistinguishable.
c. If the wavelength of the light is 500 nm and the number of photons

incident on the interferometer per second is N = 1000, make a
graph showing the number of photons detected at B in 1 s as a
function of the difference between the lengths of the two arms.
Your graph must have:
i. A curve similar to what you would get in the lab.
ii. Scale for the vertical axis.
iii. Scale for the horizontal axis.

5. Figure 19.5 on p. 583 shows an apparatus set to deliver simultaneously
a photon to each entry port of a beam splitter. Given that the probability
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BS1

A

1

B

C

BS2

M

M

signal
2

FIGURE 19.10 Diagram of a Mach-Zehnder interferometer with a neutral density
filter in arm 1. (Problem 6).

amplitude is ( 1√
2
, π

2 ) to reflect from a beam splitter and ( 1√
2
, 0) to pass

through it, show that the probability of detecting coincidences between
D1 and D2 is zero if the two photons are initially in phase. In other words,
show that as long as the arms are of equal length, the two photons both
go to D1 or they both go to D2; they never go one to D1 and the other
to D2.

6. Consider the interferometer in Fig. 19.10. It has a neutral density
filter with a transmission amplitude of 1/2 in arm 1.

a. What is the magnitude of the probability amplitude of going from
A to B via arm 1?

b. What is the probability of going from A to B when φ = 4π?

7. Figure 19.7 on p. 588 shows a box marked “coincidence.” It represents
a device that the experimenters used to tell them when photons arrived
at the two counters Ds and Di at nearly the same time, i.e., in coincidence
with each other. Explain why the experimenters needed this device. Would
they have observed an interference pattern without it?



2020C H A P T E R

Entanglement
and Non-Locality

20.1 INTRODUCTION

Before you finish this book you need to learn about experiments that sup-
port the belief that quantum indeterminacy is a fundamental feature of
atoms, indeed, of the entire physical world. To understand these exper-
iments you need to know about a remarkable and important feature of
quantum superposition called “entanglement.” As you will see, entangle-
ment not only helps to establish that indeterminacy is a basic feature of
reality, it also reveals surprising, non-local connections between quantum
systems far apart from each other. It shows that quantum mechanics is a
non-local theory. Non-locality is as strange as fundamental indeterminacy.
This chapter discusses both.

An analogy may help you appreciate better how superposition makes
the characteristics of a quantum object indefinite. Suppose you own many
quantum socks that are either green or orange when you observe them.
As a skilled quantum mechanic, you can prepare your socks in states that
are superpositions of the two colors. Then when you measure a sequence
of your socks (i.e., look at them one after another), sometimes the mea-
sured sock will be green and sometimes orange. Quantum theory can not
predict which color you will see; it can only predict what fraction of many
observed socks will be green (or orange).1 It seems that the socks have
no definite color until you observe them, that a quantum system has no
definite property until you measure it. Nature is not locally deterministic.

1It is possible to prepare quantum systems to be in a state with only one possible outcome;
then you can predict it.

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 597
DOI 10.1007/978-0-387-79080-0 20, c© Springer Science+Business Media, LLC 1999, 2010
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This idea contradicts deeply engrained intuitions and leads to hot
arguments about what is reality. Some physicists have argued that quan-
tum mechanics is correct as far as it goes; it just does not go far enough;
it is an incomplete theory. They argue that there are variables that de-
termine the outcome of each measurement, e. g., whether a sock will be
green or orange, but these variables are hidden from quantum theory, and
a more complete theory will take these hidden variables into account and
assign properties unambiguously to each object: a green sock will be green
before you measure it.

For many years no one could think of a way to test whether there might
be valid hidden-variable theories. Then in 1964 Irish physicist John Bell
provided a breakthrough insight that hidden variable theories—theories
in which objects have definite properties whether you measure them
or not—must obey a set of constraints now called “Bell’s inequalities.”
Experiments show that Nature violates Bell’s constraints just as quantum
theory predicts; a quantum object does not have definite properties until
you measure them.

Indeterminacy and non-locality are fundamental aspects of Nature;
they can be made to show up in any quantum system. It is particularly
convenient, however, to use entangled, polarized photons to test these
ideas, and some experiments that do this are described below. But first
you need to learn about the polarization of light.

20.2 POLARIZATION

Photons—and electrons, many kinds of atoms, nuclei, and other quan-
tum systems—can be polarized. This means that the individual particles
have something about them that specifies an orientation in space. It is as
though a photon carries an arrow that points in either of two directions—
in the direction in which the photon is traveling or opposite to that
direction. A stream of photons with their arrows all pointing in the same
direction is said to be “polarized.”2

The Wave Picture of Polarization

The classical wave picture provides another way to visualize polarization.
Chap. 10 told you that light is a transverse wave. This means that the

2These photon are actually circularly polarized. It as though each photon is like a spinning
top; the photon’s arrow points along the axis of the top—along the direction of travel for
right-handed spin; opposite the direction of travel for left-handed.
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FIGURE 20.1 A representation of an electromagnetic plane wave traveling in the
direction of the large arrow. The planes are λ/24 apart and extend out to a large
distance (many, many wavelengths). The electric field is indicated by the small arrows
and is the same at every point in any given plane.

wave oscillations are perpendicular to the wave’s direction of travel. Light
waves (and other kinds of electromagnetic waves) are transverse oscilla-
tions of electric and magnetic fields. The electric field of the wave oscillates
perpendicular to the direction in which the light is traveling, and the mag-
netic field oscillates perpendicular to both the direction of travel and to
the direction of the electric field. The magnitude of the wave’s magnetic
field B is related to the magnitude of its electric field E by B = E/c.

You can produce light waves in which the electric field everywhere in
space oscillates back and forth along the same direction. Figure 20.1 is
a representation of such a wave at a single instant in time (a snapshot).
The wave’s direction of propagation is shown by the large arrow; the small
arrows show the direction and magnitude of the electric field. Although
the arrows representing the electric field are drawn only on finite planes,
you should imagine that the wave fills all space (an idealization). The
electric field has the same magnitude and points in the same direction on
any plane surface perpendicular to the direction of travel. Because the field
is oscillating in time and space, at a given instant of time the magnitude
of the field is different on different plane surfaces, but regardless of the
variation of magnitude, the fields point either negatively or positively in
the same direction everywhere in space.
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Such waves are said to be “linearly polarized” because the electric field
everywhere points along the same line. They are also described as “plane
waves” because, everywhere on any plane perpendicular to the direction
of motion, the electric field has the same magnitude and direction. Not
all electromagnetic waves are linearly polarized or plane waves, but these
are the simplest kind, and they are a good approximation to the waves
produced by a laser or a down-conversion crystal.3

Using the wave picture, you describe linear polarization by the direc-
tion along which the electric field oscillates. Imagine an x-y-z coordinate
system with the beam of light traveling along the z-axis. Then its elec-
tric field is oscillating along some direction lying in the x-y plane. The
direction you ascribe to the linearly polarized light is the direction of the
electric field, e. g., the angle θ that it forms with the x-axis. Thus, 60◦
linearly polarized light is a wave with an E field oscillating everywhere in
space along a line at 60◦ to the x-axis as shown in Fig. 20.2.

It is common to specify the electric field by its components in the
coordinate frame you have chosen. For this example, the components are
(E0 cos θ,E0 sin θ) where E0 is the value of the wave’s electric field at
its maximum. When the electric field oscillates parallel to the horizontal
direction (θ = 0 in Fig. 20.2), the light is said to be horizontally polarized.
Similarly, when the electric field oscillates parallel to the vertical axis
(θ = π/2) the light is said to be vertically polarized.

H

E0

V

E0 sin

E0 cos

FIGURE 20.2 Electric field vector E0 decomposed into components aligned with or-
thogonal polarization axes; E0 cos θ will be transmitted (or absorbed) as horizontally
polarized (H) light; E0 sin θ will be transmitted (or absorbed) as vertically polarized
(V) light.

3The linearly polarized photons that are the quanta of these linearly polarized waves are
actually in superpositions of their two fundamental states of circular polarization.
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� EXERCISES

1. What are the components of E1 and E2 in Fig. 20.3?

Sheet Polarizers

Light from the Sun or from a lamp is unpolarized. That is, the probability
amplitudes of the arriving photons have randomly different phases. Or,
in terms of the wave picture, the incoming light is made up of a mix of
waves with polarizations in randomly different orientations.

You can produce linearly polarized light by passing unpolarized light
through a “sheet polarizer.” This is a sheet of transparent plastic contain-
ing long-chain molecules oriented parallel to each other. These molecules
absorb light polarized parallel to them, and this direction is the polarizer’s
“extinction axis.” The direction at right angles to the extinction axis is
the polarizer’s “transmission axis” because light polarized parallel to this
direction is almost all transmitted by the polarizer.4

The lenses of polarizing sunglasses are made of sheet polarizers ori-
ented to block oscillations parallel to the horizon. When light reflects
from asphalt on the surface of a road or from water on a lake or pond, the
oscillations parallel to the horizon are reflected more efficiently than the
others and increase glare. By blocking this part of the reflected light, po-
larizing sunglasses significantly reduce glare. Polarizing sheets are also
used as lenses in glasses for viewing 3D movies. One viewing system

2

1

H

E1
V

E2

FIGURE 20.3 Figure for Exercise 1.

4Polaroid sheet is a commonly available kind of sheet polarizer. Notice that the so-called “axis”
is not really an axis; it is a line of direction that is the same everywhere on the sheet.
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projects two images polarized at right angles to each other; the polar-
izers in front of your eyes are oriented perpendicular to each other, so the
left eye detects one image and the right eye the other, and you see them
as a single 3D image.

A simple experiment demonstrates polarization and the effects of
polarizing sheets. Take two polarizing sheets and put them with their
transmission axes at right angles from each other. The first sheet absorbs
all of one component of an incident oscillating electric field; the second
one absorbs the rest. Nothing is transmitted, so this combination of two
polarizing sheets is essentially opaque. Each polarizer absorbs half the
original intensity. This fact leads to a handy rule:

• When unpolarized light of intensity I0 is incident on a polarizing sheet,
half of the intensity is transmitted: IT = I0/2.

Consider a light wave polarized in the V direction and perpendicularly
incident on a polarizing sheet. Figure 20.4 shows the possible cases. The
polarizing sheet is represented by the square, and the parallel lines denote
its transmission axis. In Fig. 20.4a the polarization of the light is parallel
to the transmission axis of the polarizer, and all of the light is transmitted.
If the incident electric field is E0 then the transmitted electric field is
ET = E0 and its intensity is IT = I0.

FIGURE 20.4 Light polarized in the V direction (a) enters a polarizing sheet with
its transmission axis parallel to the V direction, (b) enters a polarizing sheet with its
transmission axis oriented at an angle θ relative to the V direction of the incident
light’s polarization, or (c) enters a polarizing sheet with its transmission axis oriented
perpendicular to the V direction.
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If the V -polarized incident electric field is perpendicular to the trans-
mission axis (Fig. 20.4c), then there is no component of electric field
parallel to the transmission axis; all of the polarized light is parallel to the
extinction axis, and it is all absorbed. The transmitted field and intensity
are ET = 0 and IT = 0.

What happens in the intermediate case shown in Fig. 20.4b? Here the
transmission axis forms an angle θ with the V -direction of the incident
polarization. Resolve the incident V -polarized electric field into two com-
ponents, one parallel to the transmission axis (E0 cos θ), and the other
parallel to the extinction axis (E0 sin θ). The former component is trans-
mitted and the latter is absorbed. This is a general case, and you need to
remember the following.

1. The transmitted electric field is ET = E0 cos θ.

2. The transmitted intensity is IT = I0 cos2 θ (in optics this is known as
Malus’s law.).

3. The light emerging from the polarizing sheet is polarized along the
transmission axis of the polarizer.

Light Through Polarizers: The Quantum Picture

For the situations described above, the quantum predictions of how much
light will emerge from a polarizer must be the same as the classical predic-
tions, because experiments show that the classical predictions are correct.
With the correct probability amplitudes, you can analyze the behavior of
polarized photons using the rules of quantum mechanics given in Sect. 19.6
(p. 585).

Suppose a polarizing sheet lies in the x-y plane of an x-y-z coordinate
system and is oriented with its transmission axis parallel to the x-axis.
Imagine that light, linearly polarized in the x-y plane at an angle θ with
respect to the x-axis, is incident along the z-axis as shown in Fig. 20.2.
Using the wave picture, you can think of the linearly polarized wave as
made of two parts, the one polarized parallel to the x-axis is transmitted,
and the other polarized parallel to the y-axis is absorbed.

