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Automatic Speech Recognition for Indoor HRI Scenarios
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This article presents a stand-alone automatic speech recognition system that accounts for listener move-

ment, time-varying reverberation effects, environmental noise, and user position information for beamform-

ing approaches in an HRI setting. We raise the importance of replacing the classical black-box integration

of automatic speech recognition technology in HRI applications with the incorporation of the acoustic envi-

ronment representation and modeling, and of the target source direction. Test data were recorded on a real

robot under various moving conditions. For addressing the time-varying acoustic channel problem and in-

corporating environmental effect during training, clean speech samples were passed through estimated static

channel responses and noise was added. Beamforming is investigated regarding oracle source tracking using,

for instance, image processing. The proposed strategy is interesting for the robotics community, because it

allows the development of voice-based HRI with limited training data and without relying on third-party

technologies or Internet access eliminating the need to upload data to the cloud. In our mobile HRI sce-

nario, the resulting speech recognition engine provided an average word error rate that is at least 19% and

34% lower than publicly available speech recognition APIs with the playback (i.e., loudspeaker) and human

testing modalities, respectively.
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1 INTRODUCTION

1.1 HRI and Speech Technology

If social robotics is a reality, then the appropriate social integration between humans and
robots could greatly improve the cooperation between users and machines. There are several
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applications in defense, hostile environments, mining, industry, forestry, education, and natu-
ral disasters where some integration and collaboration between humans and robots will be re-
quired [1]. HRI is especially relevant in those situations when robots are not fully autonomous
and require interaction with humans to receive instructions or information in decision-making
applications [2–5]. In this context, humanlike communication between people and robots is es-
sential for a successful human–robot collaborative symbiosis [6–7]. Additionally, speech is the
most straightforward and natural way that humans employ to communicate [8–10]. Consequently,
voice-based HRI should be the most natural way to facilitate a collaborative human–robot synergy
and speech technology, particularly automatic speech recognition (ASR), should play an important
role in social robotics.

It is well known that computer vision is an important research topic in robotics. Recent chal-
lenges such as DARPA Robotics Challenge [11] and Robocup [12] have led to great improvements
in computer vision [13–16]. However, there has also been a significant progress in ASR, but most
of this advancement has taken place outside the HRI field. ASR has gained relevance in robotics
over the past few years, but its status is still far from the one enjoyed by computer vision in the
robotic research.

1.2 Automatic Speech Recognition Technology

ASR is the process and related technology for transcribing human speech into words. By using
Bayes’s rule, the ASR problem can be formulated as follows [17]:

Ŵ = argmax
W

p (W |X ) = argmax
W

p (X |W ) · p (W ), (1)

where Ŵ is the optimal label (word or phone) sequence, X is the input speech observation se-
quence that represents a given speech utterance, p (W ) denotes the language model describing the
probabilities of word combinations, and p (X |W ) indicates the acoustic model. Consequently, the
task of an ASR system is to find (by means of a process called decoding, performed with the Viterbi

algorithm [18]) the most likely label sequence Ŵ given an observed sequence of feature vectors
that corresponds to the speech utterance. The language model can be represented with [19] sta-
tistical models, stochastic context-free grammars (SCFG), or stochastic finite-state models. In the
case of statistical models, which are widely employed in research, the prior probability of a word
sequenceW = w1, . . . ,wL in (1) can be approximated with N-grams.

p (W ) �
L∏

l=1

p (wl |wl−1,wl−2, . . . ,wl−N+1), (2)

where N is typically between 2 and 4. The language model defines the transition probability from
one N-gram to the next word to guide the search for an interpretation of the acoustic input. Ad-
ditionally, the size of the vocabulary and perplexity [20] are critical for ASR accuracy. Perplexity
measures the uncertainty about the words that may follow a given N-gram. A low-perplexity lan-
guage model defined by a given task or context will constrain the decoding and perform better than
a high-perplexity one. Accordingly, language models can be adapted using context information to
reduce perplexity and improve the ASR accuracy [21–23].

Acoustic modeling defines the statistical representations for the sequence of acoustic feature
vectors X obtained from the speech waveform. The utterances are divided into 20 or 30 ms
windows with overlap (e.g., 50%). The set of acoustic features is usually obtained from the short-
term fast Fourier transform within each window [18, 24–25]. Speed and acceleration coefficients
(called delta and delta-delta coefficients) can also be used, and the final feature vector is composed
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of the static features, plus the delta and delta-delta coefficients [26]. Mean and variance normal-
ization of the coefficients can also be employed. Until a few years ago, most speech recognition
systems adopted hidden Markov models (HMMs), to deal with the temporal variability of speech,
and Gaussian mixture models (GMMs) to represent p (X |W ). Given a set of speech feature vectors
X = {x t }Tt=1, the state observation probability density function of feature vector x t at frame t in
state si is expressed by [18]

p (x t |si ) =
M∑

m=1

ci,m · N (x t ; μi,m , Σi,m ), (3)

where ci,m , μi,m , and Σi,m correspond to the mixture weights, mean vectors, and covariance ma-
trices, respectively, for M Gaussian mixture components. In the last few years, artificial neural
networks (ANNs), e.g., deep neural networks (DNNs), have shown significant performance im-
provement over GMM-based models. In a DNN-HMM system, the DNN provides a pseudo-log-
likelihood defined as

log[p (x t |sj )] = log[p (sj |x t )] − log[p (sj )], (4)

where sj denotes one of the states or senones, and the state priors log[p (sj )] can be trained using

the state alignments obtained with the training speech data. The final decoded word string, Ŵ , is
determined by

Ŵ = argmax
W

{
log[p (X |W)] + λ · log[p (W )]

}
, (5)

where the acoustic model probability p (X |W ) depends on the pseudo log-likelihood log[p (x ts )]
delivered by the DNN and λ is the constant that is employed to balance the acoustic model and
language model scores [27]. The results reported in Reference [28] showed that the DNN-HMM
ASR can lead to a WER reduction of 32% relative when compared to the ordinary GMM-HMM
system on the Switchboard task [29]. However, training a DNN is not an easy task. The objective
function can be highly non-convex and the training algorithm can easily converge to a subop-
timal local minimum. Also, ANNs need more training data than GMM-HMM systems [30]. It is
worth mentioning that public ANN-based ASR application programming interfaces (APIs) employ
at least thousands of hours of speech data for training [31–33]. Other ANN architectures have
also been applied to ASR: long short term memory (LSTM) [34], convolutional neural network
(CNN) [35], and recurrent neural networks (RNN) [36]. The results obtained using DNN-HMM
systems are competitive when compared to those reported with other ANN architectures [37–41].
In some cases, systems employing combinations of ANN architectures, RNN, very deep CNN [42],
or fCNN [43] have outperformed DNN, LSTM, or the ordinary CNN approaches. However, the
higher the number of the ANN parameters, the higher the required amount of training data.

In matched conditions between training and testing data, ASR shows large performance gain.
In contrast, models will have difficulties recognizing test samples if they differ from data used in
training. For this reason, noise robustness of ANN-based systems can be achieved by using multi-
style or multicondition training [44–46]. For instance, a DNN trained with several types of noise
and signal-to-noise ratio (SNR) levels can lead to a high accuracy improvement in real applications
[47].

