

Auxiliar 4??

Cónicas y rectas

Profesor: Raúl Gormaz Auxiliar: Joaquín López

1. Resumen(De la nube mechona!)

• Parabola e = 1:

Caso vertical

$$-(x-x_0)^2 = 4p(y-y_0)$$

- Vértice
$$(x_0, y_0)$$

- Foco
$$(x_0, y_0 + p)$$

- Directriz:
$$y = y_0 - p$$

Caso horizontal

$$-4p(x-x_0) = (y-y_0)^2$$

– Vértice
$$(x_0, y_0)$$

- Foco
$$(x_0 + p, y_0)$$

- Directriz:
$$x = x_0 - p$$

• Elipse 0 < e < 1:

Caso a>b (Semi eje mayor: a)

$$-\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

– Excentricidad
$$e = \frac{\sqrt{a^2 - b^2}}{a}$$

- Centrado en: (x_0, y_0)

- Focos
$$(x_0 \pm ae, y_0)$$

- Directrices:
$$x = x_0 \pm \frac{a}{e}$$

Caso a<b (Semi eje mayor: b)

$$-\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

- Excentricidad
$$e = \frac{\sqrt{b^2 - a^2}}{b}$$

- Centrado en: (x_0, y_0)

- Focos
$$(x_0, y_0 \pm be)$$

– Directrices: $y = y_0 \pm \frac{b}{e}$

• Hipérbola e > 1: Caso Horizontal

$$-\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

- Excentricidad
$$e = \frac{\sqrt{a^2+b^2}}{a}$$

- Centrado en:
$$(x_0, y_0)$$

- Focos
$$(x_0 \pm ae, y_0)$$

- Directrices:
$$x = x_0 \pm \frac{a}{e}$$

Caso Vertical

$$-\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

– Excentricidad
$$e = \frac{\sqrt{b^2 + a^2}}{b}$$

- Centrado en:
$$(x_0, y_0)$$

- Focos
$$(x_0, y_0 \pm be)$$

– Directrices:
$$y = y_0 \pm \frac{b}{e}$$

• Propiedad MUY UTIL

Dado 2 rectas L y L', si

$$m_L \cdot m_{L'} = -1$$

Entonces $L \perp L'$.

• Punto Medio

Dado dos puntos $A(a_1, a_2)$ y $B(b_1, b_2)$ definimos su punto medio como

$$P_m = (\frac{a_1 + b_1}{2}, \frac{a_2 + b_2}{2})$$

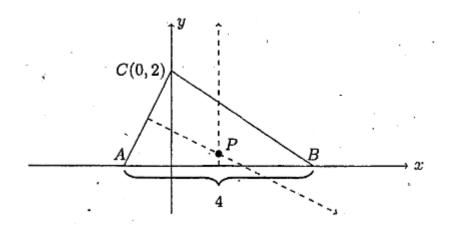
Notar que P_m dimidia el segmento AB, ya que $d(A, P_m) = d(B, P_m)$

Auxiliar 4??

2. Problemas

P1.- Un triangulo ABC variable tiene su vértice en C(0,2), fijo sobre el eje OY y el lado opuesto AB de longitud dada $\overline{AB} = 4$, se desliza sobre el eje OX. Las rectas Simetrales de los lados AB y AC se cortan en un punto $P(\alpha, \beta)$. (Ver esquema)

Se pide determinar el Lugar Geométrico que describe el punto P, en función de α y β , e identificar el Lugar Geométrico indicando sus elementos principales (focos, directrices, excentricidad) **HINT:** si $x_P = \alpha$ entonces $x_A = \alpha - 2$ y $x_B = 2 + \alpha$



P2.- Identifique las siguientes cónicas y el foco, directriz y todas esas cosas:

1.
$$x^2 + 2x + y^2 + 4y - 4 = 0$$

$$2. \ 2y^2 + 4x - y + 3 = 0$$

$$3. \ x - 3x - 2y^2 - 5y = 0$$

4.
$$2x^2 + 2x + 3y^2 + 4y - 4 = 0$$

$$5. -2x - 3x^2 + 5y + 1 = 0$$

6.
$$x^2 - y^2 = 0$$

 $lue{\mathbf{P3.-}}$ (Recuerdo Semana pasada) Hallar el punto Q Simétrico del punto P(-2,6) con respecto a la recta de ecuación:

$$\mathcal{L}: 5x - 2y - 7 = 0$$

P4.- (Hay Propuestos)

Un punto $P(x_0, y_0)$ del plano se mueve de modo que el producto de las pendientes de las rectas que unen P con los puntos A(1, -3) y B(3, -3) es constante e igual a 4.

Encontrar e identificar el Lugar Geométrico que describe P, señalando los elementos principales de dicho lugar geométrico.

P5.- (y Propuestos)_{insertese meme de los simpsons}
Dada una elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ y una recta y = mx + k. Se sabe que estas son tangentes si y solo si se verifica que:

$$k^2 = (ma)^2 + b^2$$

Encuentre el lugar geométrico de los puntos $P(\alpha, \beta)$ tales que las dos rectas tangentes a la elipse pasan por P son perpendiculares

Auxiliar 4?? 3