But you should think of a photon in the quantum way. A photon does
not split and have some part pass through the polarizer while the rest
is absorbed. Instead, a photon that is linearly polarized at some angle
θ relative to the transmission axis of the polarizer has two probability
amplitudes: (cos θ, φ) to pass through the polarizer and emerge polarized
parallel to the transmission axis and (sin θ, φ) to be polarized parallel to
the extinction axis and be absorbed.
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These probability amplitudes give the same result as the classical wave
picture. For example, if θ = 60◦ then the magnitude of the probability
amplitude of a photon to emerge polarized parallel to the horizontal di-
rection is 1

2 . This corresponds to a projection of the electric field vector
of E0 cos 60◦ = E0

1
2 along the horizontal direction; a similar correspon-

dence holds for the photon’s probability amplitude and the electric field’s
component along the vertical axis, i.e., E0 sin 60◦ = E0

√
3

2 . For either the
photon picture or the wave picture, when the polarizer’s transmission
axis is horizontal, the transmitted intensity is I0

1
4 (i.e., proportional to

the square of the field); when the polarizer’s transmission is vertical, the
transmitted intensity is I0

3
4 .

� EXERCISES

2. What is the square of the probability amplitude for transmission of
linearly polarized photons incident on a polarizer at an angle θ = 60◦
relative to its transmission axis? What is the probability that a photon
will pass through the polarizer?

3. What is the probability that a photon will pass through if you
rotate the polarizer so that its transmission axis rotates by an
additional 90◦?

4. Which of the quantum rules in Sect. 19.6 (p. 585) did you use to
answer the previous questions?

This example shows that you can think of the state of a photon as a
superposition of other states. You can think of the photon as in a pure
state of linear polarization at 60◦ to the x-axis, but you can also think
of it as a superposition of two states, one parallel to the y-axis and the
other parallel to the x-axis. Just as there is an infinite number of ways to
resolve a vector into components, there is an infinite number of possible
superpositions that correspond to any given polarization state. You can
use whatever superposition is most convenient.

To sum up: If a photon, linearly polarized at some angle θ to the
transmission axis of a polarizer, is incident on the polarizer:

• The magnitude of the probability amplitude for the photon to be
transmitted through the polarizer is cos θ.

• The probability that the photon will be transmitted is cos2 θ.
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• Any photon that is transmitted will have a new polarization; it will be
polarized parallel to the transmission axis of the polarizer. The act of
measurement puts the photon into a new state.

A Polarizer Changes a Photon’s State

This last statement is fundamental. The polarizer projects (to use quan-
tum jargon) the transmitted photon into a new polarization state. This is
not surprising. Both from the Heisenberg uncertainty principle and from
experiments with interferometers, you know that determining the path
of a photon changes it from its initial state that is a superposition of a
broad range of locations to a different state that is a superposition of a
narrow range of positions. Measurement projects a photon from its ini-
tial state into a quite different final state. Similarly, when you measure
the polarization of a photon by passing it through a polarizer, you project
the photon from its initial state of polarization into a state of polarization
parallel to the polarizer’s transmission axis.

The following experiment with three polarizers shows you that
polarizers actually change the state of transmitted photons.

Consider unpolarized photons incident on a polarizer P1 with trans-
mission axis oriented vertically as shown in Fig. 20.5. Half of the incident
photons are transmitted, and they emerge vertically polarized.

                  

P

P

P

θ1

3

2

FIGURE 20.5 A polarizer experiment. Unpolarized light is incident on a polarizer P1

with transmission axis (thick line) oriented vertically followed by a polarizer P2 oriented
horizontally. No light comes out. Then a third polarizer P3 oriented at an angle θ is
inserted between P1 and P2. Now light comes out of P2.
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Next, pass these transmitted photons into a second polarizer P2 with
its transmission axis oriented horizontally. No photons emerge from the
second polarizer.

Now, place between the vertical and horizontal polarizers a third po-
larizer P3 oriented at an angle θ with respect to the vertical as shown
schematically in Fig. 20.5. After you do this, photons emerge from
polarizer P2 although previously they did not.

Are you surprised that adding polarizer P3 between polarizers P1 and
P2 causes light to come out? By orienting P3 with its transmission axis at
an angle θ relative to the transmission axis of P1, you cause the photons
from P1 to be projected into a state of linear polarization at an angle
(π/2 − θ) relative to the transmission axis of polarizer P2. Consequently,
P2 now receives photons in a state that it can project into transmitted
photons.

� EXAMPLES

1. You can use the product rule to do this analysis. Note that the
magnitude of a photon’s probability amplitude is 1√

2
to pass through

P1, cos θ to pass through P3, and cos(π
2 −θ) to pass through P2. Apply

the product rule to find that the magnitude of the probability amplitude
to pass through all three polarizers is

1√
2

cos θ cos(
π

2
− θ) =

1√
2

cos θ sin θ

from which it follows that the overall transmission probability PT is

PT =
1
2

cos2 θ sin2 θ =
1
8

sin2 2θ =
1
16

(1 − cos 4θ)

where the expressions have been tidied up using some trigonometric
identities.

� EXERCISES

5. Notice in Fig. 20.5 that PT has zeroes at θ = 0, π
2 , π, and 3π

2 . This
means that the intensity of the transmitted beam will be zero when P3

is set at these angles. Can you visualize rotating P3 and confirm that
there will be no transmission at these angles?
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6. A vertically polarized photon is incident on a pair of polarizers.
The first one has its transmission axis oriented at an angle θ with the
vertical. The second one’s transmission axis is oriented horizontally.

a. What is the probability for a photon to be transmitted
through the two polarizers when θ = 30◦?

b. What is the final polarization orientation of the photon?

Indistinguishability and the Quantum Eraser

The “quantum eraser” is an interesting experiment that uses polariza-
tion to distinguish which path a photon takes while passing through an
interferometer. To set up this experiment put two polarizers in each in-
terferometer arm as shown in Fig. 20.6 where each BS is a 50–50 beam
splitter. Orient the transmission axis of the first polarizer at 45◦ from
the vertical; set the transmission axis of the second one to be vertical.
Arrange the light entering the interferometer to be polarized vertically.

�

�
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 � � � � � �

FIGURE 20.6 Experimental layout for the quantum eraser experiment; the light en-
tering from A is polarized perpendicular to the plane of the diagram; each BS is a
50–50 beam splitter.
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� EXERCISES

7. What is the magnitude of the probability amplitude to go from A
to B through arm 1? (You will first have to calculate the probability
amplitude of going through the two polarizers.)

8. What do you predict will happen to the interference pattern when
the polarizers are set so that you can tell which path a photon took to
reach the detector at the output of the interferometer?

Consider the experiment in three stages.
Stage i: Begin with the pairs of polarizer set as in Exercise 7. Then

the pairs of polarizers in each arm absorb half of the photons, but the
other half come out still vertically polarized. Nothing about a transmitted
photon tells you which path it took to go from A to B. The two paths
are indistinguishable, and there is interference.

Stage ii: Next rotate the second polarizer in arm 1 from vertical
to horizontal. The magnitude of the probability amplitude for passing
through both polarizers is the same as before, but now photons coming
out of the second polarizer in arm 1 are horizontally polarized. In this ar-
rangement, photons taking the top path come out horizontally polarized,
and photons taking the bottom path come out vertically polarized. The
transmitted photons now contain information distinguishing between the
two paths, and, as you should expect, there is no interference.

Stage iii: To create a quantum eraser you install another polarizer Pout

outside the exit of the interferometer. With its transmission axis vertical
Pout transmits vertically polarized photons but not horizontally polarized
ones. Oriented horizontally, Pout transmits horizontally polarized photons
but not vertically polarized ones.

� EXERCISES

9. Find the probability for a photon to go from A to B (both arms)
when Pout is oriented horizontally.

Now perform some quantum erasure. Rotate Pout so that its trans-
mission axis is at an angle of 45◦ with the vertical axis. Then half of the
horizontally polarized photons and half of the vertically polarized photons
will go through Pout, and—this is important—all the transmitted photons
will have their polarizations oriented at 45◦. Now that they have the same
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polarization, the transmitted photons no longer carry information distin-
guishing which path they took to get through the interferometer. The
paths have been made indistinguishable! And . . .(sound of trumpets). . .
there is once again interference. Rotating the output polarizer Pout to 45◦
erases the distinguishing information.

� EXERCISES

10. For stage iii of the experiment
a. Find the magnitude of the probability amplitude for going

from A to B through arm 1.
b. What is the orientation of the polarization reaching B

coming from arm 1?
c. Find the magnitude of the probability amplitude for going

from A to B through arm 2.
d. What is the orientation of the polarization reaching B

coming from arm 2?
e. Find an expression for the probability for going from A to

B in stage iii as a function of φ, the phase difference created
by moving the mirror in arm 2.

20.3 ENTANGLED QUANTUM STATES

Entanglement provides a vivid example of non-locality, and it raises fun-
damental questions about the nature of reality. It also makes possible
experiments that show conclusively that quantum mechanics is a non-local
theory.

Entanglement by Analogy

To help you understand entanglement, recall your orange and green socks.
Suppose you have a pair of them, one green and one orange, and you don’t
know which sock is on which foot because you put them on in the dark.
Later you look and see that the sock on your left foot is orange. What
color is the sock on your right foot? You don’t need to look; you know
it’s green. Physicists say the socks are correlated. Measurement of the
properties of one sock determines the properties of the other.
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� EXERCISES

11. Suppose the sock on your left foot is green. Without looking, what
is the color of the sock on your right foot?

12. If the socks were known to be both the same color, would it still
be correct to say they are correlated?

Now if each sock was a quantum object, it could be in a superposition of
orange and green. (This is the same idea as being in two different positions
at the same time.) Then the sock on your foot has no definite color until
you make a measurement, i.e., until you look at it. (That’s the creepiness
of quantum behavior.) But when you look, you will observe a definite
color. It will be green, or it will be orange. That’s what Chapters 18 and
19 told you about quantum measurements. They also told you that there
is no way to know in advance which color you will get. If you have 100 of
these quantum socks, and you look at them one after the other, sometimes
you will get orange and sometimes you will get green.

Now comes entanglement. It is possible to prepare the two quantum
socks in a combined state such that if you measure one and find it to be
green, the other will surely be orange, but if you measure the first sock
and find it to be orange, then the second is surely green.

If you have many pairs of socks prepared in this peculiar state, you
can’t predict what color you will find when you measure the first sock.
Sometimes it will be green and sometimes it will be orange, but once you
measure it, you know that you will always get the other color when you
measure the second one.

Physicists now know how to prepare photons, electrons, atoms, and
molecules to behave like this. Quantum objects in such a state are said to
be “entangled,” and their combined state is called an “entangled state.”

Non-Locality of Entanglement

Neither entangled quantum sock is green or orange until it is mea-
sured. Then, purely randomly, it becomes either green or orange—that’s
ordinary quantum behavior. What’s new here is that measuring the first
sock puts the second sock into a definite state even though there is no
mechanism for one to affect the other. When Erwin Schödinger, discov-
ered that quantum mechanics predicted this behavior, he said “I don’t
like it, and I’m sorry I ever had anything to do with it.”
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Einstein realized that such behavior was independent of how far apart
the socks are. If you put on only one quantum sock in the dark, travel to
the Moon, and then look at your foot, as soon as you see a green sock,
you know that anyone on Earth who looks at the sock you left behind
will find it to be orange. He thought this was implausible and scornfully
referred to it as spukhafte Fernwirkungen—spooky action at a distance.

Entanglement raises in a new way the recurring question: Does an
unmeasured object have definite properties that are present before you
measure them? In the case of the entangled orange and green socks, after
you measure one sock and find it green, you know that the other sock
will be orange whenever you look at. Surely, the second sock had the
definite property of being orange before you saw its green partner. This
view is called “local realism.” Most people are by experience and intuition
convinced local realists.

Einstein believed an object possessed a property whether you measured
it or not. He argued that entanglement confirmed his view. If you can
arrange by measuring one object to know for certain that a measurement
on a second object will give a certain value for a property, that property
must belong to the object. If he had been considering the quantum socks,
he would have said the second sock was orange all along. As he (and Boris
Podolsky and Nathan Rosen) put it, the fact that quantum mechanics can
not predict a result in advance of a measurement does not mean the theory
is wrong; it means that the theory is incomplete. Physicists should look
for a deeper more complete theory.

Indeterminacy and non-locality are basic to quantum mechanics. Quan-
tum theory has built into it the feature that properties are really
unattached to any particular object until they are measured, and the
long-distance correlations of non-locality are a necessary consequence
of superposition as it is used in quantum theory. Of course, the real
question is not “What did Einstein think?”, but “How does Nature
behave?” Quantum theory certainly asserts indeterminacy and non-
locality, but what about Nature? Is it local or non-local? Do hidden
variables underlie the indeterminacy? Does experiment support one or the
other view?