The reverberation effect is usually modeled as the convolution of clean speech with a room
impulse response. The time-invariant hypothesis is necessary for this model. If the robot or its
head moves, then the acoustic channel becomes time-varying, and the reverberation effect can-
not be represented as a convolution and treated analytically anymore. This problem is denoted by
time-varying acoustic channel (TVAC) and is discussed in Section 3.3.1. In this article, we propose
that ASR technology should be investigated, designed and developed to address HRI applications
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Fig. 1. Ordinary black box-based ASR integration in HRI scenarios.

by taking into consideration the acoustic environment. Following this strategy, first this article
focuses on the acoustic environment representation and modeling by training an ASR engine by
combining clean utterances with the acoustic channel impulse responses and noise that were es-
timated and recorded, respectively, with an HRI testbed. The acoustic channel impulse responses
address the TVAC problem, and noise was generated by the robot itself and up to two external noise
sources. This testbed represents the generic problem of HRI in mobile robotics and the resulting
ASR accuracy can outperform publicly available ASR APIs with a limited amount of training data.
Second, beamforming technology and toolkits were evaluated by assuming that the direction of
speech target source was known by other means than audio analysis, e.g., image detection and
classification technology. This strategy represents a step toward a more complete ASR integration
to HRI scenarios. Finally, another motivation for the research described in this article is to gener-
ate voice-based HRI technology that does not depend on cloud-based ASR, not only for privacy
concerns but also to make it independent of Internet access by making use of limited training
data.

2 RELATED WORK

2.1 Black Box-based Integration of ASR Technology

Most of the research that considers ASR in HRI scenarios use ASR toolkits or APIs as black boxes.
A non-exhaustive list of available options that support ASR includes systems such as HTK [48],
SPHINX [49–50], JULIUS [51], KALDI [52], and BAVIECA [53] and general-purpose ASR APIs
provided by, for instance, Google, Microsoft, and IBM. These toolkits and APIs have been employed
in HRI applications to incorporate ASR capabilities to a robot on a plug-and-play fashion [54–58],
i.e., a speech signal is input to the ASR to obtain a text transcription (see Figure 1) without taking
into consideration operation conditions such as noise, relative movement between the speaker and
the robot, microphones directivity and response, or user or robot context.

In Reference [54], a project that integrates smart home technology and a socially assistive ro-
bot to extend independent living for elderly people is described. A Nao robot plays the role of
communication interface between the elderly, the smart home, and the external world. The ro-
bot can recognize simple answers from the user such as “yes” and “no” by using Sphinx 4.0 from
Carnegie-Mellon University. Despite the fact that the Nao robot has a built-in microphone, its
quality is too low for practical indoor applications, and a ceiling-mounted microphone was used
to capture user speech. CMU Sphinx engine was also employed in Reference [57], as part of a
voice control system for a robotic endoscope holder during minimally invasive surgery. In Ref-
erence [56], a general framework for multimodal human–robot communication is proposed. This
framework allows users to interact with robots using speech and gestures. The Google Speech
API was chosen because it offered speaker and vocabulary independency, which in turn could al-
low a natural speech interaction with no constraints. Google Speech API was also employed in
Reference [58] to provide ASR capabilities to a robot that needed to understand the intentions of
users without requiring specialized user training. It comprises a recognition model that combines
language, gestures, and visual attributes. In Reference [59], four ASR engines were compared by
making use of different grammars: Google Speech API, the Microsoft Speech APIM, Pocket Sphinx
from CMU, and the NAO-embedded Nuance VoCon 4.7 engine. Experimental results showed that
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the Google Speech API led to the highest accuracy. Smart speakers such as Amazon Echo have also
been employed in HRI studies to control, for instance, robotic arms [60–62]. In References [63–64],
the semantic model of a small set of vocal commands applicable to HRI is learnt by making use of
non-negative matrix factorization. In Reference [65], multimodal categorization, word discovery,
and a double articulation analysis were studied regarding their capability to enable a robot to ob-
tain words and their embodied meanings from raw sensory–motor information, including visual
information, haptic information, auditory information, and acoustic speech signals.

The integration of ASR technology on a black-box basis can lead to poor performance, because
the chosen ASR system is not designed necessarily to comply with specific scenarios or tasks.
In Reference [55], an evaluation with children aged from 4 to 10 years old playing versions of a
language-based game hosted by an animated character is described. Speech recognition results
using Sphinx3 on children utterance showed a poor performance, partially due to the mismatch
between the children’s voices and the adult acoustic model of the ASR engine. General purpose
speech toolkits or APIs have been widely used as an easy solution to integrate ASR to some plat-
forms. However, while those ASR engines provide good results in several scenarios, they may not
provide an optimal solution to specific tasks, because they are not considered in the training pro-
cedure, or the technology simply does not compensate for unexpected distortions. As an example,
in Reference [66], it was investigated whether the open-source speech recognizer Sphinx can be
tuned to outperform Google cloud-based speech recognition API in a spoken dialog system task.
By training a domain-specific language and making adjustments, Sphinx could outperform the
Google Web Speech API (Google API) by 3.3%. It is worth emphasizing that commercial APIs may
also allow to generate several language models per task. By doing so we no longer are treating
those APIs as simple black boxes. However, in this context, we highlight that the language models
need to be fully trained beforehand, and there is little room to generate language models dynami-
cally or “on demand.” Even if the language models could be generated “on the fly” or dynamically,
a strategy is needed to decide which language model should be generated, and robust HRI may
require that we handle many different scenarios that can hardly be modeled beforehand, which in
turn welcomes specific research on language modelling.

2.2 Simulating ASR with WoZ Evaluations

One of the challenges in HRI interaction that may require an ad hoc solution instead of a mul-
tipurpose API, is the speech recognition with relative movements between the speaker and the
robot. In scenarios where ASR is performed by moving robots, the corruption of speech produced
by the additive noise of the robot’s motors should be taken into consideration. Speech recogni-
tion experiments with moving robots in Reference [67] led the authors to recommend that the
robot should pause its actions as soon as it realizes that it is being talked to, which in some ap-
plications is unacceptable. They also suggest that the only reliable speech recognition engine for
HRI is another human being. Given the fragility of ASR technology that was unveiled in HRI en-
vironments, many researchers have adopted interaction mechanisms that do not rely on speech
recognition technology and Wizard of Oz– (WoZ) based approaches have been chosen by several
authors [68–75].

2.3 Evaluation of Optimal Physical Setup and Operating Conditions

There is an alternative strategy, which instead of making the ASR technology more suitable to
target operating conditions or adopting WoZ schemes, attempts to find the optimal operating
environment that maximizes the ASR accuracy. In Reference [59], the following variables were
evaluated: different noise scenarios, different distances and angles of the speaker with respect
to the microphones, and three types of microphones, i.e., desktop, studio, and the robot-mounted
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microphone. According to the experimental results, the authors provide recommendations regard-
ing how the speech-based HRI with children should be deployed so as to achieve a smoother inter-
action. Some of the recommendations are as follows, using additional input/output devices, even
replacing verbal language input with a touchscreen and to place the user in an optimal location
with respect to the microphones. Although these recommendations are based on evaluations with
children, the authors suggest that they are applicable to HRI in general.

A speech recognition friendly artificial language (ROILA) was compared to English spoken lan-
guage when talking to a Nao robot in Reference [67]. The experiment considered three microphone
types (the ones built-in in the robot, a headset, and a desktop microphone), two conditions of head
movement (static and moving) for the Nao robot, and two types of spoken languages (English and
ROILA). The authors concluded that ROILA does not provide a significant improvement when
compared to ordinary spoken English. However, the type of microphone and the robot head move-
ment are critical for the ASR accuracy. If ideal operating conditions are not met, then one strategy
is to try to cancel the corrupting environments. For instance, in Reference [76] and Reference [77]
the external noise sources or ego-noise caused by motors and fans of the robot are removed with
enhancement methods.

2.4 Beamforming

Another alternative to select a specific source or reduce the effect of noise is to use microphone
arrays to direct the main lobe of this array toward the target speech source or user. This technique
is known as beamforming and there are several methods to combine the channels of microphone
arrays. Some beamforming techniques that are widely employed in the literature are the well-
known delay-and-sum that uses destructive interferences to reduce the received acoustic power
from those directions that are different from the target source angular position [78]; the minimum
variance distortionless response (MVDR) that seeks to minimize the variance of the noise, con-
strained to the distortionless restriction of the beamformer output in the desired direction [79];
and the linear constraint minimum variance that generalizes the idea of MVDR by imposing mul-
tiple constraints [80]. However, conventional beamforming techniques have a limited capacity to
reduce diffuse noise and reverberation [81]. This behavior is mainly due to the fact that to estimate
delays accurately is a difficult task in reverberant environments [82]. Consequently, the applica-
bility of beamforming methods is reduced in indoor scenarios where the successive reflections in
walls can generate a diffuse or reverberant field.