For many years most physicists believed that physics could not answer
such questions. Einstein’s concerns were dismissed by Wolfgang Pauli
when he wrote to Max Born (one founder of quantum mechanics to
another), “One should no more rack one’s brain about the problem of
whether something one cannot know anything about exists all the same,
than about the ancient question of how many angels are able to sit on the
point of a needle.”
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Then, in 1964, the Irish physicist John S. Bell showed that, at least in
principle, there were experiments that could tell whether Nature is realis-
tic. He showed that predictions made by any hidden-variable theory satisfy
a certain set of inequalities, while predictions made by quantum theory do
not. It took twenty years before actual experiments could be performed,
but since then experiments of ever better quality have shown unambigu-
ously that Nature violates Bell’s inequalities. The creepy indeterminacy
of quantum mechanics is correct.

20.4 BELL’S INEQUALITY

There is nothing mysterious about Bell’s inequalities. Bell realized that
if you have a set of objects possessing (or not possessing) three different
properties A, B, and C, and if you group the objects according to their
distinct, well defined properties, the numbers of the objects in each group
must satisfy certain inequalities. The following example shows you what
Bell had in mind.

Take a handful of coins from your pocket and spread them out on a
table (get together with a friend if you are short of money). Sort the coins
into groups according to the properties given in the following table.5 The
table lists both the property, e. g., for these coins A means copper colored,
and its negation A (read as “not A”) means silver colored.

state meaning inverse
state

meaning

A copper (penny) A silver (quarter, dime, nickel)

B date before 1995 B date 1995 or later

C heads up on table C heads down on table

5In case you are not familiar with U.S. currency: quarters, dimes and nickels are worth 25,
10 and 5 cents, respectively, and they are all made of silver-colored metal alloys. Pennies are
worth 1 cent and are made of a copper-colored metal alloy. Other currencies may have more
interesting options.
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Suppose that your handful of coins lays out as follows:

Coin Year Orientation State

penny 1993 heads up A B C

nickel 1989 heads up A B C

quarter 2001 heads up A B C

dime 1993 heads up A B C

nickel 1995 heads up A B C

penny 1997 tails up A B C

quarter 2000 tails up A B C

penny 1984 tails up A B C

quarter 1991 tails up A B C

nickel 1985 heads up A B C

penny 1975 tails up A B C

penny 1985 heads up A B C

quarter 2002 tails up A B C

nickel 2004 tails up A B C

Find the number of coins with property A and property B; call
this number N(A,B). There is only one such coin, the 1997 penny, so
N(A,B) = 1. There are three coins older than 1995 with their heads up,
so N(B,C) = 3. Can you see that N(A,C) = 3?

Bell pointed out that such data will always satisfy the inequality

N(A,B) + N(B,C) ≥ N(A,C). a Bell inequality (1)

This is certainly true for the present example: 3 + 1 ≥ 3.
The inequality is general. It applies no matter how you label the proper-

ties. (See Problem 5.) The diagram in Fig. 20.7 shows the general validity
of Eq. 1; by inspection you can see that the combined areas of N(A,B)
and N(B,C) will always be greater than or equal to N(A,C). A more
formal proof of the general validity of Eq. 1 is given in the appendix at
the end of this chapter (p. 621).

The proof that the inequality in Eq. 1 is always true requires only
one assumption—that an object possesses one property or the other, but
never some strange superposition of them. In Einstein’s world real objects
possess each property as unique and distinct, i.e., the properties A and A
are distinct and mutually exclusive. The same is true for B and B, and
for C, and C. If you can’t believe that a coin can exist as a superposition
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A B AA B B

C C C

A AB B C C
FIGURE 20.7 Venn diagrams of a Bell inequality. The shaded part of the left-hand
diagram shows everything included in A but not included in B; the shaded part of
the middle diagram is everything included in B but not in C; the shaded part of the
right-hand diagram is everything included in A but not in C.

of being a penny and a nickel, how can you believe that an atom or a
photon can exist as a superposition of two (or more) states? One answer:
practice, practice, practice . . . until you do.

20.5 VIOLATING BELL’S INEQUALITY

Here is a possible experiment to test if reality is non-local. Prepare en-
tangled photons in one or another of three different polarizations, A, B,
and C, chosen because quantum theory predicts they will result in the
violation of Bell’s inequality in Eq. 1. Measure these particular photon
states, and observe that, as quantum theory predicts, your results violate
Bell’s inequality. Quantum theory is correct.

Beam-Splitting Polarizer

For these experiments you need “two-beam polarizers.” Unlike sheet po-
larizers, which absorb one polarization state and transmit the other,
two-beam polarizers transmit both polarization states, but as separated
beams. If you send a beam of unpolarized light into a two-beam polar-
izer, the photons will emerge in two separated beams. The photons in one
beam will be polarized at right angles to those in the other.

A two-beam polarizer has a transmission axis. When the photons
incident on a two-beam polarizer are all polarized parallel to this trans-
mission axis, only one beam comes out. If now you rotate the transmission
axis (by rotating the polarizer), a second beam will appear. When
the transmission axis reaches 45◦, the two beams will be of equal
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Transmission axis vertical Transmission axis horizontal

FIGURE 20.8 Polarizing beam splitters are different than sheet polarizers. They trans-
mit and reflect instead of transmit and absorb. The transmission axis is in the plane
perpendicular to the plane of the splitting surface.

intensity. When the transmission axis reaches 90◦, the first beam will
have disappeared and all the photons will be in the second (reflected)
beam.

Because a two-beam polarizer has one beam of input and two beams
of output, it acts like the beam splitters used in interferometers. For this
reason, it is often called a “beam-splitting polarizer,” or a “polarizing
beam splitter.” Photons polarized perpendicular to the beam splitter’s
reflection plane are reflected; photons polarized parallel to its reflection
plane are transmitted. Thus, the polarizing beam splitter has its trans-
mission axis in the plane perpendicular to the surface that splits the light.
This is illustrated in Fig. 20.8 for splitting angles of 90◦.

Measuring the Photon’s State of Polarization

When photons are incident on a two-beam polarizer at some angle θ to
its transmission axis, the photons that would have been absorbed by a
sheet polarizer are now transmitted in a second beam. If a photon linearly
polarized at an angle θ to the transmission axis enters the polarizer, the
magnitude of its probability amplitude to emerge polarized parallel to
the transmission axis is, as before, cos θ. Its probability amplitude to
emerge in a polarization state perpendicular to the transmission axis is
sin θ. (For a photon entering a sheet polarizer, sin θ was the probability
amplitude that it would be absorbed.)

Now imagine you set up a polarizer in a photon’s path in one of the
three orientations—A, B, or C. When the polarizer is in the A orientation,
some photons will come through in one beam—call it the A beam—and
some will come through in the other beam—call it the A beam. A similar
description applies to the B and C orientations and their outgoing beams.

What does a local realist say when a photon comes out in the A beam?
The local realist says the photon possessed A polarization when it entered;
that’s why it came out in the A beam. If it came out in the A beam, that’s
because it did not possess any A polarization when it entered.
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What if you want to know how many of the photons possessing A polar-
ization also possess B polarization? That is, what if you want to measure
the value of N(A,B). It’s wrong to think you can answer this question
by taking the N(A) of photons that come out in the A beam and passing
them through a polarizer in the B orientation and measuring how many
come out in its B beam. If you could do this, you could measure N(A,B),
N(B,C), and N(A,C) and see if these numbers satisfy the Bell inequality
in Eq. 1 as they must if the photon possesses definite polarizations before
you measure them.

The major obstacle to this approach is that passage of the photon
through the A polarizer changes the photon’s state. Although all the
photons coming out in the A beam are A polarized, you have no idea
what passage through the A polarizer did to the B or B polarizations of
the photon. You have no right to assume after the first measurement that
the photon possesses all the properties that it had before you made your
measurement. You have no reason to expect your second measurement
with the B polarizer to give you the value of B polarization that the
photon would have had if it had gone through B first. The photon coming
out of your measurement apparatus is quite different from the one that
went in; you can not measure the same photon twice.

Entanglement offers a way around this difficulty. You can arrange your
down-converter so that each idler and signal photon pair emerge with
their polarizations entangled. Then the two photons have correlated po-
larizations. For example, your apparatus can be adjusted so that an idler
photon and the accompanying signal photon are always polarized parallel
to each other.6 Then if you measure the polarization of an idler photon
and find it in the A state, you know without making a measurement on
it that the signal photon is also in the A state.

Notice that this arrangement does not mean that the outgoing photon
beam is polarized. If you measure the polarizations of a succession of idler
photons, you will find they vary randomly; the beam of idler photons
is unpolarized. Nevertheless, the signal photon’s polarization is always
parallel to whatever polarization the idler photon has. To check that this
is true, you could set up polarizing beam splitters to detect both the idler
and the signal photon. If the polarizing beam splitters are oriented with
both transmission axes horizontal, you will observe, as shown in Fig. 20.9,
that when one photon is transmitted through one polarizer, its partner
is always transmitted by the other polarizer, and when one photon is
reflected the other one is always reflected.

6You can have other correlations; for instance, the down-converter can be set to produce idler
and the signal photons that are always polarized perpendicular to each other.
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FIGURE 20.9 Possible outcomes when photons with entangled parallel polarization
are incident on polarizing beam splitters that are both set to reflect the light in the
horizontal plane.

FIGURE 20.10 Diagram of the behavior of photons with entangled parallel polariza-
tion incident on polarizing beam splitters with their transmission axes perpendicular
to each other.

Or you could orient a polarizer horizontally in front of one beam and
another polarizer vertically polarized in front of the other beam. As shown
in Fig. 20.10, with the polarizers perpendicular to each other, when one
photon is transmitted the other is reflected. Figures 20.9 and 20.10 illus-
trate that the polarizations of these entangled photons are always parallel.
Note that the polarizers will give the same results as in Fig. 20.9 if they
are oriented with their transmission axes at 45◦ to horizontal (shown in
Fig. 20.11) or any other angle, as long as they are parallel to each other.

Perhaps this sort of correlation does not bother you. After all, a mea-
surement of one photon tells you about the other. If you pick up a left
shoe out of a pair, you know for sure the other one is a right shoe. A
measurement of a property of one shoe tells you about a property of the
other.

And yet, when you think harder, you can see this is strange. These pho-
tons are somehow connected. Suppose they were not. Suppose they were
simply independent parallel photons with each photon in a definite state
of polarization—say horizontal—when it arrived at a polarizer. Then if
each photon is incident on a polarizer at 45◦ to vertical, each will have an
equal chance of being transmitted or reflected, and there will be four pos-
sible outcomes: TT, RR, TR, and RT—both transmitted, both reflected,
left transmitted and right reflected, and vice versa. The probability for
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FIGURE 20.11 Diagram of the possible behavior of photons with entangled parallel
polarization incident on polarizing beam splitters with transmission axes oriented at
45◦ from the horizontal.

observing TR should be 1/4. But with entangled photons this is never
the case. With the polarizers at 45◦ you never observe TR or RT. Any
measurement finds either TT or RR (parallel polarizations)—each with a
probability of 1/2. It is as though you flipped two coins, covered one up,
looked at the other, and then found that the covered coin always had the
same side up as the one you looked at first. In your entanglement appa-
ratus the sequence of polarization states of a single photon is random like
the flip of a coin, but when you compare measurements of the polarization
state of the first photon with measurements of the polarization state of
the second, you find they are correlated.

Stranger still, suppose you put each analyzer (polarizer and detector)
far away from the other and have each operated by someone who randomly
changes the polarizer’s orientation, even after the photons are already in
flight. Suppose that the detectors are so far apart that there is not time
enough for a signal to reach one detector from the other while the pho-
tons are in flight. Then neither polarizer can “know” the setting of the
other. Nevertheless, if the operators get together afterwards and com-
pare notes, they will find that whenever the polarizers happened to have
the same orientation, either both photons were transmitted or both were
reflected; and whenever the polarizers happened to be oriented perpen-
dicularly, one photon was transmitted and the other photon was reflected
(see Problem 11).

A local realist might argue that each photon has a definite polarization
and carries with it a set of instructions for what value it should take for any
polarizer orientation. As long as the photons carry the same instruction
sets, you can explain the behavior of entangled photons. This argument
attributes “hidden variables” to the photon. The photon has a definite
polarization, and the results of measurement are not actually random.
“But,” says the local realist, “the instruction set is hidden and can only
be known by a theory that is more complete than quantum mechanics.”
The advocate of quantum theory replies, “Alright, if each photon has a set
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of definite properties and instructions that tell how these properties are to
show up in a polarizer at any orientation, then the photons must satisfy
Bell’s inequalities. Let’s make some measurements and see if they do.”

20.6 TESTING BELL’S INEQUALITY:
THEORY AND EXPERIMENT

What does quantum mechanics predict? Notice that the ratio of N(A,B)
to NT, the total number of photons passing through the apparatus, will be
the probability P (A,B) that a photon possesses the properties A and B.
If N(A,B), etc., obey the Bell inequality in Eq. 1, so will the probabilities,
i.e.,

P (A,B) + P (B,C) ≥ P (A,C). (2)

Equation 2 is equivalent to Eq. 1.
Quantum mechanics predicts definite values of P (A,B), P (B,C), and

P (A,C). Suppose the transmission axes of the idler and signal polarizers
differ by an angle θ. For example, the left one might be vertical, and
the right one might be at an angle θ from the vertical. The unpolarized
idler photon has a 50% chance of passing through the vertical polarizer.
But, once it does, it declares itself to be a vertically-polarized photon,
so its partner must also be vertically polarized. The angle between this
vertically-polarized signal photon and the axis of the second polarizer is
θ, so the probability the signal photon will be transmitted is cos2 θ. The
probability that it is reflected (not transmitted) is 1 − cos2 θ = sin2 θ.
Then the overall probability that the idler photon will be transmitted
through the vertical polarizer, and, therefore, that the signal photon is in
the A state, and that the signal photon will not be transmitted but will
be reflected (i.e., be in the B state) through the B polarizer oriented to
θ is from the product rule (1/2) sin2 θ.

Now look at the probabilities for three specific cases. Let outcome A
be the transmission of vertically polarized photons; let B be the trans-
mission of photons by a polarizer at 30◦ to vertical; and let C be the
transmission of photons by a polarizer at 30◦ to B, or 60◦ to the vertical,
as shown in Fig. 20.12.

The joint probabilities are:

P (A,B) =
1
2

sin2 30◦ =
1
8

P (B,C) =
1
2

sin2 30◦ =
1
8

P (A,C) =
1
2

sin2 60◦ =
3
8

(3)
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30º 60º

A B C
FIGURE 20.12 Three orientations of transmission axes of polarizers used to exhibit
violation of a Bell inequality. The dashed lines represent the transmission axes of the
polarizers.

This quantum mechanics prediction violates the Bell inequality Eq. 1.
From the results in Eq. 3

P (A,B) + P (B,C) = 2/8 
≥ P (A,C) = 3/8.

How might you measure P (A,B)? You could direct the idler photons
into the A polarizer set to transmit vertically polarized photons and send
the signal photons into the B polarizer set to reflect B photons. Then you
would count the coincidences between idler photons in the A state and
signal photons shown by the B polarizer to be in the B state. Because
the idler photon was found to be in the A state you know that the photon
entering the B polarizer was also in the A state. Photons reflected from
the B beam splitter must be also be in the B state. The number of counts
of coincidences of idler and signal photons is N(A,B).

What do experiments show? Since 1982 ever better experiments have
shown complete agreement with the predictions of quantum mechanics.
These experiments show that Bell’s inequalities are violated. Conse-
quently, polarization-entangled photons have no instruction sets; there
are no hidden variables. When the polarization is measured, the results
confirm that quantum mechanics is right. The world is non-local.

At the 1927 Solvay conference, Einstein repeatedly confronted Bohr
with arguments to show that quantum mechanics must be wrong. The
universe must be deterministic, he believed, because “God does not play
dice.” “Einstein,” said Bohr after several days of refuting subtle and
penetrating arguments, “ stop telling God how to run the world.”7

7This is a quotation in the tradition of Thucydides, i.e. largely made up. There are many
versions of it. For an elaborate version see Richard Rhodes, The Making of the Atomic Bomb
(Simon and Schuster, New York, 1986), pp. 133.
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Appendix: Formal Proof of a Bell Inequality

For three properties A, B, and C, there are only eight possible outcomes:

N(A,B,C), N(A,B,C), N(A,B,C), N(A,B,C),
N(A,B,C), N(A,B,C), N(A,B,C), N(A,B,C).

Notice that

N(A,B) = N(A,B,C) + N(A,B,C). (4)

Similarly,

N(B,C) = N(A,B,C) + N(A,B,C). (5)

Add Eqs. 4 and 5 to get:

N(A,B) + N(B,C) = N(A,B,C) + N(A,B,C) + N(A,B,C) + N(A,B,C). (6)

Note that on the right-hand side

N(A,B,C) + N(A,B,C) = N(A,C). (7)

Therefore,

N(A,B) + N(B,C) = N(A,C) + N(A,B,C) + N(A,B,C), (8)

from which it follows that

N(A,B) + N(B,C) ≥ N(A,C). A Bell inequality (p. 613)

PROBLEMS

1. A vertically polarized photon is incident on a pair of polarizers. The
first one, P1, can be rotated to have its transmission axis oriented at any
angle θ with the vertical. The second one, P2, has its transmission axis
oriented horizontally.

a. How will the intensity of the beam of photons emerging from P2

vary as a function of θ as P1 is rotated?
b. At what angles of P1 will the transmission through P2 be a

maximum?
c. How will your answers change if the incident beam of photons is

unpolarized?

2. A vertically polarized photon is incident onto a polarizer with a
transmission axis oriented an angle of 80◦ counter-clockwise from the
horizontal.
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a. What is the probability amplitude of the photon to go through the
polarizer?

b. Now after the first polarizer put a second polarizer that has its
transmission axis oriented 10◦ clockwise from the transmission axis
of the previous polarizer.
i. What is the probability that an incident photon is transmitted

through the two polarizers?
ii. If you add a third polarizer after the second one, what should

be the orientation of its transmission axis so that no photon is
transmitted.

3. In doing a new quantum eraser experiment we rotate the polarization
of the light going through one of the arms of the Mach-Zehnder interfer-
ometer using three polarizers. The photons that go into the interferometer
are vertically polarized. See Fig. 20.13.

a. In the polarization-rotating arm the transmission axis (TA) of the
first polarizer is oriented 30◦ with the vertical, the TA of the second
polarizer is oriented 60◦ relative to the vertical, and the TA of the
third polarizer is oriented horizontally. What is the probability that
the photon will go through all three polarizers?

b. In the other arm of the interferometer we want to keep the ori-
entation of the polarization vertical but we want to provide a
probability amplitude for transmission through the two polariz-
ers that is the same as the one in the other arm. Explain how
we can do this with two polarizers, indicating the angle that each
polarizer makes with the vertical. Make a diagram.
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FIGURE 20.13 Diagram of a Mach-Zehnder interferometer with polarizers for
Problem 3.



PROBLEMS 623

�

�

� �

� �

�

�

� � 	 � � � � 


� � � � � 


� � � 	 � � � � 


	 � � � �

	 � � � �

� � �

� � 	 
 �

� � 	 � � � � 


FIGURE 20.14 Diagram of a Mach-Zehnder interferometer for Problem 4.

4. A Mach Zehnder interferometer has beam-splitters that have an
uneven ratio of reflection to transmission. The reflection probability is
1/3 and the transmission probability is 2/3. The 900-nm incident light is
vertically polarized (see Fig. 20.14).

a. Find the probability amplitude for a photon to go from A to B via
arm 1.

b. We now put a “half wave plate” (HWP) in arm 1 that rotates the
polarization by 90◦. Arm 2 has compensating plate that creates
the same phase shift but does not rotate the polarization. Both
components transmit all of the light that reaches them. Find the
probability that the photon reaches B when the lengths of the two
arms are the same.

c. We now put a polarizer after the interferometer oriented at 45◦ with
the horizontal. Find the probability for the photon going from A
to B when the lengths of the two arms are the same.

d. If we increase the length of one of the arms by 1350 nm, what is
the probability of going from A to B?

5. Bell’s inequalities are independent of how you label the categories. For
the example on p. 613 you could just as well have labeled the categories as

State Meaning Negative Meaning

state

A Date before 1995 A Date 1995 or later

B copper B silver

C Heads up on table C Heads down on table
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For this set of labels, the possibilities are

Coin Year Negative State

orientation

penny 1993 heads A B C

nickel 1989 heads A B C

quarter 2001 heads A B C

dime 1993 heads A B C

nickel 1995 heads A B C

penny 1997 tails A B C

quarter 2000 tails A B C

penny 1984 tails A B C

quarter 1991 tails A B C

nickel 1985 heads A B C

penny 1975 tails A B C

penny 1985 heads A B C

quarter 2002 tails A B C

nickel 2004 tails A B C

Show that when the items are categorized as above, the values of N satisfy
the inequality: N(A,B) + N(B,C) ≥ N(A,C).

6. A caterer makes up a large order of sandwiches on rye bread or white,
with mustard or without, with ham or pastrami.

a. Why do you know that the number of rye bread sandwiches without
mustard plus the number of pastrami sandwiches with mustard is
always greater than or equal to the number of pastrami sandwiches
on rye?

b. Is the above result true if the caterer makes 12 ham-on-white
with mustard, 4 ham-on-white without mustard, 6 ham-on-rye
with mustard, 7 pastrami-on-rye with mustard, 2 pastrami-on-rye
without mustard? Show that these numbers are consistent with
Eq. 1.

c. What if you invert the order to 12 pastrami-on-rye without mus-
tard, 4 pastrami-on-rye with mustard, 6 pastrami-on-white without
mustard, 7 ham-on-white without mustard, and 2 ham-on-white
with mustard? How do you know this order of sandwiches will
satisfy Eq. 1?
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7. Is it really true that the number of male A-students plus the number
of non-A varsity athletes is greater than or equal to the number of male
varsity athletes?

8. For what circumstances will Eq. 1 be an equality? Use Fig. 20.7 to
explain your answer.

9. On checking Bell’s inequality Eq. 1 with mutually parallel polarization-
entangled photons,

a. Is it violated using polarizers A vertical, B at 22.5◦, and C at 22.5◦
from B and 45◦ from A?

b. Is it violated for A vertical, B at 50◦, and C at 50◦ from B and
100◦ from A?

c. If A is vertical, B forms an angle θ with A, and C forms an angle θ
with B and 2θ with A, find the values of θ for which the inequality
is violated. The inequalities are not always violated by an inde-
terministic quantum description, but they are never violated by a
deterministic description.

10. Consider the experiment of Fig. 20.15.

We use a different type of entangled state, one where the photons are
mutually perpendicular. That is, regardless of where a first polarizer is
oriented, once a first photon is detected with a given polarization the
other is found to have a polarization perpendicular to the first one. We
send the mutually perpendicular polarization-entangled photons to a pair
of polarizing beam splitters. The left polarizer is vertical and the right
polarizer forms an angle θ with the vertical.

a. Show that the probability that the left photon gets transmitted
and the right photon gets reflected is

PV,θ =
1
2

cos2 θ. (9)

θ

FIGURE 20.15 Figure for Problem 10.
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45º 45º

FIGURE 20.16 Figure for Problem 11.

b. What is the probability that the right photon gets transmitted and
the left photon gets reflected?

c. What is the probability that the both photons get transmitted?

11. Consider the arrangement of Fig. 20.16, where both polarizers are
oriented at an angle of 45◦.

a. If we use a source of mutually parallel entangled photons,
i. What is the probability that both photons get transmitted?
ii. What is the probability that the left photon gets transmitted

and that the right photon gets reflected?
b. If both photons are vertically polarized,

i. What is the probability that both photons get transmitted?
ii. What is the probability that the left photon gets transmitted

and that the right photon gets reflected?
c. If half the time the two photons are both horizontally polarized

and half of the time the photons are vertically polarized.
i. What is the probability that both photons get transmitted?
ii. What is the probability that the left photon gets transmitted

and that the right photon gets reflected?
d. Can experiments distinguish between cases (a), (b), and (c)?

12. It is possible to communicate securely using quantum mechanics.
This method is now commercially available, and it is called quantum
cryptography. In this method two people, Alice and Bob, communicate
by encrypting their message with a secret key. Their secret key is derived
from the correlations that they find using polarization-entangled photons
with parallel polarizations. Once they have the key they can encrypt their
message with it. (Fig. 20.17).