3 ASR TESTBED FOR MOBILE HRI

In contrast to the ASR integration on a black-box basis as discussed above, in this article we pro-
pose to consider not only the acoustic signal but also the acoustic environment (see Figure 2). By
acoustic environment we mean the acoustic channel, reverberation conditions and the additive
noise caused by the robot movement and external sources. Additionally, the model presented in
Figure 2 considers the states and contexts of the robot and user as inputs. Even though state and
context may have broad meanings in HRI, they can be denoted briefly by very precise informa-
tion from the ASR technology point of view. For example, robot state and context would denote
all the information about human beings around the robot and current variables and operating
conditions of the machine to generate a list of feasible or acceptable commands or information
that could be input by the user. User state and context would designate, among others, the user’s
position, attitude, emotional conditions, and task completion status that can also predict user’s
command and info input to the robot. Consequently, the states and contexts of the robot and user
can condition the adaptation of the ASR language model. However, the full accomplishment of this
kind of integration is far beyond the scope of a single paper, and we focus here on the acoustic
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Fig. 2. A more complete ASR integration for HRI scenarios.

environment representation and modeling and on beamforming oracle source tracking. First, we
trained our ASR engine with clean utterances combined with the acoustic-channel responses and
noise that were estimated and recorded, respectively. Noise was generated by the robot itself and
up to two noise sources. Second, beamforming technology was evaluated by assuming that the
direction of speech target source was known by other means than audio analysis, e.g., image
detection and classification technology. To carry out this study, we implemented a testbed that
attempts to represent a generic acoustic environment of HRI, from the kinematic point of view,
when a single user interacts with a mobile robot.

First, for instance, consider some real human social scenarios where robots could be very useful:
a museum guide giving a tour, a student in a classroom asking the teacher a question, a rescue team
helping a survivor, and a team of chefs working in a restaurant. All these situations have something
in common: A person talks to somebody else who is busy accomplishing a task and is not looking
to who is talking to him/her. Also, the two individuals may be moving one with respect to the
other. Moreover, there could be sources of interferent noise.

As shown in Figure 2, the integration model employed here considers the information related
to the acoustic environment as one of the inputs of the ASR engine. In this article, we represent
the acoustic environment with the impulse responses that characterize the TVAC, and the additive
noise generated by the robot movement and other sources. The main advantage of this methodol-
ogy is the fact that it is much more efficient than recording the training database in all the possible
operating conditions. To record the testing speech data in a real mobile robot scenario, to estimate
the channel impulse responses and to record the additive noise, we implemented a testbed that
employs a loudspeaker and human speakers as target speech sources, loudspeakers of interferent
noise sources and a moving robot as a receiver.

A preliminary version of this testbed was described in Reference [83] where pilot experiments
were reported. Because of the high relevance to the HRI community, a more complete version of
this type of HRI scenario is proposed and described in the following sections (see Figure 3). Partic-
ularly, beamforming technology was evaluated by considering that the direction of speech target
source was known by other means than audio analysis, e.g., image detection and classification
technology. Beamforming spatial filtering was introduced to filter out the noise from the robot
and external sources to increase the SNR with respect to the target speech source. Moreover, the
additive noise, including the one generated by the robot and the external sources was recorded and
included in the training procedure to represent more accurately the robot movement-conditions
and the acoustic environment. Also, additional test sets were recorded by replacing the loudspeaker
with human speakers in the same context.
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Fig. 3. Generic indoor environment floor plan where the HRI scenario for the testing Databases I, II, and III
was implemented. The robot moved toward and away from the speech source (i.e., the loudspeaker or the
human speakers) between positions P1 and P3 in dynamic conditions. The static conditions were recorded
with the robot in positions P1 and P2. For the testing Database-II only the external noise source 1 was
considered, while for the testing Database-III both external noise sources 1 and 2 were included.

3.1 Robotic Platform and TVAC

The experimental platform makes use of the Personal Robot 2 (PR2). Our PR2 robot is equipped
with a Microsoft Xbox 360 Kinect sensor mounted on top of its head. The Kinect sensor has been
widely used in the HRI community [84–88] and has recently been adopted in the recording of the
Fifth CHiME Challenge database [89]. Plug-and-play devices such as Kinect represent a practical
solution for a wide variety of HRI applications, because they allow image and audio processing, as
it has RGB and depth cameras, as well as a linear array of four microphones channels. However,
the methodology presented here is also applicable to other solutions based on sensors embed-
ded in robots. We re-recorded 330 clean testing utterances of the Aurora-4 database with our HRI
testbed located in an indoor environment, denominated Room 1, according to (Figure 3), including
different specifications of the relative motion between the robot and the sources. The Aurora-4
clean test set was chosen for the generation of the test data to compare the results with those
already reported by the speech community. A database representing a specific HRI application
could be composed of a small lexicon or provide a low perplexity language model, which in turn
would reduce the representativeness of the results. In contrast, using a generic database with a
larger lexicon and a higher language model perplexity improves the representativeness and appli-
cability of the proposed methods. Note that when the speech source and the robot are static one
with respect to the other is a special case in relation to the more general situation. The recording
was performed by the PR2 Microsoft Kinect sensor, which contains a four-microphone array. The
recording procedure considered the relative movements of the robot microphones with respect
to the speech sources by simultaneously applying translational movement to the robot body and
angular rotation to the robot’s head.

The robot moved toward and away from the speech source (i.e., the loudspeaker or the human
speakers) between positions P1 and P3 in Figure 3. Three maximum robot displacement veloci-
ties were defined as follows: Vmax1 = 0.30 m/s,Vmax2 = 0.45 m/s, and Vmax3 = 0.60 m/s. Those
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Fig. 4. Movement of the PR2 robot head during the testing databases recording. The head moves periodically
from sweep limits φ1 and φ2 and back at angular velocities equal to ω rad/s. Recordings with static head are
performed at 0° and 45°. The selected angular velocities for the robot head emulate the situation where the
robot follows with the head a virtual target located two meters away and moving with tangential velocity of
v km/h. The speech sources can be a loudspeaker or a human speaker. In both cases the sources were located
at 0° with respect to the robot front.

velocities were inspired by the discussions in Reference [90], where a robot approached to a seated
person at 0.2 and 0.4 m/s. In those conditions, none of the human participants found these robot
speeds were too fast. Then, the maximum velocities mentioned above were multiplied by an ac-
celeration and deceleration function. Additionally, the recording of the test database was also per-
formed with the robot in some static conditions with respect to the speech source at positions P1
and P2 in Figure 3, i.e., located at one and two meters away from the speech source, respectively.

The robot makes turns with the head as shown in Figure 4 for the displacement conditions
described above. The sources were located at 0° (i.e., facing straight the robot). The three angular
velocities ω for the robot head were made equal to 0.28, 0.42, and 0.56 rad/s. The chosen angular
velocities correspond to the angular speed of the head rotation necessary for the robot to follow a
virtual target with its head movement. The virtual target would be located two meters away from
the robot and it is moving with tangential velocities of 2, 3, and 4 km/h, respectively, as shown in
Figure 4. A fourth angular motion condition was 0 rad/s, fixing the robot’s head at a given angle.

Considering sources of external noise as part of the problem is important from the real-world
application point of view. These noise sources are part of a generic HRI scenario but can be con-
sidered uncorrelated with the interaction itself. To address this problem of speech recognition
with external noise sources and TVAC, up to two speakers were positioned at 45° from the speech
source at 2 m away from position P2 as shown in Figures 3 and 4.