Consider the scheme of Fig. 20.17. Alice has a source of mutually
parallel polarization-entangled photons. She sends one photon through a
polarizer and a detector. She sends the other photon to Bob, who is far
away. Bob also has a polarizer and a detector.
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Alice Bob
FIGURE 20.17 Figure for Problem 12.

a. If Alice detects a photon when her polarizer is horizontal (H), what
is the probability that Bob will detect the partner photon when his
polarizer is oriented:
i. horizontal (H)
ii. vertical (V)
iii. +45◦ to the horizontal (diagonal i.e., D)
iv. −45◦ to the horizontal (antidiagonal i.e, A)

b. Alice and Bob decide to detect eight photons pairs by ran-
domly setting their beam-splitting polarizers in one of two possible
transmission-axis orientations: vertical (V) or diagonal (D). The
polarizer orientations and results that each got are given below
where T and R are, respectively, a transmitted or a reflected
photon:

Pair Alice’s Alice’s Bob’s Bob’s

polarizer result polarizer result

1 V R V T

2 V T V T

3 V T D T

4 D T D R

5 D R D R

6 V T V T

7 D T D R

8 D T V R
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Then over the unsecure telephone Bob calls Alice and tells her his
orientations and she tells him hers. The secret key that they will
use will be have a “1” digit if they both pick the H/V orientations
and if they both detect a transmitted photon. The secret key digit
will be a zero if they picked the A/D orientations and if they both
detect a transmitted photon. What are the digits of the secret key?
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Epilogue

This book has introduced you to the physicist’s special way of looking at
and trying to understand nature. Out of the many ways to make such an
introduction, we chose to present and develop important evidence, ideas,
and reasoning that have led to our present-day conception of the atom.
We chose this approach partly because we think it is interesting physics
and partly because the idea of the atom is so important. It is the ba-
sis of all our modern technologies, from computers to gene manipulation,
from pharmacology to agriculture, mining, manufacturing, transporta-
tion, communications, and management of the environment. The atom as
it has been elaborated in the past two centuries is fundamental to physics,
chemistry, biology, geology—to all the natural sciences. It is arguably one
of the most important ideas in human history.

Despite all the details, calculations, exercises, and explanations offered
to familiarize you with the atom, we have left an immense amount unsaid.
But if all has gone as we hope, you now know enough to be able to explore
the richness of the atomic idea further on your own.

For example, there is within the atom more and deeper structure than
we have begun to describe. There are other fields than the familiar electric
and magnetic fields. There are particles within particles. Physicists have
studied the protons and neutrons that lie within the atomic nucleus and
found that they, too, have parts, which have been given the unlikely names
of quarks and gluons. There is a successful theory of these entities called
quantum chromodynamics. Some aspects of this realm of matter are nicely
described in the closing chapters of Sheldon Glashow’s From Alchemy to
Quarks, Brooks/Cole Publishing Co., 1993. Steven Weinberg connects
this deeper structure to cosmology and the structure of the universe in
The First Three Minutes, Basic Books, 1988. Some of what physicists are

C.H. Holbrow et al., Modern Introductory Physics, Second Edition, 629
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thinking about the very large as well as the very small can be found in The
New Physics, edited by Paul Davies, Cambridge University Press, 1989.

But even without going deeper into the atom, there is much more to
be said. For example, atoms are tiny magnets. Their magnetic properties
have remarkable consequences. Most of the knowledge of the world is
now stored on magnetic tapes and disks. These would not exist without
our understanding of the magnetic behavior of atoms. Great advances in
medical imaging have followed from our understanding of the magnetism
of atoms and their nuclei. It is from our understanding of the magnetism
of atoms that we understand such wonderful objects as pulsars. To learn
more, read James D. Livingston’s Driving Force: The Natural Magic of
Magnets, Harvard University Press, Cambridge, MA, 1996.

Our understanding of atoms is being advanced by a revolution in ex-
perimental control and manipulation. We can now hold a single atom in
a trap made of electromagnetic fields and light waves and then use lasers
to prod and probe it with extreme precision. We can map the interaction
of individual atoms from moment to moment as they combine chemically.
We can watch quantum jumps in a single atom. Using the technology of
trapping we can create a large-scale, directly observable quantum state
called Bose–Einstein condensation. Quantum interference between beams
of atoms has been observed, and we can make a laser of atoms (instead
of light).

One of the most striking advances in single-atom manipulation is a de-
vice called the “scanning tunneling microscope,” or STM. It can be used
to image and manipulate single atoms. When a sharp tungsten point, as
sharp as a single atom at its tip, is brought near atoms sitting on a surface,
an electric current flows. The quantum properties of the flow of electrons
restrict the current to such a small region of space that as the tip is moved
across the surface, the variation in the current can outline the presence of
single atoms. Figure 21.1 shows a pair of STM scans. The first shows two
conical mounds; each is a molecule of O2 sitting on a flat surface of plat-
inum atoms. Before the second scan was made, the tip of the STM was
brought down to within 0.6 nm of one of the mounds and a small voltage
pulse was applied. The second scan shows that the effect of the voltage
pulse was to divide the mound into two smaller mounds—single oxygen
atoms. The STM has revealed the dissociation of a single molecule into
its constituent atoms. Other remarkable examples of this kind of manipu-
lation are shown at http://www.almaden.ibm.com/vis/stm/gallery.html,
IBM’s gallery of STM images.

The strange mysteries and ambiguities of the quantum nature of the
atom promise further remarkable changes in our technology and society.
You have seen the evolution of our picture of the atom from the tiny,
hard, featureless ball that explains the gas laws to a complicated assembly
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FIGURE 21.1 Upper left: Two O2 molecules are revealed by the scan of an STM;
lower right: Scan of the same two molecules after a voltage pulse has been delivered
to one. The scan shows that the O2 molecule has been separated into two O atoms.
Picture courtesy of Wilson Ho, Department of Physics and Astronomy, University of
California, Irvine.

of electrons and a nucleus made up of protons and neutrons. You have
seen that as we learned more about the atom, its inner parts got fuzzy.
The particle-like behavior of light and the wavelike behavior of particles
blurred the insides of the atom. Bohr’s model was correct in its idea
of well defined internal states of energy that can be represented by a
level diagram, but it was wrong in its simple planetary images. There
are no well defined orbits. In Tom Stoppard’s play Hapgood the physicist
Kerner says

So now make a fist, and if your fist is as big as the nucleus of
one atom then the atom is as big as St. Paul’s, and if it happens
to be a hydrogen atom then it has a single electron flitting about
like a moth in the empty cathedral, now by the dome, now by
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the altar.... Every atom is a cathedral. I cannot stand the pictures
of atoms they put in schoolbooks, like a little solar system: Bohr’s
atom. Forget it. . . . an electron does not go round like a planet,
it is like a moth which was there a moment ago, it gains or loses a
quantum of energy and it jumps, and at the moment of quantum
jump it is like two moths, one to be here and one to stop being
there; an electron is like twins, each one unique, a unique twin.

The atom, which began as a hard, featureless ball, is now a moth-filled
cathedral that can be depicted as a level diagram.

The fuzziness, the flittering uncertainty, the property of being in more
than one state at the same time, are all integral parts of our contemporary
understanding of the atom, and they may be the bases of some surpris-
ing practical uses. Objects that can be in several different states at the
same time may make possible quantum cryptography with unbreakable
codes that will warn their users when someone tries to listen in. There is
a prospect of designing computers that use these multiple-state systems
to achieve massively parallel computation with speeds and capabilities
that are impossible in principle with the kinds of computers we now use.
Such possibilities are described in Schrödinger’s Machines: The Quan-
tum Technology Reshaping Everyday Life by Gerard J. Milburn, W. H.
Freeman and Co., New York, 1997.

With traps and cooling and scanning probe microscopes, with ever more
refined lasers, with a deeper appreciation that quantum mechanics means
what it says, our understanding of the atom improves day by day. This
understanding has already had extraordinary consequences for human
society; the future promises unimaginably more. We hope that our book
has helped to prepare you to understand that future.

Of course, there is more to physics than atoms. One of the powerful
attractions of physics for physicists is its universal applicability. Whether
you are studying the collision of quarks or galaxies, the flow of electrons
or the sliding of sand piles, a plasma in a star or a vortex in superfluid
helium, the bending of beams in a building or the folding of proteins, the
laws of physics apply. We invite you to participate further in the exciting
enterprise of revealing and savoring this universality. We invite you to
study more physics.
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Useful
Information

Just as you need to know your name and address and telephone number
and e-mail address to locate yourself in the world, so must you know some
basic information to locate yourself in physics. Like competent profession-
als in any field, a practicing physicist carries a large amount of factual
baggage. Starting out in physics you will need only the small backpack of
facts presented in Tables A.1 and A.3.

Then there is information that you need occasionally. Some of that
is collected here for your convenience. If you don’t find what you want
here or in the text, try the library. Ask a reference librarian to help you
find what you want to know, or look in the Handbook of Chemistry and
Physics. You can also use the World Wide Web to find constants:

http://physics.nist.gov/cuu/Constants/index.html

will supply you the very latest, most precise values from NIST (National
Institute of Standards and Technology).

A.1 SI PREFIXES

You need to know the SI prefixes. They tell you the order of magnitude
of the units of whatever physical quantity they are attached to. It is
absolutely essential that you know them.

They are widely used, and when you are wrong about them, you make
mistakes of factors of thousands! Maybe you can absorb them by os-
mosis as you use them; maybe you need to get them by heart by the
purest of rote learning; maybe you can come up with a clever mnemonic;

633
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TABLE A.1 SI prefixes

Factor Prefix Symbol Factor Prefix Symbol

1018 exa E 10−1 deci d

1015 peta P 10−2 centi c

1012 tera T 10−3 milli m

109 giga G 10−6 micro μ

106 mega M 10−9 nano n

103 kilo k 10−12 pico p

102 hecto h 10−15 femto f

101 deka da 10−18 atto a

maybe (and this would be best) you can learn them attached to particular
physical situations and quantities, as suggested in Chap. 2. However you
do it, learn them! They are listed in Table A.1.

A.2 BASIC PHYSICAL CONSTANTS

You need to know some basic physical constants. These set the scale of
the phenomena of the physical world.

Which ones are most important depends on the physical situation under
consideration. In this book, with its emphasis on atoms and their parts,
the elementary charge; the masses of the electron, the proton, and the
neutron; and the values of the Planck and Boltzmann constants are very
important. When you deal with macroscopic quantities of atoms in the
laboratory, Avogadro’s number and Earth’s gravity are important. For
convenient reference Table A.2 lists the official values of these constants
in SI units. Table A.3 lists the ones you need to know in the units in which
you need to know them.

A.3 CONSTANTS THAT YOU MUST KNOW

You need to be able to calculate quickly and easily with these constants.
For this purpose, you need the constants expressed as much as possible in
terms of units chosen to match the natural scale of atoms. Electron volts
(eV) and nanometers (nm) are convenient for atoms, while megaelectron
volts (MeV) and femtometers (fm) are a good choice for nuclei. It is also
often simpler to work with masses in units of eV/c2.
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TABLE A.2 Basic physical constants

Name of constant Symbol Value

Atomic mass unit mu or u 1.661 × 10−27 kg

Avogadro constant NA 6.022 × 1023 mol−1

Bohr radius a0 5.292 × 10−11 m

Boltzmann constant kB 1.381 × 10−23 J·K−1

8.617 × 10−5 eV·K−1

Charge-to-mass ratio

of electron e/m −1.759 × 1011 C·kg−1

Coulomb constant kc or 8.988 × 109 N·m2·C−2

1
4πε0

Electron mass me 9.109 × 10−31 kg

Elementary charge e 1.602 × 10−19 C

Faraday constant F 96485 C·mol−1

Intensity of Earth’s

gravitational field g 9.82 N·kg−1 (m·s−2)

Molar gas constant R 8.314 J·mol−1·K−1

Neutron mass mn 1.675 × 10−27 kg

Planck constant h 6.626 × 10−34 J·s
4.136 × 10−15 eV·s

h̄ = h
2π

1.055 × 10−34 J·s
6.582 × 10−16 eV·s

Proton mass mp 1.673 × 10−27 kg

Rydberg constant R∞ 1.09737 × 107 m−1

Speed of light c 2.99792458 × 108 m·s−1

Table A.3 gives constants, combinations of constants, and masses
in terms of these more convenient units. The combinations simplify
calculations of energies, wavelengths, and frequencies that are frequently
made in this course. The Remark column tells you when the constant is
one that you absolutely need to know. No kidding!

These constants are of fundamental importance. One goal of this book
is to show how the constants interrelate and how they specify the scale of
observed effects and phenomena. They specify the scales and magnitudes
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TABLE A.3 Constants in convenient energy units

Name Symbol Value Remark

Planck constant h 4.14 × 10−15 eV·s
hc 1240 eV·nm know this one!