3.2 HRI Scenario Testing Databases

Three testing databases were recorded using the generic HRI testbed shown in Figure 3 as de-
scribed as follows: Database-I, Database-II, and Database-III. In Database-I several robot mov-
ing conditions were evaluated but no noise external noise source was employed. In contrast,
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Table 1. Testing Databases

Condition Displacement Angular Head Ext. Noise

ID Vel. [m/s] Vel. [rad/s] Angle Sources

0

0 0° 0
0.28 — 0

0.42 – 0
0.56 – 0

0.3

0 0° 0
0.28 – 0

0.42 – 0
Database-I 0.56 – 0

0.45

0 0° 0
0.28 – 0

0.42 – 0
0.56 – 0

0.6

0 0° 0
0.28 – 0

0.42 – 0
0.56 – 0

Static 1 0 0 0° 1

Database-II Static 2 0 0 45° 1
Dynamic 1 0 0.42 – 1
Dynamic 2 0.45 0.42 – 1
Static 1 0 0 0° 2

Database-III Static 2 0 0 45° 2
Dynamic 1 0 0.42 – 2
Dynamic 2 0.45 0.42 – 2

Database-II and Database-III made use of one and two external noise sources, respectively. These
databases are described in detail in the following subsections and summarized in Table 1.

3.2.1 Testing Database-I. This database contains 16 conditions of robot movement with two
speech sources: loudspeaker and human speaker. The two speech sources corresponded to a studio
loudspeaker and four native American English speakers (two males and two females). The external
noise sources in Figure 3 were not employed in this case.

The combination of four conditions for robot displacement defined in Section 3.1 (i.e., three
translational movements between P1 and P3 with maximum velocitiesVmax1,Vmax2, andVmax3

and a static position at P1) and four robot head angular movements defined in Section 3.1 (robot
head angular velocities equal to 0, 0.28, 0.42, and 0.56 rad/s) produces 16 test database recording
conditions. In this database, the robot head moves periodically from φ1 = −150◦ to φ2 = 150◦ and
back in the dynamic conditions, as shown in Figure 4. Consequently, the total number of Aurora-4
clean testing utterances reproduced with the studio loudspeaker is equal to 330 utterances/robot-
movement-conditions x 16 robot-movement-conditions = 5,280 utterances. However, each of the
four native American English speakers pronounced ten sentences from the Aurora-4 corpus per
robot-movement-conditions. Those sentences were the same for all the four speakers. As a re-
sult, the human speakers recorded 4 × 10 utterances/robot-movement-conditions x 16 robot-
movement-conditions = 640 utterances. Figure 5 shows the experimental setup used to record this
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Fig. 5. PR2 robot equipped with a Microsoft Kinect that was used to record the testing Database-I: (a) The
speech source corresponds to a studio loudspeaker that was employed to reproduce clean utterances from a
database and (b) the speech source is a human speaker reading sentences from the same corpus.

database. The average number of words per utterances is equal to 16.2 words. The vocabulary size
in the testing data is 1,270 words. It is important to mention that background noise was kept under
control and measured before recording the test database at each robot movement condition. The
equivalent sound pressure level over ten minutes was equal to 39 dBA. Instructions for request-
ing the playback modality of the testing Database-I are available at http://www.lptv.cl/en/hri-asr/.
Further information about the testing database recording can be found in Reference [91].

3.2.2 Testing Database-II. This database represents a more extreme situation than the one de-
scribed in Database-I (Section 3.2.1), because it considers one external noise source (noise source 1
in Figure 3). Two static and two dynamic sets were generated. These four movement conditions
are summarized in Table 1. The first static condition, Static 1, was recorded by fixing the robot’s
head at 0° (i.e., oriented toward the speech target source). The second static condition, Static 2,
corresponds with the head oriented toward the external noise source 1 located at 45° from the
speech target (Figure 3).

The first and second dynamic conditions, Dynamic 1 and Dynamic 2, were recorded with the
robot head moving periodically betweenφ1 = −50◦ toφ2 = 50◦ (sweep limits in Figure 4) at angular
velocity ω equal to 0.42 rad/s while the translational velocity was 0 and 0.45 m/s, respectively, as
detailed in Table 1.

Consequently, the number of Aurora-4 clean testing utterances re-recorded in this database
is equal to 330 utterances/robot-movement-conditions x 4 robot-movement-conditions = 1,320
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Fig. 6. The experimental setup used to record testing Database-II and Database-III, i.e., considering one and
two external noise sources calibrated at an SNR equal to 5 dB, respectively.

utterances. An SNR equal to 5 dB was adopted, where the estimation of the signal energy was made
based on clean data (330 utterances) reproduced at two meters from the array of microphones, i.e.,
with the robot at position P2, and the robot’s head at 0° (i.e., oriented toward the speech target
source).

The noise energy estimation was performed by considering 1 minute of additive noise repro-
duced with one of the additional loudspeakers located at 45° (noise source 1 in Figure 3) and by
adjusting the received power until the desired SNR was achieved. As a reference, the restaurant
noise was employed. For the estimation of the signal and noise energies, the recordings were made
with the robot servers turned on, i.e., there is a noise produced by the servers’ fans as well as the
cooling system at the robot base. Figure 6 shows the experimental setup employed to record this
database. The Database-II recording made use of the library available in the software developer’s
kit (SDK) for Microsoft Kinect where the four channels and the beamformed signal were recorded.
In addition, the robot saved the azimuthal angle of the robot’s head in conditions Dynamic 1 and
Dynamic 2.

3.2.3 Testing Database-III. This database represents an even more challenging situation than
testing Database-II with two external noise sources (see Figure 3). The configuration used here
is also shown in Figure 4 with more details. The noise sources 1 and 2 were located two me-
ters from position P2 and at 45° from speech target source as shown in Figures 3 and 4. This
database made use of the same static and dynamic conditions in Table 1 that were employed for
Database-II. Therefore, the number of Aurora-4 clean testing utterances re-recorded in this data-
base is the same as in Database-II, i.e., 1320 utterances. The SDK libraries for Microsoft Kinect
were also used here, and the four individual channels and the beamformed signal were recorded.
The azimuthal angle of the head was saved in the robot’s servers at conditions Dynamic 1 and
Dynamic 2. The SNR was also made equal to 5 dB. The experimental set up shown in Figure 6 was
also employed to record this database.

3.3 Characterization of the Acoustic Environment for ASR Training

The generic HRI test bed in Figure 3 needs to be characterized and modelled to include this infor-
mation in the speech recognition training procedure. As explained above, the main motivation is
to soften the requirements of the training database to achieve an accuracy similar or superior to
the one that would be obtained by a large database representing all the testing conditions. As a
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matter of fact, as a result, we employed a small clean database to integrate our acoustic model and
environmental noise into the training procedure. The proposed method is not just data augmenta-
tion that increases the training set size by incorporating, for instance, simple speed perturbations
on utterances to generate copies of the training data. Actually, the number of training utterances
was not modified. Also, the proposed scheme is not multicondition training either and to record
training speech in several operating conditions is not necessary. We believe that the procedure
presented here is interesting for the robotic community to achieve high recognition accuracy in
complex real HRI scenarios with limited training data.

3.3.1 TVAC. If the relative position between the user and the robot varies during the interac-
tion, then the acoustic channel will be time dependent. Consequently, the signal received at each
microphone, y, can be described by

y[i] =
∞∑

p=0

hi [p]x[i − p], (6)

where x denotes the original clean signal, hi is the time-dependent impulsive response represent-
ing the acoustic channel, and i is the discrete time index. The TVAC problem cannot be solved
with conventional compensation techniques, because the channel cannot be assumed constant.
This challenging problem has hardly been addressed in the literature. In this article, we propose a
solution to this problem applicable to moving dynamics HRI scenarios.

The TVAC in a generic HRI scenario (Figure 3) can be modeled using a set of samples of the
acoustic channel impulse responses. In this article, 33 four-channel impulse responses (IRs) were
computed with the robot placed at P1, P2, and P3 (Figure 3), and for each robot position the head
was oriented at 11 different angles with respect to the source. The head angle was varied from
−150° to 150° in steps of 30°. The 0° angle corresponds to the Microsoft Kinect microphones ori-
ented toward the sources in Figure 4. The impulse responses were estimated using the Farina’s
sine sweep method [92]. An exponential sine sweep signal was generated from 64 Hz to 8 kHz
and reproduced with a studio loudspeaker. The sweep audio was recorded with the four channel
Microsoft Kinect sensor. An impulse response was estimated for each channel by convolving the
corresponding recorded signal with the time reversal of the original exponential sine sweep.

3.3.2 Robot Noise. To incorporate additional information about the acoustic environment in
our HRI scenario, different robot noise levels were recorded by the Kinect microphone array in the
16 robot movement conditions defined for Database-I (Section 3.2.1). The robot noise is generated
by its internal fans and electrical motors operating at different translational and angular velocities.
Finally, the four Kinect channels were summed to obtain a single channel signal. This noise was
included in the ASR training based on the acoustic environment modelling described in Section 4.

3.3.3 External Noise Sources. As mentioned above, considering external noise sources is impor-
tant to represent HRI in real applications. In addition, according to the model proposed in Section 3
and shown in Figure 2, all the information related to the acoustic environment that is available can
be very useful to improve the performance of the ASR engine. To fully characterize the possible test
conditions in Databases II and III, the two external sources of noise were recorded (noise sources 1
and 2 in Figure 3). The type of noise reproduced by these additional loudspeakers was restaurant
noise. This noise was employed in the environment-based training described in Section 4.2.

4 ENVIRONMENT-BASED ASR TRAINING

As mentioned above, instead of integrating the ASR technology on a black-box basis, we propose
to consider the HRI operation conditions such as the acoustic environment (see Figure 2). In this
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article we tackled the environment representation and modelling in the ASR training procedure to
soften the requirements on the training database and achieve high recognition accuracy in com-
plex HRI environments with limited training data. By “environment”, we mean the acoustic chan-
nel, reverberation conditions, and the additive noise caused by the robot movement and external
sources. Accordingly, we generated two environment-based training data: EbT-I and EbT-II.
In EbT-I, the training data included the impulse responses that model the microphone responses,
the reverberation, and the robot’s noise. In EbT-II, we also incorporated the additive noise from
external sources.

The experiments were performed with a DNN-HMM ASR using Kaldi, which is a state-of-the-art
and competitive ASR technology. Kaldi is an open source speech recognition toolkit that is popular
among the speech research community. It was first described in Reference [52] and is regularly up-
dated with implementations of new techniques and recipes for speech recognition systems.1 The
Kaldi project is hosted in Github.2 To build a DNN-HMM system with Kaldi, first a GMM-HMM
is trained with the EbT training data, using the tri2b Kaldi recipe for the Aurora-4 database. In
this recipe, a monophone system is trained; then, the alignments from that system are employed
to generate an initial triphone system; finally, the triphone alignments are employed to train the
final triphone system. Also, Mel-frequency cepstral coefficients parametrization of speech, lin-
ear discriminant analysis, and maximum likelihood linear transforms are part of the recipe. Once
the GMM-HMM system is trained, the GMM is replaced with a DNN. The DNN is composed of
seven hidden layers and 2,048 units per layer each, and the input considers a context window of
11 frames. The number of units of the output DNN layer is equal to the number of Gaussians in the
corresponding GMM-HMM system. The DNN was trained using Mel filter bank features. The ref-
erence for the DNN training is the alignment obtained with the clean version of the whole training
data and the GMM-HMM trained with the same clean data. This leads to a better reference for the
DNN than using the noisy or corrupted speech data directly [93–94]. The DNN is trained firstly
using the Cross-Entropy criterion. Then, the final system is obtained by re-training the DNN with
the sMBR discriminative training [95]. It is important to mention that the ASR system was trained
using mean and variance normalization (MVN) applied on a per-utterance basis. This type of nor-
malization could partly solve the channel problem when the channel is a microphone or telephone
line or considered time independent [96]. However, MVN-like approaches have a very limited ef-
fect with reverberated signals and simply do not solve the TVAC problem. Our final ASR systems
are referred as EbT-I or EbT-II, as described above, depending on the training data. For comparison
reasons, we also trained a DNN with the clean database without any information regarding the HRI
testbed scenario. Furthermore, the statistical significance analysis was performed using the NIST
matched-pair sentence-segment word error test [97]. For decoding, the standard 5K lexicon and
trigram language model from Wall Street Journal (WSJ) were used [98]. As a result, the language
model is tuned to the task, i.e., it is task dependent. The required files and scripts to generate the
EbT-I and EbT-II training data, and the detailed Kaldi recipe to train the DNN-HMM-based ASR
system employed here are available at http://www.lptv.cl/en/hri asr/.

4.1 EbT-I

The speech recognition experiments reported here made use of Aurora-4 database [99], which in
turn was generated with the 5,000-word closed-loop vocabulary task based on the DARPA Wall
Street Journal (WSJ0) Corpus. The Aurora-4 clean training set corresponds to the WSJ0 SI-84 data-
base [100] of the Nov’92 ARPA CSR [101]. This database was used to generate the training and

1At the time of writing, the Kaldi source code was updated in July 2020.
2https://github.com/kaldi-asr/kaldi.
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Table 2. Training Datasets used to Train the EbT-I and EbT-II ASR Systems Described
in Sections 4.1 and 4.2, Respectively

Training data
EbT-I EbT-II

25% of data Convolved with 1 IR Convolved with 1 IR

75% of data

Convolved with 32 IRs obtained at
static positions, and noise added at
SNR between 10 dB and 20 dB.

Convolved with 32 IRs obtained at
static positions, and noise added at
SNR between 10 dB and 20 dB.

Noise type Robot noise
Robot noise and restaurant noise at
SNR between −5 dB and 5 dB.

“IR” indicates impulse response.

testing sets to allow comparison with results published by the speech community. To generate the
EbT-I set, 25% of the clean training utterances of the Aurora-4 database, which consists of 7,138
utterances (i.e., 15.2 hours) from 83 native English speakers and contains only data recorded with a
high-quality microphone (i.e., Sennheiser HMD-414), was convolved with the IRs, corresponding
to the four Kinect channels, estimated when the robot-source distance was equal to 1 m and the
angle between the robot head and the speech source was 0°. Then, the four convolution results
were summed to obtain a single channel signal. The remaining 75% of the clean training set was
convolved with the remaining 32 four-channel IRs by employing the same procedure described
above, in such a way that the IRs were evenly distributed across the signals. The recorded robot’s
noise was added to this 75% of utterances using the Filtering and Noise Adding Tool (FaNT) [102]
at SNR between 10 and 20 dB. It is worth highlighting that these training data are completely dif-
ferent from the testing databases described above, i.e., different speakers and different utterances.

4.2 EbT-II

A composed additive noise was generated by adding the robot’s noise to the external source noise
at a random SNR between –5 dB and 5 dB. Similarly to EbT-I, EbT-II considers 25% of the clean
training utterances of the Aurora-4 database convolved with the IRs estimated when the robot-
source distance was equal to 1 m and the angle between the robot head and the source was 0°, and
the remaining 75% of the clean training set was convolved with the remaining 32 four-channel IRs.
Then, the composed additive noise was added to this 75% using the FaNT tool at SNR between 10
and 20 dB. Table 2 shows the comparison between the EbT-I and EbT-II training sets.

5 BEAMFORMING IN TVAC WITH EXTERNAL NOISE SOURCES

Applying beamforming techniques to filter out spatially the external source noise can lead to an
increase of SNR in the HRI scenarios represented by Database-II and Database-III (see Sections 3.2.2
and 3.2.3). In this article, we explored and evaluated four beamforming strategies that made use
of the four-microphone array available in the testing Database-II and Database-III: Sum Without
Delay (SWD), Kinect SDK, BeamformIt, and Beamforming with Oracle Source Tracking (BOST).
These beamforming systems or schemes are described as follows:

Sum Without Delay. The SWD strategy corresponds to the simple direct sum of the four chan-
nels delivered by the Microsoft Kinect without considering the delays regarding the reference
microphone (i.e., τ1, τ2, and τ3 in Figure 7). All the channels were weighted uniformly.