Reduced Planck

constant: h
2π

h̄ 6.58 × 10−16 eV·s
h̄c 197 eV·nm know as ≈ 200 eVnm

h̄c 197 MeV·fm know as ≈ 200 MeV fm

Coulomb force
numerator

kce
2 1.44 eV·nm know this

Thermal energy

at T = 300 K kBT 0.0259 eV remember as ≈ 1/40 eV

Bohr radius a0 = h̄2

ke2me
0.0529 nm

Fine structure α = ke2

h̄c
1/137.036 no units

constant

Rydberg energy hcR∞ 13.61 eV know this one

Electron mass mec
2 511 keV know this

Proton mass mpc2 938.3 MeV know ≈ 938 MeV

Neutron mass mnc2 939.6 MeV know mn is 1.29 MeV > mp

Atomic mass unit u 931.50 MeV/c2 remember 1 u ≈ mp

Speed of light c 3 × 108 m·s−1 know this

Elementary charge e 1.6 × 10−19 C know this

of the quantities with which physicists have built a consistent and in-
formative picture of the microphysical world and its connection to the
macrophysical world where we live and do physics.

A.4 MISCELLANEOUS

Table A.4 contains some constants used occasionally in this course,
including constants having to do with Earth, Moon, and Sun.

Table A.5 gives conversion factors between some especially common
English units and their metric equivalents.
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TABLE A.4 Miscellaneous occasionally used constants

Name Symbol Value Units Remarks

Earth’s mass M⊕ 6 × 1024 kg 10 moles of kilograms

Earth–Sun distance RES 1.5 × 1011 m 1A.U.

Earth radius R⊕ 6.366 × 106 m 2πR⊕ = 40Mm

Earth–Moon distance REM 3.82 × 108 m 60 R⊕

Moon’s mass M) 0.01234 M⊕ M⊕/81

Sun’s mass M� 2 × 1030 kg 333 000 M⊕

Viscosity of air η 18.3 μPa·s at 20◦C

Speed of sound in air vs 343 m s−1 at 20◦C

TABLE A.5 Some conversion factors between
english and metric units

English English metric

1 in 2.54 cm

1 ft 12 in 30.48 cm

1 mile 5280 ft 1609.3 m

3.28 ft 1 m

0.396 in 1 cm

1 mph 1.467 ft/s 0.447 m/s

0.621 mph 0.911 ft/s 1 km/hr

2.24 mph 3.28 ft/s 1 m/s

1 lb 16 oz 453.5 g

1 oz 28.3 g

2.205 lb 1 kg

A.5 NAMES OF SOME SI DERIVED UNITS

Table A.6 lists some names of composite SI units. There are also a num-
ber of non-SI units that are still in use because because they are deeply
embedded in engineering practice or every day life (because many peo-
ple are unwilling to change their habits of thought). Table A.6 lists some
of these non-SI units along with their abbreviations and their SI equiva-
lents. The entries in the table are in alphabetical order according to their
abbreviations.
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TABLE A.6 Commonly used units and abbreviations

quantity Name Abbrev. SI units

current ampere A A

length Angstrom Å 10−10 m

pressure atmosphere atm 101.3 kPa

area barn b 10−24 m2

pressure bar bar 100 kPa

energy calorie cal 4.1858 J

electric charge coulomb C A·s
viscosity centipoise cp 10−3 Pa·s
energy electron volt eV 1.602 × 10−19 J

magnetic field gauss G 10−4 T

frequency hertz Hz s−1

energy joule J kg·m2·s−2 = N·m
temperature kelvin K K

mass kilogram kg kg

volume liter L 10−3 m3

length meter m m

pressure millimeters of mercury mm Hg 133.32 Pa

volume cubic meter m3 m3

amount mole mol mol

force newton N kg·m·s−2

electric field newton per coulomb N·C−1 N·C−1

pressure pascal Pa N·m−2

viscosity pascal seconds Pa·s
angle radian rad rad

time second s s

magnetic field tesla T kg·s−1·C−1

pressure torr torr 133.32 Pa

mass atomic mass unit u 1.6605 × 10−27 kg

electric potential volt V J·C−1

electric field volts per meter V·m−1 N·C−1

power watt W J·s−1

angle degree ◦ 1.7453 × 10−2 rad
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TABLE A.7 SI base units

Name Symbol Definition

meter m The meter is the length of path traveled by light in vacuum
during a time interval of 1/299 792 458 of a second.

mass kg The kilogram is the unit of mass. It is equal to the mass of
the international prototype of the kilogram. (The international
prototype is a platinum–iridium cylinder kept at the BIPM in
Sèvres (Paris) France.)

second s The second is the duration of 9 192 631 770 periods of the radi-
ation corresponding to the transition between the two hyperfine
levels of the ground state of the cesium-133 atom.

ampere A The ampere is that constant current that if maintained in two
straight parallel conductors of infinite length, of negligible cir-
cular cross section, and placed 1 meter apart in vacuum, would
produce between these conductors a force equal to 2 × 10−7

newton per meter of length.

kelvin K The kelvin is the unit of thermodynamic temperature. It is
the fraction 1/273.16 of the thermodynamic temperature of the
triple point of water. (The Celsius temperature scale is defined
by the equation t = T − T0, where T is the thermodynamic
temperature in kelvins and T0 = 273.15 K.)

mole mol The mole is the amount of substance of a system that contains
as many elementary entities as there are atoms in 0.012 kg of
carbon-12.

candela cd The candela is the luminous intensity, in a given direction, of a
source that emits monochromatic radiation of frequency 540 ×
1012 hertz and that has a radiant intensity in that direction of
1/683 watt per steradian.

A.6 SI BASE UNITS

There are seven units that form the basis of the SI. In this book we use
six of them. Table A.7, which gives their names, symbols, and definitions,
is provided here just for your general information. You will find it more
useful and informative to remember the looser definitions that are given
in the chapters where they are introduced.
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TABLE A.8 Some chemical atomic masses

Element Symbol Z Mass Phase Density

(u) (g cm−3)

hydrogen H 1 1.00797 gas H2

helium He 2 4.0026 gas He

lithium Li 3 6.939 solid 0.534

beryllium Be 4 9.0122 solid Be 1.848

boron B 5 10.811 crystalline B 2.34

carbon C 6 12.01115 amorphous C ≈ 2.0

nitrogen N 7 14.0067 gas N2

oxygen O 8 15.9994 gas O2

fluorine F 9 18.9984 gas F2

aluminum Al 13 26.981538 solid 2.6989

silicon Si 14 28.0855 solid 2.33

iron Fe 26 55.844 solid 7.874

cobalt Co 27 58.93320 solid 8.9

nickel Ni 28 58.69 solid 8.902

copper Cu 29 63.546 solid 8.96

zinc Zn 30 65.40 solid 7.133

tantalum Ta 73 180.9479 solid 16.6

silver Ag 47 107.8681 solid 10.5

gold Au 79 196.96654 solid 19.32

lead Pb 82 207.2 solid 11.35

uranium U 92 232.0289 solid 18.95

A.7 ATOMIC MASSES

Table A.8 lists some useful chemical atomic masses and densities of el-
ements that are solids at room temperature. If you need to know the
density of any gaseous element, you can calculate it. There is a periodic
table on p. 643.
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TABLE A.9 Masses of some Nuclides

Name of Symbol Z Nuclide Mass % Natural Half-life

Nuclide (u) Abundance

hydrogen 1H 1 1.007825 99.985

deuterium 2H or D 1 2.01410 0.015

tritium 3H or T 1 3.016050 12.26 y

helium-3 3He 2 3.016030 0.00013

helium-4 4He 2 4.002603 100.0

lithium-6 6Li 3 6.015125 7.42

lithium-7 7Li 3 7.016004 92.58

beryllium-9 9Be 4 9.012186 100.

boron-10 10B 5 10.012939 19.78

boron-11 11B 5 11.009305 80.22

carbon-12 12C 6 12.000000 98.89

carbon-13 13C 6 13.003354 1.11

carbon-14 14C 6 14.003242 5730 y

nitrogen-14 14N 7 14.003074 99.63

nitrogen-15 15N 7 15.010599 0.37

oxygen-16 16O 8 15.994915 99.759

oxygen-17 17O 8 16.999133 0.037

oxygen-18 18O 8 17.999160 0.204

fluorine-19 19F 9 18.998405 100.0

A.8 MASSES OF NUCLIDES

For determining how nuclei will behave, the difference between masses of
atoms may be important. When this is the case, you need to know the
individual atomic masses quite precisely. Table A.9 lists some of the more
important elements and their nuclides and their masses.
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A.9 PERIODIC TABLE OF THE CHEMICAL ELEMENTS

The periodic table of the elements is the basic map of the material world.
Since Moseley’s work made clear the structure of the table, chemists and
physicists have used it as a guide for searching for new elements. The table
succinctly shows which elements are likely to have analogous chemical
properties, and it provides practical help for making and understanding
new chemical compounds.
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A, see logic, 612

Absolute zero, 102
absorption spectrum, 529
activity, 481

and radioactive decay, 489
radioactivity, 481
standards of, 483
units

curie (Ci), 488
SI: becquerel (Bq), 488

age and death
of nuclei, 492

radioactive decay, 492
of people, 493
of stars, 493

alpha particles
are helium ions, 483
radioactive radiations, 483
scattering, 494

apparatus of Geiger and
Marsden, 497

from atoms, 494
alpha rays

alpha particles, 509
radioactive radiations, 483

AM radio frequencies, 289
American adults

heights, 21
masses, 21

amplitude
probability, 578

amplitude of a wave, 324
angle, 26

degrees, 26, 28
arc seconds, 28
minutes, 28
seconds, 28
sexagesimal system, 28

radians, 26, 29
rays, 27
small-angle approximation, 30, 32
subtend, 27
vertex, 27

angstrom, see length
angular momentum, 524

quantization of, 517, 524
anions, 230
anode, 230
antiproton, 399
approximations

by binomial expansion, 344
mathematical tool for, 340
non-relativistic, see non-relativistic

approximations
of binomial functions, 344
small-angle, 346
straight-line, 341

atom of charge, see electron,
elementary charge

645
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atomic collisions
collision mean free path, 122

atomic hypothesis, 9
atomic mass unit, 71

in MeV/c2, 391
atomic masses, 640
atomic nucleus, 501, 509

discovery from radioactivity, 509
nucleus, 501

atomic number Z, 502, 507, 509
nucleus

electric charge of, 502
atomic spectroscopy, 318
atomic spectrum, 319
atomic weights, 70

chemical scale
of some elements, 73

isotopes, see isotopes
atoms, 5

absorption of photons by, 529
diffraction of, 467
early history, 63
electrical nature, 229
emission of photons by, 522
energy levels in, 529
energy levels of, 524
energy states of, 522, 524, 526
energy transitions in, 527
evidence for, 64
hard-sphere, 5, 135
integers, 64
internal structure deduced from

emitted light, 309, 518
made of + and − charges, 6
mass of, 76
not well localized, 7
nuclear model, 6, 503
nuclei of, 501
shell structure of, 542
size, 133
sizes, 5, 21
spectra of, 325
transmutation of, 485

atoms of gases
average force, 110, 111
average kinetic energy, 134

at room temperature, 118
average square speed, 112

effective collision cross section, 123
hard-sphere model, 110
mean free path, 122, 131
mean square velocity, 112, 114
number density, 113

at STP, 113
pressure, 110
root mean square velocity, 114
viscosity, 131

average
computation of, 135
of a distribution, 139, 140

average force, 43
Avogadro’s constant, 75

atomic masses, 76
Avogadro’s number, 252
sizes of atoms, 76

Avogadro’s number, 75
Avogadro’s principle, 70
Avogadro, Amadeo, 69

diatomic molecules, 69

Babinet’s principle, 323
backscatter peak, 445, see scintillation

counter
Bainbridge apparatus, see

charge-to-mass ratio, electron
Bainbridge, K. T., 209
Balmer series, see hydrogen atom
Balmer, J. J., 519
bandwidth, 585
Barkla, Charles (1877–1944)

characteristic x-rays, 537
barometer equation, 86
battery, 272
beam splitter, 572

polarizing, 615
beam-splitting polarizer, 614
Becquerel, Henri, 479

discovers radioactivity, 421, 479
experiments on radioactivity, 480
measures e/m of radioactive

radiations, 481
Bell’s inequalities, 598
Bell, John (1928–1990), 598
Bertsch, G. F., 515
Berzelius, Jons, 69
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beta rays, 509
radioactive radiations, 483

binomial expansion, 344
binomial function, 344
bins, see distribution
bins of a distribution, 137

velocity, 142
Bohr atom, see Bohr model
Bohr model, 517

and hydrogen-like ions, 535
and x-ray lines, 542
energy states, 525
first Bohr-orbit radius, 525
limitations of, 545
three assumptions, 544

Bohr radius, see Bohr model
Bohr, Niels (1885–1962), 517
Boltzmann’s constant, 117
Boyle’s law, 91
Boyle, Sir Robert, 89

experiment on gases, 89
Brackett series, see hydrogen atom,

spectrum
Bragg Law, 426
Bragg law of crystal diffraction, see

Bragg law of x-ray reflection
Bragg spectrometer, 432
Bragg, W. H., 406, 425
Bragg, W. L., 425
buoyancy force, 107

Cathode, 230
cathode rays

electrons, 236
cations, 230
Celsius temperature scale, 95
Celsius, Anders, 95
Chadwick, J.

discovered the neutron, 507
characteristic x-rays, 539, 542, 545
characteristic x-rays

see x-rays, characteristic, 538
charge-to-mass ratio

of electron
Bainbridge method, 240
significance of, 242
value, 241

of hydrogen atom, 234
of proton, 234

Charles’ Law
see Gay-Lussac’s Law, 89, 100

Chart of the Nuclides, 509, 512
circuit

see electric circuit, 185
circumference of a circle, 15
coherence length, 584
coherence time, 584
coincidence counting, 572
collision mean free path

see mean free path, 122
collisional mean free path

see mean free path, 122
color, see light, wavelength
common, see electric ground
Compton edge, 445, see scintillation

detector, 445
Compton effect, 401, 435, 438, 447

data, 438
frequency shift in, 441
wavelength shift in, 443

Compton scattering, 436, 438, 553
equation for, 442

Compton, A. H., 435
conductor, see electrical conductor
conservation of energy, 47, 49

conversion of gravitational
potential energy into kinetic
energy, 51

conservation of momentum, 40
constants of physics, 634

from NIST on the Web, 633
that you must know, 634

Coolidge tube, 422, see x-rays,
production of

correlations, 609
Coulomb’s law, 159

force constant, 159
Coulomb, Charles Augustin, 157
crystal spectrometer, see x-rays,

spectrometer
crystals

lattice spacings of common, 431,
460

Miller indices, 459, 461
ordered arrays of atoms, 424, 447
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rock salt lattice spacing, 430
spacing between atom planes in,

460
spacing between planes of atoms

in, 429
curie

activity
units, 488

Curie, Marie, 479, 482
and radioactivity of thorium, 482
discovers polonium, 482
discovers radium, 482

Curie, Pierre, 479, 482
current, see electric current
cutoff of x-ray spectrum, see x-rays,

continuous spectrum
cyclotron, 223

Dalton, John, 65
model of atom, 66

Davisson and Germer
apparatus, 463
verify wave nature of electrons, 463

Davisson, C. J., 462
Davy, Sir Humphrey, 65
de Broglie wavelength, 455

equation for, 469
implies large energies to probe

small objects, 470
implies particles are not sharply

localized, 471
de Broglie, Louis, 455
Debye-Scherrer diffraction rings, 427,

see x-rays, powder diffraction,
446

decay constant, 489
radioactive decay, 490

density, 17
Earth’s crust, 34
iron, 34
mercury, 34
of a gas, 76
of some gases, 73
water, 16, 34

detector efficiency, 572, 574
deuterium, 508, 641
deuterium: mass-2 isotope of

hydrogen, 208

deuteron, 512
mass of, 512

diffraction
of atoms, 467
of electrons, 458
of neutrons, 467

diffraction grating, 309, 325
multi-slit interference, 316
principal maximum

order number, 325
resolution, 317
spectrometer, 318

dimensions
consistency, 26

discharge tube, 320
disintegration constant, 489

radioactive decay, 490
displacement in a wave, 324
distance of closest approach

Rutherford scattering, 501
distribution, 137, 559

bins, 137, 559
histogram, 139
of velocities, 140, 141
standard deviation of, 560

Doppler effect, 368
red shift, 369

double-slit interference, 309, 325
effect of single-slit diffraction on,

315
maxima, 325
of electrons, 465

down converter, 572
dynodes, see photomultiplier tube

Earth
average density, 34
circumference, 15, 21
magnetic field, 201
mass, 21

efficiency
of a detector, 574
of coincidences, 574

efficiency of photon detector, 572
Einstein, Albert, 339, 360
Einstein, Podolsky, Rosen

incompleteness of quantum
mechanics, 611
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electric charge, 152
forces between, 154
negative, 154
neutral, 154
positive, 154
units

SI: coulomb (C), 160
electric circuit, 185
electric current, 163

direction, 161, 162
source of magnetic field, 207
units

SI: ampere (A), 161
electric deflection

∝ 1/kinetic energy, 239
control of charged particles, 239
inkjet printer, 254
quark hunting, 257

electric field, 169
constant in space, 172
direction, 172
magnitude, 190
of a point charge, 171
strength, 170
units

SI: newtons per coulomb
(NC−1), 170

electric force
negative derivative of electric

potential energy, 176
electric ground, 192
electric potential, 173, 179

and potential energy, 179
different from electric potential

energy, 179
equipotential surfaces, 186, 187

electric potential energy, 173
electrical conductor, 157
electrode, 230
electrolysis, 230

Faraday’s law of, 231
electrolyte, 230
electromagnetic radiation

polarization, 600
wavelengths

and structure of atoms, 309
x-rays, 422

electromagnetic radiation probing
atoms with, 285

electromagnetic spectrum, 317
electromagnetic waves, 324

frequencies of, 288
electron

average speed in an electric current,
164

charge, 252
component of every atom, 6, 229,

447
elementary charge, 229
energy of interaction with atom,

253
mass, 253

in keV/c2, 379, 395
in MeV/c2, 391

rest energy, 379
electron diffraction, 458, 463

Debye-Scherrer rings, 458
electron interference, 465
electron volt, 118, 188
electrons

diffraction of, 463
discovery, 236

electroscope, 152
elementary charge, 188, 233, 243, 252

value, 249
elements, 63, 64

number of, 77
Elster and Geitel, 402
energy, 44

and mass equivalence, 375, 378
gravitational potential energy, 48
kinetic energy, 48
units

electron volt, 118
electron volt (eV), 188
kilowatt-hour (kW-h), 47
SI: joule (J), 45

energy costs, 47
energy levels, 529

see atoms, 524
energy states, 522

see atoms, 524
energy-level diagrams, 526, see atoms,

energy states of



650 INDEX

entangled state, 610
entanglement, 597, 609, 610
EPR

see Einstein, Podolsky, Rosen, 611
Estermann, I., 467
ether, 351
event, 362
event generator, 361
exclusion principle

see Pauli exclusion principle, 542

Faraday, 230, see mole of charges
Faraday’s law of electrolysis, see

electrolysis
Faraday, M., 229
federal budget, 32

deficit, 33
Feynman, Richard P., 9, 45

energy analogy, 45
field, see electric field, see magnetic

field
fission, 400
fluorescence, 480
FM radio frequencies, 289
force, 37, 54

F = ma, 39
average force, 60
rate-of-change of momentum, 37,

39
spatial variation of potential

energy, 53
units

SI: newton (N), 38
fractional difference, 392
fractional error, see precision
fractional precision, see precision
frame of reference, 347

description of motion depends on,
348

Galilean relativity, 351
inertial frame, 350
laboratory, 386
no special, 350
rest, 386
transform from one to another, 351

Franck, J., 532

Franck-Hertz experiment, 531
apparatus, 532
data, 533
significance of, 534

Fraunhofer, J. v., 519
frequency, 324

bandwidth, 585
units

SI: hertz (Hz), 288
frequency of a wave, 288
Friedrich, W., 423
fringe pattern

photon counts, 576
fringes, 353, 354
Frisch, O., 467
fusion, 400

Galilean relativity, 351
Galileo, 1, 4, 52

Dialogues Concerning Two New
Sciences, 1

gamma in relativity, 363
gamma rays

radioactive radiations, 484
Gas Laws

see Boyle’s Law, Gay-Lussac’s Law,
Charles’ Law, Ideal Gas Law,
89

gauge pressure, 88
Gay-Lussac’s Law, 100, 101
Gay-Lussac, Joseph Louis, 67
Geiger, Hans, 494, 500
Germer, L. H., 462
gram atomic weight, 75
gram molecular weight, 75
gravitation, 1
gravitational potential energy, 48

depends only on vertical distance,
50

ground, see electric ground

Half-life, 488
radioactive decay, 488

Hall effect, 227
Hallwachs, W., 402

photoelectric effect, 402
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harmonic waves, see waves, sinusoidal
Heisenberg uncertainty principle, 554,

558, 570
estimating average kinetic energy

with, 561
estimating force with, 562
estimating size with, 563

Heisenberg, Werner, 558
helium

discovered in Sun, 319
discovered on Earth, 320

Hertz, G., 532
Hertz, Heinrich, 401

discovers photoelectric effect, 402
generates radio waves, 401

hidden variables, 598, 618
histogram, 139
hydrogen atom

Bohr model of, 517
energy states of, 525
mass

in MeV/c2, 391
spectrum

Balmer series, 519, 520, 527
Brackett series, 528
Lyman series, 528
Paschen series, 528
Pfund series, 528

hydrogen-like ions, 535

Ideal gas, 100, 103
ideal gas law, 102
indistinguishability, 588, 590

in quantum theory, 582
inkjet printer, 254
insulator, see electrical insulator
interference, 296, 325

coherence length, 584
coherence time, 584
constructive, 297
defining property of waves, 296
destructive, 298
from many slits, see multi-slit

interference
from one slit, see single-slit

diffraction

from two slits, see double-slit
interference

in 2-D, 307
of a particle with itself, 554, 591
of light

fringes, 308
patterns

sizes and structures determined
from, 325

U. of Rochester apparatus for, 588
interference patterns, 307

reveal structure, 321
interferometer

fringes, 353, 354
Mach-Zehnder, 575

interferometer
Michelson, 352

ions, 230
isotope, 507, 509

notation for, 509
isotopes, 208, 487

of carbon, 208
of chlorine, 208
of hydrogen, 208
of lead, 215
of oxygen, 208
relative abundances of, 214

Joint probability, 578
jumps, see atoms, energy transitions

in

K x-rays, 544, see x-rays, line spectra,
545

and the Bohr Model, 544
Kashy, E., 515
Kaufmann, W., 379

measures e/m of beta rays, 481
Kelvin temperature scale, 101
Kelvin temperature scale

absolute zero, 102
kinetic energy, 54

relativistically correct, 384
Kirchhoff, G. R., 519
Knipping, P., 423
K radiation

see x-rays, 538
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L x-rays, 544, see x-rays, line spectra,
545

measured by Moseley, 551
Large Hadron Collider (LHC), 215
lattice constant, 460
Laue

see von Laue, 423
Laue diffraction, 446
Laue pattern, 424
Laue spots, 424
Lavoisier, 64
law of combining volumes, 68
law of constant proportions, 65
law of large numbers, 579
law of multiple proportions, 66
Lenard, Philipp, 402

measures charge-to-mass ratio
of charges emitted in
photoelectric effect, 402

length, 14
units

angstrom, 430
SI: meter (m), 14

light
“atomicity” of, 411
intensity of, 376
polarization, 598, 600
pressure from, 375
speed of, 395

constancy of, 351
limiting velocity, 7

wavelength and color, 308
light clock, 361
light waves, 286

electromagnetic waves, 288
sinusoidal

pure color, 286
velocity in a vacuum, 287

same for moving and stationary
observers, 325

line spectra, 318
linear approximation, see

approximations, straight-line
linear polarization, 654
localization, 556

connected to measurement, 556
logic

A means ‘not A’, 612

longitudinal wave, 293, 325
Lorentz contraction, 365, 367
Lorentz force, see magnetic force
Lorentz, H. A., 242
Loschmidt, J. J., 132
Lyman series, see hydrogen atom,

spectrum
Lyman, T., 520
L radiation

see x-rays, 538

Mach-Zehnder interferometer, 575
magnetic deflection

∝1/momentum, 239
control of moving charges, 215,

219, 239
discovery of isotopes, 208

magnetic field, 199, 200
constant

moving charge in, 204
uniform circular motion of a

charge in, 204
direction, 200, 201, 217

outside a long straight current,
207

exerts a force only on moving
charges, 217

magnitude, 201
of Earth, 201
outside a long, straight current, 207
produced by electric currents, 207
source of, 200, 217
strength

outside a long straight wire, 207
uniform, 208

momentum of charged particle
in, 205

units
gauss, 201
SI: tesla (T), 201

used to measure momentum of a
charged particle, 204

magnetic force, 217
direction, 199, 217

right-hand rule, 202
on a moving charge, 199

Lorentz force, 203
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magnetic mass spectrometer, 209
Bainbridge design, 209
mass doublets, 213