Kinect SDK. This library is part of the Microsoft Kinect SDK in its version 1.8 and is available
on the Microsoft website [103]. From a practical point of view, this library operates as a black
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Fig. 7. Geometry of the four-channel microphone array in the Microsoft Kinect. This device supports beam-
forming and can employed in HRI scenarios.

box that delivers the signal resulting from beamforming. Nevertheless, one can have access to the
estimated angle of the detected speech target source.

BeamformIt. This toolbox performs a weighted delay and sum where the delays and weights are
estimated internally by the toolkit [104]. BeamformIt also operates on a black-box basis with the
four Kinect audio channels and delivers a single beamformed signal.

Beamforming with Oracle Source Tracking. We proposed the BOST strategy to implement the or-
dinary delay-and-sum beamforming [78] provided that the channel phase shifts are known. These
phase shifts are estimated from the time-of-arrival, which in turn is determined from the angle
between the Kinect at the top of the robot’s head and the speech target source by assuming a pla-
nar wave front as shown in Figure 7. This angle was estimated with the information provided by
the robot moving condition and this scheme can be considered as an oracle source tracking. It is
worth mentioning that the orientation of the robot head with respect to the target speech source
position, which represents the user, is included in what can be called user and robot state and
context information. Therefore, BOST represents a particular case of the ASR integration strategy
to HRI scenarios discussed in Section 3 (see Figure 2).

6 RESULTS AND DISCUSSION

In this section, we present the results obtained with the environment-based trained ASR systems
EbT-I (Section 4.1) and EbT-II (Section 4.2). The EbT-I system was tested with Database-I and the
results were compared with publicly available APIs. In the case of EbT-II, the ASR system was
tested with Database-II and Database-III in combination with beamforming methods. Moreover,
additional experiments with Amazon Echo Dot are presented in the appendix to show the difficulty
of the kind of tasks addressed here.
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Fig. 8. WERs obtained with the EbT-I system and the publicly available ASR APIs. The testing data corre-
sponds to the original clean test set from Aurora-4 database (330 utterances).

6.1 EbT-I System and the APIs

The average WER obtained with the 5,280 utterances recorded in our HRI scenario with the stu-
dio loudspeaker (Section 3.2.1), was equal to 65.0% using our ASR system trained with clean data.
When only the IRs were incorporated in the training procedure, the average WER was substan-
tially reduced to 31.4%. Moreover, our EbT-I system (i.e., that includes both IRs and robot noise)
provided a much lower WER: 11.5%. This important increase of the ASR accuracy strongly sup-
ports our proposed approach to model the acoustic environment of an HRI scenario with chan-
nel impulse responses and robot additive noise. Observe that this WER was achieved with only
15.2 hours of training data. This result was corroborated by making use of our testing dataset that
was recorded with the four native American English speakers that led to an average WER of 73.5%
and 21.3% with clean training and EbT-I, respectively. These WERs are higher than those obtained
with the playback testing data. This must be due to the fact that the human speakers pronounced
the utterances with a lower volume resulting in a lower signal to noise ratio. The average SNRs
were equal to 11 and 18 dB for human speakers and loudspeaker data, respectively.

For comparison reasons, we also ran ASR experiments with three publicly available APIs
by using the “Speech Recognition” Python library (Version 3.7) [105]: the Google Web Speech
API (Google API), the IBM Speech to Text API (IBM API), and the Bing Voice Recognition API
(Bing API). Figure 8 shows the WER obtained with our EbT-I system and the three API mentioned
above with the 330 clean utterances from Aurora-4. The result obtained with the EbT-I system is
very competitive when compared with those published elsewhere with the Aurora-4 database by
making use of multicondition training [106, 107]. As can be seen in Figure 8, the EbT-I system pro-
vided the lowest WER that is 10% lower than the second best, i.e., IBM API. Although this relative
improvement seems important, the differences between the two best systems were not significant.
This result suggests that adopting a better tuned language model, as done in our EbT-I ASR system,
does not provide a clear advantage over a flatter or more general-purpose language model.

In our HRI test sets, we observed that in challenging scenarios the APIs evaluated here delivered
empty strings as the result of the ASR queries. Given this situation, the WERs were estimated with
the non-empty returned text strings. Figure 9 shows the ASR results obtained with our EbT-I sys-
tem, Google API, and IBM API, in all the robot motion conditions, with the playback loudspeaker
testing Database-I (Section 3.2.1). In the case of Bing API, the empty string rate (ESR) increased
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Fig. 9. Results with playback loudspeaker testing Database-I (Section 3.2.1). These plots show the WERs
obtained with the EbT-I system, Google API and IBM API in all the robot movement conditions. The average
WERs were 11.5%, 14.2%, and 40.1% with EbT-I, Google API, and IBM API, respectively. In the boxplots the
plus sign in circle, “⊕”, indicates the average WER in each case.

considerably and prevented us from showing a representative WER. All the ASR results with the
APIs shown in Figure 9 were carried out between September 6 and 12, 2017. As expected, the lowest
and highest WERs were achieved with the static condition (i.e., translation and angular velocities
equal to zero) and with the highest displacement and rotational velocities, respectively. Also, for
each robot movement condition in the testing Database-I the lowest WER was achieved with the
EbT-I system.

As can be seen in Figure 9, the lowest WER corresponds to our EbT-I system. The average WER
achieved with the EbT-I system is 19% lower than the second best (statistically significant with
p < 0.001), i.e., Google API. According to Figure 9, the EbT-I system and Google API provided
the lowest WER dispersion. Also, the observed average empty string rates or ESRs were equal to
0%, 0.3%, and 6.5% with EbT-I, Google API, and IBM API, respectively. If we include the empty
strings in the computation of the error rates, then the average WERs increased to 14.2% and 41.9%
with Google API and IBM API, respectively. With EbT-I the WER was not modified, because ESR
is equal to zero in this case. It is worth highlighting that these results are due to the proposed
acoustic environment modelling and representation rather than to the language model. Observe
that, as mentioned above, the average WER with the ASR trained with clean speech is 65.0%.

For validation purposes, Figure 10 summarizes the WERs obtained with EbT-I, Google API, and
IBM API, with the native American English speakers testing Database-I (Section 3.2.1). According
to Figure 10, the lowest value and dispersion for WER also corresponds to our EbT-I system. The
average WER achieved with system EbT-I is 34% lower than the second best, i.e., Google API. The
average ESRs with the human speaker testing dataset are equal to 0%, 5.8% and 5.6%. If we include
the empty strings in the computation of the error rates, then the average WERs increased to 34.9%
and 56.8% with Google API and IBM API, respectively. The results with the ASR APIs using the
native American English speaker as speech source in the testing Database-I were obtained between
September 25 and October 5, 2017. The results shown in Figure 9 and Figure 10 are strong empirical
evidence that support the proposed scheme, which in turn can lead to competitive ASR accuracies
when compared with publicly APIs by making use of limited training data.

By comparing Figure 8 with Figure 9, we can observe that the lowest WER is achieved with our
EbT-I system. However, the EbT-I system also provides the highest relative increase in average

ACM Transactions on Human-Robot Interaction, Vol. 10, No. 2, Article 17. Publication date: March 2021.



Automatic Speech Recognition for Indoor HRI Scenarios 17:19

Fig. 10. Results with native American English speakers testing Database-I (Section 3.2.1). These plots show
the WERs obtained with the EbT-I system, Google API, and IBM API in all the robot movement conditions.
The average WERs were 21.3%, 32.5%, and 56.0% with EbT-I, Google API, and IBM API, respectively. In the
boxplots the plus sign in circle, “⊕”, indicates the average WER in each case.

Table 3. Characterization of Rooms where the EbT-I Training System
Strategy Was Applied and Evaluated

Room Description Volume (m3) RT (s)

1 Meeting room 104 0.50
2 Classroom 244 0.64
3 Classroom 208 1.05

RT denotes the measured reverberation time.

WER, i.e., 214%, from the clean testing data to the playback loudspeaker testing Database-I (Sec-
tion 3.2.1) in the HRI scenario. In contrast, Google API, for instance, shows a relative increase in
average WER equal to 154%. This result can be explained according to Reference [31], Reference
[32], and Reference [33], where it is said that the ASR engines that support the APIs evaluated here
could have been trained with at least thousands of hours of speech covering a wide diversity of
acoustic conditions. In contrast, our EbT-I system was trained with only 15.2 hours of clean speech
utterances that were convolved with channel impulse responses and had noise added (Section 4.1).
The proposed procedure is applicable to any HRI environment, being only necessary the capture
of the robot noise and the estimation of the acoustic impulse responses to get a new environment-
based ASR system. This procedure requires just a couple of days and a few hours of training data.
At this point it is worth highlighting that the adequate use of user and robot states and contexts can
reduce the language model perplexity, and lead to further improvements in recognition accuracy.

Further two versions of the EbT-I system were generated by making use of two additional rooms,
i.e., Room 2 and Room 3, to illustrate the effectiveness and easy replicability of the proposed
methodology. Table 3 shows the characterization of the rooms employed here. Three test con-
ditions representative of the 16 conditions available in Database-I were also recorded in Room 2
and Room 3. These three movement conditions were C.1, v = 0 m/s and w = 0 rad/s; C.2, v = 0
m/s and w = 0.42 rad/s; and C.3. v = 0.45 m/s and w = 0.42 rad/s. Table 4 shows the WERs ob-
tained with the EbT-I systems generated in each one of the three rooms characterized in Table
3 separately. Aditionally, a fourth EbT-I system was trained with the acoustic channels from all
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Table 4. WER Obtained with the EbT-I Systems Generated for Room 1, Room 2, and Room 3

Training Clean
EbT-

Itrained
for Room 1

EbT-
Itrained

for Room 2

EbT-
Itrained

forRoom 3

EbT-I trained with the
acoustic information

from Rooms 1, 2 and 3.

Testing Room 1 2 3 1 2 3 1 2 3
Testing C.1 8.6% 7.6% 17.3% 4.0% 4.1% 5.7% 4.2% 4.1% 4.5%
Condition C.2 10.7% 49.4% 75.1% 7.9% 7.8% 14.5% 8.7% 7.9% 19.5%

C.3 83.5% 78.2% 90.8% 14.2% 19.0% 32.6% 16.7% 19.2% 39.1%

the rooms. Table 4 also shows the WERs obtained with the ASR trained with clean speech as a
reference.

As expected, the results in Table 4 show that the WERs increase as the movement conditions
become more dynamic, i.e., C.2 and C.3, independently of the room and training condition. As can
be seen, EbT-I systems provided significant reductions in WER within the corresponding room
when compared with the systems trained with clean signal. For comparison purposes, the WERs
obtained for condition C.3 with the Google API in Room 1, Room 2, and Room 3 were 34.4%, 60.1%,
and 18.6% higher than the WERs obtained by the corresponding EbT-I systems, respectively.

The results with Google API on Room 2 and Room 3 data were obtained on September 13, 2019.
In addition, a single EbT-I ASR system was trained using the acoustic channel impulse responses
from all the rooms. In average, this room independent EbT-I system provided a WER just 7.6%
higher than the room dependent EbT-I systems. Finally, it is worth highlighting that despite the
fact that the adaptation from one acoustic scenario to another is beyond the scope of the current
manuscript, the estimation of reverberant impulse responses is a problem that is currently being
addressed by making use of audio and visual information.

6.2 EbT-II and Beamforming Methods

The EbT-II-based trained ASR was tested with Database-II and Database-III in Room 1. Beamform-
ing systems were employed to filter out spatially the additive noise from external sources and to
increase the SNR. The error in the direction of arrival (DOA) estimation provided by the Kinect
SDK, see Figure 7), was obtained as the absolute value of the difference between the Kinect DOA
and the oracle one. This error was averaged across all the testing utterances and the experimental
conditions and was equal to 32° and 27° with one and two noise sources, respectively.

6.2.1 Results with a Single Noise Source. In this section, we analyze the results obtained in an
HRI scenario considering one external noise source. The results obtained with testing Database-II
are shown in Figure 11. For the first static condition contained in this database, i.e., with the ro-
bot head oriented toward the speech source, the lowest WERs were achieved by SWD and BOST
beamforming strategies. No significant differences were found between the SWD and BOST. The
WERs obtained by these strategies were 31% and 45% lower (statistically significant with p < 0.001)
than the BeamformIt and Kinect SDK toolkits, respectively. In the case of the second static con-
dition, i.e., with the robot head oriented toward the noise source, the lowest WER was achieved
by the BOST technique, which is 55% and 54% lower (statistically significant with p < 0.001) than
those obtained with the BeamformIt and Kinect SDK toolkits, respectively. In the first dynamic
condition, i.e., only considering the rotational movement of the robot’s head, the best result was
reached by the BOST technique and is 44% and 53% lower (statistically significant with p < 0.001)
than the WERs with BeamformIt and Kinect SDK toolkits, respectively.
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Fig. 11. Results obtained with testing Database-II using the direct sum of the microphone array channels
(i.e., SWD), the Kinect SDK library, the BeamformIt toolkit, and the BOST strategy.

Finally, for the second dynamic condition, i.e., translational robot movement and robot’s head
rotation, the best result was also achieved by the BOST scheme that provided a WER that was 32%
and 45% lower (statistically significant with p < 0.001) than those obtained with the BeamformIt
and Kinect SDK toolkits, respectively.

In all the conditions, except the first one (i.e., static robot with the head looking at 0°with respect
to the speech target source), the BOST strategy outperformed SWD, BeamformIt and the Kinect
SDK. It is worth highlighting that the Kinect SDK and BeamformIt toolkits achieved improvements
when compared to SWD only in one and two out of four conditions, respectively. This must be due
to the fact that the direction of the speech target source was not accurately estimated in this sce-
nario with reverberation and external additive noise by making use of acoustic information only.

6.2.2 Results with Two Noise Sources. This scenario is even more complex than the previous
one, i.e., Database-II, due to the successive reflections of both sources of external noise in the
walls of the room. The results obtained with testing Database-III are shown in Figure 12. In the first
static condition, i.e., with the robot head oriented toward the speech source, the lowest WER was
achieved by SWD, which is 12% lower (statistically significant with p < 0.001) than the BeamformIt
toolkit. Although the WER achieved by the SWD strategy is lower than the one obtained with
the Kinect SDK library, no significant differences were found between these two results. In the
second static condition, i.e., with the robot head oriented toward one of the noise sources, the
best result was achieved by the BOST technique, which delivers a WER that is 24% and 33% lower
(statistically significant with p < 0.001) than the BeamformIt and Kinect SDK toolkits, respectively.
In the first dynamic condition, i.e., considering only the rotational movement of the robot’s head,
the best result was also achieved by the BOST scheme that is 31% and 42% lower (statistically
significant with p < 0.001) than the WERs with BeamformIt and Kinect SDK toolkits, respectively.
Finally, in the second dynamic condition, i.e., by simultaneously applying translational movement
to the robot body and angular rotation to the robot’s head, the lowest WER was also achieved
by the BOST strategy, which is 22% and 35% lower (statistically significant with p < 0.001) than
the BeamformIt and Kinect SDK toolkits, respectively. Only in the first static condition, BOST did
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Fig. 12. Results with testing Database-III using the direct sum of the microphone array channels (i.e., SWD),
the Kinect SDK library, the BeamformIt toolkit, and the BOST strategy.

not provide the highest accuracy, but the difference with the lowest WER, i.e., with SWD, was not
significant. Similarly to the tests performed considering only one source of external noise, Kinect
SDK and BeamformIt led to improvements with respect to SWD s only in one and three of four
conditions, respectively.