Malus’s law, 603
Mandel, L., 588
Marsden, E., 497, 500
Mass

familiar objects, 16
liter, 16

mass, 15
and energy equivalence, 375, 376,

378
dependence on velocity, 379
units

eV/c2, 387
SI: kilogram (kg), 15

mass doublets
magnetic mass spectrometer, 213

mass number A, 507, 509

mass spectrometer

magnetic mass spectrometer, 209
Maxwell, James Clerk, 131

mean free path, 122

of N2 at STP, 124

of O2 and N2 molecules, 131

medium, 286

Mendeleev, Dimitri (1834–1907), 536
Michelson interferometer, 352, 353,

359
Michelson, A. A., 322, 352

microwave oven frequencies, 289

Miller indices, 459, 461

Millikan, Robert A., 229, 243

oil-drop experiment, 243

photoelectric effect experiment, 408
model, 109

Modern Introductory Physics

atoms, 5

mole, 75

Avogadro’s number, 75
of charges, 230, 232

molecules, 66, 69

momentum, 36, 54, 56

relativistically correct, 383

units

eV/c, 387
SI: newton-seconds (N s), 39

Moon
3.8 × 108 m from Earth, 33
60 Earth radii distant from Earth,

32
Morley, E. W., 352
Moseley’s law, 541

data for, 540
significance of, 546

Moseley, Henry J. G. (1887–1915)
atomic number, 537

Moseley, Henry J. G. (b. 1887, d.
1915), 502

multi-slit interference
diffraction grating, 316
principal maxima, 316, 325
secondary maxima, 316

Negative derivative of electric
potential energy

see electric force, 176
neutron, 467, 507

and isotopes, 508
diffraction of, 467
half-life, 507
mass

in MeV/c2, 391
properties of, 507

neutron number N , 507, 509
Newton, 1, 7, 10
Newtonian physics

low speed limiting case of
relativistic physics, 340

non-locality, 597
non-relativistic approximations

how good?, 392
rule of thumb, 393
rules of thumb, 395

nuclear force, 507, 510
nuclear model of the atom, 503

hydrogen, 517
nucleons in nucleus, 509
nucleus, 6, 498

atomic number of, 507
electric charge of, 502
electrostatic potential energy of an

alpha particle in, 506
mass number of, 507
neutrons in, 507
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nuclides, 508
protons and neutrons in, 509
radius of, 502, 509

by proton scattering, 514
random decay of, 492

nuclides, 508
chart of, 509
masses of, 641
notation for, 509
number of stable, 508
radioactive, 508

number density, 76, 113

Optical spectroscopy, 318
order of magnitude, 151

Paschen series, 520, see hydrogen
atom, spectrum

Paschen, F., 520
Pauli exclusion principle, see atoms,

shell structure of
pendulum, 51

conversion of kinetic energy into
gravitational potential energy,
51

Galileo, 52
period of a wave, 288, 324
periodic table of the elements, 536
permittivity of free space: ε0, 160
Pfund series, see hydrogen atom,

spectrum
phase, 324
phase constant, 293
photocathode, see photomultiplier

tube
photocurrent, see photoelectric effect

effects of light frequency on, 404
effects of light intensity on, 404

photoelectric effect, 401, 402, 553
alkali metals, 402
Bragg on the strangeness of, 406
discovered, 402
Einstein equation for, 407
emitted charges are electrons, 402
Millikan’s data on, 409
Millikan’s experiment on, 408
photoecurrent, 402
photoelectrons, 402

some work functions for, 411
work function, 406, 407

photoelectrons, 402, see photoelectric
effect, 403

emitted with no time delay, 405
maximum kinetic energy of, 404

photomultiplier tube, 412
anode of, 413
dynodes of, 413
photocathode of, 413
quantum efficiency of, 414

photon, 407, 411, 415, 553
x-rays, 433

photopeak, 444, see scintillation
detector

physical dimensions
M, L, T—mass, length, time, 25

Physics and Astronomy Classification
Scheme (PACS), 2

URL, 2
pion

lifetime, 397
rest mass, 396, 400

Planck constant, 407, 415, 522
h̄ (h bar), 517

Planck, Max (1858–1947)
start of quantum theory, 569

plum-pudding model, 494
polarization, 598

horizontal and vertical, 600
Malus’s law, 603

polarization, linear, 654
polarized light

production, 601
polarized light, 600
polarizer, 601

extinction axis, 601
transmission axis, 601
two-beam, 614

polarizing beam splitter, 615
pole-in-the-barn puzzle, 370
positron, 398

radioactive decay, 508
potential, see electric potential
powder diffraction patterns, 427
power

units
SI: watt (W), 45
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precision, 212
pressure, 83

force per unit area, 85
of enclosed gases, 89
of fluid, 84
units, 87

SI: pascal (Pa), 88
primary x-rays, 538
principal quantum number, 525
principle of relativity, 339, 350

examples, 349, 365
probability

joint of independent events, 578
law of large numbers, 579
mutually exclusive events, 579

probability amplitude, 578
proper length, 367
proper time, 363
proton

mass, 21
in MeV/c2, 391, 395

Proust, J.-L., 65

Quantization, 411
quantum, 407, 415
quantum efficiency, see

photomultiplier tube
quantum eraser, 607
Quantum mechanics

correlations, 609
quantum mechanics, 321, 510, 545,

554
claimed to be incomplete, 611
hidden variables, 618

quantum mechanics
entanglement, 610
hidden variable theories, 598
non-locality, 597

quantum number, 524
quantum theory, 321

indistinguishability, 582
quark hunting, see electric deflection
quarks, 257

Radial quantum number, 525
radioactive decay, 379, 488

a purely random process, 492, 510
alpha particles, 509

and activity, 489
causeless randomness in, 493
decay chains, 485
decay constant, 490
decay constant or disintegration

constant, 489
disintegration constant, 490, 510
half-life, 488, 510
half-life data for UX1, 491
half-life of thorium-234 (UX1), 489
law of, 489, 490, 510
positron emission, 508
radioactive series, 485
relation between decay constant

and half-life, 492
radioactive elements, 487

emanation (radon), 485
polonium, 482
radium, 482
radon, 485
thorium, 482
uranium, 481
uranium-x UX1 234Th, 485

radioactive radiations, 484
alpha rays, 483
beta rays, 483
energies of, 509
gamma rays, 484, 510
large energies of, 503, 505
their e/m, 481

radioactivity, 380, 479, 480
activity of, 481
related to internal structure of

atoms, 482
used to identify new elements, 482
widespread phenomenon, 482

rainbow, 317
ray, 426
reference frame, see frame of reference
Relativistic Heavy Ion Collider

(RHIC), 216
relativity

and Newtonian physics, 340
constancy of c, 339
correct transformation of velocities,

370
event, 362
event generator, 361
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gamma, 363
invariance of laws of physics, 339
light clock, 361
of simultaneity, 339, 371
principle of, 350
proper length, 367
proper time, 363

resolution, 317
rest energy, 379
rest mass, 378
right-hand rule

for direction of B outside a long,
straight, current, 207

for magnetic force on a moving
charge, 202

Roentgen, K.
discovers x-rays, 421

root mean square velocity, 114
Rutherford scattering, 498

distance of closest approach, 501
equation for, 498
experimental data, 499
Geiger’s and Marsden’s experiment,

499, 501
used to measure the charge of a

nucleus, 502
Rutherford, Ernest, 479, 482

discovers the nucleus, 502
distinguishes alpha, beta and

gamma rays, 483
observes scattering of alpha

particles, 494
Rydberg atoms, 530
Rydberg formula, 520
Rydberg states, 530
Rydberg, J. R., 519

Scattering
alpha particles, 494
Rutherford scattering, 498

scintillation, 415, 496
scintillation detector, 415

sodium-iodide crystal, 443
zinc sulfide, 496

secondary emission, 413, 463
secondary x-rays, 538
series limit, 519

shell structure, 545
SI multipliers, 23
SI prefixes, 14, 55, 633

see SI multipliers, 23
SI units

metric system, 16
multipliers, 23
prefixes, 14

simultaneity, see relativity of
simultaneity

sine waves, see waves, sinusoidal
single-slit diffraction, 312, 325

minima, 325
Sklodowska, Marie

Curie, Marie, 482
small-angle approximation, 346
Soddy, Frederick, 479, 485
sound waves, 324

frequencies of, 288
sinusoidal

pure tone, 286
space and time interconnected, 339,

361
special theory of relativity, 339, see

relativity
spectral lines, 318, 319

produced by discharge tube, 320
spectrometers, 318
spectroscopists, 318
spectroscopy, 318, 518

and astronomy, 321
and quantum theory, 321

spectrum, see electromagnetic
spectrum, 319, 519

standard deviation, see distribution
stationary states, 517, 522
Stern, O., 467
Stokes’ law, see viscous force
STP

IUPAC definition, 113
NIST definition, 113

strong force
nuclear force, 510

subtend, 27
summation notation, 139
Sun

1.5 × 1011 m from Earth, 34
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mass, 34
volume, 34

superposition
principle of, 297

Temperature
and energy, 134
SI units: kelvins (K), 101

temperature of gases
energy of random motion of atoms,

116
kelvin scale, 120
kinetic energy of atoms, 115

thermal energy at room temperature,
118

thermal equilibrium, 94
thermal expansion

volume coefficient of, 95
some values, 96

Thomson, G. P., 457, 458
verifies de Broglie wavelength, 459

Thomson, J. J., 229, 235, 380, 494
charge-to-mass ratio of charges

from photoelectric effect, 402
discovers electron, 236, 421
plum-pudding model of atom, 521

time, 19
units

SI: second (s), 19
year (y), 21

time dilation, 361, 364
Torricelli, E., 85

first vacuum, 85
Torricellian vacuum, 86
torsion balance, 157
trajectory, 2
transformation, 351
transitions, see atoms, energy

transitions in
transmutation, 485, 509

alpha decay, 508
beta decay, 508

transverse wave, 293, 325
traveling sine wave, 324

one-dimensional general form, 293
Tristan particle accelerator, 398
tritium, 508, 641
two-beam polarizer, 614

Ulrey, C. T., 432
ultrarelativistic approximations, 394

rules of thumb, 395
uncertainty principle, see Heisenberg

uncertainty principle, 570
uniform magnetic field, see magnetic

field, constant
units, 639

abbreviations, 639
avoid looking foolish, 25, 26
consistency, 25
Tip 1: calculate efficiently with SI

multipliers, 23
Tip 2: have consistent units,

dimensions, 25, 26
universal gas constant, 104

Vacuum, 85
ultra-high, 131

valence, 77
Van der Broek, A.

identifies nuclear charge as atomic
number, 502

vectors, 56
addition, 57
components, 57
magnitude, 57

velocity, 56
velocity filter, see Wien velocity filter
viscosity, 125

coefficient of, 126
how to measure, 125
momentum transfer, 128
of gases

dependence on molecular weight,
135

independent of density, 135
temperature dependence, 135

units
poise, 126
SI: pascal seconds (Pa s), 126

viscosity of air, 252
viscous force, 245

Stokes’s law, 245
visible light

frequencies of, 289
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voltage, see electric potential

see electric potential, 173

volume

cylinder, 18
formulas, 22

sphere, 22

three factors of length, 22

von Laue, M.

interference of x-rays, 423

von Laue, Max, 423

Wang, J. L., 588

watt SI unit of power, 45
wave-particle duality, 553

wavelength, 288, 324

size needed to determine structural
features, 324

waves, 286, 324

bandwidth, 585

energy, 325

energy carried by, 294
intensity, 294

interference of, see interference

sinusoidal, 286, 324

amplitude of, 290

displacement of, 291

frequency, 288
intensity, 325

parameters of, 286

period of, 288, 289

periodic in space, 288

periodic in time, 288
phase constant, 293

phase of, 291

wavelength, 288

superposition of, 296

velocity of, 325
Wien velocity filter, 209

work, 44
work function, see photoelectric

effect, 415
values for some metals, 411

X-ray crystal spectrometer, 446
x-ray lines, 545
x-rays, 324, 422

as probe of structure, 447
atomic shells, 542
characteristic, 538, 539
continuous spectrum, 432

short wavelength cutoff, 433, 446
Ulrey’s data, 432

detection of, 422
interference of, 423
K lines, 538
L lines, 538
line spectra, 539, 542

and Bohr model, 542
K x-rays, 544
L x-rays, 544

photons of, 433
powder diffraction, 427
primary and secondary, 538
production of, 422
properties of, 422
short-wavelength electromagnetic

radiation, 422
spectrometer, 429
used to identify chemical

composition, 546

Year
3.15 × 107 s, 21

Young, Thomas, 308
light is a wave, 308

Zeilinger, Anton, 477
Zou, X. Y., 588
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