This result corroborates our findings with one external noise source and suggests that to esti-
mate the direction of the speech target source by making use of acoustic information only in the
presence of reverberation and external additive noise is not a trivial problem.

6.2.3 Beamforming with Oracle Source Tracking. Even though the beamforming toolkits in Sec-
tion 5 (i.e., Kinect SDK and BeamformIt) achieved a significant improvement when compared with
SWD in some conditions, the improvements obtained with the proposed BOST scheme suggest
that to estimate the direction of the target speech source by employing acoustic information only
in the presence of reverberation and external noise sources is a difficult problem. In this context,
localizing the target source by using other means such as image processing is an interesting solu-
tion and the accuracy improvements provided by BOST can be considered as oracle results with
source tracking in complex indoor HRI scenarios. As mentioned above, the orientation of the robot
head with respect to the target speech source position, which represents the user, can be consid-
ered user and robot state and context information. Consequently, BOST corresponds to a particular
case of the ASR integration strategy to HRI scenarios discussed in Section 3 (see Figure 2).

7 CONCLUSIONS

In this article, we point out the issue of ASR degradation in a dynamic situation where the robot
can be moving or rotating the microphone. This is proven by systematic evaluation on various
conditions. We showed that to incorporate our time-varying acoustic channel model combined
with environmental noise in the ASR training procedure can help improve the results, outper-
forming black-box APIs. Then, we evaluate the use of other information that in this case is the
oracle beamforming direction to point out the potential benefit of building a more integrated ASR
solution with the robot. This article is focused on the acoustic environment representation and
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modeling by training a DNN-HMM model-based automatic speech recognition engine by means
of the combination of clean utterances with the acoustic channel responses and noise that were
estimated and recorded, respectively, with an HRI testbed built with a PR2 robot. The proposed
procedure addresses the TVAC problem and is much more effective and efficient than recording a
training database in all the possible acoustic environments, given an HRI scenario. Consequently,
we present a solution to the problem of acoustic environment representation and modelling in
the ASR training procedure to soften the requirements on the training database to achieve high
recognition accuracy in complex HRI environments with limited training data. This is an inter-
esting outcome for the robotics community due to the potential application in HRI of Kinect or
equivalent solutions. Different speech recognition testing conditions were generated by recording
two types of speech sources, i.e., a loudspeaker and human speakers, and by including external
source of noise using the PR2 robot, which has a Microsoft Kinect sensor mounted on top, while
performing head rotations and movements toward and away from the fixed sources. This testbed
models the generic problem of HRI in mobile robotics, from the kinematic point of view, when
a user is interacting with a robot, and the resulting automatic speech recognition accuracy out-
performed publicly available speech recognition APIs. The average WER achieved by our system
is at least 19% and 34% lower than the evaluated APIs with the loudspeaker and human modal-
ities, respectively, with a limited amount of training data. Observe that the proposed method is
not just data augmentation that attempts only to increase the training set size by introducing, for
instance, simple speed perturbations on utterances to generate copies of the training data. This
is not the case of the current article where the acoustic environment was modelled and incorpo-
rated in the training procedure. Moreover, the number of training utterances was not modified.
The proposed scheme is not multicondition training either and to record training speech in several
operating condition is not necessary. It is worth highlighting that unlike a system implemented in
the cloud, such as the APIs tested here, an off-line system provides greater security regarding the
confidentiality of the analyzed data and greater stability of the system, since it does not depend
on transmission networks.

Using the BOST strategy, lower WERs were achieved than using publicly available beamforming
toolkits, i.e., BeamformIt and Kinect SDK. The accuracy improvements obtained with the BOST
strategy can be considered as oracle results with target source tracking in complex indoor HRI sce-
narios. For the most challenging condition, i.e., translational robot movement and robot’s head ro-
tation, the best result employing one external noise source was achieved by the BOST strategy that
provided a WER that is 32% and 45% lower than those obtained with the BeamformIt and Kinect
SDK toolkits, respectively. With two external noise sources, the lowest WER was also achieved
by the BOST strategy, which is 22% and 35% lower than the BeamformIt and Kinect SDK toolkits,
respectively. These results strongly suggest that to use different sources of information such as
those provided by cameras and other sensors can provide complementary information about the
interaction environment and lead to better results than those obtained with beamforming toolkits
in HRI situations.

At this point, it is interesting to highlight that the results presented were achieved by integrating
knowledge to the ASR technology, not only raw data. The approach we propose can lead to stand-
alone ASR systems that do not need to send data to the cloud and can provide competitive or higher
accuracy than publicly available APIs with limited training data in real environments. We believe
that both issues are significant improvements to HRI technology. An extra factor in HRI scenarios
is that the user speech may be stressed in noisy conditions, i.e., Lombard effect. This problem and
the incorporation of more complex aspects related to the states and contexts of users and robots,
from the speech recognition point of view, are proposed for future research.
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APPENDIX

There has been a growing market for smart speakers in the past few years. Products such as Ama-
zon Echo Dot and Google Home are becoming very popular and have already been used by some
authors in the HRI community, e.g., References [62, 108, 109]. The scenarios in which our method-
ology is tested are common in mobile robotics but are very challenging. To show the complexity
of the problem addressed here, we carried some experiments with Amazon Echo Dot in one of our
testbeds. An additional testing database was generated for this purpose. The first 100 clean testing
utterances of the Aurora-4 database were re-recorded simultaneously by using the Kinect and the
Echo Dot (third generation) in two different testing conditions with the robot placed in position
P2 according to Figure 3. The Echo Dot speaker was mounted on top of the PR2’s Kinect sensor,
which in turn is mounted on top of the robot´s head (see Figure A1). The first testing condition
dataset, Set 1, was generated with the robot head fixed and oriented toward the speech source.
The second condition dataset, Set 2, was recorded with the robot head rotating at 0.42 (rad/s). The
speech source corresponded to the same studio loudspeaker employed in Section 3.2. The robot

Fig. A1. Experimental setup used for simultaneous recording with Amazon Echo Dot and Microsoft Kinect.

Fig. A2. WERs obtained with Alexa Skill and with the EbT-I system for the testing conditions in Set 1 and Set 2.
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engine was on in both conditions but the external noise sources in Figure 3 were not used in this
case. The resulting SNRs were equal to 18 and 15 dB with Set 1 and Set 2, respectively.

A “skill” was generated in the Amazon development environment.3 This “skill” started captur-
ing the audio after receiving the "wake-up” word to send it to the Amazon cloud service. Then the
result was stored in a S3 bucket (Amazon storage service) for the subsequent word error rate com-
putation. The experiments were carried out on July 13 and 14, 2020. It is important to mention that
to achieve a better response of the “skill” in the recordings, the “wake-up” word was reproduced
with another studio speaker near the robot’s head (see Figure A1). The results obtained are shown
in Figure A2. The efficiency of the “wake-up” word was 70% and 75% for Set 1 and Set 2, respec-
tively. Therefore, the WERs shown in Figure A2 were computed for Echo Dot and Kinect datasets
with those utterances that were decoded by our Alexa “skill” to make the results comparable.

As can be seen in Figure A2, our EbT-I system provided WERs 75% and 80% lower than those
obtained with Alexa “skill”/Echo Dot with Set 1 and Set 2, respectively. Moreover, the WER in-
crease from Set 1 (robot´s head is static) to Set 2 (robot´s head rotates) is 50% and 20% with Alexa
“skill”/Echo Dot and our EbT-I system, respectively. Basically, these results confirm the difficulty
of the problem addressed here and the pertinence of the proposed methodology.
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